WO2016136421A1 - トランスおよび電力変換装置 - Google Patents

トランスおよび電力変換装置 Download PDF

Info

Publication number
WO2016136421A1
WO2016136421A1 PCT/JP2016/053439 JP2016053439W WO2016136421A1 WO 2016136421 A1 WO2016136421 A1 WO 2016136421A1 JP 2016053439 W JP2016053439 W JP 2016053439W WO 2016136421 A1 WO2016136421 A1 WO 2016136421A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
transformer
coil
outer peripheral
core leg
Prior art date
Application number
PCT/JP2016/053439
Other languages
English (en)
French (fr)
Inventor
宝蔵寺 裕之
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US15/548,629 priority Critical patent/US10580561B2/en
Publication of WO2016136421A1 publication Critical patent/WO2016136421A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/025Constructional details relating to cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/085Cooling by ambient air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/20Cooling by special gases or non-ambient air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances

Definitions

  • the present invention relates to a transformer and a power conversion device including the transformer.
  • a transformer having a structure in which a lead wire is wound around a core (also referred to as a magnetic core or an iron core) is often used for a power conversion device such as a voltage or a current.
  • a power conversion device such as a voltage or a current.
  • a large core and a thick conducting wire are required. Therefore, in order to reduce the size and weight of the power conversion device, it is strongly required to first reduce the size of the transformer.
  • the lead wire wound around the core is thinned, the resistance of the lead wire increases, the temperature of the core rises due to the Joule heat, the core causes magnetic saturation, and power conversion as a transformer Lose functionality. Further, if the core is simply made small without considering the temperature rise, the magnetic flux density in the core becomes large, so that naturally it is easy to cause magnetic saturation. Therefore, in order to reduce the size of the transformer, it is necessary to suppress the temperature rise of the core and the winding part (coil) so that the core does not reach magnetic saturation.
  • Patent Document 1 discloses an example of a transformer including a ferrite core 46 including a protrusion 50 of a central portion 49 that is wound with a conductive wire and serves as a middle leg, and four leg portions 47 branched from the outer periphery of the central portion 49. It is disclosed (see FIG. 9 etc.). And it describes that the heat dissipation of a ferrite core improves as an effect which made the leg part 47 four (refer paragraph 0062 etc.).
  • the conventional technology has a problem that sufficient heat radiation performance cannot be obtained particularly from the middle leg portion or coil of the core. Therefore, in order to prevent magnetic saturation, it is necessary to enlarge the core in order to reduce the magnetic flux density in the core, which is an obstacle to miniaturization of the transformer.
  • an object of the present invention is to provide a transformer that can improve the heat dissipation from the core and the coil and can be miniaturized, and a power conversion device including the transformer.
  • the transformer according to the present invention includes a coil formed by winding a conductive wire in a spiral cylindrical shape, a columnar core core portion to which the coil is mounted, and both ends of the core core portion outside the coil.
  • the power conversion device includes a coil formed by winding a conductive wire in a spiral cylindrical shape, a columnar core core portion on which the coil is mounted, and both ends of the core core portion.
  • a transformer comprising a plurality of core legs connected to the outside of the coil, a housing case on which the transformer is mounted on a floor surface, and a cool air that is disposed on a side surface portion of the housing case to cool the transformer.
  • the transformer has a central axis of the core core portion substantially parallel to a floor surface of a storage housing on which the transformer is mounted, and a central axis of the core core portion. The direction is the same as the direction of the cool air blown from the fan, and is arranged in the housing case.
  • the present invention it is possible to provide a transformer that can improve the heat dissipation from the core and the coil and can be reduced in size, and a power conversion device including the transformer.
  • FIG. 1 is a perspective view showing an example of a schematic structure of a transformer according to a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of a transformer at a position A-A ′ in FIG. 1.
  • the perspective view which showed typically the example of arrangement
  • FIG. 8 is a top view of the transformer illustrated in FIG. 7.
  • FIG. 1 is a perspective view showing an example of a schematic structure of a transformer 10 according to the first embodiment of the present invention
  • FIG. 2 is a longitudinal sectional view of the transformer 10 at the position AA ′ in FIG.
  • the transformer 10 according to the present embodiment includes a core 11 that is an iron core, a coil 13 in which a conductive wire is wound in a spiral cylindrical shape, a bobbin 12 on which the coil 13 is mounted, A primary coil terminal 14 and a secondary coil terminal 15 for connecting the coil 13 to external wiring are provided.
  • the bobbin 12 is provided at both ends of the cylindrical portion 12a (see FIG. 2) around which the coil 13 is wound and the cylindrical portion 12a, so that the conductive wire of the coil 13 does not protrude from the cylindrical portion 12a. And a flange portion 12b (see FIG. 1).
  • the core 11 has a cylindrical core core portion 11 a on which the bobbin 12 around which the coil 13 is wound is mounted, and four core legs that connect both ends of the cylindrical core core portion 11 a on the outside of the coil 13. Parts 11b, 11c, 11d, and 11e.
  • the four core leg portions 11b, 11c, 11d, and 11e are flat outer peripheral surfaces 11b1, 11c1 that are substantially parallel to a tangential plane (not shown) in contact with the outer peripheral side surface of the cylindrical coil 13. , 11d1 and 11e1.
  • the four core legs 11b, 11c, 11d, and 11e serve as paths (magnetic paths) for magnetic flux generated outside the coil 13 when a current flows through the coil 13.
  • the transformer 10 is arranged on the floor surface 20a of the housing 20 in a state where the central axis 11a1 of the core core portion 11a is substantially horizontal (substantially parallel to the floor surface 20a of the housing 20). It is arranged.
  • the arrangement of the transformer 10 (or the core 11) in the following manner means that the central axis 11a1 of the core core portion 11a is disposed in the housing 20 in a state of being substantially horizontal. .
  • the core leg portion 11b that contacts the floor surface 20a and supports the entire transformer 10 has three other core leg portions 11c, 11d, The size is larger than 11e, and the outer peripheral surface 11b1 is brought into close contact with the floor surface 20a.
  • the material of the housing 20 it is preferable to use a material that does not have magnetism and has high thermal conductivity like aluminum and copper. Therefore, in this embodiment, since the contact area of the core 11 and the floor surface 20a increases, the heat generated in the core 11 can be radiated to the housing 20 effectively.
  • a high thermal conductive material 21 such as grease having excellent thermal conductivity is sandwiched between the outer peripheral surface 11b1 of the core leg 11b and the floor surface 20a.
  • a high thermal conductive material 21 such as grease having excellent thermal conductivity is sandwiched between the outer peripheral surface 11b1 of the core leg 11b and the floor surface 20a.
  • the core 11 can be adopted depending on the operating frequency and capacity of the coil current.
  • the shape shown in FIG. 2 can be molded using a mold.
  • the material is an amorphous metal foil, a plurality of metal foils are wound to form a shape divided into the core core portion 11a and the core leg portions 11b, 11c, 11d, and 11e, and these are combined and joined.
  • the desired core 11 shape can be obtained.
  • the number of core legs of the core 11 is four, but any number of core legs may be used as long as it is two or more.
  • the outer peripheral surfaces 11c1, 11d1, and 11e1 of the core leg portions 11c, 11d, and 11e excluding the core leg portion 11b in contact with the floor surface 20a are assumed to be flat, these outer peripheral surfaces 11c1, 11d1, and 11e1 are not necessarily provided. It may not be flat.
  • FIG. 3 is a perspective view schematically showing an example of arrangement in the housing of the power conversion device 100 using the transformer 10 according to the first embodiment of the present invention
  • FIG. 4 is a power conversion device shown in FIG. It is a top view of arrangement
  • the power conversion device 100 includes an input / output terminal 101 and a fan 102 provided on a side wall portion of the housing 20, and a transformer 10 and a power conversion circuit 103 in the housing 20.
  • a control circuit 104, a power supply circuit 105, and the like are provided.
  • the power conversion circuit 103 includes an AC / DC conversion circuit, a DC / AC conversion circuit, and the like.
  • the control circuit 104 controls the power conversion circuit 103, and the power supply circuit 105 supplies an operating current to the control circuit 104 and the fan 102.
  • the transformer 10 is placed horizontally on the floor surface 20a of the housing 20, and the center shaft 11a1 of the core core portion 11a (see FIG. 1) blows air from the fan 102 as shown in FIG. It arrange
  • the cold air 106 flows along the side surface of the cylindrical coil 13 and the core legs 11c, 11d, and 11e. Therefore, the coil 13 and the core 11 are efficiently cooled by the cold air 106 from the fan 102. Therefore, the temperature rise of the coil 13 and the core 11 is suppressed, and especially the core core part 11a is prevented from being overheated.
  • the transformer 10 is not arranged directly on the floor surface 20a of the housing 20, but for example, an insulating resin is applied and cured on the surface of a copper or aluminum base material, and a circuit is formed on the copper. It is good also as what is arrange
  • FIG. 5 is a diagram showing, as a comparative example, a top view of the arrangement in the housing of the power conversion device 100a when the transformer 10 is placed vertically.
  • the transformer 10 when the transformer 10 is placed vertically, the transformer 10 is disposed in the housing 20 in a state where the central axis 11a1 of the core core portion 11a is substantially perpendicular to the floor surface 20a of the housing 20. That means.
  • the cold air 106 from the fan 102 hits only the surface of the coil 13 on the windward side of the transformer 10 and the surfaces of the core legs 11b, 11c, and 11e, but the surface of the coil 13 on the leeward side and the core legs. 11d is hardly hit. Further, even on the windward surface of the coil 13, the vicinity thereof is surrounded by the three core leg portions 11 c, 11 d, and 11 e, so that it is removed from the flow path of the cold air 106, and heat is likely to be trapped. .
  • the material of the core 11 such as ferrite usually has a property that the saturation magnetic flux density decreases as the temperature rises. Therefore, in the comparative example, in order to prevent magnetic saturation due to a temperature rise particularly in the core core portion 11a, it is necessary to increase the diameter of the column of the cylindrical core core portion 11a. However, increasing the diameter of the cylinder of the core core portion 11a means increasing the size of the entire core 11, that is, the transformer 10.
  • the transformer 10 is placed horizontally as described above, and the cold air 106 flows along the side surfaces of the cylindrical coil 13 and the core legs 11c, 11d, and 11e.
  • the temperature rise of the core part 11a is suppressed, and overheating is prevented. That is, this embodiment has an effect that the diameter of the cylindrical core core portion 11a can be reduced as compared with the comparative example, and the transformer 10 can be downsized.
  • FIG. 6 is a perspective view showing an example of a schematic structure of a transformer 10a according to the second embodiment of the present invention.
  • the transformer 10a according to the second embodiment has almost the same structure as the transformer 10 according to the first embodiment (see FIG. 1), but differs in the following points. That is, in the transformer 10 according to the first embodiment, a slight gap is provided between the inner wall of the cylindrical portion 12a of the bobbin 12 and the outer wall of the core core portion 11a, and the two are not necessarily in close contact with each other. .
  • the high thermal conductive resin 30 is sandwiched between the inner wall of the cylindrical portion 12a of the bobbin 12 and the outer wall of the core core portion 11a. 30 is in close contact. Therefore, the heat generated particularly on the center side of the coil 13 is easily transmitted to the core core portion 11a, and is easily dissipated to the outside through the four core leg portions 11b, 11c, 11d, and 11e.
  • a material having high thermal conductivity and excellent insulation as the material of the bobbin 12.
  • a material for the bobbin 12 a composite material in which a resin such as polyester, polyethylene, epoxy, phenol, or the like and an insulating material such as aluminum nitride or alumina and high thermal conductivity ceramics are blended can be used.
  • a material of the high thermal conductive resin 30 sandwiched between the inner wall of the cylindrical portion 12a of the bobbin 12 and the outer wall of the core core portion 11a ceramic powder such as aluminum nitride, alumina, etc. in resin such as silicone, epoxy, phenol, etc.
  • a composite material containing metal powder having no magnetism such as aluminum or copper, or carbon can be used.
  • the diameter of the cylindrical core core portion 11a can be made smaller than in the case of the first embodiment, so that the transformer 10 can be reduced in size.
  • FIG. 7 is a perspective view showing an example of a schematic structure of a transformer 10b according to the third embodiment of the present invention
  • FIG. 8 is a top view of the transformer 10b shown in FIG.
  • the transformer 10b according to the third embodiment has almost the same structure as the transformer 10 (see FIG. 1) according to the first embodiment described above.
  • the transformer 10 according to the first embodiment in the following points. Is different. That is, in the transformer 10 according to the first embodiment, the primary coil terminal 14 and the secondary coil terminal 15 extracted from the coil 13 are provided on the same flange portion 12b of the bobbin 12 (see FIG. 1). On the other hand, in the transformer 10b according to the present embodiment, the primary coil terminal 14 and the secondary coil terminal 15 are provided on the flange portion 12b of the opposite ends of the bobbin 12 (see FIGS. 7 and 8).
  • the primary coil terminal 14 and the secondary coil terminal 15 are depicted as being provided on the flange portions 12b on the opposite sides of the bobbin 12, respectively.
  • the set of terminals provided is not limited to this combination.
  • the first terminal of the primary coil terminal 14 and the first terminal of the secondary coil terminal 15 are provided on the flange portion 12b on the same side
  • the second terminal of the primary coil terminal 14 and the secondary coil terminal 15 A second terminal may be provided on the flange portion 12b opposite to the flange portion 12b.
  • the primary coil terminal 14 and the secondary coil terminal 15 can be provided only on the flange portion 12 b on the same upper surface side of the bobbin 12.
  • the primary coil terminal 14 and the secondary coil terminal 15 can be provided on different flange portions 12b of the bobbin 12, respectively. This means that the degree of freedom of the terminal setting position increases, which is an advantageous feature when the transformer 10b is downsized.
  • the transformer 10b when the transformer 10b is reduced in size, the distance between the primary coil terminal 14 and the secondary coil terminal 15 is shortened, which causes a problem that it is difficult to secure an insulation distance.
  • the primary coil terminal 14 and the secondary coil terminal 15 can be provided in the flange part 12b on the opposite side, it is easy to secure an insulation distance between the terminals. That is, this embodiment has an effect that not only the transformer can be downsized but also a small and large capacity transformer can be easily realized.
  • FIG. 9 is a perspective view showing an example of a schematic structure of a transformer 10c according to the fourth embodiment of the present invention.
  • the transformer 10c according to the fourth embodiment has almost the same structure as the transformer 10b according to the third embodiment described above (see FIG. 7), but the radiating fin 50 is mounted on the upper part of the core leg portion 11d. This is different from the transformer 10b according to another embodiment.
  • the flat lower surface of the radiating fin 50 is in close contact with the outer peripheral surface 11 d 1 of the core leg portion 11 d via the high thermal conductive material 51.
  • the high thermal conductive material 51 ceramic powder such as aluminum nitride and alumina, metal powder having no magnetism such as aluminum and copper, or an adhesive containing carbon can be used.
  • a filler in which similar ceramic powder, metal powder, carbon, or the like is mixed with silicone oil may be used.
  • the material of the heat radiating fin 50 copper or aluminum having a high thermal conductivity is used.
  • the radiation fin 50 is arrange
  • the transformer 10c is disposed in the housing 20 so that the direction of the cold air 106 of the fan 102 and the direction of the central axis 11a1 of the core core portion 11a are the same. To do. As a result, the amount of heat released from the radiation fin 50 can be increased more effectively.
  • the heat radiation amount from the core 11 can be increased by the heat radiating fins 50, the temperature rise in the core core portion 11a is more effectively suppressed and the heating is prevented. be able to. Therefore, the diameter of the cylindrical core core portion 11a can be further reduced, and the transformer 10c can be downsized.
  • the radiating fin 50 is attached to the core leg portion 11d located on the upper portion of the core 11, but is attached to one of the core leg portions 11c and 11e located on the side portion of the core 11. It is good also as a thing, and it is good also as attaching to two or all three of the core leg parts 11c, 11d, and 11e.
  • the present invention is not limited to the embodiments and modifications described above, and further includes various modifications.
  • the above-described embodiments and modifications have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of an embodiment or modification can be replaced with the configuration of another embodiment or modification, and the configuration of another embodiment or modification can be replaced with another embodiment or modification. It is also possible to add the following configuration.
  • the configuration included in another embodiment or modification may be added, deleted, or replaced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 コアおよびコイルからの放熱性を向上させ、トランスを小型化することを目的とする。 上記課題解決のため、トランス10は、コイル13が巻回されたボビン12と、ボビン12が装着される円柱状のコア中芯部11aと、コア中芯部11aの両端をコイル13の外側でつなぐ複数のコア脚部11b,11c,11d,11eと、を備える。コア脚部11bのサイズは、他のコア脚部11c,11d,11eのサイズよりも大きく、コア脚部11bは、コイル13の外周側面に接する面に略平行で平坦な外周面11b1を有している。トランス10は、コア脚部11bの外周面11b1を筐体20の床面20aに接するようにして、筐体20に配設される。

Description

トランスおよび電力変換装置
 本発明は、トランスおよびそのトランスを備えた電力変換装置に関する。
 電圧や電流などの電力変換装置には、しばしば、コア(磁気コア、鉄心などともいう)に導線を巻き付けた構造のトランスが用いられる。トランスを用いて大きな電力を変換するには、大きなコアと太い導線が必要であることから、電力変換装置を小型軽量化のためには、まず、トランスを小型化することが強く求められる。
 トランスの小型軽量化のために、コアに巻き付ける導線を細くすると、導線の抵抗が増大し、そのジュール熱のためにコアの温度が上昇して、コアが磁気飽和を起こし、トランスとしての電力変換機能を失う。また、温度上昇を考慮せずにコアを単に小さくすると、コアの中の磁束密度が大きくなるので、当然ながら磁気飽和を起こし易くなる。そこで、トランスの小型化のためには、コアや巻き線部(コイル)の温度上昇を抑えて、コアが磁気飽和に達しないようにする必要がある。
 特許文献1には、導線が巻かれ中足となる中央部49の突起部50と、その中央部49の外周から分岐した4つの脚部47とからなるフェライトコア46を備えたトランスの例が開示されている(図9など参照)。そして、脚部47を4つにした効果として、フェライトコアの放熱性が向上することが記載されている(段落0062など参照)。
特開2003-324017号公報
 特許文献1に記載のトランスでは、コアの脚部を増加させ、コアの表面積を増大させていることから、確かにコアの放熱性は向上する。従来、このようなコアの構造を有するトランスは、特許文献1にも記載されているように、コイルの中心軸がコアの据え付け面に対して垂直方向に配置されることが多い。その場合、例えば、コアの側方に配置されたファンからの冷風は、コイルおよびコイルが設けられている中足部分には、外側の脚部が障害物となって届きにくい。とくに、風下側のコイルや脚部には、冷風はほとんど届かないといってよい。
 つまり、従来技術には、とくにコアの中足部やコイルからは充分な放熱性能が得られないという問題があることが分かる。そのため、磁気飽和を防止するためには、コアの中の磁束密度を小さくするためにコアを大きくすることが必要となり、このことがトランスの小型化の障害となっている。
 そこで、本発明は、コアおよびコイルからの放熱性を向上させて、小型化することが可能なトランスおよびそのトランスを備えた電力変換装置を提供することを目的とする。
 本発明に係るトランスは、導線が螺旋円筒状に巻回されて構成されたコイルと、前記コイルが装着される円柱状のコア中芯部と、前記コア中芯部の両端を前記コイルの外側でつなぐ複数のコア脚部と、を備え、自身が搭載される収納筐体の床面に対し前記コア中芯部の中心軸が略平行になる状態で、前記収納筐体に配設されることを特徴とする。
 また、本発明に係る電力変換装置は、導線が螺旋円筒状に巻回されて構成されたコイルと、前記コイルが装着される円柱状のコア中芯部と、前記コア中芯部の両端を前記コイルの外側でつなぐ複数のコア脚部と、を備えてなるトランスと、前記トランスを床面上に搭載した収納筐体と、前記収納筐体の側面部に配設されて前記トランスに冷風を送風するファンと、を備え、前記トランスは、前記トランスを搭載する収納筐体の床面に対し前記コア中芯部の中心軸が略平行で、かつ、前記コア中芯部の中心軸の方向と前記ファンから送風される冷風の方向とが同じになるようにして、前記収納筐体に配設されることを特徴とする。
 本発明によれば、コアおよびコイルからの放熱性を向上させて、小型化することが可能なトランスおよびそのトランスを備えた電力変換装置が提供される。
本発明の第1の実施形態に係るトランスの概略構造の例を示した斜視図。 図1のA-A’位置におけるトランスの縦断面図。 本発明の第1の実施形態に係るトランスを用いた電力変換装置の筐体内配置の例を模式的に示した斜視図。 図3に示した電力変換装置の筐体内配置の上面図。 トランスが縦置きされた場合の電力変換装置の筐体内配置の上面図を比較例として示した図。 本発明の第2の実施形態に係るトランスの概略構造の例を示した斜視図。 本発明の第3の実施形態に係るトランスの概略構造の例を示した斜視図。 図7に示したトランスの上面図。 本発明の第4の実施形態に係るトランスの概略構造の例を示した斜視図。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図面において、共通する構成要素には同一の符号を付し、重複した説明を省略する。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係るトランス10の概略構造の例を示した斜視図、図2は、図1のA-A’位置におけるトランス10の縦断面図である。本実施形態に係るトランス10は、図1および図2に示すように、鉄心であるコア11と、導線が螺旋円筒状に巻回されたコイル13と、コイル13が装着されたボビン12と、コイル13を外部配線と接続するための一次コイル端子14および二次コイル端子15と、を備えて構成される。
 ここで、ボビン12は、コイル13が巻回される円筒部12a(図2参照)と、円筒部12aの両端に設けられ、コイル13の導線が円筒部12aからはみ出ないようにする鍔状のフランジ部12b(図1参照)と、からなる。
 また、コア11は、コイル13が巻回されたボビン12が装着される円柱状のコア中芯部11aと、円柱状のコア中芯部11aの両端をコイル13の外側でつなぐ4つのコア脚部11b,11c,11d,11eと、から構成される。そして、ここでは、これら4つのコア脚部11b,11c,11d,11eは、いずれも円筒状のコイル13の外周側面に接する接平面(図示せず)に略平行で平坦な外周面11b1,11c1,11d1,11e1を有しているものとする。なお、4つのコア脚部11b,11c,11d,11eは、コイル13に電流が流れたとき、コイル13の外側に発生する磁束の通路(磁路)となる。
 また、本実施形態では、トランス10は、コア中芯部11aの中心軸11a1が略水平(筐体20の床面20aに対して略平行)になる状態で、筐体20の床面20a上に配設される。なお、本明細書では、コア中芯部11aの中心軸11a1が略水平になる状態で筐体20に配設されることを、以下、トランス10(または、コア11)が横置きされるという。
 ここで、トランス10が筐体20の床面20aに横置きされたとき、床面20aに接して、トランス10全体を支持するコア脚部11bは、他の3つのコア脚部11c,11d,11eよりもサイズが大きいものとし、その外周面11b1を床面20aに密着させるものとする。このとき、筐体20の材料としては、アルミニウムや銅のように磁性を持たず、熱伝導率の高い材料を用いるのが好ましい。
 従って、本実施形態では、コア11と床面20aの接触面積が増大するので、コア11で発生した熱を効果的に筐体20へ放熱することができる。
 さらに、好ましくは、コア脚部11bの外周面11b1と床面20aとの間に熱伝導性に優れたグリースなどの高熱伝導材21を挟んでおくものとする。これにより、コア脚部11bから筐体20への放熱性をさらに向上させることができる。
 なお、コア11の材料や製法は、コイル電流の動作周波数や容量によって種々のものを採用できる。例えば、材料がフェライトである場合、図2に示した形状は、金型を用いて成型することができる。また、材料がアモルファス金属箔である場合、金属箔を多数巻き重ねてコア中芯部11a、コア脚部11b,11c,11d,11eそれぞれに分割した形状のものを形成し、これらを組み合わせ接合して、所望のコア11の形状にすることができる。
 なお、以上の実施形態の説明では、コア11のコア脚部の数は4つとしているが、2つ以上であればいくつでもよい。また、床面20aに接するコア脚部11bの除いたコア脚部11c,11d,11eの外周面11c1,11d1,11e1は平坦であるとしているが、これらの外周面11c1,11d1,11e1は、必ずしも平坦でなくてもよい。
 図3は、本発明の第1の実施形態に係るトランス10を用いた電力変換装置100の筐体内配置の例を模式的に示した斜視図、図4は、図3に示した電力変換装置100の筐体内配置の上面図である。ただし、これらの図面では、トランス10以外は、単なるブロックのみで表示されている。
 図3および図4に示すように、電力変換装置100は、筐体20の側壁部に入出力端子101およびファン102などが設けられ、また、筐体20の中にトランス10、電力変換回路103、制御回路104、電源回路105などが配設されて構成される。ここで、電力変換回路103は、AC/DC変換回路、DC/AC変換回路などで構成される。また、制御回路104は、電力変換回路103を制御し、電源回路105は、制御回路104やファン102に動作電流を供給する。
 トランス10は、前記したように筐体20の床面20a上に横置きされるとともに、さらに図4に示すように、コア中芯部11a(図1参照)の中心軸11a1がファン102から送風される冷風106の方向と略平行になるように配設される。この場合には、冷風106は、円筒状のコイル13の側面およびコア脚部11c,11d,11eに沿って流れることになる。従って、コイル13およびコア11は、ファン102からの冷風106により効率よく冷却される。そのため、コイル13およびコア11の温度上昇が抑制され、とくにコア中芯部11aについては、その過熱が防止される。
 なお、トランス10は、筐体20の床面20aに直接配設ざれるのではなく、例えば、銅やアルミニウムの基材の表面に絶縁樹脂を塗布硬化させ、さらにその上に銅による回路形成を施した高熱伝導性の回路基板上に配設されるものとしてもよい。
 図5は、トランス10が縦置きされた場合の電力変換装置100aの筐体内配置の上面図を比較例として示した図である。ここで、トランス10が縦置きされるとは、トランス10が、コア中芯部11aの中心軸11a1が筐体20の床面20aに対して略垂直になる状態で筐体20に配設されることをいう。この比較例の場合、ファン102からの冷風106は、トランス10の風上側のコイル13の面やコア脚部11b,11c,11eの面にしか当たらず、風下側のコイル13表面やコア脚部11dにはほとんど当たらない。また、コイル13の風上側の面であっても、その近傍は、3つのコア脚部11c,11d,11eに囲まれているため、冷風106の流路から外れることととなり、熱がこもり易い。
 以上のように、比較例の場合、とくにコイル13部分からの放熱が不十分となり易く、コイル13の温度が上昇する。そして、コイル13の温度が上昇すると、そのコイル抵抗が増加するために、コイル13の温度が上昇し、過熱する。その結果、コイル13が装着されているコア中芯部11aの温度も上昇し過熱する。
 ところで、フェライトなどコア11の材料は、通常、温度が上昇すると飽和磁束密度が低下するという性質を有している。そのため、比較例では、とくにコア中芯部11aでの温度上昇による磁気飽和を防止するには、円柱状のコア中芯部11aの円柱の径を大きくせざるを得ない。しかしながら、コア中芯部11aの円柱の径を大きくすることは、コア11全体つまりトランス10の大型化することを意味する。
 それに対し、本実施形態では、前記したようにトランス10が横置きされ、冷風106が円筒状のコイル13の側面やコア脚部11c,11d,11eに沿って流れるので、コイル13のみならずコア中芯部11aの温度上昇が抑制され、過熱が防止される。すなわち、本実施形態は、比較例に比べれば、円柱状のコア中芯部11aの径を小さくすることが可能となり、トランス10を小型化できるという効果を奏する。
(第2の実施形態)
 図6は、本発明の第2の実施形態に係るトランス10aの概略構造の例を示した斜視図である。この第2の実施形態に係るトランス10aは、前記した第1の実施形態に係るトランス10(図1参照)とほとんど同じ構造をしているが、次の点で相違している。すなわち、第1の実施形態に係るトランス10では、ボビン12の円筒部12aの内壁とコア中芯部11aの外壁との間には、わずかな空隙が設けられおり、両者は必ずしも密着していない。一方、本実施形態に係るトランス10aでは、ボビン12の円筒部12aの内壁とコア中芯部11aの外壁との間には、高熱伝導樹脂30が挟み込まれており、両者は、この高熱伝導樹脂30を介して密着している。従って、コイル13のとくに中心側で発生する熱は、コア中芯部11aへ伝わり易くなり、さらに、4つのコア脚部11b,11c,11d,11eを介して外部へ放散し易くなっている。
 以上を考慮すれば、ボビン12の材料としては、高熱伝導性を有し、絶縁性に優れた材料を用いるのが好ましい。例えば、ボビン12の材料として、ポリエステル、ポリエチレン、エポキシ、フェノールなどの樹脂に、窒化アルミニウムやアルミナなどの絶縁性を有し、高熱伝導性のセラミックスを配合した複合材料を用いることができる。また、ボビン12の円筒部12aの内壁とコア中芯部11aの外壁との間に挟み込む高熱伝導樹脂30の材料としては、シリコーンやエポキシ、フェノールなどの樹脂に、窒化アルミニウム、アルミナなどのセラミックス粉や、アルミニウム、銅などの磁性を有しない金属粉や、カーボンなどを配合した複合材料を用いることができる。
 以上、本実施形態によれば、コイル13の温度上昇および過熱が抑制されるので、コア中芯部11aの温度上昇および過熱も抑制される。従って、本実施形態では、第1の実施形態の場合以上に、円柱状のコア中芯部11aの径を小さくすることが可能となるため、トランス10を小型化できる。
(第3の実施形態)
 図7は、本発明の第3の実施形態に係るトランス10bの概略構造の例を示した斜視図であり、図8は、図7に示したトランス10bの上面図である。この第3実施形態に係るトランス10bは、前記した第1の実施形態に係るトランス10(図1参照)とほとんど同じ構造をしているが、次の点で第1の実施形態に係るトランス10と相違している。すなわち、第1の実施形態に係るトランス10では、コイル13から取り出される一次コイル端子14および二次コイル端子15は、ボビン12の同じフランジ部12bに設けられている(図1参照)。一方、本実施形態に係るトランス10bでは、一次コイル端子14および二次コイル端子15は、ボビン12の互いに反対側の端部のフランジ部12bに設けられている(図7、図8参照)。
 なお、図8および図9では、一次コイル端子14および二次コイル端子15がそれぞれボビン12の互いに反対側のフランジ部12bに設けられているものとして描かれているが、それぞれのフランジ部12bに設けられる端子の組は、この組み合わせに限定されない。例えば、一次コイル端子14の第1の端子と二次コイル端子15の第1の端子が同じ側のフランジ部12bに設けられて、一次コイル端子14の第2の端子と二次コイル端子15の第2の端子が前記フランジ部12bと反対側のフランジ部12bに設けられてもよい。
 ところで、例えば、図5に示したように、トランス10が縦置きされた場合、一次コイル端子14および二次コイル端子15は、ボビン12の同じ上面側のフランジ部12bにしか設けることできない。それに対し、本実施形態では、トランス10bが横置きされているため、一次コイル端子14および二次コイル端子15は、それぞれ、ボビン12の互いに異なるフランジ部12bに設けることができる。これは、端子設定位置の自由度が増加することを意味し、トランス10bが小型化されるときには有利な特徴となる。
 一般に、トランス10bが小型化されると、一次コイル端子14および二次コイル端子15それぞれの間の距離が短くなるため、絶縁距離を確保することが困難になってくるという問題が生じる。しかしながら、本実施形態では、一次コイル端子14および二次コイル端子15を互いに反対側のフランジ部12bに設けることができるため、それぞれの端子間の絶縁距離の確保が容易となる。すなわち、本実施形態は、単にトランスの小型化が可能になるというだけでなく、小型で大容量のトランスの実現が容易になるという効果を奏する。
(第4の実施形態)
 図9は、本発明の第4の実施形態に係るトランス10cの概略構造の例を示した斜視図である。この第4実施形態に係るトランス10cは、前記した第3の実施形態に係るトランス10b(図7参照)とほとんど同じ構造をしているが、放熱フィン50がコア脚部11dの上部に搭載されている点で、他の実施形態に係るトランス10bと相違している。
 図9に示すように、放熱フィン50の平坦な下面は、コア脚部11dの外周面11d1と高熱伝導材51を介して密着している。ここで、高熱伝導材51としては、窒化アルミニウム、アルミナなどのセラミックス粉や、アルミニウム、銅など磁性を有しない金属粉や、カーボンなどを配合した接着剤を用いることができる。あるいは、高熱伝導材51として、シリコーンオイルに同様のセラミックス粉や金属粉やカーボンなどを配合した充填剤を用いてもよい。ただし、この場合には、図示しないボルトなどを用いて、放熱フィン50とコア脚部11dとを固定する必要がある。あるいは、同様にボルトなどを用いて、放熱フィン50と、コア脚部11dを含むトランス10cと、トランス10cを搭載している筐体20とを併せて固定する構造にする必要がある。
 また、放熱フィン50の材料としては、熱伝導率の大きい銅やアルミニウムなどを用いるものとする。そして、放熱フィン50の上部に形成される溝の方向がコア中芯部11aの中心軸11a1(図1参照)の方向と同じになるように、コア脚部11d上に放熱フィン50を配設する。さらに、図3および図4に示したように、ファン102の冷風106の方向とコア中芯部11aの中心軸11a1の方向とが同じになるように、筐体20内にトランス10cを配設する。こうしたことにより、放熱フィン50からの放熱量をより効果的に増大させることができる。
 以上、本実施形態によれば、放熱フィン50により、コア11からの放熱量を増大させることができるので、コア中芯部11aでの温度上昇をより効果的に抑制し、その加熱を防止することができる。よって、円柱状のコア中芯部11aの径をより小さくすることが可能となり、トランス10cが小型化される。
 なお、本実施形態では、放熱フィン50は、コア11の上部に位置するコア脚部11dに取り付けられるものとしているが、コア11の側部に位置するコア脚部11c,11eの一方に取り付けられるものとしてもよく、コア脚部11c,11d,11eのうちの2つまたは3つすべてに取り付けるとしてもよい。
 本発明は、以上に説明した実施形態および変形例に限定されるものではなく、さらに、様々な変形例が含まれる。例えば、前記した実施形態および変形例は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態や変形例の構成の一部を、他の実施形態や変形例の構成に置き換えることが可能であり、また、ある実施形態や変形例の構成に他の実施形態や変形例の構成を加えることも可能である。また、各実施形態や変形例の構成の一部について、他の実施形態や変形例に含まれる構成を追加・削除・置換することも可能である。
 10,10a,10b,10c トランス
 11  コア
 11a コア中芯部
 11a1 中心軸
 11b,11c,11d,11e コア脚部
 11b1,11c1,11d1,11e1 外周面
 12  ボビン
 12a 円筒部
 12b フランジ部
 13  コイル
 14  一次コイル端子
 15  二次コイル端子
 20  筐体(収納鏡体)
 20a 床面
 21  高熱伝導材
 30  高熱伝導樹脂
 50  放熱フィン
 51  高熱伝導材
 100,100a 電力変換装置
 101 入出力端子
 102 ファン
 103 電力変換回路
 104 制御回路
 105 電源回路
 106 冷風

Claims (14)

  1.  導線が螺旋円筒状に巻回されて構成されたコイルと、前記コイルが装着される円柱状のコア中芯部と、前記コア中芯部の両端を前記コイルの外側でつなぐ複数のコア脚部と、を備え、
     自身が搭載される収納筐体の床面に対し前記コア中芯部の中心軸が略平行になる状態で、前記収納筐体に配設されること
     を特徴とするトランス。
  2.  前記複数のコア脚部のうち1のコア脚部は、前記螺旋円筒状のコイルの外周側面に接する接平面に略平行で平坦な外周面を有し、前記1のコア脚部の前記外周面を前記収納筐体の床面に接するようにして、前記収納筐体に配設されること
     を特徴とする請求項1に記載のトランス。
  3.  前記1のコア脚部の前記外周面は、前記収納筐体の床面と高熱伝導材を介して密着すること
     を特徴とする請求項2に記載のトランス。
  4.  前記1のコア脚部のサイズは、前記複数のコア脚部のうちの前記1のコア脚部と異なるコア脚部のサイズよりも大きいこと
     を特徴とする請求項2に記載のトランス。
  5.  前記複数のコア脚部のうちの前記1のコア脚部と異なるコア脚部の少なくとも1つは、前記螺旋円筒状のコイルの外周側面に接する接平面に略平行で平坦な外周面を有し、その外周面に放熱フィンが設けられていること
     を特徴とする請求項2に記載のトランス。
  6.  前記螺旋円筒状のコイルの内壁と、前記コイルが装着される前記コア中芯部の外壁との間に高熱伝導材が挟まれていること
     を特徴とする請求項1に記載のトランス。
  7.  前記コイルを構成する一次コイルおよび二次コイルそれぞれに接続される4つの端子のうち、2つの端子が前記コイルの一方の端面側に設けられ、他の2つの端子が前記コイルの他方の端面側に設けられること
     を特徴とする請求項1に記載のトランス。
  8.  導線が螺旋円筒状に巻回されて構成されたコイルと、前記コイルが装着される円柱状のコア中芯部と、前記コア中芯部の両端を前記コイルの外側でつなぐ複数のコア脚部と、を備えてなるトランスと、
     前記トランスを床面上に搭載した収納筐体と、
     前記収納筐体の側面部に配設されて前記トランスに冷風を送風するファンと、
     を備え、
     前記トランスは、前記トランスを搭載する収納筐体の床面に対し前記コア中芯部の中心軸が略平行で、かつ、前記コア中芯部の中心軸の方向と前記ファンから送風される冷風の方向とが同じになるようにして、前記収納筐体に配設されること
     を特徴とする電力変換装置。
  9.  前記トランスは、前記複数のコア脚部のうち1のコア脚部が、前記螺旋円筒状のコイルの外周側面に接する接平面に略平行で平坦な外周面を有し、前記1のコア脚部の前記外周面を前記収納筐体の床面に接するようにして、前記収納筐体に配設されること
     を特徴とする請求項8に記載の電力変換装置。
  10.  前記1のコア脚部の前記外周面は、前記収納筐体の床面と高熱伝導材を介して密着すること
     を特徴とする請求項9に記載の電力変換装置。
  11.  前記1のコア脚部のサイズは、前記複数のコア脚部のうちの前記1のコア脚部と異なるコア脚部のサイズよりも大きいこと
     を特徴とする請求項9に記載の電力変換装置。
  12.  前記複数のコア脚部のうちの前記1のコア脚部と異なるコア脚部の少なくとも1つは、前記螺旋円筒状のコイルの外周側面に接する接平面に略平行で平坦な外周面を有し、その外周面に放熱フィンが設けられていること
     を特徴とする請求項9に記載の電力変換装置。
  13.  前記トランスの前記螺旋円筒状のコイルの内壁と、前記コイルが装着される前記コア中芯部の外壁との間に高熱伝導材が挟まれていること
     を特徴とする請求項8に記載の電力変換装置。
  14.  前記トランスの前記コイルを構成する一次コイルおよび二次コイルそれぞれに接続される4つの端子のうち、2つの端子が前記コイルの一方の端面側に設けられ、他の2つの端子が前記コイルの他方の端面側に設けられること
     を特徴とする請求項8に記載の電力変換装置。
PCT/JP2016/053439 2015-02-26 2016-02-05 トランスおよび電力変換装置 WO2016136421A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/548,629 US10580561B2 (en) 2015-02-26 2016-02-05 Transformer and power converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015036987A JP6393212B2 (ja) 2015-02-26 2015-02-26 電力変換装置
JP2015-036987 2015-02-26

Publications (1)

Publication Number Publication Date
WO2016136421A1 true WO2016136421A1 (ja) 2016-09-01

Family

ID=56788392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053439 WO2016136421A1 (ja) 2015-02-26 2016-02-05 トランスおよび電力変換装置

Country Status (3)

Country Link
US (1) US10580561B2 (ja)
JP (1) JP6393212B2 (ja)
WO (1) WO2016136421A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163930A1 (ja) * 2018-02-23 2019-08-29 日立金属株式会社 フェライト磁心、並びにそれを用いたコイル部品及び電子部品

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7193975B2 (ja) * 2018-10-15 2022-12-21 株式会社タムラ製作所 リアクトル
DE102018218042A1 (de) * 2018-10-22 2020-04-23 Würth Elektronik eiSos Gmbh & Co. KG Kern für induktives Bauelement und induktives Bauelement

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111016U (ja) * 1983-12-29 1985-07-27 株式会社東芝 電源ユニツトの保持装置
JPS61188884A (ja) * 1985-02-15 1986-08-22 松下電器産業株式会社 高周波加熱装置
JPS6429797U (ja) * 1987-08-17 1989-02-22
JPH0418418U (ja) * 1990-06-06 1992-02-17
US5768113A (en) * 1995-10-31 1998-06-16 Eurofeedback High power and high voltage power supply including a non-resonant step-up circuit
JP2001237122A (ja) * 2000-02-24 2001-08-31 Aiwa Co Ltd 電源トランス
JP2007194356A (ja) * 2006-01-18 2007-08-02 Lecip Corp 放電管点灯装置及びトランスコア
JP2008235529A (ja) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd リアクタ
JP2012156351A (ja) * 2011-01-27 2012-08-16 Fuji Electric Co Ltd 磁気コア
JP2013236051A (ja) * 2012-05-07 2013-11-21 Taida Electronic Ind Co Ltd 放熱ボビンを有する磁性部材
JP2014179516A (ja) * 2013-03-15 2014-09-25 Denso Corp トランス

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324017A (ja) 2002-04-30 2003-11-14 Koito Mfg Co Ltd トランス
KR20040049216A (ko) * 2002-12-05 2004-06-11 삼성전자주식회사 전자레인지
US7598837B2 (en) * 2003-07-08 2009-10-06 Pulse Engineering, Inc. Form-less electronic device and methods of manufacturing
KR100648660B1 (ko) * 2004-10-01 2006-11-24 삼성전자주식회사 트랜스포머에 의한 전원 노이즈 차단이 가능한 팩시밀리통신인터페이스장치 및 그 트랜스포머
JP6176516B2 (ja) * 2011-07-04 2017-08-09 住友電気工業株式会社 リアクトル、コンバータ、及び電力変換装置
JP5857524B2 (ja) * 2011-08-18 2016-02-10 Fdk株式会社 チョークコイル
TWM424581U (en) * 2011-12-01 2012-03-11 Innotrans Technology Co Ltd Iron core winding set
CN105869828B (zh) * 2015-01-22 2018-10-09 台达电子工业股份有限公司 磁性元件

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60111016U (ja) * 1983-12-29 1985-07-27 株式会社東芝 電源ユニツトの保持装置
JPS61188884A (ja) * 1985-02-15 1986-08-22 松下電器産業株式会社 高周波加熱装置
JPS6429797U (ja) * 1987-08-17 1989-02-22
JPH0418418U (ja) * 1990-06-06 1992-02-17
US5768113A (en) * 1995-10-31 1998-06-16 Eurofeedback High power and high voltage power supply including a non-resonant step-up circuit
JP2001237122A (ja) * 2000-02-24 2001-08-31 Aiwa Co Ltd 電源トランス
JP2007194356A (ja) * 2006-01-18 2007-08-02 Lecip Corp 放電管点灯装置及びトランスコア
JP2008235529A (ja) * 2007-03-20 2008-10-02 Matsushita Electric Ind Co Ltd リアクタ
JP2012156351A (ja) * 2011-01-27 2012-08-16 Fuji Electric Co Ltd 磁気コア
JP2013236051A (ja) * 2012-05-07 2013-11-21 Taida Electronic Ind Co Ltd 放熱ボビンを有する磁性部材
JP2014179516A (ja) * 2013-03-15 2014-09-25 Denso Corp トランス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163930A1 (ja) * 2018-02-23 2019-08-29 日立金属株式会社 フェライト磁心、並びにそれを用いたコイル部品及び電子部品
JPWO2019163930A1 (ja) * 2018-02-23 2021-02-25 日立金属株式会社 フェライト磁心、並びにそれを用いたコイル部品及び電子部品

Also Published As

Publication number Publication date
US10580561B2 (en) 2020-03-03
JP6393212B2 (ja) 2018-09-19
JP2016162765A (ja) 2016-09-05
US20180005748A1 (en) 2018-01-04

Similar Documents

Publication Publication Date Title
US7920039B2 (en) Thermally enhanced magnetic transformer
JP6195627B2 (ja) 電磁誘導機器
JP6356465B2 (ja) 巻線部品およびその放熱構造
JP6008160B1 (ja) ノイズフィルタ
JP6035952B2 (ja) 電源装置
JP6150844B2 (ja) 電磁誘導機器
US20130293330A1 (en) Magnetic device having thermally-conductive bobbin
JP2015002285A (ja) コイル装置、電子装置及びコイル装置の制御方法
JP4775108B2 (ja) パワー電子機器
JP6393212B2 (ja) 電力変換装置
JP6874284B2 (ja) 高周波トランス
JP2015170674A (ja) リアクトル
JP2014204487A (ja) 電源装置
US20190122806A1 (en) Transformer structure
JP6064943B2 (ja) 電子機器
KR101821177B1 (ko) 방열성이 우수한 박막형 변압기
JP2009105164A (ja) トランス
JP2015060849A (ja) インダクタンス部品
JP2016129186A (ja) トランス
JP6443635B2 (ja) トランス及びトランスの製造方法
WO2017159010A1 (ja) コイル部品の放熱構造およびそれに用いられるコイル部品
WO2019044835A1 (ja) 放熱板付インダクタ
JP2019197779A (ja) リアクトル
JP2019079838A (ja) トランス装置
JP7311010B2 (ja) フェライト磁心

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755170

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15548629

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755170

Country of ref document: EP

Kind code of ref document: A1