WO2016093617A1 - Heat radiation sheet - Google Patents

Heat radiation sheet Download PDF

Info

Publication number
WO2016093617A1
WO2016093617A1 PCT/KR2015/013452 KR2015013452W WO2016093617A1 WO 2016093617 A1 WO2016093617 A1 WO 2016093617A1 KR 2015013452 W KR2015013452 W KR 2015013452W WO 2016093617 A1 WO2016093617 A1 WO 2016093617A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
layer
heat
thermal conductivity
dissipation sheet
Prior art date
Application number
PCT/KR2015/013452
Other languages
French (fr)
Korean (ko)
Inventor
예성훈
이종훈
송예리
권동주
신창학
황덕율
박환석
권혜원
유다영
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Publication of WO2016093617A1 publication Critical patent/WO2016093617A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives

Definitions

  • the present invention relates to a heat dissipation sheet applied to a display apparatus, and provides a heat dissipation sheet for efficiently dissipating heat generated from a display apparatus.
  • Plasma Display Pannel PDP
  • Liquid Crystal Dispalys LCD
  • Organic Light Emitting Diode OLED
  • LED Light Emitting Diode
  • the maximum allowable operating temperature of the PDP glass panel is 90 ° C or less, and when the temperature difference between the fluorescent and non-fluorescent areas is 10 ° C or more, cracks are generated in the PDP glass panel, and PDP using the plasma light source generates high voltage / high current inside. Done.
  • the heat dissipation cooling is unevenly distributed over the entire surface, the image is locally refracted and distorted, thereby degrading display quality characteristics.
  • PDP which has to be implemented with a slim thin structure, has a weak environment in heat dissipation structure due to the narrower structure than the previous cathode ray tube display device, and a fan is used as a cooling device of the PDP, but this is the biggest obstacle to slim thinning of the PDP.
  • noise, weight increase, and power consumption have problems such as the need for a heat dissipation sheet capable of rapidly and uniformly spreading and transferring heat.
  • One embodiment of the present invention provides a heat dissipation sheet in which a heat source, that is, heat transmitted from a heat dissipation object, is uniformly spread and effectively discharged in a display device.
  • an insulating layer a metal thin film layer, a heat dissipation layer and a heat dissipation adhesive layer
  • the heat dissipation adhesive layer comprises an acrylic adhesive resin and a thermally conductive filler
  • the heat dissipation layer comprises a thermally conductive carbon structure It provides a heat dissipation sheet.
  • the insulating layer may be attached to the heat radiation object of the display device through a heat transfer material (TIM).
  • TIM heat transfer material
  • the heat dissipation adhesive layer may be attached to a back cover of the display device.
  • the adhesive shear force of the heat dissipation adhesive layer and the back cover may be 5 kgf / m2 to 15 kgf / m2.
  • the insulating layer and the heat dissipation layer may have anisotropic thermal conductivity.
  • the insulating layer and the heat dissipation layer may have a horizontal thermal conductivity greater than a vertical thermal conductivity.
  • the horizontal thermal conductivity of the insulation layer and the heat dissipation layer may be 60 W / mK to 320 W / mK, and the vertical thermal conductivity may be 3 W / mK to 15 W / mK.
  • the metal thin film layer may have isotropic thermal conductivity.
  • the vertical thermal conductivity of the metal thin film layer may be 210 W / mK to 380 W / mK.
  • the heat dissipation adhesive layer may include 30 parts by weight to 50 parts by weight of the thermally conductive filler with respect to 100 parts by weight of the acrylic adhesive resin.
  • the thermally conductive filler of the heat dissipation adhesive layer is nickel, aluminum nitride, boron nitride, carbon nanotubes (CNT), graphite, aluminum oxide, magnesium oxide, zinc oxide, silicon carbide, silicon nitride, aluminum hydroxide, hydroxide It may include one selected from the group consisting of magnesium, silicon oxide and combinations thereof.
  • the thermally conductive carbon structure of the heat dissipation layer is carbon nanotubes (CNTs), graphite, graphene, diamond, fullerene, carbon black, and combinations thereof. It may include one selected from the group consisting of.
  • the thermally conductive carbon structure of the heat dissipation layer may be doped with a metal on the surface.
  • the insulating layer is a binder resin containing a polyester resin, a rubber resin, or a silicone resin; And one thermally conductive filler selected from the group consisting of aluminum oxide, magnesium oxide, zinc oxide, silicon carbide, aluminum nitride, boron nitride, silicon nitride, aluminum hydroxide, magnesium hydroxide, silicon oxide, and combinations thereof.
  • the insulating layer may include 40 parts by weight to 60 parts by weight of the thermally conductive filler based on 100 parts by weight of the binder resin.
  • the metal thin film layer may include aluminum (Al) or copper (Cu).
  • the heat dissipation sheet may have a thickness of 0.05 mm to 0.3 mm.
  • the heat dissipation sheet may effectively disperse and dissipate the transferred heat so that heat may not be concentrated on a specific area of the display device. In addition, this may extend the life of the display device.
  • Figure 1 shows a cross-section of a heat radiation sheet which is an embodiment of the present invention.
  • Figure 2 shows the heat conduction mechanism for each layer of the heat radiation sheet which is an embodiment of the present invention.
  • FIG 3 is a schematic view showing a display device to which the heat dissipation sheet is applied.
  • an insulating layer a metal thin film layer, a heat dissipation layer and a heat dissipation adhesive layer
  • the heat dissipation adhesive layer comprises an acrylic adhesive resin and a thermally conductive filler
  • the heat dissipation layer comprises a thermally conductive carbon structure It provides a heat dissipation sheet.
  • the energy consumption of the power supply unit (PSU) has increased, and heat generation due to high-performance operation has been a problem.
  • the heat generation of the heat source located in a specific area of the display device causes a problem of locally deteriorating heat resistance or shortening the product life.
  • the air tunnel was designed on the back of the display device or a metal plate with excellent thermal conductivity was attached to the rear space.
  • the metal plate alone could not solve the heat concentration.
  • the thin metal plate does not rapidly disperse and release the high temperature heat intensively emitted from the PSU.
  • the heat dissipation sheet according to the present invention includes a structure in which specific layers are stacked, and by securing excellent thermal conductivity and thermal diffusivity inside and between each layer, the heat dissipation sheet is equipped with a slimming effect and The effect of heat resistance durability can be given simultaneously.
  • FIG. 1 schematically shows a cross section of the heat dissipation sheet according to an embodiment of the present invention.
  • the heat dissipation sheet 100 may include a heat dissipation adhesive layer 40, a heat dissipation layer 30, a metal thin film layer 20, and an insulating layer 10, and specifically, the heat dissipation adhesive layer ( 40, the heat dissipation layer 30, the metal thin film layer 20, and the insulating layer 10 may include a stacked structure.
  • the heat dissipation sheet 100 may include the heat dissipation layer 30 and the heat dissipation adhesive layer 40 formed as separate layers, and the heat dissipation adhesive layer 40 may include the heat dissipation sheet 100. Is the outermost layer when positioned in the display device, and may serve to finally discharge the heat conducted from the heat dissipation layer 30 to the outside.
  • the heat dissipation adhesive layer may include an acrylic adhesive resin and a thermally conductive filler, thereby ensuring adhesiveness and excellent thermal conductivity at the same time.
  • the heat dissipation layer includes a thermally conductive carbon structure and may have excellent thermal conductivity in a horizontal direction.
  • the heat dissipation sheet may be mounted in the display device such that the insulating layer 10 is located near a heat source, that is, a heat dissipation object.
  • the heat dissipation object may be a power supply unit (PSU). May be).
  • the insulating layer 10 may not be directly attached to the heat dissipation object, but may be attached through a heat transfer material (TIM).
  • the heat transfer material (Tr) is a silicon compound, or an acrylic compound; And it may be a mixture of one selected from the group consisting of aluminum nitride (AlN), boron nitride (BN) and combinations thereof.
  • the heat dissipation sheet may be mounted such that the heat dissipation adhesive layer 40 is positioned at the outermost portion of the display device. Specifically, the heat radiation adhesive layer 40 may be attached to a back cover of the display device.
  • the back cover is a cover located under the display device including elements such as plasma display pannel (PDP), liquid crystal dispalys (LCD), organic light emitting diode (OLED), and light emitting diode (LED).
  • PDP plasma display pannel
  • LCD liquid crystal dispalys
  • OLED organic light emitting diode
  • LED light emitting diode
  • the outermost portion of the display device may have a curved or planar shape.
  • heat transferred from the insulating layer through each layer may be uniformly dispersed in the heat dissipation adhesive layer and effectively released to the outside.
  • the adhesive shear force between the heat dissipation adhesive layer and the back cover may be about 5 kgf / m 2 to about 15 kgf / m 2.
  • the adhesive shear force is less than about 5 kgf / m2
  • the adhesion of the heat dissipation adhesive layer is lowered, there may be a problem that the heat transfer is not effectively released to the outside.
  • the adhesive shear force refers to a force that acts in the opposite direction but is the same size in two parallel planes approaching each other. In the state in which the heat dissipating adhesive layer and the back cover are attached, sizes of the adhesive shear force and the back cover are respectively The same but the opposite direction of the external force acts, meaning the force required to separate it.
  • the adhesive shear force is a value of 25 mm ⁇ 25 mm (width ⁇ length) of the adhesive surface between the heat dissipation adhesive layer and the back cover, and measured using an Instron equipment.
  • the heat dissipation sheet 100 may be formed of a material having anisotropic thermal conductivity to the insulating layer and the heat dissipation layer in order to improve thermal conductivity. Since the insulating layer and the heat dissipating layer have anisotropic thermal conductivity, heat can be uniformly distributed and released in a slim space, and a slimming effect and excellent heat resistance and durability can be provided to a display device including the heat dissipating sheet. You can grant them all.
  • the insulating layer and the heat dissipation layer may have a horizontal thermal conductivity greater than a vertical thermal conductivity. This means that heat is rapidly diffused in the horizontal direction as compared to the vertical direction, wherein the 'horizontal' direction means a direction parallel to the layered surface of the heat dissipation sheet, and the 'vertical' direction is a direction perpendicular to the horizontal direction. Means. Since the insulating layer and the heat dissipation layer have a horizontal heat conductivity greater than the vertical heat conductivity, the heat dissipation sheet can ensure uniform thermal conductivity as a whole, and effectively prevent the degradation of heat resistance due to the local heat generation area in the display device. Can be.
  • the horizontal thermal conductivity of the insulating layer and the heat dissipation layer may be about 60W / mK to about 320W / mK
  • the vertical thermal conductivity may be about 3W / mK to about 15W / mK.
  • the horizontal thermal conductivity and the vertical thermal conductivity of the insulating layer and the heat dissipating layer satisfy the above ranges, respectively, so that the heat generated from the heat source in which the heat dissipating sheet is locally present can be uniformly dispersed in a short time.
  • the heat dissipation sheet 100 includes a metal thin film layer 20, which serves to improve the vertical thermal conductivity of the heat dissipation sheet.
  • the metal thin film layer 20 may have isotropic thermal conductivity.
  • the isotropic thermal conductivity of the metal thin film layer means that the conductivity is not different according to the direction, whereby the metal thin film layer may have uniform thermal conductivity in all directions.
  • the vertical thermal conductivity of the metal thin film layer may be about 210 W / mK to about 380 W / mK.
  • the metal thin film layer 20 may be located between the insulating layer 10 and the heat dissipating layer 30, and it is considered that the insulating layer and the heat dissipating layer exhibit excellent thermal conductivity in the horizontal direction.
  • the heat dissipating sheet may realize excellent heat distribution and heat dissipation effects in both the horizontal direction and the vertical direction.
  • FIG. 2 shows the heat conduction mechanism for each layer of the heat radiation sheet according to an embodiment of the present invention.
  • the insulating layer 10 may be located closest to the heat dissipation object of the display device, and the heat dissipation adhesive layer 40 may be attached to the back cover existing at the outermost part of the display device.
  • the heat dissipation adhesive layer 40 may discharge the heat transferred from the heat dissipation layer 30 to the outside through the back cover.
  • the insulating layer 10 and the heat dissipation layer 30 has anisotropic thermal conductivity, and it can be seen that the amount of heat transferred in the horizontal direction is larger than the amount of heat transferred vertically, and the metal thin film layer 20 Silver has isotropic thermal conductivity, and it can be seen that most of the transferred heat is transferred to the heat dissipation layer 30 vertically.
  • the uniformity and distribution of thermal conductivity can be improved in a slim space through the heat dissipation sheet.
  • the insulating layer 10 is a layer having thermal conductivity but no electrical conductivity.
  • the insulating layer 10 is attached to a heat dissipation object of a display device through a thermal interface material (TIM) as described above, and is formed by the heat dissipation object.
  • TIM thermal interface material
  • the insulating layer may include a polyester resin, a rubber resin, or a silicone resin as a binder resin, and may include a thermally conductive filler dispersed in the binder resin.
  • the thermally conductive filler may include one selected from the group consisting of aluminum oxide, magnesium oxide, zinc oxide, silicon carbide, aluminum nitride, boron nitride, silicon nitride, aluminum hydroxide, magnesium hydroxide, silicon oxide, and combinations thereof. have.
  • the insulating layer is a layer located closest to the heat dissipation object, and may include anisotropic thermal conductivity in transferring heat generated from the heat dissipation object by including the heat conductive filler.
  • the insulating layer may use aluminum nitride or boron nitride as a thermally conductive filler, and in this case, anisotropic thermal conductivity may be maximized to ensure excellent thermal conductivity in the horizontal direction.
  • the insulating layer is coated with a comma coater or a rotary screen coater to coat the paste in which the thermally conductive filler is dispersed in the binder resin, and using casting or roll lamination.
  • the thermally conductive filler can be made to lie down in the horizontal direction. More specifically, the thermal conductive filler can be laid down by heating and pressing at a temperature of the glass transition temperature (Tg) or more of the binder resin.
  • the insulating layer may include about 40 parts by weight to about 60 parts by weight of the thermally conductive filler based on 100 parts by weight of the binder.
  • the content of the thermally conductive filler exceeds about 60 parts by weight, cracks may occur in the insulating layer, and a short circuit may occur in a printed circuit board due to leakage current. If less than 40 parts by weight may cause a problem that does not secure the required thermal conductivity.
  • the insulating layer contains a thermally conductive filler in the above range, it is possible to obtain an effect of good thermal conductivity at the same time without electricity, and cracks do not occur even on a curved surface having a radius of curvature of 120 cm. Effects can be easily implemented.
  • the insulating layer may have a thickness of about 40 ⁇ m to about 80 ⁇ m.
  • the insulation layer exhibits excellent insulation by maintaining the thickness in the above range, it may be excellent in crack prevention performance.
  • the insulating layer maintains the thickness in the above range, it is possible to secure an excellent short prevention effect when contacting the printed circuit board (PCB).
  • the heat dissipation adhesive layer 40 may be attached to the back cover of the display device as described above, and at the same time may serve to evenly dissipate the heat generated by the heat dissipation object.
  • the heat radiation adhesive for forming the heat radiation adhesive layer 40 may be formed by adding a thermally conductive filler to the acrylic adhesive resin.
  • the acrylic adhesive resin may include a polymer or copolymer of a (meth) acrylate monomer in order to secure excellent adhesion to the back cover.
  • the (meth) acrylate monomer may be an acrylate or methacrylate having an alkyl group having 1 to 12 carbon atoms.
  • the acrylic adhesive resin is ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, isooctyl acrylate, decyl acrylate, decyl methacrylate, dodecyl methacrylate, and these It can be prepared by polymerizing or copolymerizing a monomer component including one monomer selected from the group consisting of a combination, in which case the heat dissipation adhesive layer can ensure excellent flexibility and processability.
  • the thermally conductive filler of the heat dissipation adhesive layer is nickel, aluminum nitride, boron nitride, carbon nanotubes (CNT), graphite, aluminum oxide, magnesium oxide, zinc oxide, silicon carbide, silicon nitride, aluminum hydroxide It may include one selected from the group consisting of magnesium hydroxide, silicon oxide, and combinations thereof, and by using aluminum nitride or boron nitride having excellent thermal conductivity, the heat-dissipating adhesive layer can simultaneously secure excellent adhesiveness and thermal conductivity. .
  • the heat dissipation adhesive layer may include about 30 parts by weight to about 50 parts by weight of the thermally conductive filler based on 100 parts by weight of the acrylic adhesive resin.
  • the content of the thermally conductive filler is less than about 30 parts by weight, the thermal conductivity is low, and when the heat dissipation adhesive layer is attached to the back cover, it is difficult to release heat, and when it exceeds about 50 parts by weight, the interface between the back cover and the adhesive force is low.
  • the air layer with low thermal conductivity increases, and there exists a problem that a heat radiation effect falls.
  • thermally conductive filler is included in the content in the above range, it is possible to secure an appropriate interfacial adhesive force with the back cover, and at the same time reduce the air layer having a low thermal conductivity and attach to the back cover to release heat to the outside through the same. Can be easily implemented.
  • the heat radiation adhesive layer may have a thickness of about 5 ⁇ m to 10 ⁇ m.
  • the insulating layer and the heat dissipation layer may have anisotropic thermal conductivity in transferring heat transferred from the heat dissipation object.
  • “Anisotropy” means that the physical properties of the object is different depending on the direction, it means that the heat generated in the heat radiation object has a different thermal conductivity depending on the direction when transferred through the insulating layer and the heat radiation layer.
  • the insulating layer is manufactured by including a thermally conductive filler such as aluminum nitride or boron nitride, and may have a higher horizontal thermal conductivity than the vertical thermal conductivity by the physical structure of the thermally conductive filler.
  • a thermally conductive filler such as aluminum nitride or boron nitride
  • the heat dissipation layer may include a thermally conductive carbon structure as described above.
  • the thermally conductive carbon structure may include carbon nanotubes (CNTs), graphite, graphene, diamonds ( diamond, fullerene, carbon black, and a combination thereof.
  • the heat dissipation layer may include carbon nanotubes (CNT) or graphene, and in this case, it may be advantageous to secure anisotropic thermal conductivity.
  • CNT carbon nanotubes
  • graphene graphene
  • the thermally conductive carbon structure of the heat dissipation layer may be doped (doping) metal on the surface.
  • doping doped
  • the contact resistance of the thermally conductive carbon structure having a higher thermal conductivity than that of the metal is lowered, thereby lowering the electrical conductivity and increasing the thermal conductivity.
  • the thermal conductivity can be maximized.
  • the heat dissipation layer may include carbon nanotubes or graphene doped with a metal on the surface, and in this case, the heat dissipation layer may be advantageous to secure proper thermal conductivity in terms of directionality.
  • the heat dissipation layer is produced by coating a comma coater or a rotary screen coater with a paste prepared by dispersing the thermally conductive carbon structure in a binder resin of the same type as the insulating layer, and then casting. (Casting) or roll lamination (Roll Lamination) can make the thermally conductive carbon structure to lie in the horizontal direction, thereby effectively improving the heat radiation layer horizontal thermal conductivity.
  • the heat radiation layer may have a thickness of about 25 ⁇ m to about 100 ⁇ m.
  • the thickness of the heat dissipation layer By limiting the thickness of the heat dissipation layer to the above range, it is advantageous to increase the thermal conductivity in the horizontal direction, it is possible to easily ensure the effect of uniform heat distribution.
  • the thickness of the heat dissipation layer is less than about 25 ⁇ m, the horizontal thermal conductivity does not increase, and when the thickness of the heat dissipation layer exceeds about 100 ⁇ m, the vertical thermal conductivity is greatly decreased, and heat may not easily escape to the outside of the display device.
  • the metal thin film layer has isotropic thermal conductivity in transferring heat transferred from a heat radiating object, and specifically, may include aluminum (Al) or copper (Cu). Specifically, the metal thin film layer may use a thin plate including pure aluminum (1000-based) or aluminum-manganese (Al-Mn) alloy (3000-based).
  • the metal thin film layer may have a thickness of about 50 ⁇ m to about 200 ⁇ m.
  • the thickness of the metal thin film layer is less than about 50 ⁇ m, heat may not be transferred well in the vertical direction, thereby deteriorating a heat dissipation effect, and it may be difficult to secure tensile strength to prevent tearing during a coating or lamination process.
  • the thickness of the metal thin film layer exceeds about 200 ⁇ m may cause a problem of lowering the flexibility.
  • the heat dissipation sheet may have a thickness of about 0.05 mm to about 0.3 mm.
  • the heat dissipation sheet includes a laminated structure of an insulation layer, a metal thin film layer, a heat dissipation layer, and a heat dissipation adhesive layer, and by maintaining the thickness of the heat dissipation sheet including all the layers in the above range, generated from the heat dissipation object through each layer The transferred heat can be spread effectively in a slim space.
  • the heat dissipation sheet can improve the uniformity of the heat distribution by maintaining the thickness of the above range, thereby improving the heat resistance durability of the display device can be extended to the service life.
  • the heat dissipation sheet can be applied to a display device having a slim and flexible structure or a display device such as a mobile phone that is easy to bend.
  • the heat dissipation sheet effectively distributes local heat generated due to high integration to a large area, and heats a specific area in the display device. You can avoid this concentration.
  • it can be bent and attached to the back of the product to have flexibility and processability suitable for being applied to the product having a bend, in this case, the effect of the thermal conductivity and distribution can be further improved.
  • a metal thin film layer was formed by laminating an insulating layer having a thickness of 60 ⁇ m and an aluminum metal foil having a thickness of 150 ⁇ m on the insulating layer with 60 parts by weight of aluminum nitride based on 100 parts by weight of the polyester resin. Subsequently, a heat dissipation layer including graphene doped with copper (Cu) and a thickness of 58 ⁇ m is formed on the metal thin film layer, and 50 parts by weight of boron nitride is added to 100 parts by weight of the acrylic adhesive resin on the heat dissipation layer.
  • the heat-dissipation sheet was manufactured by forming the heat-dissipation adhesive layer of thickness 15micrometer. The heat dissipation sheet may be mounted in the display device such that the insulating layer is attached to the heat dissipation object PSU through a heat transfer material TIM including boron nitride (BN).
  • a pressure-sensitive adhesive layer having a thickness of 20 ⁇ m is formed on top of a graphite layer having a thickness of 480 ⁇ m, a pressure-sensitive adhesive layer having a thickness of 12 ⁇ m is formed on the bottom of the graphite, and a polyethylene having a thickness of 12 ⁇ m is formed on each of the pressure-sensitive adhesive layers.
  • a terephthalate (PET) film was laminated to prepare a heat radiation sheet having a laminated structure of PET-adhesive layer-graphite-adhesive layer-PET.
  • the heat dissipation sheet may be mounted in the display device such that the PET film formed on the pressure-sensitive adhesive layer having a thickness of 12 ⁇ m is attached to the heat dissipation object (PSU).
  • a heat radiation sheet having a layer was prepared. Specifically, using the twin screw T-die extruder, the polyethylene (PE) film layer was prepared, after laminating with the copper (Cu) sheet in the heat of 120 °C, the acrylic adhesive on the opposite side was coated with a comma coater. The heat dissipation sheet may be mounted in the display such that the pressure-sensitive adhesive layer is attached to the back cover.
  • the layer located on the power supply unit (PSU) side which is the heat dissipation object
  • the layer located on the back cover side Referred to as Top.
  • the insulation resistance of the top and bottom of the heat dissipation sheet of the Examples and Comparative Examples was measured through an insulation ohmmeter (Fluke-1577), and the results are shown in Table 1 below. Specifically, for the top and bottom of the heat dissipation sheet, an external voltage DC 500V was generated to determine how much leakage current occurred after 1 minute, and the insulation resistance was measured by the average resistance obtained through the result.
  • Example 1 Comparative Example 1 Comparative Example 2 Thickness ( ⁇ m) 283 536 212 Thermal Conductivity (W / mK) Horizontal thermal conductivity 114 109 85 Vertical thermal conductivity 5.98 0.04 0.03 Insulation resistance ( ⁇ ⁇ cm)
  • Top-back cover side 1.176 ⁇ 10 ⁇ -6 > 1 ⁇ 10 ⁇ 13 1.73 ⁇ 10 ⁇ -5
  • Bottom-PSU side > 1 ⁇ 10 ⁇ 13 > 1 ⁇ 10 ⁇ 13 1.44 ⁇ 10 ⁇ 12
  • the heat dissipation sheet of Example 1 was measured to be higher in both the horizontal thermal conductivity and the vertical thermal conductivity than the display device equipped with the heat dissipation sheet of Comparative Example 1.
  • the heat dissipation sheet of Example 1 includes a laminated structure of an insulating layer, a metal thin film layer, a heat dissipation layer, and a heat dissipation adhesive layer, and has an isotropic thermal conductivity and anisotropic thermal conductivity in transferring heat generated from a display device. By including a structure in which layers are alternately stacked, the overall horizontal thermal conductivity and vertical thermal conductivity of the heat dissipation sheet are improved.
  • the lowest insulation resistance that is, the insulation resistance on the side where the insulation layer is present
  • the top insulation resistance that is, insulation on the side where the heat-dissipating layer is present. It can be seen that the resistance is low.
  • both the lower and the uppermost insulation resistance was high.
  • the lowermost part of the heat dissipation sheet of Example 1 and Comparative Example 1 is a portion close to the printed circuit board (PCB) located in the power supply unit (PSU), it can be seen that all excellent in insulation as shown in the results of Table 1.
  • the lowermost insulating layer near the printed circuit board (PCB) located in the power supply unit (PSU) ensures insulation of the PET film level, and at the same time, the result of the thermal conductivity measurement As shown in Fig. 1, excellent thermal conductivity is achieved.
  • the lowermost portion close to the printed circuit board (PCB) has a high insulation by PET film, but since the thermal conductivity is not good, there is almost no ability to release heat in a short time. It can be seen that the heat dissipation effect is remarkably inferior to 1.
  • the heat dissipation adhesive layer on the top of the back cover shows a lower insulation resistance than the PET film on the top side of Comparative Example 1, indirectly showing excellent thermal conductivity It can be seen that, when further referring to the results of the thermal conductivity measurement, it can be seen that the heat radiation effect to the outside is excellent.
  • the heat dissipation sheet of Comparative Example 2 was lower than the heat dissipation sheet of Example 1 in the horizontal thermal conductivity and the vertical thermal conductivity, it can be seen that the heat dissipation effect is deteriorated even though it has a thinner structure.

Abstract

Provided is a heat radiation sheet comprising an insulation layer, a metal thin film layer, a heat radiation layer, and a heat-radiating adhesive layer, wherein the heat-radiating adhesive layer comprises an acrylic adhesive resin and a thermally conductive filler, and the heat radiation layer comprises a thermally conductive carbon structure. The insulation layer and the heat radiation layer have anisotropic thermal conductivity, and thus the heat radiation sheet may procure even thermal conductivity overall, and the degradation of heat resistance and durability due to a local heating area in a display device may be effectively prevented.

Description

방열시트Heat dissipation sheet
디스플레이 장치에 적용되는 방열시트에 관한 것으로, 디스플레이 장치에서 발생되는 열을 효율적으로 방열시키는 방열시트를 제공한다.The present invention relates to a heat dissipation sheet applied to a display apparatus, and provides a heat dissipation sheet for efficiently dissipating heat generated from a display apparatus.
전자 디스플레이 분야에 사용되는 PDP(Plasma Display Pannel), LCD(Liquid Crystal Dispalys), OLED(OrganicLight Emitting Diode), LED(Light Emitting Diode) 등은 고전압 방전구조에 의하여 발열량이 증가함에 따라 원활한 방열 냉각흐름은 기기의 안정성 및 품질특성에 중요한 요소가 된다.Plasma Display Pannel (PDP), Liquid Crystal Dispalys (LCD), Organic Light Emitting Diode (OLED), and Light Emitting Diode (LED) are used in the electronic display field. It is an important factor in the stability and quality characteristics of the equipment.
예컨대, PDP 유리패널의 최대 허용 동작온도는 90℃이하며 형광영역과 비형광영역 간의 온도차가 10℃ 이상이 되면 PDP 유리패널에 균열이 발생되고 플라즈마 광원을 이용하는 PDP는 내부에 고전압/고전류가 발생하게 된다. 또한, PDP의 경우 전체면에 걸쳐 방열 냉각이 불균일하게 이루어질 경우, 영상이 국부적으로 굴절 및 왜곡을 일으켜 디스플레이 품질특성을 저하시키게 된다.For example, the maximum allowable operating temperature of the PDP glass panel is 90 ° C or less, and when the temperature difference between the fluorescent and non-fluorescent areas is 10 ° C or more, cracks are generated in the PDP glass panel, and PDP using the plasma light source generates high voltage / high current inside. Done. In addition, in the case of the PDP, if the heat dissipation cooling is unevenly distributed over the entire surface, the image is locally refracted and distorted, thereby degrading display quality characteristics.
나아가, 슬림박형화 구조가 구현되어야 하는 PDP는 이전의 음극관 화면표시장치보다 협소한 구조로 인해 방열 구조에서 취약한 환경을 갖고 있으며 PDP의 냉각장치로서 팬이 사용되기도 하였으나 이는 PDP의 슬림 박형화에 가장 큰 장애요인이 되고 있는 동시에 소음, 중량증가 및 동력소비 등의 문제를 갖으므로 근래에는 열을 신속하고 균일하게 확산 전달할 수 있는 방열시트에 대한 필요성이 대두되고 있다.In addition, PDP, which has to be implemented with a slim thin structure, has a weak environment in heat dissipation structure due to the narrower structure than the previous cathode ray tube display device, and a fan is used as a cooling device of the PDP, but this is the biggest obstacle to slim thinning of the PDP. In addition, as a factor, noise, weight increase, and power consumption have problems such as the need for a heat dissipation sheet capable of rapidly and uniformly spreading and transferring heat.
본 발명의 일 구현예는 디스플레이 장치 내의 열원, 즉 방열 대상체로부터 전달된 열이 균일하게 퍼져 효과적으로 방출되는 방열시트를 제공한다.One embodiment of the present invention provides a heat dissipation sheet in which a heat source, that is, heat transmitted from a heat dissipation object, is uniformly spread and effectively discharged in a display device.
본 발명의 일 구현예에서, 절연층, 금속박막층, 방열층 및 방열점착층을 포함하고, 상기 방열점착층은 아크릴계 점착 수지 및 열전도성 필러를 포함하고, 상기 방열층은 열전도성 탄소구조체를 포함하는 방열시트를 제공한다.In one embodiment of the present invention, an insulating layer, a metal thin film layer, a heat dissipation layer and a heat dissipation adhesive layer, wherein the heat dissipation adhesive layer comprises an acrylic adhesive resin and a thermally conductive filler, the heat dissipation layer comprises a thermally conductive carbon structure It provides a heat dissipation sheet.
상기 절연층은 열 전달물질(Thermal Interface Material, TIM)을 매개로 디스플레이 장치의 방열 대상체에 부착될 수 있다.The insulating layer may be attached to the heat radiation object of the display device through a heat transfer material (TIM).
상기 방열점착층는 디스플레이 장치의 백 커버(Back Cover)에 부착될 수 있다.The heat dissipation adhesive layer may be attached to a back cover of the display device.
상기 방열점착층과 상기 백 커버의 점착 전단력은 5 kgf/㎡ 내지 15 kgf/㎡일 수 있다. The adhesive shear force of the heat dissipation adhesive layer and the back cover may be 5 kgf / ㎡ to 15 kgf / ㎡.
상기 절연층 및 상기 방열층은 이방성의 열전도성을 가질 수 있다.The insulating layer and the heat dissipation layer may have anisotropic thermal conductivity.
상기 절연층 및 상기 방열층은 수평 열전도율이 수직 열전도율보다 클 수 있다.The insulating layer and the heat dissipation layer may have a horizontal thermal conductivity greater than a vertical thermal conductivity.
상기 절연층 및 상기 방열층의 수평 열전도율은 60 W/mK 내지 320 W/mK이고, 수직열전도율은 3 W/mK 내지 15 W/mK일 수 있다.The horizontal thermal conductivity of the insulation layer and the heat dissipation layer may be 60 W / mK to 320 W / mK, and the vertical thermal conductivity may be 3 W / mK to 15 W / mK.
상기 금속박막층은 등방성의 열전도성을 가질 수 있다.The metal thin film layer may have isotropic thermal conductivity.
상기 금속박막층의 수직 열전도율은 210 W/mK 내지 380 W/mK일 수 있다.The vertical thermal conductivity of the metal thin film layer may be 210 W / mK to 380 W / mK.
상기 방열점착층은 상기 아크릴계 점착 수지 100 중량부에 대하여, 상기 열전도성 필러를 30 중량부 내지 50 중량부 포함할 수 있다.The heat dissipation adhesive layer may include 30 parts by weight to 50 parts by weight of the thermally conductive filler with respect to 100 parts by weight of the acrylic adhesive resin.
상기 방열점착층의 열전도성 필러는 니켈, 질화알루미늄, 질화붕소, 탄소나노튜브(Carbon Nanotube, CNT), 그래파이트(graphite), 산화알루미늄, 산화마그네슘, 산화아연, 탄화규소, 질화규소, 수산화알루미늄, 수산화마그네슘, 산화규소 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.The thermally conductive filler of the heat dissipation adhesive layer is nickel, aluminum nitride, boron nitride, carbon nanotubes (CNT), graphite, aluminum oxide, magnesium oxide, zinc oxide, silicon carbide, silicon nitride, aluminum hydroxide, hydroxide It may include one selected from the group consisting of magnesium, silicon oxide and combinations thereof.
상기 방열층의 열전도성 탄소구조체는 탄소나노튜브(Carbon Nanotube, CNT), 그래파이트(graphite), 그래핀(graphene), 다이아몬드(diamond), 풀러린(fullerene), 카본블랙(carbon black) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다.The thermally conductive carbon structure of the heat dissipation layer is carbon nanotubes (CNTs), graphite, graphene, diamond, fullerene, carbon black, and combinations thereof. It may include one selected from the group consisting of.
상기 방열층의 열전도성 탄소구조체는 표면에 금속이 도핑될 수 있다.The thermally conductive carbon structure of the heat dissipation layer may be doped with a metal on the surface.
상기 절연층은 폴리에스터계 수지, 고무계 수지, 또는 실리콘계 수지를 포함하는 바인더 수지; 및 산화알루미늄, 산화마그네슘, 산화아연, 탄화규소, 질화알루미늄, 질화붕소, 질화규소, 수산화알루미늄, 수산화마그네슘, 산화규소 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 열전도성 필러를 포함할 수 있다. The insulating layer is a binder resin containing a polyester resin, a rubber resin, or a silicone resin; And one thermally conductive filler selected from the group consisting of aluminum oxide, magnesium oxide, zinc oxide, silicon carbide, aluminum nitride, boron nitride, silicon nitride, aluminum hydroxide, magnesium hydroxide, silicon oxide, and combinations thereof.
상기 절연층은 상기 바인더 수지 100 중량부에 대하여, 상기 열전도성 필러를 40 중량부 내지 60 중량부 포함할 수 있다.The insulating layer may include 40 parts by weight to 60 parts by weight of the thermally conductive filler based on 100 parts by weight of the binder resin.
상기 금속박막층은 알루미늄(Al) 또는 동(Cu)을 포함할 수 있다. The metal thin film layer may include aluminum (Al) or copper (Cu).
상기 방열시트의 두께는 0.05㎜ 내지 0.3㎜일 수 있다.The heat dissipation sheet may have a thickness of 0.05 mm to 0.3 mm.
상기 방열시트는 전달된 열을 효과적으로 분산 및 방출시킴으로써 디스플레이 장치의 특정 영역에 열이 집중되지 않도록 할 수 있다. 또한, 이로 인해 디스플레이 장치의 수명을 연장시킬 수 있다.The heat dissipation sheet may effectively disperse and dissipate the transferred heat so that heat may not be concentrated on a specific area of the display device. In addition, this may extend the life of the display device.
도 1은 본 발명의 일 구현예인 방열시트의 단면을 나타낸 것이다.Figure 1 shows a cross-section of a heat radiation sheet which is an embodiment of the present invention.
도 2는 본 발명의 일 구현예인 방열시트의 각 층별 열전도 메커니즘을 나타낸 것이다.Figure 2 shows the heat conduction mechanism for each layer of the heat radiation sheet which is an embodiment of the present invention.
도 3은 상기 방열시트가 적용된 디스플레이 장치를 도식화하여 나타낸 것이다.3 is a schematic view showing a display device to which the heat dissipation sheet is applied.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다. Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 발명의 일 구현예에서, 절연층, 금속박막층, 방열층 및 방열점착층을 포함하고, 상기 방열점착층은 아크릴계 점착 수지 및 열전도성 필러를 포함하고, 상기 방열층은 열전도성 탄소구조체를 포함하는 방열시트를 제공한다. In one embodiment of the present invention, an insulating layer, a metal thin film layer, a heat dissipation layer and a heat dissipation adhesive layer, wherein the heat dissipation adhesive layer comprises an acrylic adhesive resin and a thermally conductive filler, the heat dissipation layer comprises a thermally conductive carbon structure It provides a heat dissipation sheet.
최근, 디스플레이 장치의 대면화와 멀티미디어의 기능이 동시에 추구되면서 전원 공급 유닛(Power Supply Unit, PSU)의 소모 에너지가 증가하였고, 고성능 작동에 의한 발열이 문제되었다. 특히, 디스플레이 장치 내 특정 영역에 위치하는 열원의 발열이 국부적으로 내열 내구성을 떨어뜨리거나, 제품 수명을 단축시키는 문제를 야기하였다. Recently, as the display device and the multimedia functions are pursued at the same time, the energy consumption of the power supply unit (PSU) has increased, and heat generation due to high-performance operation has been a problem. In particular, the heat generation of the heat source located in a specific area of the display device causes a problem of locally deteriorating heat resistance or shortening the product life.
이를 해결하기 위한 방법으로는, 디스플레이 장치 후면에 에어(Air)터널을 설계하거나 배후 공간에 열전도도가 우수한 금속 플레이트를 부착하기도 하였으나, 디스플레이 장치들의 슬림화가 추구되면서 배후 공간이 거의 사라졌고, 등방성을 가진 금속 플레이트만으로는 열의 집중도를 해결하지 못하는 한계가 있었다. 또한, PSU에서 집중적으로 방출되는 고온의 열을 얇은 금속플레이트만으로는 빠르게 분산 및 방출시키지 못한다는 한계가 있었다.To solve this problem, the air tunnel was designed on the back of the display device or a metal plate with excellent thermal conductivity was attached to the rear space. However, as the slimness of the display devices was pursued, the rear space almost disappeared. There was a limit that the metal plate alone could not solve the heat concentration. In addition, there is a limit that the thin metal plate does not rapidly disperse and release the high temperature heat intensively emitted from the PSU.
이에, 본 발명에 따른 상기 방열시트는 특정 층들이 적층된 구조를 포함하며, 각 층의 내부 및 이들 사이의 우수한 열전도성 및 열확산성을 확보함으로써, 상기 방열시트가 장착된 디스플레이 장치에 슬림화 효과 및 내열 내구성의 효과를 동시에 부여할 수 있다. Therefore, the heat dissipation sheet according to the present invention includes a structure in which specific layers are stacked, and by securing excellent thermal conductivity and thermal diffusivity inside and between each layer, the heat dissipation sheet is equipped with a slimming effect and The effect of heat resistance durability can be given simultaneously.
도 1은 본 발명의 일 구현예인에 따른 방열시트의 단면을 개략적으로 나타낸 것이다. 도 1을 참고할 때, 상기 방열시트(100)는 방열점착층(40), 방열층(30), 금속박막층(20) 및 절연층(10)을 포함할 수 있고, 구체적으로 상기 방열점착층(40), 방열층(30), 금속박막층(20) 및 절연층(10)이 순차적으로 적층된 구조를 포함할 수 있다.. Figure 1 schematically shows a cross section of the heat dissipation sheet according to an embodiment of the present invention. Referring to FIG. 1, the heat dissipation sheet 100 may include a heat dissipation adhesive layer 40, a heat dissipation layer 30, a metal thin film layer 20, and an insulating layer 10, and specifically, the heat dissipation adhesive layer ( 40, the heat dissipation layer 30, the metal thin film layer 20, and the insulating layer 10 may include a stacked structure.
구체적으로, 상기 방열시트(100)는 별도의 층으로 형성되는 상기 방열층(30) 및 상기 방열점착층(40)을 포함할 수 있고, 상기 방열점착층(40)은 상기 방열시트(100)가 디스플레이 장치 내에 위치할 때 가장 외부에 놓인 층으로, 상기 방열층(30)으로부터 전도받은 열을 최종적으로 외부로 배출하는 역할을 할 수 있다.Specifically, the heat dissipation sheet 100 may include the heat dissipation layer 30 and the heat dissipation adhesive layer 40 formed as separate layers, and the heat dissipation adhesive layer 40 may include the heat dissipation sheet 100. Is the outermost layer when positioned in the display device, and may serve to finally discharge the heat conducted from the heat dissipation layer 30 to the outside.
구체적으로, 상기 방열점착층은 아크릴계 점착 수지 및 열전도성 필러를 포함할 수 있고, 이로써 점착성 및 우수한 열전도성을 동시에 확보할 수 있다. 또한, 상기 방열층은 열전도성 탄소구조체를 포함하는 것으로 수평 방향으로의 열전도성이 우수한 특성을 가질 수 있다. Specifically, the heat dissipation adhesive layer may include an acrylic adhesive resin and a thermally conductive filler, thereby ensuring adhesiveness and excellent thermal conductivity at the same time. In addition, the heat dissipation layer includes a thermally conductive carbon structure and may have excellent thermal conductivity in a horizontal direction.
도 3은 상기 방열시트(100)가 적용된 디스플레이 장치를 도식화하여 나타낸 것이다. 도 3을 참조할 때, 상기 방열시트는 상기 절연층(10)이 열원, 즉 방열 대상체에 가까이 위치하도록 디스플레이 장치 내에 장착될 수 있고, 구체적으로 상기 방열 대상체는 전원 공급 유닛(Power Supply Unit, PSU)일 수 있다. 3 schematically illustrates a display device to which the heat dissipation sheet 100 is applied. Referring to FIG. 3, the heat dissipation sheet may be mounted in the display device such that the insulating layer 10 is located near a heat source, that is, a heat dissipation object. Specifically, the heat dissipation object may be a power supply unit (PSU). May be).
이때, 상기 절연층(10)은 상기 방열 대상체에 직접 부착되지 않으며, 열 전달물질(Thermal Interface Material, TIM)을 매개로 하여 부착될 수 있다. 구체적으로, 상기 열 전달물질(Thermal Interface Material, TIM)은 실리콘계 화합물, 또는 아크릴계 화합물; 및 질화알루미늄(AlN), 질화붕소(BN) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 혼합한 것일 수 있다. 상기 절연층이 TIM을 통하여 방열 대상체에 부착됨으로써, 기존의 방열시트 일면에 부착된 서스(SUS), 알루미늄 판 또는 플라스틱 판을 대체할 수 있고, 이로써 수평 열확산을 통한 방열 효과가 향상되는 장점을 얻을 수 있다. In this case, the insulating layer 10 may not be directly attached to the heat dissipation object, but may be attached through a heat transfer material (TIM). Specifically, the heat transfer material (Tr) is a silicon compound, or an acrylic compound; And it may be a mixture of one selected from the group consisting of aluminum nitride (AlN), boron nitride (BN) and combinations thereof. By attaching the insulating layer to the heat dissipation object through the TIM, it is possible to replace the existing sus (SUS), aluminum plate or plastic plate attached to one surface of the heat dissipation sheet, thereby obtaining the advantage that the heat dissipation effect through horizontal thermal diffusion is improved. Can be.
도 3을 참조할 때, 상기 방열시트는 상기 방열점착층(40)이 디스플레이 장치의 가장 외부에 위치하도록 장착될 수 있다. 구체적으로, 상기 방열점착층(40)은 디스플레이 장치의 백 커버(Back Cover)에 부착될 수 있다.  Referring to FIG. 3, the heat dissipation sheet may be mounted such that the heat dissipation adhesive layer 40 is positioned at the outermost portion of the display device. Specifically, the heat radiation adhesive layer 40 may be attached to a back cover of the display device.
상기 백 커버(Back Cover)는 PDP(Plasma Display Pannel), LCD(Liquid Crystal Dispalys), OLED(OrganicLight Emitting Diode), LED(Light Emitting Diode) 등의 소자를 포함하는 디스플레이 장치의 하부에 위치하는 커버로서, 상기 디스플레이 장치의 가장 외부에 존재하며 곡면 또는 평면 형상을 가질 수 있다.The back cover is a cover located under the display device including elements such as plasma display pannel (PDP), liquid crystal dispalys (LCD), organic light emitting diode (OLED), and light emitting diode (LED). The outermost portion of the display device may have a curved or planar shape.
상기 방열점착층이 디스플레이 장치의 백 커버에 부착됨으로써, 상기 절연층으로부터 각 층을 거쳐 전달된 열이 상기 방열점착층 내에서 균일하게 분산되어 효과적으로 외부로 방출될 수 있다. Since the heat dissipation adhesive layer is attached to the back cover of the display device, heat transferred from the insulating layer through each layer may be uniformly dispersed in the heat dissipation adhesive layer and effectively released to the outside.
상기 방열점착층과 상기 백 커버의 점착 전단력은 약 5 kgf/㎡ 내지 약 15 kgf/㎡일 수 있다. 상기 점착 전단력이 약 5 kgf/㎡ 미만인 경우 경우에는 상기 방열점착층의 부착성이 저하되어, 열전달이 외부에 효과적으로 방출되지 못하는 문제점이 생길 수 있다.  The adhesive shear force between the heat dissipation adhesive layer and the back cover may be about 5 kgf / m 2 to about 15 kgf / m 2. When the adhesive shear force is less than about 5 kgf / ㎡, the adhesion of the heat dissipation adhesive layer is lowered, there may be a problem that the heat transfer is not effectively released to the outside.
상기 점착 전단력은 서로 접근한 두 평행면에 크기는 같으나 반대방향으로 작용하는 힘을 일컫는바, 상기 방열점착층과 상기 백커버가 부착되어 있는 상태에서, 상기 방열점착층 및 상기 백커버에 각각 크기는 같으나 방향이 반대인 외력을 작용하여, 이를 분리시키는 데 필요한 힘을 의미한다. 구체적으로, 상기 점착 전단력은 상기 방열점착층과 상기 백커버와의 부착면을 25㎜×25㎜(가로×세로)의 크기로 마련하고, 인스트론 장비를 이용하여 측정된 값이다. The adhesive shear force refers to a force that acts in the opposite direction but is the same size in two parallel planes approaching each other. In the state in which the heat dissipating adhesive layer and the back cover are attached, sizes of the adhesive shear force and the back cover are respectively The same but the opposite direction of the external force acts, meaning the force required to separate it. In detail, the adhesive shear force is a value of 25 mm × 25 mm (width × length) of the adhesive surface between the heat dissipation adhesive layer and the back cover, and measured using an Instron equipment.
상기 방열시트(100)는 열전도성을 향상시키기 위하여 상기 절연층 및 상기 방열층을 이방성의 열전도성을 가진 소재로 형성할 수 있다. 상기 절연층 및 상기 방열층이 이방성의 열전도성을 가짐으로써 슬림한 공간에서 열이 균일하게 분포 및 방출되는 장점을 확보할 수 있고, 상기 방열시트를 포함하는 디스플레이 장치에 슬림화 효과 및 우수한 내열 내구성을 모두 부여할 수 있다. The heat dissipation sheet 100 may be formed of a material having anisotropic thermal conductivity to the insulating layer and the heat dissipation layer in order to improve thermal conductivity. Since the insulating layer and the heat dissipating layer have anisotropic thermal conductivity, heat can be uniformly distributed and released in a slim space, and a slimming effect and excellent heat resistance and durability can be provided to a display device including the heat dissipating sheet. You can grant them all.
또한, 상기 절연층 및 상기 방열층은 수평 열전도율이 수직 열전도율보다 클 수 있다. 이는, 수직 방향에 비해 수평 방향으로 열을 빠르게 확산시키는 것을 의미하며, 이때 '수평' 방향은 상기 방열시트의 층상면과 평행한 방향을 의미하고, '수직' 방향은 상기 수평 방향에 수직한 방향을 의미한다. 상기 절연층 및 상기 방열층이 수직 열전도율보다 더 큰 수평 열전도율을 가짐으로써, 상기 방열시트가 전체적으로 균일한 열전도성을 확보할 수 있고, 디스플레이 장치 내의 국부적인 발열 영역에 의한 내열 내구성 저하를 효과적으로 방지할 수 있다. In addition, the insulating layer and the heat dissipation layer may have a horizontal thermal conductivity greater than a vertical thermal conductivity. This means that heat is rapidly diffused in the horizontal direction as compared to the vertical direction, wherein the 'horizontal' direction means a direction parallel to the layered surface of the heat dissipation sheet, and the 'vertical' direction is a direction perpendicular to the horizontal direction. Means. Since the insulating layer and the heat dissipation layer have a horizontal heat conductivity greater than the vertical heat conductivity, the heat dissipation sheet can ensure uniform thermal conductivity as a whole, and effectively prevent the degradation of heat resistance due to the local heat generation area in the display device. Can be.
구체적으로, 상기 절연층 및 방열층의 수평 열전도율은 약 60W/mK 내지 약 320W/mK이고, 수직 열전도율은 약 3W/mK 내지 약 15W/mK일 수 있다. 상기 절연층 및 상기 방열층의 수평 열전도율 및 수직 열전도율이 각각 상기 범위를 만족함으로써 상기 방열시트가 국부적으로 존재하는 열원에서 발생하는 열을 빠른 시간 안에 균일하게 분산시킬 수 있다. Specifically, the horizontal thermal conductivity of the insulating layer and the heat dissipation layer may be about 60W / mK to about 320W / mK, and the vertical thermal conductivity may be about 3W / mK to about 15W / mK. The horizontal thermal conductivity and the vertical thermal conductivity of the insulating layer and the heat dissipating layer satisfy the above ranges, respectively, so that the heat generated from the heat source in which the heat dissipating sheet is locally present can be uniformly dispersed in a short time.
도 1을 참조할 때, 상기 방열시트(100)는 금속박막층(20)을 포함하며, 이는 상기 방열시트의 수직 방향 열전도도를 향상시키는 역할을 하는 것이다. Referring to FIG. 1, the heat dissipation sheet 100 includes a metal thin film layer 20, which serves to improve the vertical thermal conductivity of the heat dissipation sheet.
상기 금속박막층(20)은 등방성의 열전도성을 가질 수 있다. 상기 금속박막층이 등방성의 열전도성을 갖는다는 것은 방향에 따라 연전도율이 다르지 않은 것을 의미하며, 이로써 상기 금속박막층은 모든 방향으로 균일한 열전도성을 가질 수 있다. The metal thin film layer 20 may have isotropic thermal conductivity. The isotropic thermal conductivity of the metal thin film layer means that the conductivity is not different according to the direction, whereby the metal thin film layer may have uniform thermal conductivity in all directions.
이때, 구체적으로 상기 금속박막층의 수직 열전도율은 약 210 W/mK 내지 약 380 W/mK일 수 있다. 도 1을 참조할 때, 상기 금속박막층(20)은 상기 절연층(10) 및 상기 방열층(30) 사이에 위치할 수 있고, 상기 절연층 및 방열층이 수평 방향으로 우수한 열전도율을 나타내는 것임을 고려할 때, 상기 금속박막층(20)이 상기 범위의 수직 열전도율을 만족함으로써, 상기 방열시트가 전체적으로 수평 방향 및 수직 방향 모두에 대하여, 우수한 열분포 및 방열 효과를 구현할 수 있다. In this case, in detail, the vertical thermal conductivity of the metal thin film layer may be about 210 W / mK to about 380 W / mK. Referring to FIG. 1, the metal thin film layer 20 may be located between the insulating layer 10 and the heat dissipating layer 30, and it is considered that the insulating layer and the heat dissipating layer exhibit excellent thermal conductivity in the horizontal direction. When the metal thin film layer 20 satisfies the vertical thermal conductivity of the above range, the heat dissipating sheet may realize excellent heat distribution and heat dissipation effects in both the horizontal direction and the vertical direction.
도 2는 본 발명의 일 구현예에 따른 방열시트의 각 층별 열전도 메커니즘을 나타낸 것이다. 도 2를 참고할 때, 상기 절연층(10)은 디스플레이 장치의 방열 대상체에 가장 가까이 위치하고, 상기 방열 점착층(40)은 디스플레이 장치의 가장 외부에 존재하는 백 커버에 부착될 수 있다. 이때, 상기 방열 점착층(40)은 상기 방열층(30)로부터 전달된 열을 상기 백 커버를 통해 외부로 배출할 수 있다. Figure 2 shows the heat conduction mechanism for each layer of the heat radiation sheet according to an embodiment of the present invention. Referring to FIG. 2, the insulating layer 10 may be located closest to the heat dissipation object of the display device, and the heat dissipation adhesive layer 40 may be attached to the back cover existing at the outermost part of the display device. In this case, the heat dissipation adhesive layer 40 may discharge the heat transferred from the heat dissipation layer 30 to the outside through the back cover.
또한, 상기 절연층(10) 및 방열층(30)은 이방성의 열전도성을 갖는 것으로 수평 방향으로 전달되는 열의 양이 수직으로 전달되는 열의 양에 비해 많음을 알 수 있고, 상기 금속박막층(20)은 등방성의 열전도성을 갖는 것으로, 전달된 대부분의 열이 수직으로 상기 방열층(30)에 전달됨을 알 수 있다.In addition, the insulating layer 10 and the heat dissipation layer 30 has anisotropic thermal conductivity, and it can be seen that the amount of heat transferred in the horizontal direction is larger than the amount of heat transferred vertically, and the metal thin film layer 20 Silver has isotropic thermal conductivity, and it can be seen that most of the transferred heat is transferred to the heat dissipation layer 30 vertically.
결론적으로, 상기 절연층 및 방열층이 이방성이 열전도성을 갖고, 상기 금속박막층이 등방성의 열전도성을 가짐으로써 상기 방열시트를 통하여 슬림한 공간 내에서 열전도의 균일성 및 분포성이 향상될 수 있고, 이를 포함하는 디스플레이 장치에 우수한 내열 내구성 및 슬림화 효과를 동시에 부여할 수 있다. In conclusion, since the insulating layer and the heat dissipation layer have anisotropic thermal conductivity, and the metal thin film layer has isotropic thermal conductivity, the uniformity and distribution of thermal conductivity can be improved in a slim space through the heat dissipation sheet. In addition, it is possible to simultaneously provide excellent heat resistance durability and slimming effect to the display device including the same.
상기 절연층(10)은 열전도성을 갖지만 전기전도성을 갖지 않는 층으로, 전술한 바와 같이 열 전달물질(Thermal Interface Material, TIM)을 매개로 디스플레이 장치의 방열 대상체에 부착되며, 상기 방열 대상체에 의해 발생된 열이 상기 절연층을 통하여 다른 층으로 쉽게 전달될 수 있다. The insulating layer 10 is a layer having thermal conductivity but no electrical conductivity. The insulating layer 10 is attached to a heat dissipation object of a display device through a thermal interface material (TIM) as described above, and is formed by the heat dissipation object. The generated heat can easily be transferred to another layer through the insulating layer.
구체적으로, 상기 절연층은 바인더 수지로 폴리에스터계 수지, 고무계 수지, 또는 실리콘계 수지를 포함할 수 있고, 상기 바인더 수지에 분산된 열전도성 필러를 포함할 수 있다. Specifically, the insulating layer may include a polyester resin, a rubber resin, or a silicone resin as a binder resin, and may include a thermally conductive filler dispersed in the binder resin.
구체적으로, 상기 열전도성 필러는 산화알루미늄, 산화마그네슘, 산화아연, 탄화규소, 질화알루미늄, 질화붕소, 질화규소, 수산화알루미늄, 수산화마그네슘, 산화규소 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. Specifically, the thermally conductive filler may include one selected from the group consisting of aluminum oxide, magnesium oxide, zinc oxide, silicon carbide, aluminum nitride, boron nitride, silicon nitride, aluminum hydroxide, magnesium hydroxide, silicon oxide, and combinations thereof. have.
상기 절연층은 방열 대상체에 가장 가까이 위치하는 층이고, 상기 열전도성 필러를 포함함으로써 방열 대상체에서 발생된 열을 전달함에 있어서 이방성의 열전도성을 나타낼 수 있다. 예를 들어, 상기 절연층은 열전도성 필러로 질화알루미늄 또는 질화붕소를 사용할 수 있고, 이 경우 이방성의 열전도성이 극대화되어 수평 방향으로 우수한 열전도성을 확보할 수 있다. The insulating layer is a layer located closest to the heat dissipation object, and may include anisotropic thermal conductivity in transferring heat generated from the heat dissipation object by including the heat conductive filler. For example, the insulating layer may use aluminum nitride or boron nitride as a thermally conductive filler, and in this case, anisotropic thermal conductivity may be maximized to ensure excellent thermal conductivity in the horizontal direction.
상기 절연층은 상기 바인더 수지에 상기 열전도성 필러가 분산된 페이스트를 콤마 코터(Comma Coater) 또는 로타리 스크린 코터(Rotary Screen Coater)를 이용해 코팅하고, 캐스팅(Casting) 또는 롤 라미네이션(Roll Lamination)을 이용해 상기 열전도성 필러를 수평 방향으로 눕게 만들 수 있다. 보다 구체적으로, 상기 바인더 수지의 유리전이온도(Tg) 이상의 온도에서 가열 가압함으로써 열전도성 필러를 눕게 할 수 있다. 상기 절연층이 이러한 방법으로 제조됨으로써, 상기 열전도성 필러에 의한 수평 열전도율을 현저히 향상시킬 수 있다. The insulating layer is coated with a comma coater or a rotary screen coater to coat the paste in which the thermally conductive filler is dispersed in the binder resin, and using casting or roll lamination. The thermally conductive filler can be made to lie down in the horizontal direction. More specifically, the thermal conductive filler can be laid down by heating and pressing at a temperature of the glass transition temperature (Tg) or more of the binder resin. By manufacturing the insulating layer in this manner, it is possible to remarkably improve the horizontal thermal conductivity by the thermally conductive filler.
상기 절연층은 상기 바인더 100 중량부에 대하여 상기 열전도성 필러를 약 40 중량부 내지 약 60 중량부 포함할 수 있다. 상기 열전도성 필러의 함량이 약 60 중량부를 초과하는 경우에는, 상기 절연층에 크랙(Crack)이 발생하여 누설 전류로 인해 인쇄회로기판(Printed Circuit Board, PCB)에서 합선이 야기될 수 있으며, 약 40 중량부 미만인 경우에는 요구되는 열전도성을 확보하지 못하는 문제가 생길 수 있다. The insulating layer may include about 40 parts by weight to about 60 parts by weight of the thermally conductive filler based on 100 parts by weight of the binder. When the content of the thermally conductive filler exceeds about 60 parts by weight, cracks may occur in the insulating layer, and a short circuit may occur in a printed circuit board due to leakage current. If less than 40 parts by weight may cause a problem that does not secure the required thermal conductivity.
즉, 상기 절연층이 열전도성 필러를 상기 범위의 함량으로 포함함으로써, 전기가 통하지 않으면서, 동시에 열전도도가 좋은 효과를 얻을 수 있고, 곡률반경 120㎝인 곡면에서도 크랙(Crack)이 발생하지 않는 효과를 용이하게 구현할 수 있다.That is, since the insulating layer contains a thermally conductive filler in the above range, it is possible to obtain an effect of good thermal conductivity at the same time without electricity, and cracks do not occur even on a curved surface having a radius of curvature of 120 cm. Effects can be easily implemented.
상기 절연층의 두께는 약 40㎛ 내지 약 80㎛일 수 있다. 상기 절연층이 상기 범위의 두께를 유지함으로써 우수한 절연성을 나타내며, 크랙 방지 성능이 우수할 수 있다. 또한, 상기 절연층이 상기 범위의 두께를 유지함으로써 인쇄회로기판(PCB)과 접촉 시 우수한 쇼트 방지 효과를 확보할 수 있다.The insulating layer may have a thickness of about 40 μm to about 80 μm. The insulation layer exhibits excellent insulation by maintaining the thickness in the above range, it may be excellent in crack prevention performance. In addition, since the insulating layer maintains the thickness in the above range, it is possible to secure an excellent short prevention effect when contacting the printed circuit board (PCB).
상기 방열점착층(40)은 전술한 바와 같이 디스플레이 장치의 백 커버(Back Cover)에 부착될 수 있고, 동시에 방열 대상체에서 발생하여 전달된 열을 골고루 방출하는 역할을 수행할 수 있다. 상기 방열점착층(40)을 형성하기 위한 방열점착제는 아크릴계 점착 수지에 열전도성 필러를 첨가하여 형성될 수 있다. The heat dissipation adhesive layer 40 may be attached to the back cover of the display device as described above, and at the same time may serve to evenly dissipate the heat generated by the heat dissipation object. The heat radiation adhesive for forming the heat radiation adhesive layer 40 may be formed by adding a thermally conductive filler to the acrylic adhesive resin.
상기 아크릴계 점착 수지는 상기 백 커버와 우수한 밀착성을 확보하기 위해서 (메타)아크릴레이트계 모노머의 중합체 또는 공중합체를 포함할 수 있다. 구체적으로, 상기 (메타)아크릴레이트계 모노머는 탄소수 1 내지 12의 알킬기를 가지는 아크릴레이트 또는 메타크릴레이트를 사용할 수 있다. The acrylic adhesive resin may include a polymer or copolymer of a (meth) acrylate monomer in order to secure excellent adhesion to the back cover. Specifically, the (meth) acrylate monomer may be an acrylate or methacrylate having an alkyl group having 1 to 12 carbon atoms.
상기 아크릴계 점착 수지는 에틸아크릴레이트, 프로필아크릴레이트, 부틸아크릴레이트, 2-에틸헥실아크릴레이트, 옥틸아크릴레이트, 이소옥틸아크릴레이트, 데실아크릴레이트, 데실메타크릴레이트, 도데실메타크릴레이트 및 이들의 조합으로 이루어진 군으로부터 선택된 하나의 모노머를 포함하는 모노머 성분을 중합 또는 공중합하여 제조될 수 있고, 이 경우 상기 방열점착층에 의해 상기 방열시트가 우수한 유연성 및 가공성을 확보할 수 있다. The acrylic adhesive resin is ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, isooctyl acrylate, decyl acrylate, decyl methacrylate, dodecyl methacrylate, and these It can be prepared by polymerizing or copolymerizing a monomer component including one monomer selected from the group consisting of a combination, in which case the heat dissipation adhesive layer can ensure excellent flexibility and processability.
또한, 상기 방열점착층의 열전도성 필러는 니켈, 질화알루미늄, 질화붕소, 탄소나노튜브(Carbon Nanotube, CNT), 그래파이트(graphite), 산화알루미늄, 산화마그네슘, 산화아연, 탄화규소, 질화규소, 수산화알루미늄, 수산화마그네슘, 산화규소 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있고, 열전도도가 우수한 질화알루미늄 또는 질화붕소를 사용함으로써 상기 방열점착층이 우수한 점착성과 열전도성을 동시에 확보할 수 있다. In addition, the thermally conductive filler of the heat dissipation adhesive layer is nickel, aluminum nitride, boron nitride, carbon nanotubes (CNT), graphite, aluminum oxide, magnesium oxide, zinc oxide, silicon carbide, silicon nitride, aluminum hydroxide It may include one selected from the group consisting of magnesium hydroxide, silicon oxide, and combinations thereof, and by using aluminum nitride or boron nitride having excellent thermal conductivity, the heat-dissipating adhesive layer can simultaneously secure excellent adhesiveness and thermal conductivity. .
상기 방열점착층은 상기 아크릴계 점착 수지 100 중량부에 대하여, 상기 열전도성 필러를 약 30 중량부 내지 약 50 중량부 포함할 수 있다. 상기 열전도성 필러의 함량이 약 30 중량부 미만인 경우에는 열전도도가 낮아져 상기 방열점착층이 백 커버에 부착되는 경우 열의 방출이 어려우며, 약 50 중량부를 초과하는 경우에는 상기 백 커버와 계면 점착력이 낮아져 열전도도가 낮은 공기층이 많아지고, 방열 효과가 저하되는 문제가 있다.The heat dissipation adhesive layer may include about 30 parts by weight to about 50 parts by weight of the thermally conductive filler based on 100 parts by weight of the acrylic adhesive resin. When the content of the thermally conductive filler is less than about 30 parts by weight, the thermal conductivity is low, and when the heat dissipation adhesive layer is attached to the back cover, it is difficult to release heat, and when it exceeds about 50 parts by weight, the interface between the back cover and the adhesive force is low. The air layer with low thermal conductivity increases, and there exists a problem that a heat radiation effect falls.
즉, 상기 열전도성 필러가 상기 범위의 함량으로 포함됨으로써 상기 백 커버와 적절한 계면 점착력을 확보할 수 있고, 동시에 열전도도가 낮은 공기층을 줄여 주어 상기 백 커버에 부착되어 이를 통한 외부로의 열방출 효과를 용이하게 구현할 수 있다.  That is, since the thermally conductive filler is included in the content in the above range, it is possible to secure an appropriate interfacial adhesive force with the back cover, and at the same time reduce the air layer having a low thermal conductivity and attach to the back cover to release heat to the outside through the same. Can be easily implemented.
또한, 상기 방열점착층의 두께는 약 5㎛ 내지 10㎛일 수 있다. 상기 방열점착층이 상기 범위의 두께를 유지함으로써 백 커버에 부착 시 우수한 부착력이 유지되며, 동시에 상기 백 커버를 통한 열 방출 효과를 향상시킬 수 있다.In addition, the heat radiation adhesive layer may have a thickness of about 5 μm to 10 μm. By maintaining the thickness of the heat dissipation adhesive layer in the above range can be maintained excellent adhesion when attached to the back cover, and at the same time can improve the heat dissipation effect through the back cover.
전술한 바와 같이, 상기 절연층 및 방열층은 방열 대상체에서 전달된 열을 전달함에 있어서, 이방성의 열전도성을 가질 수 있다. '이방성'은 물체의 물리적 성질이 방향에 따라 다른 성질을 의미하는 것으로, 방열 대상체에서 발생한 열이 상기 절연층 및 방열층을 통해 전달될 때 방향에 따라 다른 열전도율을 갖는 것을 의미한다. As described above, the insulating layer and the heat dissipation layer may have anisotropic thermal conductivity in transferring heat transferred from the heat dissipation object. "Anisotropy" means that the physical properties of the object is different depending on the direction, it means that the heat generated in the heat radiation object has a different thermal conductivity depending on the direction when transferred through the insulating layer and the heat radiation layer.
상기 절연층은 전술한 바와 같이, 질화알루미늄 또는 질화붕소 등의 열전도성 필러를 포함하여 제조되고, 상기 열전도성 필러의 물리적인 구조에 의해 수직 열전도율에 비해 높은 수평 열전도율을 가질 수 있다. As described above, the insulating layer is manufactured by including a thermally conductive filler such as aluminum nitride or boron nitride, and may have a higher horizontal thermal conductivity than the vertical thermal conductivity by the physical structure of the thermally conductive filler.
상기 방열층은 전술한 바와 같이 열전도성 탄소구조체를 포함할 수 있고, 구체적으로, 상기 열전도성 탄소구조체는 탄소나노튜브(Carbon Nanotube, CNT), 그래파이트(graphite), 그래핀(graphene), 다이아몬드(diamond), 풀러린(fullerene), 카본블랙(carbon black) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함할 수 있다. The heat dissipation layer may include a thermally conductive carbon structure as described above. Specifically, the thermally conductive carbon structure may include carbon nanotubes (CNTs), graphite, graphene, diamonds ( diamond, fullerene, carbon black, and a combination thereof.
예를 들어, 상기 방열층은 탄소나노튜브(Carbon Nanotube, CNT) 또는 그래핀(graphene)을 포함할 수 있고, 이 경우 이방성의 열전도성을 확보하기에 유리할 수 있다. For example, the heat dissipation layer may include carbon nanotubes (CNT) or graphene, and in this case, it may be advantageous to secure anisotropic thermal conductivity.
또한, 상기 방열층의 열전도성 탄소구조체는 표면에 금속이 도핑(doping)될 수 있다. 상기 열전도성 탄소구조체의 표면에 금속으로 화학적 도핑을 처리함으로써 금속보다 열전도도가 높은 상기 열전도성 탄소구조체의 접촉 저항이 낮아져 전기 전도도가 낮아지고, 동시에 열전도도도 높아질 수 있으므로, 상기 방열층의 수평 열전도율을 극대화할 수 있다. In addition, the thermally conductive carbon structure of the heat dissipation layer may be doped (doping) metal on the surface. By chemically doping the surface of the thermally conductive carbon structure with metal, the contact resistance of the thermally conductive carbon structure having a higher thermal conductivity than that of the metal is lowered, thereby lowering the electrical conductivity and increasing the thermal conductivity. The thermal conductivity can be maximized.
예를 들어, 상기 방열층은 표면에 금속을 도핑한 탄소나노튜브 또는 그래핀을 포함할 수 있고, 이 경우 상기 방열층이 방향성 측면에서 적절한 열전도성을 확보하기에 유리할 수 있다. For example, the heat dissipation layer may include carbon nanotubes or graphene doped with a metal on the surface, and in this case, the heat dissipation layer may be advantageous to secure proper thermal conductivity in terms of directionality.
구체적으로, 상기 방열층은 상기 절연층과 동일한 종류의 바인더 수지에 상기 열전도성 탄소구조체가 분산된 페이스트를 제작하여 콤마 코터(Comma Coater) 또는 로타리 스크린 코터(Rotary Screen Coater)로 코팅한 후, 캐스팅(Casting) 또는 롤 라미네이션(Roll Lamination)함으로써 상기 열전도성 탄소구조체를 수평 방향으로 눕게 만들 수 있고, 이로써 상기 방열층 수평 열전도율을 효과적으로 향상시킬 수 있다.Specifically, the heat dissipation layer is produced by coating a comma coater or a rotary screen coater with a paste prepared by dispersing the thermally conductive carbon structure in a binder resin of the same type as the insulating layer, and then casting. (Casting) or roll lamination (Roll Lamination) can make the thermally conductive carbon structure to lie in the horizontal direction, thereby effectively improving the heat radiation layer horizontal thermal conductivity.
또한, 상기 방열층의 두께는 약 25㎛ 내지 약 100㎛일 수 있다. 상기 방열층의 두께를 상기 범위로 한정함으로써 수평 방향의 열전도율을 높이는데 유리하고, 열분포가 균일해지는 효과를 용이하게 확보할 수 있다. 상기 방열층의 두께가 약 25㎛ 미만인 경우에는 수평 열전도율이 증가하지 않고, 약 100㎛를 초과하는 경우에는 수직 열전도율이 크게 떨어져 디스플레이 장치의 외부로 열이 잘 빠져나가지 못하는 문제가 생길 수 있다. In addition, the heat radiation layer may have a thickness of about 25 μm to about 100 μm. By limiting the thickness of the heat dissipation layer to the above range, it is advantageous to increase the thermal conductivity in the horizontal direction, it is possible to easily ensure the effect of uniform heat distribution. When the thickness of the heat dissipation layer is less than about 25 μm, the horizontal thermal conductivity does not increase, and when the thickness of the heat dissipation layer exceeds about 100 μm, the vertical thermal conductivity is greatly decreased, and heat may not easily escape to the outside of the display device.
상기 금속박막층은 방열 대상체에서 전달된 열을 전달함에 있어서, 등방성의 열전도성을 갖는 것으로, 구체적으로 알루미늄(Al) 또는 동(Cu)을 포함할 수 있다. 구체적으로, 상기 금속박막층은 순알루미늄(1000계) 또는 알루미늄-망간(Al-Mn) 합금(3000계)을 포함하는 얇은 플레이트를 사용할 수 있다. The metal thin film layer has isotropic thermal conductivity in transferring heat transferred from a heat radiating object, and specifically, may include aluminum (Al) or copper (Cu). Specifically, the metal thin film layer may use a thin plate including pure aluminum (1000-based) or aluminum-manganese (Al-Mn) alloy (3000-based).
상기 금속박막층의 두께는 약 50㎛ 내지 약 200㎛일 수 있다. 상기 금속박막층의 두께가 약 50㎛ 미만인 경우에는 수직 방향으로 열이 잘 전달되지 않아 방열 효과가 저하되는 문제가 있고, 코팅 또는 라미네이션 공정 중에 찢어지지 않기 위한 인장 강도를 확보하기 어려울 수 있다. 또한, 상기 금속박막층의 두께가 약 200㎛를 초과하는 경우에는 유연성을 저하시키는 문제가 생길 수 있다. The metal thin film layer may have a thickness of about 50 μm to about 200 μm. When the thickness of the metal thin film layer is less than about 50 μm, heat may not be transferred well in the vertical direction, thereby deteriorating a heat dissipation effect, and it may be difficult to secure tensile strength to prevent tearing during a coating or lamination process. In addition, when the thickness of the metal thin film layer exceeds about 200㎛ may cause a problem of lowering the flexibility.
상기 방열시트의 두께는 약 0.05mm 내지 약 0.3mm일 수 있다. 상기 방열시트는 절연층, 금속박막층, 방열층 및 방열점착층의 적층 구조를 포함하는 것으로, 각 층을 모두 포함하는 방열시트의 두께를 상기 범위로 유지함으로써, 방열 대상체에서 발생되어 각 층을 통해 전달된 열을 슬림한 공간 내에서, 효과적으로 퍼트릴 수 있다. 또한, 상기 방열시트가 상기 범위의 두께를 유지함으로써 열분포의 균일성을 향상시킬 수 있고, 이로 인해 디스플레이 장치의 내열 내구성을 개선하여 사용 수명을 연장시킬 수 있다. The heat dissipation sheet may have a thickness of about 0.05 mm to about 0.3 mm. The heat dissipation sheet includes a laminated structure of an insulation layer, a metal thin film layer, a heat dissipation layer, and a heat dissipation adhesive layer, and by maintaining the thickness of the heat dissipation sheet including all the layers in the above range, generated from the heat dissipation object through each layer The transferred heat can be spread effectively in a slim space. In addition, the heat dissipation sheet can improve the uniformity of the heat distribution by maintaining the thickness of the above range, thereby improving the heat resistance durability of the display device can be extended to the service life.
나아가, 상기 방열시트는 슬림하고 유연한 구조를 가진 디스플레이 장치나 구부러지기 쉬운 핸드폰 등의 디스플레이 장치에 적용이 가능하며, 고집적화로 인한 국부적인 발열을 효과적으로 넓은 영역으로 분포시켜, 디스플레이 장치 내 특정 영역에 열이 집중되지 않도록 할 수 있다. 또한, 굴곡을 가진 제품에 적용되기에 적합한 유연성 및 가공성을 갖는 것으로 제품 후면에 휘어져 부착될 수 있고, 이 경우 열전도 및 분포의 효과가 더욱 향상될 수 있다. Furthermore, the heat dissipation sheet can be applied to a display device having a slim and flexible structure or a display device such as a mobile phone that is easy to bend. The heat dissipation sheet effectively distributes local heat generated due to high integration to a large area, and heats a specific area in the display device. You can avoid this concentration. In addition, it can be bent and attached to the back of the product to have flexibility and processability suitable for being applied to the product having a bend, in this case, the effect of the thermal conductivity and distribution can be further improved.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.The following presents specific embodiments of the present invention. However, the embodiments described below are merely for illustrating or explaining the present invention in detail, and thus the present invention is not limited thereto.
<실시예 및 비교예><Examples and Comparative Examples>
실시예 1Example 1
폴리에스터계 수지 100 중량부에 대하여 질화알루미늄를 60 중량부 포함하고 두께가 60㎛인 절연층 및 상기 절연층 상부에 두께가 150㎛인 알루미늄 금속박을 적층하여 금속박막층을 형성하였다. 그 후, 상기 금속박막층 상부에 동(Cu)으로 도핑된 그래핀을 포함하고 두께가 58㎛인 방열층을 형성하고, 상기 방열층 상부에 아크릴계 점착 수지 100 중량부에 대하여 질화붕소를 50 중량부 포함하고, 두께가 15㎛인 방열점착층을 형성함으로써 방열시트를 제조하였다. 상기 방열시트는 상기 절연층이 질화붕소(BN)을 포함하는 열 전달물질(TIM)을 통하여 방열대상체(PSU)에 부착되도록 디스플레이 장치 내에 장착될 수 있다. A metal thin film layer was formed by laminating an insulating layer having a thickness of 60 μm and an aluminum metal foil having a thickness of 150 μm on the insulating layer with 60 parts by weight of aluminum nitride based on 100 parts by weight of the polyester resin. Subsequently, a heat dissipation layer including graphene doped with copper (Cu) and a thickness of 58 μm is formed on the metal thin film layer, and 50 parts by weight of boron nitride is added to 100 parts by weight of the acrylic adhesive resin on the heat dissipation layer. The heat-dissipation sheet was manufactured by forming the heat-dissipation adhesive layer of thickness 15micrometer. The heat dissipation sheet may be mounted in the display device such that the insulating layer is attached to the heat dissipation object PSU through a heat transfer material TIM including boron nitride (BN).
비교예 1Comparative Example 1
두께가 480㎛인 그래파이트(graphite)층의 상부에 두께가 20㎛인 점착제층을, 상기 그래파이트 하부에 두께가 12㎛인 점착체층을 형성하고, 상기 각각의 점착제층 상부에 두께가 12㎛인 폴리에틸렌테레프탈레이트(PET) 필름을 적층하여 PET-점착제층-그래파이트-점착제층-PET의 적층 구조를 갖는 방열시트를 제조하였다. 상기 방열시트는 두께가 12㎛인 점착제층의 상부에 형성된 PET 필름이 방열대상체(PSU)에 부착되도록 디스플레이 장치 내에 장착될 수 있다. A pressure-sensitive adhesive layer having a thickness of 20 μm is formed on top of a graphite layer having a thickness of 480 μm, a pressure-sensitive adhesive layer having a thickness of 12 μm is formed on the bottom of the graphite, and a polyethylene having a thickness of 12 μm is formed on each of the pressure-sensitive adhesive layers. A terephthalate (PET) film was laminated to prepare a heat radiation sheet having a laminated structure of PET-adhesive layer-graphite-adhesive layer-PET. The heat dissipation sheet may be mounted in the display device such that the PET film formed on the pressure-sensitive adhesive layer having a thickness of 12 μm is attached to the heat dissipation object (PSU).
비교예 2Comparative Example 2
그래파이트가 10 중량% 첨가된 두께가 50㎛의 폴리에티렌(PE) 필름층 상부에 두께가 150㎛인 동(Cu) 시트층을 적층하고, 그 위에 그래파이트를 40 중량% 포함한 두께 12㎛의 점착제층을 갖는 방열시트를 제조하였다. 구체적으로, 트윈 스크류 티-다이(T-die) 압출기를 이용하여, 상기 폴리에틸렌(PE) 필름층을 제조하였고, 상기 동(Cu) 시트와 120℃의 열로 라미네이션 시킨 후, 반대 면에 상기 아크릴 점착제를 콤마 코팅기로 코팅하였다. 상기 방열시트는 상기 점착제층이 백 커버(Back Cover)에 부착되도록 디스플레이 내에 장착될 수 있다.A pressure-sensitive adhesive having a thickness of 12 μm including a graphite sheet layer having a thickness of 150 μm and a copper sheet layer having a thickness of 150 μm on top of a 50 μm thick polystyrene (PE) film layer having 10 wt% of graphite added thereto. A heat radiation sheet having a layer was prepared. Specifically, using the twin screw T-die extruder, the polyethylene (PE) film layer was prepared, after laminating with the copper (Cu) sheet in the heat of 120 ℃, the acrylic adhesive on the opposite side Was coated with a comma coater. The heat dissipation sheet may be mounted in the display such that the pressure-sensitive adhesive layer is attached to the back cover.
<평가> <Evaluation>
실험예: 방열시트의 열적 특성Experimental Example: Thermal Characteristics of Heat Dissipation Sheets
1) 열전도율의 측정1) Measurement of thermal conductivity
상기 실시예 및 비교예의 방열시트에 대하여, NETZSCH LFA447(25℃ 기준)를 사용하여 수직 열전도율 및 수평 열전도율을 측정하였고, 그 결과를 하기 표 1에 기재하였다. For the heat dissipation sheet of the above Examples and Comparative Examples, the vertical thermal conductivity and the horizontal thermal conductivity were measured using NETZSCH LFA447 (based on 25 ℃), the results are shown in Table 1 below.
2) 절연저항의 측정2) Measurement of insulation resistance
상기 실시예 및 비교예의 방열시트에 있어서, 디스플레이 장치 내에 장착될 때 방열대상체인 전원공급유닛(PSU) 쪽에 위치하는 층을 최하부(Bottom)로 지칭하고, 백 커버(Back Cover) 쪽에 위치하는 층을 최상부(Top)로 지칭하였다. 이때, 상기 실시예 및 비교예의 방열시트에 대하여 각각 최상부(Top) 및 최하부(Bottom)의 절연저항을 절연저항계(Fluke-1577)를 통해 측정하였고, 그 결과를 하기 표 1에 기재하였다. 구체적으로, 상기 방열시트의 최상부 및 최하부에 대하여, 외부전압 DC 500V를 발생시켜 1분 후에 어느 정도의 누설된 전류가 발생하였는지 측정하였고, 그 결과를 통해 얻어진 평균 저항 값으로 절연저항을 측정하였다. In the heat dissipation sheet of the embodiment and the comparative example, when mounted in the display device, the layer located on the power supply unit (PSU) side, which is the heat dissipation object, is referred to as the bottom and the layer located on the back cover side. Referred to as Top. In this case, the insulation resistance of the top and bottom of the heat dissipation sheet of the Examples and Comparative Examples was measured through an insulation ohmmeter (Fluke-1577), and the results are shown in Table 1 below. Specifically, for the top and bottom of the heat dissipation sheet, an external voltage DC 500V was generated to determine how much leakage current occurred after 1 minute, and the insulation resistance was measured by the average resistance obtained through the result.
실시예 1Example 1 비교예 1Comparative Example 1 비교예 2Comparative Example 2
두께(㎛)Thickness (㎛) 283283 536536 212212
열전도율(W/mK)Thermal Conductivity (W / mK) 수평 열전도율Horizontal thermal conductivity 114114 109109 8585
수직 열전도율Vertical thermal conductivity 5.985.98 0.040.04 0.030.03
절연저항(Ω·㎝)Insulation resistance (Ω ・ ㎝) 최상부(Top)- 백 커버 측Top-back cover side 1.176×10^-61.176 × 10 ^ -6 >1×10^13> 1 × 10 ^ 13 1.73×10^-51.73 × 10 ^ -5
최하부(Bottom)- PSU 측Bottom-PSU side >1×10^13> 1 × 10 ^ 13 >1×10^13> 1 × 10 ^ 13 1.44×10^121.44 × 10 ^ 12
상기 표 1을 참고하면, 상기 실시예 1의 방열시트가 상기 비교예 1의 방열시트가 장착된 디스플레이 장치에 비해, 수평 열전도율 및 수직 열전도율이 모두 높게 측정된 것을 알 수 있다. 상기 실시예 1의 방열시트는 절연층, 금속박막층, 방열층 및 방열점착층의 적층 구조를 포함하는 것으로, 디스플레이 장치에서 발생하는 열을 전달함에 있어서, 등방성의 열전도성 및 이방성의 열전도성을 갖는 층을 교대로 적층한 구조를 포함함으로써 방열시트의 전체적인 수평 열전도율 및 수직 열전도율를 개선하였다. Referring to Table 1, it can be seen that the heat dissipation sheet of Example 1 was measured to be higher in both the horizontal thermal conductivity and the vertical thermal conductivity than the display device equipped with the heat dissipation sheet of Comparative Example 1. The heat dissipation sheet of Example 1 includes a laminated structure of an insulating layer, a metal thin film layer, a heat dissipation layer, and a heat dissipation adhesive layer, and has an isotropic thermal conductivity and anisotropic thermal conductivity in transferring heat generated from a display device. By including a structure in which layers are alternately stacked, the overall horizontal thermal conductivity and vertical thermal conductivity of the heat dissipation sheet are improved.
또한, 상기 표 1을 참조하면, 상기 실시예 1의 경우 최하부의 절연저항 즉, 절연층이 존재하는 측의 절연저항이 높게 나타났고, 최상부의 절연저항 즉, 방열점착층이 존재하는 측의 절연저항이 낮게 나타났음을 알 수 있다. 반면, 상기 비교예 1의 경우, 최하부 및 최상부의 절연저항이 모두 높게 나타났다. In addition, referring to Table 1, in the first embodiment, the lowest insulation resistance, that is, the insulation resistance on the side where the insulation layer is present, was high, and the top insulation resistance, that is, insulation on the side where the heat-dissipating layer is present. It can be seen that the resistance is low. On the other hand, in the case of Comparative Example 1, both the lower and the uppermost insulation resistance was high.
일반적으로, 방열시트가 디스플레이 장치에 장착될 때, 전원공급유닛(PSU) 내에 위치하는 인쇄회로기판(PCB)에 근접한 부분이 전기 전도성이 높을 경우, 쇼트 현상 등이 발생하여 문제가 될 수 있다. 따라서, 이 부분은 절연성을 확보해야 한다. 반면, 디스플레이 장치의 백 커버(Back Cover)에 근접한 부분은 전기 전도성이 높은 경우 특별한 문제가 발생하지 않으며, 오히려 열전도도가 높은 특성의 방증이 될 수 있다. In general, when the heat dissipation sheet is mounted on the display device, if a portion close to the printed circuit board PCB positioned in the power supply unit PSU has high electrical conductivity, a short phenomenon may occur. Therefore, this part must ensure insulation. On the other hand, a portion close to the back cover of the display device does not have a special problem when the electrical conductivity is high, but may be a proof of high thermal conductivity.
상기 실시예 1 및 비교예 1의 방열시트의 최하부는 전원공급유닛(PSU) 내에 위치하는 인쇄회로기판(PCB)에 근접한 부분으로, 상기 표 1의 결과와 같이 모두 절연성이 우수한 것을 알 수 있다. The lowermost part of the heat dissipation sheet of Example 1 and Comparative Example 1 is a portion close to the printed circuit board (PCB) located in the power supply unit (PSU), it can be seen that all excellent in insulation as shown in the results of Table 1.
즉, 상기 실시예 1의 방열시트는 전원공급유닛(PSU) 내에 위치하는 인쇄회로기판(PCB)에 근접하는 최하부의 절연층이 PET 필름 수준의 절연성을 확보하면서, 이와 동시에, 상기 열전도율 측정의 결과에 나타난 바와 같이, 우수한 열전도성을 구현하는 것이다. 반면, 상기 비교예 1의 방열시트는 인쇄회로기판(PCB)에 근접하는 최하부가 PET 필름에 의해 절연성은 높으나, 열전도성이 좋지 않은 것이므로 짧은 시간 안에 열을 방출시키는 능력이 거의 없고, 상기 실시예 1에 비하여 방열 효과가 현저히 떨어지는 것을 알 수 있다. That is, in the heat dissipation sheet of Example 1, the lowermost insulating layer near the printed circuit board (PCB) located in the power supply unit (PSU) ensures insulation of the PET film level, and at the same time, the result of the thermal conductivity measurement As shown in Fig. 1, excellent thermal conductivity is achieved. On the other hand, in the heat dissipation sheet of Comparative Example 1, the lowermost portion close to the printed circuit board (PCB) has a high insulation by PET film, but since the thermal conductivity is not good, there is almost no ability to release heat in a short time. It can be seen that the heat dissipation effect is remarkably inferior to 1.
또한, 상기 실시예 1의 방열시트는 백 커버(Back Cover)에 근접한 최상부의 방열점착층이 상기 비교예 1의 최상부 측의 PET 필름에 비하여 낮은 절연저항을 나타내는 것으로, 우수한 열전도성을 나타냄을 간접적으로 알 수 있고, 상기 열전도율 측정의 결과를 추가 참조할 때, 외부로의 방열 효과가 우수한 것을 알 수 있다. In addition, in the heat dissipation sheet of Example 1, the heat dissipation adhesive layer on the top of the back cover (Back Cover) shows a lower insulation resistance than the PET film on the top side of Comparative Example 1, indirectly showing excellent thermal conductivity It can be seen that, when further referring to the results of the thermal conductivity measurement, it can be seen that the heat radiation effect to the outside is excellent.
상기 비교예 2의 방열시트는 전원공급유닛(PSU) 내에 위치하는 인쇄회로기판(PCB) 근접한 최하부의 폴리에틸렌(PE) 필름이 상기 실시예 1의 최하부 측의 절연층에 비하여 저항이 높지 않아서 전기가 일부 통할 수 있고, 쇼트 현상 방지 효과가 실시예 1에 비해 낮은 것을 알 수 있다. In the heat dissipation sheet of Comparative Example 2, since the lowermost polyethylene (PE) film adjacent to the printed circuit board (PCB) located in the power supply unit (PSU) does not have a higher resistance than the insulating layer on the lowermost side of Example 1, Particularly, it can be seen that the effect of preventing short phenomenon is lower than in Example 1.
또한, 상기 비교예 2의 방열시트는 수평 열전도도 및 수직 열전도도가 상기 실시예 1의 방열시트보다 낮게 나타났는바, 두께가 더 얇은 구조를 가졌음에도 방열 효과가 떨어지는 것을 알 수 있다.In addition, the heat dissipation sheet of Comparative Example 2 was lower than the heat dissipation sheet of Example 1 in the horizontal thermal conductivity and the vertical thermal conductivity, it can be seen that the heat dissipation effect is deteriorated even though it has a thinner structure.
[부호의 설명][Description of the code]
100: 방열시트100: heat dissipation sheet
10: 절연층10: insulation layer
20: 금속박막층20: metal thin film layer
30: 방열층30: heat dissipation layer
40: 방열점착층40: heat dissipation adhesive layer

Claims (17)

  1. 절연층, 금속박막층, 방열층 및 방열점착층을 포함하고,Including an insulating layer, a metal thin film layer, a heat radiation layer and a heat radiation adhesion layer,
    상기 방열점착층은 아크릴계 점착 수지 및 열전도성 필러를 포함하고, The heat dissipation adhesive layer includes an acrylic adhesive resin and a thermally conductive filler,
    상기 방열층은 열전도성 탄소구조체를 포함하는 The heat dissipation layer includes a thermally conductive carbon structure
    방열시트.Heat dissipation sheet.
  2. 제1항에 있어서,The method of claim 1,
    상기 절연층은 열 전달물질(Thermal Interface Material, TIM)을 매개로 디스플레이 장치의 방열 대상체에 부착되는The insulating layer is attached to a heat radiating object of the display device through a heat transfer material (TIM).
    방열시트.Heat dissipation sheet.
  3. 제1항에 있어서,The method of claim 1,
    상기 방열점착층는 디스플레이 장치의 백 커버(Back Cover)에 부착되는 The heat dissipation adhesive layer is attached to the back cover of the display device
    방열시트.Heat dissipation sheet.
  4. 제3항에 있어서, The method of claim 3,
    상기 방열점착층과 상기 백 커버의 점착 전단력은 5 kgf/㎡ 내지 15 kgf/㎡인The adhesive shear force of the heat dissipation adhesive layer and the back cover is 5 kgf / ㎡ to 15 kgf / ㎡
    방열시트.Heat dissipation sheet.
  5. 제1항에 있어서, The method of claim 1,
    상기 절연층 및 상기 방열층은 이방성의 열전도성을 갖는The insulating layer and the heat dissipation layer have anisotropic thermal conductivity
    방열시트.Heat dissipation sheet.
  6. 제1항에 있어서, The method of claim 1,
    상기 절연층 및 상기 방열층은 수평 열전도율이 수직 열전도율보다 큰 The insulating layer and the heat dissipation layer have a horizontal thermal conductivity greater than a vertical thermal conductivity.
    방열시트.Heat dissipation sheet.
  7. 제1항에 있어서, The method of claim 1,
    상기 절연층 및 상기 방열층의 수평 열전도율은 60 W/mK 내지 320 W/mK이고, 수직열전도율은 3 W/mK 내지 15 W/mK인The horizontal thermal conductivity of the insulating layer and the heat dissipation layer is 60 W / mK to 320 W / mK, the vertical thermal conductivity is 3 W / mK to 15 W / mK
    방열시트.Heat dissipation sheet.
  8. 제1항에 있어서, The method of claim 1,
    상기 금속박막층은 등방성의 열전도성을 갖는The metal thin film layer has isotropic thermal conductivity
    방열시트.Heat dissipation sheet.
  9. 제1항에 있어서, The method of claim 1,
    상기 금속박막층의 수직 열전도율은 210 W/mK 내지 380 W/mK인The vertical thermal conductivity of the metal thin film layer is 210 W / mK to 380 W / mK
    방열시트.Heat dissipation sheet.
  10. 제1항에 있어서, The method of claim 1,
    상기 방열점착층은 상기 아크릴계 점착 수지 100 중량부에 대하여, 상기 열전도성 필러를 30 중량부 내지 50 중량부 포함하는 The heat dissipation adhesive layer comprises 30 parts by weight to 50 parts by weight of the thermally conductive filler with respect to 100 parts by weight of the acrylic adhesive resin.
    방열시트.Heat dissipation sheet.
  11. 제1항에 있어서, The method of claim 1,
    상기 방열점착층의 열전도성 필러는 니켈, 질화알루미늄, 질화붕소, 탄소나노튜브(Carbon Nanotube, CNT), 그래파이트(graphite), 산화알루미늄, 산화마그네슘, 산화아연, 탄화규소, 질화규소, 수산화알루미늄, 수산화마그네슘, 산화규소 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는 The thermally conductive filler of the heat dissipation adhesive layer is nickel, aluminum nitride, boron nitride, carbon nanotubes (CNT), graphite, aluminum oxide, magnesium oxide, zinc oxide, silicon carbide, silicon nitride, aluminum hydroxide, hydroxide One selected from the group consisting of magnesium, silicon oxide and combinations thereof
    방열시트.Heat dissipation sheet.
  12. 제1항에 있어서, The method of claim 1,
    상기 방열층의 열전도성 탄소구조체는 탄소나노튜브(Carbon Nanotube, CNT), 그래파이트(graphite), 그래핀(graphene), 다이아몬드(diamond), 풀러린(fullerene), 카본블랙(carbon black) 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는 The thermally conductive carbon structure of the heat dissipation layer is carbon nanotubes (CNTs), graphite, graphene, diamond, fullerene, carbon black, and combinations thereof. Contains one selected from the group consisting of
    방열시트.Heat dissipation sheet.
  13. 제1항에 있어서, The method of claim 1,
    상기 방열층의 열전도성 탄소구조체는 표면에 금속이 도핑된The thermally conductive carbon structure of the heat dissipation layer is a metal doped on the surface
    방열시트.Heat dissipation sheet.
  14. 제1항에 있어서,The method of claim 1,
    상기 절연층은 폴리에스터계 수지, 고무계 수지, 또는 실리콘계 수지를 포함하는 바인더 수지; 및 산화알루미늄, 산화마그네슘, 산화아연, 탄화규소, 질화알루미늄, 질화붕소, 질화규소, 수산화알루미늄, 수산화마그네슘, 산화규소 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 포함하는 열전도성 필러;를 포함하는 The insulating layer is a binder resin containing a polyester resin, a rubber resin, or a silicone resin; And a thermally conductive filler comprising one selected from the group consisting of aluminum oxide, magnesium oxide, zinc oxide, silicon carbide, aluminum nitride, boron nitride, silicon nitride, aluminum hydroxide, magnesium hydroxide, silicon oxide, and combinations thereof.
    방열시트.Heat dissipation sheet.
  15. 제14항에 있어서, The method of claim 14,
    상기 절연층은 상기 바인더 수지 100 중량부에 대하여, 상기 열전도성 필러를 40 중량부 내지 60 중량부 포함하는 The insulating layer includes 40 parts by weight to 60 parts by weight of the thermally conductive filler based on 100 parts by weight of the binder resin.
    방열시트.Heat dissipation sheet.
  16. 제1항에 있어서,The method of claim 1,
    상기 금속박막층은 알루미늄(Al) 또는 동(Cu)을 포함하는 The metal thin film layer includes aluminum (Al) or copper (Cu)
    방열시트.Heat dissipation sheet.
  17. 제1항에 있어서,The method of claim 1,
    상기 방열시트의 두께는 0.05㎜ 내지 0.3㎜인 The heat radiation sheet has a thickness of 0.05 mm to 0.3 mm
    방열시트.Heat dissipation sheet.
PCT/KR2015/013452 2014-12-09 2015-12-09 Heat radiation sheet WO2016093617A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140175807A KR20160070243A (en) 2014-12-09 2014-12-09 Heat-discharging sheet
KR10-2014-0175807 2014-12-09

Publications (1)

Publication Number Publication Date
WO2016093617A1 true WO2016093617A1 (en) 2016-06-16

Family

ID=56107725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013452 WO2016093617A1 (en) 2014-12-09 2015-12-09 Heat radiation sheet

Country Status (2)

Country Link
KR (1) KR20160070243A (en)
WO (1) WO2016093617A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200101553A (en) * 2019-02-19 2020-08-28 삼성디스플레이 주식회사 Heat radiation sheet
CN112693188A (en) * 2020-12-28 2021-04-23 宋波 Production process of high-thermal-conductivity nanocrystalline reinforced graphene composite film
CN112778925A (en) * 2020-12-30 2021-05-11 深圳市欧普特工业材料有限公司 Heat-conducting silica gel sheet with composite cross laminated structure and preparation method thereof
CN115286940A (en) * 2022-08-08 2022-11-04 广东奥德迈新能源有限责任公司 Heat radiating fin, graphene heat radiating coating and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102314855B1 (en) * 2016-06-28 2021-10-18 주식회사 오럼머티리얼 Back sheet, producing method of back sheet and foldable display including the same
KR102014260B1 (en) * 2017-07-18 2019-08-26 엘지전자 주식회사 Display device
KR102391618B1 (en) * 2017-12-29 2022-04-27 엘지디스플레이 주식회사 Display apparatus
CN207939941U (en) 2018-03-27 2018-10-02 京东方科技集团股份有限公司 Radiator and display device for display panel
KR102155811B1 (en) * 2018-11-12 2020-09-15 주식회사 대현에스티 The manufacturing method for heat radiation adhesive and heat radiation tape with excellent in-plane thermal conductivity comprising the same
US11923264B2 (en) 2019-09-20 2024-03-05 Samsung Electronics Co., Ltd. Semiconductor apparatus for discharging heat
KR102545908B1 (en) * 2020-12-23 2023-06-22 상하이 재셩 뉴 매터리얼 테크놀러지 씨오., 엘티디. Heat radiating sheet comprising adhesive · bonding layer
KR20220136523A (en) 2021-03-30 2022-10-11 삼성디스플레이 주식회사 Display device
KR102591403B1 (en) * 2022-09-19 2023-10-20 (주)비스타글로벌 composite heat-radiation hybrid sheet
KR102577478B1 (en) * 2022-10-28 2023-09-13 이홍섭 coposite heat-radiation hybrid TIM sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080241488A1 (en) * 2007-03-29 2008-10-02 Polymatech Co., Ltd. Thermally conductive sheet and method of manufacturing the same
KR20120094380A (en) * 2011-02-16 2012-08-24 이무균 Thermel conductive and emitting sheet
KR20140093457A (en) * 2013-01-18 2014-07-28 엘지전자 주식회사 Heat discharging sheet
KR20140104555A (en) * 2013-02-19 2014-08-29 동현전자 주식회사 A composite film of copper layers with insulation layers and conductive adhesion layers and method of fabricating the same.
KR20140128158A (en) * 2013-04-26 2014-11-05 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Heat dissipation sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080241488A1 (en) * 2007-03-29 2008-10-02 Polymatech Co., Ltd. Thermally conductive sheet and method of manufacturing the same
KR20120094380A (en) * 2011-02-16 2012-08-24 이무균 Thermel conductive and emitting sheet
KR20140093457A (en) * 2013-01-18 2014-07-28 엘지전자 주식회사 Heat discharging sheet
KR20140104555A (en) * 2013-02-19 2014-08-29 동현전자 주식회사 A composite film of copper layers with insulation layers and conductive adhesion layers and method of fabricating the same.
KR20140128158A (en) * 2013-04-26 2014-11-05 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Heat dissipation sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200101553A (en) * 2019-02-19 2020-08-28 삼성디스플레이 주식회사 Heat radiation sheet
US11240933B2 (en) * 2019-02-19 2022-02-01 Samsung Display Co., Ltd. Heat radiation sheet
KR102628524B1 (en) 2019-02-19 2024-01-23 삼성디스플레이 주식회사 Heat radiation sheet
CN112693188A (en) * 2020-12-28 2021-04-23 宋波 Production process of high-thermal-conductivity nanocrystalline reinforced graphene composite film
CN112778925A (en) * 2020-12-30 2021-05-11 深圳市欧普特工业材料有限公司 Heat-conducting silica gel sheet with composite cross laminated structure and preparation method thereof
CN115286940A (en) * 2022-08-08 2022-11-04 广东奥德迈新能源有限责任公司 Heat radiating fin, graphene heat radiating coating and preparation method thereof

Also Published As

Publication number Publication date
KR20160070243A (en) 2016-06-20

Similar Documents

Publication Publication Date Title
WO2016093617A1 (en) Heat radiation sheet
WO2011102572A1 (en) Heat sink sheet including an adhesive having good heat conductivity
WO2011119007A2 (en) Heat-dissipating tape and method for manufacturing same
US20130265721A1 (en) Thermal Interface Materials with Thin Film or Metallization
WO2021034108A1 (en) Cooling member for battery module and battery module including same
KR101189990B1 (en) Heat radiation tape and manufacturing method thereof
JP2015122463A (en) Cooling structure
WO2015199467A1 (en) Heat radiation adhesive, heat radiation sheet using same, and electronic device having same
WO2020145644A1 (en) Highly heat-dissipating flexible printed circuit board (gfpcb), manufacturing method therefor, and led lamp for vehicle
WO2018199517A1 (en) Led module and led lighting device comprising same
KR20100017043A (en) Thermal spreading sheet
KR101223858B1 (en) Thermel conductive and emitting sheet
KR20080114661A (en) Silicon radiation sheet
JP2005101025A (en) Heat dissipating
CN1864238A (en) Image display apparatus
WO2010074402A2 (en) Structure of heat dissipating sheet for plasma display panel
WO2024090878A1 (en) Composite heat dissipation hybrid tim sheet
WO2016010296A1 (en) Thermal-insulating adhesive and thermal-insulating tape having same, and composite sheet and electronic device comprising same
WO2015156565A1 (en) Heat dissipating sheet having anisotropic thermal conductive part
WO2014129776A1 (en) Composite film using copper thin film including insulation layer and conductive adhesive layer and method for fabricating same
WO2018124317A1 (en) Heat-radiating graphene sheet and manufacturing method therefor
WO2018124319A1 (en) Insulative substrate-less heat-radiation tape and manufacturing method therefor
WO2021006646A1 (en) Composition and heat dissipation sheet manufactured therefrom
WO2017082712A1 (en) Heat-dissipation tape
WO2014112733A1 (en) Heat radiation sheet having attachment part formed in groove thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867736

Country of ref document: EP

Kind code of ref document: A1