WO2016093493A1 - Ahss 열연코일의 열처리 방법, 이를 이용한 냉간 압연방법 및 열처리장치 - Google Patents

Ahss 열연코일의 열처리 방법, 이를 이용한 냉간 압연방법 및 열처리장치 Download PDF

Info

Publication number
WO2016093493A1
WO2016093493A1 PCT/KR2015/011554 KR2015011554W WO2016093493A1 WO 2016093493 A1 WO2016093493 A1 WO 2016093493A1 KR 2015011554 W KR2015011554 W KR 2015011554W WO 2016093493 A1 WO2016093493 A1 WO 2016093493A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
hot rolled
heat treatment
rolled coil
heating
Prior art date
Application number
PCT/KR2015/011554
Other languages
English (en)
French (fr)
Inventor
정창규
김형전
유지원
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140175568A external-priority patent/KR101591792B1/ko
Priority claimed from KR1020140177699A external-priority patent/KR101612760B1/ko
Priority claimed from KR1020150080524A external-priority patent/KR101662559B1/ko
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP15867452.3A priority Critical patent/EP3231523A4/en
Priority to CN201580004858.8A priority patent/CN105934288B/zh
Priority to JP2016544449A priority patent/JP6229066B2/ja
Publication of WO2016093493A1 publication Critical patent/WO2016093493A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/26Special arrangements with regard to simultaneous or subsequent treatment of the material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0006Details, accessories not peculiar to any of the following furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0056Furnaces through which the charge is moved in a horizontal straight path
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/02Edge parts
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/10Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively

Definitions

  • the present invention relates to a hot rolled coil heat treatment method and a heat treatment apparatus for heating and winding a wound coil.
  • the slab manufactured in the blast furnace is reheated to a temperature suitable for rolling in a furnace, and then passed through a series of rolling apparatuses such as a roughing mill and a finishing mill. It is rolled into a hot rolled steel sheet in the form of a strip, and after being cooled through a cooling facility, it is wound in a coil form through a winder. The coiled hot rolled coil is placed in a yard, air cooled, and then shipped to a cold rolling mill or as a product.
  • the edges of the hot rolled coil and the inside of the hot rolled coil are in contact with the atmosphere due to the difference in the cooling rate, which causes plate breakage or tipping during cold rolling, which leads to production failure.
  • the strip produced by hot or cold rolling is wound in coil form for transport and storage.
  • the wound strip coil is often heat treated to reduce material deviations or to achieve desired physical properties.
  • the method of heating the strip As for the method of heating the strip, a batch method of accommodating a coil in a wound state in a heating facility and heating, and a continuous method of heating using a heating device while unwinding and transporting the coil in a coil state are known. Among them, the batch method is capable of working in a coil state, so there is no need to unwind and wind the coil, and the space occupied by the strip is not large.
  • Conventional batch coil heating equipment includes a heating furnace accommodating a coil therein, a heating apparatus for heating the inside of the heating furnace, a circulating fan for circulating heat inside the heating furnace, and a bottom of the heating furnace for loading the coil. Coil skids are included.
  • This coil heating facility heats the coils deposited in the furnace while the heat inside the furnace circulates in the furnace by the operation of the circulation fan.
  • Conventional coil heating equipment is a type in which a circulation fan blows heat from the top of the heating furnace downward.
  • the circulating hot air flows downwardly from the blower fan to heat one side of the coil, and ascends to the bottom of the furnace, flows toward the opposite side to heat up the opposite side of the coil. It is a type that circulates around the coil as a whole. Some heat flows through the hollow portion (inner winding portion) of the coil to the opposite side and heats the hollow portion of the coil.
  • An embodiment of the present invention is to provide a heat treatment method and a cold rolling method using the same to reduce the material deviation of the width direction of the AHSS hot rolled coil.
  • an embodiment of the present invention is to provide a heat treatment apparatus that can uniformly heat the coil as a whole to obtain an even heat treatment effect.
  • the hot rolled coil is produced by hot rolling and cooling the rolled material to produce a hot rolled coil, and cooling to a temperature at which phase transformation is completed so that a hard phase is produced at an edge of the hot rolled coil.
  • the edge of the hot rolled coil which has undergone the primary cooling step, is heated by heating only the edge of the hot rolled coil to a tempering temperature and then maintained at the tempering temperature for a predetermined time to obtain the strength of the center portion of the hot rolled coil.
  • a method of heat-treating AHSS hot rolled coils may be provided including a hot rolled coil edge strength softening step of heat treating to have a strength similar to that of the hot rolled coil, and a second cooling step of cooling the hot rolled coil after the hot rolled coil edge strength softening step.
  • the tampering temperature includes 400 ⁇ 700 °C.
  • the temperature of the hot rolled coil wound in the hot rolled coil generation step includes 500 ⁇ 700 °C.
  • the temperature at which the phase transformation is completed includes a range of room temperature ⁇ 400 °C.
  • the width of the edge portion of the hot rolled coil includes a quarter area of the total width of the hot rolled coil.
  • the hot rolled coil may have a tensile strength of 780 MPa or more.
  • the heating in the hot rolled coil edge strength softening step may be performed by rapidly heating a region at least 1/4 of the entire width of the hot rolled coil to the tampering temperature in the width direction of the hot rolled coil from the edge of the hot rolled coil. It includes.
  • the predetermined time may be set to a time range obtained by the following equation.
  • Equation: X temperature x (7.0 + log (hour)), (temperature is Kelvin, time is minutes)
  • the temperature is a tempering temperature, 7600 ⁇ X ⁇ 8600.
  • the secondary cooling step includes cooling at a cooling rate of 3 ° C./min or more with respect to the edge portion of the hot rolled coil.
  • the coiling temperature is from room temperature to 400 for the edge portion of the AHSS hot rolled coil in the range of 500 to 700 ° C.
  • a cold rolling method may be provided in which strength softening is generated, and the strength softened AHSS hot rolled coil is secondarily cooled at a rate of 3 ° C./min or more, followed by cold rolling.
  • the hot rolled coil is installed on the heating chamber into which the transfer cart for carrying and transporting the hot rolled coil and the heat insulating wall surface forming the heating chamber is installed And a heat treatment furnace having a plurality of heating means for heating the coil, wherein the plurality of heating means comprises a first burner installed in the heating chamber for temperature control of the heating chamber, and heating both sides of the hot rolled coil.
  • a heat treatment apparatus including a second burner installed on both side walls of the heating chamber, and a hot wind supply unit for supplying hot air toward the inner winding portion of the hot rolled coil.
  • the hot air supply unit may recover the high temperature exhaust gas exhausted from the heating chamber and inject toward the inner winding of the hot rolled coil.
  • the first burner may include a flame heating burner, and the flame heating burner may be installed on the upper wall of the heating chamber so that the flames injected do not directly contact the hot rolled coil.
  • the second burner includes a radiant heating burner for heating both side surfaces of the hot rolled coil by radiant heat, and the radiant heating burner is disposed on the sidewall so as to face a side between the center and the bottom of the hot rolled coil.
  • a radiant heating burner for heating both side surfaces of the hot rolled coil by radiant heat
  • the radiant heating burner is disposed on the sidewall so as to face a side between the center and the bottom of the hot rolled coil.
  • One or more may be provided.
  • the hot air supply unit is connected to the nozzle for injecting the hot air toward the inner winding portion of the hot rolled coil, and the exhaust pipe connected to the exhaust pipe for exhausting the hot gas inside the heating chamber to supply the exhaust gas flowing through the exhaust pipe to the nozzle And a damper for regulating the supply of exhaust gas from the exhaust pipe to the recovery pipe, and a blower providing a blowing force for transferring the exhaust gas flowing through the recovery pipe to the nozzle.
  • the heat treatment furnace includes a tunnel-shaped body having an upper wall and both side walls so that the front, the rear and the lower part is opened, wherein the open lower part is provided by the transfer bogie when the transfer bogie enters the heating chamber.
  • the open front and rear surfaces may be closed by an opening / closing door installed in the heat treatment furnace.
  • the heating chamber may form a heat insulating structure by the heat insulating panel disposed on the upper wall, the side wall and the upper surface of the transfer bogie consisting of the heat insulating wall surface.
  • the apparatus may further include a sealing device that seals a gap between the sidewalls and the transport cart when the transport cart is introduced into the heating chamber.
  • the sealing device is rotatably coupled to the lower side of the side wall of the main body and a rotary arm provided with a heat insulating material for sealing the gap, the first position and the second material is spaced apart from the gap sealing the gap And a drive unit for driving the rotary arm to move between positions.
  • the apparatus may further include a controller for controlling the temperature in the heating chamber, wherein the controller maintains the temperature in the heating chamber at a temperature higher than the heating target temperature of the hot rolled coil at the initial stage of heating of the hot rolled coil, and after a predetermined time elapses.
  • the plurality of heating means may be controlled to maintain the temperature in the heating chamber at the heating target temperature.
  • the transfer bogie is provided with two units provided to be moved back and forth along the rail, respectively on both sides of the heat treatment furnace, the two transfer bogies can be alternately drawn in and out of the heating chamber.
  • a heating furnace for receiving and heating a wound coil, a circulation device for circulating the heat inside the heating furnace and a portion of the heat flowing around the coil in the heating furnace of the coil
  • a heat treatment apparatus including a flow guide to guide the hollow portion.
  • the flow guide portion also includes a guide plate extending toward the hollow portion of the coil from the side wall of the heating furnace facing the side of the coil.
  • the guide plate also includes an inclined guide surface that is inclined with respect to the centerline of the coil to guide the flowing heat to the hollow portion of the coil.
  • the guide plate may be formed so that the thickness of the coupling end coupled to the side wall of the heating furnace is thicker than the thickness of the free end toward the hollow portion of the coil.
  • the guide plate may be provided in such a length that the width of the free end toward the coil hollow is equal to or smaller than the diameter of the coil hollow.
  • the guide plate may be provided with a minimum width of the coupling end coupled to the side wall of the heating furnace is greater than the diameter of the coil hollow portion and the maximum width is less than the outer diameter of the coil.
  • the flow guide portion may be installed on both side walls of the heating furnace respectively opposite to both sides of the coil.
  • the inclined guide surface may be provided in a curved shape.
  • the flow guide portion is mounted to the side wall of the heating furnace further includes a coupling member for rotatably supporting the coupling end of the guide plate for adjusting the angle of the guide plate, and a support for supporting the guide plate in an angle adjustment state.
  • the flow guide further includes a guide rail mounted on the sidewall of the heating furnace, a coupling member movably mounted on the guide rail and supporting a coupling end of the guide plate of the guide plate, and a moving device for moving the coupling member. Include.
  • the circulation device may be arranged to blow heat toward the bottom of the heating furnace through the space between the one side of the coil and the side wall of the heating in the upper portion of the heating furnace.
  • the guide plate is disposed at a height between the center of the coil and the upper end of the coil hollow part when guiding the descending heat, and the center of the coil and the coil hollow when guiding the heat rising through the lower part of the coil. It can be placed at a height between the bottom of the section.
  • the bottom of the furnace and the side wall is provided at the corner, and further comprises a corner guide having a flow guide surface inclined with respect to the bottom of the furnace for changing the flow direction of the heat.
  • the apparatus may further include a coil support device disposed at a bottom side of the heating furnace to support a lower circumferential surface of the coil, and having a ventilation flow path formed in multiple directions for the distribution of heat.
  • the coil support device is disposed spaced apart from each other and a plurality of support blocks having a ventilation flow path communicating with each side and the upper surface, and the coil and the support while being installed on the upper surface of each support block to support the coil It includes a plurality of spacers to space the upper surface of the block.
  • a heating furnace for receiving and heating a wound coil, a circulation device for circulating the heat inside the heating furnace and disposed on the bottom of the heating furnace to support the lower peripheral surface of the coil,
  • a heat treatment apparatus may be provided that includes a coil support device having a ventilation path formed in multiple directions for the distribution of heat.
  • Embodiments of the present invention can prevent the twist and shape defects due to the material deviation during cold rolling by reducing the material deviation of the width direction of the AHSS hot rolled coil.
  • the embodiments of the present invention can minimize internal oxidation by reheating by heating only the edge of the AHSS hot rolled coil, thereby ensuring scale peelability in the pickling process before cold rolling.
  • the flow guide part guides a part of the heat flowing around the coil to the hollow part of the coil, the temperature deviation of the coil outer surface and the hollow part may be minimized during the heating of the coil. Therefore, the coil is uniformly heated as a whole to obtain an even heat treatment effect.
  • the heat treatment apparatus minimizes the temperature difference between the top and bottom of the coil through the multi-directional ventilation flow path formed in the coil support device, thereby minimizing the temperature difference between the coil and the astronomically uniform heating. Can be implemented.
  • the heat treatment apparatus maintains the flow rate and can change direction because the heat circulating in the heating furnace is guided by the corner guide installed in the lower portion of the furnace, so that the circulation of the heat can be smoothly realized.
  • FIG. 1 illustrates a hot rolling process according to an embodiment of the present invention.
  • FIG. 2 is a flow chart showing a heat treatment method according to an embodiment of the present invention.
  • Figure 3 shows the temperature change in the heat treatment process according to an embodiment of the present invention.
  • FIG. 4 is a chart showing the strength of the hot rolled coil width direction before heat treatment according to an embodiment of the present invention.
  • FIG. 5 is a chart showing the strength after heat treatment according to the heat treatment reheat start temperature according to an embodiment of the present invention.
  • FIG. 6 is a chart showing the change in strength according to the microstructure before heat treatment, heat treatment temperature and heat treatment time according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating FIG. 6 using a combination variable of temperature and time on the x-axis.
  • FIG. 8 is a chart showing the strength softening effect according to the maximum heat treatment temperature according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a temperature change at two edges of a hot rolled coil and two inner points of a hot rolled coil in a heat treatment process according to an exemplary embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a temperature distribution in a width direction of a hot rolled coil in a heat treatment process according to an exemplary embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a widthwise material deviation of a hot rolled coil heat treated according to an exemplary embodiment of the present invention compared with a conventional case.
  • FIG. 12 schematically illustrates a heat treatment apparatus according to a first embodiment of the present invention.
  • FIG. 13 illustrates a state in which the feed cart according to the first embodiment of the present invention is inserted into a heat treatment furnace.
  • Figure 14 schematically shows a closure device according to a first embodiment of the present invention.
  • 15 is a cross-sectional view showing the internal structure of the heat treatment furnace according to the first embodiment of the present invention.
  • 16 is a view for explaining the arrangement of the radiation heating burner according to the first embodiment of the present invention.
  • FIG. 17 schematically illustrates a hot air supply unit according to a first embodiment of the present invention.
  • FIG. 18 is a control block diagram for temperature control of a heat treatment furnace according to a first embodiment of the present invention.
  • FIG. 19 is a diagram illustrating a two-step temperature control method for a heat treatment furnace according to a first embodiment of the present invention.
  • 20 is a diagram illustrating a temperature change of a hot rolled coil when two temperature patterns are applied to a heat treatment furnace according to a first embodiment of the present invention.
  • FIG. 21 illustrates two feed carts disposed on both sides of the heat treatment furnace according to the first embodiment of the present invention.
  • FIG. 22 is a perspective view of a heat treatment apparatus according to a second embodiment of the present invention.
  • FIG. 23 is a cross-sectional view taken along the line II-II of FIG. 22.
  • FIG. 24 is a perspective view of a guide plate of the flow guide of the heat treatment apparatus according to the second embodiment of the present invention.
  • 25 is a perspective view of a corner guide of the heat treatment apparatus according to the second embodiment of the present invention.
  • 26 is a perspective view illustrating a modification of the corner guide portion of the heat treatment apparatus according to the second embodiment of the present invention.
  • FIG. 27 is a perspective view of the coil supporting apparatus of the heat treatment apparatus according to the second embodiment of the present invention.
  • FIG. 28 shows a modified example of the spacer member installed on the support block of the heat treatment apparatus according to the second embodiment of the present invention.
  • FIG. 1 shows a hot rolling process according to an embodiment of the present invention
  • Figure 2 is a flow chart showing a heat treatment method according to an embodiment of the present invention
  • Figure 3 is a heat treatment process according to an embodiment of the present invention The temperature change is shown.
  • the cold rolling method according to an embodiment of the present invention, the hot rolled coil generation step (S10), the first cooling step (S20), the hot rolled coil edge strength softening step (S30), the second cooling step (S40) and cold rolling step (S50).
  • Hot rolled coil generation step (S10) is a step of producing an advanced high strength steel (AHS) hot rolled coil 20 having a tensile strength of 780MPa or more finally wound in a coil form by rolling the slab (S1).
  • the slab (S1) is heated to a temperature suitable for rolling in the heating furnace 10
  • the slab (S1) heated in the heating furnace 10 is in the rough rolling equipment 11 consisting of three to four rolling stands Width rolling and thickness rolling are performed to form a bar (S2), and then in the filament rolling equipment (12) consisting of 6 to 7 rolling stands, the final thickness is rolled to a desired thickness and rolled into a strip (S3) of a desired thickness.
  • AHS advanced high strength steel
  • the hot rolled coil 20 may be generated.
  • the slab S1, the bar S2, and the strip S3 are referred to as a rolled material S.
  • Rolled material (S) is a high-strength hot-rolled steel sheet (AHSS) includes a Dual-Phase steel (DP steel), Transformation Induced Plasticity steel (TRIP steel) having a tensile strength of 780MPa or more.
  • the temperature (T1) of the hot rolled coil 20 at the time of being wound by the winder 14 after hot rolling may have a range of 500 ⁇ 700 °C.
  • the primary cooling step (S20) is maintained to a temperature at which phase transformation is completed while maintaining a sufficient cooling rate so that hard phases (martensite and bainite) are formed at the edge of the hot rolled coil 20 wound by the winder 14. Cooling step.
  • the temperature at which phase transformation is completed in the first cooling step S20 corresponds to the start of heat treatment reheating temperature T2 in FIG. 3 and may include a range of room temperature to 400 ° C.
  • the temperature at which the phase transformation is completed will be described with reference to FIGS. 4 and 5.
  • 4 is a diagram showing the strength of the hot rolled coil width direction before heat treatment in accordance with an embodiment of the present invention
  • Figure 5 is a diagram showing the strength after heat treatment according to the heat treatment reheat start temperature according to an embodiment of the present invention. As shown in FIG. 5, when the reheating start temperature is 400 ° C. or lower, strength softening occurs after the heat treatment in comparison with the strength of the hot rolled coil before heat treatment of FIG. 4, but when the temperature is 400 ° C.
  • the primary cooling step (S20) is preferably cooled to a temperature of 400 ° C or less at which the phase transformation is completed at the edge of the hot rolled coil (20).
  • the primary cooling step (S20) may be cooled to a temperature at which the phase transformation is completed by using the temperature difference between the room temperature and the hot rolled coil in a state of being placed on the floor of the factory yard or the coil warehouse.
  • Hot rolled coil edge strength softening step (S30) is heated to the tempering temperature (T3) of the hard phase of the edge portion of the hot rolled coil (20) generated through the first cooling step (S20) and heated to a constant at the tempering temperature (T3) It is a step of heat-treating the edge portion of the hot rolled coil 20 to have a strength similar to that of the central portion of the hot rolled coil 20 by maintaining for a time.
  • the hot rolled coil edge strength softening step (S30) is a heating step (S31) to heat up only the edge portion of the hot rolled coil 20 to the tempering temperature (T3) (for example, 400 ⁇ 700 °C), and the tempering effect It may include a temperature maintaining step (S32) to maintain at a tempering temperature (T3) for a certain time required to appear.
  • an area of at least 1/4 of the entire width of the hot rolled coil 20 in the width direction of the hot rolled coil 20 from the edge of the hot rolled coil 20 (the strength is increased by the hard phase shown in FIG. 4).
  • the boundary appearing high can be heated to reach the tempering temperature T3.
  • the edge portion of the hot rolled coil 20 (for example, 1/4 region of the entire width) reaches the tempering temperature T3 and is maintained at the tempering temperature T3 for a predetermined time. Thereby, the hot rolled coil 20 is softened so that the edge portion of the hot rolled coil 20 has a strength similar to that of the center portion of the hot rolled coil 20.
  • FIG. 6 is a graph showing strength change according to microstructure before heat treatment, heat treatment temperature and heat treatment time according to an embodiment of the present invention
  • FIG. 7 is a diagram showing FIG. 6 using a combination of temperature and time on the x-axis.
  • 8 is a diagram showing the strength softening effect according to the maximum heat treatment temperature according to an embodiment of the present invention.
  • the microstructure before heat treatment is F + M (ferrite + martensite), F + P (ferrite + pearlite), As-R (ferrite + pearlite, 1/4 width of the air-cooled coil after rolling Location)
  • F + M is the coil edge
  • As-R is the coil center
  • F + P is the tissue between the coil edge and the core.
  • the heat treatment temperature is 400 ° C.
  • the strength softening effect does not appear much, no matter how long.
  • the heat treatment temperature is maintained at a higher level, the strength drops significantly in a shorter time.
  • FIG. 7 illustrates the combination of temperature and time on the x-axis, and the temperature-time-intensity data for a specific microstructure is formed in one line.
  • the combination variable of temperature and time is defined as X (Hollomon-Jaffe parameter) as follows.
  • the initial strength is different depending on each microstructure, but as the X value increases, the initial intensity converges. If the strength value is equal to the strength of the initial As-R structure, the material deviation in the width direction of the coil is eliminated, so the range of heat treatment temperature and heat treatment time can be found based on the X value at this time.
  • the heat treatment temperature should be selected below 700 °C. Therefore, the tampering temperature (T3) may have a value in the range of 400 ⁇ 700 °C.
  • the holding time is less than approximately 56 minutes, the heat treatment effect is not large, and when larger than 710 minutes, the softening of the edge portion of the hot rolled coil 20 becomes excessive, which is greater than that of the central portion of the hot rolled coil 20. It becomes weak.
  • the heating step (S31) it is possible to reach the tempering temperature (T3) by performing a rapid heating only the edge portion of the hot rolled coil 20 that needs softening strength to minimize the internal oxidation of the hot rolled coil (20) by reheating have.
  • Figure 9 shows the temperature change at the two points of the edge portion (1) and the inside (2) of the hot rolled coil 20 during the heat treatment process, since the hot rolled coil 20 is heated from the outside in the heat treatment process The temperature of the edge portion of the hot rolled coil 20 rises rapidly to reach an upper limit temperature (700 ° C.), and the inside of the hot rolled coil 20 is gently heated.
  • the heat treatment occurs from the time when the temperature passes the lower limit temperature (400 °C) at each position in the width direction.
  • This is represented by the widthwise temperature distribution of the hot rolled coil 20 as shown in FIG.
  • the heat treatment region is between 1 and 2, and the temperature must be maintained between the upper and lower limits in this region.
  • the position of 2 is the boundary point of high strength due to the hard phase.
  • the spacing between 1 and 2 should have a value of 1/4 or more of the width of the hot rolled coil 20.
  • the heat treatment time is the time during which the area between 1 and 2 of the hot rolled coil is maintained between the upper and lower heat treatment temperatures shown in FIG. 9, and the heat treatment time is from the start of the heat treatment to the completion of the heat treatment.
  • the secondary cooling step S40 is a step of cooling the hot rolled coil 20 in which the tissue is softened to room temperature through the hot rolled coil edge strength softening step S30. At this time, the hot rolled coil 20 does not recur according to the cooling rate because the tissue is softened, but a cooling rate of 3 ° C./min or more with respect to the edge of the hot rolled coil 20 in order to minimize the internal oxidation effect by the heat treatment. Can be cooled.
  • FIG. 11 is a diagram illustrating a widthwise material deviation of a hot rolled coil heat treated according to an exemplary embodiment of the present invention compared with a conventional case.
  • the steel grade of the hot rolled coil 20 is a high elongation 980DP, the size of the outer diameter 2150mm, inner diameter 762mm, width 1200mm.
  • the heat treatment conditions applied were cooled to room temperature for 48 hours or more after rolling, and then reheated and held at 550 ° C. for 4 hours, followed by quenching.
  • the air coolant without any treatment after rolling has a material deviation of about 250 MPa or more at the edge and the center, and when the existing slow cooling box is applied, the material deviation in the width direction is reduced to 150 MPa or less.
  • the present invention when the present invention is applied, the material softening of the edge portion is large, it can be confirmed that the material deviation in the width direction can be reduced to 50MPa or less.
  • FIG. 12 schematically shows a heat treatment apparatus according to a first embodiment of the present invention
  • FIG. 13 shows a state in which a feed cart according to a first embodiment of the present invention is inserted into a heat treatment furnace.
  • the heat treatment apparatus 30 includes a transfer cart 40 and a heat treatment furnace 50.
  • the transfer cart 40 may be used to cool the hot rolled coil 20 in the primary cooling step S20 while simultaneously transporting the hot rolled coil 20 generated in the hot rolled coil generation step S10.
  • the transfer cart 40 may include a flat bogie body 43 in which a wheel 42 moving along the rail 41 installed in the yard of the factory is installed.
  • the bogie body 43 may be moved back and forth along the rail 41 by the wheel 42 which is capable of forward and reverse rotation by a driving unit (not shown).
  • the bogie body 43 may be provided with high strength steel or steel alloy for stable support of the hot rolled coil 20, and an insulation panel 44 made of refractory material for insulation is disposed on the top surface of the bogie body 43. Can be.
  • a plurality of skids 45 for supporting the hot rolled coil 20 may be disposed on the upper surface of the insulation panel 44 at predetermined intervals along the longitudinal direction thereof.
  • the plurality of hot rolled coils 20 may be cooled before entering the heat treatment furnace 50 in a state supported by the plurality of skids 45, respectively.
  • the transport trolley 40 on which the plurality of hot rolled coils 20 are seated may enter the heat treatment furnace 50 by moving along the rail 41.
  • the heat insulation panel 44 of the transport cart 40 may form a heat insulation structure under the heat treatment furnace 50.
  • the transport cart 40 may be provided to have a width slightly smaller than the width of the heat treatment furnace 50, and the length of the transport cart 40 may be slightly longer than the length of the heat treatment furnace 50.
  • the transfer truck 40 may perform primary cooling in a state in which the plurality of hot rolled coils 20 are supported on the skids 45, and after the primary cooling is completed, the transfer truck 40 moves along the rail 41 to heat-treat the furnace. It is inserted into the 50 to form a part of the thermal insulation structure of the heat treatment furnace (50). Therefore, the operation of raising or lowering the plurality of hot rolled coils 20 on the transfer cart 40 for the heat treatment operation can be omitted, so that the waiting time of the hot rolled coils 20 for the heat treatment operation is significantly reduced.
  • the heat treatment furnace 50 may be provided in the form of a tunnel having a size that can accommodate the transport cart 40.
  • the heat treatment furnace 50 is provided with a box-shaped body 51 with the front, rear and bottom open, and the inside of the body 51 to heat the hot rolled coil 20 when the transport cart 40 is entered. It is possible to form a heating chamber 60 for.
  • the opened lower part of the main body 51 is closed by the feed cart 40, and the opened front and rear surfaces of the main body 51 are respectively the main body ( 51 may be closed by an opening / closing door 55 installed to be slidable up and down.
  • the heating chamber 60 includes the upper wall 52 of the main body 51 and both sidewalls 53 and 54 extending downward from both ends of the upper wall 52, respectively.
  • a heat insulation panel 44 of the transport cart 40 closing the open lower portion of the main body 51 and an open / close door 55 closing the open front and rear surfaces of the main body 51, respectively. can do.
  • the opening and closing door 55 is the main body 51 by closing the open front and rear of the main body 51, the lower end of each opening and closing door 55 is in contact with the heat insulating panel 44 of the transport cart 40.
  • the open front and the rear of the can be sealed, the transfer cart 40 is heat-treated by the heat insulating panel 44 of the transfer cart 40 by sealing the lower part of the main body 51 when drawn into the heating chamber 60
  • the interior of the furnace 50 can form a sealed heating chamber 60.
  • the wall surface of the heating chamber 60 formed by the opening / closing door 55, the main body 51, and the transport cart 40 may be configured as a heat insulation wall surface for preserving heat therein. That is, as the upper wall 52 and both side walls 53 and 54 are refractory arranged in the inner side of the steel bar forming the appearance, and the refractory is also installed inside the opening and closing door 55, the heat insulating panel of the transfer cart 40 ( 44 together with the heating chamber 60 can achieve a heat insulating structure.
  • a predetermined gap may occur between the transport cart 40 and both sidewalls 53 and 54, and a sealing device 70 may be installed at one side of the main body 51 to seal the gap.
  • Figure 14 schematically shows a closure device according to a first embodiment of the present invention.
  • the sealing device 70 is installed at each lower end of both sidewalls of the main body 51 so as to close the gap t formed between the transport cart 40 and both sidewalls 53 and 54. A plurality of spaced apart along the longitudinal direction of the main body 51 may be disposed.
  • the sealing device 70 provided on one side wall 53 of the main body 51 will be described.
  • the sealing device 70 is a rotary arm 71 rotatably coupled to one side of the lower side of the side wall 53 of the main body 51, a drive unit 72 for rotationally driving the rotary arm 71, and the rotary arm ( It is disposed at the end of the 71 and includes a heat insulating material 74 which is movable between the first position and the second position spaced apart from the gap (t) to seal the gap (t) in the rotational direction of the rotary arm (71).
  • the drive unit 72 includes an electric, electronic, hydraulic or pneumatic cylinder with a rod 73 moving forward and backward, the rod 73 can be connected to the rotary arm 71 via the link member 75. have.
  • Rotating arm 71 may be rotatably installed around the rotation axis () at the lower side of the side wall 53 of the main body 51, one side is hinged to the link member 75, the other side of the main body 51 Insulating material 74 formed to extend a predetermined length along the longitudinal direction may be provided. Insulation material 74 may be detachably coupled to the other side of the rotary arm 71 to enable replacement for maintenance.
  • the clearance t formed between the transport cart 40 and the side wall 53 when the transport cart 40 enters the heating chamber 60 is rotated by the driving unit 72 ( It can be sealed by the heat insulating material 74 provided at the end of the 71 can be prevented from leaking the exhaust gas or heat in the heating chamber 60 through the gap (t) to the outside.
  • a plurality of heating means 80 for heat treatment of the edge portion 20 is provided.
  • Figure 15 is a cross-sectional view showing the internal structure of the heat treatment furnace according to the first embodiment of the present invention
  • Figure 16 is a view for explaining the arrangement of the radiation heating burner according to the first embodiment of the present invention.
  • a plurality of heating means 80 is for heating the internal air of the heating chamber 60 for temperature control inside the heating chamber 60.
  • the first burner 81 may be configured as a high speed flame burner that burns fuel and rapidly heats the air inside the heating chamber 60 by the flame.
  • the first burner 81 may be provided on the upper wall 52 to provide a flame in a vertical direction, and both sides and predetermined sides of the hot rolled coil 20 may not be in direct contact with the hot rolled coil 20. It may be arranged at a distance apart (eg 500 mm or more). This is to prevent the hot rolled coil 20 from becoming uneven in response to a local temperature rise when the flame ejected from the first burner 81 directly contacts the hot rolled coil 20.
  • the second burner 82 is for rapidly heating both side edge portions of the hot rolled coil 20.
  • the second burner 82 burns fuel on a plate-like porous heating surface, and radiates heat both sides of the hot rolled coil 20 by radiant heat. It may be configured as a flat flame burner.
  • the second burner 82 may be disposed on both side walls 53 and 54 facing both sides of the hot rolled coil 20 disposed in the heating chamber 60, respectively, and the discharge pressure of the combustion gas is due to the structure of the radiant heating burner. Since it is not large, it may be positioned on the sidewall 53 to face the side surface between the center and the bottom of the hot rolled coil 20 in consideration of the upper and lower temperature differences of the second burner 82, and the hot rolled coil. It may be provided with two or more spaced apart from the left and right sides with respect to the side surface of one hot-rolled coil 20 to be heated to a uniform temperature in the circumferential direction of (20).
  • the hot air supply unit 90 is for heating the inner winding 21 of the hot rolled coil 20 having a relatively low heating rate while the hot rolled coil 20 is heated by the hot gas in the heating chamber 60. That is, since the inner winding portion 21 of the hot rolled coil 20 is far from the flame of the first burner 81 and the second burner 82, and corresponds to a portion where the flow of combustion gas is insufficient, the heating rate is relatively hot. It will be slower than other parts of the coil 20. Therefore, the hot air supply unit 90 may reduce the temperature deviation generated in the inner winding 21 of the hot rolled coil 20 by spraying hot air to the inner winding 21 of the hot rolled coil 20.
  • FIG. 17 schematically illustrates a hot air supply unit according to a first embodiment of the present invention.
  • the hot wind supply unit 90 recovers the high temperature exhaust gas exhausted from the heating chamber 60 and supplies it back to the inner winding portion 21 of the hot rolled coil 20. It may be arranged to.
  • the hot air supply unit 90 includes a nozzle 91 installed at both sidewalls 53 and 54 so as to face the inner winding 21 of the hot rolled coil 20 disposed in the heating chamber 60, and the heating chamber ( 60, a recovery pipe 92 which is connected to an exhaust pipe 59 through which hot gas is exhausted and supplies exhaust gas flowing through the exhaust pipe 59 to the nozzle 91, and a recovery pipe from the exhaust pipe 59; 92 may include a damper 93 for controlling the supply of exhaust gas, and a blower 94 for providing a blowing force for transferring the exhaust gas flowing through the recovery pipe 92 toward the nozzle 91.
  • the combustion gas generated by the first burner 81 and the second burner 82 is first heated to both sides and the outer winding of the hot rolled coil 20 and then exhausted to the outside through the exhaust pipe 59. do.
  • the temperature of the exhaust gas exhausted through the exhaust pipe 59 is a high temperature of about 700 ⁇ 800 degrees.
  • the hot air supply unit 90 adjusts the opening degree of the damper 93 to introduce the exhaust gas flowing in the exhaust pipe 59 into the recovery pipe 92, and then again inside the hot rolled coil 20 through the nozzle 91. By ejecting toward the winding portion 21, the inner winding portion 21 of the hot rolled coil 20 having a relatively low heating rate can be quickly heated.
  • the hot rolled coil 20 manufactured through the hot rolled coil generation step S10 is transported and accumulated in the skid 45 of the transport cart 40.
  • the hot rolled coil 20 loaded on the feed cart 40 is air cooled while maintaining a sufficient cooling rate until hard phases are formed at both side edge portions.
  • the feed cart 40 moves along the rail 41 to enter the heat treatment furnace 50.
  • the opening / closing door 55 installed in the main body 51 is closed and the sealing device 70 is transferred to the feed cart 40 and both sidewalls 53,.
  • the heat treatment operation is performed in a state in which the heating chamber 60 is closed by closing the gap t).
  • the heat treatment work time is reduced.
  • one transfer cart 40 enters the heat treatment furnace 50 and the other transfer bogie while the hot rolled coil 20 is heat treated. 40 is after performing the first cooling process in the state in which the hot rolled coil 20 is loaded, and after the heat treatment is completed in the heat treatment furnace 50, one transfer cart 40 is drawn out of another transfer bogie ( 40 may immediately enter the heat treatment furnace 50, thereby increasing the operation rate of the heat treatment furnace 50.
  • the two transport trolleys 40 and 40a are provided to be moved back and forth along the rail 41 at both sides of the heat treatment furnace 50, respectively, so that one transfer bogie 40 covers the open front of the heat treatment furnace 50.
  • the other transport trolley 40a waits outside the heat treatment furnace 50 while being charged inside the heat treatment furnace 50 through the heat treatment furnace 50, and then transfers one of the transport carts through the open front surface of the heat treatment furnace 50.
  • the other transfer truck 40a is drawn into the heat treatment furnace 50 through the open rear surface of the heat treatment furnace 50.
  • the heat treatment of the hot rolled coil 20 is performed while controlling the temperature of the heating chamber 60 through the plurality of heating means 80.
  • the temperature control of the heating chamber 60 for heat treatment of the hot rolled coil 20 is based on the temperature detected from the temperature sensor 98 for sensing the temperature inside the heating chamber 60 as shown in FIG. Through the control unit 100 to control the heating means 80 of the.
  • the controller 100 may appropriately set the temperature of the heating chamber 60 in consideration of different initial temperatures depending on the type of the hot rolled coil 20.
  • the controller 100 has a temperature higher than the upper limit heat treatment temperature (heating target temperature) of the hot rolled coil 20 at the initial heating when the hot rolled coil 20 is reheated.
  • the heat treatment time can be reduced by secondly driving the plurality of heating means 80 to maintain a constant temperature after dropping the temperature in the 60 to the upper limit temperature.
  • 20 is a chart showing the temperature change of the surface and the edge portion 300mm of the hot rolled coil when the temperature control in the heating chamber of the present invention is carried out.
  • both side edge portions of the hot rolled coil 20 and the inner wound portion 21 of the hot rolled coil 20 that have been cooled by using a plurality of heating means 80 are quickly formed. It can be heated, it is possible to have an energy saving effect by using the high-temperature exhaust gas exhausted from the heating chamber 60.
  • the transfer bogie 40 moves along the rail 41 to be drawn out of the heat treatment furnace 50, and then the plurality of hot rolled coils stacked on the transfer bogie 40 ( The second cooling step of 20) is performed.
  • the heat treatment apparatus according to the second embodiment of the present invention, the heating device for receiving the coil 120 wound, the heating device for heating the inside of the heating furnace 110 ( 130, a circulation device 140 for circulating the heat in the heating furnace 110, a coil support device 150 installed at the bottom of the heating furnace 110, and a portion of the circulating heat to the hollow portion of the coil 120 ( And a flow guide section 170 that guides it to 122.
  • the heating furnace 110 may be a hexahedral structure in which a wall is formed of a metal shell 110a and a refractory 110b, and a heating space 111 is formed to accommodate the coil 120 therein. Although not shown in the drawing, the heating furnace 110 may enter the coil 120 into the heating space 111 or the side walls 113 and 114 or the upper wall 111 to discharge the coil 120 of the heating space 111. An opening may be formed in the opening, and the opening may be opened or closed by a door or a cover.
  • the coil 120 accommodated in the furnace 110 has its circumferential surface 121 placed on the coil support device 150 disposed at the center of the furnace bottom 112, and both side surfaces 123 and 124 are provided in the furnace ( It may be disposed to face the side walls 113 and 114 of the 110. Both open ends of the hollow part 122 of the coil 120 face the side walls 113 and 114 of the heating furnace 110, respectively.
  • the heating device 130 may include a burner for heating the heating space 111 to a temperature for heat treatment of the coil 120 by radiating a flame into the heating space 111 as shown in the example of FIG. 22.
  • the heating device 130 may be installed in plurality on the upper wall 111 or the sidewalls 113 and 114 of the heating furnace 110 for uniform heating of the heating space 111, but the installation location, the installation quantity, etc. It is not limited to the example.
  • the circulator 140 is installed at an upper portion of the heating space 111 adjacent to one side wall and is heated to drive the blower fan 141 and the blower fan 141 to blow heat downward. It may include a drive motor 142 mounted on the furnace 110.
  • the circulator 140 is directed toward the bottom 112 of the furnace 110 through the space between the one side 123 of the coil 120 and the side wall 113 of the furnace 110 above the furnace 110. Ventilate the heat. Therefore, the blown air descends from the circulator 140 and heats one side 123 of the coil 120, changes direction after reaching the bottom of the furnace 110, and passes through the lower part of the coil 120. Flow to the other side. The heat then rises again and heats the opposite side 124 of the coil 120.
  • the circulation device 140 is installed on the upper wall 111 of the heating furnace 110, the installation position and the installation quantity of the circulation device 140 may be changed, and thus the flow of heat And the circulation direction can be changed.
  • the flow guide unit 170 is installed on both sidewalls 113 and 114 of the heating furnace 110, and guides a part of the heat flowing around the coil 120 to the hollow part 122 of the coil 120 to provide the hollow part ( 122) can be heated smoothly.
  • the flow guide part 170 on both sides of the furnace 110 has a hollow of the coil 120 from the furnace side walls 113 and 114 facing the side surfaces 123 and 124 of the coil 120. And a guide plate 471 extending toward the portion 122.
  • the guide plate 471 has inclined guide surfaces 271a and 271b disposed to face the flow direction of the hot air flowing by the operation of the circulation device 140.
  • the inclined guide surfaces 271a and 271b maintain a predetermined angle inclination with respect to the centerline 125 of the coil 120 to guide the flowing heat to the hollow part 122 of the coil 120.
  • the guide plate 471 is formed to have a thickness of the coupling end 271c coupled to the side walls 113 and 114 of the heating furnace 110 thicker than the thickness of the free end 371d toward the hollow portion 122 of the coil 120 (wedge Form). Therefore, inclined guide surfaces 271a and 271b are naturally formed on the upper and lower surfaces thereof. This type can prevent the deflection of the free end 371d because the bending stress increases toward the coupling end 271c.
  • the heat descending from the circulator 140 is partially parted by the upper inclined guide surface 171a of the guide plate 171 (right guide plate in the drawing) coupled to one side wall 113. It may enter the coil hollow 122 while being guided naturally toward 122).
  • the heat rising from the opposite side after passing through the lower part of the coil 120 is partially bent by the guide of the lower inclined guide surface 171b of the guide plate 171 (left guide plate in the drawing) coupled to the opposite side wall 114 and the coil 120. It may enter the hollow portion 122 of the).
  • the heat flowing into the hollow part 122 from both sides of the coil hollow part 122 forms a flow field that rotates in the hollow part 122 to increase the heating effect of the coil hollow part 122.
  • the inclined guide surfaces 271a and 271b of the both side guide plates 471 are arranged in the upper portion of the furnace 110 to guide the descending or rising heat in the furnace 110 to the coil hollow 122.
  • the inclined guide surfaces 271a and 271b of the guide plate 471 are also disposed to face the flowing heat when the flow direction of the heat changes due to a change in the position of the circulation device 140. Can be.
  • the present embodiment shows the case where the inclined guide surfaces 271a and 271b of the same shape are formed on the upper and lower surfaces of both guide plates 471, the inclined guide surfaces may be formed only on one surface facing the flowing heat.
  • the present embodiment has shown that the guide plate 471 is installed on both sidewalls 113 and 114 of the heating furnace 110, but even if the guide plate 471 is installed only on either side, the guide plate 471 is installed to induce heat into the coil hollow 122 Heating of the unit 122 may be implemented.
  • the guide plate 471 is narrow in width (left and right width in the drawing) toward the free end 371d from the coupling end 271c coupled to the side wall 113 of the heating furnace 110. Therefore, the descending heat may flow to the coil hollow part 122 and the remaining part of the guide plate 471 both sides flow to the lower side of the coil 120. In the same way, the rising heat from the opposite side may flow partly into the coil hollow 122 and the remainder flow up towards the coil 120.
  • the reason why the guide plate 471 is configured in this form is because if the width of the free end 371d is too large, the guide plate 471 can block the heating or falling of the coil 120 to prevent even heating of the coil 120. to be.
  • the width of the free end 371d of the guide plate 471 may be equal to or smaller than the diameter of the hollow part 122 of the coil 120. This is because even if the width of the free end 371d is larger than the diameter of the coil hollow 122, the flow guided to the coil hollow 122 does not increase, but rather hinders flow bypassing both sides of the guide plate 471.
  • the coupling end 271c of the guide plate 471 may have a minimum width that is greater than or equal to the diameter of the coil hollow 122 and a maximum width that is less than or equal to the outer diameter of the coil 120.
  • the guide plate 471 may have a rectangular shape as shown in FIG. 29.
  • the width of the coupling end 271c is larger than the outer diameter of the coil 120, the flow may bypass the guide plate 471, which is not preferable.
  • the guide plate 471 may be disposed at a height between a center of the coil 120 and an upper end of the coil hollow part 122 when guiding descending heat.
  • corner guides having a flow guide surface 181 for switching the flow direction of hot air at both corners where the bottom 112 and the side walls 113 and 114 of the heating furnace 110 meet.
  • the unit 180 is provided.
  • One corner guide portion 180 guides the direction of the heat descending toward the bottom 112 of the furnace 110 toward the lower portion of the coil 120, and the other corner guide portion 180 passes through the lower portion of the coil 120. Guide the heat upwards.
  • Corner guide portion 180 may be provided with a length corresponding to the width of the side (113, 114) of the heating furnace 110, as shown in Figure 25, the flow guide surface 181 is heated for smooth turning of the heat
  • the furnace may be inclined plane with respect to the floor.
  • FIG. 26 illustrates a case where the flow guide surface 182 is an inclined inner curved surface of the corner guide part 180. According to the corner guide portion 180, since the heat circulating in the heating furnace 110 can change the direction while maintaining the flow rate can implement a smooth circulation of the heat.
  • the coil support device 150 disposed at the bottom 112 of the heating furnace 110 includes ventilation paths 152, 153, and 154 formed in multiple directions for the distribution of heat.
  • the coil support device 150 is installed in a plurality of support blocks 151 spaced apart from each other to secure the ventilation passages 152 and 153 and spaced apart from each other on the upper surface of each support block 151. And a plurality of spacers 155 spaced apart from the upper surface of the coil 120 and the support block 151 while supporting the coil 120.
  • Each support block 151 may be connected to the bottom by a connecting plate 156.
  • Each support block 151 may be made of a hexahedral structure to withstand the weight of the coil 120 up to about 35 tons.
  • each support block 151 is provided with a ventilation passage 154 communicating with each other on the plurality of side surfaces 151b and the upper surface 151a.
  • Coil support device 150 has a plurality of support blocks 151 are arranged to be spaced apart from each other to secure the air flow passage (152,153) and at the same time the air flow passage 154, the side and the upper surface in communication with each support block 151 is Because it is formed, the flowing heat can be easily accessed below the circumferential surface 121 of the coil 120.
  • the plurality of spacers 155 are spaced apart from the coil circumferential surface 121 and the support block 151 upper surface 151a while minimizing the support area, thereby securing a flow path through which the heat flows. ) Can be smoothly heated by the heat that the lower portion of the coil 120 is circulated even when the coil support device 150 is supported.
  • the spacer 158 of FIG. 28 may have an outer surface contacting the circumferential surface 121 of the coil 120 in a semi-cylindrical shape.
  • the spacer 158 reduces the support area by making the coil 120 circumferential surface 121 and the spacer 158 in line contact with each other, thereby making it easier to access heat to the circumferential surface 121 below the coil. You can do that.
  • the coil guide 120 because the flow guide portion 170 having the guide plate 471 guides a part of the heat flowing around the coil 120 to the hollow portion 122 of the coil 120.
  • the temperature difference between the outer surface of the coil 120 and the hollow portion 122 can be minimized.
  • the hot air can be smoothly accessed toward the lower circumferential surface 121 of the coil 120 through the multi-directional ventilation passages 152, 153, and 154 formed in the coil support device 150, the temperature deviation between the upper and lower portions of the coil 120 is also increased. It can be minimized. Therefore, the coil 120 may be uniformly heated as a whole to obtain an even heat treatment effect.
  • FIG. 30 illustrates a modification of the guide plate of the flow guide 170.
  • upper and lower inclined guide surfaces 271a and 271b are provided in the form of an inner curved surface.
  • the guide plate 471 may also have a thickness of the coupling end 271c thicker than that of the free end 371d, and a width of the free end 371d may be smaller than the width of the coupling end 271c.
  • the thickness of the middle portion may be thinner than both side ends.
  • the guide plate 471 guides the hot air circulating through the inclined guide surfaces 271a and 271b toward the coil hollow part 122, the hot air can be guided more smoothly to the coil hollow part 122. have.
  • the flow guide part 470 of FIG. 31 is mounted on the side wall 113 of the heating furnace 110 and adjusts the angle of the coupling member 472 and the guide plate 471 to rotatably support the coupling end of the guide plate 471.
  • the support part 473 which supports in one state is included.
  • the guide plate 471 Since the guide plate 471 is rotatably coupled to the coupling member 472 by the shaft 374, the guide plate 471 may adjust the angle of the guide plate 471 by raising or lowering the height of the free end 371d if necessary. have. Therefore, when heating a coil having a different standard, it is possible to adjust the flow direction of the heat flowing toward the coil hollow part 122 by adjusting the angle of the guide plate 471.
  • the support part 473 may be rotatably connected to the lower surface of the guide plate 471 and the other end thereof rotatably connected to the coupling member 472 to support the guide plate 471 in a fixed state.
  • the support portion 473 may be in the form of a turnbuckle that can adjust its length for adjusting the angle of the guide plate 471. Or when the angle of the guide plate 471 needs to be adjusted, it can be replaced with a different length.
  • the flow guide part 470 of FIG. 32 is a guide rail 474 mounted to the side wall 113 of the heating furnace 110, and is movably mounted to the guide rail 474, and guide plates for adjusting the angle of the guide plate 471.
  • a coupling member 472 rotatably supporting the coupling end of the 471, a moving device 475 for moving the coupling member 472, and a support portion 473 for supporting the guide plate 471 in an angle adjusted state. It may include. That is, the angle and height of the guide plate 471 can be adjusted as needed.
  • the moving device 475 is rotatably supported in a state coupled to the coupling member 472 and extends in the moving direction of the guide plate 471 (the longitudinal direction of the guide rail) and the spiral axis 475a. It may include a rotating means for rotating.
  • the rotating means may include a rotation knob 475b provided at one end of the spiral shaft 475a or a driving motor (not shown) for rotating the spiral shaft 475a.
  • a spiral shaft type moving device is provided, but the moving device may be variously changed to a chain-sprocket type, a rack and pinion type, and the like.
  • the height adjustment and the angle adjustment of the guide plate 471 may be possible, but the guide plate 471 may be fixed to the coupling member 472 by slightly changing the guide plate 471.
  • the guide plate 471 can not adjust the height by the operation of the moving device 475 instead of the angle adjustment, through which it is possible to adjust the direction of the heat flowing to the coil hollow 122.

Abstract

AHSS 열연코일의 열처리 방법이 개시된다. 본 발명의 실시 예에 따른 AHSS 열연코일의 열처리 방법은 압연재를 열간 압연하여 냉각한 후 권취하여 열연코일을 제조하는 열연코일 생성 단계와, 열연코일의 가장자리부분에 경질상이 생성되도록 상변태가 완료되는 온도까지 냉각하는 1차 냉각 단계와, 열연코일의 가장자리부분만을 템퍼링 온도까지 가열하여 승온시킨 후 템퍼링 온도에서 일정시간 동안 유지하여 1차 냉각 단계를 거친 열연코일의 가장자리부분이 열연코일의 중앙부분 강도와 유사한 강도를 가지도록 열처리하는 열연코일 가장자리 강도 연화 단계와, 열연코일 가장자리 강도 연화 단계를 거친 열연코일을 냉각하는 2차 냉각 단계를 포함한다.

Description

AHSS 열연코일의 열처리 방법, 이를 이용한 냉간 압연방법 및 열처리장치
본 발명은 열연코일 열처리 방법 및 권취된 코일을 가열하여 열처리하는 열처리장치에 관한 것이다.
철강 제조 공정에서 실시되는 열간압연공정은 고로 등에서 제조된 슬래브를 가열로에서 압연에 적당한 온도로 재가열한 후에, 조 압연기(Roughing Mill) 및 최종압연기(Finishing Mill)등의 일련의 압연장치를 거쳐 스트립(strip) 형태의 열연강판으로 압연되고, 냉각설비를 통해 냉각된 후 권취기를 통해 코일 형태로 권취된다. 그리고 권취된 열연코일은 야드(yard)에 적치되어 공냉된 후 냉연공장에나 제품으로 출하된다.
공냉과정에서 대기와 맞닿은 열연코일의 가장자리와 열연코일의 내부는 냉각속도 차이에 따라 재질편차가 발생하게 되고, 이는 후속공정인 냉간압연시 판파단이나 쏠림현상의 원인이 되어 생산 장애를 유발하게 된다.
한편 열간 혹은 냉간 압연을 거쳐 생산된 스트립은 이송 및 보관을 위해 코일 형태로 권취된다. 권취된 스트립 코일은 이후 재질편차를 줄이거나 원하는 물리적 특성을 얻기 위해 가열하여 열처리를 실시하는 경우가 많다.
스트립을 가열하는 방식은 권취상태의 코일을 가열설비 내에 수용시켜 가열하는 배치방식과, 코일 상태의 스트립을 다시 풀어서 이송시키는 가운데 가열장치를 이용해 가열하는 연속방식이 알려져 있다. 이 중 배치방식은 코일상태로 작업이 가능하여 코일을 풀고 감는 설비가 필요 없고, 스트립이 점유하는 공간도 크지 않기 때문에 연속방식에 비해 설비의 규모를 작게 할 수 있는 장점이 있다.
통상의 배치형 코일 가열설비는 내부에 코일을 수용하는 가열로, 가열로 내부를 가열하는 가열장치, 가열로 내부의 열기를 순환시키는 순환팬, 그리고 코일의 적치를 위해 가열로 내측의 바닥에 마련된 코일스키드를 포함한다.
이러한 코일 가열설비는 순환팬의 동작에 의해 가열로 내부의 열기가 가열로 내부를 순환하면서 가열로 내에 적치된 코일을 가열한다. 통상의 코일 가열설비는 순환팬이 가열로 상부에서 하방으로 열기를 송풍하는 형태다.
순환하는 열기는 송풍팬으로부터 하방으로 유동하면서 코일의 한쪽 측면을 가열하고, 가열로의 바닥에 이르러 방향이 휘면서 반대편 측면 쪽으로 유동해 코일의 반대편 측면을 가열하며 상승한다. 전체적으로 코일의 둘레를 휘감아 순환하는 형태다. 일부의 열기는 코일의 중공부(내권부)를 통과하여 반대편으로 흐르면서 코일의 중공부를 가열한다.
그러나 이러한 코일 가열설비는 대부분의 열기가 코일의 측면과 둘레면 외측으로 유동하기 때문에 코일의 중공부를 흐르는 열기가 미미한 형편이다. 또 코일 하부면은 코일스키드에 의해 가려지기 때문에 열기가 미치지 못한다. 따라서 코일을 전체적으로 균일하게 가열하기 어려워 전체적으로 균일한 열처리 효과를 얻는데 한계가 있다.
본 발명의 실시 예는 AHSS 열연코일의 폭방향 재질편차를 줄일 수 있는 열처리 방법 및 이를 이용한 냉간 압연방법을 제공하고자 한다.
또한 본 발명의 실시 예는 코일을 전체적으로 균일하게 가열하여 고른 열처리 효과를 얻을 수 있는 열처리장치를 제공하고자 한다.
본 발명의 일 측면에 따르면, 압연재를 열간 압연하여 냉각한 후 권취하여 열연코일을 제조하는 열연코일 생성 단계와, 상기 열연코일의 가장자리부분에 경질상이 생성되도록 상변태가 완료되는 온도까지 냉각하는 1차 냉각 단계와, 상기 열연코일의 가장자리부분만을 템퍼링 온도까지 가열하여 승온시킨 후 상기 템퍼링 온도에서 일정시간 동안 유지하여 상기 1차 냉각 단계를 거친 상기 열연코일의 가장자리부분이 상기 열연코일의 중앙부분 강도와 유사한 강도를 가지도록 열처리하는 열연코일 가장자리 강도 연화 단계와, 상기 열연코일 가장자리 강도 연화 단계를 거친 상기 열연코일을 냉각하는 2차 냉각 단계를 포함하는 AHSS 열연코일의 열처리 방법이 제공될 수 있다.
또한 상기 열연코일 가장자리 강도 연화 단계에서, 상기 탬퍼링 온도는 400~700℃를 포함한다.
또한 상기 열연코일 생성단계에서 권취 완료된 상기 열연코일의 온도는 500~700℃를 포함한다.
또한 상기 1차 냉각 단계에서, 상기 상변태가 완료되는 온도는 상온~400℃의 범위를 포함한다.
또한 상기 1차 냉각 단계에서, 상기 열연코일의 가장자리부분의 폭은 상기 열연코일의 전체 폭에 대한 1/4영역을 포함한다.
또한 상기 열연코일은 인장강도 780MPa 이상일 수 있다.
또한 상기 열연코일 가장자리 강도 연화 단계에서 가열하는 것은, 상기 열연코일의 가장자리로부터 상기 열연코일의 폭방향으로 상기 열연코일의 전체 폭에 대한 1/4이상 영역이 상기 탬퍼링 온도에 도달하도록 급속 가열하는 것을 포함한다.
또한 상기 열연코일 가장자리 강도 연화 단계에서, 상기 일정시간은 아래의 수학식에 의해 구해지는 시간범위로 설정될 수 있다.
수학식: X = 온도 x (7.0 + log(시간)), (온도는 Kelvin, 시간은 분)
여기서, 온도는 템퍼링 온도, 7600≤X≤8600.
또한 상기 2차 냉각 단계는, 상기 열연코일의 가장자리부분에 대해 3℃/min 이상의 냉각속도로 냉각하는 것을 포함한다.
본 발명의 다른 측면에 따르면, 인장강도 780MPa 이상인 AHSS 열연코일로부터 냉연강판을 제조하는 냉간 압연방법에 있어서, 권취 온도가 500~700℃의 범위내인 상기 AHSS 열연코일의 가장자리부분에 대해 상온~400℃의 범위까지 1차 냉각하여 상기 가장자리부분을 경질상으로 상변태 완료하고, 상기 경질상으로 상변태 완료된 상기 가장자리부분에 대해서만 재가열한 후 400~700℃의 온도범위 내에서 30~480분 시간 동안 유지하여 강도 연화를 발생시키고, 상기 강도 연화된 상기 AHSS 열연코일을 속도 3℃/min 이상으로 2차 냉각한 후에 냉간 압연을 실시하는 냉간 압연방법이 제공될 수 있다.
본 발명의 또 다른 측면에 따르면, 열연코일을 열처리 하기 위한 열처리 장치에 있어서, 상기 열연코일을 적치하여 운반하는 이송대차가 진입되는 가열챔버와, 상기 가열챔버를 형성하는 단열벽면에 설치되어 상기 열연코일을 가열하는 복수의 가열수단을 구비하는 열처리로를 포함하고, 상기 복수의 가열수단은 상기 가열챔버의 온도제어를 위해 상기 가열챔버에 설치되는 제1버너와, 상기 열연코일의 양 측면 가열을 위해 상기 가열챔버의 양 측벽에 설치되는 제2버너와, 상기 열연코일의 내권부를 향해 열풍을 공급하는 열풍공급부를 포함하는 열처리 장치가 제공될 수 있다.
또한 상기 열풍공급부는 상기 가열챔버에서 배기되는 고온의 배기가스를 회수하여 상기 열연코일의 내권부를 향해 분사시킬 수 있다.
또한 상기 제1버너는 화염가열버너를 포함하고, 상기 화염가열버너는 분사되는 화염이 상기 열연코일에 직접 접촉하지 않도록 상기 가열챔버의 상부벽에 설치될 수 있다.
또한 상기 제2버너는 상기 열연코일의 양 측면을 각각 복사열에 의해 가열하는 복사가열버너를 포함하고, 상기 복사가열버너는 상기 열연코일의 중심과 하단 사이의 측면에 마주하도록 상기 측벽에 배치되는 적어도 하나 이상을 구비할 수 있다.
또한 상기 열풍공급부는 상기 열연코일의 내권부를 향해 열풍을 분사하는 노즐과, 상기 가열챔버 내부의 고온가스가 배기되는 배기배관과 연결되어 상기 배기배관에 흐르는 배기가스를 상기 노즐에 공급하는 회수배관과, 상기 배기배관으로부터 상기 회수배관으로의 배기가스 공급을 조절하는 댐퍼와, 상기 회수배관에 흐르는 배기가스를 상기 노즐 쪽으로 이송시키는 송풍력을 제공하는 송풍기를 포함한다.
또한 상기 열처리로는 전면, 후면 및 하부가 개방되도록 상부벽과 양 측벽을 구비한 터널형태의 본체를 포함하고, 상기 개방된 하부는 상기 이송대차가 상기 가열챔버에 인입될 때 상기 이송대차에 의해 닫히고, 상기 개방된 전면과 후면은 상기 열처리로에 설치된 개폐도어에 의해 닫힐 수 있다.
또한 상기 가열챔버는 상기 단열벽면으로 이루어진 상기 상부벽, 상기 양 측벽 및 상기 이송대차의 상면에 배치된 단열패널에 의해 단열구조를 형성할 수 있다.
또한 상기 이송대차가 상기 가열챔버에 인입된 경우 상기 양 측벽과 상기 이송대차 사이 틈새를 밀폐하는 밀폐장치를 더 포함한다.
또한 상기 밀폐장치는 상기 본체의 측벽 하단 일측에 회전 가능하게 결합되며 상기 틈새를 밀폐하기 위한 단열재가 구비된 회전암과, 상기 단열재가 상기 틈새를 밀폐하는 제1위치와 상기 틈새로부터 이격되는 제2위치 사이를 이동할 수 있도록 상기 회전암을 구동하는 구동유닛을 포함한다.
또한 상기 가열챔버 내의 온도를 제어하기 위한 제어부를 더 포함하고, 상기 제어부는 상기 열연코일의 가열 초기에는 상기 가열챔버 내의 온도를 상기 열연코일의 가열목표온도보다 높은 온도로 유지시키고, 소정시간 경과 후 상기 가열챔버 내의 온도를 상기 가열목표온도로 유지시키도록 상기 복수의 가열수단을 제어할 수 있다.
또한 상기 이송대차는 상기 열처리로의 양측에서 각각 레일을 따라 전후로 이동 가능하게 설치된 2대를 구비하고, 상기 2대의 이송대차는 교대로 상기 가열챔버에 인입 및 인출될 수 있다.
본 발명의 또 다른 측면에 따르면, 권취된 코일을 수용하여 가열하는 가열로와, 상기 가열로 내부의 열기를 순환시키는 순환장치 및 상기 가열로 내부의 상기 코일 주위를 유동하는 열기 일부를 상기 코일의 중공부로 안내하는 유동안내부를 포함하는 열처리 장치가 제공될 수 있다.
또한 상기 유동안내부는 상기 코일의 측면과 대향하는 상기 가열로의 측벽으로부터 상기 코일의 중공부를 향하여 연장되는 안내판을 포함한다.
또한 상기 안내판은 유동하는 열기를 상기 코일의 중공부로 안내하도록 상기 코일의 중심선에 대해 경사진 경사안내면을 포함한다.
또한 상기 안내판은 상기 가열로의 측벽에 결합되는 결합단의 두께가 상기 코일의 중공부를 향하는 자유단의 두께보다 두껍게 형성될 수 있다.
또한 상기 안내판은 상기 코일 중공부를 향하는 자유단의 폭이 상기 코일 중공부의 직경과 같거나 작은 길이로 마련될 수 있다.
또한 상기 안내판은 상기 가열로 측벽에 결합되는 결합단의 최소폭이 상기 코일 중공부의 직경 이상이고 최대폭이 상기 코일의 외경 이하의 길이로 마련될 수 있다.
또한 상기 유동안내부는 상기 코일의 양쪽 측면과 각각 대향하는 상기 가열로의 양쪽 측벽에 각각 설치될 수 있다.
또한 상기 경사안내면이 곡면형태로 마련될 수 있다.
또한 상기 유동안내부는 상기 가열로 측벽에 장착되며 상기 안내판의 각도조절을 위해 상기 안내판의 결합단을 회전 가능하게 지지하는 결합부재와, 상기 안내판을 각도조절상태로 지지하는 지지부를 더 포함한다.
또한 상기 유동안내부는 상기 가열로 측벽에 장착된 가이드레일과, 상기 가이드레일에 이동 가능하게 장착되며 상기 안내판의 상기 안내판의 결합단을 지지하는 결합부재와, 상기 결합부재를 이동시키는 이동장치를 더 포함한다.
또한 상기 순환장치는 상기 가열로 상부에서 상기 코일의 한쪽 측면과 상기 가열로 측벽 사이의 공간을 통해 상기 가열로 바닥을 향하여 열기를 송풍하도록 배치될 수 있다.
또한 상기 안내판은 하강하는 열기를 안내하는 경우 상기 코일의 중심과 상기 코일 중공부의 상단 사이의 높이에 배치되고, 상기 코일의 하부를 경유하여 상승하는 열기를 안내하는 경우 상기 코일의 중심과 상기 코일 중공부의 하단 사이의 높이에 배치될 수 있다.
또한 상기 가열로의 바닥과 측벽이 만나는 코너에 마련되며, 열기의 유동방향 전환을 위해 상기 가열로 바닥에 대하여 경사진 유동안내면을 갖춘 코너안내부를 더 포함한다.
또한 상기 가열로의 바닥 쪽에 배치되어 상기 코일의 하측 둘레면을 지지하며, 열기의 유통을 위해 다방향으로 통기유로가 형성된 코일지지장치를 더 포함한다.
또한 상기 코일지지장치는 상호 이격 배치되며 각각의 측면과 상면이 연통하는 통기유로를 갖춘 복수의 지지블록과, 상기 각 지지블록 상면에 상호 이격상태로 설치되어 상기 코일을 지지하면서 상기 코일과 상기 지지블록 상면을 이격시키는 복수의 이격부재를 포함한다.
본 발명의 또 다른 측면에 따르면, 권취된 코일을 수용하여 가열하는 가열로와, 상기 가열로 내부의 열기를 순환시키는 순환장치 및 상기 가열로 바닥 쪽에 배치되어 상기 코일의 하측 둘레면을 지지하며, 열기의 유통을 위해 다방향으로 통기유로가 형성된 코일지지장치를 포함하는 열처리 장치가 제공될 수 있다.
본 발명의 실시 예들은 AHSS 열연코일의 폭 방향 재질편차를 줄임으로써 냉간 압연시 재질편차에 의한 꼬임 및 형상불량을 방지할 수 있게 된다.
또한 본 발명의 실시 예들은 AHSS 열연코일의 가장자리부분만을 가열함에 따라 재가열에 의한 내부 산화를 최소화할 수 있어 냉간 압연 전 산세공정에서 스케일 박리성을 확보할 수 있게 된다.
또한 본 발명의 실시 예의 열처리장치는 유동안내부가 코일 주위를 유동하는 열기의 일부를 코일의 중공부로 안내하기 때문에 코일을 가열하는 과정에서 코일 외면과 중공부의 온도편차를 최소화할 수 있다. 따라서 코일을 전체적으로 균일하게 가열하여 고른 열처리효과를 얻을 수 있다.
본 발명의 실시 예에 따른 열처리장치는 코일지지장치에 형성된 다방향 통기유로를 통해 코일의 하측 둘레면 쪽으로도 열기가 원활히 접근하기 때문에 코일 상부와 하부의 온도편차를 최소화하여 천체적으로 균일한 가열을 구현할 수 있다.
본 발명의 실시 예에 따른 열처리장치는 가열로 내부를 순환하는 열기가 가열로 하부에 설치된 코너안내부에 의해 안내되기 때문에 유속을 유지하며 방향전환이 가능해 열기의 원활히 순환을 구현할 수 있다.
도 1은 본 발명의 실시 예에 따른 열연압연공정을 도시한 것이다.
도 2는 본 발명의 실시 예에 따른 열처리 방법을 도시한 순서도이다.
도 3은 본 발명의 실시 예에 따른 열처리 과정에서의 온도 변화를 도시한 것이다.
도 4는 본 발명의 실시 예에 따른 열처리 전 열연코일 폭 방향의 강도를 나타낸 도표이다.
도 5는 본 발명의 실시 예에 따른 열처리 재가열 시작온도에 따른 열처리 후 강도를 나타낸 도표이다.
도 6은 본 발명의 실시 예에 따른 열처리전 미세조직, 열처리 온도 및 열처리 시간에 따른 강도변화를 나타낸 도표이다.
도 7은 도 6을 온도와 시간의 조합변수를 x축에 사용하여 나타낸 도표이다.
도 8은 본 발명의 실시 예에 따른 열처리 최고 온도에 따라 강도연화 효과 유무를 나타낸 도표이다.
도 9는 본 발명의 실시 예에 따른 열처리 과정에서 열연코일의 가장자리부분과 열연코일의 내부 두 지점에서의 온도변화를 나타낸 도표이다.
도 10은 본 발명의 실시 예에 따른 열처리 과정에서 열연코일의 폭방향 온도분포를 도시한 도표이다.
도 11은 본 발명의 실시 예에 의해 열처리한 열연코일의 폭방향 재질편차를 기존의 경우와 비교해 나타낸 도표이다.
도 12는 본 발명의 제1 실시 예에 따른 열처리 장치를 개략적으로 도시한 것이다.
도 13은 본 발명의 제1 실시 예에 따른 이송대차가 열처리로에 인입된 상태를 도시한 것이다.
도 14는 본 발명의 제1 실시 예에 따른 밀폐장치를 개략적으로 도시한 것이다.
도 15는 본 발명의 제1 실시 예에 따른 열처리로 내부 구조를 도시한 단면도이다.
도 16은 본 발명의 제1 실시 예에 따른 복사가열버너의 배치구조를 설명하기 위한 도면이다.
도 17은 본 발명의 제1 실시 예에 따른 열풍공급부를 개략적으로 도시한 것이다.
도 18은 본 발명의 제1 실시 예에 따른 열처리로의 온도제어를 위한 제어 블록도이다.
도 19는 본 발명의 제1 실시 예에 따른 열처리로에 두 단계의 온도제어방법을 도시한 도표이다.
도 20은 본 발명의 제1 실시 예에 따른 열처리로에 두 온도패턴을 적용한 경우 열연코일의 온도변화를 도시한 도표이다.
도 21은 본 발명의 제1 실시 예에 따른 열처리로 양측에 각각 배치된 2대의 이송대차를 도시한 것이다.
도 22은 본 발명의 제2 실시 예에 따른 열처리 장치의 사시도이다.
도 23는 도 22의 Ⅱ-Ⅱ 선에 따른 단면도이다.
도 24은 본 발명의 제2 실시 예에 따른 열처리 장치의 유동안내부 안내판의 사시도이다.
도 25는 본 발명의 제2 실시 예에 따른 열처리 장치의 코너안내부 사시도이다.
도 26는 본 발명의 제2 실시 예에 따른 열처리 장치의 코너안내부 변형 예를 나타낸 사시도이다.
도 27는 본 발명의 제2 실시 예에 따른 열처리 장치의 코일지지장치 사시도이다.
도 28은 본 발명의 제2 실시 예에 따른 열처리 장치의 지지블록에 설치되는 이격부재의 변형 예를 나타낸다.
도 29과 도 30은 본 발명의 제2 실시 예에 따른 열처리 장치의 유동안내부 안내판의 변형 예를 나타낸다.
도 31와 도 32은 본 발명의 제2 실시 예에 따른 열처리 장치의 유동안내부 변형 예를 나타낸다.
이하에서는 본 발명의 실시 예들을 첨부 도면을 참조하여 상세히 설명한다. 이하에 소개되는 실시 예들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 본 발명은 이하 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 도면에서 생략하였으며 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
도 1은 본 발명의 실시 예에 따른 열연압연공정을 도시한 것이고, 도 2는 본 발명의 실시 예에 따른 열처리 방법을 도시한 순서도이고, 도 3은 본 발명의 실시 예에 따른 열처리 과정에서의 온도 변화를 도시한 것이다.
도 1 내지 도 3을 참조하면, 본 발명의 실시 예에 따른 냉간 압연방법은 열연코일 생성 단계(S10), 1차 냉각 단계(S20), 열연코일 가장자리 강도 연화 단계(S30), 2차 냉각 단계(S40) 및 냉간 압연단계(S50)를 포함한다.
열연코일 생성 단계(S10)는 슬래브(S1)를 압연하여 최종적으로 코일 형태로 감긴 인장강도 780MPa 이상인 AHSS(Advanced High Strength Steel) 열연코일(20)을 제작하는 단계이다. 구체적으로, 슬래브(S1)는 가열로(10)에서 압연에 적당한 온도로 가열하고, 가열로(10)에서 가열된 슬래브(S1)는 3~4대의 압연스탠드로 구성된 조압연설비(11)에서 폭 압연과 두께 압연이 실시되어 바(S2)형태로 만들어지며, 이후 6~7대의 압연스탠드로 구성된 사상압연설비(12)에서는 원하는 두께로 최종 두께 압연을 거쳐 원하는 두께의 스트립(S3)으로 압연될 수 있다. 이후, 스트립(S3)은 냉각공정(13)를 통과하면서 소정의 온도로 냉각된 후 권취기(14)로 공급되며, 권취기(14)에서는 냉각이 완료된 스트립(S3)을 코일 형태로 권취하여 열연코일(20)을 생성할 수 있다. 이하 슬래브(S1), 바(S2), 스트립(S3)은 압연재(S)로 칭하고. 압연재(S)는 고강도 열연 강판(AHSS)으로서 인장강도 780MPa 이상인 Dual-Phase강(DP강), Transformation Induced Plasticity강(TRIP강)을 포함한다. 또한 열간압연 후 권취기(14)에 의해 권취되는 시점의 열연코일(20)의 온도(T1)는 500~700℃ 범위를 가질 수 있다.
1차 냉각 단계(S20)는 권취기(14)에 의해 권취된 열연코일(20)의 가장자리부분에 경질상(마르텐사이트와 베이나이트)이 생성되도록 충분한 냉각속도를 유지하면서 상변태가 완료되는 온도까지 냉각시키는 단계이다.
1차 냉각 단계(S20)에서 상변태가 완료되는 온도는 도 3에서 열처리 재가열 시작온도(T2)에 해당하며 상온~400℃의 범위를 포함할 수 있다. 여기서, 상변태가 완료되는 온도는 도 4 및 도 5를 참조하여 설명한다. 도 4는 본 발명의 실시 예에 따른 열처리 전 열연코일 폭 방향의 강도를 나타낸 도표이고, 도 5는 본 발명의 실시 예에 따른 열처리 재가열 시작온도에 따른 열처리 후 강도를 나타낸 도표이다. 도 5에 도시된 바와 같이 재가열 시작온도가 400℃이하일 경우에는 도 4의 열처리 전 열연코일의 강도와 대비하여 열처리 후 강도 연화가 일어나지만, 400℃이상일 경우에는 강도 연화가 크게 일어나지 않는 것을 알 수 있다. 이는 재가열 시작온도가 400℃이상이면 상변태가 완전히 이루어지지 않은 상태이므로 열연코일 생성 단계(S10)에서와 마찬가지로 재가열 후 2차 냉각 단계(S40) 과정에서 다시 경질상이 생성되기 때문이다. 따라서 1차 냉각 단계(S20)는 열연코일(20)의 가장자리부분에 상변태가 완료되는 400℃이하의 온도 까지 냉각하는 것이 바람직하다. 여기서, 1차 냉각 단계(S20)는 공장의 야드 또는 코일 창고의 바닥 위에 적치시킨 상태에서 상온과 열연코일의 온도차이를 이용하여 상변태가 완료되는 온도까지 냉각시킬 수 있다.
열연코일 가장자리 강도 연화 단계(S30)는 1차 냉각 단계(S20)를 거쳐 생성된 열연코일(20) 가장자리부분의 경질상을 템퍼링 온도(T3)까지 가열하여 승온시킨 후 템퍼링 온도(T3)에서 일정시간 동안 유지함에 의해 열연코일(20)의 가장자리부분을 열연코일(20)의 중앙부분 강도와 유사한 강도를 갖도록 열처리하는 단계이다.
구체적으로, 열연코일 가장자리 강도 연화 단계(S30)는 열연코일(20)의 가장자리부분만을 가열하여 템퍼링 온도(T3)(예로서, 400~700℃)까지 승온시키는 가열단계(S31)와, 템퍼링 효과가 나타나는데 필요한 일정시간 동안 템퍼링 온도(T3)에서 유지하는 온도유지단계(S32)를 포함할 수 있다.
가열단계(S31)에서는 열연코일(20)의 가장자리로부터 열연코일(20)의 폭방향으로 열연코일(20)의 전체 폭에 대한 1/4이상 영역(도 4에 도시된 경질상에 의해 강도가 높게 나타나는 경계)이 템퍼링 온도(T3)에 도달하도록 가열할 수 있다.
온도유지단계(S32)에서는 열연코일(20)의 가장자리부분(예를 들면, 전체 폭에 대한 1/4 영역)이 템퍼링 온도(T3)에 도달한 후 일정시간 동안 템퍼링 온도(T3)에서 유지함에 의해 열연코일(20)의 가장자리부분이 열연코일(20)의 중앙부분의 강도와 유사한 강도를 가지도록 열연코일(20)을 연화시킨다.
여기서, 템퍼링 온도(T3)와 템퍼링 온도(T3)의 유지시간의 관계는 도 6 내지 도 8을 참조하여 설명한다. 도 6은 본 발명의 실시 예에 따른 열처리전 미세조직, 열처리 온도 및 열처리 시간에 따른 강도변화를 나타낸 도표이고, 도 7은 도 6을 온도와 시간의 조합변수를 x축에 사용하여 나타낸 도표이고, 도 8은 본 발명의 실시 예에 따른 열처리 최고 온도에 따라 강도연화 효과 유무를 나타낸 도표이다.
먼저, 도 6을 참조하면, 열처리전 미세조직은 F+M(페라이트+마르텐사이트), F+P(페라이트+펄라이트), As-R(페라이트+펄라이트, 압연 후 공냉된 코일의 1/4폭 위치) 세 가지로 구분되고, F+M은 코일 가장자리, As-R은 코일 중심부분, F+P는 코일 가장자리와 중심부분 사이의 조직에 해당된다. 여기서, F+M과 F+P의 두 경우 모두에서 열처리 온도가 400℃일때는 시간이 아무리 길어져도 강도연화 효과가 크게 나타나지 않는다. 반면에 열처리 온도를 높게 유지하면 할수록 짧은 시간에 강도가 큰 폭으로 떨어지는 것을 알 수 있다.
도 7을 참조하면, 도 7은 도 6을 온도와 시간의 조합변수를 x축에 사용하여 나타낸 것으로 특정 미세조직을 대상으로 한 온도-시간-강도데이터는 한 라인을 형성한다. 온도와 시간의 조합변수는 다음과 같이 X(Hollomon-Jaffe parameter)로 정의한다.
수학식 1: X = 온도 x (7.0 + log(시간)), (온도는 Kelvin, 시간은 분)
여기서, 각 미세조직에 따라 초기 강도가 차이가 있지만 X값이 커짐에 따라 같은 강도 값으로 수렴하게 된다. 이 강도 값이 초기 As-R 조직의 강도와 같아지면 코일 폭방향의 재질편차가 없어지게 되므로 이때의 X값을 기준으로 열처리 온도와 열처리 시간의 범위를 찾을 수 있다. 하지만 도 8과 같이 열처리 온도가 700℃이상이 되면 세멘타이트가 오스테나이트로 분해되고 이후 냉각과정에서 경질상이 재생성되기 때문에 열처리 효과는 없어진다. 따라서 열처리 온도는 700℃이하로 선정하여야 한다. 따라서 탬퍼링 온도(T3)는 400~700℃범위의 값을 가질 수 있다. 또한 도 7에서 탬퍼링 온도(T3, 예를 들면, 600℃)에서의 유지시간은 열연코일(20)의 가장자리부분과 중심부분의 강도가 같아지는 부분(음영부분)에 해당하는 온도로서 7600≤X≤8600 구간에 해당하고, 이를 수학식 1에 대입하면, 7600<=873(7.0+log(시간))<=8600로서, 열처리 유지 시간은 55.8분≤시간≤709.7분의 값을 가질 수 있다. 여기서, 유지시간이 대략 56분보다 작은 경우에는 열처리 효과는 크지 않으며, 710분보다 큰 경우에는 열연코일(20)의 가장자리부분의 강도 연화가 과도하게 되어 열연코일(20)의 중심부분의 강도보다 약하게 된다.
한편 가열단계(S31)에서는 재가열에 의한 열연코일(20)의 내부산화를 최소화할 수 있도록 강도 연화가 필요한 열연코일(20)의 가장자리부분만을 급속 가열을 수행하여 템퍼링 온도(T3)에 도달시킬 수 있다. 구체적으로, 도 9는 열처리 과정에서 열연코일(20)의 가장자리부분(①)과 내부(②)의 두 지점에서의 온도변화를 나타낸 것으로서, 열처리 과정에서 열연코일(20)은 외부로부터 가열이 되므로 열연코일(20)의 가장자리부분의 온도는 급격히 상승하여 상한 온도(700℃)에 이르고, 열연코일(20)의 내부는 완만히 가열되게 된다. 이때 각 폭방향의 위치에서 온도가 하한온도(400℃)를 통과한 시점부터 열처리가 일어나게 된다. 이를 열연코일(20)의 폭방향 온도분포로 나타내면 도 10과 같다. 여기서 열처리 영역은 ①과 ② 사이가 되고, 이 영역에서 온도는 상한과 하한 사이에 유지하도록 해야 한다. ②의 위치는 경질상에 의해 강도가 높게 나타나는 경계점으로 도 4의 도표를 기준으로 하면 ①과 ②의 간격은 열연코일(20) 폭의 1/4 이상값을 가져야 한다. 열처리 시간은 열연코일의 ①과 ② 사이의 영역이 도 9에 도시한 열처리 온도 상한과 하한 사이에 유지되는 동안의 시간으로 열처리 시작에서 열처리 완료까지이며, 전체 재로시간은 승온이 시작되는 시간을 포함하므로 실제 열처리 시간보다는 길어지게 되며 가열시작에서부터 열처리 완료까지이다. 따라서 가열시작시점에서부터 템퍼링 온도(T3)에 이르는 시간을 짧게하도록 급속 가열을 수행하는 것이 열연코일(20)의 내부산화 억제 측면에서 바람직하다.
2차 냉각 단계(S40)는 열연코일 가장자리 강도 연화 단계(S30)를 거쳐 조직이 연화된 열연코일(20)을 상온으로 냉각하는 단계이다. 이때 열연코일(20)은 조직이 연화된 상태이므로 냉각속도에 따른 재경화는 일어나지 않으나, 열처리에 의한 내부산화 영향을 최소화하기 위해서는 열연코일(20)의 가장자리부분에 대해 3℃/min 이상의 냉각속도로 냉각할 수 있다.
[실시 예]
도 11은 본 발명의 실시 예에 의해 열처리한 열연코일의 폭방향 재질편차를 기존의 경우와 비교해 나타낸 도표이다. 열연코일(20)의 강종은 고연신 980DP이며, 사이즈는 외경 2150mm, 내경 762mm, 폭 1200mm 이다. 적용한 열처리 조건은 압연 후 상온으로 48시간 이상 냉각시킨 후, 재가열하여 550℃에서 4시간 유지 후 급냉처리이다. 압연 후 아무런 처리도 하지 않은 공냉재는 가장자리부와 중심부의 재질편차가 약 250MPa 이상 나고 있으며, 기존 서냉 box를 적용한 경우에는 폭방향 재질편차가 150MPa 이하로 줄어든다. 그리고 본 발명을 적용한 경우에는 가장자리부분의 재질연화가 크게 일어남으로써 폭방향으로 재질편자가 50MPa 이하로 저감할 수 있음을 확인할 수 있었다.
이하에서는 본 발명의 제1 실시 예에 따른 열처리 장치에 대하여 설명한다.
도 12는 본 발명의 제1 실시 예에 따른 열처리 장치를 개략적으로 도시한 것이고, 도 13은 본 발명의 제1 실시 예에 따른 이송대차가 열처리로에 인입된 상태를 도시한 것이다.
도 12를 참조하면, 본 발명의 제1실시 예에 따른 열처리 장치(30)는 크게 이송대차(40)와, 열처리로(50)를 포함한다.
이송대차(40)는 열연코일 생성 단계(S10)에서 생성된 열연코일(20)을 적치하여 운반함과 동시에 1차 냉각 단계(S20)에서 열연코일(20)을 냉각시키는데 사용될 수 있다.
이러한 이송대차(40)는 공장의 야드에 설치된 레일(41)을 따라 이동하는 휠(42)이 설치된 평판 형태의 대차바디(43)를 구비할 수 있다. 대차바디(43)는 도시하지 않은 구동부에 의해 정,역회전 가능한 휠(42)에 의해 레일(41)을 따라 전후로 이동될 수 있다.
대차바디(43)는 열연코일(20)의 안정적 지지를 위해 강도가 큰 강철 또는 강합금으로 마련될 수 있고, 대차바디(43)의 상면에는 단열을 위해 내화물로 이루어진 단열패널(44)이 배치될 수 있다.
또 단열패널(44)의 상면에는 그 길이방향을 따라 소정간격 이격 배치되어 열연코일(20)을 지지하기 위한 복수의 스키드(45)가 배치될 수 있다.
복수의 열연코일(20)은 복수의 스키드(45)에 각각 지지된 상태에서 열처리로(50)에 진입되기 전 냉각될 수 있다.
복수의 열연코일(20)이 안착된 이송대차(40)는 레일(41)을 따라 이동함에 의해 열처리로(50) 내부로 진입될 수 있다. 이때 이송대차(40)의 단열패널(44)은 열처리로(50) 하부의 단열구조를 형성할 수 있다. 이를 위해 이송대차(40)는 열처리로(50)의 폭 보다 약간 작은 폭을 가지도록 마련될 수 있고, 이송대차(40)의 길이는 열처리로(50)의 길이보다 조금 길게 마련될 수 있다.
이러한 이송대차(40)는 복수개의 열연코일(20)을 스키드(45)에 지지한 상태에서 1차 냉각을 수행할 수 있고, 1차 냉각이 완료된 후에는 레일(41)을 따라 이동하여 열처리로(50) 내부에 삽입되어 열처리로(50)의 단열구조 일부를 형성하게 된다. 따라서, 열처리 작업을 위해 복수개의 열연코일(20)을 이송대차(40)에 올리거나 내리는 작업을 생략할 수 있어 열처리 작업을 위한 열연코일(20)의 대기시간은 현저히 줄어들게 된다.
열처리로(50)는 이송대차(40)를 수용할 수 있는 크기를 가지는 터널 형태로 마련될 수 있다. 이러한 열처리로(50)는 전면, 후면 및 하부가 개방된 박스 형태의 본체(51)를 구비하고, 본체(51)의 내부는 이송대차(40)가 진입된 경우 열연코일(20)을 가열하기 위한 가열챔버(60)를 형성할 수 있다.
열처리로(50) 내부에 이송대차(40)가 삽입된 경우, 본체(51)의 개방된 하부는 이송대차(40)에 의해 닫히게 되고, 본체(51)의 개방된 전면과 후면은 각각 본체(51)에 상하로 슬라이딩 가능하게 설치되는 개폐도어(55)에 의해 닫힐 수 있다.
이에 따라 가열챔버(60)는 도 12 및 도 13에 도시된 바와 같이 본체(51)의 상부벽(52)과, 상부벽(52)의 양단에서 각각 하부로 연장된 양 측벽(53,54)과, 본체(51)의 개방된 하부를 닫는 이송대차(40)의 단열패널(44) 및 본체(51)의 개방된 전면과 후면을 각각 닫는 개폐도어(55)에 의해 밀폐된 단열공간을 형성할 수 있다.
구체적으로, 개폐도어(55)는 본체(51)의 개방된 전면과 후면을 닫는 경우 각 개폐도어(55)의 하단이 이송대차(40)의 단열패널(44)과 접촉함에 의해 본체(51)의 개방된 전면과 후면을 밀폐할 수 있고, 이송대차(40)는 가열챔버(60)에 인입되는 경우 이송대차(40)의 단열패널(44)이 본체(51)의 하부를 밀폐함에 의해 열처리로(50)의 내부는 밀폐된 가열챔버(60)를 형성할 수 있게 된다.
이러한 개폐도어(55), 본체(51) 및 이송대차(40)에 의해 형성되는 가열챔버(60)의 벽면은 내부의 열을 보존하기 위한 단열벽면으로 구성될 수 있다. 즉 상부벽(52)과 양 측벽(53,54)은 외관을 형성하는 철피의 내측으로 내화물이 배치되고, 개폐도어(55)의 내측에도 내화물이 설치됨에 따라 이송대차(40)의 단열패널(44)과 함께 가열챔버(60)는 단열구조를 이룰 수 있게 된다.
이때 이송대차(40)와 양 측벽(53,54) 사이에는 소정의 틈새가 발생할 수 있고, 이러한 틈새를 밀폐하기 위해 본체(51)의 일측에는 밀폐장치(70)가 설치될 수 있다.
도 14는 본 발명의 제1 실시 예에 따른 밀폐장치를 개략적으로 도시한 것이다.
도 14를 참조하면, 밀폐장치(70)는 본체(51)의 양 측벽 하단에 각각 설치되어 이송대차(40)와 양 측벽(53,54) 사이에 형성되는 틈새(t)를 밀폐할 수 있도록 본체(51)의 길이방향을 따라 복수개 이격 배치될 수 있다. 이하에서는 본체(51)의 일 측벽(53)에 설치된 밀폐장치(70)에 대하여 설명한다.
이러한 밀폐장치(70)는 본체(51)의 측벽(53) 하단 일측에 회전 가능하게 결합되는 회전암(71)과, 회전암(71)을 회전 구동하는 구동유닛(72)과, 회전암(71)의 단부에 배치되어 회전암(71)의 회전방향에 따라 틈새(t)를 밀폐하는 제1위치와 틈새(t)와 이격되는 제2위치 사이로 이동 가능한 단열재(74)를 포함한다.
구동유닛(72)은 전후 진퇴 이동하는 로드(73)를 구비한 전기식, 전자식, 유압식 또는 공압식 실린더를 포함하고, 로드(73)는 링크부재(75)를 매개로 회전암(71)과 연결될 수 있다.
회전암(71)은 본체(51)의 측벽(53) 하단에서 회전축()을 중심으로 회전 가능하게 설치될 수 있고, 일측은 링크부재(75)와 힌지 결합되며, 타측에는 본체(51)의 길이방향을 따라 소정길이 연장 형성된 단열재(74)가 마련될 수 있다. 단열재(74)는 유지보수를 위한 교체가 가능하도록 회전암(71)의 타측에 분리 가능하게 결합될 수 있다.
이러한 구성을 통해, 이송대차(40)가 가열챔버(60)에 들어온 경우 이송대차(40)와 측벽(53) 사이에 형성되는 틈새(t)는 구동유닛(72)에 의해 회전되는 회전암(71)의 단부에 설치된 단열재(74)에 의해 밀폐될 수 있어 틈새(t)를 통한 가열챔버(60) 내의 배기가스 또는 열이 외부로 누출되는 것이 방지될 수 있다.
열처리로(50) 내부에는 개폐도어(55), 이송대차(40) 및 밀폐장치(70)에 의해 본체(51)의 개방된 부분이 밀폐된 후 이송대차(40)에 적치된 복수의 열연코일(20)의 가장자리부분을 열처리하기 위한 복수의 가열수단(80)이 마련된다.
도 15는 본 발명의 제1 실시 예에 따른 열처리로 내부 구조를 도시한 단면도이고, 도 16은 본 발명의 제1 실시 예에 따른 복사가열버너의 배치구조를 설명하기 위한 도면이다.
도 15 및 도 16을 참조하면, 본 발명의 제1 실시 예에 따른 복수의 가열수단(80)은 가열챔버(60) 내부의 온도제어를 위해 가열챔버(60)의 내부공기를 가열하는 제1버너(81)와, 가열챔버(60) 내부에 배열된 열연코일(20)의 양 측면을 가열하기 위한 제2버너(82)와, 가열챔버(60) 내부에 배열된 열연코일(20)의 내권부(21)를 가열하기 위한 열풍공급부(90)를 포함한다.
제1버너(81)는 연료를 연소시켜 화염에 의해 가열챔버(60) 내부의 공기를 신속히 가열하는 화염가열버너(High Speed Flame Burner)로 구성될 수 있다.
제1버너(81)는 상부벽(52)에 설치되어 수직방향으로 화염을 분출하도록 마련될 수 있고, 분출된 화염이 열연코일(20)에 직접 닿지 않도록 열연코일(20)의 양 측면과 소정거리(예로서, 500mm이상) 이격된 위치에 배치될 수 있다. 이는 제1버너(81)에서 분출되는 화염이 열연코일(20)에 직접적으로 닿으면 국부적인 온도 상승에 따라 열연코일(20)이 불균일하게 되는 것을 방지하기 위함이다.
제2버너(82)는 열연코일(20)의 양 측면 가장자리부분을 신속히 가열하기 위한 것으로서, 평판형의 다공질 발열면에서 연료를 연소시켜 그 복사열로 열연코일(20)의 양 측면을 가열하는 복사가열버너(Flat Flame Burner)로 구성될 수 있다.
제2버너(82)는 가열챔버(60)에 배치된 열연코일(20)의 양 측면과 각각 마주하는 양 측벽(53,54)에 배치될 수 있고, 복사가열버너의 구조상 연소가스의 토출압이 크지 않으므로 제2버너(82)의 상하 온도차이를 고려하여 도 14에 도시한 바와 같이 열연코일(20)의 중심과 하단 사이의 측면에 마주하도록 측벽(53)에 위치될 수 있고, 열연코일(20)의 원주방향으로 균일한 온도로 가열할 수 있도록 하나의 열연코일(20)의 측면에 대하여 좌우 양측으로 이격 배치된 2개 이상을 구비할 수 있다.
열풍공급부(90)는 가열챔버(60) 내의 고온 가스에 의해 열연코일(20)이 가열되는 동안 상대적으로 가열속도가 느린 열연코일(20)의 내권부(21)를 가열하기 위한 것이다. 즉 열연코일(20)의 내권부(21)는 제1버너(81) 및 제2버너(82)의 화염과의 거리도 멀고, 연소가스의 유동도 미비한 부분에 해당하므로 상대적으로 가열속도가 열연코일(20)의 다른 부분보다 느리게 된다. 따라서 열풍공급부(90)는 열연코일(20)의 내권부(21)에 열풍을 분사함에 따라 열연코일(20)의 내권부(21)에서 발생하는 온도편차를 줄일 수 있다.
도 17은 본 발명의 제1 실시 예에 따른 열풍공급부를 개략적으로 도시한 것이다.
도 17을 참조하면, 본 발명의 제1 실시 예에 따른 열풍공급부(90)는 가열챔버(60)에서 배기되는 고온의 배기가스를 회수하여 다시 열연코일(20)의 내권부(21) 쪽으로 공급하도록 마련될 수 있다.
이를 위해, 열풍공급부(90)는 가열챔버(60)에 배치된 열연코일(20)의 내권부(21)와 마주하도록 양 측벽(53,54)에 설치되는 노즐(91)과, 가열챔버(60) 내부의 고온가스가 배기되는 배기배관(59)과 연결되어 배기배관(59)에 흐르는 배기가스를 노즐(91)에 공급하는 회수배관(92)과, 배기배관(59)으로부터 회수배관(92)으로 배기가스 공급을 조절하는 댐퍼(93)와, 회수배관(92)에 흐르는 배기가스를 노즐(91) 쪽으로 이송시키는 송풍력을 제공하는 송풍기(94)를 포함할 수 있다.
이러한 구성을 통해, 제1버너(81) 및 제2버너(82)에 의해 발생한 연소가스는 먼저 열연코일(20)의 양 측면과 외권부를 가열한 뒤 배기배관(59)을 통해 외부로 배기된다. 이때 배기배관(59)을 통해 배기되는 배기가스의 온도는 대략 700~800도 정도의 고온이다. 이 경우 열풍공급부(90)는 댐퍼(93)의 개도를 조절하여 배기배관(59)에 흐르는 배기가스를 회수배관(92)으로 유입시킨 후 노즐(91)을 통해 다시 열연코일(20)의 내권부(21)를 향해 분출시킴에 의해 상대적으로 가열속도가 느린 열연코일(20)의 내권부(21)를 신속히 가열할 수 있게 된다.
이하에서는 본 발명의 제1 실시 예에 따른 열처리 장치를 이용한 열처리 방법에 대하여 설명한다.
먼저, 도 12에 도시된 바와 같이 열연코일 생성 단계(S10)를 거쳐 제작된 열연코일(20)은 운반되어 이송대차(40)의 스키드(45)에 적치된다.
그리고 이송대차(40)에 적치된 열연코일(20)은 양 측면 가장자리부분에 경질상이 생성될 때까지 충분한 냉각속도를 유지하면서 공냉시킨다.
이후 이송대차(40)는 레일(41)을 따라 이동하여 열처리로(50) 내부로 진입된다.
열처리로(50) 내부로 이송대차(40)의 진입이 완료되면, 본체(51)에 설치된 개폐도어(55)가 닫힘과 동시에 밀폐장치(70)가 이송대차(40)와 양 측벽(53,54) 사이의 틈새(t)를 닫아 가열챔버(60)를 밀폐시킨 상태에서 열처리 작업을 수행한다.
이때, 이송대차(40)에 의해 운반된 열연코일(20)을 열처리 작업을 위해 다시 옮길 필요가 없으므로 열처리 작업시간은 줄어들게 된다. 또한 도 21에 도시된 바와 같이 이송대차(40)가 2개 이상 마련된 경우에는 하나의 이송대차(40)가 열처리로(50)에 진입되어 열연코일(20)이 열처리되는 동안 다른 하나의 이송대차(40)는 열연코일(20)을 로딩한 상태에서 1차 냉각과정을 수행하여 대기한 후 열처리로(50)에서 열처리 완료되어 하나의 이송대차(40)가 인출될 때 다른 하나의 이송대차(40)가 바로 열처리로(50)에 진입될 수 있어 열처리로(50)의 가동율을 높일 수 있게 된다. 즉 2대의 이송대차(40,40a)는 각각 열처리로(50)의 양측에서 레일(41)을 따라 전후로 이동 가능하게 마련되어, 하나의 이송대차(40)가 열처리로(50)의 개방된 전면을 통해 열처리로(50)의 내부에 장입되어 열처리되는 동안에는 다른 하나의 이송대차(40a)는 열처리로(50) 밖에서 대기하고, 열처리 완료되어 열처리로(50)의 개방된 전면을 통해 하나의 이송대차(40)가 인출되게 되면 다른 하나의 이송대차(40a)는 열처리로(50)의 개방된 후면을 통해 열처리로(50)의 내부로 인입 된다.
가열챔버(60)가 밀폐된 후에는 복수의 가열수단(80)을 통해 가열챔버(60)의 온도제어를 수행하면서 열연코일(20)의 열처리 작업을 수행한다.
이때 열연코일(20)의 열처리를 위한 가열챔버(60)의 온도제어는 도 18에 도시한 바와 같이 가열챔버(60) 내부의 온도를 감지하는 온도센서(98)로부터 감지된 온도에 기초하여 복수의 가열수단(80)을 제어하는 제어부(100)를 통해 이루어질 수 있다.
제어부(100)는 열연코일(20)의 종류에 따라 상이한 초기온도를 고려하여 가열챔버(60)의 온도를 적절히 설정할 수 있다.
이러한 제어부(100)는 도 19에 도시된 바와 같이 열연코일(20)의 재가열 시 가열 초기에는 가열챔버(60) 내의 온도가 열연코일(20)의 열처리 상한 온도(가열목표온도)보다 높은 온도를 유지하도록 복수의 가열수단(80)을 1차 구동하여 가열챔버(60)의 온도를 급속 승온시키고, 소정시간 경과 후 열연코일(20)의 표면온도가 가열목표온도를 넘지 않도록 하기 위해 가열챔버(60) 내의 온도를 상한 온도까지 떨어뜨린 후 일정하게 유지하도록 복수의 가열수단(80)을 2차 구동시킴에 의해 열처리 시간을 줄일 수 있게 된다.
도 20은 본 발명의 가열챔버 내의 온도 제어를 실시한 경우 열연코일의 표면과 가장자리부분 300mm지점의 온도변화를 도시한 도표이다.
도 20에서 700℃로 일정하게 가열챔버의 온도를 일정하게 유지하는 조건과 초기 온도를 900℃에서 1시간 30분 유지 후 700℃로 하향하여 열처리시간 동안 유지하는 경우 두 열처리 시간은 가장자리부분의 300mm 지점에서 550℃ 도달시간을 기준으로 하여 비교할 때 각각 9.5시간과 11.5시간으로 본 발명의 제1 실시 예에 의한 가열챔버(60)의 온도 제어를 수행하는 경우 열처리 시간을 약 2시간 단축할 수 있는 효과를 가진다.
한편 가열챔버(60) 내에서 열연코일(20)의 열처리 작업을 수행하는 동안에는 복수의 가열수단(80)을 이용하여 냉각된 열연코일(20)의 양 측면 가장자리부분과 내권부(21)를 신속히 가열할 수 있고, 가열챔버(60)에서 배기되는 고온의 배기가스를 이용함에 따라 에너지 절감 효과를 가질 수 있게 된다.
그리고 가열챔버(60) 내에서 열처리 작업이 완료된 경우에는 이송대차(40)는 레일(41)을 따라 이동하여 열처리로(50)에서 인출된 후 이송대차(40)에 적치된 복수의 열연코일(20)의 2차 냉각 단계를 수행하게 된다.
이하에서는 본 발명의 제2 실시 예에 따른 열처리 장치에 대하여 설명한다.
본 발명의 제2 실시 예에 따른 열처리 장치는 도 22과 도 23에 도시한 바와 같이, 권취된 코일(120)을 수용하는 가열로(110), 가열로(110) 내부를 가열하는 가열장치(130), 가열로(110) 내부의 열기를 순환시키는 순환장치(140), 가열로(110)의 바닥 쪽에 설치된 코일지지장치(150), 순환하는 열기의 일부를 코일(120)의 중공부(122)로 안내하는 유동안내부(170)를 구비한다.
가열로(110)는 벽체가 철피(110a)와 내화물(110b)로 마련되고, 내부에 코일(120)을 수용하는 가열공간(111)이 형성된 육면체형 구조물일 수 있다. 가열로(110)는 도면에 도시하지는 않았지만, 가열공간(111)으로 코일(120)을 진입시키거나 가열공간(111)의 코일(120)을 배출시키기 위해 측벽(113,114)이나 상부벽(111)에 개구가 형성될 수 있고, 개구는 도어나 커버에 의해 개폐될 수 있다.
가열로(110)에 수용되는 코일(120)은 그 둘레면(121)이 가열로 바닥(112) 중앙부분에 배치된 코일지지장치(150) 위에 놓이고, 양 측면(123,124)이 가열로(110)의 측벽(113,114)과 대향하도록 배치될 수 있다. 코일(120)의 중공부(122)의 개방된 양단이 각각 가열로(110)의 측벽(113,114)과 대향하는 형태다.
가열장치(130)는 도 22에 도시한 예처럼 가열공간(111) 내부로 화염을 방사하여 가열공간(111)을 코일(120)의 열처리를 위한 온도로 가열하는 버너를 포함할 수 있다. 가열장치(130)는 가열공간(111)의 균일 가열을 위해 가열로(110)의 상부벽(111)이나 측벽(113,114)에 복수로 설치될 수 있으나, 설치위치, 설치수량 등이 제시한 실시 예로 한정되는 것은 아니다.
순환장치(140)는 도 23에 도시한 바와 같이, 한쪽 측벽과 인접하는 가열공간(111) 상부에 설치되어 하방으로 열기를 송풍하는 송풍팬(141)과, 송풍팬(141)을 구동하도록 가열로(110) 상부에 장착된 구동모터(142)를 포함할 수 있다.
순환장치(140)는 가열로(110) 상부에서 코일(120)의 한쪽 측면(123)과 가열로(110)의 측벽(113) 사이의 공간을 통하여 가열로(110) 바닥(112)을 향해 열기를 송풍한다. 따라서 송풍된 열기는 순환장치(140)로부터 하강하며 코일(120)의 한쪽 측면(123) 쪽을 가열하고, 가열로(110) 바닥에 이르러 방향이 전환된 후 코일(120)의 하부를 경유하여 반대편으로 유동한다. 이 후 열기는 다시 상승하며 코일(120)의 반대편 측면(124) 쪽을 가열한다. 여기서는 일 예로써 순환장치(140)가 가열로(110) 상부벽(111)에 설치된 경우를 제시하고 있지만, 순환장치(140)의 설치위치와 설치수량은 변경될 수 있고, 이에 따른 열기의 유동 및 순환방향은 변경될 수 있다.
유동안내부(170)는 가열로(110)의 양 측벽(113,114)에 각각 설치되며, 코일(120) 주위를 유동하는 열기의 일부를 코일(120)의 중공부(122)로 안내해 중공부(122)가 원활히 가열될 수 있도록 한다.
가열로(110) 양측의 유동안내부(170)는 도 23과 도 24에 도시한 바와 같이, 코일(120)의 측면(123,124)과 대향하는 가열로 측벽(113,114)으로부터 코일(120)의 중공부(122)를 향하여 연장되는 안내판(471)을 포함한다.
안내판(471)은 순환장치(140)의 동작에 의해 유동하는 열기의 유동방향과 대향하게 배치되는 경사안내면(271a,271b)을 구비한다. 경사안내면(271a,271b)은 코일(120)의 중심선(125)에 대하여 소정각도 경사를 유지해 유동하는 열기를 코일(120)의 중공부(122)로 안내한다.
안내판(471)은 가열로(110)의 측벽(113,114)에 결합되는 결합단(271c)의 두께가 코일(120)의 중공부(122)를 향하는 자유단(371d)의 두께 보다 두껍게 형성(쐐기형태)된다. 따라서 그 상면과 하면에 자연스럽게 경사안내면(271a,271b)이 형성된다. 이러한 형태는 결합단(271c)으로 갈수록 굽힘응력이 증가하기 때문에 자유단(371d)의 처짐을 방지할 수 있다.
순환장치(140)로부터 하강하는 열기는 도 23에 도시한 바와 같이, 한쪽 측벽(113)에 결합된 안내판(171, 도면의 우측 안내판)의 상측 경사안내면(171a)에 의해 일부가 코일 중공부(122) 쪽으로 자연스럽게 휘도록 안내되면서 코일 중공부(122)로 진입할 수 있다. 코일(120) 하부를 경유한 후 반대편에서 상승하는 열기는 반대편 측벽(114)에 결합된 안내판(171, 도면의 좌측 안내판)의 하측 경사안내면(171b) 안내에 의해 일부가 자연스럽게 휘면서 코일(120)의 중공부(122)로 진입할 수 있다. 이처럼 코일 중공부(122) 양측에서 중공부(122) 내측으로 유입되는 열기는 중공부(122) 내에서 회전하는 유동장을 형성해 코일 중공부(122)의 가열효과를 높여준다.
본 실시 예는 가열로(110) 내에서 하강하는 열기 또는 상승하는 열기를 코일 중공부(122)로 안내하기 위해 양측 안내판(471)의 경사안내면(271a,271b)이 가열로(110)의 상부와 하부를 향하도록 배치한 경우를 제시하고 있지만, 순환장치(140)의 위치변경 등으로 열기의 유동방향이 변할 경우 안내판(471)의 경사안내면(271a,271b)도 유동하는 열기와 대향하도록 배치될 수 있다.
본 실시 예는 양측 안내판(471)의 상면과 하면에 각각 대등한 형태의 경사안내면(271a,271b)이 형성된 경우를 제시하고 있지만, 경사안내면은 유동하는 열기와 대향하는 한쪽 면에만 형성될 수도 있다. 또 본 실시 예는 안내판(471)이 가열로(110) 양 측벽(113,114)에 각각 설치된 경우를 제시하였지만, 안내판(471)이 어느 한쪽에만 설치되더라도 코일 중공부(122)로 열기를 유도하여 중공부(122)의 가열을 구현할 수 있다.
도 24를 참조하면, 안내판(471)은 가열로(110) 측벽(113)에 결합되는 결합단(271c)으로부터 자유단(371d)으로 갈수록 폭(도면에서 좌우폭)이 좁아지는 형태다. 따라서 하강하는 열기는 일부가 코일 중공부(122)로 유동하고 나머지가 안내판(471) 양측을 우회해 코일(120)의 하부 쪽으로 유동할 수 있다. 같은 방식으로 반대편에서 상승하는 열기는 일부가 코일 중공부(122)로 유동하고 나머지가 코일(120) 상부 쪽으로 유동할 수 있다. 안내판(471)을 이러한 형태로 구성하는 이유는 자유단(371d) 폭을 너무 크게 할 경우, 하강하거나 상승하는 열기를 안내판(471)이 차단하여 코일(120)의 고른 가열을 저해할 수 있기 때문이다.
안내판(471)의 자유단(371d) 폭은 코일(120)의 중공부(122) 직경과 같거나 중공부(122) 직경보다 작은 길이로 마련되는 것이 좋다. 자유단(371d) 폭을 코일 중공부(122) 직경보다 크게 하더라도 코일 중공부(122)로 안내되는 유동은 증가하지 않고, 오히려 안내판(471) 양측을 우회하는 유동을 방해하기 때문이다.
안내판(471)의 결합단(271c)은 최소폭이 코일 중공부(122)의 직경 이상이고 최대폭이 코일(120)의 외경 이하의 길이로 마련되는 것이 좋다. 결합단(271c)의 폭이 가장 짧을 경우에는 도 29에 도시한 예처럼 안내판(471)이 직사각형일 수 있다. 결합단(271c)의 폭이 코일(120)의 외경보다 클 경우에는 안내판(471)을 우회하는 유동을 방해할 수 있어 바람직하지 않다.
도 23을 참조하면, 안내판(471)은 하강하는 열기를 안내하는 경우 코일(120)의 중심과 코일 중공부(122)의 상단 사이의 높이에 배치됨이 바람직하다. 또 코일(120)의 하부를 경유하여 상승하는 열기를 안내하는 경우 코일(120)의 중심과 코일 중공부(122)의 하단 사이의 높이에 배치됨이 바람직하다.
순환장치(140)로부터 하강하는 열기는 안내판(471)의 안내에 의해 코일 중공부(122)의 하반부 쪽으로 휘면서 유입된다. 따라서 안내판(471)의 높이가 코일(120) 중심보다 낮으면, 유동이 중공부(122)로 향하지 않고 코일(120) 하부의 측면(123)에 닿아 아래로 향하게 되어 중공부(122)의 가열효과가 크지 않다. 반대로 안내판(471)의 높이가 코일 중공부(122) 상단보다 높으면, 코일(120) 상부의 측면(123)이 중공부(122)를 향하는 유동을 가로막아 역시 중공부(122)의 가열효과가 크지 않다.
본 실시 예의 열처리 장치는 도 23에 도시한 바와 같이, 가열로(110)의 바닥(112)과 측벽(113,114)이 만나는 양측 코너에 열기의 유동방향을 전환시키는 유동안내면(181)을 갖춘 코너안내부(180)를 구비한다. 한쪽 코너안내부(180)는 가열로(110) 바닥(112) 쪽으로 하강하는 열기의 방향을 코일(120) 하부 쪽으로 안내하고, 다른 쪽 코너안내부(180)는 코일(120) 하측을 경유한 열기를 상방향으로 안내한다.
코너안내부(180)는 도 25에 도시한 바와 같이, 가열로(110)의 측면(113,114) 폭과 대응하는 길이로 마련될 수 있고, 유동안내면(181)은 열기의 원활한 방향전환을 위해 가열로 바닥에 대하여 경사진 평면일 수 있다. 도 26은 코너안내부(180)의 변형 예로 유동안내면(182)이 경사진 내곡면인 경우를 나타낸다. 이러한 코너안내부(180)에 의하면, 가열로(110) 내부를 순환하는 열기가 유속을 유지하면서 방향을 전환할 수 있기 때문에 열기의 원활한 순환을 구현할 수 있다.
가열로(110) 바닥(112) 쪽에 배치되는 코일지지장치(150)는 도 23과 도 27에 도시한 바와 같이, 열기의 유통을 위해 다방향으로 형성된 통기유로(152,153,154)를 구비한다.
코일지지장치(150)는 도 27에 도시한 바와 같이, 통기유로(152,153)의 확보를 위해 상호 이격 배치된 복수의 지지블록(151)과, 각 지지블록(151) 상면에 상호 이격상태로 설치되어 코일(120)을 지지하면서 코일(120)과 지지블록(151) 상면을 이격시키는 복수의 이격부재(155)를 포함한다. 각 지지블록(151)은 하부가 연결판(156)에 의해 상호 연결될 수 있다.
각 지지블록(151)은 약 35톤에 이르는 코일(120)의 중량을 견딜 수 있도록 육면체형 구조물로 이루어질 수 있다. 또 각 지지블록(151)에는 복수의 측면(151b)과 상면(151a)에 상호 연통하는 통기유로(154)가 형성된다.
코일지지장치(150)는 복수의 지지블록(151)이 상호 이격되게 배치되어 통기유로(152,153)를 확보함과 동시에 각 지지블록(151)에 측면들과 상면이 연통하는 통기유로(154)가 형성되기 때문에 유동하는 열기가 코일(120)의 둘레면(121) 하측으로 쉽게 접근할 수 있다.
복수의 이격부재들(155)은 지지면적으로 최소화하면서 코일 둘레면(121)과 지지블록(151) 상면(151a)을 이격시켜 열기가 흐르는 유로를 확보하기 때문에 코일(120) 하측 둘레면(121)이 코일지지장치(150)에 지지된 상태에서도 코일(120) 하부가 순환하는 열기에 의해 원활히 가열될 수 있다.
도 28은 이격부재의 변형 예를 나타낸다. 도 28의 이격부재(158)는 코일(120)의 둘레면(121)과 접하는 외면이 반원통형태로 마련될 수 있다. 이러한 이격부재(158)는 코일(120) 둘레면(121)과 이격부재(158)가 선접촉을 하도록 하여 지지면적을 줄이고, 이를 통해 코일 하측의 둘레면(121)으로 열기의 접근이 더욱 원활하도록 할 수 있다.
이처럼 본 실시 예의 열처리 장치는 안내판(471)을 갖춘 유동안내부(170)가 코일(120) 주위를 유동하는 열기의 일부를 코일(120)의 중공부(122)로 안내하기 때문에 코일(120)을 가열하는 과정에서 코일(120) 외면과 중공부(122)의 온도편차를 최소화할 수 있다. 또 코일지지장치(150)에 형성된 다방향 통기유로(152,153,154)를 통해 코일(120)의 하측 둘레면(121) 쪽으로도 원활한 열기의 접근이 가능하기 때문에 코일(120) 상부와 하부의 온도편차도 최소화할 수 있다. 따라서 코일(120)을 전체적으로 균일하게 가열하여 고른 열처리효과를 얻을 수 있다.
도 30은 유동안내부(170) 안내판의 변형 예를 나타낸다. 도 30의 안내판(471)은 상측과 하측의 경사안내면(271a,271b)이 내곡면의 형태로 마련된 것이다. 이 안내판(471)도 결합단(271c)의 두께가 자유단(371d)의 두께보다 두껍게 형성될 수 있고, 결합단(271c)의 폭보다 자유단(371d)의 폭이 좁게 형성될 수 있다. 또 경사안내면(271a,271b)이 내곡면 형태이기 때문에 양 측단보다 중간부분의 두께가 얇을 수 있다.
이러한 안내판(471)은 내곡면 형태의 경사안내면(271a,271b)이 순환하는 열기를 코일 중공부(122) 쪽으로 모아주는 방식으로 유도하기 때문에 열기가 코일 중공부(122)로 더욱 원활히 안내할 수 있다.
도 31은 유동안내부의 변형 예를 나타낸다. 도 31의 유동안내부(470)는 가열로(110) 측벽(113)에 장착되며 안내판(471)의 결합단을 회전 가능하게 지지하는 결합부재(472)와, 안내판(471)을 각도를 조절한 상태로 지지하는 지지부(473)를 포함한다.
안내판(471)은 결합단이 축(374)에 의해 결합부재(472)와 회전 가능하게 연결되기 때문에 필요 시 자유단(371d)의 높이를 올리거나 내리는 방식으로 안내판(471)의 각도를 조절할 수 있다. 따라서 규격이 다른 코일을 가열하는 경우에 안내판(471)의 각도를 조절하여 코일 중공부(122) 쪽으로 유동하는 열기의 유동방향을 조절할 수 있다.
지지부(473)는 일단이 안내판(471) 하면에 회전 가능하게 연결되고 타단이 결합부재(472)에 회전 가능하게 연결됨으로써 안내판(471)을 고정상태로 지지할 수 있다. 지지부(473)는 안내판(471)의 각도조절을 위해 그 길이를 조절할 수 있는 터언버클형태일 수 있다. 또는 안내판(471)의 각도조절이 필요할 때 길이가 다른 것으로 교체할 수 있다.
도 32는 유동안내부의 다른 변형 예를 나타낸다. 도 32의 유동안내부(470)는 가열로(110) 측벽(113)에 장착된 가이드레일(474)과, 가이드레일(474)에 이동 가능하게 장착되며 안내판(471)의 각도조절을 위해 안내판(471)의 결합단을 회전 가능하게 지지하는 결합부재(472)와, 결합부재(472)를 이동시키는 이동장치(475)와, 안내판(471)을 각도조절상태로 지지하는 지지부(473)를 포함할 수 있다. 즉 필요에 따라 안내판(471)의 각도조절 및 높이조절이 가능하도록 한 것이다.
이동장치(475)는 결합부재(472)에 결합된 상태로 회전 가능하게 지지되며 안내판(471)의 이동방향(가이드레일의 길이방향)으로 연장된 나선축(475a)과, 나선축(475a)을 회전시키는 회전수단을 포함할 수 있다. 회전수단은 나선축(475a) 일단에 마련된 회전손잡이(475b)로 구성되거나, 나선축(475a)을 회전시키는 구동모터(미도시) 등 일 수 있다. 여기서는 일 예로 나선축 방식의 이동장치를 제시하였으나, 이동장치는 체인-스프라켓방식, 래크와 피니언 방식 등으로 다양하게 변경될 수 있다.
도 32의 예는 안내판(471)의 높이조절과 각도조절이 가능하도록 한 것이나, 이를 다소 변경하여 안내판(471)이 결합부재(472)에 고정되도록 할 수도 있다. 이 경우 안내판(471)은 각도조절을 할 수 없는 대신 이동장치(475)의 동작에 의해 그 높이를 조절할 수 있고, 이를 통해 코일 중공부(122)로 유동하는 열기의 방향을 조절할 수 있다.

Claims (37)

  1. 압연재를 열간 압연하여 냉각한 후 권취하여 열연코일을 제조하는 열연코일 생성 단계;
    상기 열연코일의 가장자리부분에 경질상이 생성되도록 상변태가 완료되는 온도까지 냉각하는 1차 냉각 단계;
    상기 열연코일의 가장자리부분만을 템퍼링 온도까지 가열하여 승온시킨 후 상기 템퍼링 온도에서 일정시간 동안 유지하여 상기 1차 냉각 단계를 거친 상기 열연코일의 가장자리부분이 상기 열연코일의 중앙부분 강도와 유사한 강도를 가지도록 열처리하는 열연코일 가장자리 강도 연화 단계;
    상기 열연코일 가장자리 강도 연화 단계를 거친 상기 열연코일을 냉각하는 2차 냉각 단계;를 포함하는 AHSS 열연코일의 열처리 방법.
  2. 제 1항에 있어서,
    상기 열연코일 가장자리 강도 연화 단계에서,
    상기 탬퍼링 온도는 400~700℃를 포함하는 AHSS 열연코일의 열처리 방법.
  3. 제 1항에 있어서,
    상기 열연코일 생성단계에서 권취 완료된 상기 열연코일의 온도는 500~700℃를 포함하는 AHSS 열연코일의 열처리 방법.
  4. 제 1항에 있어서,
    상기 1차 냉각 단계에서,
    상기 상변태가 완료되는 온도는 상온~400℃의 범위를 포함하는 AHSS 열연코일의 열처리 방법.
  5. 제 4항에 있어서,
    상기 1차 냉각 단계에서,
    상기 열연코일의 가장자리부분의 폭은 상기 열연코일의 전체 폭에 대한 1/4영역을 포함하는 AHSS 열연코일의 열처리 방법.
  6. 제 1항에 있어서,
    상기 열연코일은 인장강도 780MPa 이상인 것을 특징으로 하는 AHSS 열연코일의 열처리 방법.
  7. 제 6항에 있어서,
    상기 열연코일 가장자리 강도 연화 단계에서 가열하는 것은,
    상기 열연코일의 가장자리로부터 상기 열연코일의 폭방향으로 상기 열연코일의 전체 폭에 대한 1/4이상 영역이 상기 탬퍼링 온도에 도달하도록 급속 가열하는 것을 포함하는 AHSS 열연코일의 열처리 방법.
  8. 제 7항에 있어서,
    상기 열연코일 가장자리 강도 연화 단계에서,
    상기 일정시간은 아래의 수학식에 의해 구해지는 시간범위로 설정되는 AHSS 열연코일의 열처리 방법.
    수학식: X = 온도 x (7.0 + log(시간)), (온도는 Kelvin, 시간은 분)
    여기서, 온도는 템퍼링 온도, 7600≤X≤8600.
  9. 제 1항에 있어서,
    상기 2차 냉각 단계는,
    상기 열연코일의 가장자리부분에 대해 3℃/min 이상의 냉각속도로 냉각하는 것을 포함하는 AHSS 열연코일의 열처리 방법.
  10. 인장강도 780MPa 이상인 AHSS 열연코일로부터 냉연강판을 제조하는 냉간 압연방법에 있어서,
    권취 온도가 500~700℃의 범위내인 상기 AHSS 열연코일의 가장자리부분에 대해 상온~400℃의 범위까지 1차 냉각하여 상기 가장자리부분을 경질상으로 상변태 완료하고, 상기 경질상으로 상변태 완료된 상기 가장자리부분에 대해서만 재가열한 후 400~700℃의 온도범위 내에서 30~480분 시간 동안 유지하여 강도 연화를 발생시키고, 상기 강도 연화된 상기 AHSS 열연코일을 속도 3℃/min 이상으로 2차 냉각한 후에 냉간 압연을 실시하는 냉간 압연방법.
  11. 열연코일을 열처리 하기 위한 열처리 장치에 있어서,
    상기 열연코일을 적치하여 운반하는 이송대차가 진입되는 가열챔버와, 상기 가열챔버를 형성하는 단열벽면에 설치되어 상기 열연코일을 가열하는 복수의 가열수단을 구비하는 열처리로;를 포함하고,
    상기 복수의 가열수단은 상기 가열챔버의 온도제어를 위해 상기 가열챔버에 설치되는 제1버너와, 상기 열연코일의 양 측면 가열을 위해 상기 가열챔버의 양 측벽에 설치되는 제2버너와, 상기 열연코일의 내권부를 향해 열풍을 공급하는 열풍공급부를 포함하는 열처리 장치.
  12. 제 11항에 있어서,
    상기 열풍공급부는 상기 가열챔버에서 배기되는 고온의 배기가스를 회수하여 상기 열연코일의 내권부를 향해 분사시키는 열처리 장치.
  13. 제 11항에 있어서,
    상기 제1버너는 화염가열버너를 포함하고,
    상기 화염가열버너는 분사되는 화염이 상기 열연코일에 직접 접촉하지 않도록 상기 가열챔버의 상부벽에 설치되는 열처리 장치.
  14. 제 11항에 있어서,
    상기 제2버너는 상기 열연코일의 양 측면을 각각 복사열에 의해 가열하는 복사가열버너를 포함하고,
    상기 복사가열버너는 상기 열연코일의 중심과 하단 사이의 측면에 마주하도록 상기 측벽에 배치되는 적어도 하나 이상을 구비하는 열처리 장치.
  15. 제 12항에 있어서,
    상기 열풍공급부는 상기 열연코일의 내권부를 향해 열풍을 분사하는 노즐과, 상기 가열챔버 내부의 고온가스가 배기되는 배기배관과 연결되어 상기 배기배관에 흐르는 배기가스를 상기 노즐에 공급하는 회수배관과, 상기 배기배관으로부터 상기 회수배관으로의 배기가스 공급을 조절하는 댐퍼와, 상기 회수배관에 흐르는 배기가스를 상기 노즐 쪽으로 이송시키는 송풍력을 제공하는 송풍기를 포함하는 열처리 장치.
  16. 제 11항에 있어서,
    상기 열처리로는 전면, 후면 및 하부가 개방되도록 상부벽과 양 측벽을 구비한 터널형태의 본체를 포함하고,
    상기 개방된 하부는 상기 이송대차가 상기 가열챔버에 인입될 때 상기 이송대차에 의해 닫히고, 상기 개방된 전면과 후면은 상기 열처리로에 설치된 개폐도어에 의해 닫히는 열처리 장치.
  17. 제 16항에 있어서,
    상기 가열챔버는 상기 단열벽면으로 이루어진 상기 상부벽, 상기 양 측벽 및 상기 이송대차의 상면에 배치된 단열패널에 의해 단열구조를 형성하는 열처리 장치.
  18. 제 16항에 있어서,
    상기 이송대차가 상기 가열챔버에 인입된 경우 상기 양 측벽과 상기 이송대차 사이 틈새를 밀폐하는 밀폐장치를 더 포함하는 열처리 장치.
  19. 제 18항에 있어서,
    상기 밀폐장치는 상기 본체의 측벽 하단 일측에 회전 가능하게 결합되며 상기 틈새를 밀폐하기 위한 단열재가 구비된 회전암과, 상기 단열재가 상기 틈새를 밀폐하는 제1위치와 상기 틈새로부터 이격되는 제2위치 사이를 이동할 수 있도록 상기 회전암을 구동하는 구동유닛을 포함하는 열처리 장치.
  20. 제 11항에 있어서,
    상기 가열챔버 내의 온도를 제어하기 위한 제어부를 더 포함하고,
    상기 제어부는 상기 열연코일의 가열 초기에는 상기 가열챔버 내의 온도를 상기 열연코일의 가열목표온도보다 높은 온도로 유지시키고, 소정시간 경과 후 상기 가열챔버 내의 온도를 상기 가열목표온도로 유지시키도록 상기 복수의 가열수단을 제어하는 열처리 장치.
  21. 제 16항에 있어서,
    상기 이송대차는 상기 열처리로의 양측에서 각각 레일을 따라 전후로 이동 가능하게 설치된 2대를 구비하고,
    상기 2대의 이송대차는 교대로 상기 가열챔버에 인입 및 인출되는 열처리 장치.
  22. 권취된 코일을 수용하여 가열하는 가열로;
    상기 가열로 내부의 열기를 순환시키는 순환장치; 및
    상기 가열로 내부의 상기 코일 주위를 유동하는 열기 일부를 상기 코일의 중공부로 안내하는 유동안내부를 포함하는 열처리 장치.
  23. 제22항에 있어서,
    상기 유동안내부는 상기 코일의 측면과 대향하는 상기 가열로의 측벽으로부터 상기 코일의 중공부를 향하여 연장되는 안내판을 포함하는 열처리 장치.
  24. 제23항에 있어서,
    상기 안내판은 유동하는 열기를 상기 코일의 중공부로 안내하도록 상기 코일의 중심선에 대해 경사진경사안내면을 포함하는 열처리 장치.
  25. 제24항에 있어서,
    상기 안내판은 상기 가열로의 측벽에 결합되는 결합단의 두께가 상기 코일의 중공부를 향하는 자유단의 두께보다 두껍게 형성되는 열처리 장치.
  26. 제24항에 있어서,
    상기 안내판은 상기 코일 중공부를 향하는 자유단의 폭이 상기 코일 중공부의 직경과 같거나 작은 길이로 마련되는 열처리 장치.
  27. 제26항에 있어서,
    상기 안내판은 상기 가열로 측벽에 결합되는 결합단의 최소폭이 상기 코일 중공부의 직경 이상이고 최대폭이 상기 코일의 외경 이하의 길이로 마련되는 열처리 장치.
  28. 제24항에 있어서,
    상기 유동안내부는 상기 코일의 양쪽 측면과 각각 대향하는 상기 가열로의 양쪽 측벽에 각각 설치되는 열처리 장치.
  29. 제24항에 있어서,
    상기 경사안내면이 곡면형태로 마련되는 열처리 장치.
  30. 제23항에 있어서,
    상기 유동안내부는 상기 가열로 측벽에 장착되며 상기 안내판의 각도조절을 위해 상기 안내판의 결합단을 회전 가능하게 지지하는 결합부재와, 상기 안내판을 각도조절상태로 지지하는 지지부를 더 포함하는 열처리 장치.
  31. 제23항에 있어서,
    상기 유동안내부는 상기 가열로 측벽에 장착된 가이드레일과, 상기 가이드레일에 이동 가능하게 장착되며 상기 안내판의 상기 안내판의 결합단을 지지하는 결합부재와, 상기 결합부재를 이동시키는 이동장치를 더 포함하는 열처리 장치.
  32. 제22항에 있어서,
    상기 순환장치는 상기 가열로 상부에서 상기 코일의 한쪽 측면과 상기 가열로 측벽 사이의 공간을 통해 상기 가열로 바닥을 향하여 열기를 송풍하도록 배치되는 열처리 장치.
  33. 제32항에 있어서,
    상기 안내판은 하강하는 열기를 안내하는 경우 상기 코일의 중심과 상기 코일 중공부의 상단 사이의 높이에 배치되고, 상기 코일의 하부를 경유하여 상승하는 열기를 안내하는 경우 상기 코일의 중심과 상기 코일 중공부의 하단 사이의 높이에 배치되는 열처리 장치.
  34. 제32항에 있어서,
    상기 가열로의 바닥과 측벽이 만나는 코너에 마련되며, 열기의 유동방향 전환을 위해 상기 가열로 바닥에 대하여 경사진 유동안내면을 갖춘 코너안내부를 더 포함하는 열처리 장치.
  35. 제22항에 있어서,
    상기 가열로의 바닥 쪽에 배치되어 상기 코일의 하측 둘레면을 지지하며, 열기의 유통을 위해 다방향으로 통기유로가 형성된 코일지지장치를 더 포함하는 열처리 장치.
  36. 제35항에 있어서,
    상기 코일지지장치는 상호 이격 배치되며 각각의 측면과 상면이 연통하는 통기유로를 갖춘 복수의 지지블록과, 상기 각 지지블록 상면에 상호 이격상태로 설치되어 상기 코일을 지지하면서 상기 코일과 상기 지지블록 상면을 이격시키는 복수의 이격부재를 포함하는 열처리 장치.
  37. 권취된 코일을 수용하여 가열하는 가열로;
    상기 가열로 내부의 열기를 순환시키는 순환장치; 및
    상기 가열로 바닥 쪽에 배치되어 상기 코일의 하측 둘레면을 지지하며, 열기의 유통을 위해 다방향으로 통기유로가 형성된 코일지지장치를 포함하는 열처리 장치.
PCT/KR2015/011554 2014-12-09 2015-10-30 Ahss 열연코일의 열처리 방법, 이를 이용한 냉간 압연방법 및 열처리장치 WO2016093493A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15867452.3A EP3231523A4 (en) 2014-12-09 2015-10-30 Heat treatment method for ahss hot rolled coils, and cold rolling method using same and heat treatment apparatus
CN201580004858.8A CN105934288B (zh) 2014-12-09 2015-10-30 Ahss热轧卷板的热处理方法、利用其的冷轧方法及热处理装置
JP2016544449A JP6229066B2 (ja) 2014-12-09 2015-10-30 Ahss熱延コイルの熱処理方法、これを利用した冷間圧延方法および熱処理装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020140175568A KR101591792B1 (ko) 2014-12-09 2014-12-09 Ahss 열연코일의 열처리 방법 및 이를 이용한 냉간 압연방법
KR10-2014-0175568 2014-12-09
KR1020140177699A KR101612760B1 (ko) 2014-12-10 2014-12-10 열연코일 열처리 장치
KR10-2014-0177699 2014-12-10
KR1020150080524A KR101662559B1 (ko) 2015-06-08 2015-06-08 코일 가열설비
KR10-2015-0080524 2015-06-08

Publications (1)

Publication Number Publication Date
WO2016093493A1 true WO2016093493A1 (ko) 2016-06-16

Family

ID=56107637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011554 WO2016093493A1 (ko) 2014-12-09 2015-10-30 Ahss 열연코일의 열처리 방법, 이를 이용한 냉간 압연방법 및 열처리장치

Country Status (4)

Country Link
EP (1) EP3231523A4 (ko)
JP (1) JP6229066B2 (ko)
CN (1) CN105934288B (ko)
WO (1) WO2016093493A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144483A (ja) * 2016-02-16 2017-08-24 株式会社神戸製鋼所 冷間圧延方法
CN115386719A (zh) * 2022-10-27 2022-11-25 河北亿泰克轴承有限公司 一种轴承套圈热处理装置及其控制***

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021208782A1 (de) 2021-08-11 2023-02-16 Sms Group Gmbh Verfahren und Vorrichtung zur Herstellung eines hoch- und höchstfesten Mehrphasenstahls

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051330A (ja) * 1991-06-24 1993-01-08 Daido Steel Co Ltd コイル熱処理炉
KR20030053772A (ko) * 2001-12-24 2003-07-02 주식회사 포스코 폭방향 인장강도가 균일한 고탄소강 선재의 제조방법
KR100617257B1 (ko) * 2005-10-20 2006-08-29 주식회사 포스코 바 코일 보열장치
KR100854318B1 (ko) * 2007-12-26 2008-08-26 한일종합기계 주식회사 공랭식 코일 받침장치
KR20090096004A (ko) * 2008-03-07 2009-09-10 주식회사 포스코 열연코일의 냉각방법
KR20110039664A (ko) * 2009-10-12 2011-04-20 김정환 용체화로와 엘리베이터형 담금질 장치가 일렬로 연결된 알루미늄 합금판 제조장치
KR101259243B1 (ko) * 2010-09-10 2013-04-29 주식회사 포스코 선재코일 냉각장치
KR101485657B1 (ko) * 2013-03-14 2015-01-23 주식회사 포스코 코일 소둔장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2076425B (en) * 1980-05-21 1984-04-04 British Steel Corp Dual-phase steel sheet
JPS6328829A (ja) * 1986-07-21 1988-02-06 Nippon Steel Corp Cr系ステンレス鋼薄板の製造方法
JP3116156B2 (ja) * 1994-06-16 2000-12-11 新日本製鐵株式会社 耐食性および溶接性に優れた鋼管の製造方法
EP1905851B1 (en) * 2005-06-29 2015-11-04 JFE Steel Corporation High-carbon hot-rolled steel sheet and process for producing the same
DE102008010062A1 (de) * 2007-06-22 2008-12-24 Sms Demag Ag Verfahren zum Warmwalzen und zur Wärmebehandlung eines Bandes aus Stahl

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051330A (ja) * 1991-06-24 1993-01-08 Daido Steel Co Ltd コイル熱処理炉
KR20030053772A (ko) * 2001-12-24 2003-07-02 주식회사 포스코 폭방향 인장강도가 균일한 고탄소강 선재의 제조방법
KR100617257B1 (ko) * 2005-10-20 2006-08-29 주식회사 포스코 바 코일 보열장치
KR100854318B1 (ko) * 2007-12-26 2008-08-26 한일종합기계 주식회사 공랭식 코일 받침장치
KR20090096004A (ko) * 2008-03-07 2009-09-10 주식회사 포스코 열연코일의 냉각방법
KR20110039664A (ko) * 2009-10-12 2011-04-20 김정환 용체화로와 엘리베이터형 담금질 장치가 일렬로 연결된 알루미늄 합금판 제조장치
KR101259243B1 (ko) * 2010-09-10 2013-04-29 주식회사 포스코 선재코일 냉각장치
KR101485657B1 (ko) * 2013-03-14 2015-01-23 주식회사 포스코 코일 소둔장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3231523A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017144483A (ja) * 2016-02-16 2017-08-24 株式会社神戸製鋼所 冷間圧延方法
CN115386719A (zh) * 2022-10-27 2022-11-25 河北亿泰克轴承有限公司 一种轴承套圈热处理装置及其控制***
CN115386719B (zh) * 2022-10-27 2022-12-30 河北亿泰克轴承有限公司 一种轴承套圈热处理装置及其控制***

Also Published As

Publication number Publication date
EP3231523A1 (en) 2017-10-18
CN105934288B (zh) 2019-12-24
JP6229066B2 (ja) 2017-11-08
JP2017512651A (ja) 2017-05-25
EP3231523A4 (en) 2018-05-09
CN105934288A (zh) 2016-09-07

Similar Documents

Publication Publication Date Title
WO2015102313A1 (ko) 화학강화를 이용한 강화유리 제조장치 및 제조방법
WO2016093493A1 (ko) Ahss 열연코일의 열처리 방법, 이를 이용한 냉간 압연방법 및 열처리장치
WO2011095961A2 (ko) 주편 처리 방법 및 주편 처리 시스템
EP1078106B1 (en) Fluidized-bed treatment process and apparatus
US5798007A (en) Process and apparatus for the continuous heat treatment of a metal strip travelling in a different atmosphere
WO2016104865A1 (ko) 압연방법, 연주압연방법 및 연주압연장치
RU2330819C2 (ru) Способ и печь для моллирования стеклянных панелей
JPH0241564B2 (ko)
US3623714A (en) Method of and apparatus for operating a furnace
KR101150371B1 (ko) 가스 차단부재를 포함하는 광휘소둔로
KR101905653B1 (ko) 열손실 방지가 가능한 스테인레스 스트립 연속 소둔 설비
KR20180069321A (ko) 압연설비
JP2011202825A (ja) 加熱炉の冷却方法及び冷却装置
KR101150375B1 (ko) 가열로를 포함하는 광휘소둔로 및 이를 이용한 광휘소둔방법
KR20150003595A (ko) 선재 제조방법
JP2000212645A (ja) 鋼材の連続加熱方法
JPH0437898Y2 (ko)
JP7364619B2 (ja) 金属ストリップ熱処理炉
JP2756640B2 (ja) 鋼片加熱・保温用トンネル炉
KR101322124B1 (ko) 열방산 방지장치
GB1393440A (en) Pre-heating apparatus particularly for pre-heating steel ingots or blooms
KR100940696B1 (ko) 선재 코일 이송장치 및 이를 이용한 제어방법
KR101090869B1 (ko) 열간압연선재의 균일냉각방법
KR101493848B1 (ko) 스트립 가열 장치
WO2017111417A1 (ko) 강판의 표면처리 장치 및 표면처리 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016544449

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015867452

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015867452

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE