WO2016110112A1 - 一种锂离子电池负极材料的制备方法 - Google Patents

一种锂离子电池负极材料的制备方法 Download PDF

Info

Publication number
WO2016110112A1
WO2016110112A1 PCT/CN2015/088143 CN2015088143W WO2016110112A1 WO 2016110112 A1 WO2016110112 A1 WO 2016110112A1 CN 2015088143 W CN2015088143 W CN 2015088143W WO 2016110112 A1 WO2016110112 A1 WO 2016110112A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon fiber
lithium ion
ion battery
anode material
battery anode
Prior art date
Application number
PCT/CN2015/088143
Other languages
English (en)
French (fr)
Inventor
田东
Original Assignee
田东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田东 filed Critical 田东
Publication of WO2016110112A1 publication Critical patent/WO2016110112A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a method for preparing a negative electrode material for a lithium ion battery.
  • the negative electrode material of the present invention is formed by combining carbon fiber filaments and short wires of different length/diameter ratios at a certain ratio.
  • Lithium-ion batteries have rapidly occupied the civilian secondary battery market at an average annual rate of 15%, and have become the first choice for portable electronic devices. power supply.
  • the rapid development of lithium-ion batteries is mainly due to the contribution of electrode materials, especially the improvement of anode materials.
  • Lithium-ion battery anode materials are required to have the following characteristics: 1 as low as possible electrode potential; 2 ions have a higher diffusivity in the negative solid state structure; 3 height deintercalability; 4 good conductivity and thermodynamic stability; 5 good safety performance; 6 good compatibility with electrolyte solvent; 7 rich in resources, low in price, no pollution to the environment.
  • the negative electrode material is one of the four major raw materials (positive electrode, negative electrode, electrolyte, and separator) of the lithium ion battery.
  • the commercial lithium ion battery anode material is made of graphite carbon material, which has a low lithium insertion/deintercalation potential and is suitable. It has the advantages of reversible capacity, abundant resources and low price, and is an ideal anode material for lithium ion batteries.
  • Carbon materials have been widely used in lithium ion batteries because of their low cost, non-toxicity and superior electrochemical properties. Its interface state and fine structure have a great influence on electrode performance.
  • commercial lithium-ion battery carbon anode materials can be divided into graphite, hard carbon and soft carbon. Among them, graphite materials are still the mainstream of lithium-ion battery anode materials.
  • the carbon anode materials currently studied mainly include graphite materials and low temperature pyrolytic carbon.
  • As a negative electrode material for lithium ion batteries carbon materials still have shortcomings such as low charge and discharge capacity, large irreversible loss of primary circulation, co-insertion of solvent molecules and high production cost. These are the key problems to be solved in the research of lithium ion batteries.
  • Carbon fiber has attracted great attention due to its high degree of crystal orientation, good electrical and thermal conductivity, and has been widely studied as a supercapacitor and lithium ion battery anode material, and has broad application prospects.
  • the electrochemical properties of lithium-ion battery carbon anode materials have a strong correlation with microscopic crystal structure and surface properties. Among them, the degree of graphitization of materials has a significant effect on material properties.
  • Carbon fiber is a new type of carbon material. According to raw materials, there are mainly PAN-based carbon fibers (more than 90% of the carbon fibers on the market), viscose-based carbon fibers, and pitch-based carbon fibers. In general, pitch-based carbon fibers have a lower electrical resistivity than PAN-based carbon fibers, and PAN-based carbon fibers have a higher electrical resistivity than viscose-based carbon fibers. small. The electron rate decreases as the heat treatment temperature increases.
  • Chinese patent CN 102623704A by adding carbon fiber, using its high conductivity and strong adsorption to prepare lithium carbonate-carbon fiber composite anode material to solve the problem of material large rate charge and discharge performance and improve conductivity, to meet the needs of modern society for lithium ion battery Requirements.
  • Chinese patent CN 102290582A by adding nano-long carbon fiber VGCF, improves battery conductivity and reduces internal resistance.
  • a preparation method of a tin/graphene/carbon fiber composite lithium battery anode material disclosed in Chinese patent CN 104037393A a network structure composed of a mixture of graphene and carbon fiber, provides a large number of smooth transport channels for lithium ion in and out electrodes, so that it can be fully Contact with the anode material improves the utilization efficiency of the anode material. Improve the effective position of lithium storage in the negative electrode material and the transport speed of lithium during charge and discharge.
  • the high electrical conductivity of graphene and carbon fiber can quickly achieve carrier migration, improve output power and effectively reduce the internal resistance of the battery itself.
  • Chinese patent CN 102560744A discloses a preparation method of general-purpose pitch-based carbon fiber, which successfully applies the spinning equipment of chemical fiber industry to the spinning production process of petroleum and coal-based isotropic spinnable asphalt, in the pre-oxidation process.
  • the gas phase oxidation method is adopted, and the pre-oxidation treatment is carried out by using the gas oxidant which is easy to operate and polluted.
  • an excellent process parameter optimization scheme is adopted, and the excellent production performance is successfully produced.
  • General purpose pitch based carbon fiber is adopted.
  • Carbon fiber is generally a filament structure, and its application in the field of lithium ion batteries is mainly used as a conductive agent. If it is directly used as a negative electrode material, there are many difficulties in formulation, easy precipitation of the slurry, uneven coating density of the pole piece, poor appearance of the pole piece, and the like. problem.
  • the invention provides a novel lithium ion battery anode material, the purpose of which is to solve the application problem of carbon fiber in lithium ion battery and expand the application range thereof.
  • the technical problem solved by the present invention is achieved by the following technical solution, and a preparation method of a novel lithium ion battery anode material, the preparation steps are as follows:
  • Preparation of carbon fiber short yarn the carbon fiber after graphitization is pulverized to obtain a carbon fiber short yarn having a length of 20 to 50 ⁇ m and a length of: 1:0.4 to 0.8;
  • the softening point of the carbon fiber spinnable asphalt is 150 to 300 ° C
  • the amount of residual carbon is ⁇ 60%
  • the quinoline insoluble matter (QI) is ⁇ 3.0%. If the amount of residual carbon in the asphalt is too high, the production cost of the asphalt will increase, and the amount of residual carbon will be too low, indicating that the volatile content in the asphalt is high, which will reduce the strength and yield of the carbon fiber produced.
  • the diameter of the asphalt fiber strand is between 4 and 30 ⁇ m, and the diameter is too small, which increases the difficulty of spinning, and the spun yarn is easily broken, resulting in the fiber cloth produced in the later stage having too low strength and too large diameter, which will increase.
  • the heating rate of the pre-oxidation of the raw silk is controlled to 0.5 to 5 ° C / min, and the temperature is raised to 10 to 50 ° C above the softening point of the asphalt. If the heating rate is too high, the raw silk will be melted, and the temperature will be too low to achieve the effect of oxidation. If the temperature is too high, the yield of the carbonization treatment will be lowered.
  • the temperature of the high temperature graphitization treatment is 2600 ° C or higher.
  • the pulverization in the step (5) is one or more of a mechanical pulverizer, a jet mill, and a grinder.
  • the slitting in the step (6) means one or more of a cutter and a microtome capable of controlling the slit length.
  • the obtained carbon fiber is close to graphite in material by carbonization and graphitization, and is structurally superior to graphite and can be used as a negative electrode material;
  • the carbon fiber itself has more microporous structure, can ensure the absorption and retention of the electrolyte, meet the rapid ingress and egress of lithium ions, and has excellent cycle performance, and is an ideal anode material;
  • the carbon fiber spinnable pitch having a softening point of 250 ° C is heated to 280 ° C to melt into a liquid having a flowing state, and the spinneret of the melt spinning machine is adjusted to obtain a pitch fiber strand having a diameter of 20 ⁇ 1 ⁇ m, and the raw yarn is
  • the air is heated to 260 ° C at a heating rate of 2 ° C / min, and oxidized for 4 hours.
  • the pre-oxidized raw silk is heated to 900 ° C at a heating rate of 10 ° C / min under an inert gas atmosphere, and maintained at a high temperature. 2 hours, then cooled to room temperature.
  • the carbonized raw yarn is further graphitized at a high temperature.
  • the graphitized carbon fibers were passed through slitting to obtain carbon fiber filaments having a length of 2 mm.
  • the NMP N-methylpyrrolidone
  • the charge-discharge voltage is 0-2.0V, and the charge-discharge rate is 0.2C.
  • the battery performance can be tested.
  • the initial discharge capacity of the electrode material is 355 mAh/g, and the capacity retention rate after 100 cycles is 98.1%.
  • the carbon fiber spinnable pitch having a softening point of 150 ° C is heated to 180 ° C to melt into a liquid having a flowing state, and the spinneret of the melt spinning machine is adjusted to receive a pitch fiber strand having a diameter of 5 ⁇ 1 ⁇ m, and the raw yarn is
  • the air was heated to 170 ° C at a heating rate of 1.5 ° C / min, and oxidized for 22 hours.
  • the pre-oxidized raw silk was heated to 850 ° C at a heating rate of 5 ° C / min under an inert gas atmosphere, and maintained at a high temperature. 1 hour, then cooled to room temperature.
  • the carbonized raw yarn is further graphitized at a high temperature.
  • the graphitized carbon fibers were passed through slitting to obtain carbon fiber filaments having a length of between 2.5 mm.
  • the carbon fiber short filament: carbon fiber filament 1:0.4 ratio, stirred and mixed uniformly, thereby obtaining the lithium ion battery anode material prepared in the present example.
  • Example 2 The performance of the negative electrode material of the lithium ion battery of Example 2 was examined and tested by the same detection method as in Example 1.
  • the initial discharge capacity of the motor material was 349 mAh/g, and the capacity retention rate after 100 cycles was 96.8%.
  • the carbon fiber spinnable pitch with a softening point of 200 ° C is heated to 230 ° C to melt into a liquid having a flowing state, and the spinneret of the melt spinning machine is adjusted to collect a pitch fiber strand having a diameter of 10 ⁇ 1 ⁇ m, and the raw yarn is
  • the air was heated to 220 ° C at a heating rate of 4 ° C / min, oxidized for 5 hours, and the pre-oxidized raw silk was heated to 950 ° C at a heating rate of 10 ° C / min under an inert gas atmosphere, and maintained at a high temperature. 3 hours, then cooled to room temperature.
  • the carbonized raw yarn is further graphitized at a high temperature.
  • the graphitized carbon fibers were passed through slitting to obtain carbon fiber filaments having a length of between 3 mm.
  • the carbon fiber short wire: carbon fiber filament 1:0.5 ratio, stirred and mixed uniformly, that is, the lithium ion battery anode material prepared in the present example was obtained.
  • the performance of the negative electrode material of the lithium ion battery of Example 3 was examined and tested by the same detection method as in Example 1.
  • the initial discharge capacity of the negative electrode material was 352 mAh/g, and the capacity retention after 100 cycles was 97.6%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

提供了一种锂离子电池负极材料的制备方法,其采用不同长/径比的碳纤维长丝和短丝按一定比例复合。采用碳纤维可纺沥青为原料,所得的碳纤维通过碳化、石墨化处理后,在结构上优于石墨。由于碳纤维本身具有较多的微孔结构,能保证电解液的吸收和保持,满足锂离子的快速进出,因而具有优异的循环性能。通过控制碳纤维长、短丝的大小,优化两者之间的比例,所制得的负极材料,加工性能优异,极片外观良好,能满足锂离子电池大规模的生产应用。

Description

[根据细则37.2由ISA制定的发明名称] 一种锂离子电池负极材料的制备方法 技术领域
本发明涉及一种锂离子电池负极材料的制备方法,具体来讲,本发明所述的负极材料采用不同长/径比的碳纤维长丝和短丝在一定比例下复合而成。
背景技术
自上世纪90年代初日本索尼能源技术公司率先成功开发出使用碳负极的锂离子电池以来,锂离子电池以年均15%的速度迅速占领民用二次电池市场,已经成为当前便携式电子设备的首选电源。锂离子电池的飞速发展主要是得益于电极材料的贡献,特别是负极材料的进步。锂离子电池负极材料要求具备以下特点:①尽可能低的电极电位;②离子在负极固态结构中有较高的扩散率;③高度的脱嵌可逆性;④良好的电导率及热力学稳定性;⑤安全性能好;⑥与电解质溶剂相容性好;⑦资源丰富、价格低廉,对环境无污染。负极材料是锂离子电池四大原材料(正极、负极、电解液、隔膜)之一,目前商业化锂离子电池负极材料采用的是石墨类碳材料,具有较低的锂嵌入/脱嵌电位、合适的可逆容量且资源丰富、价格低廉等优点,是比较理想的锂离子电池负极材料。
碳材料以其价廉、无毒及其优越的电化学性能在锂离子电池中得到了广泛的应用,它本身的界面状况和微细结构对电极性能有很大的影响。目前,商品化的锂离子电池碳负极材料可分为石墨、硬碳和软碳三类,其中石墨类材料依然是锂离子电池负极材料的主流。目前所研究的碳负极材料主要有石墨类材料和低温热解碳。碳材料作为锂离子电池负极材料依然存在充放电容量低、初次循环不可逆损失大、溶剂分子共插层和制备成本高等缺点,这些也是在目前锂离子电池研究方面所需解决的关键问题。
碳纤维由于具有较高的结晶取向度、较好的导电和导热性能,受到了人们的极大关注,并且作为超级电容器和锂离子电池负极材料被广泛研究,具有广泛的应用前景。锂离子电池碳负极材料的电化学性能与微观晶体结构、表面性质等有很强的关联性,其中,材料石墨化程度对材料性能的影响尤为显著。
碳纤维是一种新型的碳材料,按原材料划分主要有PAN基碳纤维(市场上90%以上为该种碳纤维)、粘胶基碳纤维、沥青基碳纤维等三种。一般来说,沥青基碳纤维的电阻率要比PAN基碳纤维小,PAN基碳纤维电阻率要比粘胶基碳纤维 小。电子率都会随着热处理温度的升高而降低。
中国专利CN 102623704A,通过添加碳纤维,利用其高导电性和强吸附性来制备碳酸锂—碳纤维复合负极材料以解决材料大倍率充放电性能和提高导电性的问题,满足现代社会对锂离子电池应用的要求。中国专利CN 102290582A,通过添加纳米超长碳纤维VGCF,提高电池导电性,降低内阻。
中国专利CN 104037393A公布的一种锡/石墨烯/碳纤维复合锂电池负极材料制备方法,石墨烯和碳纤维混合构成的网络结构,为锂离子进出电极提供了大量顺畅的输运通道,使其可充分与负极材料接触,提高负极材料的利用效率。提高负极材料储锂的有效位置及充放电时锂的输运速度。石墨烯和碳纤维的高导电性能可以快速的实现载流子迁移,提高输出功率的同时能够有效地降低电池本身的内阻。
中国专利CN 102560744A公开了一种通用级沥青基碳纤维的制备方法,将化纤行业纺丝设备成功的应用于石油系和煤系各向同性可纺沥青的纺丝生产过程中,在预氧化处理过程中采用气相氧化法,并使用易操作、污染小的气体氧化剂进行预氧化处理,在预氧化处理和碳化处理过程中,均采用了极佳的工艺参数优化方案,成功的生产出具有优良性能指标的通用级沥青基碳纤维。
发明内容
碳纤维一般为长丝结构,其在锂离子电池领域的应用主要作为导电剂,若直接用作负极材料,存在配料难、浆料易沉淀、极片涂布密度不均匀、极片外观差等诸多问题。
本发明要提供一种全新的锂离子电池负极材料,其目的是解决碳纤维在锂离子电池的应用难题,同时扩大其应用范围。
本发明所解决的技术问题采用以下技术方案来实现,一种新型锂离子电池负极材料的制备方法,其制备步骤如下:
(1)原丝制备:将碳纤维可纺沥青加热融化,通过纺丝机制得沥青纤维原丝;
(2)原丝预氧化:将沥青纤维原丝在空气中升温至高于沥青软化点10~50℃的温度下进行氧化处理3~24小时;
(3)碳化处理:将氧化处理完毕的原丝在惰性气体保护下,以1~20℃/min的升温速率升温至700℃~1300℃,高温保持0.5~5小时,然后冷却至室温;
(4)石墨化处理:将碳化处理后的原丝再进行高温石墨化;
(5)碳纤维短丝制备:将石墨化之后的碳纤维通过粉碎,得到长度为20~50μm,长度:直径=1:0.4~0.8的碳纤维短丝;
(6)碳纤维长丝制备:将石墨化之后的碳纤维通过分切,得到长度为1~3mm之间的碳纤维长丝;
(7)复合:将碳纤维短丝:碳纤维长丝=1:0.2~0.6的比例,搅拌混合均匀,即得到本发明所制备的锂离子电池负极材料。
进一步,碳纤维可纺沥青软化点为150~300℃,残炭量≥60%,喹啉不溶物(QI)≤3.0%。沥青残炭量过高,会增加沥青的生产成本,残炭量过低,说明沥青中的挥发分含量高,会降低所制得碳纤维的强度和成品率。
进一步,沥青纤维原丝的直径介于4~30μm,直径太小,会增加纺丝的难度,纺出的丝易断,导致在后期制得的纤维布强度太低,直径太大,会增加锂离子进出的通道阻力,同时降低电池的倍率充放性能。
进一步:原丝预氧化的升温速率控制0.5~5℃/min,升温至高于沥青软化点温度10~50℃。升温速率过高,会导致原丝发生融并,温度过低达不到氧化的效果,温度过高,会降低碳化处理的收率。
进一步,高温石墨化处理的温度为2600℃以上。
进一步,步骤(5)中的粉碎是采用机械式粉碎机、气流粉碎机、研磨机中的一种或几种。
进一步,步骤(6)中的分切是指采用能控制分切长度的切丝机、切片机中的一种或几种。
与现有技术相比,本发明的有益效果如下:
(1)采用碳纤维可纺沥青为原料,所得的碳纤维通过碳化、石墨化处理后,在材质上接近于石墨,结构上更优于石墨,可用作负极材料;
(2)碳纤维本身具有较多的微孔结构,能保证电解液的吸收和保持,满足锂离子的快速进出,具有优异的循环性能,是理想的负极材料;
(3)控制碳纤维长、短丝的大小,优化两者之间的比例,所制得的负极材料,加工性能优异,极片外观良好,能满足锂离子电池大规模的生产应用。
具体实施方式
为了使本发明的技术手段、创作特征、工作流程、使用方法达成目的与功效易于明白了解,下面进一步阐述本发明。
实施例1
将软化点为250℃的碳纤维可纺沥青加热到280℃融化成具有流动状态的液体,调节熔融纺丝机喷丝板,收得直径介于20±1μm的沥青纤维原丝,将原丝在空气中以2℃/min的升温速率,升温至260℃,氧化处理4小时,将经过预氧化处理的原丝在惰性气体保护下,以10℃/min的升温速率升温至900℃,高温保持2小时,然后冷却至室温。再将碳化后的原丝进行高温石墨化。将石墨化之后的碳纤维丝通过粉碎机,粉碎得到长度为30μm,长度/直径=1:0.5的碳纤维短丝。将石墨化之后的碳纤维通过分切,得到长度为2mm之间的碳纤维长丝。将碳纤维短丝:碳纤维长丝=1:0.3的比例,搅拌混合均匀,即得到本实施例所制备的锂离子电池负极材料。
为检验本发明方法制备的负极材料的性能,用半电池测试方法进行测试,用以上实施例和比较例的负极材料:乙炔黑:PVDF(聚偏氟乙烯)=93:3:4(重量比),加适量NMP(N‐甲基吡咯烷酮)调成浆状,涂布于铜箔上,经真空110℃干燥8小时制成负极片。以金属锂片为对电极,电解液为1mol/L LiPF6/EC+DEC+DMC=1:1:1,聚丙烯微孔膜为隔膜,组装成电池。充放电电压为0~2.0V,充放电速率为0.2C,对电池性能进行能测试,该电极材料的首次放电容量达355mAh/g,100次循环后的容量保持率为98.1%。
实施例2
将软化点为150℃的碳纤维可纺沥青加热到180℃融化成具有流动状态的液体,调节熔融纺丝机喷丝板,收的直径介于5±1μm的沥青纤维原丝,将原丝在空气中以1.5℃/min的升温速率,升温至170℃,氧化处理22小时,将经过预氧化处理的原丝在惰性气体保护下,以5℃/min的升温速率升温至850℃,高温保持1小时,然后冷却至室温。再将碳化后的原丝进行高温石墨化。将石墨化之后的碳纤维丝通过粉碎机,粉碎得到长度为20μm,长度/直径=1:0.4的碳纤维短丝。将石墨化之后的碳纤维通过分切,得到长度为2.5mm之间的碳纤维长丝。将碳纤维短丝:碳纤维长丝=1:0.4的比例,搅拌混合均匀,即得到本实施例所制备的锂离子电池负极材料。
检验实施例2锂离子电池负极材料的性能,采用实施例1相同的检测方法进行检测,该电机材料的首次放电容量达349mAh/g,100次循环后的容量保持率为96.8%。
实施例3
将软化点为200℃的碳纤维可纺沥青加热到230℃融化成具有流动状态的液体,调节熔融纺丝机喷丝板,收的直径介于10±1μm的沥青纤维原丝,将原丝在空气中以4℃/min的升温速率,升温至220℃,氧化处理5小时,将经过预氧化处理的原丝在惰性气体保护下,以10℃/min的升温速率升温至950℃,高温保持3小时,然后冷却至室温。再将碳化后的原丝进行高温石墨化。将石墨化之后的碳纤维丝通过粉碎机,粉碎得到长度为25μm,长度/直径=1:0.5的碳纤维短丝。将石墨化之后的碳纤维通过分切,得到长度为3mm之间的碳纤维长丝。将碳纤维短丝:碳纤维长丝=1:0.5的比例,搅拌混合均匀,即得到本实施例所制备的锂离子电池负极材料。
检验实施例3锂离子电池负极材料的性能,采用实施例1相同的检测方法进行检测,该负极材料的首次放电容量达352mAh/g,100次循环后的容量保持率为97.6%。
以上显示和描述了本发明的基本原理、主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明的要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

  1. 一种新型锂离子电池负极材料的制备方法,其制备步骤如下:
    (1)原丝制备:将碳纤维可纺沥青加热融化,通过纺丝机制得沥青纤维原丝;
    (2)原丝预氧化:将沥青纤维原丝在空气中升温至高于沥青软化点10~50℃的温度下进行氧化处理3~24小时;
    (3)碳化处理:将氧化处理完毕的原丝在惰性气体保护下,以1~20℃/min的升温速率升温至700℃~1300℃,高温保持0.5~5小时,然后冷却至室温;
    (4)石墨化处理:将碳化处理后的原丝再进行高温石墨化处理;
    (5)碳纤维短丝制备:将石墨化之后的碳纤维通过粉碎,得到长度为20~50μm,长度:直径=1:0.4~0.8的碳纤维短丝;
    (6)碳纤维长丝制备:将石墨化之后的碳纤维通过分切,得到长度为1~3mm之间的碳纤维长丝;
    (7)复合:将碳纤维短丝:碳纤维长丝=1:0.2~0.6的比例,搅拌混合均匀,即得到本发明所制备的锂离子电池负极材料。
  2. 根据权利要求1所述的一种新型锂离子电池负极材料的制备方法,其特征在于,步骤(1)中碳纤维可纺沥青软化点为150~300℃,残炭量≥60%,喹啉不溶物(QI)≤3.0%。
  3. 根据权利要求1所述的一种新型锂离子电池负极材料的制备方法,其特征在于,步骤(1)沥青纤维原丝的直径介于4~30μm。
  4. 根据权利要求1所述的一种新型锂离子电池负极材料的制备方法,其特征在于,步骤(2)中原丝预氧化的升温速率控制0.5~5℃/min。
  5. 根据权利要求1所述的一种新型锂离子电池负极材料的制备方法,其特征在于,步骤(4)中石墨化处理的温度为2600℃以上。
  6. 根据权利要求1所述的一种新型锂离子电池负极材料的制备方法,其特征在于,步骤(5)中的粉碎是采用机械式粉碎机、气流粉碎机、研磨机中的一种或几种。
  7. 根据权利要求1所述的一种新型锂离子电池负极材料的制备方法,其特征在于,步骤(6)的分切是指采用能控制分切长度的切丝机、切片机中的一种或几种。
PCT/CN2015/088143 2015-01-08 2015-08-26 一种锂离子电池负极材料的制备方法 WO2016110112A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510007727.7A CN104485457B (zh) 2015-01-08 2015-01-08 一种新型锂离子电池负极材料的制备方法
CN201510007727.7 2015-01-08

Publications (1)

Publication Number Publication Date
WO2016110112A1 true WO2016110112A1 (zh) 2016-07-14

Family

ID=52759980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088143 WO2016110112A1 (zh) 2015-01-08 2015-08-26 一种锂离子电池负极材料的制备方法

Country Status (2)

Country Link
CN (1) CN104485457B (zh)
WO (1) WO2016110112A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437557A (zh) * 2022-01-24 2022-05-06 中钢集团鞍山热能研究院有限公司 一种锂离子电池负极材料用高软化点包覆沥青的制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104485457B (zh) * 2015-01-08 2016-10-05 深圳市玖创科技有限公司 一种新型锂离子电池负极材料的制备方法
CN112750988B (zh) * 2019-10-29 2022-08-02 宝武碳业科技股份有限公司 一种液体包覆油组合物及其制备方法和用途
CN113972024A (zh) * 2021-10-29 2022-01-25 吉林聚能新型炭材料股份有限公司 一种碳基高长径比柔性导电材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141514A (zh) * 1995-05-11 1997-01-29 株式会社佩托卡 二次电池负电极用中间相木沥青基碳纤维及其生产方法
JP2003331834A (ja) * 2002-05-09 2003-11-21 Mitsubishi Gas Chem Co Inc 非水溶媒二次電池用炭素材料の製造法
CN1670991A (zh) * 2004-03-16 2005-09-21 中国科学院金属研究所 一种改性的锂离子电池负极材料、负极及电池
CN102560744A (zh) * 2011-12-21 2012-07-11 鞍山塞诺达碳纤维有限公司 一种通用级沥青基碳纤维的制备方法
CN104485457A (zh) * 2015-01-08 2015-04-01 田东 一种新型锂离子电池负极材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294230A (ja) * 1999-04-09 2000-10-20 Hitachi Powdered Metals Co Ltd リチウムイオン二次電池の負極塗膜形成用スラリーおよびリチウムイオン二次電池
JP5433588B2 (ja) * 2009-11-24 2014-03-05 三菱レイヨン株式会社 多孔質電極基材およびその製造方法
US8808609B2 (en) * 2010-01-21 2014-08-19 Tec One Co., Ltd. Process of making a carbon fiber nonwoven fabric
JP2013108186A (ja) * 2011-11-17 2013-06-06 Teijin Ltd 改質炭素繊維及び電池用負極

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141514A (zh) * 1995-05-11 1997-01-29 株式会社佩托卡 二次电池负电极用中间相木沥青基碳纤维及其生产方法
JP2003331834A (ja) * 2002-05-09 2003-11-21 Mitsubishi Gas Chem Co Inc 非水溶媒二次電池用炭素材料の製造法
CN1670991A (zh) * 2004-03-16 2005-09-21 中国科学院金属研究所 一种改性的锂离子电池负极材料、负极及电池
CN102560744A (zh) * 2011-12-21 2012-07-11 鞍山塞诺达碳纤维有限公司 一种通用级沥青基碳纤维的制备方法
CN104485457A (zh) * 2015-01-08 2015-04-01 田东 一种新型锂离子电池负极材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114437557A (zh) * 2022-01-24 2022-05-06 中钢集团鞍山热能研究院有限公司 一种锂离子电池负极材料用高软化点包覆沥青的制备方法

Also Published As

Publication number Publication date
CN104485457B (zh) 2016-10-05
CN104485457A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
CN109599546B (zh) 一种沥青碳包覆天然混合石墨材料及其制备锂离子电池负极的方法
WO2016110110A1 (zh) 一种硅碳复合锂离子电池负极极片的制备方法
CN112225194B (zh) 一种硬碳材料及其制备方法和应用
WO2016201940A1 (zh) 一种炭/石墨复合负极材料的制备方法
WO2017008494A1 (zh) 一种石墨硅基复合负极材料的制备方法
CN103050704B (zh) 一种多孔导电添加剂及其制备方法、锂离子电池
WO2017008606A1 (zh) 一种石墨锡基复合负极材料的制备方法
CN109817957B (zh) 一种沥青包覆硅掺杂天然鳞片石墨负极材料的制备方法
CN102324507A (zh) 一种锂硫电池复合正极材料制备方法
CN110364761B (zh) 一种高能量密度长循环磷酸铁锂电池
CN110380023A (zh) 一种cnf-tmo锂离子电池负极材料及其制备方法和应用
WO2016110112A1 (zh) 一种锂离子电池负极材料的制备方法
CN111446448A (zh) 一种基于共轭羰基的聚酰亚胺/石墨烯复合锂离子电池负极材料的制备方法
CN102347477B (zh) 一种微波法制备高性能磷酸铁锂/碳正极材料的方法
CN114122390A (zh) 炭电极材料的制备方法及炭电极材料
CN114335522A (zh) 煤基炭负极材料及其制备方法和应用、含其的电池
CN110331469A (zh) CuO/Cu氮掺杂碳纳米纤维材料的制备方法及其应用
WO2017008624A1 (zh) 一种钛酸锂硅基复合负极材料的制备方法
WO2016110111A1 (zh) 一种碳纤维布用作锂离子电池负极片的制备方法
CN116230868A (zh) 极片及其制作方法和电池
CN109585808B (zh) 一种纳米纤维状具有核壳结构的硅基材料及制备与应用
CN103022458A (zh) 一种高安全性锂离子正极材料及采用该材料的锂离子电池
Yang et al. Composite solid electrolyte with continuous and fast organic–inorganic ion transport highways created by 3D crimped nanofibers@ functional ceramic nanowires
CN108807903A (zh) 一种锂电池用复合修饰锂电池负极材料的制备方法
CN103441281A (zh) 一种镁掺杂磷酸锰锂/碳复合纳米纤维的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 15876614

Country of ref document: EP

Kind code of ref document: A1