WO2016095508A1 - 一种导热垫、散热器和散热组件 - Google Patents

一种导热垫、散热器和散热组件 Download PDF

Info

Publication number
WO2016095508A1
WO2016095508A1 PCT/CN2015/083981 CN2015083981W WO2016095508A1 WO 2016095508 A1 WO2016095508 A1 WO 2016095508A1 CN 2015083981 W CN2015083981 W CN 2015083981W WO 2016095508 A1 WO2016095508 A1 WO 2016095508A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
arcuate
contact surface
heat sink
contact
Prior art date
Application number
PCT/CN2015/083981
Other languages
English (en)
French (fr)
Inventor
余方祥
张显明
景焕强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016095508A1 publication Critical patent/WO2016095508A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • This paper relates to the field of communications, and in particular to a thermal pad, a heat sink and a heat sink assembly.
  • each heat-generating electronic device uses a single heat sink, which not only makes the assembly complicated, but also greatly reduces the heat-dissipating area of the heat sink.
  • it uses a multi-heating electronic device to share a heat sink, and the height of the heat-generating electronic device is different.
  • the deformation of the main board and the processing error of the heat sink cause the bottom surface of the heat sink and the upper surface of the heat-generating electronic device to be non-coplanar.
  • a heat sink is shared by a multi-heating electronic device, the bottom surface of the heat sink and the upper surface of the heat-generating electronic device are attached, so that the heat sink can only slide in a plane in which the two faces are coplanar, if there are multiple heat-generating electronic devices, and two heats are generated.
  • the electronic device is not in a plane.
  • the bottom surface of the heat sink and the two heat-dissipating electronic devices can only be in contact with one line and the other side, and the contact thermal resistance is much; if there are three heat-generating electronic devices, the bottom surface of the heat sink and two heat-generating electrons The device is point contact; if there are four or more heating electronic devices, the bottom surface of the heat generating electronic device and the heat sink may not be in contact with the bottom surface of the heat sink.
  • a thick silicone pad is used between the heat sink and each of the heat-generating electronic devices to fill the gap between the heat-generating electronic device and the heat sink. Silicone mat not only causes environmental problems, but also has poor thermal conductivity, resulting in high temperature of the heating electronic equipment. As the power of the heating electronic equipment is higher and higher, the heat flux density of the single board and the whole machine is getting larger and larger, and it is urgent to improve the thermal conductivity of the interface. .
  • the invention provides a thermal pad, a heat sink and a heat dissipating component to solve the problem that the thermal electronic device and the heat sink are not coplanar in the related art, resulting in poor thermal conductivity at the interface between the heat sink and the heat sink.
  • a thermal pad having at least one arcuate heat dissipating contact surface disposed on a heat dissipating end surface, the arcuate heat dissipating contact surface being disposed to contact an arcuate heat absorbing contact surface of the external heat sink.
  • the number of the arcuate heat dissipating contact surfaces is not more than three.
  • the arcuate heat dissipating contact surface is a spherical surface.
  • the arcuate heat dissipating contact surface is disposed at an intermediate portion of the heat dissipating end surface.
  • the arc in the arc-shaped heat dissipating contact surface is a convex arc structure.
  • a heat sink, the heat absorbing end of the heat sink is provided with at least one curved heat absorbing contact surface, and the curved heat absorbing contact surface is disposed to contact an arcuate heat dissipating contact surface of the external heat conducting mat.
  • the number of the arc-shaped heat absorbing contact faces is not more than three.
  • the curved heat absorbing contact surface is a spherical surface.
  • three concave arc-shaped heat absorbing contact faces are provided at the heat absorbing end of the heat sink.
  • a heat dissipating assembly comprising at least two thermally conductive pads as described above and a heat sink as described above, the arcuate heat dissipating contact surfaces being of the same diameter as the arcuate endothermic contact surfaces of the corresponding contacts.
  • the arc in the arc-shaped heat dissipating contact surface is a convex arc-shaped structure
  • the arc-shaped heat-absorbing contact surface is a concave arc-shaped heat-absorbing contact surface
  • the height of the arcuate convexity in the arcuate heat dissipating contact surface is greater than or equal to the arcuate concave height of the arcuate endothermic contact surface of the corresponding contact.
  • the two thermal pads, one of the heat sink and a supporting component are included;
  • the heat sink has two arcs corresponding to the arcuate heat dissipating contact faces of the thermal pad An endothermic contact surface;
  • the arcuate heat dissipating contact surface of the thermal pad is in contact with a corresponding arcuate heat absorbing contact surface of the heat sink, and the support member is connected to the heat sink to fix the heat sink a plane.
  • three heat conducting pads and one heat sink are included; the heat sink has three arcuate heat absorbing contact surfaces corresponding to the arc heat radiating contact faces of the heat conducting pads, Make The heat sink is fixed to a plane.
  • Embodiments of the present invention provide a thermal pad, a heat sink, and a heat dissipating component.
  • the heat dissipating end surface of the thermal pad includes at least one arcuate heat dissipating contact surface, and the heat dissipating contact surface contacts the arcuate heat absorbing contact surface of the external heat sink.
  • the heat absorbing end of the thermal pad of the embodiment of the present invention contacts the heat generating electronic device to transfer heat to the heat dissipating end, and the heat dissipating end has a curved heat dissipating contact surface, which increases the heat dissipating area, and the heat sink is installed along the edge.
  • the plane movement of the radiator can be adjusted around the heating electronic device for easy installation, and can form a surface contact with the arc surface corresponding to the bottom surface of the radiator, thereby greatly reducing the interface thermal resistance and improving the interface thermal conductivity. ability.
  • FIG. 1 is a structural diagram of the heat dissipating component and the main board assembled according to the embodiment
  • Figure 3 is a side view of the heat sink provided by the embodiment
  • Figure 4 is a cross-sectional view of the heat sink provided in the embodiment.
  • Figure 5 is a side view of the thermal pad provided in the embodiment.
  • FIG. 6 is a cross-sectional view of the thermal pad provided by the embodiment.
  • FIGS. 1-6 The embodiments of the present invention are described in detail below with reference to FIGS. 1-6:
  • the heat dissipation assembly 2 of the present embodiment is fixed to the main board 1 by screws 3.
  • the screw 3 here can also be other fixing devices, and it should be understood that any fixing device capable of fixing the heat dissipating component 2 and the main board 1 can be realized.
  • the heat dissipating component 2 in this embodiment includes a screw 3, a spring 4, and a heat sink having holes 5-8, thermal pads 9, 10 and 11 and a fixed bottom plate. There are studs 16, studs 17, studs 22, and studs 21 thereon.
  • the main board 1 has three CPUs 13, 15, 19 and four fixing holes 12, 14, 18, 20. Of course, it can also be other heat-generating electronic devices, and the number of heat-generating electronic devices can be plural. For example, the heat-generating electronic device can also be an LED or the like.
  • the heat dissipating component of the embodiment comprises two parts, consisting of two or more spherical heat radiating ends and a concave spherical surface heat sink. to make.
  • the upper surface of the CPU and the concave spherical surface of the heat sink are covered with a heat conductive material, and the three are assembled by a screw spring.
  • the thermal grease is applied to the CPU 13, the CPU 15, and the CPU 19, and the thermal pads 10, 11, and 9 are placed on top of the three CPUs; then the thermal paste is applied to the spherical surface 24, the spherical surface 23, and the spherical surface 25 of the heat sink;
  • the studs 16, the studs 17, the studs 22, and the studs 21 are respectively passed through the holes 7, the holes 8, the holes 6, and the holes 5, so that the concave spherical surface of the heat sink is in contact with the convex spherical surface of the thermal pad, and the heat sink is Placed on the spherical surface of the thermal pad; then, the spring is sequentially loaded into the stud 16, the stud 17, the stud 22, the stud 21; finally, the screw is sequentially loaded into the stud 16, the stud 17, the
  • a side view of the heat sink provided by the present embodiment includes three concave spherical arc-shaped heat dissipating contact surfaces 23, 24 and 25.
  • the curved heat-dissipating contact surface here is a concave spherical surface, and may of course be a convex spherical surface, and may also be other curved shapes.
  • the number of curved heat absorbing contact faces may also be two, and four or more. Usually no more than three, because three can just form a fixed surface.
  • the curved heat absorbing contact surface can be not only a concave spherical surface but also a convex spherical surface, and other curved surface shapes that can match the curved heat dissipation contact surface of the heat dissipation pad.
  • the concave spherical surface and the convex spherical surface can exist at the same time. In this case, it can be matched with the convex spherical surface and the concave spherical surface on the corresponding cooling pad, so that it is convenient to know how to place. As shown in FIG.
  • a cross-sectional view of the heat sink provided in the embodiment can be seen that the arc-shaped heat-absorbing contact surface of the heat sink can be in a plane after being in contact with the arc-shaped heat-dissipating contact surface of the heat-dissipating pad.
  • FIG. 5 a side view of the thermal pad in the present embodiment
  • FIG. 6 is a cross-sectional view of the thermal pad.
  • the thermal pad is made of a material having a large thermal conductivity
  • the heat dissipating end surface of the thermal pad includes at least one arcuate heat dissipating contact surface, and the heat dissipating contact surface is disposed to: contact the arcuate heat absorbing contact surface of the external heat sink .
  • the heat conducting pad comprises a heat dissipating end and a heat absorbing end, wherein the heat dissipating end is opposite to the heat absorbing end, wherein the arcuate heat dissipating contact surface is a convex spherical surface, and the arcuate heat dissipating contact surface may also be a concave spherical surface, and other curved shapes.
  • the structure should be understood to be an arc structure that can be used to contact the arcuate endothermic contact surface of the external heat sink.
  • the heat dissipating end can also be provided with two arc-shaped heat dissipating contact surfaces.
  • the surface of the endothermic end here matches the surface of the heat-generating electronic device. If the upper surface of the heat-generating electronic device is a concave surface, the heat-absorbing end of the thermal pad is a convex structure matching the concave portion. If the upper surface of the heat-generating electronic device is a rectangular plane, the heat-absorbing end of the thermal pad is a rectangular plane matching the rectangular plane. Optionally, the heat absorbing end of the thermal pad is planar.
  • the thermal pad is made of a metal material.
  • the metal material includes at least one of copper, aluminum, iron, platinum, gold, silver, magnesium, zinc, steel, and nickel, and related alloys.
  • the material of the thermal pad may be metallic or non-metallic. As long as it is a material with a high thermal conductivity, it can be achieved.
  • the structure of the thermal pad other than the heat sink end and the heat sink end can be formed as a tapered surface, a cylindrical surface, an ellipsoidal surface, and a combined surface formed by these geometric elements or between these geometric elements and other geometric elements.
  • the heat dissipating component in this embodiment includes at least two of the above-mentioned thermal pad and the above-mentioned heat sink, and the arcuate heat dissipating contact surface has the same diameter as the arcuate endothermic contact surface of the corresponding contact.
  • the curved shape in the arc-shaped heat dissipating contact surface is a convex arc-shaped structure, and the arc-shaped heat-absorbing contact surface is a concave arc-shaped heat-absorbing contact surface, the arc-shaped convex surface in the arc-shaped heat dissipating contact surface is greater than or Equal to the arcuate concave height of the curved endothermic contact surface of the corresponding contact.
  • the heat sink has two arcuate heat absorbing contact faces corresponding to the arcuate heat dissipating contact faces of the heat conducting mat; the arc heat dissipating contact surface of the heat conducting mat They are respectively in contact with the arcuate endothermic contact surface of the corresponding heat sink, and the supporting member is connected with the heat sink to fix the heat sink to a plane.
  • the supporting member is a structure in which the heat sink can be fixed to one surface as long as it can be combined with a heat conductive pad.
  • the heat sink has three arcuate heat absorbing contact faces corresponding to the arcuate heat dissipating contact faces of the thermal pad, so that the heat sink is fixed on a plane.
  • the heat absorbing end of the heat conducting pad is a flat surface, and the heat radiating end surface is a spherical surface.
  • the heat generating electronic device is described by taking a CPU as an example.
  • the planar portion of the thermal pad is placed on the upper surface of the CPU, and a spherical surface having the same diameter as the thermal pad is processed at a corresponding position on the bottom plate of the heat sink.
  • the spherical thermal pad can be in good contact with the CPU.
  • the spherical thermal pad can be in good contact with the CPU.
  • one motherboard has two CPUs, two spherical thermal pads are arranged, two spherical surfaces are processed at the position corresponding to the CPU of the heat sink bottom plate, and an auxiliary support point is added to achieve stable installation. Then use an elastic mechanism such as a screw spring to mount on the main board to ensure sufficient fastening force. Between the heat sink and the spherical heat conductive ball, the spherical thermal pad can be in good contact with the CPU.
  • the third case if one motherboard has more than three CPUs, then three CPU chips with large thermal power consumption are selected to be connected by spherical thermal pads, and three spherical thermal pads are arranged, and the rest are replaced by conventional plastic pads or other connection methods. Targeting issues. Then use an elastic mechanism such as a screw spring to mount on the main board to ensure sufficient fastening force. Between the heat sink and the spherical heat conducting ball, the spherical heat conducting ball can be in good contact with the CPU. During processing, the thermal pad can be processed in batches by cold rolling. For the spherical surface at the bottom of the radiator, spherical milling can be used to meet the accuracy and mass production.
  • the heat absorbing end of the thermal pad of the embodiment of the invention is in contact with the heat generating electronic device to transfer heat to the heat dissipating end, and the heat dissipating end has a curved heat dissipating contact surface, which increases the heat dissipating area and can form a surface corresponding to the bottom surface of the heat sink. Contact, greatly reducing the interface thermal resistance and improving the interface thermal conductivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种导热垫(9,10,11)、散热器和散热组件(2),其中,导热垫(9,10,11)的散热端表面上包括至少一个弧形散热接触面,该弧形散热接触面设置为:接触外接散热器的弧形吸热接触面(23,24,25)。

Description

一种导热垫、散热器和散热组件 技术领域
本文涉及通信领域,特别涉及一种导热垫、散热器和散热组件。
背景技术
目前,随着电子产品的发展,越来越要求将多个设备集成在一个主板上,主板上发热电子设备越来越多,为了避免影响性能,对这些发热电子设备的散热极为重要。目前,针对同一个主板上存在多个发热电子设备问题,解决方法有两个。其一,每个发热电子设备单独用一个散热器,不但组装繁琐,而且大大减少散热器的散热面积;其二,采用多发热电子设备公用一个散热器,发热电子设备的高度不一,同时由于主板变形,散热器加工误差,导致散热器底面和发热电子设备上表面不共面。针对多发热电子设备共用一个散热器时,散热器底面和发热电子设备上表面贴合,使得散热器只能在两者共面的平面内滑动,若有多个发热电子设备,且两个发热电子设备不在一个平面内,这时散热器底面和两个散热电子设备接触只能是一个线接触另个面接触,接触热阻很多;若有三个发热电子设备,散热器底面和两个发热电子设备是点接触;若有四个及以上的发热电子设备,发热电子设备和散热器底面可能接触不到散热器底面。为此,采用在散热器和各发热电子设备之间采用厚硅胶垫的方式,来填补发热电子设备与散热器不共面造成的间距。硅胶垫不但会造成环保问题,而且导热系数差,造成发热电子设备温度高,随着发热电子设备功率越来越高,单板和整机的热流密度越来越越大,急需提高界面导热能力。
发明内容
本文提供一种导热垫、散热器和散热组件解决相关技术中热电子设备与散热器不共面导致与散热器之间的界面导热差的问题。
一种导热垫,所述导热垫的散热端表面上包括至少一个弧形散热接触面,所述弧形散热接触面设置为:接触外接散热器的弧形吸热接触面。
在本发明一种实施例中,所述弧形散热接触面的个数不超过三个。
在本发明一种实施例中,所述弧形散热接触面为球面。
在本发明一种实施例中,所述弧形散热接触面设置在所述散热端表面上的中间区域。
在本发明一种实施例中,所述弧形散热接触面中的弧形为外凸的弧形结构。
一种散热器,所述散热器的吸热端设有至少一个弧形吸热接触面,所述弧形吸热接触面设置为:接触外接导热垫的弧形散热接触面。
在本发明一种实施例中,所述弧形吸热接触面的个数不超过三个。
在本发明一种实施例中,所述弧形吸热接触面为球面。
在本发明一种实施例中,在所述散热器的吸热端设有三个内凹的弧形吸热接触面。
一种散热组件,包括至少两个如上述所述的导热垫和一个如上述所述的散热器,所述弧形散热接触面与对应接触的所述弧形吸热接触面的直径相同。
在本发明一种实施例中,当所述弧形散热接触面中的弧形为外凸的弧形结构,所述弧形吸热接触面为内凹的弧形吸热接触面时,所述弧形散热接触面中弧形外凸的高度大于或等于对应接触的所述弧形吸热接触面弧形内凹的高度。
在本发明一种实施例中,包括两个所述导热垫、一个所述散热器和一支持部件;所述散热器具有两个与所述导热垫的弧形散热接触面对应的弧形吸热接触面;所述导热垫的弧形散热接触面分别与对应的所述散热器的弧形吸热接触面接触,所述支持部件与所述散热器连接,使所述散热器固定于一个平面。
在本发明一种实施例中,包括三个所述导热垫和一个所述散热器;所述散热器具有三个与所述导热垫的弧形散热接触面对应的弧形吸热接触面,使 所述散热器固定于一个平面。
本发明实施例提供一种导热垫、散热器和散热组件。所述导热垫的散热端表面上包括至少一个弧形散热接触面,该散热接触面接触外接散热器的弧形吸热接触面。与相关技术相比,本发明实施例的导热垫的吸热端与发热电子设备接触将热传递到散热端,散热端具有弧形散热接触面,增大了散热面积,安装时散热器由沿着散热器平面移动变成除了平面移动外,还可以围绕发热电子设备转动调整,便于安装,并且能与散热器的底面对应的弧面形成面接触,大大降低了界面热阻,提高了界面导热能力。
附图概述
图1为本实施例提供的散热组件与主板组装后的结构图;
图2为本实施例提供的散热组件的***图;
图3为本实施例提供的散热器的侧面图;
图4为本实施例提供的散热器的截面图;
图5为本实施例提供的导热垫的侧面图;
图6为本实施例提供的导热垫的截面图。
本发明的实施方式
下面结合附图1-6对本发明的实施方式进行详细说明:
如图1所示,本实施例的散热组件2与主板1通过螺钉3固定在一起。当然,这里的螺钉3还可以为其他的固定装置,应该理解为只要能使散热组件2与主板1进行固定的固定装置都可以实现。
如图2和图3所示,本实施例中的散热组件2包括螺钉3、弹簧4、散热器,该散热器上有孔5-8、导热垫9、10和11和固定底板,该底板上有螺柱16、螺柱17、螺柱22、螺柱21。该主板1上有三个CPU13、15、19和四个固定孔12、14、18、20。当然也可以为其他发热电子设备,并且发热电子设备可以为多个,例如该发热电子设备还可以为LED等。本实施例的散热组件包括两部分,由两个或两个以上带有球面的散热端和带有凹球面的散热器构 成。CPU上表面及散热器凹球面覆盖导热材料,三者通过螺丝弹簧装配起来。安装时,先在CPU13、CPU15、CPU19上面刷导热膏,将导热垫10、11、9依次放在3个CPU上面;然后在散热器的球面24、球面23、球面25上面刷导热膏;接着,将螺柱16、螺柱17、螺柱22、螺柱21,分别穿过孔7、孔8、孔6、孔5,使得散热器的凹球面与导热垫的凸球面接触,将散热器放在导热垫的球面上;接着,将弹簧依次装入螺柱16、螺柱17、螺柱22、螺柱21;最后,将螺钉依次装入螺柱16、螺柱17、螺柱22、螺柱21,并预紧锁紧。即安装完毕。
如3所示,为本实施例提供的散热器的侧面图,包括三个凹球面的弧形散热接触面23、24和25。这里的弧形散热接触面为凹球面,当然也可以为凸球面,并且还可以为其他的弧形。弧形吸热接触面个数也可以有两个,以及四个和四个以上的等。通常不超过三个,因为三个刚好可以形成一个面的固定。当然,该弧形吸热接触面不仅可以为凹球面、还可以为凸球面,以及其他可以跟散热垫的弧形散热接触面相配合的弧面形状。当然可以同时存在凹球面和凸球面,该情况下,与对应散热垫上的凸球面和凹球面对应配合接触即可,这样可以方便知道如何放置。如图4所示,为本实施例提供的散热器的截面图,可知散热器的弧形吸热接触面与导热垫的弧形散热接触面接触后可在一个平面内。
如图5所示,为本实施例中的导热垫的侧面图,图6所示,为导热垫的截面图。可选的,该导热垫为导热系数较大的材质构成,该导热垫的散热端表面上包括至少一个弧形散热接触面,散热接触面设置为:接触外接散热器的弧形吸热接触面。该导热垫包括散热端和吸热端,该散热端与吸热端相对设置,图中弧形散热接触面为一个凸球面,当然该弧形散热接触面还可以为凹球面,以及其他弧形结构,应该理解为能够用于接触外接散热器的弧形吸热接触面的弧形结构都可以。该散热端还可以设置两个弧形散热接触面,当然因为三点可以确定一个平面,通常不会设置超过三个的弧形散热接触面。当设置两个时,该两个与对应的散热器上的弧形吸热接触面接触,确定一条直线,然后可以借助支持部件,或者其他一个弧形散热接触面来形成一个面的固定;该情况可以用于对一个发热电子设备进行导热或两个发热电子设备 进行导热。当设置三个时,此时刚好三个弧形散热接触面确定一个面,可以对三个发热电子设备散热。值得注意的是,这里的吸热端的面与发热电子设备的表面相匹配。如果发热电子设备上表面为一个凹面,那么该导热垫的吸热端为与该凹部相匹配的凸面结构。如该发热电子设备的上表面为长方形平面,那么该导热垫的吸热端为与该长方形平面相匹配的长方形平面。可选的,该导热垫的吸热端为平面。
可选地,导热垫为一金属材质。该金属材质包括铜、铝、铁、铂、金、银、镁、锌、钢和镍中的至少一种,以及相关的合金。当然,导热垫的材料可以是金属的,也可以是非金属的。只要是导热系数比较高的材质都可以实现。该导热垫除了散热端和吸热端的其他部件的结构可以做成锥面、圆柱面、椭球面以及由这些几何元素之间或者这些几何元素和其它几何元素形成的组合面。
本实施例中的散热组件,包括至少两个上述的导热垫和上述的散热器,弧形散热接触面与对应接触的弧形吸热接触面的直径相同。当弧形散热接触面中的弧形为外凸的弧形结构,弧形吸热接触面为内凹的弧形吸热接触面时,弧形散热接触面中弧形外凸的高度大于或等于对应接触的弧形吸热接触面弧形内凹的高度。
当该散热组件包括两个导热垫、散热器和一支持部件时,散热器具有两个与导热垫的弧形散热接触面对应的弧形吸热接触面;导热垫的弧形散热接触面分别与对应的散热器的弧形吸热接触面接触,支持部件与散热器连接,使散热器固定于一个平面。该支持部件为只要能够配合导热垫使散热器固定在一个面的结构都可以。
当该散热组件包括三个导热垫和散热器时;散热器具有三个与导热垫的弧形散热接触面对应的弧形吸热接触面,使散热器固定于一个平面。
以该导热垫的吸热端为平面,散热端表面设置为球面,该发热电子设备为CPU为例进行说明。将该导热垫的平面部位放在CPU上表面,同时,在散热器底板的相应位置加工一同导热垫直径一样的球面。可分三种情形。第一种情形,一个主板有三个CPU,则配置三个球面导热垫,在散热器底板相对应CPU的位置加工三个球面。再用螺丝弹簧等弹性机构安装在主板上,保 证足够的扣合力。这样散热器和球形导热球之间,球形导热垫与CPU之间就可以良好接触。第二种情形,一个主板有两个CPU,则配置两个球面导热垫,在散热器底板相对应CPU的位置加工两个球面,另外增加一辅助支撑点,达到安装稳定的目的。再用螺丝弹簧等弹性机构安装在主板上,保证足够的扣合力。这样散热片和球形导热球之间,球形导热垫与CPU之间就可以良好接触。第三种情形,一个主板超过三个CPU,则选择三个热功耗大的CPU芯片用球面导热垫连接,配置三个球面导热垫,其余采用传统的塑胶垫或其它连接方式,以解决过定位问题。再用螺丝弹簧等弹性机构安装在主板上,保证足够的扣合力。这样散热片和球形导热球之间,球形导热球与CPU之间就可以良好接触。加工时,导热垫可以采用冷镦的方法批量加工,对于散热器底部的球面可以采用球面刀铣加工,满足精度并批量生产。对于各球面之间的间距,由于导热垫可以在CPU上部滑动,一般的加工精度即可满足。加工误差,所谓加工的平面和球面都有加工误差用导热硅脂填充即可。当然,上述固定也可以采用其他固定方式。
工业实用性
本发明实施例的导热垫的吸热端与发热电子设备接触将热传递到散热端,散热端具有弧形散热接触面,增大了散热面积,能与散热器的底面对应的弧面形成面接触,大大降低了界面热阻,提高了界面导热能力。

Claims (13)

  1. 一种导热垫,所述导热垫的散热端表面上包括至少一个弧形散热接触面,所述弧形散热接触面设置为:接触外接散热器的弧形吸热接触面。
  2. 如权利要求1所述的导热垫,其中,所述弧形散热接触面的个数不超过三个。
  3. 如权利要求1所述的散热垫,其中,所述弧形散热接触面为球面。
  4. 如权利1-3任一项所述的导热垫,其中,所述弧形散热接触面设置在所述散热端表面上的中间区域。
  5. 如权利要求5所述的导热垫,其中,所述弧形散热接触面中的弧形为外凸的弧形结构。
  6. 一种散热器,所述散热器的吸热端设有至少一个弧形吸热接触面,所述弧形吸热接触面设置为:接触外接导热垫的弧形散热接触面。
  7. 如权利要求6所述的散热器,其中,所述弧形吸热接触面的个数不超过三个。
  8. 如权利要求7所述的散热器,其中,所述弧形吸热接触面为球面。
  9. 如权利要求6-8任一项所述的散热器,其中,在所述散热器的吸热端设有三个内凹的弧形吸热接触面。
  10. 一种散热组件,包括至少两个如权利要求1-5任一项所述的导热垫和一个如权利要求6-9任一项所述的散热器,所述弧形散热接触面与对应接触的所述弧形吸热接触面的直径相同。
  11. 如权利要求10所述的散热组件,其中,当所述弧形散热接触面中的弧形为外凸的弧形结构,所述弧形吸热接触面为内凹的弧形吸热接触面时,所述弧形散热接触面中弧形外凸的高度大于或等于对应接触的所述弧形吸热接触面弧形内凹的高度。
  12. 如权利要求10或11所述的散热组件,包括两个所述导热垫、一个所述散热器和一支持部件;所述散热器具有两个与所述导热垫的弧形散热接触面对应的弧形吸热接触面;所述导热垫的弧形散热接触面分别与对应的所 述散热器的弧形吸热接触面接触,所述支持部件与所述散热器连接,使所述散热器固定于一个平面。
  13. 如权利要求10或11所述的散热组件,包括三个所述导热垫和一个所述散热器;所述散热器具有三个与所述导热垫的弧形散热接触面对应的弧形吸热接触面,使所述散热器固定于一个平面。
PCT/CN2015/083981 2014-12-18 2015-07-14 一种导热垫、散热器和散热组件 WO2016095508A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410802291.6A CN105764302B (zh) 2014-12-18 2014-12-18 一种导热垫、散热器和散热组件
CN201410802291.6 2014-12-18

Publications (1)

Publication Number Publication Date
WO2016095508A1 true WO2016095508A1 (zh) 2016-06-23

Family

ID=56125812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083981 WO2016095508A1 (zh) 2014-12-18 2015-07-14 一种导热垫、散热器和散热组件

Country Status (2)

Country Link
CN (1) CN105764302B (zh)
WO (1) WO2016095508A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437032A (zh) * 2021-06-24 2021-09-24 深圳市百洋科技有限公司 一种含阻热空心微粒球的耐热矽胶片

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111081663A (zh) * 2020-01-03 2020-04-28 深圳兴奇宏科技有限公司 裸晶的散热结构
CN114327002A (zh) * 2022-01-13 2022-04-12 北京市鑫全盛科技有限公司 一种散热器底座及散热器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983165A (ja) * 1995-09-12 1997-03-28 Toshiba Corp 電子機器冷却装置
CN101170886A (zh) * 2006-10-25 2008-04-30 富准精密工业(深圳)有限公司 散热模组
CN101431879A (zh) * 2007-11-07 2009-05-13 秦彪 热管强化的电子器件散热器
CN201892912U (zh) * 2010-12-17 2011-07-06 天津市海日电子有限公司 计算机主板散热装置
CN203167498U (zh) * 2013-01-28 2013-08-28 华为终端有限公司 一种散热器及电子产品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201104378Y (zh) * 2007-04-04 2008-08-20 华为技术有限公司 屏蔽和散热装置
CN201142045Y (zh) * 2008-01-03 2008-10-29 中国航天科工集团第二研究院七○六所 一种计算机用导热块
CN101754667B (zh) * 2008-12-22 2011-11-09 永硕***际股份有限公司 具有散热功能的电磁屏蔽装置
JP6012990B2 (ja) * 2012-03-19 2016-10-25 日本軽金属株式会社 放熱器一体型基板の製造方法
CN102646369B (zh) * 2012-04-16 2014-03-26 深圳市金立翔科技有限公司 一种led显示屏导热垫板及其制造方法
CN203814117U (zh) * 2014-04-21 2014-09-03 启碁科技股份有限公司 导热垫以及主板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0983165A (ja) * 1995-09-12 1997-03-28 Toshiba Corp 電子機器冷却装置
CN101170886A (zh) * 2006-10-25 2008-04-30 富准精密工业(深圳)有限公司 散热模组
CN101431879A (zh) * 2007-11-07 2009-05-13 秦彪 热管强化的电子器件散热器
CN201892912U (zh) * 2010-12-17 2011-07-06 天津市海日电子有限公司 计算机主板散热装置
CN203167498U (zh) * 2013-01-28 2013-08-28 华为终端有限公司 一种散热器及电子产品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437032A (zh) * 2021-06-24 2021-09-24 深圳市百洋科技有限公司 一种含阻热空心微粒球的耐热矽胶片

Also Published As

Publication number Publication date
CN105764302A (zh) 2016-07-13
CN105764302B (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
TWI326578B (en) Pcb with heat sink by through holes
JP5165017B2 (ja) 電子機器の冷却構造
US9318410B2 (en) Cooling assembly using heatspreader
WO2016084751A1 (ja) 放熱構造体、及びその製造方法
WO2016095508A1 (zh) 一种导热垫、散热器和散热组件
TWM487609U (zh) 手持電子裝置散熱結構
TWI497260B (zh) 散熱裝置組合及使用該散熱裝置組合的電子裝置
JP2016181546A (ja) 冷却構造及び装置
TWM430819U (en) Electronic device and heat sink device thereof
US20120002371A1 (en) Electronic device with heat dissipation apparatus
CN101287347A (zh) 热管散热装置
TW201306726A (zh) 散熱裝置
JP6371245B2 (ja) 熱伝導性部材、冷却構造及び装置
US8363398B2 (en) Electronic device with heat dissipation casing
TWI499752B (zh) Adjustable heat sink
JP2006203014A (ja) 放熱部品
JP2018096613A (ja) 放熱構造及び電子機器
JP5279639B2 (ja) グラファイトシート
TW200820883A (en) Heat dissipation module
WO2018003958A1 (ja) ヒートシンク構造
CN100409274C (zh) 用于平面显示装置中的散热装置
TWM500441U (zh) 具彈性浮動及滑動之熱傳導結構
TWI413889B (zh) 散熱裝置
JP7152465B2 (ja) 冷却構造、および、コンピュータ
JPH09246439A (ja) 発熱部品の冷却機構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869019

Country of ref document: EP

Kind code of ref document: A1