JP4003254B2 - Thermoelectric conversion element and manufacturing method thereof - Google Patents

Thermoelectric conversion element and manufacturing method thereof Download PDF

Info

Publication number
JP4003254B2
JP4003254B2 JP12357497A JP12357497A JP4003254B2 JP 4003254 B2 JP4003254 B2 JP 4003254B2 JP 12357497 A JP12357497 A JP 12357497A JP 12357497 A JP12357497 A JP 12357497A JP 4003254 B2 JP4003254 B2 JP 4003254B2
Authority
JP
Japan
Prior art keywords
thermoelectric semiconductor
resin
semiconductor chip
conversion element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12357497A
Other languages
Japanese (ja)
Other versions
JPH10303472A (en
Inventor
比登志 田内
悟 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP12357497A priority Critical patent/JP4003254B2/en
Publication of JPH10303472A publication Critical patent/JPH10303472A/en
Application granted granted Critical
Publication of JP4003254B2 publication Critical patent/JP4003254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【技術分野】
本発明は,一端が発熱し,他端が冷却するといういわゆるペルチェ効果を有する熱電変換素子,特にその熱電半導体チップと電極との接合信頼性に優れた熱電変換素子及びその製造方法に関する。
【0002】
【従来技術】
熱電変換素子9は,図15〜図17に示すごとく,相対向して配設された上下一対の熱交換基板210,220と,該熱交換基板の内側面にそれぞれ設けた複数の電極21,22とを有する。また,上記一対の熱交換基板の電極21,22の間に隣り合って配置され,上記電極21,22によって直列接続された,P型熱電半導体チップ11とN型熱電半導体チップ12とを有する。
【0003】
上記,熱交換基板としては,例えばアルミナセラミックスが用いられ,また電極は銅箔膜が用いられる。なお,図17において,符号215,225はリード線である。
そして,上記P型熱電半導体チップ11,N型熱電半導体チップ12の間に,例えばP→N→P→Nの方向へ電流を流すことにより,一方の熱交換基板210側が発熱部となり,他方の熱交換基板220側が冷却部となるいわゆるペルチェ効果が発現される。
【0004】
また,上記熱電変換素子9の製造に当たっては,図18に示すごとく,一方の熱交換基板210上に電極21を形成すると共に該電極21上に半田25を印刷形成しておく。また,他方の熱交換基板220にも,同様に電極22,半田25を形成しておく。
そして,電極21,22の間にP型熱電半導体チップ11とN型熱電半導体チップ12とを交互に隣り合わせて配置すると共に,これらの間を半田25により接合する。半田接合は,上記のごとく印刷形成したクリーム状の半田を加熱溶融することにより行なう。
【0005】
【解決しようとする課題】
しかしながら,上記従来の熱電変換素子には次の問題がある。
即ち,まず上記半田接合時においては,半田が溶融し溶融半田には互いに引き寄せ合おうとする力が働いている。
そのため,図19に示すごとく,一方の電極21上においてはP型熱電半導体チップ11とN型熱電半導体チップ12の上端部が互いに引張られ,他方の電極22上においては上記N型熱電半導体チップ12と他のP型熱電半導体チップ11の下端部が互いに引張られる。
【0006】
それ故,熱電半導体チップ(P型熱電半導体チップとN型熱電半導体チップの両者を総称する場合をいう)と電極との接合位置にズレを生じたり,熱電半導体チップが傾斜した状態(図19)で半田接合されることがある。そのため,接合力が弱くなる。
また,上記位置ズレに伴って,僅か0.5mm程度の間隙しかない隣接する電極に対して,熱電半導体チップが接合されてしまうこともある。
【0007】
更に,熱電変換素子は使用中には,一方の熱交換基板が発熱側,他方の熱交換基板が冷却側となり,例えば一方は約50℃,他方は−10℃というように両者間には大きな温度差が生じる。そのため,発熱側の熱交換基板は膨張し,冷却側の熱交換基板は収縮する。
【0008】
また,一方の熱交換基板210と他方の熱交換基板220とが相対向する間隔は,約10mm程度である。そのため,上記温度差に伴って熱応力が発生する。それ故,熱電半導体チップと電極との間の接合強度が充分でないと,両者の接合部分に破損を生じ,接合信頼性が低下する。
【0009】
本発明はかかる従来の問題点に鑑み,熱電半導体チップと電極との接合位置ズレがなく,使用時における熱電半導体チップと電極との接合信頼性に優れ,かつ発熱,冷却効果に優れた熱電変換素子及びその製造方法を提供しようとするものである。
【0010】
【課題の解決手段】
請求項1に記載の発明は,相対向して配設された一対の熱交換基板と,該熱交換基板の内側面にそれぞれ設けた複数の電極と,
前記一対の熱交換基板の各電極の間に隣り合って配置され,前記電極によって直列接続された,P型熱電半導体チップ及びN型熱電半導体チップとを有する熱電変換素子において,
前記熱電半導体チップの間に合成樹脂よりなる樹脂部が設けられ,該樹脂部の前記電極と対面する面は前記熱電半導体チップの前記電極と対面する面と同一平面上にあり,かつ該樹脂部と前記熱交換基板との間に空隙部が設けられ,
前記電極は,前記熱電半導体チップと接触していない部分で,かつ前記樹脂部に対面する部分にのみ凹状空間部を有することを特徴とする熱電変換素子である。
【0011】
本発明において最も注目すべきことは,上記熱電半導体チップの間に合成樹脂よりなる樹脂部を設けたこと,該樹脂部と熱交換基板との間には空隙部を設けたこと,及び上記電極には,上記凹状空間部を設けたことである。
【0012】
次に,本発明の作用効果につき説明する。
本発明においては,上記熱電半導体チップ(P型熱電半導体チップとN型熱電半導体チップとの総称)の間には上記樹脂部を設けている。そのため,全ての熱電半導体チップは樹脂部によってその周囲が固定され,各熱電半導体チップの位置は固定された状態にある。
【0013】
そのため,熱電半導体チップと電極との間を半田接合する際に,溶融半田によって熱電半導体チップの先端部が引き寄せられようとしても,熱電半導体チップの先端部は移動しない。それ故,従来例に示したごとく,熱電半導体チップと電極との間に位置ズレを生じたり,熱電半導体チップが傾斜した状態で接合されるということはない。そのため,接合強度が高い。また,そのために,熱電半導体チップが隣接する電極との間を短絡するということもない。
【0014】
また,本発明においては,樹脂部と熱交換基板との間には,空隙部を設けている。そのため,発熱側の熱交換基板と冷却側の熱交換基板との間の断熱性が優れ,熱電変換素子の発熱,冷却効果が高い。
【0015】
次に,請求項2の発明のように,上記合成樹脂は,エポキシ樹脂,フェノール樹脂,ポリウレタン樹脂,アクリル樹脂,スチレン樹脂の1種又は2種以上よりなる多孔質発泡体であることが好ましい。
これらの樹脂は特に生成のしやすさ,耐熱性などの点で優れている。更に,これらの樹脂は多孔質発泡体であるため,発熱側と冷却側との間における熱伝導性が低く,熱電変換素子の上記発熱,冷却効果が一層向上する。
【0016】
次に,請求項3の発明のように,上記樹脂部には,ガラス中空体,石英中空体,ポリエチレン樹脂中空体,ポリウレタン樹脂中空体,ポリプロピレン樹脂中空体,ポリウレタン樹脂中空体,アクリル樹脂中空体,スチレン樹脂中空体,ポリカーボネート樹脂中空体の1種又は2種以上よりなる低熱伝導粒子が分散混合されていることが好ましい。
【0017】
この場合には,樹脂部中に上記中空体よりなる低熱伝導粒子が分散混合されているので,樹脂部の伝熱性が一層低下し,上記のごとく熱電変換素子の発熱,冷却効果が一層向上する。
上記,低熱伝導粒子は樹脂部中に,3〜80重量%含まれていることが好ましい。3%未満では,上記効果が低く,80%を越えると強度低下が著しく破損のおそれがある。
【0018】
また,上記電極は,上記熱電半導体チップと接触していない部分に,凹状空間部を有し,かつ該凹状空間部は上記樹脂部と接触していない(実施形態例2,図14参照)。
この場合には,電極が樹脂部と対面している部分に上記凹状空間部を有するため,両者の間は断熱性が向上する。そのため,熱電変換素子の発熱,冷却効果が一層向上する。
【0019】
次に,容器状の治具内にP型熱電半導体チップとN型熱電半導体チップとを並列に交互に配置し,
該治具に合成樹脂を充填して該合成樹脂を硬化させることにより前記熱電半導体チップの間に樹脂部を形成して,前記熱電半導体チップを樹脂部により固定した中間体を作製し,
該中間体を,前記熱電半導体チップの厚み方向において,複数個にスライス切断することにより,前記樹脂部の切断面が前記熱電半導体チップの切断面と同一平面上にあるスライス中間体を形成し,
次いで,熱電半導体チップと接触しない部分にのみ凹状空間部を有する電極を,該凹状空間部が前記樹脂部の前記切断面にのみ対面し,かつ前記P型熱電半導体チップとN型熱電半導体チップとが交互に直列接続されるように配設して,
前記スライス中間体における前記P型熱電半導体チップとN型熱電半導体チップとの切断面を前記電極に接合することを特徴とする熱電変換素子の製造方法がある。
【0020】
この製造方法によれば,熱電半導体チップの間に容易,確実に樹脂部を設けることができ,また上記のごとく熱電半導体チップと電極との接合位置ズレがなく,使用時における熱電半導体チップと電極との接続信頼性に優れた熱電変換素子を製造することができる。
【0021】
次に,上記中間体は,上記熱電半導体チップの厚み方向に複数個にスライス切断してスライス中間体となし,該スライス中間体における上記P型熱電半導体チップとN型熱電半導体チップとを電極に接合する。
この場合には,多数の中間体(スライス中間体)を容易に作製することができ,熱電変換素子の生産性が向上し,かつ製造コストが低くなる。
【0022】
なお,本発明にかかる熱電変換素子は,例えばクーラーボックス,冷水器,レーザーダイオードの温調などに用いることができる。
【0023】
【発明の実施の形態】
参考例
本発明の参考例にかかる熱電変換素子及びその製造方法につき,図1〜図7を用いて説明する。
本例の熱電変換素子は,図1,図2に示すごとく,相対向して配設された一対の熱交換基板210,220と,該熱交換基板210,220の内側面にそれぞれ設けた複数の電極21,22と,上記一対の熱交換基板210,220の各電極21,22の間に隣り合って配置され,上記電極21,22によって直列接続された,P型熱電半導体チップ11とN型熱電半導体チップ12とよりなる。
上記熱電半導体チップ11,12の間には合成樹脂よりなる樹脂部3を設けてあり,かつ該樹脂部3と上記熱交換基板210,220との間には空隙部31を設けてある。また,樹脂部3と電極21,22との間にも空間部32が設けてある。
【0024】
次に,上記熱電変換素子を製造するに当たっては,図3〜図7に示すごとく,まず容器状の治具4の内部41にP型熱電半導体チップ11とN型熱電半導体チップ12とを交互に配置し,これら熱電半導体チップの間にその電極接続部(上面,下面)を除いて合成樹脂30を充填し(図4,図5),該合成樹脂30を発泡硬化させて樹脂部3を形成して,上記多数の熱電半導体チップ11,12を樹脂部3により固定した中間体35を作製しする(図6)。
上記熱電半導体チップ11,12は,図4に示すごとく,治具4の底面に設けた凹状立設部42に,その下部を嵌合することにより行なう。
【0025】
次いで,上記P型熱電半導体チップ11とN型熱電半導体チップ12とを交互に直列接続されるように電極21,22に対して接合する。
上記電極21は,図7に示すごとく,,アルミナセラミック製の熱交換基板210の表面にろう付けにより形成してある。電極22も同様である。
また,上記電極21,22と熱電半導体チップ11,12との接合は半田により行なう。半田は,上記電極21,22の表面に,クリーム半田を印刷しておき,これを加熱溶融することによって両者を接合する。
本例において,上記合成樹脂は,ポリウレタン樹脂を用い,これを発泡,硬化させて樹脂部30とした。
【0026】
次に,本例の作用効果につき説明する。
参考例においては,上記熱電半導体チップ11,12の間には上記樹脂部3を設けている。そのため,全ての熱電半導体チップ11,12は樹脂部3によってその周囲が固定され,それらの位置は固定された状態にある。
【0027】
そのため,熱電半導体チップ11,12と電極21,22との間を半田接合する際に,溶融半田によって熱電半導体チップの先端部が引き寄せられようとしても,熱電半導体チップの先端部は移動しない。
それ故,熱電半導体チップ11,12と電極21,22との間に位置ズレを生じたり,熱電半導体チップが傾斜した状態で接合されるということはない。そのため,接合強度が高く,電極間が短絡されるということもない。
【0028】
また,本参考例においては,樹脂部3と熱交換基板210,220との間には空隙部31,更に樹脂部3と電極21,22との間にも空隙部32を設けている。そのため,発熱側の熱交換基板210,220と冷却側の熱交換基板210,220との間の断熱性に優れ,熱電変換素子の発熱,冷却効果が高い。
【0029】
実施形態例
本例は,本発明の実施例であって図8〜図14に示すごとく,電極21,22に凹状空間部(図12,図13)を有する熱電変換素子を示すと共に該熱電変換素子は,スライス中間体(図11)を作製して製造したものである。
即ち,まず本例の熱電変換素子においては,図14に示すごとく,電極21,22は,熱電半導体チップ11,21と接触していない部分に凹状空間部216,226を有する。
その他は,参考例と同様である。
【0030】
次に,上記熱電変換素子を製造する方法につき,図8〜図13を用いて説明する。
まず,図8に示すごとく,深い容器状の治具40の内部41の底部401に両面テープ46を配置し,その上に参考例と同様にP型熱電半導体チップ11,N型熱電半導体チップ12を交互に隣り合わせて配置して,両面テープ46上に接着し,立設固定する。
上記P型熱電半導体チップ11,N型熱電半導体チップ12は,長さ100mmである。
次に,上記治具40内に実施形態例1と同様に合成樹脂を入れ,硬化させた(図9)。
本例においては,上記合成樹脂としてはエポキシ樹脂(日本ペルノックス社製ME252)の中に5重量%のガラス中空体(ガラスバルーン。住友3M会社製,S20)を分散混合させたものを用いた。
これにより,多数のP型熱電半導体チップ11,N型熱電半導体チップ12を樹脂部3により固定した中間体36を得た(図10)。
【0031】
次いで,図10に示すごとく,内周刀カッター49を用いて該中間体36を厚み1mmにスライス切断してスライス中間体37(図11)を50個作製した。このスライス中間体37は,P型熱電半導体チップ11,N型熱電半導体チップ12,樹脂部3は上下面とも,同一平面状にある。
【0032】
一方,図12,図13に示すごとく,熱交換基板210,220210に両面テープ214を介して電極21を接着する。電極21は,上記P型熱電半導体チップ11,N型熱電半導体チップ12を直列接続できる位置に配設する。また,本例の電極21は,上記樹脂部3と対面する部分に凹状空間部216を有する。
このことは,熱交換基板220,電極22,凹状空間部226についても同様である(図14)。
【0033】
次に,上記スライス中間体37の上面,下面に上記電極21,22を対面配置し,参考例と同様に各熱電半導体チップと電極とを半田接合する。これにより,上記図14に示した熱電変換素子が得られる。
その他は,参考例と同様である。
【0034】
本例の熱電変換素子によれば,電極21,22が樹脂部3と対面する位置に凹状空間部216,226を有している。そのため,両者間の伝熱が殆どなく,熱電変換素子の発熱,冷却効果が向上する。
また,スライス中間体を作製して熱電変換素子を製造するので,中間体の製造が容易で,生産効率が向上する。
その他,参考例と同様の効果を得ることができる。
【0035】
実施形態例
本例は,参考例と実施形態例1に示した熱電変換素子について,電極と熱電半導体チップとの間の位置ズレ発生試験,冷熱衝撃試験による接合信頼性のテストを行なった。このテストは,20個の熱電変換素子を製造して行なった。
位置ズレ発生試験においては,熱電半導体チップが本来接合されるべき電極21,22ではなく,隣接する電極21,22に接触してしまっている数を「ズレ不良数」とした。
【0036】
この「ズレ不良数」の数は,上記20個の熱電変換素子中にはP型熱電半導体チップとN型熱電半導体チップとが合計254個入っているが,その中1つでも上記ズレ不良を生じている場合に,その熱電変換素子はズレ不良ありとカウントした。
【0037】
また,上記冷熱衝撃試験においては,熱電変換素子を−50℃に1時間,120℃に1時間放置するというサイクルを,200サイクル実施した後,熱電変換素子の内部抵抗の変化が10%以上のものを「冷熱衝撃試験不良」とカウントした。
【0038】
また,比較のため,樹脂部を設けなかった他は参考例と同様にして熱電変換素子を製造し,上記と同様の試験を行なった。
これらの結果を表1に示す。
【0039】
【表1】

Figure 0004003254
【0040】
表1より知られるごとく,本発明によれば,電極21,22と熱電半導体チップとの間の位置ズレがなく,両者間の接合信頼性に優れた熱電変換素子を得ることができる。
【0041】
【発明の効果】
本発明によれば,熱電半導体チップと電極との接合位置ズレがなく,使用時における熱電半導体チップと電極との接合信頼性に優れ,かつ発熱,冷却効果に優れた熱電変換素子及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】 参考例における,熱電変換素子の説明図。
【図2】 参考例における,熱電変換素子の斜視図。
【図3】 参考例における,治具内に熱電半導体チップを配設する場合の斜視図。
【図4】 参考例における,治具内に熱電半導体チップを配設する場合の断面説明図。
【図5】 参考例における,熱電半導体チップの内に合成樹脂を注入する場合の説明図。
【図6】 参考例における,中間体の斜視図。
【図7】 参考例における,電極及び熱交換基板の斜視図。
【図8】 実施形態例における,治具内に熱電半導体チップを配設する場合の断面説明図。
【図9】 実施形態例における,熱電半導体チップの内に合成樹脂を注入する場合の説明図。
【図10】 実施形態例における,中間体の説明図。
【図11】 実施形態例における,スライス中間体の斜視図。
【図12】 実施形態例における,電極の側面断面図。
【図13】 実施形態例における,電極の斜視説明図。
【図14】 実施形態例における,熱電変換素子の説明図。
【図15】 従来例における,熱電変換素子の説明図。
【図16】 従来例における,熱交換基板上への熱電半導体チップの配設状態の説明図。
【図17】 従来例における,熱電変換素子の斜視図。
【図18】 従来例における,熱電変換素子の製造方法の説明図。
【図19】 従来例における,問題点を示す説明図。
【符号の説明】
11...P型熱電半導体チップ,
12...N型熱電半導体チップ,
21,22...電極,
210,220...熱交換基板,
216,226...凹状空間部,
3...樹脂部,
30...合成樹脂,
4,40...治具,
35,36...中間体,
37...スライス中間体,[0001]
【Technical field】
The present invention relates to a thermoelectric conversion element having a so-called Peltier effect in which one end generates heat and the other end cools, in particular, a thermoelectric conversion element excellent in bonding reliability between the thermoelectric semiconductor chip and an electrode, and a method for manufacturing the same.
[0002]
[Prior art]
As shown in FIGS. 15 to 17, the thermoelectric conversion element 9 includes a pair of upper and lower heat exchange substrates 210 and 220 disposed opposite to each other, and a plurality of electrodes 21 provided on the inner surface of the heat exchange substrate, 22. Further, the P-type thermoelectric semiconductor chip 11 and the N-type thermoelectric semiconductor chip 12 are arranged adjacent to each other between the electrodes 21 and 22 of the pair of heat exchange substrates and connected in series by the electrodes 21 and 22.
[0003]
For example, alumina ceramic is used as the heat exchange substrate, and a copper foil film is used as the electrode. In FIG. 17, reference numerals 215 and 225 denote lead wires.
Then, by passing a current between the P-type thermoelectric semiconductor chip 11 and the N-type thermoelectric semiconductor chip 12, for example, in the direction of P → N → P → N, one heat exchange substrate 210 side becomes a heat generating portion, and the other A so-called Peltier effect is produced in which the heat exchange substrate 220 side serves as a cooling unit.
[0004]
In manufacturing the thermoelectric conversion element 9, as shown in FIG. 18, the electrode 21 is formed on one heat exchange substrate 210 and the solder 25 is printed on the electrode 21. Similarly, the electrode 22 and the solder 25 are also formed on the other heat exchange substrate 220.
Then, the P-type thermoelectric semiconductor chips 11 and the N-type thermoelectric semiconductor chips 12 are alternately arranged adjacent to each other between the electrodes 21 and 22, and these are joined by solder 25. Solder bonding is performed by heating and melting the cream-like solder printed and formed as described above.
[0005]
[Problems to be solved]
However, the conventional thermoelectric conversion element has the following problems.
That is, first, at the time of the solder joining, the solder melts, and a force is exerted on the molten solder to attract each other.
Therefore, as shown in FIG. 19, the upper ends of the P-type thermoelectric semiconductor chip 11 and the N-type thermoelectric semiconductor chip 12 are pulled on one electrode 21, and the N-type thermoelectric semiconductor chip 12 is on the other electrode 22. And the lower ends of the other P-type thermoelectric semiconductor chips 11 are pulled together.
[0006]
Therefore, the thermoelectric semiconductor chip (referred to collectively as both P-type thermoelectric semiconductor chip and N-type thermoelectric semiconductor chip) and the position where the electrode is joined are displaced, or the thermoelectric semiconductor chip is inclined (FIG. 19). May be soldered together. For this reason, the bonding force is weakened.
In addition, the thermoelectric semiconductor chip may be bonded to an adjacent electrode having a gap of only about 0.5 mm along with the positional deviation.
[0007]
Furthermore, when the thermoelectric conversion element is in use, one heat exchange substrate is on the heat generation side and the other heat exchange substrate is on the cooling side. For example, one is about 50 ° C. and the other is −10 ° C. A temperature difference occurs. Therefore, the heat exchange board on the heat generation side expands and the heat exchange board on the cooling side shrinks.
[0008]
Further, the distance between one heat exchange substrate 210 and the other heat exchange substrate 220 is about 10 mm. Therefore, thermal stress is generated with the temperature difference. Therefore, if the bonding strength between the thermoelectric semiconductor chip and the electrode is not sufficient, the bonding portion between the two is damaged, and the bonding reliability is lowered.
[0009]
In view of such conventional problems, the present invention has no bonding position deviation between the thermoelectric semiconductor chip and the electrode, has excellent bonding reliability between the thermoelectric semiconductor chip and the electrode in use, and has excellent heat generation and cooling effects. It is an object of the present invention to provide an element and a manufacturing method thereof.
[0010]
[Means for solving problems]
The invention according to claim 1 is a pair of heat exchange substrates disposed opposite to each other, a plurality of electrodes respectively provided on the inner surface of the heat exchange substrate,
A thermoelectric conversion element having a P-type thermoelectric semiconductor chip and an N-type thermoelectric semiconductor chip, which are arranged adjacent to each other between the electrodes of the pair of heat exchange substrates and connected in series by the electrodes,
A resin portion made of synthetic resin is provided between the thermoelectric semiconductor chips, and a surface of the resin portion facing the electrode is flush with a surface of the thermoelectric semiconductor chip facing the electrode, and the resin portion And a gap between the heat exchange substrate and
The electrode is in the thermoelectric semiconductor chip and contact portion not, and a thermoelectric conversion device characterized by having a concave space portion only at a portion facing the resin portion.
[0011]
Most notably in the present invention, by providing the resin portion made of synthetic resin between the thermoelectric semiconductor chip, providing the air gap between the said resin portion and the heat exchanging substrate, and the electrode Is provided with the concave space portion .
[0012]
Next, the effects of the present invention will be described.
In the present invention, the resin portion is provided between the thermoelectric semiconductor chips (a general term for a P-type thermoelectric semiconductor chip and an N-type thermoelectric semiconductor chip). Therefore, all the thermoelectric semiconductor chips are fixed around the resin portion, and the positions of the thermoelectric semiconductor chips are fixed.
[0013]
For this reason, when the thermoelectric semiconductor chip and the electrode are soldered to each other, even if the tip of the thermoelectric semiconductor chip is attracted by the molten solder, the tip of the thermoelectric semiconductor chip does not move. Therefore, as shown in the conventional example, there is no positional deviation between the thermoelectric semiconductor chip and the electrode, and the thermoelectric semiconductor chip is not joined in an inclined state. Therefore, the bonding strength is high. For this reason, the thermoelectric semiconductor chip does not short-circuit between adjacent electrodes.
[0014]
Moreover, in this invention, the space | gap part is provided between the resin part and the heat exchange board | substrate. Therefore, the heat insulation between the heat exchange substrate on the heat generation side and the heat exchange substrate on the cooling side is excellent, and the heat generation and cooling effect of the thermoelectric conversion element is high.
[0015]
Next, as in the invention of claim 2, the synthetic resin is preferably a porous foam made of one or more of epoxy resin, phenol resin, polyurethane resin, acrylic resin and styrene resin.
These resins are particularly excellent in terms of ease of production and heat resistance. Furthermore, since these resins are porous foams, the thermal conductivity between the heat generation side and the cooling side is low, and the heat generation and cooling effects of the thermoelectric conversion element are further improved.
[0016]
Next, as in the invention of claim 3, the resin part includes a glass hollow body, a quartz hollow body, a polyethylene resin hollow body, a polyurethane resin hollow body, a polypropylene resin hollow body, a polyurethane resin hollow body, and an acrylic resin hollow body. It is preferable that low thermal conductive particles composed of one or more of hollow styrene resin and hollow polycarbonate resin are dispersed and mixed.
[0017]
In this case, since the low thermal conductive particles made of the hollow body are dispersed and mixed in the resin portion, the heat conductivity of the resin portion is further lowered, and the heat generation and cooling effect of the thermoelectric conversion element is further improved as described above. .
The low thermal conductive particles are preferably contained in the resin part in an amount of 3 to 80% by weight. If it is less than 3%, the above-mentioned effect is low, and if it exceeds 80%, the strength is lowered and there is a risk of breakage.
[0018]
Further, the electrode is a portion not in contact with the thermoelectric semiconductor chip, has a concave space, and have the concave space portion is such in contact with the resin portion (see Embodiment 2, FIG. 14) .
In this case, since the electrode has the concave space in the part facing the resin part, the heat insulation is improved between the two. Therefore, the heat generation and cooling effect of the thermoelectric conversion element is further improved.
[0019]
Next, P-type thermoelectric semiconductor chips and N-type thermoelectric semiconductor chips are alternately arranged in parallel in a container-like jig,
A resin part is formed between the thermoelectric semiconductor chips by filling the jig with a synthetic resin and curing the synthetic resin, and an intermediate body in which the thermoelectric semiconductor chip is fixed by the resin part is manufactured,
The intermediate body is sliced into a plurality of slices in the thickness direction of the thermoelectric semiconductor chip to form a slice intermediate in which the cut surface of the resin portion is flush with the cut surface of the thermoelectric semiconductor chip;
Next, an electrode having a concave space only in a portion not in contact with the thermoelectric semiconductor chip, the concave space facing only the cut surface of the resin portion, and the P-type thermoelectric semiconductor chip, the N-type thermoelectric semiconductor chip, Are arranged so that they are alternately connected in series,
There is a method for manufacturing a thermoelectric conversion element, wherein a cut surface of the P-type thermoelectric semiconductor chip and the N-type thermoelectric semiconductor chip in the slice intermediate is joined to the electrode.
[0020]
According to this manufacturing method, the resin portion can be easily and reliably provided between the thermoelectric semiconductor chips, and there is no misalignment between the thermoelectric semiconductor chip and the electrode as described above. The thermoelectric conversion element excellent in connection reliability can be manufactured.
[0021]
Next, the upper Symbol intermediates, the thermoelectric semiconductor chip plurality slice cut into slices intermediate and without the thickness direction, the P-type thermoelectric semiconductor chip and N-type thermoelectric semiconductor chip and an electrode in said slice Intermediate joining in.
In this case, a large number of intermediates (slice intermediates) can be easily produced, the productivity of the thermoelectric conversion element is improved, and the manufacturing cost is reduced.
[0022]
In addition, the thermoelectric conversion element concerning this invention can be used for the temperature control of a cooler box, a water cooler, a laser diode etc., for example.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Per thermoelectric conversion device and a manufacturing method thereof according to Reference Example Reference Example present invention will be described with reference to FIGS.
As shown in FIGS. 1 and 2, the thermoelectric conversion element of this example includes a pair of heat exchange substrates 210 and 220 disposed opposite to each other, and a plurality of heat exchange substrates 210 and 220 provided on the inner surface of the heat exchange substrates 210 and 220. P-type thermoelectric semiconductor chip 11 and N, which are arranged adjacent to each other between the electrodes 21 and 22 and the electrodes 21 and 22 of the pair of heat exchange substrates 210 and 220 and connected in series by the electrodes 21 and 22. And a thermoelectric semiconductor chip 12.
A resin portion 3 made of a synthetic resin is provided between the thermoelectric semiconductor chips 11 and 12, and a gap portion 31 is provided between the resin portion 3 and the heat exchange substrates 210 and 220. A space 32 is also provided between the resin portion 3 and the electrodes 21 and 22.
[0024]
Next, in manufacturing the thermoelectric conversion element, as shown in FIGS. 3 to 7, first, P-type thermoelectric semiconductor chips 11 and N-type thermoelectric semiconductor chips 12 are alternately placed in the inside 41 of the container-like jig 4. The synthetic resin 30 is filled between the thermoelectric semiconductor chips except for the electrode connection portions (upper and lower surfaces) (FIGS. 4 and 5), and the synthetic resin 30 is foamed and cured to form the resin portion 3. Then, the intermediate body 35 in which the above-described many thermoelectric semiconductor chips 11 and 12 are fixed by the resin portion 3 is produced (FIG. 6).
As shown in FIG. 4, the thermoelectric semiconductor chips 11 and 12 are formed by fitting the lower portions thereof into concave standing portions 42 provided on the bottom surface of the jig 4.
[0025]
Next, the P-type thermoelectric semiconductor chip 11 and the N-type thermoelectric semiconductor chip 12 are joined to the electrodes 21 and 22 so as to be alternately connected in series.
As shown in FIG. 7, the electrode 21 is formed on the surface of a heat exchange substrate 210 made of alumina ceramic by brazing. The same applies to the electrode 22.
The electrodes 21 and 22 and the thermoelectric semiconductor chips 11 and 12 are joined by solder. As the solder, cream solder is printed on the surfaces of the electrodes 21 and 22, and the two are joined by heating and melting.
In this example, the synthetic resin is a polyurethane resin, which is foamed and cured to form the resin portion 30.
[0026]
Next, the effect of this example will be described.
In this reference example , the resin portion 3 is provided between the thermoelectric semiconductor chips 11 and 12. Therefore, the periphery of all the thermoelectric semiconductor chips 11 and 12 is fixed by the resin portion 3, and their positions are fixed.
[0027]
Therefore, when the thermoelectric semiconductor chips 11 and 12 and the electrodes 21 and 22 are solder-bonded, even if the tip of the thermoelectric semiconductor chip is attracted by the molten solder, the tip of the thermoelectric semiconductor chip does not move.
Therefore, there is no misalignment between the thermoelectric semiconductor chips 11 and 12 and the electrodes 21 and 22 or the thermoelectric semiconductor chips are joined in an inclined state. Therefore, the bonding strength is high and the electrodes are not short-circuited.
[0028]
In this reference example , a gap portion 31 is provided between the resin portion 3 and the heat exchange substrates 210 and 220, and a gap portion 32 is also provided between the resin portion 3 and the electrodes 21 and 22. Therefore, heat insulation between the heat exchange substrates 210 and 220 on the heat generation side and the heat exchange substrates 210 and 220 on the cooling side is excellent, and the heat generation and cooling effect of the thermoelectric conversion element is high.
[0029]
Embodiment 1
This example is an embodiment of the present invention, and as shown in FIGS. 8 to 14, a thermoelectric conversion element having concave spaces (FIGS. 12 and 13) in the electrodes 21 and 22 is shown. A slice intermediate (FIG. 11) was produced and manufactured.
That is, in the thermoelectric conversion element of this example, as shown in FIG. 14, the electrodes 21 and 22 have concave space portions 216 and 226 in portions not in contact with the thermoelectric semiconductor chips 11 and 21.
Others are the same as the reference example .
[0030]
Next, a method for manufacturing the thermoelectric conversion element will be described with reference to FIGS.
First, as shown in FIG. 8, the double-sided tape 46 is disposed on the bottom 401 of the inside 41 of the deep container-like jig 40, and the P-type thermoelectric semiconductor chip 11 and the N-type thermoelectric semiconductor chip 12 are formed thereon as in the reference example. Are alternately placed next to each other, adhered onto the double-sided tape 46, and fixed upright.
The P-type thermoelectric semiconductor chip 11 and the N-type thermoelectric semiconductor chip 12 have a length of 100 mm.
Next, a synthetic resin was placed in the jig 40 in the same manner as in the first embodiment and cured (FIG. 9).
In this example, as the synthetic resin, a resin obtained by dispersing and mixing 5% by weight of a glass hollow body (glass balloon, manufactured by Sumitomo 3M Company, S20) in an epoxy resin (ME252 manufactured by Nippon Pernox) was used.
As a result, an intermediate 36 in which a large number of P-type thermoelectric semiconductor chips 11 and N-type thermoelectric semiconductor chips 12 were fixed by the resin portion 3 was obtained (FIG. 10).
[0031]
Next, as shown in FIG. 10, the intermediate body 36 was sliced into a thickness of 1 mm using an inner sword cutter 49 to produce 50 slice intermediate bodies 37 (FIG. 11). In the slice intermediate 37, the P-type thermoelectric semiconductor chip 11, the N-type thermoelectric semiconductor chip 12, and the resin portion 3 are on the same plane.
[0032]
On the other hand, as shown in FIGS. 12 and 13, the electrode 21 is bonded to the heat exchange substrates 210 and 220210 via the double-sided tape 214. The electrode 21 is disposed at a position where the P-type thermoelectric semiconductor chip 11 and the N-type thermoelectric semiconductor chip 12 can be connected in series. Further, the electrode 21 of this example has a concave space portion 216 at a portion facing the resin portion 3.
The same applies to the heat exchange substrate 220, the electrode 22, and the concave space 226 (FIG. 14).
[0033]
Next, the electrodes 21 and 22 are arranged facing each other on the upper and lower surfaces of the slice intermediate 37, and each thermoelectric semiconductor chip and the electrodes are soldered in the same manner as in the reference example . Thereby, the thermoelectric conversion element shown in FIG. 14 is obtained.
Others are the same as the reference example .
[0034]
According to the thermoelectric conversion element of this example, the electrodes 21 and 22 have the concave space portions 216 and 226 at positions facing the resin portion 3. Therefore, there is almost no heat transfer between the two, and the heat generation and cooling effect of the thermoelectric conversion element is improved.
In addition, since the sliced intermediate is manufactured to manufacture the thermoelectric conversion element, the intermediate is easily manufactured and the production efficiency is improved.
In addition, the same effect as the reference example can be obtained.
[0035]
Embodiment 2
This example, for the thermoelectric conversion element shown in Embodiment Example 1 and Reference Example, misalignment occurs test between the electrode and the thermoelectric semiconductor chip was subjected to bonding reliability test by thermal shock test. This test was performed by manufacturing 20 thermoelectric conversion elements.
In the misalignment generation test, the number of the thermoelectric semiconductor chips that are in contact with the adjacent electrodes 21 and 22 instead of the electrodes 21 and 22 to be originally joined was defined as the “misalignment number”.
[0036]
The number of “deviation defects” is the total of 254 P-type thermoelectric semiconductor chips and N-type thermoelectric semiconductor chips in the 20 thermoelectric conversion elements. When this occurred, the thermoelectric conversion element was counted as having a misalignment.
[0037]
In the above thermal shock test, after 200 cycles of leaving the thermoelectric conversion element at −50 ° C. for 1 hour and 120 ° C. for 1 hour were performed, the change in the internal resistance of the thermoelectric conversion element was 10% or more. The thing was counted as "bad thermal shock test".
[0038]
For comparison, a thermoelectric conversion element was manufactured in the same manner as in the reference example except that the resin portion was not provided, and the same test as described above was performed.
These results are shown in Table 1.
[0039]
[Table 1]
Figure 0004003254
[0040]
As can be seen from Table 1, according to the present invention, there can be obtained a thermoelectric conversion element having no positional deviation between the electrodes 21 and 22 and the thermoelectric semiconductor chip and having excellent bonding reliability between the two.
[0041]
【The invention's effect】
According to the present invention, there is no displacement of the bonding position between the thermoelectric semiconductor chip and the electrode, the bonding reliability between the thermoelectric semiconductor chip and the electrode at the time of use is excellent, and the thermoelectric conversion element is excellent in heat generation and cooling effect, and the manufacturing method thereof Can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a thermoelectric conversion element in a reference example .
FIG. 2 is a perspective view of a thermoelectric conversion element in a reference example .
FIG. 3 is a perspective view when a thermoelectric semiconductor chip is disposed in a jig in a reference example .
FIG. 4 is an explanatory cross-sectional view when a thermoelectric semiconductor chip is disposed in a jig in a reference example .
FIG. 5 is an explanatory diagram when a synthetic resin is injected into a thermoelectric semiconductor chip in a reference example .
FIG. 6 is a perspective view of an intermediate body in a reference example .
FIG. 7 is a perspective view of an electrode and a heat exchange substrate in a reference example .
8 is a cross-sectional explanatory diagram in the case of disposing a thermoelectric semiconductor chip in a jig in Embodiment 1 ; FIG.
FIG. 9 is an explanatory diagram when injecting synthetic resin into a thermoelectric semiconductor chip in Embodiment 1 ;
10 is an explanatory diagram of an intermediate in Embodiment Example 1. FIG.
FIG. 11 is a perspective view of a slice intermediate in the first embodiment.
12 is a side cross-sectional view of an electrode according to Embodiment 1 ; FIG.
FIG. 13 is a perspective explanatory view of electrodes in the first embodiment.
14 is an explanatory diagram of a thermoelectric conversion element in Embodiment 1 ; FIG.
FIG. 15 is an explanatory diagram of a thermoelectric conversion element in a conventional example.
FIG. 16 is an explanatory diagram of the arrangement of thermoelectric semiconductor chips on a heat exchange substrate in a conventional example.
FIG. 17 is a perspective view of a thermoelectric conversion element in a conventional example.
FIG. 18 is an explanatory diagram of a method for manufacturing a thermoelectric conversion element in a conventional example.
FIG. 19 is an explanatory diagram showing problems in a conventional example.
[Explanation of symbols]
11. . . P-type thermoelectric semiconductor chip,
12 . . N-type thermoelectric semiconductor chip,
21,22. . . electrode,
210, 220. . . Heat exchange board,
216, 226. . . Concave space,
3. . . Resin part,
30. . . Synthetic resin,
4,40. . . jig,
35, 36. . . Intermediate,
37. . . Slice intermediate,

Claims (4)

相対向して配設された一対の熱交換基板と,該熱交換基板の内側面にそれぞれ設けた複数の電極と,
前記一対の熱交換基板の各電極の間に隣り合って配置され,前記電極によって直列接続された,P型熱電半導体チップ及びN型熱電半導体チップとを有する熱電変換素子において,
前記熱電半導体チップの間に合成樹脂よりなる樹脂部が設けられ,該樹脂部の前記電極と対面する面は前記熱電半導体チップの前記電極と対面する面と同一平面上にあり,かつ該樹脂部と前記熱交換基板との間に空隙部が設けられ,
前記電極は,前記熱電半導体チップと接触していない部分で,かつ前記樹脂部に対面する部分にのみ凹状空間部を有することを特徴とする熱電変換素子。
A pair of heat exchange substrates disposed opposite to each other, a plurality of electrodes provided on the inner surface of the heat exchange substrate,
A thermoelectric conversion element having a P-type thermoelectric semiconductor chip and an N-type thermoelectric semiconductor chip, which are arranged adjacent to each other between the electrodes of the pair of heat exchange substrates and connected in series by the electrodes,
A resin portion made of synthetic resin is provided between the thermoelectric semiconductor chips, and a surface of the resin portion facing the electrode is flush with a surface of the thermoelectric semiconductor chip facing the electrode, and the resin portion And a gap between the heat exchange substrate and
The electrode, the thermoelectric conversion element, wherein the thermoelectric semiconductor chip and portions not in contact, and has a concave space portion only at a portion facing the resin portion.
請求項1において,前記合成樹脂は,エポキシ樹脂,フェノール樹脂,ポリウレタン樹脂,アクリル樹脂,スチレン樹脂の1種又は2種以上よりなる多孔質発泡体であることを特徴とする熱電変換素子。  2. The thermoelectric conversion element according to claim 1, wherein the synthetic resin is a porous foam made of one or more of epoxy resin, phenol resin, polyurethane resin, acrylic resin, and styrene resin. 請求項1又は2において,前記樹脂部には,ガラス中空体,石英中空体,ポリエチレン樹脂中空体,ポリウレタン樹脂中空体,ポリプロピレン樹脂中空体,ポリウレタン樹脂中空体,アクリル樹脂中空体,スチレン樹脂中空体,ポリカーボネート樹脂中空体の1種又は2種以上よりなる低熱伝導粒子が分散混合されていることを特徴とする熱電変換素子。  3. The resin portion according to claim 1, wherein the resin portion includes a glass hollow body, a quartz hollow body, a polyethylene resin hollow body, a polyurethane resin hollow body, a polypropylene resin hollow body, a polyurethane resin hollow body, an acrylic resin hollow body, and a styrene resin hollow body. A thermoelectric conversion element, wherein low thermal conductive particles made of one or more of polycarbonate resin hollow bodies are dispersed and mixed. 容器状の治具内にP型熱電半導体チップとN型熱電半導体チップとを並列に交互に配置し,
該治具に合成樹脂を充填して該合成樹脂を硬化させることにより前記熱電半導体チップの間に樹脂部を形成して,前記熱電半導体チップを樹脂部により固定した中間体を作製し,
該中間体を,前記熱電半導体チップの厚み方向において,複数個にスライス切断することにより,前記樹脂部の切断面が前記熱電半導体チップの切断面と同一平面上にあるスライス中間体を形成し,
次いで,熱電半導体チップと接触しない部分にのみ凹状空間部を有する電極を,該凹状空間部が前記樹脂部の前記切断面にのみ対面し,かつ前記P型熱電半導体チップとN型熱電半導体チップとが交互に直列接続されるように配設して,
前記スライス中間体における前記P型熱電半導体チップとN型熱電半導体チップとの切断面を前記電極に接合することを特徴とする熱電変換素子の製造方法。
P-type thermoelectric semiconductor chips and N-type thermoelectric semiconductor chips are alternately arranged in parallel in a container-like jig,
A resin part is formed between the thermoelectric semiconductor chips by filling the jig with a synthetic resin and curing the synthetic resin, and an intermediate body in which the thermoelectric semiconductor chip is fixed by the resin part is manufactured,
The intermediate body is sliced into a plurality of slices in the thickness direction of the thermoelectric semiconductor chip to form a slice intermediate in which the cut surface of the resin portion is flush with the cut surface of the thermoelectric semiconductor chip;
Next, an electrode having a concave space only in a portion not in contact with the thermoelectric semiconductor chip, the concave space facing only the cut surface of the resin portion, and the P-type thermoelectric semiconductor chip, the N-type thermoelectric semiconductor chip, Are arranged so that they are alternately connected in series,
A method of manufacturing a thermoelectric conversion element, comprising joining a cut surface of the P-type thermoelectric semiconductor chip and the N-type thermoelectric semiconductor chip in the slice intermediate to the electrode.
JP12357497A 1997-04-25 1997-04-25 Thermoelectric conversion element and manufacturing method thereof Expired - Fee Related JP4003254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12357497A JP4003254B2 (en) 1997-04-25 1997-04-25 Thermoelectric conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12357497A JP4003254B2 (en) 1997-04-25 1997-04-25 Thermoelectric conversion element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10303472A JPH10303472A (en) 1998-11-13
JP4003254B2 true JP4003254B2 (en) 2007-11-07

Family

ID=14863959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12357497A Expired - Fee Related JP4003254B2 (en) 1997-04-25 1997-04-25 Thermoelectric conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4003254B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000244026A (en) * 1999-02-17 2000-09-08 Seiko Instruments Inc Thermoelectric transfer element and its manufacture
JP3501394B2 (en) * 1999-03-30 2004-03-02 日本発条株式会社 Thermoelectric conversion module
KR101351683B1 (en) * 2012-02-09 2014-01-16 부산대학교 산학협력단 flexible thermoelectric element assembly united with heatsink and the manufacturing method of it
US20150311420A1 (en) * 2012-11-29 2015-10-29 Kyocera Corporation Thermoelectric module
JP5984870B2 (en) * 2013-07-17 2016-09-06 富士フイルム株式会社 Thermoelectric conversion element, composition for forming a thermoelectric conversion layer
JP6394491B2 (en) * 2014-06-03 2018-09-26 株式会社デンソー Method for manufacturing thermoelectric conversion element sheet, method for manufacturing thermoelectric conversion device
WO2016103784A1 (en) * 2014-12-26 2016-06-30 リンテック株式会社 Thermally conductive adhesive sheet, production method therefor, and electronic device using same
KR101989908B1 (en) * 2015-10-27 2019-06-17 주식회사 테그웨이 A flexible thermoelectric device, and method for manufacturing the same
JP2024021806A (en) * 2022-08-04 2024-02-16 マクセル株式会社 Peltier device and electronic device having Peltier device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838994B1 (en) * 1967-03-24 1973-11-21
JPH07162039A (en) * 1993-12-10 1995-06-23 Sharp Corp Thermoelectric conversion device, heat exchange element, and device using them
JP3151759B2 (en) * 1994-12-22 2001-04-03 モリックス株式会社 Thermoelectric semiconductor needle crystal and method of manufacturing thermoelectric semiconductor element
JPH08225340A (en) * 1995-02-22 1996-09-03 Asahi Glass Co Ltd Phosphate-based glass microballoon
JP3569836B2 (en) * 1995-08-14 2004-09-29 小松エレクトロニクス株式会社 Thermoelectric device
JP3528471B2 (en) * 1996-02-26 2004-05-17 松下電工株式会社 Manufacturing method of thermoelectric module
JP3956405B2 (en) * 1996-05-28 2007-08-08 松下電工株式会社 Thermoelectric module manufacturing method

Also Published As

Publication number Publication date
JPH10303472A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
US4547834A (en) Structure for assembling complex electronic circuits
JP5241928B2 (en) Thermoelectric element module and method of manufacturing thermoelectric element
JP4003254B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP2000049391A (en) Thermoelectric module and manufacture thereof
WO1997045882A1 (en) Method for manufacturing thermoelectric module
JP2006339497A (en) Semiconductor package equipped with socket function, semiconductor module, electronic circuit module and circuit board with socket
JPWO2013118478A1 (en) Semiconductor device
JP6008293B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2008277584A (en) Thermoelectric substrate member, thermoelectric module, and manufacturing method of them
JP2005333083A (en) Thermoelectric transducer module manufacturing method and thermoelectric transducer module
JP2000022224A (en) Manufacture of thermoelectric element and manufacture thereof
JP3956405B2 (en) Thermoelectric module manufacturing method
JP4913617B2 (en) Thermo module and manufacturing method thereof
JP2007243050A (en) Thermoelectric module, and its manufacturing method
JP2008277055A (en) Light source device
JPH1187787A (en) Production of thermoelectrtc module
JP2022170645A (en) switch
JPH1168174A (en) Thermoelectric semiconductor chip and manufacturing thermoelectric module
JPH10229223A (en) Thermoelectric element
JP3518845B2 (en) Thermoelectric semiconductor device manufacturing method
JP4795103B2 (en) Thermo module and manufacturing method thereof
WO2022209786A1 (en) Thermoelectric conversion module
JPH11307825A (en) Thermoelectric module and its manufacture
JP2019016658A (en) Optical module and method for manufacturing the same
JPH05275754A (en) Thermomodule

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees