WO2016117138A1 - ニッケル粉の製造方法 - Google Patents

ニッケル粉の製造方法 Download PDF

Info

Publication number
WO2016117138A1
WO2016117138A1 PCT/JP2015/059451 JP2015059451W WO2016117138A1 WO 2016117138 A1 WO2016117138 A1 WO 2016117138A1 JP 2015059451 W JP2015059451 W JP 2015059451W WO 2016117138 A1 WO2016117138 A1 WO 2016117138A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
nickel powder
added
mixed slurry
amount
Prior art date
Application number
PCT/JP2015/059451
Other languages
English (en)
French (fr)
Inventor
伸一 平郡
佳智 尾崎
高石 和幸
智暁 米山
秀樹 大原
修 池田
陽平 工藤
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201580074006.6A priority Critical patent/CN107206502B/zh
Priority to US15/544,541 priority patent/US10549351B2/en
Priority to EP15878829.9A priority patent/EP3248720B1/en
Priority to JP2015528117A priority patent/JP5796696B1/ja
Priority to AU2015379030A priority patent/AU2015379030B2/en
Priority to CA2974483A priority patent/CA2974483C/en
Publication of WO2016117138A1 publication Critical patent/WO2016117138A1/ja
Priority to PH12017501317A priority patent/PH12017501317B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F9/26Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt

Definitions

  • the present invention relates to a method for producing a fine nickel powder that can be used as a seed crystal from a solution containing a nickel sulfate ammine complex, and is particularly applicable to a process for controlling the number of generated particles to a necessary amount.
  • Patent Document 1 As a method for producing a fine nickel powder, an atomizing method in which molten nickel is dispersed in gas or water to obtain a fine powder, or nickel is volatilized and reduced in the gas phase as disclosed in Patent Document 1. A dry method such as a CVD method for obtaining nickel powder is known.
  • Non-Patent Document 1 a method for obtaining nickel powder by supplying hydrogen gas to a nickel sulfate ammine complex solution and reducing nickel ions in the complex solution as shown in Non-Patent Document 1 is industrially inexpensive and useful. .
  • the nickel powder particles obtained are easily coarsened, and it has been difficult to produce a fine powder that can be used for seed crystals.
  • seed crystals when generating and growing particles from an aqueous solution, a small amount of fine crystals called seed crystals coexist, supplying a reducing agent there, and growing seed crystals to obtain a powder having a predetermined particle size.
  • the method is used.
  • the seed crystal used in this method is often obtained by pulverizing a product, etc., but it is time consuming and leads to an increase in cost because the yield is reduced. Further, the seed crystal having the optimum particle size and properties is not always obtained by pulverization.
  • the present invention provides a fine nickel powder that becomes a seed crystal necessary for the production of nickel powder from a solution containing the nickel sulfate ammine complex, according to the amount necessary for the production of the nickel powder.
  • a method for producing nickel powder to be produced is provided.
  • the first invention of the present invention that solves such problems is a mixing step of forming a mixed solution by adding polyacrylate to a solution containing a nickel sulfate ammine complex, and the mixed solution is placed in a reaction vessel.
  • a reduction deposition step is sequentially performed in which hydrogen gas is blown into the mixed solution in the reaction vessel and brought into contact with the mixed solution to reduce nickel complex ions in the mixed solution to precipitate nickel to produce nickel powder.
  • This is a method for producing nickel powder, characterized by producing nickel powder.
  • the second invention of the present invention is a mixing step of forming a mixed slurry by adding a seed crystal insoluble solid and a polyacrylate or lignin sulfonate as a dispersant to a solution containing a nickel sulfate ammine complex,
  • the mixed slurry is charged into the reaction tank, and hydrogen gas is blown into the mixed slurry liquid in the reaction tank to reduce nickel complex ions in the mixed slurry to form nickel particle precipitates on the surface of the insoluble solid.
  • It is a nickel powder manufacturing method characterized by producing nickel powder through a reduction precipitation process in order.
  • a mixing step of forming a mixed slurry by adding a seed crystal insoluble solid and a polyacrylate or lignin sulfonate as a dispersant to a solution containing a nickel sulfate ammine complex Reduction precipitation step of charging the mixed slurry into the reaction tank, blowing hydrogen gas into the mixed slurry in the reaction tank, and reducing nickel complex ions in the mixed slurry to form nickel precipitates on the surface of the insoluble solid
  • the nickel is characterized by controlling the number of nickel powders obtained by producing nickel precipitates in the reduction precipitation process by controlling the amount of dispersing agent added in the mixing process when producing nickel powders in order. It is a manufacturing method of powder.
  • a nickel powder manufacturing method characterized in that the concentration of the polyacrylate contained in the mixed solution according to the first aspect is in the range of 0.2 to 10.0 g / L. It is.
  • the amount of polyacrylate added is the amount of insoluble solid added to the mixed slurry.
  • the nickel powder production method is characterized in that the amount is more than 1% by weight and not more than 10% by weight.
  • a nickel powder characterized in that the polyacrylic acid dispersant added in the fifth aspect is 2 to 6% by weight based on the weight of the seed crystal insoluble solid. It is a manufacturing method.
  • the seventh invention of the present invention is a method for producing nickel powder, characterized in that the polyacrylate dispersing agent in the fourth to sixth inventions is sodium polyacrylate (PAA).
  • PAA sodium polyacrylate
  • the amount of lignin sulfonic acid added is 2 of the amount of insoluble solid added to the mixed slurry.
  • a fine nickel powder optimal for a seed crystal used for producing nickel powder economically and efficiently is obtained in a necessary amount. Accordingly, it is possible to provide a manufacturing method, and it has a remarkable industrial effect.
  • FIG. 9 is a graph showing changes in nickel concentration in solutions after completion of the reaction when sodium polyacrylate is used in Examples 5 to 8. It is a figure which shows the change by the reaction time of the nickel density
  • the present invention relates to a method for producing nickel powder by adding a dispersant, or a dispersant and an insoluble solid of a seed crystal to a nickel sulfate ammine complex solution, and blowing hydrogen gas. It is the manufacturing method of the nickel powder characterized by manufacturing the quantity of fine nickel powder to do.
  • the manufacturing method of the nickel powder of this invention is demonstrated with reference to the manufacturing flowchart shown in FIG. 1, FIG.
  • the nickel sulfate ammine complex solution used in the present invention is not particularly limited, but one or a mixture selected from nickel and cobalt mixed sulfide, crude nickel sulfate, nickel oxide, nickel hydroxide, nickel carbonate, nickel powder and the like.
  • a nickel leaching solution solution containing nickel obtained by dissolving nickel-containing materials such as industrial intermediates with sulfuric acid or ammonia in accordance with the components, and solvent purification, ion exchange, neutralization, etc.
  • a solution obtained by adding ammonia to a solution obtained by removing the impurity element in the solution by applying the step to form a nickel sulfate ammine complex solution is suitable.
  • a dispersant is first added to the nickel sulfate ammine complex solution.
  • a polyacrylate see FIG. 1
  • a polyacrylate or a polyacrylate when used together with a seed crystal insoluble solid.
  • a calcium lignin sulfonate, sodium lignin sulfonate, and potassium lignin sulfonate are preferable.
  • ammonium sulfate concentration in the solution is preferably in the range of 10 to 500 g / L for both of the production methods shown in FIGS. If it is 500 g / L or more, the solubility is exceeded and crystals are deposited. In addition, since ammonium sulfate is newly generated by the reaction, it is difficult to achieve less than 10 g / L.
  • nickel powder is produced using polyacrylate as a dispersant without using a seed crystal (a production method shown in the production flow of FIG. 1)
  • a mixed liquid in which the ammonium sulfate concentration and the dispersant concentration are adjusted is produced.
  • the concentration of the dispersant is in the range of 0.2 to 10.0 g / L, and the ammonium sulfate concentration is in the above range. Powder can be made.
  • the amount added is 1% by weight of the amount of the insoluble solid added to the mixed slurry. Over 10% by weight, preferably 2% by weight or more and 6.0% by weight or less.
  • nickel powder does not precipitate.
  • the addition amount is 2% by weight or more, insoluble solids are sufficiently dispersed, and the number of nickel powders generated in proportion to the addition amount can be controlled.
  • the upper limit tends to increase even if the upper limit exceeds 6% by weight. However, it is not preferable that too many seed crystals are formed because the handling and the dispersing agent are aggregated and the effect commensurate with the amount added is not preferable.
  • % By weight or less more preferably 6% by weight or less.
  • the amount added is 2% by weight or more and 20% by weight or less of the amount of insoluble solid added to the mixed slurry. And If the added amount is 2% by weight or less, nickel powder cannot be obtained, and it is necessary to exceed 2% by weight. However, if the added amount exceeds 5% by weight, the number of nickel powders generated in proportion to the added amount is controlled. This is preferable.
  • the insoluble solid added here is not particularly limited as long as it has a low solubility in a nickel sulfate ammine complex solution, an ammonium sulfate aqueous solution or an alkaline solution.
  • nickel powder, iron powder, alumina powder, zirconia powder, silica Powder etc. can be used.
  • the present invention is not a method of precipitating powder using a seed crystal that has been generally used in the past, and making the whole seed crystal into a product, but after the necessary precipitation on the surface of the insoluble solid is completed, the precipitate is precipitated and grown as an insoluble solid
  • the product is separated from the product, and only the powder portion of the separated precipitate is to be used as the product. According to such a method of the present invention, the influence on the product due to the impurities of the seed crystal itself is avoided.
  • the addition amount of the insoluble solid is not particularly limited, and an amount that can be mixed by stirring when added to the nickel sulfate ammine complex solution is selected according to the kind of the solid. As an example, an amount of about 50 to 100 g / L may be added.
  • the shape and size are not particularly limited, but the nickel deposits on the surface may be separated by colliding with each other or applying vibration as described later. A surface having a gentle shape is suitable so that objects can be effectively separated.
  • insoluble solid of the present invention after giving impact or impact in advance prior to depositing nickel to remove the deposits on the surface of the insoluble solid.
  • the insoluble solid after separating the nickel deposits can be used again after being subjected to pretreatment such as washing as necessary.
  • the mixed slurry formed by adding only the dispersant or by adding the dispersant and the insoluble solid is charged into the reaction tank of the high pressure resistant high temperature vessel, and hydrogen gas is blown into the mixed slurry in the reaction tank.
  • the nickel complex ions in the mixed slurry are reduced and only the dispersant is added, nickel is deposited with various fine particles present in the slurry as nuclei, and nickel powder is formed.
  • the mixed slurry to which both the dispersant and the insoluble solid are added it is deposited as nickel on the added insoluble solid.
  • the reaction temperature at this time is preferably in the range of 150 to 200 ° C. If the reaction temperature is lower than 150 ° C., the reduction efficiency is lowered. Even if the reaction temperature is 200 ° C. or higher, there is no influence on the reaction.
  • the pressure during the reaction is preferably 1.0 to 4.0 MPa. If the pressure is less than 1.0 MPa, the reaction efficiency decreases, and if it exceeds 4.0 MPa, there is no effect on the reaction and the loss of hydrogen gas increases.
  • nickel By reducing and precipitating under such conditions, nickel can be extracted and recovered from the nickel sulfate ammine complex solution by the effect of the dispersant, and nickel is deposited as a fine powdery precipitate on the insoluble solid by the effect of the dispersant.
  • the product is formed, nickel can be extracted and recovered from the nickel sulfate ammine complex solution, and the amount of nickel powder formed by precipitation can be adjusted by adjusting the addition amount of the dispersant.
  • the nickel powder produced as described above can be used, for example, as a nickel paste, which is an internal constituent material of a multilayer ceramic capacitor, and the particles are grown by repeating the hydrogen reduction using the recovered nickel powder as a seed crystal. High-purity nickel metal can be produced.
  • Nickel powder was produced using the same method as in Example 1 except that 1.0 g of sodium polyacrylate was added. As a result, as shown in FIG. 4, 59.0 g of fine nickel powder was recovered.
  • Nickel powder was produced using the same method as in Example 1 except that 5.0 g of sodium polyacrylate was added. As a result, 68.2 g of fine nickel powder was recovered as shown in FIG.
  • Nickel powder was prepared using the same method as in Example 1 except that 10 g of sodium polyacrylate was added. As a result, as shown in FIG. 6, 57.0 g of fine nickel powder was recovered.
  • the reduced slurry of the sample was extracted from the sample port of the autoclave every two minutes after the supply of hydrogen gas was started, and the nickel concentration of the filtrate was analyzed by solid-liquid separation. As the reaction proceeds, nickel precipitates as a powder, and the nickel concentration of the filtrate decreases accordingly.
  • the supply of hydrogen gas was stopped and the inner cylinder can was cooled. After cooling, the slurry in the inner cylinder can was filtered, and 42.7 g of the deposited nickel powder was recovered. When the collected nickel powder was observed, it was confirmed that the nickel powder was fine enough to be used for seed crystals.
  • Nickel powder was produced and recovered under the same conditions and method as in Example 5 above, except that 4.5 g corresponding to 6 wt% of the seed crystal weight of sodium polyacrylate was added. As shown in FIG. 7, as in Example 5, 80% or more of nickel was reduced and recovered in 30 minutes.
  • Nickel powder was produced and recovered under the same conditions and method as in Example 5 above, except that 7.5 g corresponding to 10% by weight of the seed crystal weight of sodium polyacrylate was added. As shown in FIG. 7, as in Example 5, 80% or more of nickel was reduced and recovered in 30 minutes.
  • Nickel powder was produced and recovered under the same conditions and method as in Example 5, except that 0.75 g of sodium polyacrylate was added corresponding to 1% by weight of the seed crystal. As shown in FIG. 7, about 50% of nickel was reduced and recovered in 30 minutes calculated from the change in concentration.
  • Nickel powder was prepared in the same manner as in Example 5 except that the dispersant and the insoluble solid were not added and the other liquid composition and reduction conditions were the same.
  • the nickel concentration of the sampled solution decreased from 75 g / L to about 45 g / L.
  • the nickel powder could not be recovered from the solution after the completion of the hydrogen gas blowing, and it was confirmed that plate-like nickel scaling was generated on the side wall and the stirrer in the inner cylinder can.
  • Nickel powder was produced in the same manner as in Example 5 except that 75 g of nickel powder was added as an insoluble solid without adding a dispersant. As shown in FIG. 8, only about 20% of nickel could be reduced in 30 minutes as calculated from the concentration change.
  • a solution containing 336 g of nickel sulfate hexahydrate corresponding to 75 g of nickel and 330 g of ammonium sulfate 191 ml of 25% aqueous ammonia was added to prepare a nickel sulfate ammine complex solution. Further, in accordance with the production flow shown in FIG. 2, a sodium polyacrylate solution having a molecular weight of 4000 and a concentration of 40%, 0.38 g, 1.88 g, 3.75 g, 7.5 g, and 11.3 g were produced. Five solutions were prepared by adding each of the complex solutions and adjusting the total liquid volume to 1000 ml.
  • nickel powder having an average particle diameter (D50) of 85 ⁇ m was added as an insoluble solid serving as a precipitation matrix to prepare a desired mixed slurry.
  • the sodium polyacrylate added here corresponds to 0.2%, 1%, 2%, 4%, and 6% by weight of the amount of insoluble solids in pure form.
  • the prepared mixed slurry is charged into an inner can of the autoclave, and heated and maintained at 185 ° C. while stirring, and hydrogen gas is blown into the autoclave so that the pressure in the autoclave becomes 3.5 MPa. Supplied. After 60 minutes had passed since the supply of hydrogen gas, the supply of hydrogen gas was stopped and the inner cylinder can was cooled.
  • the slurry in the inner cylinder can is filtered to recover a complex of insoluble solid and nickel precipitate, and then a wet sieve having an opening of 75 ⁇ m is used to apply vibration to the matrix insoluble solid and the surface. The nickel precipitates were separated and nickel powder was recovered.
  • the recovered nickel powder under the sieve was measured for particle size by a particle size distribution device (trade name: 9320-X100, manufactured by Microtrac Co., Ltd.) to obtain the particle size distribution.
  • FIG. 9 shows the relationship between the number of nickel powders thus calculated and the amount of sodium polyacrylate added.
  • FIG. 9 shows that there is a correlation between the amount of sodium polyacrylate added and the number of nickel powders, and the amount of nickel powder generated can be adjusted by the amount of sodium polyacrylate added.
  • the amount of sodium polyacrylate added is 1.0% by weight or less, nickel powder cannot be obtained, but when it exceeds 1.0% by weight, the number of nickel powders generated in proportion to the amount added can be controlled. Recognize.
  • Nickel lignin sulfonate was used as the dispersant and nickel was used in the same manner as in Example 9 except that 1.5 g, 3.0 g, 4.5 g, 7.5 g, 11.3 g, and 15.0 g were used. Powder was produced. The added lignin sulfonic acid corresponds to 2%, 4%, 6%, 10%, 15% and 20% by weight of the amount of inert solid, respectively.
  • the number of nickel powders was calculated in the same manner as in Example 9 by the calculation method using the above formula (1).

Abstract

 硫酸ニッケルアンミン錯体を含有する溶液からニッケル粉の製造に必要な種結晶となる微小なニッケル粉を、そのニッケル粉の製造に必要な量に応じて製造するニッケル粉の製造方法を提供する。 硫酸ニッケルアンミン錯体溶液に、種晶の不溶性固体と分散剤のポリアクリル酸塩又はリグニンスルホン酸塩を加えて混合スラリーを形成する混合工程と、その混合スラリーを反応槽内に装入して、反応槽内の混合スラリーに水素ガスを吹き込んで、スラリー中のニッケル錯イオンを還元して不溶性固体の表面にニッケルの析出物を形成する還元析出工程を順に経てニッケル粉を作製する際に、その混合工程における分散剤の添加量を制御して、還元析出工程におけるニッケル析出物の生成により得られるニッケル粉の個数を制御することを特徴とするニッケル粉の製造方法。

Description

ニッケル粉の製造方法
 本発明は、硫酸ニッケルアンミン錯体を含有する溶液から、種結晶として利用できる微小ニッケル粉末を製造する方法に関するもので、特に発生個数を必要量に制御しようとする処理に適用できる。
 微小なニッケル粉を製造する方法として、溶融させたニッケルをガスまたは水中に分散させ微細粉を得るアトマイズ法や、特許文献1に示されるような、ニッケルを揮発させ、気相中で還元することでニッケル粉を得るCVD法などの乾式法が知られている。
 また、湿式プロセスによりニッケル粉を製造する方法としては、特許文献2に示されるような、還元剤を用いて生成する方法や、特許文献3に示されるような、高温で還元雰囲気中にニッケル溶液を噴霧することにより、熱分解反応によりニッケル粉を得る噴霧熱分解法などがある。
 しかし、これらの方法は高価な試薬類や多量のエネルギーを必要とするため、経済的とは言えない。
 一方、非特許文献1に示されるような、硫酸ニッケルアンミン錯体溶液に水素ガスを供給して錯体溶液中のニッケルイオンを還元してニッケル粉を得る方法は、工業的に安価であり有用である。けれども、この方法においては得られるニッケル粉粒子は粗大化しやすく、種結晶に使えるような微細な粉末を製造することは困難であった。
 そこで、水溶液中から粒子を発生させ成長させようとする場合、種結晶と呼ばれる微細な結晶を少量共存させ、そこに還元剤を供給し、種結晶を成長させて所定の粒径の粉末を得る方法が用いられる。
 この方法で用いる種結晶は、製品を粉砕するなどして得ることが多いが、手間も要し、また収率が減少するのでコスト増加につながる。また、粉砕によって必ずしも最適な粒径や性状の種結晶が得られるとは限らない。
 さらに、ニッケル粉の製造に係る操業を安定して進めるには、常に適切な量の種結晶が供給されることが必要だが、過剰に準備しておくことは仕掛品の増加や管理の手間が増加するなど、それだけ生産効率の低下になる。このように実操業に必要な量の種結晶を安定して得る方法が求められていた。
特開2005-505695号公報 特開2010-242143号公報 特許4286220号公報
 このような状況の中で、本発明は、硫酸ニッケルアンミン錯体を含有する溶液からニッケル粉の製造に必要な種結晶となる微小なニッケル粉を、そのニッケル粉の製造に必要な量に応じて製造するニッケル粉の製造方法を提供するものである。
 このような課題を解決する本発明の第1の発明は、硫酸ニッケルアンミン錯体を含有する溶液に、ポリアクリル酸塩を添加して混合溶液を形成する混合工程と、その混合溶液を反応槽内に装入し、反応槽内の混合液に水素ガスを吹き込んで、混合溶液と接触させて混合溶液中のニッケル錯イオンを還元してニッケルを析出させてニッケル粉を生成する還元析出工程を順に経てニッケル粉を作製することを特徴とするニッケル粉の製造方法である。
 本発明の第2の発明は、硫酸ニッケルアンミン錯体を含有する溶液に、種晶の不溶性固体と分散剤としてポリアクリル酸塩又はリグニンスルホン酸塩を加えて混合スラリーを形成する混合工程と、その混合スラリーを反応槽内に装入して、反応槽内の混合スラリー液に水素ガスを吹き込んで、混合スラリー中のニッケル錯イオンを還元して不溶性固体の表面にニッケル粒子の析出物を形成する還元析出工程を順に経てニッケル粉を作製することを特徴とするニッケル粉の製造方法である。
 本発明の第3の発明は、硫酸ニッケルアンミン錯体を含有する溶液に、種晶の不溶性固体と分散剤としてポリアクリル酸塩又はリグニンスルホン酸塩を加えて混合スラリーを形成する混合工程と、その混合スラリーを反応槽内に装入して、反応槽内の混合スラリーに水素ガスを吹き込んで、混合スラリー中のニッケル錯イオンを還元して不溶性固体の表面にニッケル析出物を形成する還元析出工程を順に経てニッケル粉を作製する際に、その混合工程における分散剤の添加量を制御して、還元析出工程におけるニッケル析出物の生成により得られるニッケル粉の個数を制御することを特徴とするニッケル粉の製造方法である。
 本発明の第4の発明は、第1の発明における混合溶液に含まれるポリアクリル酸塩の濃度が、0.2~10.0g/Lの範囲であることを特徴とするニッケル粉の製造方法である。
 本発明の第5の発明は、第3の発明の混合工程における添加する分散剤がポリアクリル酸塩である場合、ポリアクリル酸塩の添加量は、混合スラリーに加えられた不溶性固体の量の1重量%を越えて、10重量%以下の量であることを特徴とするニッケル粉の製造方法である。
 本発明の第6の発明は、第5の発明におけるポリアクリル酸塩の分散剤の添加量が、種晶の不溶性固体の重量に対して2~6重量%であることを特徴とするニッケル粉の製造方法である。
 本発明の第7の発明は、第4~第6の発明におけるポリアクリル酸塩の分散剤が、ポリアクリル酸ナトリウム(PAA)であることを特徴とするニッケル粉の製造方法である。
 本発明の第8の発明は、第3の発明の混合工程における添加する分散剤がリグニンスルホン酸である場合、そのリグニンスルホン酸の添加量は、混合スラリーに加えられた不溶性固体の量の2重量%以上、20重量%以下の量であることを特徴とするニッケル粉の製造方法である。
 本発明によれば、硫酸ニッケルアンミン錯体溶液から、水素ガスを用いた還元析出法により、経済的で効率よくニッケル粉の製造に使用する種結晶に最適な微小なニッケル粉を、必要な量に応じて製造する方法の提供を可能とするもので、工業上顕著な効果を奏するものである。
本発明に係る分散剤のみを添加したニッケル粉の製造方法における製造フロー図である。 本発明に係る分散剤及び不溶性固体を添加したニッケル粉の製造方法における製造フロー図である。 実施例1の結果を示す図である。 実施例2の結果を示す図である。 実施例3の結果を示す図である。 実施例4の結果を示す図である。 実施例5~8におけるポリアクリル酸ナトリウムを用いた場合の反応終了後の溶液中のニッケル濃度の変化を示した図である。 水素還元時の分散剤濃度による混合スラリー中のニッケル濃度の反応時間による変化を示す図である。 実施例9に係るニッケル粉の個数とポリアクリル酸ナトリウムの添加量との関係を示す図である。 実施例10に係るニッケル粉の個数とリグニンスルホン酸ナトリウムの添加量との関係を示す図である。
 本発明は、硫酸ニッケルアンミン錯体溶液に分散剤、或いは分散剤と種晶の不溶性固体を加え、水素ガスを吹き込むことによりニッケル粉を製造する方法において、分散剤の添加量の制御により、目的とする量の微小ニッケル粉を製造することを特徴とするニッケル粉の製造方法である。
 以下、本発明のニッケル粉の製造方法を、図1、図2に示す製造フロー図を参照して説明する。
[硫酸ニッケルアンミン錯体溶液]
 本発明に用いる硫酸ニッケルアンミン錯体溶液は、特に限定はされないが、ニッケルおよびコバルト混合硫化物、粗硫酸ニッケル、酸化ニッケル、水酸化ニッケル、炭酸ニッケル、ニッケル粉などから選ばれる一種、または複数の混合物から成る工業中間物などのニッケル含有物を、その成分に合わせて硫酸あるいはアンモニアにより溶解して得られるニッケル浸出液(ニッケルを含む溶液)を、溶媒抽出法、イオン交換法、中和などの浄液工程を施すことにより溶液中の不純物元素を除去して得られる溶液に、アンモニアを添加し、硫酸ニッケルアンミン錯体溶液としたもの等が適している。
[混合工程]
 この工程では、先ず硫酸ニッケルアンミン錯体溶液に分散剤を添加する。
 ここで用いる分散剤としては、分散剤単独の添加で用いる場合にはポリアクリル酸塩(図1参照)を分散剤として使用し、種晶の不溶性固体と共に用いる場合には、ポリアクリル酸塩又はリグニンスルホン酸塩(図2参照)であれば特に限定されないが、工業的に安価に入手できるものとしてポリアクリル酸塩では、ポリアクリル酸カルシウム、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、リグニンスルホン酸塩では、リグニンスルホン酸カルシウム、リグニンスルホン酸ナトリウム、リグニンスルホン酸カリウムが好適である。
 また、溶液中の硫酸アンモニウム濃度は、図1及び図2に示す製造方法共に、10~500g/Lの範囲とすることが好ましい。500g/L以上では溶解度を超えてしまい結晶が析出する。また、反応により硫酸アンモニウムが新たに生成するため、10g/L未満を達成するのは困難である。
 ここで、種晶を用いずにポリアクリル酸塩を分散剤に用いてニッケル粉を作製する場合(図1の製造フローで示す製造方法)、硫酸アンモニウム濃度及び分散剤濃度を調整した混合液を作製して次の還元・析出工程へ供給されるが、その混合溶液中の分散剤の濃度は0.2~10.0g/Lの範囲、硫酸アンモニウム濃度は上記範囲において、種晶無でも良好にニッケル粉を作製可能である。
 一方、不溶性固体を種晶として用い、分散剤にポリアクリル酸塩を用いる場合(図2の製造フローで示す製造方法)、その添加量は混合スラリーに加えられた不溶性固体の量の1重量%を越えて10重量%以下の量とし、望ましくは2重量%以上、6.0重量%以下とする。
 その添加量が、1重量%以下ではニッケル粉が析出せず、2重量%以上になると不溶性固体が十分に分散され、添加量に比例して発生するニッケル粉の数を制御できて好ましい。一方、その上限は6重量%を越えても増加傾向がだが、あまりに多数の種結晶が生じることはハンドリングや分散剤同士が凝集してしまい、添加量に見合う効果を考えると好ましくないために10重量%以下、より好ましくは6重量%以下とする。
 また、分散剤にリグニンスルホン酸塩を用いる場合(図2の製造フローで示す製造方法)、その添加量は混合スラリーに加えられた不溶性固体の量の2重量%以上、20重量%以下の量とする。
 その添加量が2重量%以下では、ニッケル粉を得ることができず、2重量%を超えることが必要だが、特に5重量%を越えると添加量に比例して発生するニッケル粉の数を制御できて好ましい。
<不溶性固体の添加>
 図2に示す製造方法では、上記により分散剤濃度が調整された硫酸ニッケルアンミン錯体溶液に、少なくとも、その錯体溶液に不溶であり、析出の母体となる不溶性固体を添加する。
 ここで添加する不溶性固体は、硫酸ニッケルアンミン錯体溶液、硫酸アンモニウム水溶液或いはアルカリ溶液への溶解度が小さいものであれば、特に限定はされず、例えば、ニッケル粉、鉄粉、アルミナ粉、ジルコニア粉、シリカ粉などを用いることができる。
 本発明では、従来一般に使われてきた種結晶を用いて粉末を析出させ、種結晶ごと製品とする方法でなく、不溶性固体表面に必要な析出が終わった後に、不溶性固体と析出、成長した析出物とを切り離し、その切り離した析出物の粉末部分のみを製品としようとするものである。本発明のこのような方法によれば、種結晶自身がもつ不純物による製品への影響を回避するものである。
 不溶性固体の添加量は、特に限定されず、固体の種類に応じて、硫酸ニッケルアンミン錯体溶液に添加した時に撹拌による混合が可能な量を選択する。一例として50~100g/L程度の量を添加すればよい。
 形状や大きさも特に限定はしないが、後述するように互いに衝突させたり、振動を与えたりして表面のニッケル析出物を分離することがあるので、衝撃や摩擦に耐える強度を有し、ニッケル析出物が効果的に分離できるように表面がなだらかな形状であるものが適している。
 また、不溶性固体と、その表面のニッケル析出物との効果的な分離を考えると、実操業では例えば直径0.05~3mm程度の球状もしくは楕円形等の角が無い形状であるものが使いやすい。
 なお、ニッケルを析出させるのに先立ってあらかじめ衝突や衝撃を与えて、不溶性固体表面の付着物等を取り除いてから本発明の不溶性固体として用いることが好ましい。
 また、ニッケル析出物を分離した後の不溶性固体は、必要に応じて洗浄等の前処理を行った後で再び繰り返して使用することもできる。
[還元・析出工程]
 次に、分散剤のみを添加、或いは分散剤及び不溶性固体を添加して形成した混合スラリーを、耐高圧高温容器の反応槽内に装入し、反応槽内の混合スラリーに水素ガスを吹き込んで、混合スラリー中のニッケル錯イオンを還元し、分散剤のみが添加されている混合スラリーでは、スラリー中に存在する種々の微細粒子を核にニッケルが析出し、ニッケル粉が形成される。一方、分散剤と不溶性固体の両者が添加された混合スラリーでは、添加した不溶性固体上にニッケルとして析出させる。
 このときの反応温度は、150~200℃の範囲が好ましい。
 その反応温度が、150℃未満では還元効率が低下し、200℃以上にしても反応への影響はなく、むしろ熱エネルギー等のロスが増加するので適さない。
 さらに、反応時の圧力は1.0~4.0MPaが好ましい。
 圧力が、1.0MPa未満では反応効率が低下し、4.0MPaを超えても反応への影響はなく、水素ガスのロスが増加する。
 このような条件による還元・析出処理によって、分散剤の効果によりニッケルを硫酸ニッケルアンミン錯体溶液から抽出、回収でき、また不溶性固体上に分散剤の効果により微細な粉状の析出物としてニッケルの析出物が形成され、ニッケルを硫酸ニッケルアンミン錯体溶液から抽出、回収でき、さらに分散剤の添加量を調整することにより、析出して生成するニッケル粉の量を調整できる。
[分離工程]
 この工程は、不溶性固体を使用した場合に行われる工程で、生成したニッケル析出物が不溶性固体上に付着した状態であり、その状態では利用できないので、表面に形成されたニッケル析出物を不溶性固体と分離、回収するものである。
 具体的な分離方法として、例えば発熱で酸化しないように、不溶性固体ごと水中に入れ、回転して不溶性固体同士を衝突させて表面のニッケル析出物を分離し、篩い分けしてニッケル粉を得る方法、湿式篩上で回転させて、分離したニッケル析出物を同時に篩い分けてニッケル粉を得る方法、あるいは、液中に超音波を加えて振動を与え、分離し、篩い分けてニッケル粉を得るなどの方法がある。篩い分けに際しては、目開きが不溶性固体の大きさより細かいものであれば用いることができる。
 以上のようにして製造したニッケル粉は、例えば積層セラミックコンデンサーの内部構成物質であるニッケルペースト用途として用いることができる他、回収したニッケル粉を種晶として上記水素還元を繰り返すことにより粒子を成長させ、高純度のニッケルメタルを製造することができる。
 以下に本発明を、実施例を用いて説明する。
[混合工程]
 ニッケル75g相当する硫酸ニッケル六水和物336g、硫酸アンモニウム330gを含む溶液に、25%アンモニア水を191mlを加えて硫酸ニッケルアンミン錯体溶液を形成した後、図1に示す製造フローに沿い、先ず、その溶液にポリアクリル酸ナトリウム0.2gを添加して混合溶液を形成し、その合計の液量が1000mlになるように純水を加えて調整した。
[還元・析出工程]
 次いで、作製した混合溶液をオートクレーブの内筒缶に装入し、撹拌しながら185℃に昇温、保持した状態で、水素ガスを吹き込み、オートクレーブの内筒缶内の圧力が3.5MPaを維持するように水素ガスをボンベから供給した。水素ガスの供給から60分が経過した後に、水素ガスの供給を停止し、内筒缶を冷却した。
[濾過工程]
 冷却後、内筒缶内のスラリーを濾過し、ニッケル粉を42.7g回収した。
 回収したニッケル粉を観察したところ、図3に示すように微細なニッケル粉が生成していることを確認した。
 ポリアクリル酸ナトリウム1.0gを添加したこと以外は、上記実施例1と同じ方法を用いてニッケル粉を作製した。
 その結果、図4に示すように微細なニッケル粉を59.0g回収した。
 ポリアクリル酸ナトリウム5.0gを添加したこと以外は、上記実施例1と同じ方法を用いてニッケル粉を作製した。
 その結果、図5に示すように微細なニッケル粉を68.2g回収した。
 ポリアクリル酸ナトリウム10gを添加したこと以外は、上記実施例1と同じ方法を用いてニッケル粉を作製した。
 その結果、図6に示すように微細なニッケル粉を57.0g回収した。
[混合工程]
 ニッケル分で75gに相当する硫酸ニッケル六水和物336gと硫酸アンモニウム330g、25%アンモニア水を191mlを加えて硫酸ニッケルアンミン錯体溶液を形成した後、図2の製造フローに沿って、先ず、その溶液に種晶とする析出母体となる不溶性固体として、平均粒径(D50)が85μmのサイズのニッケル粉75gを、分散剤として分子量4000のポリアクリル酸ナトリウムを種晶とする不溶性固体の重量の2重量%に相当する1.5gを添加した後に加え、液量が1000mlになるように純水を加えて調整し、混合スラリーとした。
[還元・析出工程]
 次いで、上記で作製した混合スラリーをオートクレーブの内筒缶に装入し、撹拌しながら185℃に昇温し、保持した状態で、ボンベから水素ガスを吹き込み、オートクレーブの内筒缶内の圧力が3.5MPaになるように水素ガスを供給した。
 水素ガスを供給開始してから2分毎にオートクレーブのサンプル口からサンプルの還元されたスラリーを抜き出し、固液分離して濾液のニッケル濃度を分析した。反応が進行するに伴ってニッケルが粉末として析出し、その分濾液のニッケル濃度は低下する。
 図7に示すように、その濃度変化から計算して30分間で80%以上のニッケルを還元し回収することができた。
 水素ガスの供給から30分が経過した後に、水素ガスの供給を停止し、内筒缶を冷却した。冷却後、内筒缶内のスラリーを濾過し、析出したニッケル粉42.7gを回収した。
 回収したニッケル粉を観察したところ、種結晶に使用できるほど微細なニッケル粉が生成していることを確認した。
 ポリアクリル酸ナトリウムを種晶重量の6重量%に相当する4.5g添加したこと以外は、上記実施例5と同じ条件と方法でニッケル粉を製造し回収した。
 図7に示すように、実施例5と同様に30分間で80%以上のニッケルを還元し回収することができた。
 ポリアクリル酸ナトリウムを種晶重量の10重量%に相当する7.5g添加したこと以外は、上記実施例5と同じ条件と方法でニッケル粉を製造し回収した。
 図7に示すように、実施例5と同様に30分間で80%以上のニッケルを還元し回収することができた。
 ポリアクリル酸ナトリウムを種晶重量の1重量%に相当する0.75g添加した以外は実施例5と同じ条件と方法でニッケル粉を製造し回収した。
 図7に示すように、濃度変化から計算して30分間で50%程度のニッケルを還元し回収できた。
(比較例1)
 分散剤と不溶性固体を添加せず、それ以外の液組成や還元条件は実施例5と同様にしてニッケル粉を作製した。
 サンプリングした溶液のニッケル濃度は75g/Lから45g/L程度まで低下した。しかし、水素ガス吹き込み終了後の溶液からはニッケル粉は回収できず、内筒缶内の側壁や攪拌機に板状のニッケルのスケーリングが生成している様子が確認できた。
(比較例2)
 分散剤を添加せず、不溶性固体としてニッケル粉を75g添加した以外は、実施例5と同じ方法でニッケル粉を製造した。
 図8に示すように、濃度変化から計算して30分間で20%程度のニッケルしか還元できなかった。
 ニッケル75gに相当する硫酸ニッケル六水和物336g、硫酸アンモニウム330gを含む溶液に、25%アンモニア水を191mlを加えて硫酸ニッケルアンミン錯体溶液を作製した。
 さらに図2に示す製造フローに沿って、分子量4000、濃度40%のポリアクリル酸ナトリウム溶液、0.38g、1.88g、3.75g、7.5g、11.3gを、作製した硫酸ニッケルアンミン錯体溶液、それぞれに添加して合計の液量が1000mlになるように調整した5つの溶液を作製した。
 作製した溶液のそれぞれに、析出母体となる不溶性固体として、平均粒径(D50)が85μmのニッケル粉75gを添加し、所望の混合スラリーを作製した。
 ここで添加したポリアクリル酸ナトリウムは、純分で不溶性固体量のそれぞれ0.2%、1%、2%、4%、6重量%に相当するものである。
 次いで、作製した混合スラリーをオートクレーブの内筒缶に装入し、撹拌しながら185℃に昇温、保持した状態で、水素ガスを吹き込み、オートクレーブ内の圧力が3.5MPaになるように水素ガスを供給した。
 水素ガスの供給から60分が経過した後に、水素ガスの供給を停止し、内筒缶を冷却した。
[分離工程]
 冷却後、内筒缶内のスラリーを濾過して不溶性固体とニッケル析出物の複合体を回収し、次いで目開きが75μmの湿式篩を使用して、振動を加えて母体の不溶性固体と、表面のニッケル析出物とを分離してニッケル粉を回収した。
 その回収した篩下のニッケル粉を粒度分布装置(マイクロトラック社製、商品名9320-X100型)により粒径を測定し粒度分布を求めた。
 回収したニッケル粉を真球と仮定し、測定した平均粒径:Dとニッケルの密度:ρ=8.9g/cmを用いて、その回収したニッケル粉の個数を下記(1)式により算出した。
Figure JPOXMLDOC01-appb-M000001
 このようにして算出したニッケル粉の個数とポリアクリル酸ナトリウムの添加量との関係を図9に示す。
 図9から、ポリアクリル酸ナトリウム添加量とニッケル粉個数には相関がみられ、ポリアクリル酸ナトリウムの添加量によりニッケル粉発生量を調整できることがわかる。
 特に、ポリアクリル酸ナトリウムの添加量が1.0重量%以下ではニッケル粉を得ることができないが、1.0重量%を超えると添加量に比例して発生するニッケル粉の数を制御できることがわかる。
 分散剤にリグニンスルホン酸ナトリウムを用い、1.5g、3.0g、4.5g、7.5g、11.3g、15.0gを用いた以外は、実施例9と同様の方法を用いてニッケル粉を製造した。
 添加したリグニンスルホン酸は不活性固体量のそれぞれ2%、4%、6%、10%、15%、20重量%に相当する。
 得たニッケル粉を、実施例9と同様に、上記(1)式を用いた算出方法によりニッケル粉の個数を算出した。

Claims (8)

  1.  硫酸ニッケルアンミン錯体を含有する溶液に、ポリアクリル酸塩を添加して混合溶液を形成する混合工程と、前記混合溶液を反応槽内に装入し、前記反応槽内の混合液に水素ガスを吹き込んで、前記混合溶液と接触させて前記混合溶液中のニッケル錯イオンを還元してニッケルを析出させてニッケル粉を生成する還元析出工程を順に経てニッケル粉を作製することを特徴とするニッケル粉の製造方法。
  2.  硫酸ニッケルアンミン錯体を含有する溶液に、種晶の不溶性固体と分散剤としてポリアクリル酸塩又はリグニンスルホン酸塩を加えて混合スラリーを形成する混合工程と、前記混合スラリーを反応槽内に装入して、前記反応槽内の混合スラリー液に水素ガスを吹き込んで、前記混合スラリー中のニッケル錯イオンを還元して前記不溶性固体の表面にニッケル粒子の析出物を形成する還元析出工程を順に経てニッケル粉を作製することを特徴とするニッケル粉の製造方法。
  3.  硫酸ニッケルアンミン錯体を含有する溶液に、種晶の不溶性固体と分散剤としてポリアクリル酸塩又はリグニンスルホン酸塩を加えて混合スラリーを形成する混合工程と、前記混合スラリーを反応槽内に装入して、前記反応槽内の混合スラリーに水素ガスを吹き込んで、前記混合スラリー中のニッケル錯イオンを還元して前記不溶性固体の表面にニッケル析出物を形成する還元析出工程を順に経てニッケル粉を作製する際に、前記混合工程における分散剤の添加量を制御して前記還元析出工程におけるニッケル析出物の生成により得られるニッケル粉の個数を制御することを特徴とするニッケル粉の製造方法。
  4.  前記混合溶液に含まれるポリアクリル酸塩の濃度が、0.2~10.0g/Lの範囲であることを特徴とする請求項1記載のニッケル粉の製造方法。
  5.  前記混合工程における添加する分散剤がポリアクリル酸塩である場合、
      前記ポリアクリル酸塩の添加量は、前記混合スラリーに加えられた不溶性固体の量の1重量%を越えて、10重量%以下の量であることを特徴とする請求項3に記載のニッケル粉の製造方法。
  6.  前記ポリアクリル酸塩の分散剤の添加量が、種晶の不溶性固体の重量に対して2~6重量%であることを特徴とする請求項5に記載のニッケル粉の製造方法。
  7.  前記ポリアクリル酸塩の分散剤が、ポリアクリル酸ナトリウム(PAA)であることを特徴とする請求項4から6のいずれか1項に記載のニッケル粉の製造方法。
  8.  前記混合工程における添加する分散剤がリグニンスルホン酸である場合、
      前記リグニンスルホン酸の添加量は、前記混合スラリーに加えられた不溶性固体の量の2重量%以上、20重量%以下の量であることを特徴とする請求項3に記載のニッケル粉の製造方法。
PCT/JP2015/059451 2015-01-22 2015-03-26 ニッケル粉の製造方法 WO2016117138A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201580074006.6A CN107206502B (zh) 2015-01-22 2015-03-26 镍粉的制造方法
US15/544,541 US10549351B2 (en) 2015-01-22 2015-03-26 Method for producing nickel powder
EP15878829.9A EP3248720B1 (en) 2015-01-22 2015-03-26 Method for producing nickel powder
JP2015528117A JP5796696B1 (ja) 2015-01-22 2015-03-26 ニッケル粉の製造方法
AU2015379030A AU2015379030B2 (en) 2015-01-22 2015-03-26 Method for producing nickel powder
CA2974483A CA2974483C (en) 2015-01-22 2015-03-26 Method for producing nickel powder
PH12017501317A PH12017501317B1 (en) 2015-01-22 2017-07-20 Method for producing nickel powder

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015010722 2015-01-22
JP2015-010722 2015-01-22
JP2015010721 2015-01-22
JP2015-010719 2015-01-22
JP2015010719 2015-01-22
JP2015-010721 2015-01-22

Publications (1)

Publication Number Publication Date
WO2016117138A1 true WO2016117138A1 (ja) 2016-07-28

Family

ID=56416703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059451 WO2016117138A1 (ja) 2015-01-22 2015-03-26 ニッケル粉の製造方法

Country Status (7)

Country Link
US (1) US10549351B2 (ja)
EP (1) EP3248720B1 (ja)
CN (1) CN107206502B (ja)
AU (1) AU2015379030B2 (ja)
CA (1) CA2974483C (ja)
PH (1) PH12017501317B1 (ja)
WO (1) WO2016117138A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018141203A (ja) * 2017-02-28 2018-09-13 住友金属鉱山株式会社 種晶用ニッケル粉末の製造方法
JP2018145510A (ja) * 2017-03-09 2018-09-20 住友金属鉱山株式会社 ニッケル粉の製造方法
JP2018154883A (ja) * 2017-03-17 2018-10-04 住友金属鉱山株式会社 ニッケル粉の製造方法
JP2018178232A (ja) * 2017-04-20 2018-11-15 住友金属鉱山株式会社 ニッケル粉の製造方法
CN110049840A (zh) * 2016-12-05 2019-07-23 住友金属矿山株式会社 镍粉末的制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202348B2 (ja) 2015-10-26 2017-09-27 住友金属鉱山株式会社 高密度ニッケル粉の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509213A (ja) * 1994-11-14 1998-09-08 ザ ウェスターム コーポレイション ミクロンサイズのニッケル金属粉末およびその製造方法
JP2006152344A (ja) * 2004-11-26 2006-06-15 Catalysts & Chem Ind Co Ltd 金属微粒子および金属微粒子の製造方法
JP2010053409A (ja) * 2008-08-28 2010-03-11 Sumitomo Electric Ind Ltd 金属粉末の製造方法および金属粉末、導電性ペースト、積層セラミックコンデンサ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2853380A (en) * 1957-05-20 1958-09-23 Sherritt Gordon Mines Ltd Method of recovering metal values from solutions
US3156556A (en) * 1962-07-20 1964-11-10 Sherritt Gordon Mines Ltd Method of producing fine spherical metal powders
CA970168A (en) * 1972-10-20 1975-07-01 Vladimir N. Mackiw Production of nickel powder from impure nickel compounds
CN1060703C (zh) * 1996-05-30 2001-01-17 北京有色金属研究总院 纳米级金属粉的制备方法
CA2359347A1 (en) 2001-10-18 2003-04-18 Cesur Celik Laminated ceramic capacitor internal electrode material
KR101014158B1 (ko) 2002-08-28 2011-02-14 도호 티타늄 가부시키가이샤 금속 니켈 분말 및 그 제조 방법
US7819939B1 (en) * 2006-08-07 2010-10-26 Ferro Corporation Synthesis of nickel nanopowders
JP2009079239A (ja) * 2007-09-25 2009-04-16 Sumitomo Electric Ind Ltd ニッケル粉末、またはニッケルを主成分とする合金粉末およびその製造方法、導電性ペースト、並びに積層セラミックコンデンサ
CN101428348B (zh) * 2008-07-29 2010-09-08 张建玲 一种水热处理制备球形超细金属粉末的工艺方法
CN101428349B (zh) * 2008-07-29 2011-06-22 张建玲 一种镍钴金属粉末的制备方法
CN101423398A (zh) * 2008-12-02 2009-05-06 四川大学 陶瓷包覆粉末及其制备方法
CN101462164A (zh) * 2009-01-09 2009-06-24 贵阳晶华电子材料有限公司 一种高振实密度微细银粉及其生产方法
JP5407495B2 (ja) 2009-04-02 2014-02-05 住友電気工業株式会社 金属粉末および金属粉末製造方法、導電性ペースト、並びに積層セラミックコンデンサ
JP6047711B2 (ja) * 2012-02-08 2016-12-21 石原ケミカル株式会社 無電解ニッケル及びニッケル合金メッキ方法、並びに当該メッキ用の前処理液
KR102103711B1 (ko) * 2012-09-12 2020-04-23 엠. 테크닉 가부시키가이샤 금속 미립자의 제조 방법
TWI508799B (zh) * 2012-12-06 2015-11-21 China Steel Corp A Method for Synthesis of Silver Powder with Adjustable Particle Size
CN103803813A (zh) * 2013-12-28 2014-05-21 刘建英 一种导电化合物的制备方法
JP5828923B2 (ja) * 2014-01-30 2015-12-09 国立大学法人高知大学 ニッケル粉の製造方法
JP5811376B2 (ja) * 2014-02-17 2015-11-11 住友金属鉱山株式会社 水素還元ニッケル粉の製造に用いる種結晶の製造方法
JP5936783B2 (ja) * 2014-02-21 2016-06-22 国立大学法人高知大学 ニッケル粉の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10509213A (ja) * 1994-11-14 1998-09-08 ザ ウェスターム コーポレイション ミクロンサイズのニッケル金属粉末およびその製造方法
JP2006152344A (ja) * 2004-11-26 2006-06-15 Catalysts & Chem Ind Co Ltd 金属微粒子および金属微粒子の製造方法
JP2010053409A (ja) * 2008-08-28 2010-03-11 Sumitomo Electric Ind Ltd 金属粉末の製造方法および金属粉末、導電性ペースト、積層セラミックコンデンサ

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110049840A (zh) * 2016-12-05 2019-07-23 住友金属矿山株式会社 镍粉末的制造方法
CN110049840B (zh) * 2016-12-05 2022-06-24 住友金属矿山株式会社 镍粉末的制造方法
JP2018141203A (ja) * 2017-02-28 2018-09-13 住友金属鉱山株式会社 種晶用ニッケル粉末の製造方法
JP2018145510A (ja) * 2017-03-09 2018-09-20 住友金属鉱山株式会社 ニッケル粉の製造方法
JP2018154883A (ja) * 2017-03-17 2018-10-04 住友金属鉱山株式会社 ニッケル粉の製造方法
JP2018178232A (ja) * 2017-04-20 2018-11-15 住友金属鉱山株式会社 ニッケル粉の製造方法

Also Published As

Publication number Publication date
AU2015379030A1 (en) 2017-08-10
EP3248720B1 (en) 2019-09-25
US20180009037A1 (en) 2018-01-11
PH12017501317A1 (en) 2018-01-29
CA2974483C (en) 2018-05-29
AU2015379030B2 (en) 2018-04-05
CN107206502B (zh) 2019-08-09
EP3248720A4 (en) 2018-07-18
CA2974483A1 (en) 2016-07-28
US10549351B2 (en) 2020-02-04
PH12017501317B1 (en) 2018-01-29
EP3248720A1 (en) 2017-11-29
CN107206502A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
WO2016117138A1 (ja) ニッケル粉の製造方法
JP6099601B2 (ja) ニッケル粉の製造方法
JP2015166488A5 (ja)
JP5796696B1 (ja) ニッケル粉の製造方法
WO2017006795A1 (ja) コバルト粉の製造方法
JP6816755B2 (ja) ニッケル粉の製造方法
WO2017150305A1 (ja) ニッケル粉の製造方法
WO2017073392A1 (ja) コバルト粉の種結晶の製造方法
JP2017155319A5 (ja)
JP6241617B2 (ja) コバルト粉の製造方法
JP5881091B2 (ja) ニッケル粉の製造方法
JP7007650B2 (ja) ニッケル粉の製造方法
JP2017155265A (ja) ニッケル粉の製造方法
JP2018141203A (ja) 種晶用ニッケル粉末の製造方法
JP2020015971A (ja) ニッケル粉の製造方法
JP2020012138A (ja) ニッケル粉の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015528117

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878829

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15544541

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2974483

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12017501317

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015878829

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015379030

Country of ref document: AU

Date of ref document: 20150326

Kind code of ref document: A