WO2016095858A1 - Miroir d'absorbant saturable d'isolant topologique et son procédé de fabrication - Google Patents

Miroir d'absorbant saturable d'isolant topologique et son procédé de fabrication Download PDF

Info

Publication number
WO2016095858A1
WO2016095858A1 PCT/CN2015/097917 CN2015097917W WO2016095858A1 WO 2016095858 A1 WO2016095858 A1 WO 2016095858A1 CN 2015097917 W CN2015097917 W CN 2015097917W WO 2016095858 A1 WO2016095858 A1 WO 2016095858A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
topological insulator
mirror
saturable absorption
mode
Prior art date
Application number
PCT/CN2015/097917
Other languages
English (en)
Chinese (zh)
Inventor
闫培光
阮双琛
曹广忠
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2016095858A1 publication Critical patent/WO2016095858A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers

Definitions

  • the present invention relates to the field of laser technology, and in particular, to a topological insulator saturable absorption mirror and a preparation method thereof.
  • passive mode-locking technology is an effective way to achieve ultra-fast pulse output of fiber lasers, and the key technology of passive mode-locking is the need for saturable absorption in fiber laser resonators.
  • researchers have used a variety of saturable absorption effects to obtain passive mode-locked ultrafast pulse outputs in fiber lasers.
  • SESAM semiconductor saturable absorption mirrors
  • the technical problem to be solved by the present invention is to provide a topological insulator saturable absorption mirror and a preparation method thereof, so as to solve the commercial application adopted in the prior art.
  • SESAM is expensive, complicated in manufacturing process and low in reliability.
  • the present invention is implemented as follows:
  • a topological insulator saturable absorber mirror comprising a substrate and a topological insulator film plated on the substrate.
  • the substrate is quartz or silicon carbide.
  • the material of the topological insulator film includes any one of antimony telluride, antimony selenide and antimony telluride.
  • a method for preparing a topological insulator saturable absorption mirror includes the following steps:
  • topological insulator target Ionizing the surface of the topological insulator target to generate a plasma of the topological insulator, the plasma depositing a topological insulator film on the substrate;
  • Controlling the deposition time and/or deposition temperature causes the topological insulator film to reach a desired thickness.
  • the substrate is quartz or silicon carbide.
  • the material of the topological insulator film includes any one of antimony telluride, antimony selenide and antimony telluride.
  • a mode-locked fiber laser comprising a semiconductor pump laser, an optical coupling component, a resonant cavity; pump light generated by the semiconductor pump laser is collimated by the optical coupling component and coupled into the resonant cavity;
  • the resonant cavity includes any of the above-described topological insulator saturable absorption mirrors that are used for laser mode-locking of the resonant cavity.
  • the resonant cavity further includes:
  • Two-color mirror laser crystal, first laser high mirror, second laser high mirror;
  • the pump light generated by the semiconductor pump laser is collimated by the optical coupling component, and then enters the laser crystal through the dichroic mirror to generate laser light, and the generated laser light can be reflected into the first through the dichroic mirror.
  • the laser high reflection mirror is further reflected by the first laser high reflection mirror to the topological insulator saturable absorption mirror for clamping, and the clamped laser light is returned to the laser crystal through the original optical path for amplification; the amplified laser Output by the second laser high mirror.
  • the mode-locked fiber laser further includes a prism pair and an output mirror; the laser light output by the second laser high mirror is compressed by the prism pair and then output through the output mirror.
  • the resonant cavity further includes a double-clad active fiber, a pair of convex lenses; the pump light generated by the semiconductor pump laser is collimated by the optical coupling component and coupled into the double-clad active fiber Generating a laser beam; the generated laser light is directly focused by the convex lens to the topological insulator saturable absorption mirror for clamping, and the mode-locked laser light is returned to the double-clad active fiber through the original optical path for amplification; after amplification The laser is output through the double-clad active fiber.
  • the novel topological insulator saturable absorption mirror has a high damage threshold, is simple in structure, low in cost, high in reliability, and is suitable for mass production, and at the same time, the clamping mode of the saturable absorption mirror can be utilized by using the topological insulator.
  • Fiber lasers have the advantages of high reliability and suitable for the conversion of results.
  • FIG. 1 is a schematic structural view of a topological insulator saturable absorption mirror according to an embodiment of the present invention
  • FIG. 2 is a schematic flow chart of a method for preparing a topological insulator saturable absorption mirror according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a mode-locked fiber laser provided by an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a mode-locked fiber laser according to another embodiment of the present invention.
  • an embodiment of the present invention provides a topological insulator saturable absorption mirror, comprising a substrate 101 and a topological insulator film 102 plated on the substrate.
  • the substrate 101 may be made of quartz or silicon carbide, such as a quartz plate or a silicon carbide sheet as the substrate 101.
  • the material of the topological insulator film 102 may include bismuth telluride, Any of selenium telluride and antimony telluride.
  • the topological insulator saturable absorption mirror works by using it as a high reflection mirror for the laser.
  • the laser in the cavity is reflected by the topological insulator saturable absorption mirror
  • the laser can be modulated by the topological insulator saturable absorption mirror.
  • This topological insulator saturable absorption mirror has a high damage threshold and can be used as a light mirror for broadband modulation of light, which can be used as a key device for pulsed laser generation in laser systems.
  • an embodiment of the present invention provides a method for fabricating the above-described topological insulator saturable absorption mirror, comprising the following steps:
  • Step S1 placing the substrate and the topological insulator target in a vacuum chamber
  • Step S2 ionizing the surface of the topological insulator target to generate a plasma of the topological insulator, and depositing a plasma on the substrate to form a topological insulator film;
  • Step S3 controlling the deposition time and/or the deposition temperature to achieve the desired thickness of the topological insulator film.
  • quartz or silicon carbide can be used as a base material, such as a quartz plate or a silicon carbide sheet as a substrate, and at the same time, the topology
  • the material of the insulator film includes bismuth telluride, Any of selenium telluride and antimony telluride.
  • the topological insulator target and the substrate may be placed in a vacuum chamber, and the surface of the topological insulator target is ionized by laser pulse deposition to form a plasma, and the plasma is deposited on the substrate to form a topological insulator film.
  • the thickness of the deposited film can be controlled by controlling parameters such as deposition time or deposition temperature, and deposition can be stopped when the thickness of the deposited topological insulator film reaches a desired thickness.
  • Conventional semiconductor saturable absorption mirrors are prepared by chemical vapor deposition.
  • the semiconductor materials require layer growth, and each layer needs precise control.
  • the prepared semiconductor saturable absorption mirror has a bandwidth of only several tens of nanometers.
  • the invention adopts the method of laser pulse deposition, has simple preparation process and can be mass-produced, and a topological insulator target can prepare thousands of topological insulator saturable absorption mirrors.
  • the thickness and uniformity of the deposited topological insulator film can be controlled by controlling the temperature and time of deposition, so that mass production can be carried out at the same time, and the topological insulator can be made to have the same specifications of the saturated absorption mirror.
  • the topological insulator saturable absorption mirror bandwidth can be extended from visible light to infrared or even microwave.
  • an embodiment of the present invention further provides a mode-locked fiber laser, where the laser includes The semiconductor pump laser 1, the optical coupling component 2, the resonant cavity 3, and the pump light generated by the semiconductor pump laser 1 are collimated by the optical coupling assembly 2 and coupled into the resonant cavity 3.
  • the resonant cavity 3 includes any of the above-described topological insulator saturable absorption mirrors 6, which are used for laser mode-locking of the resonant cavity 3.
  • the resonant cavity 3 further includes a dichroic mirror 3, a laser crystal 4, a first laser high mirror 5, and a second laser high mirror 7.
  • a two-color mirror is an optical element that transmits almost completely light of a certain wavelength and almost completely reflects light of other wavelengths.
  • the dichroic mirror 3 transmits the pump light generated by the semiconductor pump laser 1 high, and the laser light generated by the laser crystal 4 is highly reflected.
  • the optical coupling assembly 2 includes a pair of convex lenses including two convex lenses 2, and the pump light generated by the semiconductor pump laser 1 is directly focused by a convex lens in the optical coupling assembly 2 and then passed through the dichroic mirror 3 into the laser crystal 4
  • the laser light is generated, and the generated laser light can be reflected by the dichroic mirror 3 into the first laser high reflection mirror 5, and then reflected by the first laser high reflection mirror 5 to the topological insulator saturable absorption mirror 6 for clamping, and the laser after the mode locking passes through the original
  • the optical path is returned to the laser crystal 4 for amplification, and the amplified laser light is output through the second laser high reflection mirror 7.
  • the mode-locked fiber laser 1 can also include a prism pair and an output mirror 9, which includes two prisms 8. The laser light output from the second laser high mirror 7 is compressed by the prism pair and then output through the output mirror 9.
  • another embodiment of the present invention further provides another mode-locked fiber laser, the laser including
  • the semiconductor pump laser 1, the optical coupling component 2, the resonant cavity 3, and the resonant cavity 3 include any of the above-described topological insulator saturable absorption mirrors 6, and the topological insulator saturable absorption mirror 6 is used for laser mode-locking of the resonant cavity 3.
  • the pump light generated by the semiconductor pump laser 1 is collimated by the optical coupling assembly 2 and coupled into the cavity 3.
  • the optical coupling assembly 2 includes a collimator 11, a focusing mirror 202, and a dichroic mirror 3.
  • the resonant cavity 3 further includes a double-clad active optical fiber 10, a pair of convex lenses, and the pair of convex lenses includes two convex lenses 2.
  • the pump light generated by the semiconductor pump laser 1 is collimated by the optical coupling component 2 and coupled into the double-clad active fiber 10 to generate a laser, and the generated laser is directly focused by a convex lens to the topological insulator saturable absorption mirror 6 for locking.
  • the mold, the mode-locked laser light is returned to the double-clad active optical fiber 10 through the original optical path for amplification, and the amplified laser light is output through the double-clad active optical fiber 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

La présente invention concerne un miroir d'absorbant saturable d'isolant topologique et son procédé de fabrication. Le miroir (6) d'absorbant saturable d'isolant topologique comprend une base (101) et un film mince (102) d'isolant topologique plaqué sur la base (101). Le procédé de fabrication comprend les étapes suivantes consistant à : placer une base (101) et un matériau cible d'isolant topologique dans une chambre à vide (S1) ; ioniser la surface du matériau cible d'isolant topologique pour produire un plasma de l'isolant topologique et les dépôts de plasma sur la base (101) pour former un film mince (102) d'isolant topologique (S2) ; commander la durée de dépôt et/ou une température de dépôt afin de permettre au film mince (102) d'isolant topologique d'avoir l'épaisseur nécessaire (S3). Le miroir (6) d'absorbant saturable d'isolant topologique présente un seuil d'endommagement élevé, une structure simple, de faibles coûts, une grande fiabilité et convient pour une production de masse. En même temps, un laser à fibre à verrouillage de mode du miroir (6) d'absorbant saturable d'isolant topologique présente les avantages d'une fiabilité élevée et est approprié pour la transformation de résultat.
PCT/CN2015/097917 2014-12-19 2015-12-18 Miroir d'absorbant saturable d'isolant topologique et son procédé de fabrication WO2016095858A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410803388.9 2014-12-19
CN201410803388.9A CN104466647B (zh) 2014-12-19 2014-12-19 拓扑绝缘体可饱和吸收镜及其制备方法

Publications (1)

Publication Number Publication Date
WO2016095858A1 true WO2016095858A1 (fr) 2016-06-23

Family

ID=52912257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097917 WO2016095858A1 (fr) 2014-12-19 2015-12-18 Miroir d'absorbant saturable d'isolant topologique et son procédé de fabrication

Country Status (2)

Country Link
CN (1) CN104466647B (fr)
WO (1) WO2016095858A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10371910B2 (en) 2017-12-22 2019-08-06 At&T Intellectual Property I, L.P. Optical communications cables utilizing topological insulators as optical fiber cores

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104466647B (zh) * 2014-12-19 2018-04-24 深圳大学 拓扑绝缘体可饱和吸收镜及其制备方法
CN105896258A (zh) * 2016-06-16 2016-08-24 深圳大学 二维半导体可饱和吸收镜及其制备方法、脉冲光纤激光器
WO2017214925A1 (fr) * 2016-06-16 2017-12-21 深圳大学 Miroir absorbeur saturable à semi-conducteur bidimensionnel et son procédé de préparation, et laser à fibre optique pulsée
CN105896253A (zh) * 2016-06-17 2016-08-24 中国工程物理研究院激光聚变研究中心 一种光纤器件和激光***
CN111525374A (zh) * 2020-04-28 2020-08-11 中国人民解放军国防科技大学 一种宽带波长可调激光脉冲信号发生装置和光纤激光器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060092995A1 (en) * 2004-11-01 2006-05-04 Chromaplex, Inc. High-power mode-locked laser system
CN102545022A (zh) * 2012-01-20 2012-07-04 上海交通大学 一种宽波段石墨烯可饱和吸收镜
CN103247935A (zh) * 2013-04-19 2013-08-14 王枫秋 光学各向异性可饱和吸收器件、制备方法及基于该器件的脉冲激光器
CN103526297A (zh) * 2013-10-17 2014-01-22 西南交通大学 一种制备拓扑绝缘体Bi2Se3薄膜的方法
CN104466647A (zh) * 2014-12-19 2015-03-25 深圳大学 拓扑绝缘体可饱和吸收镜及其制备方法
CN204391485U (zh) * 2014-12-19 2015-06-10 深圳大学 拓扑绝缘体可饱和吸收镜及锁模光纤激光器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434873A (en) * 1994-05-12 1995-07-18 University Of Central Florida Self starting femtosecond Ti Sapphire laser with intracavity multiquantum well saturable absorber
US5987049A (en) * 1998-04-24 1999-11-16 Time-Bandwidth Products Ag Mode locked solid-state laser pumped by a non-diffraction-limited pumping source and method for generating pulsed laser radiation by pumping with a non-diffraction-limited pumping beam
CN103242704A (zh) * 2013-04-22 2013-08-14 王枫秋 可饱和吸收复合材料墨水、制备方法及基于该墨水的光纤激光器
CN103882383B (zh) * 2014-01-03 2016-01-20 华东师范大学 一种脉冲激光沉积制备Sb2Te3薄膜的方法
CN203871646U (zh) * 2014-01-23 2014-10-08 中国电子科技集团公司第十一研究所 一种脉宽可调谐被动锁模激光器
CN103972773A (zh) * 2014-05-16 2014-08-06 厦门大学 基于拓扑绝缘体的被动调q光纤激光器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060092995A1 (en) * 2004-11-01 2006-05-04 Chromaplex, Inc. High-power mode-locked laser system
CN102545022A (zh) * 2012-01-20 2012-07-04 上海交通大学 一种宽波段石墨烯可饱和吸收镜
CN103247935A (zh) * 2013-04-19 2013-08-14 王枫秋 光学各向异性可饱和吸收器件、制备方法及基于该器件的脉冲激光器
CN103526297A (zh) * 2013-10-17 2014-01-22 西南交通大学 一种制备拓扑绝缘体Bi2Se3薄膜的方法
CN104466647A (zh) * 2014-12-19 2015-03-25 深圳大学 拓扑绝缘体可饱和吸收镜及其制备方法
CN204391485U (zh) * 2014-12-19 2015-06-10 深圳大学 拓扑绝缘体可饱和吸收镜及锁模光纤激光器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YANG, PENGHUI ET AL.: "Influence of Substrate Temperature on Growth of RF Sputtered Bismuth Telluride Films", CHINESE JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY, vol. 32, no. 6, 30 June 2012 (2012-06-30), pages 504 *
ZHAO, JIAN ET AL.: "SESAM-Based Passively Q-Switched Mode-Locked Ytterbium Doped Large-Mode-Area Fiber Lasers", PROCEEDINGS OF 2010 OPTICAL CONFERENCE OF THE CHINESE OPTICAL SOCIETY, 31 December 2010 (2010-12-31), pages 1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10371910B2 (en) 2017-12-22 2019-08-06 At&T Intellectual Property I, L.P. Optical communications cables utilizing topological insulators as optical fiber cores

Also Published As

Publication number Publication date
CN104466647B (zh) 2018-04-24
CN104466647A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2016095858A1 (fr) Miroir d'absorbant saturable d'isolant topologique et son procédé de fabrication
WO2017063293A1 (fr) Miroir absorbant saturable au sulfure de métal de transition et laser à fibre à modes synchronisés
WO2017214925A1 (fr) Miroir absorbeur saturable à semi-conducteur bidimensionnel et son procédé de préparation, et laser à fibre optique pulsée
JP2006309222A (ja) 量子ドット導波層を含む光導波路および製造方法
WO2013107284A1 (fr) Laser femtoseconde à modes synchronisés dans l'infrarouge moyen
Zhou et al. Fabrication of microlens array on chalcogenide glass by wet etching-assisted femtosecond laser direct writing
CN205846435U (zh) 二维半导体可饱和吸收镜、脉冲光纤激光器
CN109980491A (zh) 可饱和吸收体制备方法、可饱和吸收体及锁模激光器
CN112310804A (zh) 一种带相位补偿层的vcsel结构及制备方法
CN106129796A (zh) 基于磁控溅射法制备的MoS2可饱和吸收体薄膜及相应的超短脉冲光纤激光器
CN110346931B (zh) 一种基于金反射层结合微透镜的确定性量子光源器件及其制备方法和应用
CN112751256B (zh) 一种基于二碲化钨/二硫化钨异质结的可饱和吸收体和制备方法及其制成的锁模光纤激光器
WO2018205086A1 (fr) Miroir d'absorption saturable à hétérojonction de matériau bidimensionnel et son procédé de préparation
WO2017206137A1 (fr) Miroir absorbant saturable à hétérojonction et son procédé de préparation, et laser à fibre à modes bloqués
JPH05326402A (ja) 半導体装置の製造方法
CN103368058A (zh) 一种基于石墨烯的可饱和吸收镜及制造方法
JP4514964B2 (ja) 光学用シリコン層を基板上に形成する方法および該方法による光学素材の製造方法
CN114361928A (zh) 一种基于数个原子层厚的锗材料的实用化可饱和吸收器件及其制备方法
CN103320753A (zh) 一种尺寸密度可控铝纳米颗粒阵列的制备方法
CN106972344B (zh) 一种边发射半导体激光器件及其制造方法
Sugimura et al. Selective area deposition of silicon‐nitride and silicon‐oxide by laser chemical vapor deposition and fabrication of microlenses
WO2020062214A1 (fr) Modulateur optique intégré à guide d'ondes et son procédé de préparation
CN205016829U (zh) 过渡金属硫化物可饱和吸收镜及锁模光纤激光器
WO2018205087A1 (fr) Miroir d'absorption saturable à hétérojonction et son procédé de préparation, et laser à fibre pulsé
CN109346518B (zh) 一种微腔等离子体晶体管及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869365

Country of ref document: EP

Kind code of ref document: A1