WO2016103784A1 - Thermally conductive adhesive sheet, production method therefor, and electronic device using same - Google Patents

Thermally conductive adhesive sheet, production method therefor, and electronic device using same Download PDF

Info

Publication number
WO2016103784A1
WO2016103784A1 PCT/JP2015/073290 JP2015073290W WO2016103784A1 WO 2016103784 A1 WO2016103784 A1 WO 2016103784A1 JP 2015073290 W JP2015073290 W JP 2015073290W WO 2016103784 A1 WO2016103784 A1 WO 2016103784A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat conductive
adhesive sheet
heat conduction
conductive adhesive
thermal conductivity
Prior art date
Application number
PCT/JP2015/073290
Other languages
French (fr)
Japanese (ja)
Inventor
邦久 加藤
亘 森田
豪志 武藤
祐馬 勝田
近藤 健
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020177016760A priority Critical patent/KR102389426B1/en
Priority to JP2016565953A priority patent/JP6539917B2/en
Priority to CN201580069936.2A priority patent/CN107109151B/en
Publication of WO2016103784A1 publication Critical patent/WO2016103784A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N3/00Generators in which thermal or kinetic energy is converted into electrical energy by ionisation of a fluid and removal of the charge therefrom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/105Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • B32B2264/108Carbon, e.g. graphite particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a heat conductive adhesive sheet, and more particularly to a heat conductive adhesive sheet used for an electronic device, a method for producing the same, and an electronic device using the same.
  • thermoelectric conversion device a thermoelectric conversion device
  • photoelectric conversion device a photoelectric conversion device
  • semiconductor device such as a large-scale integrated circuit
  • thermoelectric conversion device although it is related to the above-described heat dissipation control, the heat applied to one surface of the thermoelectric element is changed in the temperature direction in the thickness direction inside the thermoelectric element.
  • Patent Document 1 discloses a thermoelectric conversion element having a structure as shown in FIG. That is, a P-type thermoelectric element 41 and an N-type thermoelectric element 42 are connected in series, thermoelectric power take-out electrodes 43 are arranged at both ends thereof to constitute a thermoelectric conversion module 46, and both sides of the thermoelectric conversion module 46 are arranged.
  • the film-like substrates 44 and 45 having flexibility and made of two kinds of materials having different thermal conductivities are provided.
  • the film-like substrates 44 and 45 are provided with materials (polyimides) 47 and 48 having low thermal conductivity on the bonding surface side with the thermoelectric conversion module 46, and on the opposite side to the bonding surface of the thermoelectric conversion module 46, High thermal conductivity materials (copper) 49 and 50 are provided so as to be located on a part of the outer surfaces of the film-like substrates 44 and 45.
  • a thermoelectric conversion module having the structure shown in FIG. 8 is disclosed. Electrodes 54 that also serve as high thermal conductivity members are embedded in low thermal conductivity members 51, 52.
  • the conductive adhesive layer 55 and the insulating adhesive layer 56 are disposed therebetween.
  • thermoelectric conversion device As mentioned above, especially in electronic devices mainly semiconductor devices, in addition to heat dissipation sheets that can dissipate heat more efficiently to the outside and excellent thermal conductivity, heat is transmitted in a specific direction. Therefore, there is a demand for a thermally conductive sheet having a function of selectively radiating heat and generating a temperature gradient inside the electronic device.
  • the present inventors have conducted a study by applying a heat conductive adhesive sheet composed of a high heat conductive portion and a low heat conductive portion to the thermoelectric element of the thermoelectric conversion device as described above.
  • the dimensional accuracy concerning the pattern of the high heat conduction part and the low heat conduction part of the conductive sheet is poor, and a new problem has been found that a predetermined temperature difference cannot be obtained.
  • the reason why the dimensional accuracy is deteriorated is an internal stress difference including curing shrinkage and the like in the high heat conduction portion and the low heat conduction portion constituting the heat conductive adhesive sheet.
  • the present invention aims to improve the dimensional accuracy of the high heat conduction part and the low heat conduction part of the heat conductive adhesive sheet and to reduce the low heat conductivity of the low heat conduction part, and is easily laminated on an electronic device, It is an object of the present invention to provide a thermally conductive adhesive sheet that can provide a sufficient temperature difference inside the electronic device, a manufacturing method thereof, and an electronic device using the same.
  • the present inventors have obtained a heat conductive adhesive sheet, a base material including a high heat conduction part and a low heat conduction part, and an adhesive on one surface of the base material.
  • the layer is laminated, and a specific amount (volume%) of a hollow filler is contained in the low heat conduction part, and the surface of the low heat conduction part opposite to the surface in contact with the adhesive layer, and the high heat conduction part
  • the surface opposite to the surface in contact with the adhesive layer constitutes the other surface of the base material, or at least one of the high heat conduction portion and the low heat conduction portion constitutes a part of the thickness of the base material
  • a heat conductive adhesive sheet including a base material including a high heat conduction part and a low heat conduction part, and an adhesive layer, wherein a hollow filler is contained in the low heat conduction part in a total volume of the low heat conduction part of 20 to 90 volumes.
  • an adhesive layer is laminated on one side of the substrate, and the other side of the substrate is a side opposite to the side in contact with the adhesive layer of the low thermal conductivity part, It is composed of the surface of the high thermal conductivity portion opposite to the surface in contact with the adhesive layer, or at least one of the high thermal conductivity portion and the low thermal conductivity portion constitutes a part of the thickness of the substrate.
  • Thermally conductive adhesive sheet including a base material including a high heat conduction part and a low heat conduction part, and an adhesive layer, wherein a hollow filler is contained in the low heat conduction part in a total volume of the low heat conduction part of 20 to 90 volumes.
  • an adhesive layer is laminated on one side of the substrate, and the other side of
  • the resin composition constituting the high heat conductive portion includes a heat conductive filler and / or a conductive carbon compound.
  • the heat conductive adhesive sheet of description (13) The thermally conductive adhesive sheet according to any one of (1) to (12), wherein the adhesive layer contains a silicone-based adhesive. (14) An electronic device in which the thermally conductive adhesive sheet according to any one of (1) to (13) above is laminated. (15) A method for producing the heat-conductive adhesive sheet according to any one of (1) to (13) above, wherein the heat-conductive adhesive sheet is formed from a resin composition on a peelable support substrate. The manufacturing method of a heat conductive adhesive sheet including the process of forming a base material from a part and the low heat conductive part formed from a resin composition, and the process of laminating
  • the heat conductive adhesive sheet of the present invention it is possible to improve the dimensional accuracy of the high heat conductive portion and the low heat conductive portion of the heat conductive adhesive sheet, to reduce the low heat conductivity of the low heat conductive portion, and to easily form an electronic device It is possible to provide a thermally conductive adhesive sheet, a method for producing the same, and an electronic device using the same, which are laminated and can provide a sufficient temperature difference inside the electronic device.
  • thermoelectric conversion device at the time of sticking the heat conductive adhesive sheet of this invention to the thermoelectric conversion module.
  • thermoelectric conversion device at the time of sticking the heat conductive adhesive sheet of this invention to the thermoelectric conversion module.
  • thermoelectric conversion device at the time of sticking the heat conductive adhesive sheet of this invention to the thermoelectric conversion module.
  • thermoelectric conversion module (b) is a perspective view of a thermoelectric conversion module
  • (c) is a perspective view of the heat conductive adhesive sheet provided in the support body back side of a thermoelectric conversion module. It is explanatory drawing of the structure for measuring the temperature difference of the high heat conductive part of the heat conductive adhesive sheet of this invention, and a low heat conductive part
  • (a) is a heat conductive adhesive sheet
  • (b) is a to-be-adhered body.
  • glass substrate used as It is a perspective view of the thermoelectric conversion module used for the Example of this invention.
  • thermoelectric conversion module used for the Example of this invention.
  • sectional drawing which shows an example of a structure of the conventional thermoelectric conversion device. It is sectional drawing which shows another example of a structure of the conventional thermoelectric conversion device.
  • the heat conductive adhesive sheet of the present invention is a base material including a high heat conductive portion and a low heat conductive portion, and a heat conductive adhesive sheet including an adhesive layer, and a hollow filler is included in the low heat conductive portion. 20 to 90% by volume in the total volume, and an adhesive layer is laminated on one surface of the substrate, and the other surface of the substrate is in contact with the adhesive layer of the low thermal conductivity portion; Is composed of an opposite surface and a surface opposite to the surface of the high thermal conductivity portion that contacts the adhesive layer, or at least one of the high thermal conductivity portion and the low thermal conductivity portion is the thickness of the substrate. It is characterized by comprising a part.
  • the heat conductive adhesive sheet of this invention is comprised from the base material and the adhesive bond layer.
  • the structure of the heat conductive adhesive sheet of this invention is demonstrated using drawing.
  • FIG. 1 is a perspective view showing an example of the heat conductive adhesive sheet of the present invention.
  • the heat conductive adhesive sheet 1 is composed of a base material 7 and an adhesive layer 8 including high heat conductive portions 4a and 4b and low heat conductive portions 5a and 5b, and the high heat conductive portions and the low heat conductive portions are alternately arranged. ing.
  • the adhesive layer 8 is laminated on one surface of the base material 7, and the other surface of the base material 7 is the surface opposite to the surface in contact with the adhesive layer 8 of the low heat conducting portions 5a and 5b, It is comprised by the surface on the opposite side to the surface which contact
  • the arrangement of the high heat conduction portion and the low heat conduction portion constituting the base material 7 of the heat conductive adhesive sheet 1 (hereinafter also referred to as “thickness configuration”) is not particularly limited.
  • FIG. 2 shows various examples of cross-sectional views (including arrangement) of the heat conductive adhesive sheet of the present invention.
  • FIG. 2A is a cross-sectional view of FIG.
  • the high heat conduction portion 4 and the low heat conduction portion 5 each independently constitute the entire thickness of the base material 7.
  • at least one of the high heat conduction portion 4 and the low heat conduction portion 5 constitutes a part of the thickness of the base material.
  • (b) and (d) of FIG. 2 show that the low thermal conductive portion 5 constitutes a part of the thickness of the base material 7, and the surface of the base material 7 in contact with the adhesive layer 8 is the high thermal conductive portion 4. Is formed only from. 2 (c) and 2 (e), the high heat conduction part 4 constitutes a part of the thickness of the base material 7, and the surface of the base material 7 in contact with the adhesive layer 8 is formed only from the low heat conduction part 5.
  • the high heat conduction part 4 constitutes a part of the thickness of the base material 7, and the surface of the base material 7 in contact with the adhesive layer 8 is formed by both the high heat conduction part 4 and the low heat conduction part 5.
  • the surface of the substrate 7 opposite to the surface in contact with the adhesive layer 8 is formed from only the low heat conduction portion 5.
  • the low heat conduction part 5 constitutes a part of the thickness of the base material 7 and the surface of the base material 7 in contact with the adhesive layer 8 is formed by both the high heat conduction part 4 and the low heat conduction part 5.
  • the surface of the substrate 7 opposite to the surface in contact with the adhesive layer 8 is formed only from the high heat conduction portion 4.
  • the structure of the thickness of the base material 7 can be appropriately selected according to the specifications of the electronic device to be applied. For example, from the viewpoint of selectively dissipating heat in a specific direction, for example, it is preferable to select a configuration having a thickness of (a) to (g) in FIG. 2, and the high heat conduction portion and the low heat conduction portion are: Each of the thicknesses of the base material is independently formed, that is, the thickness (a) is more preferable. Further, from the viewpoint of efficiently dissipating heat generated from the inside of the electronic device to the outside, for example, the configuration of the thicknesses (a) to (g) in FIG. 2 can be selected according to the specifications of the electronic device. At this time, for example, the amount of heat radiation can be efficiently controlled by increasing the volume of the high thermal conductivity portion and increasing the area facing the device surface to be applied.
  • the low thermal conductive part of the present invention is formed from a resin composition containing a hollow filler and a resin described later.
  • the cure shrinkage rate of the low heat conduction part is suppressed and the difference from the cure shrinkage rate of the high heat conduction part is reduced, thereby reducing the composite cure shrinkage rate described later, resulting in high heat.
  • the dimensional accuracy of each pattern of the conductive portion and the low heat conductive portion can be improved.
  • the low thermal conductivity portion of the present invention refers to the one having lower thermal conductivity than the high thermal conductivity portion.
  • the hollow filler is not particularly limited, and known ones can be used.
  • inorganic hollows such as glass balloons, silica balloons, shirasu balloons, fly ash balloons, metal silicate balloons (hollow bodies).
  • the filler include organic resin-based hollow fillers that are balloons (hollow bodies) such as acrylonitrile, vinylidene chloride, phenolic resin, epoxy resin, and urea resin.
  • a hollow filler can be used individually by 1 type or in combination of 2 or more types. Among these, the thermal conductivity of the substance itself is relatively low among metal oxides, and from the viewpoint of volume resistivity and cost, glass hollow fillers or silica hollow fillers that are inorganic hollow fillers are preferred.
  • the glass hollow filler for example, Glass Bubbles (soda lime borosilicate glass) manufactured by Sumitomo 3M Co., Ltd.
  • silica hollow filler for example, Silax (registered by Nippon Steel Mining Co., Ltd.) Trademark) and the like.
  • the “hollow filler” has an outer shell having a filler as a constituent material, and the inside is a hollow structure (the inside may be filled with a gas such as an inert gas other than air,
  • the hollow structure is not particularly limited.
  • the hollow structure may be a sphere or an ellipsoid, and there are a plurality of hollow structures. May be.
  • the shape of the hollow filler is not particularly limited, but when pasted on the applied electronic device, element, etc., the electrical characteristics of the electronic device, element, etc. are not impaired by contact or mechanical damage. Any shape may be used, and for example, any of a plate shape (including a scale shape), a spherical shape, a needle shape, a rod shape, and a fiber shape may be used.
  • the size of the hollow filler is, for example, preferably from 0.1 to 200 ⁇ m, more preferably from 1 to 100 ⁇ m, from the viewpoint of uniformly dispersing the hollow filler in the thickness direction of the low heat conduction part and reducing the thermal conductivity. 10 to 80 ⁇ m is more preferable, and 20 to 50 ⁇ m is particularly preferable. If the average particle diameter of the hollow filler is within this range, the particles are hardly aggregated and can be uniformly dispersed. Furthermore, the packing density in the low heat conduction part becomes sufficient, and the low heat conduction part does not become brittle at the substance interface.
  • the average particle diameter can be measured by, for example, a Coulter counter method.
  • the content of the hollow filler is appropriately adjusted according to the particle shape, and is 20 to 90% by volume, preferably 40 to 80% by volume, and more preferably 50 to 70% by volume in the resin composition.
  • the content of the hollow filler is less than 20% by volume, curing shrinkage becomes large, and the pattern dimensional accuracy of the low heat conduction part is lowered.
  • the content of the hollow filler exceeds 90% by volume, the mechanical strength of the low heat conducting part cannot be maintained.
  • the content of the hollow filler is in this range, curing shrinkage is effectively suppressed, heat dissipation characteristics, folding resistance, and bending resistance are excellent, and the mechanical strength of the low heat conducting portion is maintained.
  • the true density of the hollow filler is preferably 0.1 to 0.6 g / cm 3 , more preferably 0.2 to 0.5 g / cm 3, and still more preferably 0.3 to 0.4 g / cm 3 . If the true density of the hollow filler is within this range, the heat insulating properties and pressure resistance are excellent, the hollow filler is not crushed when the low thermal conductive portion is formed, and the low thermal conductivity of the low thermal conductive portion is not impaired.
  • the “true density” is a density measured by a pycnometer method (a gas phase method based on Archimedes' principle). For example, it can be measured using a pycnometer (gas phase substitution true density meter, for example, AccuPycII 1340 manufactured by Micromeritics).
  • resin used for this invention is not specifically limited, Arbitrary resin can be suitably selected from what is used in the electronic component field
  • the resin examples include a thermosetting resin, a thermoplastic resin, and a photocurable resin.
  • the resin constituting the low thermal conductive portion include polyolefin resins such as polyethylene and polypropylene; styrene resins such as polystyrene; acrylic resins such as polymethyl methacrylate; polyamide (nylon 6, nylon 66, etc.), poly Polyamide resins such as m-phenylene isophthalamide and poly p-phenylene terephthalamide; Polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and polyarylate; Norbornene polymers and monocyclic olefin polymers , Cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and cycloolefin polymers such as hydrides thereof; vinyl chloride; polyimide; polyamideimide; polyphenylene ether; ; Polyether ether ketone; polycarbonates; poly
  • the resin composition of the low heat conduction part may be used within an appropriate range as necessary, for example, a photopolymerization initiator, a crosslinking agent, a filler, a plasticizer, an anti-aging agent, an antioxidant, an ultraviolet absorber, a pigment, Additives such as colorants such as dyes, tackifiers, antistatic agents, and coupling agents may be included.
  • the high heat conduction part is not particularly limited as long as it is made of a resin composition and has a higher thermal conductivity than the low heat conduction part.
  • the shape of the high heat conduction part is not particularly limited, as is the case with the low heat conduction part, and can be appropriately changed according to the specifications of an electronic device or the like described later.
  • the resin examples include the same resins such as the thermosetting resin and the energy curable resin used in the low thermal conductive portion described above. Usually, the same resin as that of the low heat conducting part is used from the viewpoint of mechanical properties, adhesion and the like.
  • the high heat conduction part may be formed from a resin composition containing the resin and a heat conductive filler and / or a conductive carbon compound in order to suppress curing shrinkage and to adjust to a desired heat conductivity described later. preferable.
  • the thermally conductive filler and the conductive carbon compound may be referred to as “thermal conductivity adjusting substance”.
  • the heat conductive filler is not particularly limited, but is selected from metal oxides such as silica, alumina and magnesium oxide, metal nitrides such as silicon nitride, aluminum nitride, magnesium nitride and boron nitride, and metals such as copper and aluminum.
  • the conductive carbon compound at least one selected from carbon black, carbon nanotube (CNT), graphene, carbon nanofiber, and the like is preferable.
  • These heat conductive fillers and conductive carbon compounds can be used singly or in combination of two or more. Among these, as the thermal conductivity adjusting substance, a thermal conductive filler is preferable.
  • a metal oxide and a metal nitride are included as a heat conductive filler.
  • the mass ratio of the metal oxide and the metal nitride is preferably 10:90 to 90:10, and 20:80 to 80:20. More preferred is 50:50 to 75:25.
  • the shape of the material for adjusting the thermal conductivity is not particularly limited, but electrical properties of the electronic device, element, etc. due to contact or mechanical damage when applied to the applied electronic device, element, etc.
  • any of a plate shape including a scale shape
  • a spherical shape including a spherical shape
  • a needle shape including a needle shape
  • a rod shape including a rod shape
  • a fiber shape may be used.
  • the above-mentioned “hollow filler” is not included in the heat conductive filler used in the high heat conductive portion.
  • the size of the thermal conductivity adjusting material is, for example, an average particle size of 0.1 to 200 ⁇ m. It is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, particularly preferably 10 to 30 ⁇ m.
  • the average particle diameter can be measured by, for example, a Coulter counter method. If the average particle diameter of the thermal conductivity adjusting substance is within this range, the thermal conductivity within each substance is not reduced, and as a result, the thermal conductivity of the high thermal conductivity portion is improved. In addition, the particles are less likely to aggregate and can be uniformly dispersed. Further, the packing density in the high heat conduction part is sufficient, and the high heat conduction part does not become brittle at the substance interface.
  • the content of the thermal conductivity adjusting substance is appropriately adjusted according to the desired thermal conductivity, and is preferably 40 to 99 mass%, more preferably 50 to 95 mass%, and more preferably 50 to 80 mass% in the resin composition. Is particularly preferred. If the content of the material for adjusting the thermal conductivity is within this range, the heat dissipation characteristics, folding resistance, and bending resistance are excellent, and the strength of the high thermal conductivity portion is maintained.
  • the resin composition of the high heat conduction part may further contain the same type of additives within an appropriate range as necessary, similarly to the resin composition of the low heat conduction part.
  • the thickness of each layer of the high heat conduction part and the low heat conduction part is preferably 1 to 200 ⁇ m, and more preferably 3 to 100 ⁇ m. Within this range, heat can be selectively radiated in a specific direction. Moreover, the thickness of each layer of a high heat conduction part and a low heat conduction part may be the same, or may differ.
  • the width of each layer of the high heat conduction part and the low heat conduction part is appropriately adjusted according to the specification of the applied electronic device, but is usually 0.01 to 3 mm, preferably 0.1 to 2 mm, and more preferably 0. 5 to 1.5 mm. Within this range, heat can be selectively radiated in a specific direction. Moreover, the width of each layer of the high heat conduction part and the low heat conduction part may be the same or different.
  • the heat conductivity of the high heat conduction part should be sufficiently higher than that of the low heat conduction part, and the heat conductivity is preferably 0.5 (W / m ⁇ K) or more, and 1.0 (W / m ⁇ K) or more is more preferable, and 1.3 (W / m ⁇ K) or more is more preferable.
  • the heat conductivity is preferably 0.5 (W / m ⁇ K) or more, and 1.0 (W / m ⁇ K) or more is more preferable, and 1.3 (W / m ⁇ K) or more is more preferable.
  • the thermal conductivity of the low thermal conductivity part is preferably less than 0.5 (W / m ⁇ K), more preferably 0.3 (W / m ⁇ K) or less, and 0.25 (W / m ⁇ K) or less. Further preferred. If the respective heat conductivities of the high heat conducting portion and the low heat conducting portion are in the above ranges, heat can be selectively radiated in a specific direction.
  • the composite curing shrinkage ratio of the resin composition constituting the high heat conduction part and the resin composition constituting the low heat conduction part is preferably 2% or less, more preferably 1% or less, and 8% or less is more preferable. If the composite curing shrinkage rate is within this range, the pattern dimensional accuracy of the high heat conduction part and the low heat conduction part is improved, heat is selectively radiated in a specific direction, and a sufficient temperature difference is present inside the electronic device or the like. Can be granted.
  • the above-mentioned “composite curing shrinkage” is formed from a resin composition constituting the high heat conduction part, for example, a stripe pattern and a resin composition constituting the low heat conduction part.
  • Composite cure shrinkage (%) [(full width in stripe pattern pitch direction before curing ⁇ full width in stripe pattern pitch direction after cure) / full width in stripe pattern pitch direction before cure] ⁇ 100
  • the width in the pitch direction and the resin composition for forming a low heat conduction part of the high heat conduction part stripe pattern formed from the resin composition for forming a high heat conduction part The total width (that is, the total width in the pitch direction of the stripe pattern) of the stripe pattern of the low thermal conductive portion formed from the product before and after curing is a digital multimeter (NRM-S3-XY, manufactured by Nippon Koki Co., Ltd.).
  • Stripe pattern (resin composition) group 100 mm ⁇ 100 mm, thickness 100 ⁇ m High heat conduction part: stripe width 1 mm, length 100 mm, thickness 100 ⁇ m Low heat conduction part: stripe width 1 mm, length 100 mm, thickness 100 ⁇ m ⁇
  • High heat conduction parts (stripe) and low heat conduction parts (stripe) in the pitch direction (however, the space between stripes is zero)
  • the thickness of the heat conductive adhesive sheet is different (the thicknesses of the high heat conduction portion and the low heat conduction portion in FIGS. 1 and 2A are different).
  • the storage elastic modulus at 150 ° C. of the high heat conducting part is preferably 0.1 MPa or more, more preferably 0.15 MPa or more, and further preferably 1 MPa or more.
  • the storage elastic modulus at 150 ° C. of the low thermal conductivity part is preferably 0.1 MPa or more, more preferably 0.15 MPa or more, and further preferably 1 MPa or more.
  • the storage elastic modulus at 150 ° C. of the high heat conduction part and the low heat conduction part is not particularly limited, but is preferably 500 MPa or less, more preferably 100 MPa or less, and further preferably 50 MPa or less.
  • the storage elastic modulus at 150 ° C. of the high heat conduction part and the low heat conduction part can be adjusted by the content of the resin and the material for adjusting the heat conductivity described above.
  • the storage elastic modulus at 150 ° C. was increased to 150 ° C. at an initial temperature of 15 ° C. and a temperature increase rate of 3 ° C./min using a dynamic elastic modulus measuring apparatus [TA Instruments, model name “DMAQ800”]. It is a value measured at a frequency of 11 Hz by heating.
  • the arrangement of the high heat conduction part and the low heat conduction part and their shapes are not particularly limited as long as the target performance is not impaired.
  • the surface of the substrate opposite to the surface in contact with the adhesive layer (that is, the case where the low thermal conductivity portion and the high thermal conductivity portion independently constitute the entire thickness of the substrate: FIGS. 1 and 2 (a). )),
  • the step between the high heat conduction portion and the low heat conduction portion is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably substantially absent.
  • At least one of the high heat conduction portion and the low heat conduction portion constitutes a part of the thickness of the base material.
  • the step between the high heat conduction portion and the low heat conduction portion is It is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and still more preferably substantially absent.
  • the thickness of the base material is defined as the thickness composed of the high heat conduction portion and the low heat conduction portion.
  • the level difference between the high heat conduction portion and the low heat conduction portion is preferably 10 to 90% with respect to the thickness of the base material.
  • the volume ratio of the high heat conduction part to the low heat conduction part is preferably 10:90 to 90:10, more preferably 20:80 to 80:20, and 30:70 to More preferably, it is 70:30.
  • the adhesive constituting the adhesive layer include known adhesives such as rubber adhesives, acrylic adhesives, urethane adhesives, silicone adhesives, olefin adhesives, and epoxy adhesives. It is done. Among these, a silicone-based adhesive is preferably used from the viewpoints of excellent insulation and heat resistance, high thermal conductivity, and excellent heat dissipation.
  • a silicone-based adhesive is preferably used from the viewpoints of excellent insulation and heat resistance, high thermal conductivity, and excellent heat dissipation.
  • insulation between the base material and the thermoelectric element can be sufficiently obtained. Since a highly conductive metal capable of increasing the thermal conductivity of the high thermal conductivity portion can be contained in the portion, it is possible to more efficiently impart the temperature difference.
  • tackifier plasticizer, photopolymerizable compound, photopolymerization initiator, foaming agent, polymerization inhibitor, anti-aging agent, filler,
  • foaming agent polymerization inhibitor
  • anti-aging agent filler
  • Other components such as a coupling agent and an antistatic agent may be added.
  • the thickness of the adhesive layer is preferably 1 to 200 ⁇ m, more preferably 5 to 100 ⁇ m. Within this range, when used as a thermally conductive adhesive sheet, heat can be selectively radiated in a specific direction without affecting the control performance for heat dissipation. Moreover, when the electronic device to be used requires insulation, the insulation can be maintained.
  • the ratio of the thickness of the base material to the thickness of the adhesive layer is 0.005 to 1.0 is preferable, 0.01 to 0.8 is more preferable, and 0.1 to 0.5 is still more preferable.
  • the heat conductive adhesive sheet may have a release sheet on the surface of the adhesive layer.
  • the release sheet include papers such as glassine paper, coated paper, and laminated paper, and various plastic films coated with a release agent such as silicone resin and fluorine resin.
  • the thickness of the release sheet is not particularly limited, but is usually 20 to 150 ⁇ m.
  • As the support substrate used for the release sheet used in the present invention it is preferable to use a plastic film.
  • thermoelectric conversion device a thermoelectric conversion device
  • a photoelectric conversion device a large-scale integrated circuit, etc.
  • the heat conductive adhesive sheet is preferable for a thermoelectric conversion device because it can selectively dissipate heat in a specific direction by laminating it on a thermoelectric conversion module, resulting in improved thermoelectric performance.
  • the heat conductive adhesive sheet may be laminated
  • a thermoelectric conversion device is used as the electronic device will be described as an example.
  • thermoelectric conversion device is an electronic device that obtains electric power by applying a temperature difference to the inside of a thermoelectric conversion element that performs mutual energy conversion between heat and electricity.
  • FIG. 3 is a cross-sectional view showing an example of a thermoelectric conversion device when the heat conductive adhesive sheet of the present invention is laminated on a thermoelectric conversion module.
  • the thermoelectric conversion device 10 shown in FIG. 3 includes a thin P-type thermoelectric element 11 made of P-type material and a thin-film N-type thermoelectric element 12 made of N-type material on a support (not shown).
  • thermoelectric conversion module 16 having a thermoelectric conversion element and further provided with an electrode 13, a heat conductive adhesive sheet 1A laminated on the first surface 17 of the thermoelectric conversion module 16, and the first surface 17 It is comprised from the heat conductive adhesive sheet 1B laminated
  • heat conductive adhesive sheets contain the base material containing the high heat conductive parts 14a and 14b, the low heat conductive parts 15a, 15b, and 15c, and the adhesive bond layer 20 laminated
  • the conductive adhesive sheet 1B includes a base material including the high heat conductive portions 14'a, 14'b, 14'c and the low heat conductive portions 15'a, 15'b, and an adhesive laminated on one surface of the base material. Agent layer 20.
  • FIG. 4 shows a perspective view as an example when the thermally conductive adhesive sheet and the thermoelectric conversion module of the present invention are disassembled for each component.
  • (a) is a perspective view of the thermally conductive adhesive sheet 1A provided on the thermoelectric element on the surface side of the support body 19 of the thermoelectric conversion module
  • (b) is a perspective view of the thermoelectric conversion module 16.
  • (C) is a perspective view of the heat conductive adhesive sheet 1B provided in the back surface side of the support body 19 of a thermoelectric conversion module.
  • the high heat conductive portions 14a and 14b of the heat conductive adhesive sheet 1A and the high heat conductive portions 14'a, 14'b and 14'c of the heat conductive adhesive sheet 1B are stacked so as not to face each other. By doing so, heat can be selectively radiated in a specific direction. Thereby, a temperature difference can be efficiently given to a thermoelectric conversion module, and a thermoelectric conversion device with high power generation efficiency is obtained. Further, the heat conductive adhesive sheet 1A and the heat conductive adhesive sheet 1B can be bonded to the first surface 17 and the second surface 18 of the thermoelectric conversion module 16 through the adhesive layer 20 with high adhesive force. is there.
  • the thermoelectric conversion module 16 used in the present invention includes, for example, a P-type thermoelectric element 11, an N-type thermoelectric element 12, and an electrode 13 on a support 19, as shown in FIG. .
  • the P-type thermoelectric element 11 and the N-type thermoelectric element 12 are formed in a thin film shape so as to be connected in series, and are joined and electrically connected via electrodes 13 at their respective ends.
  • the P-type thermoelectric element 11 and the N-type thermoelectric element 12 in the thermoelectric conversion module 16 are “electrode 13, P-type thermoelectric element 11, electrode 13, N-type thermoelectric element 12, electrode 13,.
  • thermoelectric element May be arranged as "electrode 13, P-type thermoelectric element 11, N-type thermoelectric element 12, electrode 13, P-type thermoelectric element 11, N-type thermoelectric element 12, electrode 13, Exactly .. ””, And “electrode 13, P-type thermoelectric element 11, N-type thermoelectric element 12, P-type thermoelectric element 11, N-type thermoelectric element 12,... You may arrange in.
  • the thermoelectric element is not particularly limited, but in the temperature range of the heat source converted into electric energy by the thermoelectric conversion module, the absolute value of the Seebeck coefficient is large, the thermal conductivity is low, and the so-called thermoelectric performance is high. It is preferable to use a material with a high index.
  • the material constituting the P-type thermoelectric element and the N-type thermoelectric element is not particularly limited as long as it has thermoelectric conversion characteristics, but bismuth-tellurium-based thermoelectric semiconductor materials such as bismuth telluride and Bi 2 Te 3 , GeTe Telluride-based thermoelectric semiconductor materials such as PbTe, antimony-tellurium-based thermoelectric semiconductor materials, zinc-antimony-based thermoelectric semiconductor materials such as ZnSb, Zn 3 Sb 2 , Zn 4 Sb 3 , silicon-germanium-based thermoelectric semiconductor materials such as SiGe, Bismuth selenide-based thermoelectric semiconductor materials such as Bi 2 Se 3 , silicide-based thermoelectric semiconductor materials such as ⁇ -FeSi 2 , CrSi 2 , MnSi 1.73 , Mg 2 Si, oxide-based thermoelectric semiconductor materials, FeVAl, FeVAlSi, FeVTiAl Heusler materials such as are used.
  • bismuth-tellurium-based thermoelectric semiconductor materials such as bis
  • the thicknesses of the P-type thermoelectric element 11 and the N-type thermoelectric element 12 are preferably 0.1 to 100 ⁇ m, and more preferably 1 to 50 ⁇ m. Note that the thicknesses of the P-type thermoelectric element 11 and the N-type thermoelectric element 12 are not particularly limited, and may be the same or different.
  • the method for producing a heat conductive adhesive sheet of the present invention comprises a base material including a high heat conduction part and a low heat conduction part and an adhesive layer, the adhesive layer is laminated on one surface of the base material, and The other surface of the substrate is composed of a surface on the opposite side to the surface in contact with the adhesive layer of the low thermal conductivity portion and a surface on the opposite side to the surface in contact with the adhesive layer of the high thermal conductivity portion, or A method for producing a heat conductive adhesive sheet in which at least one of the high heat conductive portion and the low heat conductive portion constitutes a part of the thickness of the base material, wherein the resin composition is formed on a detachable support base material.
  • the method includes a step of forming a base material from a high heat conductive portion formed from a material and a low heat conductive portion formed from a resin composition, and a step of laminating an adhesive layer on the base material.
  • Base material forming step> This is a step of forming a base material including a high heat conduction part and a low heat conduction part on a peelable support base material.
  • the same release sheet as that on the surface of the adhesive layer of the above-mentioned heat conductive adhesive sheet can be used.
  • Paper such as glassine paper, coated paper, laminated paper, and various plastic films Is mentioned.
  • a plastic film coated with a release agent such as a silicone resin or a fluororesin is preferable.
  • a known method can be used as a method for applying the release agent.
  • a high heat conduction part is formed on a support base material or a support base material, and a low heat conduction part using a resin composition.
  • the application method of the resin composition is not particularly limited, and may be formed by a known method such as stencil printing, dispenser, screen printing method, roll coating method, slot die, or the like.
  • the curing conditions when a thermosetting resin is used are appropriately adjusted depending on the composition used, but are preferably 80 ° C. to 150 ° C., more preferably 90 ° C. to 120 ° C. It is. If necessary, curing can be performed while applying pressure.
  • a photocurable resin for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, etc. can be used for curing with ultraviolet rays.
  • the amount of light is usually 100 to 1500 mJ / cm 2 .
  • the low heat conduction part is formed on the support base material or on the support base material and on the high heat conduction part using the resin composition containing the resin and the hollow filler described above.
  • the application method of the resin composition is not particularly limited, and may be formed by a known method such as stencil printing, dispenser, screen printing method, roll coating method, slot die, etc., as in the formation of the high thermal conductivity portion. That's fine.
  • the curing method is the same as the curing method for the high thermal conductivity portion.
  • the order in which the high heat conduction part and the low heat conduction part are formed is not particularly limited. What is necessary is just to select suitably by pattern shape, the specification of an electronic device, etc.
  • an adhesive layer is laminated on the base material obtained in the base material forming step.
  • Formation of the adhesive layer can be performed by a known method, and may be directly formed on the base material, or an adhesive layer previously formed on a release sheet is bonded to the base material, and an adhesive agent is formed.
  • the layer may be formed by transferring it to a substrate.
  • heat conduction bonding with high dimensional accuracy in which heat is released or heat flow can be controlled in a specific direction and curing shrinkage is suppressed in an electronic device or the like by a simple method.
  • Sheets can be manufactured.
  • Composite cure shrinkage ratio measurement of heat conductive adhesive sheet is a stripe pattern formed from a resin composition for forming a high heat conduction part and a resin for forming a low heat conduction part with a detachable support substrate. Stripe pattern group (100 mm ⁇ 100 mm, thickness 100 ⁇ m; however, the configuration of the thickness of the heat conductive adhesive sheet is different, and the stripe pattern is a high heat conduction part or a low heat conduction part.
  • the digital multimeter measures the dimensional change before and after curing (curing conditions: depending on the resin composition used, but performed under optimum curing conditions) of the entire width in the pitch direction of (including the case where only at least one of these is included) (NRM-S3-XY type, manufactured by Nippon Koki Co., Ltd.) and calculated from the following formula.
  • Composite cure shrinkage (%) [(full width in stripe pattern pitch direction before curing ⁇ full width in stripe pattern pitch direction after cure) / full width in stripe pattern pitch direction before cure] ⁇ 100
  • the specification of the stripe pattern is as described above, and the dimension measurement after curing is performed without a peelable support substrate in order to prevent the peelable support substrate from suppressing shrinkage of the cured product, that is, The cured product was peeled off from the support substrate where the stress relaxation after curing was performed (however, the cured product was, for example, left on a flat surface of a glass substrate or the like where stress relaxation was not hindered). It was.
  • (B) Measurement of thermal conductivity of high thermal conductivity portion and low thermal conductivity portion The thermal conductivity of each of the high thermal conductivity portion and the low thermal conductivity portion was measured using a thermal conductivity measuring device (HC-110, manufactured by EKO).
  • thermocouple is provided on the adherend of the part corresponding to the high heat conduction part and the low heat conduction part (measurement location: in FIG. 5, temperature difference measurement part 6; A, B, C, D), The temperature of the thermocouple was measured every second for 5 minutes, and the average value at each obtained point was calculated.
  • thermoelectric conversion module As shown in part of FIG. 6, on a support 36, a P-type thermoelectric element 31 (P-type bismuth-tellurium-based thermoelectric semiconductor material) and an N-type thermoelectric element 32 (N-type bismuth-tellurium-based thermoelectric semiconductor material). ) Are arranged to have the same size (width 1.7 mm ⁇ length 100 mm, thickness 0.5 mm), and a copper electrode (copper electrode 33a: width 0.15 mm) between both thermoelectric elements and thermoelectric elements.
  • a conversion module 37 was produced.
  • Example 1 (1) Production of Thermally Conductive Adhesive Sheet Silicone Resin A (Asahi Kasei Wacker, “SilGel612-A”) 19.8 parts by mass, Silicone Resin B (Asahi Kasei Wacker, “SilGel612-B”) 19.8 parts by mass Parts, 0.4 parts by mass of a retarder (Asahi Kasei Wacker, “PT88”), 40 parts by mass of alumina (manufactured by Showa Denko, “Aruna Beads CB-A20S”, average particle diameter 20 ⁇ m) as a thermally conductive filler, Add 20 parts by weight of boron nitride (Showa Denko Co., Ltd., “ShowNu UHP-2”, average particle size: 12 ⁇ m), and mix and disperse using a rotating / revolving mixer (THINKY, “ARE-250”).
  • a retarder Asahi Kasei Wacker, “PT88”
  • a resin composition for forming a high heat conduction part was prepared.
  • silicone resin A (Asahi Kasei Wacker, “SilGel612-A”) 31.7 parts by mass
  • silicone resin B (Asahi Kasei Wacker, “SilGel612-B”) 31.7 parts by mass
  • curing retarder (Asahi Kasei Wacker) 0.6 parts by mass
  • PT88 manufactured by the company
  • PT88 glass hollow filler
  • glass hollow filler manufactured by Sumitomo 3M, “Glass Bubbles S38”, average particle size 40 ⁇ m, true density 0.38 g / cm 3
  • the resin composition for forming the high heat conductive portion is applied to the surface of the peelable supporting substrate (“PET50FD”, manufactured by Lintec Co., Ltd.) with a dispenser (“ML-808FXcom-”, manufactured by Musashi Engineering Co., Ltd.).
  • CE a high thermal conductive portion 34 (see FIG. 6) having a stripe pattern (width 1 mm ⁇ length 100 mm, thickness 50 ⁇ m, pattern center distance 2 mm).
  • a resin composition for forming a low heat conduction part from above using a applicator and curing at 150 ° C.
  • the heat conductive adhesive sheet in which the low heat conductive part 35 (refer FIG. 6) of thickness was formed was obtained. In addition, it confirmed that the low heat conductive part was not formed on the high heat conductive part.
  • a silicone-based adhesive was applied to the release-treated surface of a release sheet (PIN50FD, manufactured by Lintec Corporation) and dried at 90 ° C. for 1 minute to form an adhesive layer having a thickness of 10 ⁇ m. The adhesive layer and the substrate were bonded to each other, and a heat conductive adhesive sheet having a configuration sandwiched between a release sheet and a peelable support substrate was produced.
  • the storage elastic modulus at 150 ° C. of the high heat conduction part was 2.3 MPa, and the storage elastic modulus at 150 ° C. of the low heat conduction part was 3.4 MPa.
  • thermoelectric conversion device Prepare two sheets of the obtained heat conductive adhesive sheet, and support the surface of the thermoelectric conversion module 37 on which the thermoelectric element is formed and support the heat conductive adhesive sheet from which the release sheet has been peeled off.
  • a thermoelectric conversion device in which a thermally conductive adhesive sheet was laminated on both sides was produced by laminating each on the body-side surface and then peeling and removing the peelable support substrate.
  • Example 2 42.6 parts by mass of an adhesive resin composition for forming a low thermal conductive part, silicone resin A (Asahi Kasei Wacker, “SilGel612-A”), silicone resin B (Asahi Kasei Wacker, “SilGel612-B”) 6 parts by weight, 0.8 parts by weight of a retarder (Asahi Kasei Wacker, “PT88”), hollow filler, glass hollow filler (Sumitomo 3M, “Glass Bubbles S38”, average particle diameter 40 ⁇ m, true density 0.38 g / cm 3 )
  • a heat conductive adhesive sheet and a thermoelectric conversion device were produced in the same manner as in Example 1 except that 14 parts by mass (the total volume of the low heat conduction part was 30% by volume of the glass hollow filler). did.
  • the storage elastic modulus at 150 ° C. after curing of the high thermal conductivity portion was 2.3 MPa
  • Example 3 In place of silicone resins A and B as the resin, thermal conductivity was obtained in the same manner as in Example 1 except that 15 parts by mass of a polyamic acid solution (manufactured by Nissan Chemical Industries, Ltd., Sunever 150), which is a precursor of polyimide resin, was used. An adhesive sheet and a thermoelectric conversion device using the same were produced.
  • the storage elastic modulus at 150 ° C. of the high heat conduction part was 4.1 MPa
  • the storage elastic modulus at 150 ° C. of the low heat conduction part was 0.2 MPa.
  • Example 4 In the formation of the high thermal conductivity portion, instead of boron nitride and alumina, a carbon nanotube which is a conductive carbon compound (Nano-C, SWCNT, average particle size 0.9 to 1.3 nm) is used as a material for adjusting thermal conductivity. Except having produced the base material using 40 mass parts, it carried out similarly to Example 1, and produced the heat conductive adhesive sheet and the thermoelectric conversion device using the same.
  • the storage elastic modulus at 150 ° C. of the high heat conduction part was 4.0 MPa
  • the storage elastic modulus at 150 ° C. of the low heat conduction part was 0.2 MPa.
  • Example 5 Using the resin composition for forming a high thermal conductive part used in Example 3, a striped pattern (width 1 mm ⁇ length) was formed on the peelable surface of the support substrate that can be peeled in the same manner as in Example 1. A high heat conduction portion having a thickness of 100 mm, a thickness of 50 ⁇ m, and a distance between pattern centers of 2 mm was formed. Next, the adhesive resin composition for forming a low heat conduction part used in Example 3 was applied thereon, and dried at 120 ° C. for 1 minute to form a low heat conduction part having a thickness of 75 ⁇ m, thereby producing a substrate. .
  • a low heat conductive portion having a thickness of 75 ⁇ m was formed between the stripe patterns of the high heat conductive portion, and a low heat conductive portion having a thickness of 25 ⁇ m was formed on the high heat conductive portion.
  • the absolute value of the difference in thickness between the high heat conduction part and the low heat conduction part was 25 ⁇ m.
  • the adhesive layer was laminated
  • a thermoelectric conversion device was produced in the same manner as in Example 1 using the obtained heat conductive adhesive sheet.
  • Example 6 The support base
  • the surface opposite to the surface in contact with the adhesive layer of the base material of the obtained heat conductive adhesive sheet was all composed of a low heat conductive portion.
  • a thermoelectric conversion device was produced in the same manner as in Example 1 using the obtained heat conductive adhesive sheet.
  • Example 7 A heat conductive adhesive sheet was produced in the same manner as in Example 5 except that the configurations of the high heat conductive portion and the low heat conductive portion were reversed. The structure of the obtained heat conductive adhesive sheet was the structure shown in FIG.2 (b).
  • Example 8 A heat conductive adhesive sheet was produced in the same manner as in Example 6 except that the configurations of the high heat conductive portion and the low heat conductive portion were reversed. The structure of the obtained heat conductive adhesive sheet was the structure shown in FIG.
  • Example 9 Using the resin composition for forming a high thermal conductive part used in Example 3, a striped pattern (width 1 mm ⁇ length) was formed on the peelable surface of the support substrate that can be peeled in the same manner as in Example 1. A high heat conduction portion having a thickness of 100 mm, a thickness of 50 ⁇ m, and a distance between pattern centers of 2 mm was formed. Next, the resin composition for forming the low heat conduction part used in Example 3 was applied to the peelable surface of the peelable support substrate, dried at 120 ° C. for 1 minute, and low heat conduction with a thickness of 25 ⁇ m. Part was formed. Subsequently, the low heat conductive part and the high heat conductive part were bonded together, and the base material was produced.
  • the obtained base material had a structure in which a high heat conductive portion having a stripe pattern having a thickness of 50 ⁇ m was laminated on a low heat conductive portion having a thickness of 25 ⁇ m. Furthermore, the adhesive layer was laminated
  • Example 10 A heat conductive adhesive sheet was produced in the same manner as in Example 9 except that the configurations of the high heat conductive portion and the low heat conductive portion were reversed.
  • the structure of the obtained heat conductive adhesive sheet was the structure shown in FIG.2 (d).
  • Example 11 Example 1 except that hollow nanosilica (manufactured by Nippon Steel & Mining Co., Ltd., “Silinax” (registered trademark), average particle diameter 105 nm, true density 0.57 g / cm 3 ) was used as the hollow filler.
  • a thermoelectric conversion device was prepared in the same manner as described above.
  • thermoelectric conversion device A heat conductive adhesive sheet and a thermoelectric conversion device using the same were produced in the same manner as in Example 1 except that the glass hollow filler was not added to the low heat conductive part.
  • the storage elastic modulus at 150 ° C. after curing of the high thermal conductivity portion was 2.3 MPa
  • the storage elastic modulus at 150 ° C. after curing of the low thermal conductivity portion was 0.2 MPa.
  • thermoelectric conversion sheet An adhesive-processed PGS graphite sheet (manufactured by Panasonic Corporation, product number: EYGA09201M, PGS graphite sheet thickness: 10 ⁇ m, adhesive thickness 10 ⁇ m, thermal conductivity: 1950 (W / m ⁇ K)) was used as the heat conductive adhesive sheet.
  • Two heat conductive adhesive sheets are prepared, and the heat conductive adhesive sheets are laminated on the surface of the thermoelectric conversion module 37 where the thermoelectric elements are formed and the surface of the support, respectively, and the heat conductive adhesive sheets are laminated on both sides.
  • a thermoelectric conversion device was manufactured.
  • thermoelectric conversion module 37 (Comparative Example 3) The temperature difference was measured without attaching the heat conductive adhesive sheet to the adherend. Moreover, the electronic device evaluation was performed without laminating a heat conductive adhesive sheet on the thermoelectric conversion module 37.
  • Table 1 shows the evaluation results of the composite curing shrinkage rate, thermal conductivity, temperature difference and / or electronic (thermoelectric conversion) device such as the heat conductive adhesive sheets obtained in Examples 1 to 11 and Comparative Examples 1 to 3. .
  • the result of the evaluation of the electronic device of Comparative Example 1 was 0 because the misalignment at the time of bonding between the heat conductive adhesive sheet and the thermoelectric conversion element was large (derived from composite curing shrinkage), which is appropriate for the thermoelectric conversion element. It is considered that a temperature difference could not be imparted to.
  • the thermal conductive adhesive sheet of the present invention can be applied with high dimensional accuracy to a thermoelectric element or the like, particularly when applied to a thermoelectric conversion module of a thermoelectric conversion device that is one of electronic devices, and has a thermal conductivity with a high thermal conductivity portion. Since the difference can be made larger, a temperature difference can be efficiently imparted in the thickness direction of the thermoelectric element. For this reason, power generation with high power generation efficiency is possible, and the number of thermoelectric conversion modules installed can be reduced compared to the conventional type, leading to downsizing and cost reduction.
  • the heat conductive adhesive sheet of the present invention can be used as a flexible thermoelectric conversion device without being restricted in installation place, such as being installed on a waste heat source or a heat radiation source having a non-planar surface. .
  • thermoelectric conversion device 11 P-type thermoelectric element 12: N-type thermoelectric element 13: Electrode (copper) 14a, 14b: High heat conduction parts 14'a, 14'b, 14'c: High heat conduction parts 15a, 15b, 15c: Low heat conduction parts 15'a, 15'b: Low heat conduction parts 16: Thermoelectric conversion modules 17:16 First surface 18:16 second surface 19: support 20: adhesive layer 30: thermoelectric conversion device 31: P-type thermoelectric element 32: N-type thermoelectric elements 33a, 33b, 33c: electrodes (copper) 34: high heat conduction part 35: low heat conduction part 36: support 37: thermoelectric conversion module 38: lower surface 39 of thermoelectric conversion device 30: upper surface 40 of thermoelectric conversion

Abstract

The invention improves the dimensional accuracy for a high heat conduction portion and a low heat conduction portion of a thermally conductive adhesive sheet, and lowers the thermal conduction rate of the low heat conduction portion. Furthermore, the invention provides a thermally conductive adhesive sheet that is readily layered in an electronic device and capable of applying sufficient temperature difference inside the electronic device. The invention also provides a production method for the thermally conductive adhesive sheet and an electronic device using this sheet. The invention is the thermally conductive adhesive sheet comprising an adhesive layer and a base material that includes a high heat conduction portion and a low heat conduction portion, wherein: the adhesive layer is layered on a surface on one side of the base material; a hollow filler is included in the low heat conduction portion, at 20 to 90% by volume among the total volume of the low heat conduction portion; the surface on the other side of the base material is configured by the surface of the low heat conduction portion on the side that faces away from the surface in contact with the adhesive layer, and the surface of the high heat conduction portion on the side that faces away from the surface in contact with the adhesive layer; alternatively, the surface on the other side of the base material comprises at least one among the high heat conduction portion and the low heat conduction portion configuring a portion of the thickness of the base material. The invention is also a production method for the thermally conductive adhesive sheet and an electronic device using this sheet.

Description

熱伝導性接着シート、その製造方法及びそれを用いた電子デバイスThermally conductive adhesive sheet, method for producing the same, and electronic device using the same
 本発明は、熱伝導性接着シートに関し、特に電子デバイスに用いられる熱伝導性接着シート、その製造方法及びそれを用いた電子デバイスに関する。 The present invention relates to a heat conductive adhesive sheet, and more particularly to a heat conductive adhesive sheet used for an electronic device, a method for producing the same, and an electronic device using the same.
 従来から、電子デバイス等の内部において、熱を逃がす又は熱の流れを特定の方向に制御するために、高熱伝導性を有するシート状の放熱部材が用いられている。電子デバイスとしては、例えば、熱電変換デバイス、光電変換デバイス、大規模集積回路等の半導体デバイス等が挙げられる。 Conventionally, a sheet-like heat radiating member having high thermal conductivity has been used in an electronic device or the like in order to release heat or control the flow of heat in a specific direction. Examples of the electronic device include a thermoelectric conversion device, a photoelectric conversion device, and a semiconductor device such as a large-scale integrated circuit.
 近年、半導体デバイスにおいては、該半導体デバイスの小型化かつ高密度化等にともない、動作時に内部から発生する熱がより高温となり、放熱が十分できない場合には、該半導体デバイス自体の特性が低下し、時には誤動作を引き起こし、最終的には半導体デバイスの破壊又は寿命の低下に繋がることがある。このような場合、半導体デバイスから発生する熱を効率良く外部に放熱するための方法として、半導体デバイスとヒートシンク(金属部材)の間に、熱伝導性に優れる放熱シートを設けることが行われている。
 また、このような電子デバイスの中で、熱電変換デバイスにおいては、上述した放熱の制御にかかるものではあるが、熱電素子の片面に付与された熱を、熱電素子の内部の厚み方向に温度差が大きくなるように制御すると、得られる電力が大きくなることから、シート状の放熱部材を用いて特定の方向に選択的に放熱を制御する(熱電素子の内部に温度差を効率良く付与する)検討がなされている。特許文献1では、図7に示すような構造を有する熱電変換素子が開示されている。すなわち、P型熱電素子41とN型熱電素子42とを直列に接続し、その両端部に熱起電力取り出し電極43を配置し、熱電変換モジュール46を構成し、該熱電変換モジュール46の両面に2種類の熱伝導率の異なる材料で構成された柔軟性を有するフィルム状基板44、45を設けたものである。該フィルム状基板44、45には、前記熱電変換モジュール46との接合面側に熱伝導率の低い材料(ポリイミド)47、48が設けられ、前記熱電変換モジュール46の接合面と反対側に、熱伝導率の高い材料(銅)49、50がフィルム状基板44、45の外面の一部分に位置するように設けられている。特許文献2では、図8に示す構造を有する熱電変換モジュールが開示されており、低熱伝導率の部材51、52に高熱伝導率部材を兼ねる電極54が埋め込まれ、それらが、熱電素子53に対し、導電性接着剤層55及び絶縁性接着剤層56を介し配置されている。
In recent years, with the miniaturization and high density of semiconductor devices, the heat generated from the inside during operation becomes higher and the characteristics of the semiconductor device itself deteriorate when the heat is not sufficiently dissipated. However, it sometimes causes a malfunction and may eventually lead to destruction of the semiconductor device or a reduction in the lifetime. In such a case, as a method for efficiently radiating the heat generated from the semiconductor device to the outside, a heat radiating sheet having excellent thermal conductivity is provided between the semiconductor device and the heat sink (metal member). .
Further, among such electronic devices, in the thermoelectric conversion device, although it is related to the above-described heat dissipation control, the heat applied to one surface of the thermoelectric element is changed in the temperature direction in the thickness direction inside the thermoelectric element. If the control is performed to increase the power, the power to be obtained increases. Therefore, heat dissipation is selectively controlled in a specific direction using a sheet-shaped heat dissipation member (a temperature difference is efficiently given inside the thermoelectric element). Consideration has been made. Patent Document 1 discloses a thermoelectric conversion element having a structure as shown in FIG. That is, a P-type thermoelectric element 41 and an N-type thermoelectric element 42 are connected in series, thermoelectric power take-out electrodes 43 are arranged at both ends thereof to constitute a thermoelectric conversion module 46, and both sides of the thermoelectric conversion module 46 are arranged. The film- like substrates 44 and 45 having flexibility and made of two kinds of materials having different thermal conductivities are provided. The film- like substrates 44 and 45 are provided with materials (polyimides) 47 and 48 having low thermal conductivity on the bonding surface side with the thermoelectric conversion module 46, and on the opposite side to the bonding surface of the thermoelectric conversion module 46, High thermal conductivity materials (copper) 49 and 50 are provided so as to be located on a part of the outer surfaces of the film- like substrates 44 and 45. In Patent Document 2, a thermoelectric conversion module having the structure shown in FIG. 8 is disclosed. Electrodes 54 that also serve as high thermal conductivity members are embedded in low thermal conductivity members 51, 52. The conductive adhesive layer 55 and the insulating adhesive layer 56 are disposed therebetween.
特許第3981738号公報Japanese Patent No. 3981738 特開2011-35203号公報JP 2011-35203 A
 上記のように、特に、半導体デバイスを主とする電子デバイスにおいて、熱を外部へより効率良く放熱させることのできる放熱シートや、熱伝導性に優れていることに加えて、熱を特定の方向に選択的に放熱し、該電子デバイスの内部に温度勾配を生じさせる機能を有する熱伝導性シート等が要求されている。しかしながら、本発明者等が、上述したような熱電変換デバイスの熱電素子に、高熱伝導部と低熱伝導部とから構成される熱伝導性接着シートを適用し検討を行ったところ、熱伝導性接着性シートの高熱伝導部や低熱伝導部のパターンに係る寸法精度が悪く、所定の温度差が得られないという新たな問題を見出した。寸法精度が悪くなる理由としては、熱伝導性接着性シートを構成する高熱伝導部と低熱伝導部における、硬化収縮等を含む内部応力差等が挙げられる。 As mentioned above, especially in electronic devices mainly semiconductor devices, in addition to heat dissipation sheets that can dissipate heat more efficiently to the outside and excellent thermal conductivity, heat is transmitted in a specific direction. Therefore, there is a demand for a thermally conductive sheet having a function of selectively radiating heat and generating a temperature gradient inside the electronic device. However, the present inventors have conducted a study by applying a heat conductive adhesive sheet composed of a high heat conductive portion and a low heat conductive portion to the thermoelectric element of the thermoelectric conversion device as described above. The dimensional accuracy concerning the pattern of the high heat conduction part and the low heat conduction part of the conductive sheet is poor, and a new problem has been found that a predetermined temperature difference cannot be obtained. The reason why the dimensional accuracy is deteriorated is an internal stress difference including curing shrinkage and the like in the high heat conduction portion and the low heat conduction portion constituting the heat conductive adhesive sheet.
 本発明は、上記問題を鑑み、熱伝導性接着シートの高熱伝導部及び低熱伝導部の寸法精度の向上、かつ低熱伝導部の低熱伝導率化を図り、さらに電子デバイスに、容易に積層され、該電子デバイスの内部に十分な温度差が付与できる、熱伝導性接着シート、その製造方法及びそれを用いた電子デバイスを提供することを課題とする。 In view of the above problems, the present invention aims to improve the dimensional accuracy of the high heat conduction part and the low heat conduction part of the heat conductive adhesive sheet and to reduce the low heat conductivity of the low heat conduction part, and is easily laminated on an electronic device, It is an object of the present invention to provide a thermally conductive adhesive sheet that can provide a sufficient temperature difference inside the electronic device, a manufacturing method thereof, and an electronic device using the same.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、熱伝導性接着シートを、高熱伝導部と低熱伝導部とを含む基材と、該基材の一方の面に接着剤層を積層する構成とし、かつ特定量(体積%)の中空フィラーを該低熱伝導部に含有させ、また低熱伝導部の該接着剤層と接する面とは反対側の面と、高熱伝導部の該接着剤層と接する面とは反対側の面とで、該基材の他方の面を構成、もしくは該高熱伝導部と該低熱伝導部の少なくともどちらかが該基材の厚みの一部分を構成することにより、上記課題を解決することを見出し、本発明を完成した。
 すなわち、本発明は、以下の(1)~(15)を提供するものである。
(1)高熱伝導部と低熱伝導部とを含む基材と、接着剤層を含む熱伝導性接着シートであって、該低熱伝導部に中空フィラーが、低熱伝導部全体積中20~90体積%含有され、また該基材の一方の面に接着剤層が積層され、かつ該基材の他方の面が、該低熱伝導部の該接着剤層と接する面とは反対側の面と、該高熱伝導部の該接着剤層と接する面とは反対側の面とで構成、もしくは該高熱伝導部と該低熱伝導部の少なくともどちらかが該基材の厚みの一部分を構成してなる、熱伝導性接着シート。
(2)前記高熱伝導部と前記低熱伝導部とが、それぞれ独立に前記基材のすべての厚みを構成している、上記(1)に記載の熱伝導性接着シート。
(3)前記高熱伝導部及び前記低熱伝導部が樹脂組成物から形成される、上記(1)に記載の熱伝導性接着シート。
(4)前記高熱伝導部を構成する前記樹脂組成物に熱伝導性フィラー及び/又は導電性炭素化合物を含む、上記(3)に記載の熱伝導性接着シート。
(5)前記熱伝導性フィラーが、金属酸化物、金属窒化物、及び金属からなる群より選択される少なくとも1種を含む、上記(4)に記載の熱伝導性接着シート。
(6)前記熱伝導性フィラーが、金属酸化物と金属窒化物とを含む、上記(4)に記載の熱伝導性接着シート。
(7)前記導電性炭素化合物が、カーボンブラック、カーボンナノチューブ、グラフェン、及びカーボンナノファイバーからなる群より選択される少なくとも1種を含む、上記(4)に記載の熱伝導性接着シート。
(8)前記中空フィラーが、ガラス中空フィラー、又はシリカ中空フィラーである、上記(1)に記載の熱伝導性接着シート。
(9)前記ガラス中空フィラー、及びシリカ中空フィラーの真密度が、0.1~0.6g/cmである、上記(8)に記載の熱伝導性接着シート。
(10)前記高熱伝導部を構成する樹脂組成物と前記低熱伝導部を構成する樹脂組成物との複合硬化収縮率が、2%以下である、上記(3)~(9)のいずれか1項に記載の熱伝導性接着シート。
(11)前記基材の高熱伝導部の熱伝導率が0.5(W/m・K)以上、かつ低熱伝導部の熱伝導率が0.5(W/m・K)未満である、上記(1)~(10)のいずれか1項に熱伝導性接着シート。
(12)前記基材の厚みに対する前記接着剤層の厚みの比率(接着剤層/基材)が、0.005~1.0である、上記(1)~(11)のいずれか1項に記載の熱伝導性接着シート。
(13)前記接着剤層がシリコーン系接着剤を含む、上記(1)~(12)のいずれか1項に記載の熱伝導性接着シート。
(14)上記(1)~(13)のいずれか1項に記載の熱伝導性接着シートを積層した電子デバイス。
(15)上記(1)~(13)のいずれか1項に記載の熱伝導性接着シートを製造する方法であって、剥離可能な支持基材上に、樹脂組成物から形成される高熱伝導部と、樹脂組成物から形成される低熱伝導部とから基材を形成する工程、及び該基材に接着剤層を積層する工程を含む、熱伝導性接着シートの製造方法。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained a heat conductive adhesive sheet, a base material including a high heat conduction part and a low heat conduction part, and an adhesive on one surface of the base material. The layer is laminated, and a specific amount (volume%) of a hollow filler is contained in the low heat conduction part, and the surface of the low heat conduction part opposite to the surface in contact with the adhesive layer, and the high heat conduction part The surface opposite to the surface in contact with the adhesive layer constitutes the other surface of the base material, or at least one of the high heat conduction portion and the low heat conduction portion constitutes a part of the thickness of the base material As a result, the present inventors have found that the above problems can be solved and completed the present invention.
That is, the present invention provides the following (1) to (15).
(1) A heat conductive adhesive sheet including a base material including a high heat conduction part and a low heat conduction part, and an adhesive layer, wherein a hollow filler is contained in the low heat conduction part in a total volume of the low heat conduction part of 20 to 90 volumes. And an adhesive layer is laminated on one side of the substrate, and the other side of the substrate is a side opposite to the side in contact with the adhesive layer of the low thermal conductivity part, It is composed of the surface of the high thermal conductivity portion opposite to the surface in contact with the adhesive layer, or at least one of the high thermal conductivity portion and the low thermal conductivity portion constitutes a part of the thickness of the substrate. Thermally conductive adhesive sheet.
(2) The heat conductive adhesive sheet according to (1), wherein the high heat conductive portion and the low heat conductive portion independently constitute all the thicknesses of the base material.
(3) The heat conductive adhesive sheet according to (1), wherein the high heat conductive portion and the low heat conductive portion are formed from a resin composition.
(4) The heat conductive adhesive sheet according to (3), wherein the resin composition constituting the high heat conductive portion includes a heat conductive filler and / or a conductive carbon compound.
(5) The heat conductive adhesive sheet according to (4), wherein the heat conductive filler includes at least one selected from the group consisting of metal oxides, metal nitrides, and metals.
(6) The heat conductive adhesive sheet according to (4), wherein the heat conductive filler includes a metal oxide and a metal nitride.
(7) The heat conductive adhesive sheet according to (4), wherein the conductive carbon compound includes at least one selected from the group consisting of carbon black, carbon nanotubes, graphene, and carbon nanofibers.
(8) The heat conductive adhesive sheet according to (1), wherein the hollow filler is a glass hollow filler or a silica hollow filler.
(9) The heat conductive adhesive sheet according to (8), wherein the glass hollow filler and the silica hollow filler have a true density of 0.1 to 0.6 g / cm 3 .
(10) Any one of the above (3) to (9), wherein a composite curing shrinkage ratio between the resin composition constituting the high heat conduction part and the resin composition constituting the low heat conduction part is 2% or less. The heat conductive adhesive sheet of item.
(11) The thermal conductivity of the high thermal conductivity portion of the substrate is 0.5 (W / m · K) or more, and the thermal conductivity of the low thermal conductivity portion is less than 0.5 (W / m · K). Any one of (1) to (10) above is a heat conductive adhesive sheet.
(12) Any one of the above (1) to (11), wherein the ratio of the thickness of the adhesive layer to the thickness of the base material (adhesive layer / base material) is 0.005 to 1.0. The heat conductive adhesive sheet of description.
(13) The thermally conductive adhesive sheet according to any one of (1) to (12), wherein the adhesive layer contains a silicone-based adhesive.
(14) An electronic device in which the thermally conductive adhesive sheet according to any one of (1) to (13) above is laminated.
(15) A method for producing the heat-conductive adhesive sheet according to any one of (1) to (13) above, wherein the heat-conductive adhesive sheet is formed from a resin composition on a peelable support substrate. The manufacturing method of a heat conductive adhesive sheet including the process of forming a base material from a part and the low heat conductive part formed from a resin composition, and the process of laminating | stacking an adhesive bond layer on this base material.
 本発明の熱伝導性接着シートによれば、熱伝導性接着シートの高熱伝導部及び低熱伝導部の寸法精度の向上、かつ低熱伝導部の低熱伝導率化を図り、さらに電子デバイスに、容易に積層され、該電子デバイスの内部に十分な温度差が付与できる、熱伝導性接着シート、その製造方法及びそれを用いた電子デバイスを提供することができる。 According to the heat conductive adhesive sheet of the present invention, it is possible to improve the dimensional accuracy of the high heat conductive portion and the low heat conductive portion of the heat conductive adhesive sheet, to reduce the low heat conductivity of the low heat conductive portion, and to easily form an electronic device It is possible to provide a thermally conductive adhesive sheet, a method for producing the same, and an electronic device using the same, which are laminated and can provide a sufficient temperature difference inside the electronic device.
本発明の熱伝導性接着シートの一例を示す斜視図である。It is a perspective view which shows an example of the heat conductive adhesive sheet of this invention. 本発明の熱伝導性接着シートの種々の例を示す断面図である。It is sectional drawing which shows the various examples of the heat conductive adhesive sheet of this invention. 本発明の熱伝導性接着シートを熱電変換モジュールに貼付した際の熱電変換デバイスの一例を示す断面図である。It is sectional drawing which shows an example of the thermoelectric conversion device at the time of sticking the heat conductive adhesive sheet of this invention to the thermoelectric conversion module. 本発明の熱伝導性接着シートと熱電変換モジュールを構成要素に分解した斜視図の一例であり、(a)が熱電変換モジュールの支持体表面側の熱電素子に設けられる熱伝導性接着シートの斜視図であり、(b)が熱電変換モジュールの斜視図であり、(c)が熱電変換モジュールの支持体裏面側に設けられる熱伝導性接着シートの斜視図である。It is an example of the perspective view which decomposed | disassembled the heat conductive adhesive sheet and thermoelectric conversion module of this invention into the component, (a) is a perspective view of the heat conductive adhesive sheet provided in the thermoelectric element of the support body surface side of a thermoelectric conversion module. It is a figure, (b) is a perspective view of a thermoelectric conversion module, (c) is a perspective view of the heat conductive adhesive sheet provided in the support body back side of a thermoelectric conversion module. 本発明の熱伝導性接着シートの高熱伝導部と低熱伝導部の温度差を測定するための構成の説明図であり、(a)が熱伝導性接着シートであり、(b)が被着体として使用したガラス基板の斜視図である。It is explanatory drawing of the structure for measuring the temperature difference of the high heat conductive part of the heat conductive adhesive sheet of this invention, and a low heat conductive part, (a) is a heat conductive adhesive sheet, (b) is a to-be-adhered body. It is a perspective view of the glass substrate used as. 本発明の実施例に用いた熱電変換モジュールの斜視図である。It is a perspective view of the thermoelectric conversion module used for the Example of this invention. 従来の熱電変換デバイスの構成の一例を示す断面図である。It is sectional drawing which shows an example of a structure of the conventional thermoelectric conversion device. 従来の熱電変換デバイスの構成の他の一例を示す断面図である。It is sectional drawing which shows another example of a structure of the conventional thermoelectric conversion device.
[熱伝導性接着シート]
 本発明の熱伝導性接着シートは、高熱伝導部と低熱伝導部とを含む基材と、接着剤層を含む熱伝導性接着シートであって、該低熱伝導部に中空フィラーが、低熱伝導部全体積中20~90体積%含有され、また該基材の一方の面に接着剤層が積層され、かつ該基材の他方の面が、該低熱伝導部の該接着剤層と接する面とは反対側の面と、該高熱伝導部の該接着剤層と接する面とは反対側の面とで構成、もしくは該高熱伝導部と該低熱伝導部の少なくともどちらかが該基材の厚みの一部分を構成してなる、ことを特徴としている。
[Heat conductive adhesive sheet]
The heat conductive adhesive sheet of the present invention is a base material including a high heat conductive portion and a low heat conductive portion, and a heat conductive adhesive sheet including an adhesive layer, and a hollow filler is included in the low heat conductive portion. 20 to 90% by volume in the total volume, and an adhesive layer is laminated on one surface of the substrate, and the other surface of the substrate is in contact with the adhesive layer of the low thermal conductivity portion; Is composed of an opposite surface and a surface opposite to the surface of the high thermal conductivity portion that contacts the adhesive layer, or at least one of the high thermal conductivity portion and the low thermal conductivity portion is the thickness of the substrate. It is characterized by comprising a part.
 本発明の熱伝導性接着シートは、基材と接着剤層とから構成されている。
 本発明の熱伝導性接着シートの構成等を、図面を使用して説明する。
The heat conductive adhesive sheet of this invention is comprised from the base material and the adhesive bond layer.
The structure of the heat conductive adhesive sheet of this invention is demonstrated using drawing.
<基材>
 基材は、熱伝導率が互いに異なる高熱伝導部と低熱伝導部とから構成される。
 図1は本発明の熱伝導性接着シートの一例を示す斜視図である。熱伝導性接着シート1は、高熱伝導部4a、4bと低熱伝導部5a、5bとを含む基材7と接着剤層8とから構成され、高熱伝導部と低熱伝導部は、交互に配置されている。すなわち、基材7の一方の面に接着剤層8が積層され、かつ基材7の他方の面が、低熱伝導部5a、5bの接着剤層8と接する面とは反対側の面と、高熱伝導部4a、4bの接着剤層8と接する面とは反対側の面とで構成されている。
 熱伝導性接着シート1の基材7を構成する高熱伝導部と低熱伝導部の配置(以下、「厚みの構成」ということがある。)は、以下に述べるように、特に制限されない。
 図2に本発明の熱伝導性接着シートの断面図(配置を含む)の種々の例を示す。図2の(a)は、図1の断面図であり、高熱伝導部4と低熱伝導部5とがそれぞれ独立に基材7のすべての厚みを構成している。また、図2の(b)~(g)は、高熱伝導部4と低熱伝導部5の少なくともどちらかが基材の厚みの一部分を構成している。具体的には、図2の(b)、(d)は、低熱伝導部5が基材7の厚みの一部分を構成し、基材7の接着剤層8と接する面は、高熱伝導部4のみから形成されている。さらに、図2の(c)、(e)は、高熱伝導部4が基材7の厚みの一部分を構成し、基材7の接着剤層8と接する面は、低熱伝導部5のみから形成されている。図2の(f)は、高熱伝導部4が基材7の厚みの一部分を構成し、基材7の接着剤層8と接する面は、高熱伝導部4と低熱伝導部5の両方で形成されており、基材7の接着剤層8と接する面とは反対側の面は、低熱伝導部5のみから形成されている。図2の(g)は、低熱伝導部5が基材7の厚みの一部分を構成し、基材7の接着剤層8と接する面は、高熱伝導部4と低熱伝導部5の両方で形成されており、基材7の接着剤層8と接する面とは反対側の面は、高熱伝導部4のみから形成されている。基材7の厚みの構成は、適用する電子デバイスの仕様に合わせ、適宜選択することができる。例えば、熱を特定の方向に選択的に放熱するという観点から、例えば、図2の(a)~(g)の厚みの構成を選択することが好ましく、高熱伝導部と低熱伝導部とが、それぞれ独立に基材のすべての厚みを構成している、すなわち、(a)の厚みの構成がさらに好ましい。また、電子デバイスの内部から発生する熱を外部に効率的に放熱する観点から、例えば、図2の(a)~(g)の厚みの構成を電子デバイスの仕様に合わせ選択することができる。この際、例えば、高熱伝導部の体積を大きく、かつ適用するデバイス面に対向する面積を大きくする構成にすることで、放熱量を、効率的に制御できる。
<Base material>
A base material is comprised from the high heat conduction part and heat conductivity part from which heat conductivity mutually differs.
FIG. 1 is a perspective view showing an example of the heat conductive adhesive sheet of the present invention. The heat conductive adhesive sheet 1 is composed of a base material 7 and an adhesive layer 8 including high heat conductive portions 4a and 4b and low heat conductive portions 5a and 5b, and the high heat conductive portions and the low heat conductive portions are alternately arranged. ing. That is, the adhesive layer 8 is laminated on one surface of the base material 7, and the other surface of the base material 7 is the surface opposite to the surface in contact with the adhesive layer 8 of the low heat conducting portions 5a and 5b, It is comprised by the surface on the opposite side to the surface which contact | connects the adhesive bond layer 8 of the high heat conductive parts 4a and 4b.
As described below, the arrangement of the high heat conduction portion and the low heat conduction portion constituting the base material 7 of the heat conductive adhesive sheet 1 (hereinafter also referred to as “thickness configuration”) is not particularly limited.
FIG. 2 shows various examples of cross-sectional views (including arrangement) of the heat conductive adhesive sheet of the present invention. FIG. 2A is a cross-sectional view of FIG. 1, and the high heat conduction portion 4 and the low heat conduction portion 5 each independently constitute the entire thickness of the base material 7. In FIGS. 2B to 2G, at least one of the high heat conduction portion 4 and the low heat conduction portion 5 constitutes a part of the thickness of the base material. Specifically, (b) and (d) of FIG. 2 show that the low thermal conductive portion 5 constitutes a part of the thickness of the base material 7, and the surface of the base material 7 in contact with the adhesive layer 8 is the high thermal conductive portion 4. Is formed only from. 2 (c) and 2 (e), the high heat conduction part 4 constitutes a part of the thickness of the base material 7, and the surface of the base material 7 in contact with the adhesive layer 8 is formed only from the low heat conduction part 5. Has been. 2 (f), the high heat conduction part 4 constitutes a part of the thickness of the base material 7, and the surface of the base material 7 in contact with the adhesive layer 8 is formed by both the high heat conduction part 4 and the low heat conduction part 5. The surface of the substrate 7 opposite to the surface in contact with the adhesive layer 8 is formed from only the low heat conduction portion 5. In FIG. 2G, the low heat conduction part 5 constitutes a part of the thickness of the base material 7 and the surface of the base material 7 in contact with the adhesive layer 8 is formed by both the high heat conduction part 4 and the low heat conduction part 5. The surface of the substrate 7 opposite to the surface in contact with the adhesive layer 8 is formed only from the high heat conduction portion 4. The structure of the thickness of the base material 7 can be appropriately selected according to the specifications of the electronic device to be applied. For example, from the viewpoint of selectively dissipating heat in a specific direction, for example, it is preferable to select a configuration having a thickness of (a) to (g) in FIG. 2, and the high heat conduction portion and the low heat conduction portion are: Each of the thicknesses of the base material is independently formed, that is, the thickness (a) is more preferable. Further, from the viewpoint of efficiently dissipating heat generated from the inside of the electronic device to the outside, for example, the configuration of the thicknesses (a) to (g) in FIG. 2 can be selected according to the specifications of the electronic device. At this time, for example, the amount of heat radiation can be efficiently controlled by increasing the volume of the high thermal conductivity portion and increasing the area facing the device surface to be applied.
〈低熱伝導部〉
 本発明の低熱伝導部は、中空フィラーと後述する樹脂とを含む樹脂組成物から形成される。中空フィラーを含有させることにより、低熱伝導部の硬化収縮率を抑制し、かつ高熱伝導部の硬化収縮率との差を小さくすることにより、後述する複合硬化収縮率が低減され、結果的に高熱伝導部と低熱伝導部のそれぞれのパターンの寸法精度の向上を図ることができる。
 低熱伝導部の形状は、特に制限はなく、後述する電子デバイス等の仕様に応じて、適宜変更することができる。ここで、本発明の低熱伝導部は、前記高熱伝導部よりも熱伝導率が低いほうをいう。
<Low heat conduction part>
The low thermal conductive part of the present invention is formed from a resin composition containing a hollow filler and a resin described later. By containing the hollow filler, the cure shrinkage rate of the low heat conduction part is suppressed and the difference from the cure shrinkage rate of the high heat conduction part is reduced, thereby reducing the composite cure shrinkage rate described later, resulting in high heat. The dimensional accuracy of each pattern of the conductive portion and the low heat conductive portion can be improved.
There is no restriction | limiting in particular in the shape of a low heat conductive part, According to specifications, such as an electronic device mentioned later, it can change suitably. Here, the low thermal conductivity portion of the present invention refers to the one having lower thermal conductivity than the high thermal conductivity portion.
 中空フィラーとしては、特に制限されず、公知のものを用いることができ、例えば、ガラスバルーン、シリカバルーン、シラスバルーン、フライアッシュバルーン、金属ケイ酸塩等のバルーン(中空体)である無機物系中空フィラー、また、アクリロニトリル、塩化ビニリデン、フェノール樹脂、エポキシ樹脂、尿素樹脂等のバルーン(中空体)である有機樹脂物系中空フィラーが挙げられる。中空フィラーは1種単独で、又は2種以上を組み合わせて用いることができる。このなかで、物質自身の熱伝導率が金属酸化物の中で比較的低く、さらに体積抵抗率、コストの観点から、無機物系中空フィラーであるガラス中空フィラー、又はシリカ中空フィラーが好ましい。具体的には、ガラス中空フィラーとしては、例えば、住友スリーエム社製のグラスバブルズ(ソーダ石灰硼珪酸ガラス)等が、シリカ中空フィラーとしては、例えば、日鉄鉱業株式会社製のシリナックス(登録商標)等が挙げられる。
 なお、本発明における、「中空フィラー」とは、フィラーを構成材料とする外殻を有し、内部が中空構造(内部は空気以外に、不活性気体等の気体で満たされていてもよく、真空であってもよい)となっているフィラーをいい、該中空構造としては、特に制限されず、例えば、中空構造が球体であっても楕円体等であってもよく、中空構造が複数あってもよい。
The hollow filler is not particularly limited, and known ones can be used. For example, inorganic hollows such as glass balloons, silica balloons, shirasu balloons, fly ash balloons, metal silicate balloons (hollow bodies). Examples of the filler include organic resin-based hollow fillers that are balloons (hollow bodies) such as acrylonitrile, vinylidene chloride, phenolic resin, epoxy resin, and urea resin. A hollow filler can be used individually by 1 type or in combination of 2 or more types. Among these, the thermal conductivity of the substance itself is relatively low among metal oxides, and from the viewpoint of volume resistivity and cost, glass hollow fillers or silica hollow fillers that are inorganic hollow fillers are preferred. Specifically, as the glass hollow filler, for example, Glass Bubbles (soda lime borosilicate glass) manufactured by Sumitomo 3M Co., Ltd., and as the silica hollow filler, for example, Silax (registered by Nippon Steel Mining Co., Ltd.) Trademark) and the like.
In addition, in the present invention, the “hollow filler” has an outer shell having a filler as a constituent material, and the inside is a hollow structure (the inside may be filled with a gas such as an inert gas other than air, The hollow structure is not particularly limited. For example, the hollow structure may be a sphere or an ellipsoid, and there are a plurality of hollow structures. May be.
 中空フィラーの形状は、特に制限されるものではないが、適用する電子デバイス、素子等に貼付した際に、それらの接触又は機械的損傷により、電子デバイス、素子等の電気特性等が損なわれない形状であればよく、例えば、板状(鱗片状を含む)、球状、針状、棒状、繊維状のいずれでもよい。 The shape of the hollow filler is not particularly limited, but when pasted on the applied electronic device, element, etc., the electrical characteristics of the electronic device, element, etc. are not impaired by contact or mechanical damage. Any shape may be used, and for example, any of a plate shape (including a scale shape), a spherical shape, a needle shape, a rod shape, and a fiber shape may be used.
 中空フィラーのサイズは、低熱伝導部の厚み方向に中空フィラーを均一に分散させ、熱伝導性を低下させる観点から、例えば、平均粒子径が0.1~200μmが好ましく、1~100μmがより好ましく、10~80μmがさらに好ましく、20~50μmが特に好ましい。中空フィラーの平均粒子径がこの範囲にあれば、粒子同士の凝集が起こりにくく、均一に分散させることができる。さらに、低熱伝導部への充填密度が十分となり、物質界面において低熱伝導部が脆くなることもない。なお、平均粒子径は、例えば、コールターカウンター法により測定することができる。 The size of the hollow filler is, for example, preferably from 0.1 to 200 μm, more preferably from 1 to 100 μm, from the viewpoint of uniformly dispersing the hollow filler in the thickness direction of the low heat conduction part and reducing the thermal conductivity. 10 to 80 μm is more preferable, and 20 to 50 μm is particularly preferable. If the average particle diameter of the hollow filler is within this range, the particles are hardly aggregated and can be uniformly dispersed. Furthermore, the packing density in the low heat conduction part becomes sufficient, and the low heat conduction part does not become brittle at the substance interface. The average particle diameter can be measured by, for example, a Coulter counter method.
 中空フィラーの含有量は、その粒子形状に応じて適宜調整され、樹脂組成物中、20~90体積%であり、40~80体積%が好ましく、50~70体積%がさらに好ましい。中空フィラーの含有量が20体積%未満であると、硬化収縮が大きくなり低熱伝導部のパターン寸法精度が低下してしまう。また、中空フィラーの含有量が90体積%を超えると、低熱伝導部の機械的強度が維持できなくなる。中空フィラーの含有量がこの範囲にあれば、硬化収縮が効果的に抑制され、かつ放熱特性、耐折性、耐屈曲性が優れ、低熱伝導部の機械的強度が維持される。 The content of the hollow filler is appropriately adjusted according to the particle shape, and is 20 to 90% by volume, preferably 40 to 80% by volume, and more preferably 50 to 70% by volume in the resin composition. When the content of the hollow filler is less than 20% by volume, curing shrinkage becomes large, and the pattern dimensional accuracy of the low heat conduction part is lowered. On the other hand, if the content of the hollow filler exceeds 90% by volume, the mechanical strength of the low heat conducting part cannot be maintained. When the content of the hollow filler is in this range, curing shrinkage is effectively suppressed, heat dissipation characteristics, folding resistance, and bending resistance are excellent, and the mechanical strength of the low heat conducting portion is maintained.
 中空フィラーの真密度は、0.1~0.6g/cmが好ましく、0.2~0.5g/cmがより好ましく、0.3~0.4g/cmがさらに好ましい。中空フィラーの真密度がこの範囲にあれば、断熱特性、耐圧性に優れ、低熱伝導部形成時に中空フィラーが砕けることもなく、また、低熱伝導部の低熱伝導性を損なうこともない。
 ここで、「真密度」とは、ピクノメーター法(アルキメデスの原理に基づいた気相法)により測定された密度のことである。例えば、ピクノメーター(気相置換式真密度計、例えば、Micromeritics社製のAccuPycII 1340)を用いて測定することができる。
The true density of the hollow filler is preferably 0.1 to 0.6 g / cm 3 , more preferably 0.2 to 0.5 g / cm 3, and still more preferably 0.3 to 0.4 g / cm 3 . If the true density of the hollow filler is within this range, the heat insulating properties and pressure resistance are excellent, the hollow filler is not crushed when the low thermal conductive portion is formed, and the low thermal conductivity of the low thermal conductive portion is not impaired.
Here, the “true density” is a density measured by a pycnometer method (a gas phase method based on Archimedes' principle). For example, it can be measured using a pycnometer (gas phase substitution true density meter, for example, AccuPycII 1340 manufactured by Micromeritics).
(樹脂)
 本発明に用いる樹脂は、特に限定されないが、電子部品分野等で使用されているものの中から任意の樹脂を適宜選択することができる。
(resin)
Although resin used for this invention is not specifically limited, Arbitrary resin can be suitably selected from what is used in the electronic component field | area.
 樹脂としては、熱硬化性樹脂、熱可塑性樹脂、光硬化性樹脂等が挙げられる。前記低熱伝導部を構成する樹脂としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリスチレン等のスチレン系樹脂;ポリメタクリル酸メチル等のアクリル系樹脂;ポリアミド(ナイロン6、ナイロン66等)、ポリm-フェニレンイソフタルアミド、ポリp-フェニレンテレフタルアミド等のポリアミド系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等のポリエステル系樹脂;ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素重合体、及びこれらの水素化物等のシクロオレフィン系ポリマー;塩化ビニル;ポリイミド;ポリアミドイミド;ポリフェニレンエーテル;ポリエーテルケトン;ポリエーテルエーテルケトン;ポリカーボネート;ポリスルフォン、ポリエーテルスルフォン等のポリサルフォン系樹脂;ポリフェニレンスルフィド;シリコーン樹脂;及びこれらの高分子の二種以上の組合せ;等が挙げられる。これらの中でも、耐熱性に優れ、放熱性が低下しにくいという点からポリアミド系樹脂、ポリイミド、ポリアミドイミド、及びシリコーン樹脂が好ましい。 Examples of the resin include a thermosetting resin, a thermoplastic resin, and a photocurable resin. Examples of the resin constituting the low thermal conductive portion include polyolefin resins such as polyethylene and polypropylene; styrene resins such as polystyrene; acrylic resins such as polymethyl methacrylate; polyamide (nylon 6, nylon 66, etc.), poly Polyamide resins such as m-phenylene isophthalamide and poly p-phenylene terephthalamide; Polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate and polyarylate; Norbornene polymers and monocyclic olefin polymers , Cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and cycloolefin polymers such as hydrides thereof; vinyl chloride; polyimide; polyamideimide; polyphenylene ether; ; Polyether ether ketone; polycarbonates; polysulfones, polysulfone resins such as polyether sulfone; polyphenylene sulfide; silicone resins; and two or more combinations of these polymers; and the like. Among these, polyamide-based resins, polyimides, polyamideimides, and silicone resins are preferable because they are excellent in heat resistance and are difficult to reduce heat dissipation.
〈その他の成分〉
 低熱伝導部の樹脂組成物には、必要に応じて適宜な範囲内で、例えば、光重合開始剤、架橋剤、充填剤、可塑剤、老化防止剤、酸化防止剤、紫外線吸収剤、顔料や染料等の着色剤、粘着付与剤、帯電防止剤、カップリング剤等の添加剤が含まれていてもよい。
<Other ingredients>
The resin composition of the low heat conduction part may be used within an appropriate range as necessary, for example, a photopolymerization initiator, a crosslinking agent, a filler, a plasticizer, an anti-aging agent, an antioxidant, an ultraviolet absorber, a pigment, Additives such as colorants such as dyes, tackifiers, antistatic agents, and coupling agents may be included.
〈高熱伝導部〉
 高熱伝導部は、樹脂組成物から形成され、前記低熱伝導部よりも熱伝導率が高い材料であれば特に限定されない。
 前記高熱伝導部の形状は、前記低熱伝導部の形状と同様、特に制限はなく、後述する電子デバイス等の仕様に応じて、適宜変更することができる。
<High heat conduction part>
The high heat conduction part is not particularly limited as long as it is made of a resin composition and has a higher thermal conductivity than the low heat conduction part.
The shape of the high heat conduction part is not particularly limited, as is the case with the low heat conduction part, and can be appropriately changed according to the specifications of an electronic device or the like described later.
 樹脂としては、前述した低熱伝導部に用いた熱硬化性樹脂及びエネルギー硬化性樹脂等、同様の樹脂が挙げられる。通常、機械的特性、密着性等の観点から低熱伝導部と同一樹脂を用いる。 Examples of the resin include the same resins such as the thermosetting resin and the energy curable resin used in the low thermal conductive portion described above. Usually, the same resin as that of the low heat conducting part is used from the viewpoint of mechanical properties, adhesion and the like.
 高熱伝導部は、硬化収縮の抑制、また後述する所望の熱伝導率に調整するために、上記樹脂と熱伝導性フィラー及び/又は導電性炭素化合物とを含む樹脂組成物から形成されることが好ましい。
 以下、熱伝導性フィラー及び導電性炭素化合物を「熱伝導率調整用物質」ということがある。
The high heat conduction part may be formed from a resin composition containing the resin and a heat conductive filler and / or a conductive carbon compound in order to suppress curing shrinkage and to adjust to a desired heat conductivity described later. preferable.
Hereinafter, the thermally conductive filler and the conductive carbon compound may be referred to as “thermal conductivity adjusting substance”.
(熱伝導性フィラー及び導電性炭素化合物) 
 熱伝導性フィラーとしては、特に制限はないが、シリカ、アルミナ、酸化マグネシウム等の金属酸化物、窒化ケイ素、窒化アルミニウム、窒化マグネシウム、窒化ホウ素等の金属窒化物、銅、アルミニウム等の金属から選ばれる少なくとも1種類、また、導電性炭素化合物としては、カーボンブラック、カーボンナノチューブ(CNT)、グラフェン、カーボンナノファイバー等から選ばれる少なくとも1種類が好ましい。これらの熱伝導性フィラー及び導電性炭素化合物は、1種単独で、または2種以上を組み合わせて用いることができる。これらの中でも、熱伝導率調整用物質としては、熱伝導性フィラーが好ましい。また、熱伝導性フィラーとしては、金属酸化物と金属窒化物とを含むことがより好ましい。さらに、熱伝導性フィラーとして金属酸化物と金属窒化物とを含む場合、金属酸化物と金属窒化物との質量比率は、10:90~90:10が好ましく、20:80~80:20がより好ましく、50:50~75:25がさらに好ましい。
 熱伝導率調整用物質の形状は、特に制限されるものではないが、適用する電子デバイス、素子等に貼付した際に、それらの接触又は機械的損傷により、電子デバイス、素子等の電気特性等が損なわれない形状であればよく、例えば、板状(鱗片状を含む)、球状、針状、棒状、繊維状のいずれでもよい。なお、高熱伝導部に用いる前記熱伝導性フィラーには、前述した「中空フィラー」は含まれない。
(Thermal conductive filler and conductive carbon compound)
The heat conductive filler is not particularly limited, but is selected from metal oxides such as silica, alumina and magnesium oxide, metal nitrides such as silicon nitride, aluminum nitride, magnesium nitride and boron nitride, and metals such as copper and aluminum. As the conductive carbon compound, at least one selected from carbon black, carbon nanotube (CNT), graphene, carbon nanofiber, and the like is preferable. These heat conductive fillers and conductive carbon compounds can be used singly or in combination of two or more. Among these, as the thermal conductivity adjusting substance, a thermal conductive filler is preferable. Moreover, as a heat conductive filler, it is more preferable that a metal oxide and a metal nitride are included. Further, when the metal oxide and the metal nitride are included as the thermally conductive filler, the mass ratio of the metal oxide and the metal nitride is preferably 10:90 to 90:10, and 20:80 to 80:20. More preferred is 50:50 to 75:25.
The shape of the material for adjusting the thermal conductivity is not particularly limited, but electrical properties of the electronic device, element, etc. due to contact or mechanical damage when applied to the applied electronic device, element, etc. For example, any of a plate shape (including a scale shape), a spherical shape, a needle shape, a rod shape, and a fiber shape may be used. In addition, the above-mentioned “hollow filler” is not included in the heat conductive filler used in the high heat conductive portion.
 熱伝導率調整用物質のサイズは、高熱伝導部の厚み方向に熱伝導率調整用物質を均一に分散させて熱伝導性を向上させる観点から、例えば、平均粒子径が0.1~200μmが好ましく、1~100μmがより好ましく、5~50μmがさらに好ましく、10~30μmが特に好ましい。なお、平均粒子径は、例えば、コールターカウンター法により測定することができる。熱伝導率調整用物質の平均粒子径がこの範囲にあれば、個々の物質内部での熱伝導が小さくなることもなく、結果として高熱伝導部の熱伝導率が向上する。また、粒子同士の凝集が起こりにくく、均一に分散させることができ、さらに、高熱伝導部への充填密度が十分となり、物質界面において高熱伝導部が脆くなることもない。 From the viewpoint of improving the thermal conductivity by uniformly dispersing the thermal conductivity adjusting material in the thickness direction of the high thermal conductivity portion, the size of the thermal conductivity adjusting material is, for example, an average particle size of 0.1 to 200 μm. It is preferably 1 to 100 μm, more preferably 5 to 50 μm, particularly preferably 10 to 30 μm. The average particle diameter can be measured by, for example, a Coulter counter method. If the average particle diameter of the thermal conductivity adjusting substance is within this range, the thermal conductivity within each substance is not reduced, and as a result, the thermal conductivity of the high thermal conductivity portion is improved. In addition, the particles are less likely to aggregate and can be uniformly dispersed. Further, the packing density in the high heat conduction part is sufficient, and the high heat conduction part does not become brittle at the substance interface.
 熱伝導率調整用物質の含有量は、所望の熱伝導率に応じて適宜調整され、樹脂組成物中、40~99質量%が好ましく、50~95質量%がより好ましく、50~80質量%が特に好ましい。熱伝導率調整用物質の含有量がこの範囲にあれば、放熱特性、耐折性、耐屈曲性が優れ、高熱伝導部の強度が維持される。 The content of the thermal conductivity adjusting substance is appropriately adjusted according to the desired thermal conductivity, and is preferably 40 to 99 mass%, more preferably 50 to 95 mass%, and more preferably 50 to 80 mass% in the resin composition. Is particularly preferred. If the content of the material for adjusting the thermal conductivity is within this range, the heat dissipation characteristics, folding resistance, and bending resistance are excellent, and the strength of the high thermal conductivity portion is maintained.
(その他の成分)
 高熱伝導部の樹脂組成物には、さらに前記低熱伝導部の樹脂組成物と同様、必要に応じて適宜な範囲内で、同種類の添加剤が含まれていてもよい。
(Other ingredients)
The resin composition of the high heat conduction part may further contain the same type of additives within an appropriate range as necessary, similarly to the resin composition of the low heat conduction part.
 高熱伝導部及び低熱伝導部のそれぞれの層の厚みは、1~200μmが好ましく、3~100μmがさらに好ましい。この範囲であれば、熱を特定の方向に選択的に放熱することができる。また、高熱伝導部及び低熱伝導部のそれぞれの層の厚みは、同じであっても異なっていてもよい。
 高熱伝導部及び低熱伝導部のそれぞれの層の幅は、適用する電子デバイスの仕様により適宜調整して用いるが、通常、0.01~3mm、好ましくは0.1~2mm、さらに好ましくは0.5~1.5mmである。この範囲であれば、熱を特定の方向に選択的に放熱することができる。また、高熱伝導部及び低熱伝導部のそれぞれの層の幅は、同じであっても異なっていてもよい。
The thickness of each layer of the high heat conduction part and the low heat conduction part is preferably 1 to 200 μm, and more preferably 3 to 100 μm. Within this range, heat can be selectively radiated in a specific direction. Moreover, the thickness of each layer of a high heat conduction part and a low heat conduction part may be the same, or may differ.
The width of each layer of the high heat conduction part and the low heat conduction part is appropriately adjusted according to the specification of the applied electronic device, but is usually 0.01 to 3 mm, preferably 0.1 to 2 mm, and more preferably 0. 5 to 1.5 mm. Within this range, heat can be selectively radiated in a specific direction. Moreover, the width of each layer of the high heat conduction part and the low heat conduction part may be the same or different.
 高熱伝導部の熱伝導率は、低熱伝導部の熱伝導率に比べて十分に高ければよく、熱伝導率が0.5(W/m・K)以上が好ましく、1.0(W/m・K)以上がより好ましく、1.3(W/m・K)以上がさらに好ましい。高熱伝導部の熱伝導率の上限は、特に制限はないが、通常2000(W/m・K)以下が好ましく、500(W/m・K)以下がより好ましい。 The heat conductivity of the high heat conduction part should be sufficiently higher than that of the low heat conduction part, and the heat conductivity is preferably 0.5 (W / m · K) or more, and 1.0 (W / m · K) or more is more preferable, and 1.3 (W / m · K) or more is more preferable. Although there is no restriction | limiting in particular in the upper limit of the heat conductivity of a high heat conductive part, Usually 2000 (W / m * K) or less is preferable and 500 (W / m * K) or less is more preferable.
 低熱伝導部の熱伝導率は、0.5(W/m・K)未満が好ましく、0.3(W/m・K)以下がより好ましく、0.25(W/m・K)以下がさらに好ましい。高熱伝導部及び低熱伝導部のそれぞれの熱伝導率が上記のような範囲にあれば、熱を特定の方向に選択的に放熱することができる。 The thermal conductivity of the low thermal conductivity part is preferably less than 0.5 (W / m · K), more preferably 0.3 (W / m · K) or less, and 0.25 (W / m · K) or less. Further preferred. If the respective heat conductivities of the high heat conducting portion and the low heat conducting portion are in the above ranges, heat can be selectively radiated in a specific direction.
 前記高熱伝導部を構成する樹脂組成物と前記低熱伝導部を構成する樹脂組成物との複合硬化収縮率が、2%以下であることが好ましく、1%以下であることがより好ましく、0.8%以下がさらに好ましい。複合硬化収縮率がこの範囲にあれば、高熱伝導部及び低熱伝導部のパターン寸法精度が向上し、熱を特定の方向に選択的に放熱し、前記電子デバイス等の内部に十分な温度差が付与できる。
 ここで、本発明における、上述した「複合硬化収縮率」は、前記高熱伝導部を構成する樹脂組成物から形成される、例えばストライプパターンと前記低熱伝導部を構成する樹脂組成物から形成される、例えばストライプパターンとからなる複合パターン(例えば、図1、図2(a)参照)の、硬化前後の寸法変化を測定し、以下の式より定義し、算出した。
複合硬化収縮率(%)=[(硬化前ストライプパターンピッチ方向全幅-硬化後ストライプパターンピッチ方向全幅)/硬化前ストライプパターンピッチ方向全幅]×100
 具体的には、下記に示す仕様のストライプパターン(樹脂組成物)群において、高熱伝導部形成用樹脂組成物から形成される高熱伝導部ストライプパターンのピッチ方向の幅と低熱伝導部形成用樹脂組成物から形成される低熱伝導部ストライプパターンのピッチ方向の幅との合計幅(すなわち、ストライプパターンのピッチ方向全幅)を、硬化前後で、デジタルマルチメーター(日本光器社製、NRM-S3-XY型)を用いて測定することにより行った。
 寸法測定用サンプルの仕様は以下のようである。
・ストライプパターン(樹脂組成物)群:100mm×100mm、厚み100μm
・高熱伝導部:ストライプ幅1mm、長さ100mm、厚み100μm
・低熱伝導部:ストライプ幅1mm、長さ100mm、厚み100μm
・高熱伝導部(ストライプ)と低熱伝導部(ストライプ)とをピッチ方向に交互に配置(但し、ストライプ間のスペースをゼロとする)
 また、例えば、図2(b)~図2(g)のように、熱伝導性接着シートの厚みの構成が異なる(図1、図2(a)において高熱伝導部、低熱伝導部の厚みが互いに異なる場合を含む;但し、高熱伝導部、低熱伝導部の少なくともいずれかはストライプパターンである)場合の寸法測定用サンプルの仕様としては、熱伝導性接着シートの厚みの構成は維持し、高熱伝導部、低熱伝導部の各層の厚みのみをそれぞれ等倍の厚みに増加又は減少させ、層全体の総厚みを100μmとなるようにした。
The composite curing shrinkage ratio of the resin composition constituting the high heat conduction part and the resin composition constituting the low heat conduction part is preferably 2% or less, more preferably 1% or less, and 8% or less is more preferable. If the composite curing shrinkage rate is within this range, the pattern dimensional accuracy of the high heat conduction part and the low heat conduction part is improved, heat is selectively radiated in a specific direction, and a sufficient temperature difference is present inside the electronic device or the like. Can be granted.
Here, in the present invention, the above-mentioned “composite curing shrinkage” is formed from a resin composition constituting the high heat conduction part, for example, a stripe pattern and a resin composition constituting the low heat conduction part. For example, a dimensional change before and after curing of a composite pattern (for example, see FIG. 1 and FIG. 2A) composed of a stripe pattern was measured, and was defined and calculated from the following equation.
Composite cure shrinkage (%) = [(full width in stripe pattern pitch direction before curing−full width in stripe pattern pitch direction after cure) / full width in stripe pattern pitch direction before cure] × 100
Specifically, in the stripe pattern (resin composition) group having the specifications shown below, the width in the pitch direction and the resin composition for forming a low heat conduction part of the high heat conduction part stripe pattern formed from the resin composition for forming a high heat conduction part The total width (that is, the total width in the pitch direction of the stripe pattern) of the stripe pattern of the low thermal conductive portion formed from the product before and after curing is a digital multimeter (NRM-S3-XY, manufactured by Nippon Koki Co., Ltd.). Type).
The specifications of the sample for dimension measurement are as follows.
Stripe pattern (resin composition) group: 100 mm × 100 mm, thickness 100 μm
High heat conduction part: stripe width 1 mm, length 100 mm, thickness 100 μm
Low heat conduction part: stripe width 1 mm, length 100 mm, thickness 100 μm
・ Alternately arrange high heat conduction parts (stripe) and low heat conduction parts (stripe) in the pitch direction (however, the space between stripes is zero)
Further, for example, as shown in FIGS. 2B to 2G, the thickness of the heat conductive adhesive sheet is different (the thicknesses of the high heat conduction portion and the low heat conduction portion in FIGS. 1 and 2A are different). The dimensions of the sample for dimensional measurement in the case of including a case where they are different from each other; provided that at least one of the high heat conduction part and the low heat conduction part is a stripe pattern) Only the thickness of each layer of the conduction part and the low heat conduction part was increased or decreased to the same thickness, so that the total thickness of the entire layer was 100 μm.
 高熱伝導部の150℃における貯蔵弾性率は、0.1MPa以上が好ましく、0.15MPa以上がより好ましく、1MPa以上がさらに好ましい。また、低熱伝導部の150℃における貯蔵弾性率は、0.1MPa以上が好ましく、0.15MPa以上がより好ましく、1MPa以上がさらに好ましい。高熱伝導部及び低熱伝導部の150℃における貯蔵弾性率が0.1MPa以上である場合には、基材が過度に変形することが抑制され、安定的に放熱することができる。高熱伝導部及び低熱伝導部の150℃における貯蔵弾性率の上限は特に限定されないが、500MPa以下であることが好ましく、100MPa以下であることがより好ましく、50MPa以下であることがさらに好ましい。
 高熱伝導部及び低熱伝導部の150℃における貯蔵弾性率は、前述した樹脂や、熱伝導率調整用物質の含有量により調整することができる。
 なお、150℃における貯蔵弾性率は、動的弾性率測定装置[TAインスツルメント社製、機種名「DMAQ800」]により、初期温度を15℃、昇温速度3℃/minで150℃まで昇温させ、周波数11Hzにて測定された値である。
The storage elastic modulus at 150 ° C. of the high heat conducting part is preferably 0.1 MPa or more, more preferably 0.15 MPa or more, and further preferably 1 MPa or more. Further, the storage elastic modulus at 150 ° C. of the low thermal conductivity part is preferably 0.1 MPa or more, more preferably 0.15 MPa or more, and further preferably 1 MPa or more. When the storage elastic modulus at 150 ° C. of the high heat conduction part and the low heat conduction part is 0.1 MPa or more, the base material is suppressed from being deformed excessively, and can stably dissipate heat. The upper limit of the storage elastic modulus at 150 ° C. of the high heat conduction part and the low heat conduction part is not particularly limited, but is preferably 500 MPa or less, more preferably 100 MPa or less, and further preferably 50 MPa or less.
The storage elastic modulus at 150 ° C. of the high heat conduction part and the low heat conduction part can be adjusted by the content of the resin and the material for adjusting the heat conductivity described above.
The storage elastic modulus at 150 ° C. was increased to 150 ° C. at an initial temperature of 15 ° C. and a temperature increase rate of 3 ° C./min using a dynamic elastic modulus measuring apparatus [TA Instruments, model name “DMAQ800”]. It is a value measured at a frequency of 11 Hz by heating.
 高熱伝導部及び低熱伝導部の配置並びにそれらの形状は、いずれも、目的の性能が損なわれない限り、特に制限されない。 The arrangement of the high heat conduction part and the low heat conduction part and their shapes are not particularly limited as long as the target performance is not impaired.
 前記基材の接着剤層と接する面とは反対側の面(すなわち、低熱伝導部と高熱伝導部とがそれぞれ独立して基材のすべての厚みを構成した場合:図1、図2(a))において、高熱伝導部と低熱伝導部との段差は、10μm以下であることが好ましく、5μm以下であることがより好ましく、実質的に存在しないことがさらに好ましい。 The surface of the substrate opposite to the surface in contact with the adhesive layer (that is, the case where the low thermal conductivity portion and the high thermal conductivity portion independently constitute the entire thickness of the substrate: FIGS. 1 and 2 (a). )), The step between the high heat conduction portion and the low heat conduction portion is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably substantially absent.
 高熱伝導部と低熱伝導部の少なくともどちらかが該基材の厚みの一部分を構成している、例えば、図2(b)、(c)の場合、高熱伝導部と低熱伝導部との段差は、10μm以下であることが好ましく、5μm以下であることがより好ましく、実質的に存在しないことがさらに好ましい。さらに、高熱伝導部と低熱伝導部とで所定の段差が設けられている、図2(d)、(e)の場合、基材の厚みを、高熱伝導部と低熱伝導部とでなる厚みとした時の、高熱伝導部と低熱伝導部との段差は、該基材厚みに対し、10~90%が好ましい。また、基材において、高熱伝導部と低熱伝導部との体積比率は、10:90~90:10であることが好ましく、20:80~80:20であることがより好ましく、30:70~70:30であることがさらに好ましい。 At least one of the high heat conduction portion and the low heat conduction portion constitutes a part of the thickness of the base material. For example, in the case of FIGS. 2B and 2C, the step between the high heat conduction portion and the low heat conduction portion is It is preferably 10 μm or less, more preferably 5 μm or less, and still more preferably substantially absent. Further, in the case of FIGS. 2D and 2E in which a predetermined step is provided between the high heat conduction portion and the low heat conduction portion, the thickness of the base material is defined as the thickness composed of the high heat conduction portion and the low heat conduction portion. In this case, the level difference between the high heat conduction portion and the low heat conduction portion is preferably 10 to 90% with respect to the thickness of the base material. In the base material, the volume ratio of the high heat conduction part to the low heat conduction part is preferably 10:90 to 90:10, more preferably 20:80 to 80:20, and 30:70 to More preferably, it is 70:30.
〈接着剤層〉
 接着剤層を構成する接着剤としては、例えば、ゴム系接着剤、アクリル系接着剤、ウレタン系接着剤、シリコーン系接着剤、オレフィン系接着剤、エポキシ系接着剤等の公知の接着剤が挙げられる。この中で、絶縁性及び耐熱性に優れ、熱伝導率が高く、放熱性に優れるという観点からシリコーン系接着剤が好ましく用いられる。また、基材に接着剤層を積層することにより、該接着剤層を熱電素子に貼付した際に、該基材と該熱電素子との絶縁性が十分とれることから、該基材の高熱伝導部に、高熱伝導部をより高熱伝導率化可能な導電性の高い金属を含有させることができるため、温度差の付与をより効率良くすることができる。
<Adhesive layer>
Examples of the adhesive constituting the adhesive layer include known adhesives such as rubber adhesives, acrylic adhesives, urethane adhesives, silicone adhesives, olefin adhesives, and epoxy adhesives. It is done. Among these, a silicone-based adhesive is preferably used from the viewpoints of excellent insulation and heat resistance, high thermal conductivity, and excellent heat dissipation. In addition, by laminating an adhesive layer on the base material, when the adhesive layer is affixed to the thermoelectric element, insulation between the base material and the thermoelectric element can be sufficiently obtained. Since a highly conductive metal capable of increasing the thermal conductivity of the high thermal conductivity portion can be contained in the portion, it is possible to more efficiently impart the temperature difference.
 接着剤層には、本発明の目的が損なわれない範囲で、例えば、粘着付与剤、可塑剤、光重合性化合物、光重合開始剤、発泡剤、重合禁止剤、老化防止剤、充填剤、カップリング剤、帯電防止剤等のその他の成分を添加してもよい。 In the adhesive layer, as long as the object of the present invention is not impaired, for example, tackifier, plasticizer, photopolymerizable compound, photopolymerization initiator, foaming agent, polymerization inhibitor, anti-aging agent, filler, Other components such as a coupling agent and an antistatic agent may be added.
 接着剤層の厚みは、1~200μmが好ましく、5~100μmがさらに好ましい。この範囲であれば、熱伝導性接着シートとして使用した場合、放熱にかかる制御性能に影響を及ぼすことがなく、熱を特定の方向に選択的に放熱することができる。また、使用する電子デバイスに絶縁性が要求される場合、絶縁性を維持できる。 The thickness of the adhesive layer is preferably 1 to 200 μm, more preferably 5 to 100 μm. Within this range, when used as a thermally conductive adhesive sheet, heat can be selectively radiated in a specific direction without affecting the control performance for heat dissipation. Moreover, when the electronic device to be used requires insulation, the insulation can be maintained.
 熱伝導性接着シートの放熱にかかる制御性能と、粘着力とのバランスを調整するという観点から、前記基材の厚みと、前記接着剤層の厚みとの比率(接着剤層/基材)が、0.005~1.0であることが好ましく、0.01~0.8であることがより好ましく、0.1~0.5であることがさらに好ましい。 From the viewpoint of adjusting the balance between the heat dissipation of the heat conductive adhesive sheet and the adhesive force, the ratio of the thickness of the base material to the thickness of the adhesive layer (adhesive layer / base material) is 0.005 to 1.0 is preferable, 0.01 to 0.8 is more preferable, and 0.1 to 0.5 is still more preferable.
〈剥離シート〉
 熱伝導性接着シートは、接着剤層の表面に剥離シートを有していてもよい。剥離シートとしては、例えば、グラシン紙、コート紙、ラミネート紙等の紙及び各種プラスチックフィルムに、シリコーン樹脂、フッ素樹脂等の剥離剤を塗付したもの等が挙げられる。該剥離シートの厚みについては特に制限はないが、通常20~150μmである。本発明に用いる剥離シートに用いる支持基材としては、プラスチックフィルムを用いることが好ましい。
<Peeling sheet>
The heat conductive adhesive sheet may have a release sheet on the surface of the adhesive layer. Examples of the release sheet include papers such as glassine paper, coated paper, and laminated paper, and various plastic films coated with a release agent such as silicone resin and fluorine resin. The thickness of the release sheet is not particularly limited, but is usually 20 to 150 μm. As the support substrate used for the release sheet used in the present invention, it is preferable to use a plastic film.
〈電子デバイス〉
 本発明の熱伝導性接着シートを積層した電子デバイスは、特に制限されないが、放熱等の熱制御の観点から、熱電変換デバイス、光電変換デバイス、大規模集積回路等の半導体デバイス等が挙げられる。特に、熱伝導性接着シートは、熱電変換モジュールに積層することで、熱を特定の方向へ選択的に放熱することができ、結果として熱電性能を向上させることができるため、熱電変換デバイスに好ましく用いられる。
 なお、熱伝導性接着シートは、電子デバイスの片面に積層してもよく、両面に積層してあってもよい。電子デバイスの仕様にあわせて、適宜選択する。
 以下、電子デバイスとして、熱電変換デバイスの場合を例にとって、説明する。
<Electronic device>
Although the electronic device which laminated | stacked the heat conductive adhesive sheet of this invention is not restrict | limited in particular, From a viewpoint of thermal control, such as heat dissipation, semiconductor devices, such as a thermoelectric conversion device, a photoelectric conversion device, a large-scale integrated circuit, etc. are mentioned. In particular, the heat conductive adhesive sheet is preferable for a thermoelectric conversion device because it can selectively dissipate heat in a specific direction by laminating it on a thermoelectric conversion module, resulting in improved thermoelectric performance. Used.
In addition, the heat conductive adhesive sheet may be laminated | stacked on the single side | surface of an electronic device, and may be laminated | stacked on both surfaces. Select according to the specifications of the electronic device.
Hereinafter, the case where a thermoelectric conversion device is used as the electronic device will be described as an example.
(熱電変換デバイス)
 熱電変換デバイスとは、熱と電気との相互エネルギー変換を行う熱電変換素子の内部に温度差を付与することにより電力が得られる電子デバイスである。
 図3は、本発明の熱伝導性接着シートを熱電変換モジュールに積層した際の熱電変換デバイスの一例を示す断面図である。図3に示した熱電変換デバイス10は、支持体上(図示せず)上に、P型材料からなる薄膜のP型熱電素子11、N型材料からなる薄膜のN型熱電素子12から構成される熱電変換素子を有し、さらに電極13を設けてなる熱電変換モジュール16と、該熱電変換モジュール16の第1面17に積層された熱伝導性接着シート1A、さらに前記第1面17とは反対側の第2面18に、積層された熱伝導性接着シート1Bから構成される。
(Thermoelectric conversion device)
A thermoelectric conversion device is an electronic device that obtains electric power by applying a temperature difference to the inside of a thermoelectric conversion element that performs mutual energy conversion between heat and electricity.
FIG. 3 is a cross-sectional view showing an example of a thermoelectric conversion device when the heat conductive adhesive sheet of the present invention is laminated on a thermoelectric conversion module. The thermoelectric conversion device 10 shown in FIG. 3 includes a thin P-type thermoelectric element 11 made of P-type material and a thin-film N-type thermoelectric element 12 made of N-type material on a support (not shown). A thermoelectric conversion module 16 having a thermoelectric conversion element and further provided with an electrode 13, a heat conductive adhesive sheet 1A laminated on the first surface 17 of the thermoelectric conversion module 16, and the first surface 17 It is comprised from the heat conductive adhesive sheet 1B laminated | stacked on the 2nd surface 18 of the other side.
 熱伝導性接着シート1Aは、高熱伝導部14a、14b、低熱伝導部15a、15b、15cを含む基材と、該基材の一方の面に積層された接着剤層20とを含み、また熱伝導性接着シート1Bは、高熱伝導部14’a、14’b、14’cと低熱伝導部15’a、15’bを含む基材と、該基材の一方の面に積層された接着剤層20とを含む。 1 A of heat conductive adhesive sheets contain the base material containing the high heat conductive parts 14a and 14b, the low heat conductive parts 15a, 15b, and 15c, and the adhesive bond layer 20 laminated | stacked on the one surface of this base material, and heat The conductive adhesive sheet 1B includes a base material including the high heat conductive portions 14'a, 14'b, 14'c and the low heat conductive portions 15'a, 15'b, and an adhesive laminated on one surface of the base material. Agent layer 20.
 図4に本発明の熱伝導性接着シートと熱電変換モジュールを構成要素ごとに分解した際の一例となる斜視図を示す。図4において、(a)が熱電変換モジュールの支持体19の表面側の熱電素子に設けられる熱伝導性接着シート1Aの斜視図であり、(b)が熱電変換モジュール16の斜視図であり、(c)が熱電変換モジュールの支持体19の裏面側に設けられる熱伝導性接着シート1Bの斜視図である。
 上記のような構成をとることにより、熱伝導性接着シート1A及び熱伝導性接着シート1Bから、効率良く熱を拡散することができる。また、熱伝導性接着シート1Aの高熱伝導部14a、14bと、熱伝導性接着シート1Bの高熱伝導部14’a、14’b、14’cとが対向しないように、位置をずらして積層することで、熱を特定の方向に選択的に放熱させることができる。これにより、熱電変換モジュールに効率良く温度差を付与でき、発電効率の高い熱電変換デバイスが得られる。
 また、接着剤層20を介して、熱伝導性接着シート1A、熱伝導性接着シート1Bを高い接着力で、熱電変換モジュール16の第1面17と第2面18に接着することが可能である。
FIG. 4 shows a perspective view as an example when the thermally conductive adhesive sheet and the thermoelectric conversion module of the present invention are disassembled for each component. 4, (a) is a perspective view of the thermally conductive adhesive sheet 1A provided on the thermoelectric element on the surface side of the support body 19 of the thermoelectric conversion module, and (b) is a perspective view of the thermoelectric conversion module 16. (C) is a perspective view of the heat conductive adhesive sheet 1B provided in the back surface side of the support body 19 of a thermoelectric conversion module.
By taking the above configuration, heat can be efficiently diffused from the heat conductive adhesive sheet 1A and the heat conductive adhesive sheet 1B. Further, the high heat conductive portions 14a and 14b of the heat conductive adhesive sheet 1A and the high heat conductive portions 14'a, 14'b and 14'c of the heat conductive adhesive sheet 1B are stacked so as not to face each other. By doing so, heat can be selectively radiated in a specific direction. Thereby, a temperature difference can be efficiently given to a thermoelectric conversion module, and a thermoelectric conversion device with high power generation efficiency is obtained.
Further, the heat conductive adhesive sheet 1A and the heat conductive adhesive sheet 1B can be bonded to the first surface 17 and the second surface 18 of the thermoelectric conversion module 16 through the adhesive layer 20 with high adhesive force. is there.
 本発明に使用される熱電変換モジュール16は、例えば、図4(b)に示されるように、支持体19上に、P型熱電素子11とN型熱電素子12と電極13とから構成される。P型熱電素子11とN型熱電素子12は直列接続となるように薄膜状に形成され、それぞれの端部で、電極13を介して接合して電気的に接続されている。なお、熱電変換モジュール16におけるP型熱電素子11とN型熱電素子12は、図3に示すように、「電極13、P型熱電素子11、電極13、N型熱電素子12、電極13、・・・・・」のように配置してもよく、「電極13、P型熱電素子11、N型熱電素子12、電極13、P型熱電素子11、N型熱電素子12、電極13、・・・・・」のように配置してもよく、さらに「電極13、P型熱電素子11、N型熱電素子12、P型熱電素子11、N型熱電素子12、・・・電極13」のように配置してもよい。
 前記熱電素子には、特に制限されないが、熱電変換モジュールにより電気エネルギーに変換される熱源の温度域において、ゼーベック係数の絶対値が大きく、熱伝導率が低く、電気伝導率が高い、いわゆる熱電性能指数の高い材料を使用することが好ましい。
The thermoelectric conversion module 16 used in the present invention includes, for example, a P-type thermoelectric element 11, an N-type thermoelectric element 12, and an electrode 13 on a support 19, as shown in FIG. . The P-type thermoelectric element 11 and the N-type thermoelectric element 12 are formed in a thin film shape so as to be connected in series, and are joined and electrically connected via electrodes 13 at their respective ends. As shown in FIG. 3, the P-type thermoelectric element 11 and the N-type thermoelectric element 12 in the thermoelectric conversion module 16 are “electrode 13, P-type thermoelectric element 11, electrode 13, N-type thermoelectric element 12, electrode 13,. May be arranged as "electrode 13, P-type thermoelectric element 11, N-type thermoelectric element 12, electrode 13, P-type thermoelectric element 11, N-type thermoelectric element 12, electrode 13, ..." .. ””, And “electrode 13, P-type thermoelectric element 11, N-type thermoelectric element 12, P-type thermoelectric element 11, N-type thermoelectric element 12,... You may arrange in.
The thermoelectric element is not particularly limited, but in the temperature range of the heat source converted into electric energy by the thermoelectric conversion module, the absolute value of the Seebeck coefficient is large, the thermal conductivity is low, and the so-called thermoelectric performance is high. It is preferable to use a material with a high index.
 P型熱電素子及びN型熱電素子を構成する材料としては、熱電変換特性を有すものであれば特に制限はないが、ビスマステルライド、BiTe等のビスマス-テルル系熱電半導体材料、GeTe、PbTe等のテルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、ZnSb、ZnSb、ZnSb等の亜鉛-アンチモン系熱電半導体材料、SiGe等のシリコン-ゲルマニウム系熱電半導体材料、BiSe等のビスマスセレナイド系熱電半導体材料、β―FeSi、CrSi、MnSi1.73、MgSi等のシリサイド系熱電半導体材料、酸化物系熱電半導体材料、FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料などが用いられる。 The material constituting the P-type thermoelectric element and the N-type thermoelectric element is not particularly limited as long as it has thermoelectric conversion characteristics, but bismuth-tellurium-based thermoelectric semiconductor materials such as bismuth telluride and Bi 2 Te 3 , GeTe Telluride-based thermoelectric semiconductor materials such as PbTe, antimony-tellurium-based thermoelectric semiconductor materials, zinc-antimony-based thermoelectric semiconductor materials such as ZnSb, Zn 3 Sb 2 , Zn 4 Sb 3 , silicon-germanium-based thermoelectric semiconductor materials such as SiGe, Bismuth selenide-based thermoelectric semiconductor materials such as Bi 2 Se 3 , silicide-based thermoelectric semiconductor materials such as β-FeSi 2 , CrSi 2 , MnSi 1.73 , Mg 2 Si, oxide-based thermoelectric semiconductor materials, FeVAl, FeVAlSi, FeVTiAl Heusler materials such as are used.
 P型熱電素子11及びN型熱電素子12の厚みは、0.1~100μmが好ましく、1~50μmがさらに好ましい。
 なお、P型熱電素子11とN型熱電素子12の厚みは、特に限定されるものではなく、同じ厚みでも、異なる厚みでもよい。
The thicknesses of the P-type thermoelectric element 11 and the N-type thermoelectric element 12 are preferably 0.1 to 100 μm, and more preferably 1 to 50 μm.
Note that the thicknesses of the P-type thermoelectric element 11 and the N-type thermoelectric element 12 are not particularly limited, and may be the same or different.
[熱伝導性接着シートの製造方法]
 本発明の熱伝導性接着シートの製造方法は、高熱伝導部と低熱伝導部とを含む基材と接着剤層から構成され、該基材の一方の面に接着剤層が積層され、かつ該基材の他方の面が該低熱伝導部の該接着剤層と接する面とは反対側の面と、該高熱伝導部の該接着剤層と接する面とは反対側の面とで構成、もしくは該高熱伝導部と該低熱伝導部の少なくともどちらかが該基材の厚みの一部分を構成している熱伝導性接着シートを製造する方法であって、剥離可能な支持基材上に、樹脂組成物から形成される高熱伝導部と、樹脂組成物から形成される低熱伝導部とから基材を形成する工程、及び該基材に接着剤層を積層する工程を含むことを特徴とする。
[Method for producing thermally conductive adhesive sheet]
The method for producing a heat conductive adhesive sheet of the present invention comprises a base material including a high heat conduction part and a low heat conduction part and an adhesive layer, the adhesive layer is laminated on one surface of the base material, and The other surface of the substrate is composed of a surface on the opposite side to the surface in contact with the adhesive layer of the low thermal conductivity portion and a surface on the opposite side to the surface in contact with the adhesive layer of the high thermal conductivity portion, or A method for producing a heat conductive adhesive sheet in which at least one of the high heat conductive portion and the low heat conductive portion constitutes a part of the thickness of the base material, wherein the resin composition is formed on a detachable support base material. The method includes a step of forming a base material from a high heat conductive portion formed from a material and a low heat conductive portion formed from a resin composition, and a step of laminating an adhesive layer on the base material.
<基材形成工程>
 剥離可能な支持基材上に、高熱伝導部及び低熱伝導部とを含む基材を形成する工程である。
<Base material forming step>
This is a step of forming a base material including a high heat conduction part and a low heat conduction part on a peelable support base material.
(支持基材)
 剥離可能な支持基材として、前述した熱伝導性接着シートの接着剤層の表面に有する剥離シートと同一のものを用いることができ、グラシン紙、コート紙、ラミネート紙などの紙及び各種プラスチックフィルムが挙げられる。この中で、シリコーン樹脂、フッ素樹脂などの剥離剤を塗付したプラスチックフィルムが好ましい。
 剥離剤の塗布方法は、公知の方法を用いることができる。
(Supporting substrate)
As the detachable support substrate, the same release sheet as that on the surface of the adhesive layer of the above-mentioned heat conductive adhesive sheet can be used. Paper such as glassine paper, coated paper, laminated paper, and various plastic films Is mentioned. Among these, a plastic film coated with a release agent such as a silicone resin or a fluororesin is preferable.
A known method can be used as a method for applying the release agent.
〈高熱伝導部形成工程〉
 高熱伝導部を形成する工程である。高熱伝導部は、樹脂組成物を用いて支持基材上、又は支持基材上及び低熱伝導部上に形成される。樹脂組成物の塗布方法としては、特に限定されるものではなく、例えば、ステンシル印刷、ディスペンサー、スクリーン印刷法、ロールコート法、スロットダイ等の公知の方法により形成すればよい。
 本発明に用いる樹脂組成物において、熱硬化性樹脂を使用した場合の硬化条件としては、使用する組成物により適宜調整されるが、80℃~150℃が好ましく、より好ましくは90℃~120℃である。また、必要に応じて、硬化は加圧しながら行うこともできる。
 また、光硬化性樹脂を使用した場合は、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用い、紫外線により硬化させることができる。光量として、通常100~1500mJ/cmである。
<High heat conduction part formation process>
This is a step of forming a high heat conduction part. A high heat conduction part is formed on a support base material or a support base material, and a low heat conduction part using a resin composition. The application method of the resin composition is not particularly limited, and may be formed by a known method such as stencil printing, dispenser, screen printing method, roll coating method, slot die, or the like.
In the resin composition used in the present invention, the curing conditions when a thermosetting resin is used are appropriately adjusted depending on the composition used, but are preferably 80 ° C. to 150 ° C., more preferably 90 ° C. to 120 ° C. It is. If necessary, curing can be performed while applying pressure.
When a photocurable resin is used, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, etc. can be used for curing with ultraviolet rays. The amount of light is usually 100 to 1500 mJ / cm 2 .
〈低熱伝導部形成工程〉
 低熱伝導部を形成する工程である。低熱伝導部は、前述した樹脂と中空フィラーとを含む樹脂組成物を用いて、支持基材上、又は支持基材上及び高熱伝導部上に形成される。樹脂組成物の塗布方法としては、特に限定されるものではなく、高熱伝導部の形成と同様、例えば、ステンシル印刷、ディスペンサー、スクリーン印刷法、ロールコート法、スロットダイ等の公知の方法により形成すればよい。また、硬化方法に関しても、高熱伝導部の硬化方法と同様である。
 なお、高熱伝導部及び低熱伝導部の形成順序は、特に制限されない。パターン形状、電子デバイスの仕様等により、適宜選択すればよい。
<Low heat conduction part formation process>
This is a step of forming a low thermal conduction part. The low heat conduction part is formed on the support base material or on the support base material and on the high heat conduction part using the resin composition containing the resin and the hollow filler described above. The application method of the resin composition is not particularly limited, and may be formed by a known method such as stencil printing, dispenser, screen printing method, roll coating method, slot die, etc., as in the formation of the high thermal conductivity portion. That's fine. Further, the curing method is the same as the curing method for the high thermal conductivity portion.
In addition, the order in which the high heat conduction part and the low heat conduction part are formed is not particularly limited. What is necessary is just to select suitably by pattern shape, the specification of an electronic device, etc.
〈接着剤層積層工程〉
 前記基材形成工程で得られた基材に、接着剤層を積層する工程である。
 接着剤層の形成は、公知の方法で行うことができ、前記基材に直接形成してもよいし、予め剥離シート上に形成した接着剤層を、前記基材に貼り合わせて、接着剤層を基材に転写させて形成してもよい。
<Adhesive layer lamination process>
In this step, an adhesive layer is laminated on the base material obtained in the base material forming step.
Formation of the adhesive layer can be performed by a known method, and may be directly formed on the base material, or an adhesive layer previously formed on a release sheet is bonded to the base material, and an adhesive agent is formed. The layer may be formed by transferring it to a substrate.
 本発明の製造方法によれば、簡便な方法で電子デバイス等の内部において、熱を逃がす又は熱の流れを特定の方向に制御でき、かつ硬化収縮が抑制された寸法精度の高い熱伝導性接着シートを製造することができる。 According to the manufacturing method of the present invention, heat conduction bonding with high dimensional accuracy in which heat is released or heat flow can be controlled in a specific direction and curing shrinkage is suppressed in an electronic device or the like by a simple method. Sheets can be manufactured.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 実施例、比較例で作製した熱伝導性接着シート(接着剤層積層前)の複合硬化収縮率、高熱伝導部及び低熱伝導部の熱伝導率測定、温度差の評価、並びに電子デバイスの評価は、以下の方法で行った。
(a)熱伝導性接着シートの複合硬化収縮率測定
 複合硬化収縮率は、剥離可能な支持基材付きの、高熱伝導部形成用樹脂組成物から形成されるストライプパターン及び低熱伝導部形成用樹脂組成物から形成されるストライプパターンとから複合してなるストライプパターン群(100mm×100mm、厚み100μm;但し、熱伝導性接着シートの厚みの構成が異なり、ストライプパターンが高熱伝導部、又は低熱伝導部の少なくともいずれか一方のみとなる場合を含む)のピッチ方向の全幅の、硬化(硬化条件:使用した樹脂組成物により異なるが最適硬化条件で行うものとする)前後の寸法変化を、デジタルマルチメーター(日本光器社製、NRM-S3-XY型)で測定し、下記式から算出した。
複合硬化収縮率(%)=[(硬化前ストライプパターンピッチ方向全幅-硬化後ストライプパターンピッチ方向全幅)/硬化前ストライプパターンピッチ方向全幅]×100
 なお、ストライプパターンの仕様は、前述したとおりであり、硬化後の寸法測定は、剥離可能な支持基材が硬化物の収縮を抑制することを避けるために、剥離可能な支持基材なし、すなわち、硬化後の応力緩和が剥離可能な支持基材から剥がした状態(但し、硬化物は、例えば、応力緩和が阻害されないガラス基板等の平面上に静置)でなされた硬化物に対して行った。
(b)高熱伝導部及び低熱伝導部の熱伝導率測定
 熱伝導率測定装置(EKO社製、HC-110)を用いて、高熱伝導部及び低熱伝導部の各部の熱伝導率を測定した。
Examples, composite curing shrinkage rate of heat conductive adhesive sheets (before adhesive layer lamination) prepared in Examples, comparative heat conductivity measurement of high heat conduction part and low heat conduction part, evaluation of temperature difference, and evaluation of electronic device The following method was used.
(A) Composite cure shrinkage ratio measurement of heat conductive adhesive sheet Composite cure shrinkage ratio is a stripe pattern formed from a resin composition for forming a high heat conduction part and a resin for forming a low heat conduction part with a detachable support substrate. Stripe pattern group (100 mm × 100 mm, thickness 100 μm; however, the configuration of the thickness of the heat conductive adhesive sheet is different, and the stripe pattern is a high heat conduction part or a low heat conduction part. The digital multimeter measures the dimensional change before and after curing (curing conditions: depending on the resin composition used, but performed under optimum curing conditions) of the entire width in the pitch direction of (including the case where only at least one of these is included) (NRM-S3-XY type, manufactured by Nippon Koki Co., Ltd.) and calculated from the following formula.
Composite cure shrinkage (%) = [(full width in stripe pattern pitch direction before curing−full width in stripe pattern pitch direction after cure) / full width in stripe pattern pitch direction before cure] × 100
The specification of the stripe pattern is as described above, and the dimension measurement after curing is performed without a peelable support substrate in order to prevent the peelable support substrate from suppressing shrinkage of the cured product, that is, The cured product was peeled off from the support substrate where the stress relaxation after curing was performed (however, the cured product was, for example, left on a flat surface of a glass substrate or the like where stress relaxation was not hindered). It was.
(B) Measurement of thermal conductivity of high thermal conductivity portion and low thermal conductivity portion The thermal conductivity of each of the high thermal conductivity portion and the low thermal conductivity portion was measured using a thermal conductivity measuring device (HC-110, manufactured by EKO).
(c)高熱伝導部及び低熱伝導部の温度測定
 得られた熱伝導性接着シートの剥離シートを剥離して露出した接着剤層を、図5に示したように、ソーダガラス(大きさ50mm×50mm、厚み0.5mm)からなる被着体2の上面に貼付した後、もう一方の側の剥離可能な支持基材を剥離した。次いで、被着体2の下面を75℃で1時間加熱し温度を安定させた後、被着体2の上面に付けたK熱電対(クロメルアルメル)により被着体の温度を測定した。なお、熱電対は、高熱伝導部及び低熱伝導部に対応する部分の被着体上(測定箇所:図5において、温度差測定部6;A、B、C、D)に設けられており、1秒毎に5分間熱電対の温度を測定し、得られた各点での平均値を算出した。
(C) Temperature measurement of high heat conduction part and low heat conduction part As shown in FIG. 5, the adhesive layer exposed by peeling off the release sheet of the obtained heat conductive adhesive sheet was soda glass (size 50 mm × After being attached to the upper surface of the adherend 2 having a thickness of 50 mm and a thickness of 0.5 mm, the peelable supporting substrate on the other side was peeled off. Next, the lower surface of the adherend 2 was heated at 75 ° C. for 1 hour to stabilize the temperature, and then the temperature of the adherend was measured by a K thermocouple (chromel alumel) attached to the upper surface of the adherend 2. In addition, the thermocouple is provided on the adherend of the part corresponding to the high heat conduction part and the low heat conduction part (measurement location: in FIG. 5, temperature difference measurement part 6; A, B, C, D), The temperature of the thermocouple was measured every second for 5 minutes, and the average value at each obtained point was calculated.
(熱電変換モジュールの作製)
 図6の一部に示すように、支持体36上に、P型熱電素子31(P型のビスマス-テルル系熱電半導体材料)とN型熱電素子32(N型のビスマス-テルル系熱電半導体材料)とを、それぞれ同一サイズ(幅1.7mm×長さ100mm、厚み0.5mm)となるように配置するとともに、両方の熱電素子及び熱電素子間に銅電極(銅電極33a:幅0.15mm×長さ100mm、厚み0.5mm;銅電極33b:幅0.3mm×長さ100mm、厚み0.5mm;銅電極33c:幅0.15mm×長さ100mm、厚み0.5mm)を設け、熱電変換モジュール37を作製した。
(Production of thermoelectric conversion module)
As shown in part of FIG. 6, on a support 36, a P-type thermoelectric element 31 (P-type bismuth-tellurium-based thermoelectric semiconductor material) and an N-type thermoelectric element 32 (N-type bismuth-tellurium-based thermoelectric semiconductor material). ) Are arranged to have the same size (width 1.7 mm × length 100 mm, thickness 0.5 mm), and a copper electrode (copper electrode 33a: width 0.15 mm) between both thermoelectric elements and thermoelectric elements. X length 100 mm, thickness 0.5 mm; copper electrode 33b: width 0.3 mm x length 100 mm, thickness 0.5 mm; copper electrode 33c: width 0.15 mm x length 100 mm, thickness 0.5 mm) A conversion module 37 was produced.
(電子デバイス評価)
 実施例、比較例で得られた熱電変換デバイスの下面38(図6参照)をホットプレートで75℃に加熱し、反対側の上面39(図6参照)を25℃に冷却した状態で、そのまま1時間保持し、温度を安定させた後、熱起電力V(V)、電気抵抗R(Ω)を測定した。出力P(W)は、測定した熱起電力Vと電気抵抗Rを用い、P=V/Rにより算出した。
(Electronic device evaluation)
The lower surface 38 (see FIG. 6) of the thermoelectric conversion devices obtained in the examples and comparative examples was heated to 75 ° C. with a hot plate, and the opposite upper surface 39 (see FIG. 6) was cooled to 25 ° C. After maintaining for 1 hour to stabilize the temperature, thermoelectromotive force V (V) and electric resistance R (Ω) were measured. The output P (W) was calculated by P = V 2 / R using the measured thermoelectromotive force V and electric resistance R.
(実施例1)
(1)熱伝導性接着シートの作製
 シリコーン樹脂A(旭化成ワッカー社製、「SilGel612-A」)19.8質量部、シリコーン樹脂B(旭化成ワッカー社製、「SilGel612-B」)19.8質量部、硬化遅延剤(旭化成ワッカー社製、「PT88」)0.4質量部、熱伝導性フィラーとして、アルミナ(昭和電工社製、「アルナビーズCB-A20S」、平均粒子径20μm)40質量部、窒化ホウ素(昭和電工社製、「ショウビーエヌ UHP-2」、平均粒子径12μm)20質量部を添加し、自転・公転ミキサー(THINKY社製、「ARE-250」)を用いて混合分散し、高熱伝導部形成用の樹脂組成物を調製した。
 一方、シリコーン樹脂A(旭化成ワッカー社製、「SilGel612-A」)31.7質量部、シリコーン樹脂B(旭化成ワッカー社製、「SilGel612-B」)31.7質量部、硬化遅延剤(旭化成ワッカー社製、「PT88」)0.6質量部、中空フィラーとして、ガラス中空フィラー(住友スリーエム社製、「グラスバブルズS38」、平均粒子径40μm、真密度0.38g/cm)36質量部を添加(低熱伝導部全体積中、ガラス中空フィラーが60体積%含有)し、自転・公転ミキサー(THINKY社製、「ARE-250」)を用いて混合分散し、低熱伝導部形成用の樹脂組成物を調製した。
 次に、剥離可能な支持基材(リンテック社製、「PET50FD」)の剥離処理された面に、前記高熱伝導部形成用の樹脂組成物を、ディスペンサー(武蔵エンジニアリング社製、「ML-808FXcom-CE」)を用いて塗布し、ストライプ状パターン(幅1mm×長さ100mm、厚み50μm、パターン中心間距離2mm)からなる高熱伝導部34(図6参照)を形成した。さらに、その上からアプリケータを用いて、低熱伝導部形成用の樹脂組成物を塗布し、150℃で30分間硬化させることで、該高熱伝導部のストライプ状パターン間に、高熱伝導部と同じ厚さの低熱伝導部35(図6参照)が形成された熱伝導性接着シートを得た。なお、高熱伝導部上には、低熱伝導部が形成されていないことを確認した。
 一方、剥離シート(リンテック社製、PET50FD)の剥離処理された面に、シリコーン系接着剤を塗布し、90℃で1分間乾燥させ、厚さ10μmの接着剤層を形成した。接着剤層と基材を貼り合わせ、剥離シートおよび剥離可能な支持基材で挟持された構成の熱伝導性接着シートを作製した。前記基材の接着剤層と接する面とは反対側の面において、高熱伝導部と低熱伝導部との段差は実質的に存在しなかった。
 高熱伝導部の150℃における貯蔵弾性率は、2.3MPa、低熱伝導部の150℃における貯蔵弾性率は、3.4MPaだった。
(Example 1)
(1) Production of Thermally Conductive Adhesive Sheet Silicone Resin A (Asahi Kasei Wacker, “SilGel612-A”) 19.8 parts by mass, Silicone Resin B (Asahi Kasei Wacker, “SilGel612-B”) 19.8 parts by mass Parts, 0.4 parts by mass of a retarder (Asahi Kasei Wacker, “PT88”), 40 parts by mass of alumina (manufactured by Showa Denko, “Aruna Beads CB-A20S”, average particle diameter 20 μm) as a thermally conductive filler, Add 20 parts by weight of boron nitride (Showa Denko Co., Ltd., “ShowNu UHP-2”, average particle size: 12 μm), and mix and disperse using a rotating / revolving mixer (THINKY, “ARE-250”). A resin composition for forming a high heat conduction part was prepared.
On the other hand, silicone resin A (Asahi Kasei Wacker, “SilGel612-A”) 31.7 parts by mass, silicone resin B (Asahi Kasei Wacker, “SilGel612-B”) 31.7 parts by mass, curing retarder (Asahi Kasei Wacker) 0.6 parts by mass, “PT88” manufactured by the company, 36 parts by mass of glass hollow filler (manufactured by Sumitomo 3M, “Glass Bubbles S38”, average particle size 40 μm, true density 0.38 g / cm 3 ) (60% by volume of glass hollow filler contained in the entire volume of the low heat conduction part), and mixed and dispersed using a rotation / revolution mixer ("ARE-250" manufactured by THINKY) to form a resin for forming a low heat conduction part A composition was prepared.
Next, the resin composition for forming the high heat conductive portion is applied to the surface of the peelable supporting substrate (“PET50FD”, manufactured by Lintec Co., Ltd.) with a dispenser (“ML-808FXcom-”, manufactured by Musashi Engineering Co., Ltd.). CE ”) to form a high thermal conductive portion 34 (see FIG. 6) having a stripe pattern (width 1 mm × length 100 mm, thickness 50 μm, pattern center distance 2 mm). Further, by applying a resin composition for forming a low heat conduction part from above using a applicator and curing at 150 ° C. for 30 minutes, between the stripe patterns of the high heat conduction part, the same as the high heat conduction part The heat conductive adhesive sheet in which the low heat conductive part 35 (refer FIG. 6) of thickness was formed was obtained. In addition, it confirmed that the low heat conductive part was not formed on the high heat conductive part.
On the other hand, a silicone-based adhesive was applied to the release-treated surface of a release sheet (PIN50FD, manufactured by Lintec Corporation) and dried at 90 ° C. for 1 minute to form an adhesive layer having a thickness of 10 μm. The adhesive layer and the substrate were bonded to each other, and a heat conductive adhesive sheet having a configuration sandwiched between a release sheet and a peelable support substrate was produced. On the surface opposite to the surface in contact with the adhesive layer of the base material, there was substantially no step between the high heat conductive portion and the low heat conductive portion.
The storage elastic modulus at 150 ° C. of the high heat conduction part was 2.3 MPa, and the storage elastic modulus at 150 ° C. of the low heat conduction part was 3.4 MPa.
(2)熱電変換デバイスの作製
 得られた熱伝導性接着シートを2枚用意し、剥離シートを剥離除去した熱伝導性接着シートを熱電変換モジュール37の熱電素子が形成された側の面と支持体側の面にそれぞれ積層し、次いで、剥離可能な支持基材を剥離除去することで、両面に熱伝導性接着シートが積層された熱電変換デバイスを作製した。
(2) Preparation of thermoelectric conversion device Prepare two sheets of the obtained heat conductive adhesive sheet, and support the surface of the thermoelectric conversion module 37 on which the thermoelectric element is formed and support the heat conductive adhesive sheet from which the release sheet has been peeled off. A thermoelectric conversion device in which a thermally conductive adhesive sheet was laminated on both sides was produced by laminating each on the body-side surface and then peeling and removing the peelable support substrate.
(実施例2)
 低熱伝導部形成用の接着性樹脂組成物をシリコーン樹脂A(旭化成ワッカー社製、「SilGel612-A」)42.6質量部、シリコーン樹脂B(旭化成ワッカー社製、「SilGel612-B」)42.6質量部、硬化遅延剤(旭化成ワッカー社製、「PT88」)0.8質量部、中空フィラーとして、ガラス中空フィラー(住友スリーエム社製、「グラスバブルズS38」、平均粒子径40μm、真密度0.38g/cm)14質量部(低熱伝導部全体積中、ガラス中空フィラーが30体積%含有)とした以外は実施例1と同様にして熱伝導性接着シート、及び熱電変換デバイスを作製した。
 なお、高熱伝導部の硬化後の150℃における貯蔵弾性率は2.3MPa、低熱伝導部の硬化後の150℃における貯蔵弾性率は0.2MPaであった。
(Example 2)
42.6 parts by mass of an adhesive resin composition for forming a low thermal conductive part, silicone resin A (Asahi Kasei Wacker, “SilGel612-A”), silicone resin B (Asahi Kasei Wacker, “SilGel612-B”) 6 parts by weight, 0.8 parts by weight of a retarder (Asahi Kasei Wacker, “PT88”), hollow filler, glass hollow filler (Sumitomo 3M, “Glass Bubbles S38”, average particle diameter 40 μm, true density 0.38 g / cm 3 ) A heat conductive adhesive sheet and a thermoelectric conversion device were produced in the same manner as in Example 1 except that 14 parts by mass (the total volume of the low heat conduction part was 30% by volume of the glass hollow filler). did.
In addition, the storage elastic modulus at 150 ° C. after curing of the high thermal conductivity portion was 2.3 MPa, and the storage elastic modulus at 150 ° C. after curing of the low thermal conductivity portion was 0.2 MPa.
(実施例3)
 樹脂としてシリコーン樹脂A、Bの代わりに、ポリイミド樹脂の前駆体であるポリアミック酸溶液(日産化学工業株式会社製、サンエバー150)15質量部を用いた以外は実施例1と同様にして熱伝導性接着シート、およびそれを用いた熱電変換デバイスを作製した。
 高熱伝導部の150℃における貯蔵弾性率は、4.1MPa、低熱伝導部の150℃における貯蔵弾性率は、0.2MPaだった。
(Example 3)
In place of silicone resins A and B as the resin, thermal conductivity was obtained in the same manner as in Example 1 except that 15 parts by mass of a polyamic acid solution (manufactured by Nissan Chemical Industries, Ltd., Sunever 150), which is a precursor of polyimide resin, was used. An adhesive sheet and a thermoelectric conversion device using the same were produced.
The storage elastic modulus at 150 ° C. of the high heat conduction part was 4.1 MPa, and the storage elastic modulus at 150 ° C. of the low heat conduction part was 0.2 MPa.
(実施例4)
 高熱伝導部の形成において、窒化ホウ素とアルミナの代わりに、熱伝導率調整用物質として導電性炭素化合物であるカーボンナノチューブ(Nano-C社製、SWCNT、平均粒子径0.9~1.3nm)40質量部を用いて基材を作製したこと以外は、実施例1と同様にして熱伝導性接着シート、およびそれを用いた熱電変換デバイスを作製した。
 高熱伝導部の150℃における貯蔵弾性率は、4.0MPa、低熱伝導部の150℃における貯蔵弾性率は、0.2MPaだった。
Example 4
In the formation of the high thermal conductivity portion, instead of boron nitride and alumina, a carbon nanotube which is a conductive carbon compound (Nano-C, SWCNT, average particle size 0.9 to 1.3 nm) is used as a material for adjusting thermal conductivity. Except having produced the base material using 40 mass parts, it carried out similarly to Example 1, and produced the heat conductive adhesive sheet and the thermoelectric conversion device using the same.
The storage elastic modulus at 150 ° C. of the high heat conduction part was 4.0 MPa, and the storage elastic modulus at 150 ° C. of the low heat conduction part was 0.2 MPa.
(実施例5)
 実施例3で用いた前記高熱伝導部形成用の樹脂組成物を用いて、実施例1と同様に、剥離可能な支持基材の剥離処理された面に、ストライプ状パターン(幅1mm×長さ100mm、厚さ50μm、パターン中心間距離2mm)からなる高熱伝導部を形成した。
 次いで、その上に実施例3で用いた低熱伝導部形成用の接着性樹脂組成物を塗布し、120℃で1分乾燥させ、75μmの厚みの低熱伝導部を形成し、基材を作製した。該高熱伝導部のストライプ状パターン間に厚さ75μmの低熱伝導部が形成され、該高熱伝導部上には厚さ25μmの低熱伝導部が形成される構成であった。高熱伝導部と低熱伝導部の厚さの差の絶対値は25μmであった。さらに、実施例1と同様に接着剤層を積層し、図2(c)に示す構成の熱伝導性接着シートを作製した。また、前記基材の接着剤層と接する面とは反対側の面において、高熱伝導部と低熱伝導部との段差は実質的に存在しなかった。
 得られた熱伝導性接着シートを用いて、実施例1と同様に熱電変換デバイスを作製した。
(Example 5)
Using the resin composition for forming a high thermal conductive part used in Example 3, a striped pattern (width 1 mm × length) was formed on the peelable surface of the support substrate that can be peeled in the same manner as in Example 1. A high heat conduction portion having a thickness of 100 mm, a thickness of 50 μm, and a distance between pattern centers of 2 mm was formed.
Next, the adhesive resin composition for forming a low heat conduction part used in Example 3 was applied thereon, and dried at 120 ° C. for 1 minute to form a low heat conduction part having a thickness of 75 μm, thereby producing a substrate. . A low heat conductive portion having a thickness of 75 μm was formed between the stripe patterns of the high heat conductive portion, and a low heat conductive portion having a thickness of 25 μm was formed on the high heat conductive portion. The absolute value of the difference in thickness between the high heat conduction part and the low heat conduction part was 25 μm. Furthermore, the adhesive layer was laminated | stacked similarly to Example 1, and the heat conductive adhesive sheet of the structure shown in FIG.2 (c) was produced. Further, there was substantially no step between the high heat conduction portion and the low heat conduction portion on the surface opposite to the surface in contact with the adhesive layer of the substrate.
A thermoelectric conversion device was produced in the same manner as in Example 1 using the obtained heat conductive adhesive sheet.
(実施例6)
 実施例5で得た基材から剥離可能な支持基材を剥離し、露出した面と接着剤層を貼り合わせて、図2(f)に示す構成の熱伝導性接着シートを作製した。得られた熱伝導性接着シートの基材の接着剤層と接する面とは反対側の面は、すべて低熱伝導部で構成されていた。得られた熱伝導性接着シートを用いて、実施例1と同様に熱電変換デバイスを作製した。
(Example 6)
The support base | substrate which can be peeled from the base material obtained in Example 5 was peeled, the exposed surface and the adhesive bond layer were bonded together, and the heat conductive adhesive sheet of the structure shown in FIG.2 (f) was produced. The surface opposite to the surface in contact with the adhesive layer of the base material of the obtained heat conductive adhesive sheet was all composed of a low heat conductive portion. A thermoelectric conversion device was produced in the same manner as in Example 1 using the obtained heat conductive adhesive sheet.
(実施例7)
 高熱伝導部と低熱伝導部の構成を逆にしたこと以外は、実施例5と同様にして、熱伝導性接着シートを作製した。得られた熱伝導性接着シートの構成は、図2(b)に示す構成であった。
(Example 7)
A heat conductive adhesive sheet was produced in the same manner as in Example 5 except that the configurations of the high heat conductive portion and the low heat conductive portion were reversed. The structure of the obtained heat conductive adhesive sheet was the structure shown in FIG.2 (b).
(実施例8)
 高熱伝導部と低熱伝導部の構成を逆にしたこと以外は、実施例6と同様にして、熱伝導性接着シートを作製した。得られた熱伝導性接着シートの構成は、図2(g)に示す構成であった。
(Example 8)
A heat conductive adhesive sheet was produced in the same manner as in Example 6 except that the configurations of the high heat conductive portion and the low heat conductive portion were reversed. The structure of the obtained heat conductive adhesive sheet was the structure shown in FIG.
(実施例9)
 実施例3で用いた前記高熱伝導部形成用の樹脂組成物を用いて、実施例1と同様に、剥離可能な支持基材の剥離処理された面に、ストライプ状パターン(幅1mm×長さ100mm、厚さ50μm、パターン中心間距離2mm)からなる高熱伝導部を形成した。
次いで、剥離可能な支持基材の剥離処理された面に、実施例3で用いた前記低熱伝導部形成用の樹脂組成物を塗布し、120℃で1分乾燥させ、25μmの厚みの低熱伝導部を形成した。
 次いで、低熱伝導部と高熱伝導部を貼り合わせ基材を作製した。得られた基材は、厚さ25μmの低熱伝導部上に、厚さ50μmのストライプ状パターンの高熱伝導部が積層された構成であった。さらに、実施例1と同様に接着剤層を積層し、図2(e)に示す構成の熱伝導性接着シートを作製した。
Example 9
Using the resin composition for forming a high thermal conductive part used in Example 3, a striped pattern (width 1 mm × length) was formed on the peelable surface of the support substrate that can be peeled in the same manner as in Example 1. A high heat conduction portion having a thickness of 100 mm, a thickness of 50 μm, and a distance between pattern centers of 2 mm was formed.
Next, the resin composition for forming the low heat conduction part used in Example 3 was applied to the peelable surface of the peelable support substrate, dried at 120 ° C. for 1 minute, and low heat conduction with a thickness of 25 μm. Part was formed.
Subsequently, the low heat conductive part and the high heat conductive part were bonded together, and the base material was produced. The obtained base material had a structure in which a high heat conductive portion having a stripe pattern having a thickness of 50 μm was laminated on a low heat conductive portion having a thickness of 25 μm. Furthermore, the adhesive layer was laminated | stacked similarly to Example 1, and the heat conductive adhesive sheet of the structure shown in FIG.2 (e) was produced.
(実施例10)
 高熱伝導部と低熱伝導部の構成を逆にしたこと以外は、実施例9と同様にして、熱伝導性接着シートを作製した。得られた熱伝導性接着シートの構成は、図2(d)に示す構成であった。
(Example 10)
A heat conductive adhesive sheet was produced in the same manner as in Example 9 except that the configurations of the high heat conductive portion and the low heat conductive portion were reversed. The structure of the obtained heat conductive adhesive sheet was the structure shown in FIG.2 (d).
(実施例11)
 中空フィラーとしてシリカ中空フィラーである中空ナノシリカ(日鉄鉱業株式会社製、「シリナックス」(登録商標)、平均粒子径105nm、真密度0.57g/cm)を用いた以外は、実施例1と同様に熱電変換デバイスを作製した。
(Example 11)
Example 1 except that hollow nanosilica (manufactured by Nippon Steel & Mining Co., Ltd., “Silinax” (registered trademark), average particle diameter 105 nm, true density 0.57 g / cm 3 ) was used as the hollow filler. A thermoelectric conversion device was prepared in the same manner as described above.
(比較例1)
 低熱伝導部にガラス中空フィラーを添加しない以外は、実施例1と同様にして熱伝導性接着シート、及びそれを用いた熱電変換デバイスを作製した。
 なお、高熱伝導部の硬化後の150℃における貯蔵弾性率は2.3MPa、低熱伝導部の硬化後の150℃における貯蔵弾性率は0.2MPaであった。
(Comparative Example 1)
A heat conductive adhesive sheet and a thermoelectric conversion device using the same were produced in the same manner as in Example 1 except that the glass hollow filler was not added to the low heat conductive part.
In addition, the storage elastic modulus at 150 ° C. after curing of the high thermal conductivity portion was 2.3 MPa, and the storage elastic modulus at 150 ° C. after curing of the low thermal conductivity portion was 0.2 MPa.
(比較例2)
 粘着加工されたPGSグラファイトシート(パナソニック社製、品番:EYGA091201M、PGSグラファイトシート厚み:10μm、粘着剤厚み10μm、熱伝導率:1950(W/m・K))を熱伝導性接着シートとした。
 熱伝導性接着シートを2枚用意し、熱伝導性接着シートを熱電変換モジュール37の熱電素子が形成された側の面と支持体側の面にそれぞれ積層し、両面に熱伝導性接着シートが積層された熱電変換デバイスを作製した。
(Comparative Example 2)
An adhesive-processed PGS graphite sheet (manufactured by Panasonic Corporation, product number: EYGA09201M, PGS graphite sheet thickness: 10 μm, adhesive thickness 10 μm, thermal conductivity: 1950 (W / m · K)) was used as the heat conductive adhesive sheet.
Two heat conductive adhesive sheets are prepared, and the heat conductive adhesive sheets are laminated on the surface of the thermoelectric conversion module 37 where the thermoelectric elements are formed and the surface of the support, respectively, and the heat conductive adhesive sheets are laminated on both sides. A thermoelectric conversion device was manufactured.
(比較例3)
 被着体に熱伝導性接着シートを貼付せず、温度差の測定を行った。また、熱電変換モジュール37に熱伝導性接着シートを積層せず、電子デバイス評価を行った。
(Comparative Example 3)
The temperature difference was measured without attaching the heat conductive adhesive sheet to the adherend. Moreover, the electronic device evaluation was performed without laminating a heat conductive adhesive sheet on the thermoelectric conversion module 37.
 実施例1~11及び比較例1~3で得られた熱伝導性接着シート等の複合硬化収縮率、熱伝導率、温度差及び/又は電子(熱電変換)デバイスの評価結果を表1に示す。なお、比較例1の電子デバイス評価の結果が0となったのは、熱伝導性接着シートと熱電変換素子との貼り付け時の位置ずれが大きく(複合硬化収縮由来)、熱電変換素子に適切に温度差を付与することができなかったものと考えられる。 Table 1 shows the evaluation results of the composite curing shrinkage rate, thermal conductivity, temperature difference and / or electronic (thermoelectric conversion) device such as the heat conductive adhesive sheets obtained in Examples 1 to 11 and Comparative Examples 1 to 3. . In addition, the result of the evaluation of the electronic device of Comparative Example 1 was 0 because the misalignment at the time of bonding between the heat conductive adhesive sheet and the thermoelectric conversion element was large (derived from composite curing shrinkage), which is appropriate for the thermoelectric conversion element. It is considered that a temperature difference could not be imparted to.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 実施例1~11で用いた本発明の熱伝導性接着シートにおいては、比較例1に比べ、複合硬化収縮率が抑制され、寸法精度が向上し、かつ熱伝導率の低熱伝導率化が図られていることがわかった。また、高熱伝導部と隣接する低熱伝導部間の温度差が大きくとれることがわかった。さらに、電子デバイス評価において、高い出力が得られた。 In the heat conductive adhesive sheets of the present invention used in Examples 1 to 11, compared with Comparative Example 1, the composite curing shrinkage rate is suppressed, the dimensional accuracy is improved, and the heat conductivity is reduced. I found out. Moreover, it turned out that the temperature difference between the high heat conduction part and the low heat conduction part adjacent can be taken. Furthermore, high output was obtained in the electronic device evaluation.
 本発明の熱伝導性接着シートは、特に電子デバイスの一つである熱電変換デバイスの熱電変換モジュールに貼付した場合、熱電素子等に対し寸法精度良く貼付でき、かつ高熱伝導部との熱伝導率差をより大きくとることができることから、熱電素子の厚み方向に効率よく温度差を付与することができる。このため、発電効率の高い発電が可能となり、従来型に比べ、熱電変換モジュールの設置数を少なくすることができ、ダウンサイジング及びコストダウンに繋がる。また同時に、本発明の熱伝導性接着シートを用いることにより、フレキシブル型の熱電変換デバイスとして、平坦でない面を有する廃熱源や放熱源へ設置する等、設置場所を制限されることもなく使用できる。 The thermal conductive adhesive sheet of the present invention can be applied with high dimensional accuracy to a thermoelectric element or the like, particularly when applied to a thermoelectric conversion module of a thermoelectric conversion device that is one of electronic devices, and has a thermal conductivity with a high thermal conductivity portion. Since the difference can be made larger, a temperature difference can be efficiently imparted in the thickness direction of the thermoelectric element. For this reason, power generation with high power generation efficiency is possible, and the number of thermoelectric conversion modules installed can be reduced compared to the conventional type, leading to downsizing and cost reduction. At the same time, by using the heat conductive adhesive sheet of the present invention, it can be used as a flexible thermoelectric conversion device without being restricted in installation place, such as being installed on a waste heat source or a heat radiation source having a non-planar surface. .
1,1A,1B:熱伝導性接着シート
2:被着体
4,4a,4b:高熱伝導部
5,5a,5b:低熱伝導部
6:温度差測定部
7:基材
8:接着剤層
10:熱電変換デバイス
11:P型熱電素子
12:N型熱電素子
13:電極(銅)
14a,14b:高熱伝導部
14’a,14’b,14’c:高熱伝導部
15a,15b,15c:低熱伝導部
15’a,15’b:低熱伝導部
16:熱電変換モジュール
17:16の第1面
18:16の第2面
19:支持体
20:接着剤層
30:熱電変換デバイス
31:P型熱電素子
32:N型熱電素子
33a,33b,33c:電極(銅)
34:高熱伝導部
35:低熱伝導部
36:支持体
37:熱電変換モジュール
38:熱電変換デバイス30の下面
39:熱電変換デバイス30の上面
40:接着剤層
41:P型熱電素子
42:N型熱電素子
43:電極(銅)
44:フィルム状基板
45:フィルム状基板
46:熱電変換モジュール
47,48:熱伝導率の低い材料(ポリイミド)
49,50:熱伝導率の高い材料(銅)
51,52:低熱伝導率の部材
53:熱電素子
54:電極(銅)
55:導電性接着剤層
56:絶縁性接着剤層
1, 1A, 1B: Thermally conductive adhesive sheet 2: Substrate 4, 4a, 4b: High thermal conductive part 5, 5a, 5b: Low thermal conductive part 6: Temperature difference measuring part 7: Base material 8: Adhesive layer 10 : Thermoelectric conversion device 11: P-type thermoelectric element 12: N-type thermoelectric element 13: Electrode (copper)
14a, 14b: High heat conduction parts 14'a, 14'b, 14'c: High heat conduction parts 15a, 15b, 15c: Low heat conduction parts 15'a, 15'b: Low heat conduction parts 16: Thermoelectric conversion modules 17:16 First surface 18:16 second surface 19: support 20: adhesive layer 30: thermoelectric conversion device 31: P-type thermoelectric element 32: N-type thermoelectric elements 33a, 33b, 33c: electrodes (copper)
34: high heat conduction part 35: low heat conduction part 36: support 37: thermoelectric conversion module 38: lower surface 39 of thermoelectric conversion device 30: upper surface 40 of thermoelectric conversion device 30: adhesive layer 41: P-type thermoelectric element 42: N-type Thermoelectric element 43: Electrode (copper)
44: Film-like substrate 45: Film-like substrate 46: Thermoelectric conversion module 47, 48: Material with low thermal conductivity (polyimide)
49, 50: Material with high thermal conductivity (copper)
51, 52: Low thermal conductivity member 53: Thermoelectric element 54: Electrode (copper)
55: Conductive adhesive layer 56: Insulating adhesive layer

Claims (15)

  1.  高熱伝導部と低熱伝導部とを含む基材と、接着剤層を含む熱伝導性接着シートであって、該低熱伝導部に中空フィラーが、低熱伝導部全体積中20~90体積%含有され、また該基材の一方の面に接着剤層が積層され、かつ該基材の他方の面が、該低熱伝導部の該接着剤層と接する面とは反対側の面と、該高熱伝導部の該接着剤層と接する面とは反対側の面とで構成、もしくは該高熱伝導部と該低熱伝導部の少なくともどちらかが該基材の厚みの一部分を構成してなる、熱伝導性接着シート。 A heat conductive adhesive sheet including a base material including a high heat conductive portion and a low heat conductive portion, and an adhesive layer, wherein the low heat conductive portion contains 20 to 90% by volume of a hollow filler in the entire volume of the low heat conductive portion. Also, an adhesive layer is laminated on one surface of the substrate, and the other surface of the substrate is opposite to the surface in contact with the adhesive layer of the low thermal conductivity portion, and the high thermal conductivity Thermal conductivity, comprising a portion of the portion opposite to the surface in contact with the adhesive layer, or at least one of the high thermal conductivity portion and the low thermal conductivity portion constituting part of the thickness of the substrate Adhesive sheet.
  2.  前記高熱伝導部と前記低熱伝導部とが、それぞれ独立に前記基材のすべての厚みを構成している、請求項1に記載の熱伝導性接着シート。 The heat conductive adhesive sheet according to claim 1, wherein the high heat conductive portion and the low heat conductive portion independently constitute all the thicknesses of the base material.
  3.  前記高熱伝導部及び前記低熱伝導部が樹脂組成物から形成される、請求項1に記載の熱伝導性接着シート。 The heat conductive adhesive sheet according to claim 1, wherein the high heat conduction part and the low heat conduction part are formed from a resin composition.
  4.  前記高熱伝導部を構成する前記樹脂組成物に熱伝導性フィラー及び/又は導電性炭素化合物を含む、請求項3に記載の熱伝導性接着シート。 The heat conductive adhesive sheet according to claim 3, wherein the resin composition constituting the high heat conductive part includes a heat conductive filler and / or a conductive carbon compound.
  5.  前記熱伝導性フィラーが、金属酸化物、金属窒化物、及び金属からなる群より選択される少なくとも1種を含む、請求項4に記載の熱伝導性接着シート。 The heat conductive adhesive sheet according to claim 4, wherein the heat conductive filler includes at least one selected from the group consisting of metal oxides, metal nitrides, and metals.
  6.  前記熱伝導性フィラーが、金属酸化物と金属窒化物とを含む、請求項4に記載の熱伝導性接着シート。 The heat conductive adhesive sheet according to claim 4, wherein the heat conductive filler contains a metal oxide and a metal nitride.
  7.  前記導電性炭素化合物が、カーボンブラック、カーボンナノチューブ、グラフェン、及びカーボンナノファイバーからなる群より選択される少なくとも1種を含む、請求項4に記載の熱伝導性接着シート。 The heat conductive adhesive sheet according to claim 4, wherein the conductive carbon compound includes at least one selected from the group consisting of carbon black, carbon nanotubes, graphene, and carbon nanofibers.
  8.  前記中空フィラーが、ガラス中空フィラー、又はシリカ中空フィラーである、請求項1に記載の熱伝導性接着シート。 The heat conductive adhesive sheet according to claim 1, wherein the hollow filler is a glass hollow filler or a silica hollow filler.
  9.  前記ガラス中空フィラー、及びシリカ中空フィラーの真密度が、0.1~0.6g/cmである、請求項8に記載の熱伝導性接着シート。 The heat conductive adhesive sheet according to claim 8, wherein the true density of the glass hollow filler and the silica hollow filler is 0.1 to 0.6 g / cm 3 .
  10.  前記高熱伝導部を構成する樹脂組成物と前記低熱伝導部を構成する樹脂組成物との複合硬化収縮率が、2%以下である、請求項3~9のいずれか1項に記載の熱伝導性接着シート。 The heat conduction according to any one of claims 3 to 9, wherein a composite cure shrinkage ratio of the resin composition constituting the high heat conduction part and the resin composition constituting the low heat conduction part is 2% or less. Adhesive sheet.
  11.  前記基材の高熱伝導部の熱伝導率が0.5(W/m・K)以上、かつ低熱伝導部の熱伝導率が0.5(W/m・K)未満である、請求項1~10のいずれか1項に記載の熱伝導性接着シート。 The thermal conductivity of the high thermal conductivity portion of the substrate is 0.5 (W / m · K) or more, and the thermal conductivity of the low thermal conductivity portion is less than 0.5 (W / m · K). The heat conductive adhesive sheet according to any one of 1 to 10.
  12.  前記基材の厚みに対する前記接着剤層の厚みの比率(接着剤層/基材)が、0.005~1.0である、請求項1~11のいずれか1項に記載の熱伝導性接着シート。 The thermal conductivity according to any one of claims 1 to 11, wherein the ratio of the thickness of the adhesive layer to the thickness of the base material (adhesive layer / base material) is 0.005 to 1.0. Adhesive sheet.
  13.  前記接着剤層がシリコーン系接着剤を含む、請求項1~12のいずれか1項に記載の熱伝導性接着シート。 The heat conductive adhesive sheet according to any one of claims 1 to 12, wherein the adhesive layer contains a silicone-based adhesive.
  14.  請求項1~13のいずれか1項に記載の熱伝導性接着シートを積層した電子デバイス。 An electronic device in which the thermally conductive adhesive sheet according to any one of claims 1 to 13 is laminated.
  15.  請求項1~13のいずれか1項に記載の熱伝導性接着シートを製造する方法であって、剥離可能な支持基材上に、樹脂組成物から形成される高熱伝導部と、樹脂組成物から形成される低熱伝導部とから基材を形成する工程、及び該基材に接着剤層を積層する工程を含む、熱伝導性接着シートの製造方法。 A method for producing a thermally conductive adhesive sheet according to any one of claims 1 to 13, comprising a highly thermally conductive part formed from a resin composition on a detachable support substrate, and a resin composition The manufacturing method of a heat conductive adhesive sheet including the process of forming a base material from the low heat conductive part formed from, and the process of laminating | stacking an adhesive bond layer on this base material.
PCT/JP2015/073290 2014-12-26 2015-08-20 Thermally conductive adhesive sheet, production method therefor, and electronic device using same WO2016103784A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020177016760A KR102389426B1 (en) 2014-12-26 2015-08-20 Thermally conductive adhesive sheet, production method therefor, and electronic device using same
JP2016565953A JP6539917B2 (en) 2014-12-26 2015-08-20 Thermally conductive adhesive sheet, method of manufacturing the same, and electronic device using the same
CN201580069936.2A CN107109151B (en) 2014-12-26 2015-08-20 Thermally conductive adhesive sheet, method for producing same, and electronic device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-265645 2014-12-26
JP2014265645 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016103784A1 true WO2016103784A1 (en) 2016-06-30

Family

ID=56149826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073290 WO2016103784A1 (en) 2014-12-26 2015-08-20 Thermally conductive adhesive sheet, production method therefor, and electronic device using same

Country Status (5)

Country Link
JP (1) JP6539917B2 (en)
KR (1) KR102389426B1 (en)
CN (1) CN107109151B (en)
TW (1) TWI661026B (en)
WO (1) WO2016103784A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106281206A (en) * 2016-08-24 2017-01-04 上海颐行高分子材料有限公司 A kind of electrostatic-resistant heat conducting organosilicon adhesive
CN107275019A (en) * 2017-06-14 2017-10-20 上海萃励电子科技有限公司 A kind of PTC surface mount elements with local refrigerating function
CN108251076A (en) * 2016-12-29 2018-07-06 中国科学院苏州纳米技术与纳米仿生研究所 Carbon nanotube-graphene composite radiating film, preparation method and application
DE102017217123A1 (en) * 2017-09-26 2019-03-28 Mahle International Gmbh Method for producing a thermoelectric converter
CN109572504A (en) * 2018-11-30 2019-04-05 苏州烯时代材料科技有限公司 A kind of automotive seat
CN110235261A (en) * 2017-01-27 2019-09-13 琳得科株式会社 Flexible thermoelectric conversion element and its manufacturing method
WO2020213348A1 (en) * 2019-04-18 2020-10-22 信越化学工業株式会社 Thermally conductive resin composition and thermally conductive resin cured product

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10727195B2 (en) * 2017-09-15 2020-07-28 Technetics Group Llc Bond materials with enhanced plasma resistant characteristics and associated methods
TWI822297B (en) * 2022-09-02 2023-11-11 達邁科技股份有限公司 Black matt polyimide film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111345A (en) * 1993-10-14 1995-04-25 Matsushita Electric Ind Co Ltd Thermoelectric power generating device
JPH09124327A (en) * 1995-08-28 1997-05-13 Asahi Glass Co Ltd Fine hollow glass ball and its production
JP2004143270A (en) * 2002-10-23 2004-05-20 Nippon Petrochemicals Co Ltd Liquid-crystal polyester resin composition
JP2007198806A (en) * 2006-01-24 2007-08-09 Mitsubishi Materials Corp Temperature sensor
JP2008182160A (en) * 2007-01-26 2008-08-07 Nippon Steel Chem Co Ltd Flexible thermoelectric conversion element and its manufacturing method
JP2009016812A (en) * 2007-06-08 2009-01-22 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module and power generation device using the same
JP2012044029A (en) * 2010-08-20 2012-03-01 Fujitsu Ltd Thermoelectric conversion device and method of manufacturing the same
WO2012070395A1 (en) * 2010-11-25 2012-05-31 住友金属鉱山株式会社 Thermoelectric conversion module
WO2013121486A1 (en) * 2012-02-16 2013-08-22 日本電気株式会社 Thermoelectric conversion module unit, and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4003254B2 (en) * 1997-04-25 2007-11-07 アイシン精機株式会社 Thermoelectric conversion element and manufacturing method thereof
JP2006030825A (en) * 2004-07-21 2006-02-02 Ricoh Co Ltd Pressure fixing member, fixing device, and image forming apparatus
JP3981738B2 (en) 2004-12-28 2007-09-26 国立大学法人長岡技術科学大学 Thermoelectric conversion element
JP5493562B2 (en) 2009-08-03 2014-05-14 富士通株式会社 Thermoelectric conversion module
EP2978032B1 (en) * 2013-03-21 2018-01-31 National University Corporation Nagaoka University of Technology Thermoelectric conversion element
CN104183691B (en) * 2014-07-18 2017-01-25 浙江大学 Planar flexible thermoelectric power generation structure

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111345A (en) * 1993-10-14 1995-04-25 Matsushita Electric Ind Co Ltd Thermoelectric power generating device
JPH09124327A (en) * 1995-08-28 1997-05-13 Asahi Glass Co Ltd Fine hollow glass ball and its production
JP2004143270A (en) * 2002-10-23 2004-05-20 Nippon Petrochemicals Co Ltd Liquid-crystal polyester resin composition
JP2007198806A (en) * 2006-01-24 2007-08-09 Mitsubishi Materials Corp Temperature sensor
JP2008182160A (en) * 2007-01-26 2008-08-07 Nippon Steel Chem Co Ltd Flexible thermoelectric conversion element and its manufacturing method
JP2009016812A (en) * 2007-06-08 2009-01-22 Sumitomo Metal Mining Co Ltd Thermoelectric conversion module and power generation device using the same
JP2012044029A (en) * 2010-08-20 2012-03-01 Fujitsu Ltd Thermoelectric conversion device and method of manufacturing the same
WO2012070395A1 (en) * 2010-11-25 2012-05-31 住友金属鉱山株式会社 Thermoelectric conversion module
WO2013121486A1 (en) * 2012-02-16 2013-08-22 日本電気株式会社 Thermoelectric conversion module unit, and electronic device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106281206A (en) * 2016-08-24 2017-01-04 上海颐行高分子材料有限公司 A kind of electrostatic-resistant heat conducting organosilicon adhesive
CN108251076A (en) * 2016-12-29 2018-07-06 中国科学院苏州纳米技术与纳米仿生研究所 Carbon nanotube-graphene composite radiating film, preparation method and application
CN108251076B (en) * 2016-12-29 2020-03-27 中国科学院苏州纳米技术与纳米仿生研究所 Carbon nanotube-graphene composite heat dissipation film, and preparation method and application thereof
CN110235261A (en) * 2017-01-27 2019-09-13 琳得科株式会社 Flexible thermoelectric conversion element and its manufacturing method
CN110235261B (en) * 2017-01-27 2023-07-25 琳得科株式会社 Flexible thermoelectric conversion element and method for manufacturing same
CN107275019A (en) * 2017-06-14 2017-10-20 上海萃励电子科技有限公司 A kind of PTC surface mount elements with local refrigerating function
DE102017217123A1 (en) * 2017-09-26 2019-03-28 Mahle International Gmbh Method for producing a thermoelectric converter
CN109572504A (en) * 2018-11-30 2019-04-05 苏州烯时代材料科技有限公司 A kind of automotive seat
CN109572504B (en) * 2018-11-30 2022-02-18 苏州烯时代材料科技有限公司 Automobile seat
WO2020213348A1 (en) * 2019-04-18 2020-10-22 信越化学工業株式会社 Thermally conductive resin composition and thermally conductive resin cured product
JP2020176201A (en) * 2019-04-18 2020-10-29 信越化学工業株式会社 Heat-conductive resin composition and heat-conductive resin cured product

Also Published As

Publication number Publication date
KR20170100515A (en) 2017-09-04
CN107109151A (en) 2017-08-29
TWI661026B (en) 2019-06-01
JP6539917B2 (en) 2019-07-10
CN107109151B (en) 2020-07-28
JPWO2016103784A1 (en) 2017-10-05
KR102389426B1 (en) 2022-04-21
TW201623504A (en) 2016-07-01

Similar Documents

Publication Publication Date Title
WO2015046253A1 (en) Heat-conductive adhesive sheet, manufacturing method for same, and electronic device using same
WO2016103784A1 (en) Thermally conductive adhesive sheet, production method therefor, and electronic device using same
TWI676304B (en) Thermal conductive adhesive sheet, method of manufacturing the same, and electronic device using the same
WO2016103783A1 (en) Thermally conductive adhesive sheet, method for manufacturing same, and electronic device using same
JP2003092384A (en) Graphite sheet
CN113129761A (en) Display module and display device
JP7288101B2 (en) Heat-conducting structures and electronic devices
JP7407218B2 (en) Thermal interface thin film materials for internal, intermediate, and external parts of electronic components
CN215577411U (en) Display module and display device
CN114828536A (en) Heat conduction structure and electronic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565953

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177016760

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872353

Country of ref document: EP

Kind code of ref document: A1