WO2016093308A1 - Dicing sheet, dicing/die-bonding film, and method for manufacturing semiconductor device - Google Patents

Dicing sheet, dicing/die-bonding film, and method for manufacturing semiconductor device Download PDF

Info

Publication number
WO2016093308A1
WO2016093308A1 PCT/JP2015/084644 JP2015084644W WO2016093308A1 WO 2016093308 A1 WO2016093308 A1 WO 2016093308A1 JP 2015084644 W JP2015084644 W JP 2015084644W WO 2016093308 A1 WO2016093308 A1 WO 2016093308A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
dicing
film
die
dicing sheet
Prior art date
Application number
PCT/JP2015/084644
Other languages
French (fr)
Japanese (ja)
Inventor
雄一郎 宍戸
三隅 貞仁
謙司 大西
雄一朗 柳
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201580067732.5A priority Critical patent/CN107004589B/en
Priority to KR1020177019215A priority patent/KR102436526B1/en
Publication of WO2016093308A1 publication Critical patent/WO2016093308A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/274Manufacturing methods by blanket deposition of the material of the layer connector
    • H01L2224/2743Manufacturing methods by blanket deposition of the material of the layer connector in solid form
    • H01L2224/27436Lamination of a preform, e.g. foil, sheet or layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body

Definitions

  • the present invention relates to a dicing sheet, a dicing die-bonding film, and a method for manufacturing a semiconductor device.
  • a dicing die bond having a base material 911 and a dicing sheet 901 having an adhesive layer 912 disposed on the base material 911 and an adhesive layer 903 disposed on the adhesive layer 912.
  • the wafer 904 having the semiconductor elements 905A, 905B, 905C,..., 905H and the modified region 941 to the adhesive layer 903 and expanding the dicing sheet 901, A method of dividing the wafer 904 and the adhesive layer 903 starting from the modified region 941 is known (see, for example, Patent Documents 1 and 2).
  • the peripheral portion 912b sags after the expansion is solved. If the slack in the peripheral portion 912b is left unattended, the semiconductor elements 905A and 905B, the semiconductor elements 905B and 905C,..., May contact the semiconductor elements 905G and 905H.
  • An object of the present invention is to provide a dicing sheet that can solve the above-described problems and remove sagging and prevent contact between semiconductor elements.
  • the present invention relates to a dicing sheet that shrinks when heated at 100 ° C. for 1 minute, and whose second length in the MD direction after heating is 95% or less with respect to the first length in the MD direction before heating of 100%. . Since the second length is 95% or less with respect to the first length of 100%, sagging can be removed by heating, and contact between the semiconductor elements can be prevented.
  • the dicing sheet of the present invention preferably has the following properties. That is, the tensile stress when stretched by 3% in the MD direction at 23 ° C. is 1 N / mm 2 or more. When it is 1 N / mm 2 or more, an appropriate tensile stress is applied at the time of cleaving the semiconductor wafer, so that the semiconductor wafer can be cleaved and the semiconductor elements can be spaced apart.
  • the dicing sheet of the present invention preferably has the following properties. That is, the tensile stress when stretched 6% in the MD direction at 23 ° C. is 1.5 N / mm 2 or more. When it is 1.5 N / mm 2 or more, an appropriate tensile stress is applied at the time of cleaving the semiconductor wafer, so that the semiconductor wafer can be cleaved and the semiconductor elements can be spaced apart.
  • the thickness of the dicing sheet of the present invention is preferably 40 ⁇ m to 200 ⁇ m.
  • the dicing sheet of the present invention usually comprises a base material and an adhesive layer disposed on the base material.
  • the present invention also relates to a dicing die-bonding film comprising a dicing sheet and an adhesive layer disposed on the pressure-sensitive adhesive layer.
  • the glass transition temperature of the adhesive layer is preferably 0 ° C. or higher.
  • the pressure-sensitive adhesive layer includes a central portion in contact with the adhesive layer and a peripheral portion disposed around the central portion.
  • the present invention also includes a step of preparing the divided body, a step of dividing the divided wafer and the adhesive layer from the modified region by expanding the dicing sheet, and a step of dividing the divided wafer and the adhesive layer. And a step of heating a peripheral portion later.
  • the divided body includes a dicing die-bonding film and a divided wafer disposed on the adhesive layer.
  • the divided wafer has a modified region.
  • the dicing sheet 1 includes a base material 11 and an adhesive layer 12 arranged on the base material 11.
  • Dicing sheet 1 has the following properties. That is, it shrinks by heating at 100 ° C. for 1 minute, and the second length in the MD direction after heating is 95% or less with respect to the first length 100% in the MD (Machine Direction) direction before heating.
  • the second length is preferably 96% or less with respect to the first length of 100%.
  • the second length is, for example, 50% or more with respect to the first length of 100%.
  • the value of the ratio of the second length to the first length can be controlled by the material of the base material 11 and the film forming method of the base material 11. Especially, the influence which the film forming method of the base material 11 has on the value of the ratio of the second length to the first length is great. For example, by stretching the substrate 11, the value of the ratio of the second length to the first length can be reduced.
  • the dicing sheet 1 preferably has the following properties. That is, the tensile stress when stretched by 3% in the MD direction at 23 ° C. is preferably 1 N / mm 2 or more. When it is 1 N / mm 2 or more, an appropriate tensile stress is applied at the time of cleaving the semiconductor wafer, so that the semiconductor wafer can be cleaved and the semiconductor elements can be spaced apart. In addition, the distance between the semiconductor elements can be maintained.
  • the upper limit of the tensile stress when extending 3% in the MD direction at 23 ° C. is, for example, 15 N / mm 2 .
  • the dicing sheet 1 preferably has the following properties. That is, the tensile stress when stretched 6% in the MD direction at 23 ° C. is preferably 1.5 N / mm 2 or more. When it is 1.5 N / mm 2 or more, an appropriate tensile stress is applied at the time of cleaving the semiconductor wafer, so that the semiconductor wafer can be cleaved and the semiconductor elements can be spaced apart. In addition, the distance between the semiconductor elements can be maintained.
  • the upper limit of the tensile stress when extending 6% in the MD direction at 23 ° C. is, for example, 20 N / mm 2 .
  • the thickness of the dicing sheet 1 is preferably 40 ⁇ m or more, more preferably 60 ⁇ m or more. On the other hand, the thickness of the dicing sheet 1 is preferably 200 ⁇ m or less, more preferably 180 ⁇ m or less.
  • the thickness of the substrate 11 is preferably 50% or more, more preferably 70% or more.
  • the thickness of the base material 11 is preferably 98% or less, more preferably 95% or less.
  • the substrate 11 examples include a polyethylene terephthalate film, a polyethylene film, a polystyrene film, a polypropylene film, a polyamide film, a polyurethane film, a polyvinylidene chloride film, a polyvinyl chloride film, an ethylene vinyl acetate copolymer film, and an ethylene-acrylic ester.
  • a copolymer film, a polyvinyl chloride film, etc. are mentioned.
  • an unstretched film As the substrate 11, an unstretched film, a uniaxially stretched film, a biaxially stretched film, or the like can be used. Among these, an unstretched film is preferable because it has no anisotropy.
  • the structure of the base material 11 includes a single layer, a multilayer, and the like.
  • the surface of the base material 11 is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers.
  • a physical treatment or a coating treatment with a primer for example, an adhesive substance described later can be performed.
  • the pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 12 is not particularly limited, and for example, a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used.
  • a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive
  • acrylic adhesives based on acrylic polymers are used as the base polymer from the standpoint of cleanability of electronic components that are difficult to contaminate such as semiconductor wafers and glass with organic solvents such as ultrapure water and alcohol. preferable.
  • acrylic polymer examples include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Pentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester, Straight chain or branched chain alkyl esters having 1 to 30 carbon atoms, particularly 4 to 18 carbon atoms, such as octadecyl ester and ei
  • the acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. May be.
  • Such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Sti Contains sulfonic acid groups such as ethylene sulfonic acid, allyl s
  • a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary.
  • examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is
  • the acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization.
  • the polymerization can be carried out by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like. From the viewpoint of preventing contamination of a clean adherend, it is preferable that the content of the low molecular weight substance is small. From this point, the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3 million.
  • an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer.
  • the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, or a melamine crosslinking agent and reacting them.
  • a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, or a melamine crosslinking agent and reacting them.
  • the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked and further depending on the intended use as an adhesive. Generally, it is preferable to add about 5 parts by weight or less, more preferably 0.1 to 5 parts by weight, with respect to 100 parts by weight of the base polymer.
  • additives such as various conventionally known tackifiers and anti-aging agents may be used for the pressure-sensitive adhesive, if necessary,
  • the pressure-sensitive adhesive layer 12 can be formed of a radiation curable pressure-sensitive adhesive.
  • the radiation curable pressure-sensitive adhesive can easily reduce its adhesive strength by increasing the degree of crosslinking by irradiation with radiation such as ultraviolet rays.
  • the radiation curable pressure-sensitive adhesive those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation.
  • the radiation curable pressure-sensitive adhesive include an addition-type radiation curable pressure-sensitive adhesive in which a radiation-curable monomer component or oligomer component is blended with a general pressure-sensitive pressure-sensitive adhesive such as the acrylic pressure-sensitive adhesive or rubber-based pressure-sensitive adhesive. An agent can be illustrated.
  • Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol. Stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, and the like.
  • the radiation curable oligomer component examples include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a molecular weight in the range of about 100 to 30000 are suitable.
  • the compounding amount of the radiation-curable monomer component or oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the adhesive strength of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of a base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
  • the radiation-curable pressure-sensitive adhesive has a carbon-carbon double bond in the polymer side chain, main chain, or main chain terminal as a base polymer.
  • Intrinsic radiation curable pressure sensitive adhesives using Intrinsic radiation curable adhesives do not need to contain oligomer components, which are low molecular components, or do not contain many, so the oligomer components do not move through the adhesive over time and are stable. It is preferable because an adhesive layer having a layered structure can be formed.
  • the base polymer having a carbon-carbon double bond those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation.
  • those having an acrylic polymer as a basic skeleton are preferable.
  • the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
  • the method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted.
  • the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design.
  • a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond.
  • combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups.
  • a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction.
  • the functional group may be on either side of the acrylic polymer and the compound as long as the combination of these functional groups generates an acrylic polymer having the carbon-carbon double bond.
  • it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group.
  • examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, and the like.
  • acrylic polymer those obtained by copolymerizing the above-mentioned exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like are used.
  • the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the radiation curable monomer does not deteriorate the characteristics.
  • Components and oligomer components can also be blended.
  • the radiation-curable oligomer component is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight, based on 100 parts by weight of the base polymer.
  • the radiation curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like.
  • the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, ⁇ -hydroxy- ⁇ , ⁇ '-dimethylacetophenone, 2-methyl-2-hydroxypropio ⁇ -ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalene
  • the radiation curable pressure-sensitive adhesive examples include photopolymerizable compounds such as an addition polymerizable compound having two or more unsaturated bonds and an alkoxysilane having an epoxy group disclosed in JP-A-60-196956. And rubber-based pressure-sensitive adhesives and acrylic pressure-sensitive adhesives containing photopolymerization initiators such as carbonyl compounds, organic sulfur compounds, peroxides, amines, and onium salt-based compounds.
  • a compound that is colored by irradiation with radiation may be contained as necessary.
  • a compound to be colored in the pressure-sensitive adhesive layer 12 by irradiation with radiation By including a compound to be colored in the pressure-sensitive adhesive layer 12 by irradiation with radiation, only the irradiated portion can be colored.
  • the compound that is colored by irradiation with radiation is a colorless or light color compound before irradiation with radiation, but becomes a color by irradiation with radiation, and examples thereof include leuco dyes.
  • the use ratio of the compound colored by radiation irradiation can be set as appropriate.
  • the dicing die-bonding film 10 includes a dicing sheet 1 and an adhesive layer 3 disposed on the pressure-sensitive adhesive layer 12.
  • the pressure-sensitive adhesive layer 12 includes a central portion 12a in contact with the adhesive layer 3 and a peripheral portion 12b arranged around the central portion 12a.
  • the central portion 12a is a portion cured by radiation irradiation.
  • the adhesive layer 3 has thermosetting properties.
  • the glass transition temperature of the adhesive layer 3 is preferably 0 ° C. or higher, more preferably 10 ° C. or higher. When the temperature is 0 ° C. or higher, the adhesive layer 3 can be easily divided in a low temperature (for example, 0 ° C. or lower) environment.
  • the upper limit of the glass transition temperature of the adhesive layer 3 is, for example, 100 ° C.
  • the glass transition temperature of the adhesive layer 3 can be controlled by the glass transition temperature of the acrylic resin.
  • the adhesive layer 3 preferably contains a thermoplastic resin.
  • Thermoplastic resins include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, thermoplasticity. Examples thereof include polyimide resins, polyamide resins such as 6-nylon and 6,6-nylon, phenoxy resins, acrylic resins, saturated polyester resins such as PET and PBT, polyamideimide resins, and fluorine resins. Of these thermoplastic resins, an acrylic resin that has few ionic impurities and high heat resistance and can ensure the reliability of the semiconductor element is particularly preferable.
  • the acrylic resin is not particularly limited, and one or more of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms, is used as a component. And a polymer (acrylic copolymer).
  • alkyl group examples include a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2- Examples include ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, and dodecyl group.
  • the other monomer forming the polymer is not particularly limited, and for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid Or a carboxyl group-containing monomer such as crotonic acid, an acid anhydride monomer such as maleic anhydride or itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (meth ) 4-hydroxybutyl acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4 -Hydroxymethyl cycle Hexyl) -hydroxyl group-containing monomers such as methyl acrylate, styrene sulfonic
  • acrylic resins those having a weight average molecular weight of 100,000 or more are preferable, those having 300,000 to 3,000,000 are more preferable, and those having 500,000 to 2,000,000 are more preferable. It is because it is excellent in adhesiveness and heat resistance in the said numerical range.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • the adhesive layer 3 preferably contains a thermosetting resin. Thereby, thermal stability can be improved.
  • thermosetting resin examples include phenol resin, amino resin, unsaturated polyester resin, epoxy resin, polyurethane resin, silicone resin, and thermosetting polyimide resin.
  • an epoxy resin containing a small amount of ionic impurities that corrode semiconductor elements is preferable.
  • curing agent of an epoxy resin a phenol resin is preferable.
  • the epoxy resin is not particularly limited.
  • bisphenol A type bisphenol F type, bisphenol S type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol AF type, biphenyl type, naphthalene type, fluorene type, phenol novolac type.
  • Bifunctional epoxy resins such as ortho-cresol novolak type, trishydroxyphenylmethane type, tetraphenylolethane type, etc., and epoxy resins such as hydantoin type, trisglycidyl isocyanurate type, or glycidylamine type are used.
  • novolac type epoxy resins novolac type epoxy resins, biphenyl type epoxy resins, trishydroxyphenylmethane type resins or tetraphenylolethane type epoxy resins are particularly preferred. This is because these epoxy resins are rich in reactivity with a phenol resin as a curing agent and are excellent in heat resistance.
  • the phenol resin acts as a curing agent for the epoxy resin.
  • a novolac type phenol resin such as a phenol novolak resin, a phenol aralkyl resin, a cresol novolak resin, a tert-butylphenol novolak resin, a nonylphenol novolak resin, or a resol type phenol resin.
  • polyoxystyrene such as polyparaoxystyrene.
  • phenol novolac resins and phenol aralkyl resins are particularly preferred. This is because the connection reliability of the semiconductor device can be improved.
  • the mixing ratio of the epoxy resin and the phenol resin is preferably such that, for example, the hydroxyl group in the phenol resin is 0.5 to 2.0 equivalents per equivalent of the epoxy group in the epoxy resin component. More preferred is 0.8 to 1.2 equivalents. That is, if the blending ratio of both is out of the above range, sufficient curing reaction does not proceed and the properties of the cured product are likely to deteriorate.
  • the total content of the epoxy resin and the phenol resin is preferably 100 parts by weight to 1300 parts by weight with respect to 100 parts by weight of the acrylic resin.
  • the adhesive layer 3 is previously crosslinked to some extent, it is preferable to add a polyfunctional compound that reacts with a functional group at the molecular chain end of the polymer as a crosslinking agent.
  • a polyfunctional compound that reacts with a functional group at the molecular chain end of the polymer as a crosslinking agent.
  • adopted as a crosslinking agent are polyisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, p-phenylene diisocyanate, 1,5-naphthalene diisocyanate, adducts of polyhydric alcohol and diisocyanate.
  • the addition amount of the crosslinking agent is preferably 0.05 to 7 parts by weight with respect to 100 parts by weight of the polymer. When the amount of the cross-linking agent is more than 7 parts by weight, the adhesive force is lowered, which is not preferable. On the other hand, if it is less than 0.05 parts by weight, the cohesive force is insufficient, which is not preferable. Moreover, you may make it include other polyfunctional compounds, such as an epoxy resin, together with such a polyisocyanate compound as needed.
  • an inorganic filler can be appropriately blended in the adhesive layer 3 according to its use.
  • the blending of the inorganic filler makes it possible to impart conductivity, improve thermal conductivity, adjust the elastic modulus, and the like.
  • examples of inorganic fillers include silica, clay, gypsum, calcium carbonate, barium sulfate, alumina oxide, beryllium oxide, silicon carbide, silicon nitride and other ceramics, aluminum, copper, silver, gold, nickel, chromium, lead, Examples thereof include various inorganic powders made of metals such as tin, zinc, palladium, solder, or alloys, and other carbon.
  • the adhesive layer 3 preferably contains a thermosetting catalyst.
  • the content of the thermosetting catalyst is preferably 0.01 to 3 parts by weight and more preferably 0.05 to 1 part by weight with respect to 100 parts by weight of the acrylic resin.
  • thermosetting catalyst is not particularly limited, and examples thereof include imidazole compounds, triphenylphosphine compounds, amine compounds, triphenylborane compounds, and trihalogenborane compounds.
  • imidazole compounds examples include 2-methylimidazole (trade name; 2MZ), 2-undecylimidazole (trade name; C11Z), 2-heptadecylimidazole (trade name; C17Z), and 1,2-dimethylimidazole (trade name).
  • the triphenylphosphine compound is not particularly limited, and examples thereof include triorganophosphine such as triphenylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, and diphenyltolylphosphine.
  • triorganophosphine such as triphenylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, and diphenyltolylphosphine.
  • Tetraphenylphosphonium bromide (trade name; TPP-PB), methyltriphenylphosphonium (trade name; TPP-MB), methyltriphenylphosphonium chloride (trade name; TPP-MC), methoxymethyltriphenylphosphonium (trade name; TPP-MOC), benzyltriphenylphosphonium chloride (trade name: TPP-ZC), etc. (all manufactured by Hokuko Chemical Co., Ltd.).
  • the triphenylborane compound is not particularly limited, and examples thereof include tri (p-methylphenyl) phosphine.
  • the triphenylborane compound further includes those having a triphenylphosphine structure.
  • the compound having the triphenylphosphine structure and the triphenylborane structure is not particularly limited.
  • tetraphenylphosphonium tetraphenylborate (trade name; TPP-K), tetraphenylphosphonium tetra-p-triborate (trade name; TPP-MK), benzyltriphenylphosphonium tetraphenylborate (trade name; TPP-ZK), triphenylphosphine triphenylborane (trade name; TPP-S), and the like (all manufactured by Hokuko Chemical Co., Ltd.).
  • the amino compound is not particularly limited, and examples thereof include monoethanolamine trifluoroborate (manufactured by Stella Chemifa Corporation), dicyandiamide (manufactured by Nacalai Tesque Corporation), and the like.
  • the trihalogen borane-based compound is not particularly limited, and examples thereof include trichloroborane.
  • additives can be appropriately blended in the adhesive layer 3 as necessary.
  • other additives include flame retardants, silane coupling agents, ion trapping agents, and the like.
  • flame retardant include antimony trioxide, antimony pentoxide, brominated epoxy resin, and the like.
  • silane coupling agent include ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, and the like.
  • the ion trapping agent include hydrotalcites and bismuth hydroxide.
  • the adhesive layer 3 can be manufactured by a usual method. For example, an adhesive composition solution containing each of the above components is prepared, and the adhesive composition solution is applied on a base separator so as to have a predetermined thickness to form a coating film, and then the coating film is dried. Thus, the adhesive layer 3 can be manufactured.
  • the solvent used in the adhesive composition solution is not particularly limited, but an organic solvent capable of uniformly dissolving, kneading or dispersing the above components is preferable.
  • organic solvent capable of uniformly dissolving, kneading or dispersing the above components is preferable.
  • examples thereof include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, xylene, and the like.
  • the application method is not particularly limited. Examples of the solvent coating method include a die coater, a gravure coater, a roll coater, a reverse coater, a comma coater, a pipe doctor coater, and screen printing. Of these, a die coater is preferable in terms of high uniformity of coating thickness.
  • polyethylene terephthalate (PET), polyethylene, polypropylene, a plastic film or paper surface-coated with a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent can be used.
  • a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent
  • Examples of the method for applying the adhesive composition solution include roll coating, screen coating, and gravure coating.
  • the drying conditions for the coating film are not particularly limited, and for example, the drying can be performed at a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes.
  • a method for producing the adhesive layer 3 for example, a method of producing the adhesive layer 3 by mixing the respective components with a mixer and press-molding the obtained mixture is also suitable.
  • a planetary mixer etc. are mentioned as a mixer.
  • the thickness of the adhesive layer 3 is not particularly limited, but is preferably 5 ⁇ m or more, and more preferably 15 ⁇ m or more.
  • the thickness of the adhesive layer 3 is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the adhesive layer 3 can be used as a die attach film for bonding an adherend such as a lead frame and a semiconductor element.
  • adherend such as a lead frame and a semiconductor element.
  • the adherend include a lead frame, an interposer, and a semiconductor element.
  • the adhesive layer 3 is preferably protected by a separator (not shown).
  • the separator has a function as a protective material that protects the adhesive layer 3 until it is put to practical use.
  • the separator is peeled off when the semiconductor wafer is attached to the adhesive layer 3.
  • PET polyethylene terephthalate
  • polyethylene polyethylene
  • polypropylene polypropylene
  • a plastic film or paper whose surface is coated with a release agent such as a fluorine release agent or a long-chain alkyl acrylate release agent.
  • the dicing die bond film 10 can be manufactured by a normal method.
  • the dicing die-bonding film 10 can be manufactured by bonding the dicing sheet 1 and the adhesive layer 3 together.
  • the dicing die bond film 10 can be used for manufacturing a semiconductor device.
  • the condensing point is aligned inside the semiconductor wafer 4P, and the laser beam 100 is irradiated along the lattice-shaped division planned line 4L, thereby forming the modified region 41 inside the semiconductor wafer 4P. Thereby, the divided wafer 4 is obtained.
  • the irradiation conditions of the laser beam 100 can be adjusted as appropriate within the range of the following conditions, for example.
  • B Condensing lens Magnification 100 times or less NA 0.55 Transmittance with respect to laser light wavelength: 100% or less
  • the divided wafer 4 includes a modified region 41.
  • the divided wafer 4 further includes semiconductor elements 5A, 5B, 5C,.
  • both sides are defined by the front surface (Otemen) and the back surface facing the front surface.
  • the surface is a surface on which a circuit is provided.
  • the back surface is a surface on which no circuit is provided.
  • the back surface of the divided wafer 4 is ground to make the divided wafer 4 thinner.
  • the divided wafer 4 is pressure-bonded to the adhesive layer 3 to obtain a laminate 21.
  • the laminate 21 includes the dicing die bond film 10 and the divided wafer 4 disposed on the adhesive layer 3.
  • a dicing ring 31 is attached to the peripheral portion 12b.
  • the dicing sheet 1 is expanded by raising the push-up portion 33 disposed below the laminated body 21, and the divided wafer 4 and the adhesive layer 3 are divided from the modified region 41 as a starting point.
  • positioned on the dicing sheet 1 and the adhesive layer 12 is obtained.
  • the die bonding chip 2A includes an adhesive film 22A and a semiconductor element 5A disposed on the adhesive film 22A.
  • the die bonding chip 2B includes an adhesive film 22B and a semiconductor element 5B arranged on the adhesive film 22B.
  • the die bonding chip 2C includes an adhesive film 22C and a semiconductor element 5C disposed on the adhesive film 22C.
  • the die bonding chip 2D includes an adhesive film 22D and a semiconductor element 5D arranged on the adhesive film 22D.
  • the die bonding chip 2E includes an adhesive film 22E and a semiconductor element 5E disposed on the adhesive film 22E.
  • the die-bonding chip 2F includes an adhesive film 22F and a semiconductor element 5F disposed on the adhesive film 22F.
  • the die-bonding chip 2G includes an adhesive film 22G and a semiconductor element 5G disposed on the adhesive film 22G.
  • the die bonding chip 2H includes an adhesive film 22H and a semiconductor element 5H disposed on the adhesive film 22H.
  • the adhesive films 22A, 22B, 22C,..., 22H are in contact with the pressure-sensitive adhesive layer 12.
  • the dicing sheet 1 is expanded at 10 ° C. or lower. More preferably, the expansion is performed at 0 ° C. or less.
  • the adhesive bond layer 3 can be parted easily as it is 0 degrees C or less.
  • the lower limit of the temperature is not particularly limited, and is ⁇ 20 ° C., for example.
  • the speed at which the push-up portion 33 rises is preferably 0.1 mm / second or more, more preferably 1 mm / second or more. If it is 0.1 mm / second or more, it can be easily divided. On the other hand, the upper limit of the expanding speed is not particularly limited.
  • the push-up portion 33 is lowered.
  • sagging occurs in the peripheral portion 12b.
  • the dicing sheet 1 is expanded by raising the suction table 32 arranged below the divided structure 51, and the dicing sheet 1 is sucked by the suction table 32 while maintaining the expansion.
  • the suction table 32 is lowered while the dicing sheet 1 is sucked by the suction table 32.
  • the temperature of the hot air is preferably 220 ° C. or higher, more preferably 250 ° C. or higher.
  • the peripheral part 12b can be easily contracted as it is 220 degreeC or more.
  • the hot air is heated at a temperature of preferably 400 ° C. or lower, more preferably 300 ° C. or lower. When the temperature is 400 ° C. or lower, the dicing sheet 1 can be prevented from being damaged.
  • the pressure-sensitive adhesive layer 12 is an ultraviolet curable type
  • the pressure-sensitive adhesive layer 12 is cured by irradiating the pressure-sensitive adhesive layer 12 with ultraviolet rays.
  • tip 2 for die-bonding of the adhesive layer 12 can be reduced.
  • Conditions such as irradiation intensity and irradiation time at the time of ultraviolet irradiation are not particularly limited, and may be set as necessary.
  • the pressure-sensitive adhesive layer 12 is not an ultraviolet curable type, it is not necessary to irradiate the pressure-sensitive adhesive layer 12 with ultraviolet rays.
  • the pickup method is not particularly limited, and various conventionally known methods can be employed. For example, there is a method of pushing up the die bonding chip 2A with a needle and picking up the pushed up die bonding chip 2A with a pickup device.
  • the die bonding chip 2A is pressure-bonded to the adherend 6 to obtain an adherend 61 with a semiconductor element.
  • the adherend 61 with a semiconductor element includes an adherend 6, an adhesive film 22 ⁇ / b> A disposed on the adherend 6, and a semiconductor element 5 ⁇ / b> A disposed on the adhesive film 22 ⁇ / b> A.
  • the crimping temperature is preferably 80 ° C. or higher, more preferably 90 ° C. or higher.
  • the pressure bonding temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower.
  • the adhesive film 22A is thermally cured, and the semiconductor element 5A is fixed to the adherend 6.
  • thermally cure the adhesive film 22A by heating the adherend 61 with a semiconductor element under pressure.
  • thermally curing the adhesive film 22A under pressure By thermally curing the adhesive film 22A under pressure, voids existing between the adhesive film 22A and the adherend 6 can be easily eliminated.
  • Examples of the method of heating under pressure include a method of heating the adherend 61 with a semiconductor element arranged in a chamber filled with an inert gas.
  • the pressure of the pressurized atmosphere is preferably 0.5 kg / cm 2 (4.9 ⁇ 10 ⁇ 2 MPa) or more, more preferably 1 kg / cm 2 (9.8 ⁇ 10 ⁇ 2 MPa) or more, and further preferably 5 kg. / Cm 2 (4.9 ⁇ 10 ⁇ 1 MPa) or more. If it is 0.5 kg / cm 2 or more, voids existing between the adhesive film 22A and the adherend 6 can be easily eliminated.
  • the pressure of the pressurized atmosphere is preferably 20kg / cm 2 (1.96MPa), more preferably 18kg / cm 2 (1.77MPa) or less, more preferably not more than 15kg / cm 2 (1.47MPa).
  • the protrusion of the adhesive film 22A due to excessive pressurization can be suppressed as it is 20 kg / cm 2 or less.
  • the heating temperature at the time of heating under pressure is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, further preferably 120 ° C. or higher, and particularly preferably 170 ° C. or higher.
  • the adhesive film 22A can have an appropriate hardness, and voids can be effectively eliminated by pressure curing.
  • the heating temperature is preferably 260 ° C. or lower, more preferably 200 ° C. or lower, more preferably 180 ° C. or lower. When the temperature is 260 ° C. or lower, the adhesive film 22A can be prevented from being decomposed.
  • the heating time is preferably 0.1 hour or longer, more preferably 0.2 hour or longer, and further preferably 0.5 hour or longer. When it is 0.1 hour or longer, the effect of pressurization can be sufficiently obtained.
  • the heating time is preferably 24 hours or less, more preferably 3 hours or less, and even more preferably 1 hour or less.
  • a wire bonding step of electrically connecting the tip of the terminal portion (inner lead) of the adherend 6 and an electrode pad (not shown) on the semiconductor element 5A with a bonding wire 7 is performed.
  • the bonding wire 7 for example, a gold wire, an aluminum wire or a copper wire is used.
  • the temperature during wire bonding is preferably 80 ° C. or higher, more preferably 120 ° C. or higher, and the temperature is preferably 250 ° C. or lower, more preferably 175 ° C. or lower.
  • the heating time is several seconds to several minutes (for example, 1 second to 1 minute).
  • the connection is performed by a combination of vibration energy by ultrasonic waves and pressure energy by pressurization while being heated so as to be within the temperature range.
  • a sealing step of sealing the semiconductor element 5A with the sealing resin 8 is performed.
  • This step is performed to protect the semiconductor element 5 ⁇ / b> A and the bonding wire 7 mounted on the adherend 6.
  • This step is performed by molding a sealing resin with a mold.
  • the sealing resin 8 for example, an epoxy resin is used.
  • the heating temperature at the time of resin sealing is preferably 165 ° C. or higher, more preferably 170 ° C. or higher, and the heating temperature is preferably 185 ° C. or lower, more preferably 180 ° C. or lower.
  • the sealing resin 8 which is insufficiently cured in the sealing process can be completely cured.
  • the heating temperature can be set as appropriate.
  • Modification 1 In the first modification, the semiconductor wafer 4P is pressure-bonded to the dicing die-bonding film 10. Next, the modified region 41 is formed inside the semiconductor wafer 4 ⁇ / b> P disposed on the dicing die bond film 10 to obtain the divided wafer 4.
  • Modification 2 In Modification 2, the wire bonding step is performed without thermosetting the adhesive film 22A.
  • the peripheral part 12b is a part cured by radiation irradiation.
  • the central portion 12a is a portion that is not cured by radiation irradiation.
  • the manufacturing method of the semiconductor device according to the first embodiment is a process of preparing the divided body 21 including the dicing die bond film 10 and the divided wafer 4 including the modified region 41 disposed on the adhesive layer 3. Then, by expanding the dicing sheet 1, after the step of dividing the divided wafer 4 and the adhesive layer 3 from the modified region 41 and the step of dividing the divided wafer 4 and the adhesive layer 3, the peripheral portion 12 b Heating.
  • the manufacturing method of the semiconductor device of Embodiment 1 further includes a step of pressure bonding the die bonding chip 2A obtained by the step of dividing the divided wafer 4 and the adhesive layer 3 to the adherend 6 and the like.
  • the step of preparing the divided body 21 includes a step of forming the divided wafer 4.
  • the step of forming the divided wafer 4 includes a step of forming the modified region 41 inside the semiconductor wafer 4P by irradiating the laser beam 100 along the planned division line 4L.
  • Base material Fanclaire NRB # 115 (ethylene vinyl acetate copolymer film) manufactured by Gunze Base material B: Fanclaire NRB # 135 (ethylene vinyl acetate copolymer film) manufactured by Gunze Base material C: PE-5 (ethylene-acrylic acid ester copolymer film) manufactured by Aussie Film Base material D: HL film (polyvinyl chloride film) manufactured by Ron Seal Industry Co., Ltd.
  • Substrate E PP-1 (polypropylene film) manufactured by Aussie Film Base material
  • F Polypropylene (80%) polyethylene (20%) two-layer film
  • Base material G Polypropylene (80%) polyethylene (20%) two-layer film
  • Example 1 [Production of dicing die bond film] (Example 1) In a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer, and a stirrer, 86.4 parts of 2-ethylhexyl acrylate (hereinafter also referred to as “2EHA”), 2-hydroxyethyl acrylate ( Hereinafter, it is also referred to as “HEA”.) 13.6 parts, 0.2 part of benzoyl peroxide, and 65 parts of toluene are put into a nitrogen gas stream and polymerized at 61 ° C. for 6 hours to obtain acrylic polymer B. Obtained.
  • 2EHA 2-ethylhexyl acrylate
  • HOA 2-hydroxyethyl acrylate
  • acrylic polymer B 14.6 parts of 2-methacryloyloxyethyl isocyanate (hereinafter also referred to as “MOI”) was added, and an addition reaction treatment was carried out in an air stream at 50 ° C. for 48 hours to obtain acrylic polymer B ′.
  • MOI 2-methacryloyloxyethyl isocyanate
  • the pressure-sensitive adhesive composition solution was applied on a release treatment film and dried by heating at 120 ° C.
  • the obtained dicing sheet has the adhesive layer arrange
  • Acrylic resin, epoxy resin A, epoxy resin B, phenol resin, silica, and catalyst were dissolved in methyl ethyl ketone at a ratio shown in Table 2 to prepare an adhesive composition solution having a concentration of 40 to 50% by weight.
  • Acrylic resin SG-708-6 (Tg: 4 ° C) manufactured by Nagase ChemteX Corporation
  • Epoxy resin A KI-3000 (solid) manufactured by Toto Kasei Co., Ltd.
  • Epoxy resin B JER YL980 (liquid) manufactured by Mitsubishi Chemical Corporation
  • Phenolic resin MEH-7800H (solid) manufactured by Meiwa Kasei Co., Ltd.
  • Silica SE-2050MC manufactured by Admatechs Co., Ltd. (average particle size: 0.5 ⁇ m)
  • Catalyst TPP-K manufactured by Hokuko Chemical Co., Ltd.
  • the prepared adhesive composition solution was applied to a 50 ⁇ m-thick polyethylene terephthalate film subjected to silicone release treatment, and then dried at 130 ° C. for 2 minutes to prepare an adhesive coating film having a thickness of 30 ⁇ m. A circular adhesive layer having a diameter of 330 mm was cut out from the adhesive coating film.
  • a circular adhesive layer was bonded to the pressure-sensitive adhesive layer to prepare a dicing die-bonding film.
  • Example 2 A dicing die-bonding film was produced in the same manner as in Example 1 except that the base material B was used instead of the base material A.
  • Example 3 A dicing die-bonding film was produced in the same manner as in Example 1 except that the substrate C was used instead of the substrate A.
  • Example 4 A dicing die-bonding film was produced in the same manner as in Example 1 except that the substrate D was used instead of the substrate A.
  • Example 1 A dicing die-bonding film was produced in the same manner as in Example 1 except that the substrate E was used instead of the substrate A.
  • Comparative Example 2 A dicing die-bonding film was produced in the same manner as in Example 1 except that the base material F was used instead of the base material A.
  • a dicing sheet was obtained by removing the adhesive layer from the dicing die-bonding film.
  • a tensile tester Autograph, manufactured by Shimadzu Corporation
  • a tensile test was performed under the conditions of 23 ° C., a tensile speed of 300 mm / min, and a distance between chucks of 100 mm. I read it.
  • a dicing sheet was obtained by removing the adhesive layer from the dicing die-bonding film.
  • a tensile tester Autograph, manufactured by Shimadzu Corporation
  • a tensile test was performed under the conditions of 23 ° C., a tensile speed of 300 mm / min, and a distance between chucks of 100 mm. I read it.
  • the focusing point is aligned with the interior of a 12 inch semiconductor wafer, and the surface of the semiconductor wafer (10 mm ⁇ 10 mm) along the planned dividing line (10 mm ⁇ 10 mm) Otemen) or laser light was irradiated from the back side to form a modified region inside the semiconductor wafer. Thereafter, a protective tape for back grinding was bonded to the surface of the semiconductor wafer, and the back surface was ground using a disco back grinder DGP8760 so that the thickness of the semiconductor wafer was 30 ⁇ m.
  • the laser light irradiation conditions are shown below.
  • a sample was obtained by cleaving the semiconductor wafer and heat shrinking the dicing sheet. That is, first, the semiconductor wafer was cleaved by a cool expander unit under the conditions of an expansion temperature of ⁇ 15 ° C., an expansion speed of 200 mm / second, and an expansion amount of 12 mm. Then, the sample was obtained by heat-shrinking the dicing sheet with a heat expander unit under the conditions of an expansion amount of 10 mm, a heat temperature of 250 ° C., an air volume of 40 L / min, a heat distance of 20 mm, and a rotation speed of 3 ° / sec. The sample was evaluated for pickup using a die bonder SPA-300 manufactured by Shinkawa Co., Ltd.
  • the adhesive layer was laminated to a thickness of 300 ⁇ m under the condition of 60 ° C., and then a strip-shaped measurement piece having a length of 30 mm and a width of 10 mm was cut out.
  • RSA dynamic viscoelasticity measuring device
  • the storage elastic modulus and the loss elastic modulus at ⁇ 30 ° C. to 100 ° C. were measured as the distance between chucks of 22.5 mm, Measurement was performed under conditions of a frequency of 1 Hz and a heating rate of 10 ° C./min, and a glass transition temperature was obtained from the peak value of tan ⁇ .
  • Dicing die bond film 1 Dicing sheet 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H Die bonding chip 3 Adhesive layer 4P Semiconductor wafer 4L Divided line 4 Divided wafers 5A, 5B, 5C, 5D, 5E, 5F, 5G, 5H Semiconductor element 6 Substrate 7 Bonding wire 8 Sealing resin 11 Base material 12 Adhesive layer 12a Central part 12b Peripheral part 21 Laminated bodies 22A, 22B, 22C, 22D, 22E, 22F, 22G, 22H Adhesion Film 31 Dicing ring 32 Suction table 33 Push-up portion 41 Modified region 51 Divided structure 61 Substrate with semiconductor element 100 Laser beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Dicing (AREA)
  • Die Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided is a dicing sheet and a dicing/die-bonding film with which it is possible to eliminate sagging of the dicing sheet and to prevent contact between semiconductor elements. The present invention relates to a dicing sheet that contracts as a result of being heated for 1 minute at 100°C, with a second length in the MD direction after heating being 95% or less of 100% of a first length in the MD direction before heating. The dicing sheet is provided with a substrate, and a pressure-sensitive adhesive layer disposed on the substrate. The dicing/die-bonding film is provided with the dicing sheet, and an adhesive layer disposed on the pressure-sensitive adhesive layer.

Description

ダイシングシート、ダイシング・ダイボンドフィルム及び半導体装置の製造方法Dicing sheet, dicing die-bonding film, and semiconductor device manufacturing method
 本発明は、ダイシングシート、ダイシング・ダイボンドフィルム及び半導体装置の製造方法に関する。 The present invention relates to a dicing sheet, a dicing die-bonding film, and a method for manufacturing a semiconductor device.
 図13、図14に示すように、基材911及び基材911上に配置された粘着剤層912を有するダイシングシート901並びに粘着剤層912上に配置された接着剤層903を有するダイシング・ダイボンドフィルム910を用いる半導体装置の製造技術に関して、半導体素子905A、905B、905C、……、905H及び改質領域941を有するウエハ904を接着剤層903に圧着し、ダイシングシート901を拡張することにより、改質領域941を起点にウエハ904及び接着剤層903を分断する方法などが知られている(例えば、特許文献1、2参照)。 As shown in FIGS. 13 and 14, a dicing die bond having a base material 911 and a dicing sheet 901 having an adhesive layer 912 disposed on the base material 911 and an adhesive layer 903 disposed on the adhesive layer 912. Regarding the manufacturing technology of the semiconductor device using the film 910, by bonding the wafer 904 having the semiconductor elements 905A, 905B, 905C,..., 905H and the modified region 941 to the adhesive layer 903 and expanding the dicing sheet 901, A method of dividing the wafer 904 and the adhesive layer 903 starting from the modified region 941 is known (see, for example, Patent Documents 1 and 2).
特開2002-192370号公報JP 2002-192370 A 特開2003-338467号公報JP 2003-338467 A
 図15に示すように、拡張を解いた後、周辺部912bがたるむ。周辺部912bのたるみを放置すると、半導体素子905Aと半導体素子905B、半導体素子905Bと半導体素子905C、……半導体素子905Gと半導体素子905Hが接触することがある。 As shown in FIG. 15, the peripheral portion 912b sags after the expansion is solved. If the slack in the peripheral portion 912b is left unattended, the semiconductor elements 905A and 905B, the semiconductor elements 905B and 905C,..., May contact the semiconductor elements 905G and 905H.
 本発明は前記課題を解決し、たるみを取り除くことが可能で、半導体素子同士の接触を防止できるダイシングシートを提供することを目的とする。 An object of the present invention is to provide a dicing sheet that can solve the above-described problems and remove sagging and prevent contact between semiconductor elements.
 本発明は、100℃で1分加熱することにより収縮し、加熱前のMD方向の第1長さ100%に対して加熱後のMD方向の第2長さは95%以下であるダイシングシートに関する。第1長さ100%に対して第2長さは95%以下であるので、加熱によりたるみを取り除くことが可能で、半導体素子同士の接触を防止できる。 The present invention relates to a dicing sheet that shrinks when heated at 100 ° C. for 1 minute, and whose second length in the MD direction after heating is 95% or less with respect to the first length in the MD direction before heating of 100%. . Since the second length is 95% or less with respect to the first length of 100%, sagging can be removed by heating, and contact between the semiconductor elements can be prevented.
 本発明のダイシングシートは、好ましくは次の性質を備える。すなわち、23℃でMD方向に3%伸ばしたときの引張応力は1N/mm以上である。1N/mm以上であると、半導体ウェハ割断時に適度な引張応力がかかるので、半導体ウェハを割断可能で半導体素子同士の間隔をあけることができる。 The dicing sheet of the present invention preferably has the following properties. That is, the tensile stress when stretched by 3% in the MD direction at 23 ° C. is 1 N / mm 2 or more. When it is 1 N / mm 2 or more, an appropriate tensile stress is applied at the time of cleaving the semiconductor wafer, so that the semiconductor wafer can be cleaved and the semiconductor elements can be spaced apart.
 本発明のダイシングシートは、好ましくは次の性質を備える。すなわち、23℃でMD方向に6%伸ばしたときの引張応力は1.5N/mm以上である。1.5N/mm以上であると、半導体ウェハ割断時に適度な引張応力がかかるので、半導体ウェハを割断可能で半導体素子同士の間隔をあけることができる。 The dicing sheet of the present invention preferably has the following properties. That is, the tensile stress when stretched 6% in the MD direction at 23 ° C. is 1.5 N / mm 2 or more. When it is 1.5 N / mm 2 or more, an appropriate tensile stress is applied at the time of cleaving the semiconductor wafer, so that the semiconductor wafer can be cleaved and the semiconductor elements can be spaced apart.
 本発明のダイシングシートの厚みは、好ましくは40μm~200μmである。本発明のダイシングシートは、通常、基材及び基材上に配置された粘着剤層を備える。 The thickness of the dicing sheet of the present invention is preferably 40 μm to 200 μm. The dicing sheet of the present invention usually comprises a base material and an adhesive layer disposed on the base material.
 本発明はまた、ダイシングシートと、粘着剤層上に配置された接着剤層とを備えるダイシング・ダイボンドフィルムに関する。接着剤層のガラス転移温度は、好ましくは0℃以上である。好ましくは、粘着剤層が、接着剤層と接した中央部及び中央部の周辺に配置された周辺部を備える。 The present invention also relates to a dicing die-bonding film comprising a dicing sheet and an adhesive layer disposed on the pressure-sensitive adhesive layer. The glass transition temperature of the adhesive layer is preferably 0 ° C. or higher. Preferably, the pressure-sensitive adhesive layer includes a central portion in contact with the adhesive layer and a peripheral portion disposed around the central portion.
 本発明はまた、分割体を準備する工程と、ダイシングシートを拡張することにより、改質領域を起点に分割ウエハ及び接着剤層を分断する工程と、分割ウエハ及び接着剤層を分断する工程の後に、周辺部を加熱する工程とを含む半導体装置の製造方法に関する。分割体は、ダイシング・ダイボンドフィルム、及び接着剤層上に配置された分割ウエハを備える。分割ウエハが改質領域を備える。 The present invention also includes a step of preparing the divided body, a step of dividing the divided wafer and the adhesive layer from the modified region by expanding the dicing sheet, and a step of dividing the divided wafer and the adhesive layer. And a step of heating a peripheral portion later. The divided body includes a dicing die-bonding film and a divided wafer disposed on the adhesive layer. The divided wafer has a modified region.
ダイシングシートの概略断面図である。It is a schematic sectional drawing of a dicing sheet. ダイシング・ダイボンドフィルムの概略断面図である。It is a schematic sectional drawing of a dicing die-bonding film. レーザー光により半導体ウエハの内部に改質領域を形成する工程の概略斜視図である。It is a schematic perspective view of the process of forming a modification area | region inside a semiconductor wafer with a laser beam. 分割ウエハの概略断面図である。It is a schematic sectional drawing of a division wafer. 積層体の概略断面図である。It is a schematic sectional drawing of a laminated body. 積層体の概略断面図である。It is a schematic sectional drawing of a laminated body. 積層体をエキスパンドする工程の概略断面図である。It is a schematic sectional drawing of the process of expanding a laminated body. 分割構造体の概略断面図である。It is a schematic sectional drawing of a division structure. 分割構造体をエキスパンドする工程の概略断面図である。It is a schematic sectional drawing of the process of expanding a division structure. 分割構造体の概略断面図である。It is a schematic sectional drawing of a division structure. 半導体素子付き被着体の概略断面図である。It is a schematic sectional drawing of the to-be-adhered body with a semiconductor element. 半導体素子付き被着体の概略断面図である。It is a schematic sectional drawing of the to-be-adhered body with a semiconductor element. ダイシング・ダイボンドフィルム及びダイシング・ダイボンドフィルム上に配置されたウエハなどの概略断面図である。It is a schematic sectional drawing of the wafer etc. which are arrange | positioned on a dicing die-bonding film and a dicing die-bonding film. ダイシングシートを拡張することによってウエハ及び接着剤層を分断する工程の概略断面図である。It is a schematic sectional drawing of the process of parting a wafer and an adhesive bond layer by extending a dicing sheet. ダイシングシートなどの概略断面図である。It is schematic sectional drawing, such as a dicing sheet. 試験片の概略斜視図である。It is a schematic perspective view of a test piece.
 以下に実施形態を掲げ、本発明を詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited only to these embodiments.
 [実施形態1]
 (ダイシングシート1)
 図1に示すように、ダイシングシート1は、基材11及び基材11上に配置された粘着剤層12を備える。
[Embodiment 1]
(Dicing sheet 1)
As shown in FIG. 1, the dicing sheet 1 includes a base material 11 and an adhesive layer 12 arranged on the base material 11.
 ダイシングシート1は次の性質を備える。すなわち、100℃で1分加熱することにより収縮し、加熱前のMD(Machine Direction)方向の第1長さ100%に対して加熱後のMD方向の第2長さは95%以下である。第1長さ100%に対して第2長さは、好ましくは96%以下である。一方、第1長さ100%に対して第2長さは、例えば、50%以上である。 Dicing sheet 1 has the following properties. That is, it shrinks by heating at 100 ° C. for 1 minute, and the second length in the MD direction after heating is 95% or less with respect to the first length 100% in the MD (Machine Direction) direction before heating. The second length is preferably 96% or less with respect to the first length of 100%. On the other hand, the second length is, for example, 50% or more with respect to the first length of 100%.
 第2長さの第1長さに対する比の値は、基材11の材料、基材11の製膜方法によりコントロールできる。なかでも、基材11の製膜方法が、第2長さの第1長さに対する比の値に与える影響が大きい。例えば、基材11を延伸することにより、第2長さの第1長さに対する比の値を小さくすることができる。 The value of the ratio of the second length to the first length can be controlled by the material of the base material 11 and the film forming method of the base material 11. Especially, the influence which the film forming method of the base material 11 has on the value of the ratio of the second length to the first length is great. For example, by stretching the substrate 11, the value of the ratio of the second length to the first length can be reduced.
 ダイシングシート1は、好ましくは次の性質を備える。すなわち、23℃でMD方向に3%伸ばしたときの引張応力は、好ましくは1N/mm以上である。1N/mm以上であると、半導体ウェハ割断時に適度な引張応力がかかるので、半導体ウェハを割断可能で半導体素子同士の間隔をあけることができる。また、半導体素子同士の間隔を維持できる。23℃でMD方向に3%伸ばしたときの引張応力の上限は、例えば、15N/mmである。 The dicing sheet 1 preferably has the following properties. That is, the tensile stress when stretched by 3% in the MD direction at 23 ° C. is preferably 1 N / mm 2 or more. When it is 1 N / mm 2 or more, an appropriate tensile stress is applied at the time of cleaving the semiconductor wafer, so that the semiconductor wafer can be cleaved and the semiconductor elements can be spaced apart. In addition, the distance between the semiconductor elements can be maintained. The upper limit of the tensile stress when extending 3% in the MD direction at 23 ° C. is, for example, 15 N / mm 2 .
 ダイシングシート1は、好ましくは次の性質を備える。すなわち、23℃でMD方向に6%伸ばしたときの引張応力は、好ましくは1.5N/mm以上である。1.5N/mm以上であると、半導体ウェハ割断時に適度な引張応力がかかるので、半導体ウェハを割断可能で半導体素子同士の間隔をあけることができる。また、半導体素子同士の間隔を維持できる。23℃でMD方向に6%伸ばしたときの引張応力の上限は、例えば、20N/mmである。 The dicing sheet 1 preferably has the following properties. That is, the tensile stress when stretched 6% in the MD direction at 23 ° C. is preferably 1.5 N / mm 2 or more. When it is 1.5 N / mm 2 or more, an appropriate tensile stress is applied at the time of cleaving the semiconductor wafer, so that the semiconductor wafer can be cleaved and the semiconductor elements can be spaced apart. In addition, the distance between the semiconductor elements can be maintained. The upper limit of the tensile stress when extending 6% in the MD direction at 23 ° C. is, for example, 20 N / mm 2 .
 ダイシングシート1の厚みは、好ましくは40μm以上、より好ましくは60μm以上である。一方、ダイシングシート1の厚みは、好ましくは200μm以下、より好ましくは180μm以下である。 The thickness of the dicing sheet 1 is preferably 40 μm or more, more preferably 60 μm or more. On the other hand, the thickness of the dicing sheet 1 is preferably 200 μm or less, more preferably 180 μm or less.
 ダイシングシート1の厚みを100%としたとき、基材11の厚みは好ましくは50%以上、より好ましくは70%以上である。一方、基材11の厚みは好ましくは98%以下、より好ましくは95%以下である。 When the thickness of the dicing sheet 1 is 100%, the thickness of the substrate 11 is preferably 50% or more, more preferably 70% or more. On the other hand, the thickness of the base material 11 is preferably 98% or less, more preferably 95% or less.
 基材11としては、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリスチレンフィルム、ポリプロピレンフィルム、ポリアミドフィルム、ポリウレタンフィルム、ポリ塩化ビニリデンフィルム、ポリ塩化ビニルフィルム、エチレン酢酸ビニル共重合体フィルム、エチレン-アクリル酸エステル共重合体フィルム、ポリ塩化ビニルフィルムなどが挙げられる。 Examples of the substrate 11 include a polyethylene terephthalate film, a polyethylene film, a polystyrene film, a polypropylene film, a polyamide film, a polyurethane film, a polyvinylidene chloride film, a polyvinyl chloride film, an ethylene vinyl acetate copolymer film, and an ethylene-acrylic ester. A copolymer film, a polyvinyl chloride film, etc. are mentioned.
 基材11としては、無延伸フィルム、一軸延伸フィルム、二軸延伸フィルムなどを使用できる。なかでも、異方性がないという理由から、無延伸フィルムが好ましい。 As the substrate 11, an unstretched film, a uniaxially stretched film, a biaxially stretched film, or the like can be used. Among these, an unstretched film is preferable because it has no anisotropy.
 基材11の構造としては、単層、複層などが挙げられる。 The structure of the base material 11 includes a single layer, a multilayer, and the like.
 基材11の表面は、隣接する層との密着性、保持性などを高める為、慣用の表面処理、例えば、クロム酸処理、オゾン暴露、火炎暴露、高圧電撃暴露、イオン化放射線処理などの化学的又は物理的処理、下塗剤(例えば、後述する粘着物質)によるコーティング処理を施すことができる。 The surface of the base material 11 is chemically treated by conventional surface treatments such as chromic acid treatment, ozone exposure, flame exposure, high piezoelectric impact exposure, ionizing radiation treatment, etc. in order to improve adhesion and retention with adjacent layers. Alternatively, a physical treatment or a coating treatment with a primer (for example, an adhesive substance described later) can be performed.
 粘着剤層12の形成に用いる粘着剤としては特に制限されず、例えば、アクリル系粘着剤、ゴム系粘着剤などの一般的な感圧性接着剤を用いることができる。感圧性接着剤としては、半導体ウエハやガラスなどの汚染をきらう電子部品の超純水やアルコールなどの有機溶剤による清浄洗浄性などの点から、アクリル系ポリマーをベースポリマーとするアクリル系粘着剤が好ましい。 The pressure-sensitive adhesive used for forming the pressure-sensitive adhesive layer 12 is not particularly limited, and for example, a general pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive or a rubber-based pressure-sensitive adhesive can be used. As pressure-sensitive adhesives, acrylic adhesives based on acrylic polymers are used as the base polymer from the standpoint of cleanability of electronic components that are difficult to contaminate such as semiconductor wafers and glass with organic solvents such as ultrapure water and alcohol. preferable.
 アクリル系ポリマーとしては、例えば、(メタ)アクリル酸アルキルエステル(例えば、メチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、s-ブチルエステル、t-ブチルエステル、ペンチルエステル、イソペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、2-エチルヘキシルエステル、イソオクチルエステル、ノニルエステル、デシルエステル、イソデシルエステル、ウンデシルエステル、ドデシルエステル、トリデシルエステル、テトラデシルエステル、ヘキサデシルエステル、オクタデシルエステル、エイコシルエステルなどのアルキル基の炭素数1~30、特に炭素数4~18の直鎖状又は分岐鎖状のアルキルエステルなど)及び(メタ)アクリル酸シクロアルキルエステル(例えば、シクロペンチルエステル、シクロヘキシルエステルなど)の1種又は2種以上を単量体成分として用いたアクリル系ポリマーなどが挙げられる。なお、(メタ)アクリル酸エステルとはアクリル酸エステル及び/又はメタクリル酸エステルをいい、本発明の(メタ)とは全て同様の意味である。 Examples of the acrylic polymer include (meth) acrylic acid alkyl esters (for example, methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, s-butyl ester, t-butyl ester, pentyl ester, Pentyl ester, hexyl ester, heptyl ester, octyl ester, 2-ethylhexyl ester, isooctyl ester, nonyl ester, decyl ester, isodecyl ester, undecyl ester, dodecyl ester, tridecyl ester, tetradecyl ester, hexadecyl ester, Straight chain or branched chain alkyl esters having 1 to 30 carbon atoms, particularly 4 to 18 carbon atoms, such as octadecyl ester and eicosyl ester) and (Meth) acrylic acid cycloalkyl esters (e.g., cyclopentyl ester, cyclohexyl ester, etc.), etc. One or acrylic polymer using two or more of the monomer component thereof. In addition, (meth) acrylic acid ester means acrylic acid ester and / or methacrylic acid ester, and (meth) of the present invention has the same meaning.
 アクリル系ポリマーは、凝集力、耐熱性などの改質を目的として、必要に応じ、前記(メタ)アクリル酸アルキルエステル又はシクロアルキルエステルと共重合可能な他のモノマー成分に対応する単位を含んでいてもよい。この様なモノマー成分として、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸などのカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸などの酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル、(4-ヒドロキシメチルシクロヘキシル)メチル(メタ)アクリレートなどのヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェートなどのリン酸基含有モノマー;アクリルアミド、アクリロニトリルなどが挙げられる。これら共重合可能なモノマー成分は、1種又は2種以上使用できる。これら共重合可能なモノマーの使用量は、全モノマー成分の40重量%以下が好ましい。 The acrylic polymer contains units corresponding to other monomer components copolymerizable with the (meth) acrylic acid alkyl ester or cycloalkyl ester, if necessary, for the purpose of modifying cohesive force, heat resistance and the like. May be. Examples of such monomer components include, for example, carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; maleic anhydride Acid anhydride monomers such as itaconic anhydride; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 6-hydroxyhexyl (meth) acrylate Hydroxyl group-containing monomers such as 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate, (4-hydroxymethylcyclohexyl) methyl (meth) acrylate; Sti Contains sulfonic acid groups such as ethylene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate, (meth) acryloyloxynaphthalene sulfonic acid Monomers; Phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate; acrylamide, acrylonitrile and the like. One or more of these copolymerizable monomer components can be used. The amount of these copolymerizable monomers used is preferably 40% by weight or less based on the total monomer components.
 更に、アクリル系ポリマーは、架橋させる為、多官能性モノマーなども、必要に応じて共重合用モノマー成分として含むことができる。この様な多官能性モノマーとして、例えば、ヘキサンジオールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレートなどが挙げられる。これらの多官能性モノマーも1種又は2種以上用いることができる。多官能性モノマーの使用量は、粘着特性などの点から、全モノマー成分の30重量%以下が好ましい。 Furthermore, since the acrylic polymer is cross-linked, a polyfunctional monomer or the like can be included as a monomer component for copolymerization as necessary. Examples of such polyfunctional monomers include hexanediol di (meth) acrylate, (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, Pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) An acrylate etc. are mentioned. These polyfunctional monomers can also be used alone or in combination of two or more. The amount of the polyfunctional monomer used is preferably 30% by weight or less of the total monomer components from the viewpoint of adhesive properties and the like.
 アクリル系ポリマーは、単一モノマー又は2種以上のモノマー混合物を重合に付すことにより得られる。重合は、溶液重合、乳化重合、塊状重合、懸濁重合などの何れの方式で行うこともできる。清浄な被着体への汚染防止などの点から、低分子量物質の含有量が小さいのが好ましい。この点から、アクリル系ポリマーの数平均分子量は、好ましくは30万以上、更に好ましくは40万~300万程度である。 The acrylic polymer can be obtained by subjecting a single monomer or a mixture of two or more monomers to polymerization. The polymerization can be carried out by any method such as solution polymerization, emulsion polymerization, bulk polymerization, suspension polymerization and the like. From the viewpoint of preventing contamination of a clean adherend, it is preferable that the content of the low molecular weight substance is small. From this point, the number average molecular weight of the acrylic polymer is preferably 300,000 or more, more preferably about 400,000 to 3 million.
 また、前記粘着剤には、ベースポリマーであるアクリル系ポリマーなどの数平均分子量を高める為、外部架橋剤を適宜に採用することもできる。外部架橋方法の具体的手段としては、ポリイソシアネート化合物、エポキシ化合物、アジリジン化合物、メラミン系架橋剤などのいわゆる架橋剤を添加し反応させる方法が挙げられる。外部架橋剤を使用する場合、その使用量は、架橋すべきベースポリマーとのバランスにより、更には、粘着剤としての使用用途によって適宜決定される。一般的には、前記ベースポリマー100重量部に対して、5重量部程度以下、更には0.1~5重量部配合するのが好ましい。更に、粘着剤には、必要により、前記成分のほかに、従来公知の各種の粘着付与剤、老化防止剤などの添加剤を用いてもよい。 In addition, an external cross-linking agent can be appropriately employed for the pressure-sensitive adhesive in order to increase the number average molecular weight of an acrylic polymer as a base polymer. Specific examples of the external crosslinking method include a method of adding a so-called crosslinking agent such as a polyisocyanate compound, an epoxy compound, an aziridine compound, or a melamine crosslinking agent and reacting them. When using an external cross-linking agent, the amount used is appropriately determined depending on the balance with the base polymer to be cross-linked and further depending on the intended use as an adhesive. Generally, it is preferable to add about 5 parts by weight or less, more preferably 0.1 to 5 parts by weight, with respect to 100 parts by weight of the base polymer. Furthermore, additives such as various conventionally known tackifiers and anti-aging agents may be used for the pressure-sensitive adhesive, if necessary, in addition to the above components.
 粘着剤層12は放射線硬化型粘着剤により形成することができる。放射線硬化型粘着剤は、紫外線などの放射線の照射により架橋度を増大させてその粘着力を容易に低下させることができる。 The pressure-sensitive adhesive layer 12 can be formed of a radiation curable pressure-sensitive adhesive. The radiation curable pressure-sensitive adhesive can easily reduce its adhesive strength by increasing the degree of crosslinking by irradiation with radiation such as ultraviolet rays.
 放射線硬化型粘着剤は、炭素-炭素二重結合などの放射線硬化性の官能基を有し、かつ粘着性を示すものを特に制限なく使用することができる。放射線硬化型粘着剤としては、例えば、前記アクリル系粘着剤、ゴム系粘着剤などの一般的な感圧性粘着剤に、放射線硬化性のモノマー成分やオリゴマー成分を配合した添加型の放射線硬化型粘着剤を例示できる。 As the radiation curable pressure-sensitive adhesive, those having a radiation curable functional group such as a carbon-carbon double bond and exhibiting adhesiveness can be used without particular limitation. Examples of the radiation curable pressure-sensitive adhesive include an addition-type radiation curable pressure-sensitive adhesive in which a radiation-curable monomer component or oligomer component is blended with a general pressure-sensitive pressure-sensitive adhesive such as the acrylic pressure-sensitive adhesive or rubber-based pressure-sensitive adhesive. An agent can be illustrated.
 配合する放射線硬化性のモノマー成分としては、例えば、ウレタンオリゴマー、ウレタン(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリストールテトラ(メタ)アクリレート、ジペンタエリストールモノヒドロキシペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレートなどが挙げられる。また放射線硬化性のオリゴマー成分はウレタン系、ポリエーテル系、ポリエステル系、ポリカーボネート系、ポリブタジエン系など種々のオリゴマーがあげられ、その分子量が100~30000程度の範囲のものが適当である。放射線硬化性のモノマー成分やオリゴマー成分の配合量は、前記粘着剤層の種類に応じて、粘着剤層の粘着力を低下できる量を、適宜に決定することができる。一般的には、粘着剤を構成するアクリル系ポリマーなどのベースポリマー100重量部に対して、例えば5~500重量部、好ましくは40~150重量部程度である。 Examples of the radiation curable monomer component to be blended include urethane oligomer, urethane (meth) acrylate, trimethylolpropane tri (meth) acrylate, tetramethylolmethane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol. Stall tetra (meth) acrylate, dipentaerystol monohydroxypenta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, and the like. Examples of the radiation curable oligomer component include urethane, polyether, polyester, polycarbonate, and polybutadiene oligomers, and those having a molecular weight in the range of about 100 to 30000 are suitable. The compounding amount of the radiation-curable monomer component or oligomer component can be appropriately determined in accordance with the type of the pressure-sensitive adhesive layer, and the amount capable of reducing the adhesive strength of the pressure-sensitive adhesive layer. In general, the amount is, for example, about 5 to 500 parts by weight, preferably about 40 to 150 parts by weight with respect to 100 parts by weight of a base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 また、放射線硬化型粘着剤としては、前記説明した添加型の放射線硬化型粘着剤のほかに、ベースポリマーとして、炭素-炭素二重結合をポリマー側鎖又は主鎖中もしくは主鎖末端に有するものを用いた内在型の放射線硬化型粘着剤が挙げられる。内在型の放射線硬化型粘着剤は、低分子成分であるオリゴマー成分などを含有する必要がなく、又は多くは含まない為、経時的にオリゴマー成分などが粘着剤在中を移動することなく、安定した層構造の粘着剤層を形成することができる為好ましい。 In addition to the additive-type radiation-curable pressure-sensitive adhesive described above, the radiation-curable pressure-sensitive adhesive has a carbon-carbon double bond in the polymer side chain, main chain, or main chain terminal as a base polymer. Intrinsic radiation curable pressure sensitive adhesives using Intrinsic radiation curable adhesives do not need to contain oligomer components, which are low molecular components, or do not contain many, so the oligomer components do not move through the adhesive over time and are stable. It is preferable because an adhesive layer having a layered structure can be formed.
 前記炭素-炭素二重結合を有するベースポリマーは、炭素-炭素二重結合を有し、かつ粘着性を有するものを特に制限なく使用できる。この様なベースポリマーとしては、アクリル系ポリマーを基本骨格とするものが好ましい。アクリル系ポリマーの基本骨格としては、前記例示したアクリル系ポリマーが挙げられる。 As the base polymer having a carbon-carbon double bond, those having a carbon-carbon double bond and having adhesiveness can be used without particular limitation. As such a base polymer, those having an acrylic polymer as a basic skeleton are preferable. Examples of the basic skeleton of the acrylic polymer include the acrylic polymers exemplified above.
 前記アクリル系ポリマーへの炭素-炭素二重結合の導入法は特に制限されず、様々な方法を採用できるが、炭素-炭素二重結合はポリマー側鎖に導入するのが分子設計が容易である。例えば、予め、アクリル系ポリマーに官能基を有するモノマーを共重合した後、この官能基と反応しうる官能基及び炭素-炭素二重結合を有する化合物を、炭素-炭素二重結合の放射線硬化性を維持したまま縮合又は付加反応させる方法が挙げられる。 The method for introducing the carbon-carbon double bond into the acrylic polymer is not particularly limited, and various methods can be adopted. However, the carbon-carbon double bond can be easily introduced into the polymer side chain for easy molecular design. . For example, after a monomer having a functional group is copolymerized in advance with an acrylic polymer, a compound having a functional group capable of reacting with the functional group and a carbon-carbon double bond is converted into a radiation-curable carbon-carbon double bond. A method of performing condensation or addition reaction while maintaining the above.
 これら官能基の組合せの例としては、カルボン酸基とエポキシ基、カルボン酸基とアジリジル基、ヒドロキシル基とイソシアネート基などが挙げられる。これら官能基の組合せのなかでも反応追跡の容易さから、ヒドロキシル基とイソシアネート基との組合せが好適である。また、これら官能基の組み合わせにより、前記炭素-炭素二重結合を有するアクリル系ポリマーを生成するような組合せであれば、官能基はアクリル系ポリマーと前記化合物のいずれの側にあってもよいが、前記の好ましい組み合わせでは、アクリル系ポリマーがヒドロキシル基を有し、前記化合物がイソシアネート基を有する場合が好適である。この場合、炭素-炭素二重結合を有するイソシアネート化合物としては、例えば、メタクリロイルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、m-イソプロペニル-α,α-ジメチルベンジルイソシアネートなどが挙げられる。また、アクリル系ポリマーとしては、前記例示のヒドロキシ基含有モノマーや2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングルコールモノビニルエーテルのエーテル系化合物などを共重合したものが用いられる。 Examples of combinations of these functional groups include carboxylic acid groups and epoxy groups, carboxylic acid groups and aziridyl groups, hydroxyl groups and isocyanate groups. Among these combinations of functional groups, a combination of a hydroxyl group and an isocyanate group is preferable because of easy tracking of the reaction. In addition, the functional group may be on either side of the acrylic polymer and the compound as long as the combination of these functional groups generates an acrylic polymer having the carbon-carbon double bond. In the preferable combination, it is preferable that the acrylic polymer has a hydroxyl group and the compound has an isocyanate group. In this case, examples of the isocyanate compound having a carbon-carbon double bond include methacryloyl isocyanate, 2-methacryloyloxyethyl isocyanate, m-isopropenyl-α, α-dimethylbenzyl isocyanate, and the like. As the acrylic polymer, those obtained by copolymerizing the above-mentioned exemplified hydroxy group-containing monomers, ether compounds of 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, or the like are used.
 前記内在型の放射線硬化型粘着剤は、前記炭素-炭素二重結合を有するベースポリマー(特にアクリル系ポリマー)を単独で使用することができるが、特性を悪化させない程度に前記放射線硬化性のモノマー成分やオリゴマー成分を配合することもできる。放射線硬化性のオリゴマー成分などは、通常ベースポリマー100重量部に対して30重量部の範囲内であり、好ましくは0~10重量部の範囲である。 As the intrinsic radiation curable pressure-sensitive adhesive, the base polymer (particularly acrylic polymer) having the carbon-carbon double bond can be used alone, but the radiation curable monomer does not deteriorate the characteristics. Components and oligomer components can also be blended. The radiation-curable oligomer component is usually in the range of 30 parts by weight, preferably in the range of 0 to 10 parts by weight, based on 100 parts by weight of the base polymer.
 前記放射線硬化型粘着剤には、紫外線などにより硬化させる場合には光重合開始剤を含有させる。光重合開始剤としては、例えば、4-(2-ヒドロキシエトキシ)フェニル(2-ヒドロキシ-2-プロピル)ケトン、α-ヒドロキシ-α,α’-ジメチルアセトフェノン、2-メチル-2-ヒドロキシプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトンなどのα-ケトール系化合物;メトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフエノン、2,2-ジエトキシアセトフェノン、2-メチル-1-[4-(メチルチオ)-フェニル]-2-モルホリノプロパン-1などのアセトフェノン系化合物;ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、アニソインメチルエーテルなどのベンゾインエーテル系化合物;ベンジルジメチルケタールなどのケタール系化合物;2-ナフタレンスルホニルクロリドなどの芳香族スルホニルクロリド系化合物;1-フェノン-1,1―プロパンジオン-2-(o-エトキシカルボニル)オキシムなどの光活性オキシム系化合物;ベンゾフェノン、ベンゾイル安息香酸、3,3’-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン系化合物;チオキサンソン、2-クロロチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジクロロチオキサンソン、2,4-ジエチルチオキサンソン、2,4-ジイソプロピルチオキサンソンなどのチオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナートなどが挙げられる。光重合開始剤の配合量は、粘着剤を構成するアクリル系ポリマーなどのベースポリマー100重量部に対して、例えば0.05~20重量部程度である。 The radiation curable pressure-sensitive adhesive contains a photopolymerization initiator when cured by ultraviolet rays or the like. Examples of the photopolymerization initiator include 4- (2-hydroxyethoxy) phenyl (2-hydroxy-2-propyl) ketone, α-hydroxy-α, α'-dimethylacetophenone, 2-methyl-2-hydroxypropio Α-ketol compounds such as phenone and 1-hydroxycyclohexyl phenyl ketone; methoxyacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 2-methyl-1- [4- ( Acetophenone compounds such as methylthio) -phenyl] -2-morpholinopropane-1; benzoin ether compounds such as benzoin ethyl ether, benzoin isopropyl ether and anisoin methyl ether; ketal compounds such as benzyldimethyl ketal; 2-naphthalenesulfo Aromatic sulfonyl chloride compounds such as luchloride; photoactive oxime compounds such as 1-phenone-1,1-propanedione-2- (o-ethoxycarbonyl) oxime; benzophenone, benzoylbenzoic acid, 3,3′-dimethyl Benzophenone compounds such as -4-methoxybenzophenone; thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2 Thioxanthone compounds such as 1,4-diethylthioxanthone and 2,4-diisopropylthioxanthone; camphorquinone; halogenated ketone; acyl phosphinoxide; acyl phosphonate. The blending amount of the photopolymerization initiator is, for example, about 0.05 to 20 parts by weight with respect to 100 parts by weight of the base polymer such as an acrylic polymer constituting the pressure-sensitive adhesive.
 また放射線硬化型粘着剤としては、例えば、特開昭60-196956号公報に開示されている、不飽和結合を2個以上有する付加重合性化合物、エポキシ基を有するアルコキシシランなどの光重合性化合物と、カルボニル化合物、有機硫黄化合物、過酸化物、アミン、オニウム塩系化合物などの光重合開始剤とを含有するゴム系粘着剤やアクリル系粘着剤などが挙げられる。 Examples of the radiation curable pressure-sensitive adhesive include photopolymerizable compounds such as an addition polymerizable compound having two or more unsaturated bonds and an alkoxysilane having an epoxy group disclosed in JP-A-60-196956. And rubber-based pressure-sensitive adhesives and acrylic pressure-sensitive adhesives containing photopolymerization initiators such as carbonyl compounds, organic sulfur compounds, peroxides, amines, and onium salt-based compounds.
 前記放射線硬化型の粘着剤層12中には、必要に応じて、放射線照射により着色する化合物を含有させることもできる。放射線照射により、着色する化合物を粘着剤層12に含ませることによって、放射線照射された部分のみを着色することができる。放射線照射により着色する化合物は、放射線照射前には無色又は淡色であるが、放射線照射により有色となる化合物であり、例えば、ロイコ染料などが挙げられる。放射線照射により着色する化合物の使用割合は、適宜設定できる。 In the radiation-curable pressure-sensitive adhesive layer 12, a compound that is colored by irradiation with radiation may be contained as necessary. By including a compound to be colored in the pressure-sensitive adhesive layer 12 by irradiation with radiation, only the irradiated portion can be colored. The compound that is colored by irradiation with radiation is a colorless or light color compound before irradiation with radiation, but becomes a color by irradiation with radiation, and examples thereof include leuco dyes. The use ratio of the compound colored by radiation irradiation can be set as appropriate.
 (ダイシング・ダイボンドフィルム10)
 図2に示すように、ダイシング・ダイボンドフィルム10は、ダイシングシート1と、粘着剤層12上に配置された接着剤層3とを備える。
(Dicing die bond film 10)
As shown in FIG. 2, the dicing die-bonding film 10 includes a dicing sheet 1 and an adhesive layer 3 disposed on the pressure-sensitive adhesive layer 12.
 粘着剤層12が、接着剤層3と接した中央部12a及び中央部12aの周辺に配置された周辺部12bを備える。中央部12aは、放射線照射により硬化された部分である。 The pressure-sensitive adhesive layer 12 includes a central portion 12a in contact with the adhesive layer 3 and a peripheral portion 12b arranged around the central portion 12a. The central portion 12a is a portion cured by radiation irradiation.
 接着剤層3は、熱硬化性を備える。 The adhesive layer 3 has thermosetting properties.
 接着剤層3のガラス転移温度は、好ましくは0℃以上、より好ましくは10℃以上である。0℃以上であると、低温(例えば、0℃以下)環境下で接着剤層3を容易に分断できる。接着剤層3のガラス転移温度の上限は、例えば100℃である。 The glass transition temperature of the adhesive layer 3 is preferably 0 ° C. or higher, more preferably 10 ° C. or higher. When the temperature is 0 ° C. or higher, the adhesive layer 3 can be easily divided in a low temperature (for example, 0 ° C. or lower) environment. The upper limit of the glass transition temperature of the adhesive layer 3 is, for example, 100 ° C.
 接着剤層3のガラス転移温度は、アクリル樹脂のガラス転移温度などによりコントロールできる。 The glass transition temperature of the adhesive layer 3 can be controlled by the glass transition temperature of the acrylic resin.
 接着剤層3は、熱可塑性樹脂を含むことが好ましい。熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6-ナイロンなどのポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBTなどの飽和ポリエステル樹脂、ポリアミドイミド樹脂、又はフッ素樹脂などが挙げられる。これらの熱可塑性樹脂のうち、イオン性不純物が少なく耐熱性が高く、半導体素子の信頼性を確保できるアクリル樹脂が特に好ましい。 The adhesive layer 3 preferably contains a thermoplastic resin. Thermoplastic resins include natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, thermoplasticity. Examples thereof include polyimide resins, polyamide resins such as 6-nylon and 6,6-nylon, phenoxy resins, acrylic resins, saturated polyester resins such as PET and PBT, polyamideimide resins, and fluorine resins. Of these thermoplastic resins, an acrylic resin that has few ionic impurities and high heat resistance and can ensure the reliability of the semiconductor element is particularly preferable.
 アクリル樹脂としては、特に限定されるものではなく、炭素数30以下、特に炭素数4~18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体(アクリル共重合体)などが挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、へプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基などが挙げられる。 The acrylic resin is not particularly limited, and one or more of acrylic acid or methacrylic acid ester having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms, is used as a component. And a polymer (acrylic copolymer). Examples of the alkyl group include a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2- Examples include ethylhexyl group, octyl group, isooctyl group, nonyl group, isononyl group, decyl group, isodecyl group, undecyl group, lauryl group, tridecyl group, tetradecyl group, stearyl group, octadecyl group, and dodecyl group.
 また、重合体(アクリル共重合体)を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸若しくはクロトン酸などの様なカルボキシル基含有モノマー、無水マレイン酸若しくは無水イタコン酸などの様な酸無水物モノマー、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル若しくは(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレートなどの様なヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート若しくは(メタ)アクリロイルオキシナフタレンスルホン酸などの様なスルホン酸基含有モノマー、又は2-ヒドロキシエチルアクリロイルホスフェートなどの様な燐酸基含有モノマーが挙げられる。 In addition, the other monomer forming the polymer (acrylic copolymer) is not particularly limited, and for example, acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid Or a carboxyl group-containing monomer such as crotonic acid, an acid anhydride monomer such as maleic anhydride or itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, (meth ) 4-hydroxybutyl acrylate, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4 -Hydroxymethyl cycle Hexyl) -hydroxyl group-containing monomers such as methyl acrylate, styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate Alternatively, a sulfonic acid group-containing monomer such as (meth) acryloyloxynaphthalene sulfonic acid, or a phosphoric acid group-containing monomer such as 2-hydroxyethylacryloyl phosphate can be used.
 アクリル樹脂のなかでも、重量平均分子量が10万以上のものが好ましく、30万~300万のものがより好ましく、50万~200万のものがさらに好ましい。上記数値範囲内であると、接着性及び耐熱性に優れるからである。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値である。 Among the acrylic resins, those having a weight average molecular weight of 100,000 or more are preferable, those having 300,000 to 3,000,000 are more preferable, and those having 500,000 to 2,000,000 are more preferable. It is because it is excellent in adhesiveness and heat resistance in the said numerical range. The weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
 接着剤層3は、熱硬化性樹脂を含むことが好ましい。これにより、熱安定性を向上できる。 The adhesive layer 3 preferably contains a thermosetting resin. Thereby, thermal stability can be improved.
 熱硬化性樹脂としては、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、シリコーン樹脂、又は熱硬化性ポリイミド樹脂などが挙げられる。特に、半導体素子を腐食させるイオン性不純物などの含有が少ないエポキシ樹脂が好ましい。また、エポキシ樹脂の硬化剤としてはフェノール樹脂が好ましい。 Examples of the thermosetting resin include phenol resin, amino resin, unsaturated polyester resin, epoxy resin, polyurethane resin, silicone resin, and thermosetting polyimide resin. In particular, an epoxy resin containing a small amount of ionic impurities that corrode semiconductor elements is preferable. Moreover, as a hardening | curing agent of an epoxy resin, a phenol resin is preferable.
 エポキシ樹脂としては特に限定されず、例えばビスフェノールA型、ビスフェノールF型、ビスフェノールS型、臭素化ビスフェノールA型、水添ビスフェノールA型、ビスフェノールAF型、ビフェニル型、ナフタレン型、フルオンレン型、フェノールノボラック型、オルソクレゾールノボラック型、トリスヒドロキシフェニルメタン型、テトラフェニロールエタン型などの二官能エポキシ樹脂や多官能エポキシ樹脂、又はヒダントイン型、トリスグリシジルイソシアヌレート型若しくはグリシジルアミン型などのエポキシ樹脂が用いられる。これらのエポキシ樹脂のうちノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリスヒドロキシフェニルメタン型樹脂又はテトラフェニロールエタン型エポキシ樹脂が特に好ましい。これらのエポキシ樹脂は、硬化剤としてのフェノール樹脂との反応性に富み、耐熱性などに優れるからである。 The epoxy resin is not particularly limited. For example, bisphenol A type, bisphenol F type, bisphenol S type, brominated bisphenol A type, hydrogenated bisphenol A type, bisphenol AF type, biphenyl type, naphthalene type, fluorene type, phenol novolac type. Bifunctional epoxy resins such as ortho-cresol novolak type, trishydroxyphenylmethane type, tetraphenylolethane type, etc., and epoxy resins such as hydantoin type, trisglycidyl isocyanurate type, or glycidylamine type are used. Of these epoxy resins, novolac type epoxy resins, biphenyl type epoxy resins, trishydroxyphenylmethane type resins or tetraphenylolethane type epoxy resins are particularly preferred. This is because these epoxy resins are rich in reactivity with a phenol resin as a curing agent and are excellent in heat resistance.
 フェノール樹脂は、エポキシ樹脂の硬化剤として作用するものであり、例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂、ノニルフェノールノボラック樹脂などのノボラック型フェノール樹脂、レゾール型フェノール樹脂、ポリパラオキシスチレンなどのポリオキシスチレンなどが挙げられる。これらのフェノール樹脂のうちフェノールノボラック樹脂、フェノールアラルキル樹脂が特に好ましい。半導体装置の接続信頼性を向上させることができるからである。 The phenol resin acts as a curing agent for the epoxy resin. For example, a novolac type phenol resin such as a phenol novolak resin, a phenol aralkyl resin, a cresol novolak resin, a tert-butylphenol novolak resin, a nonylphenol novolak resin, or a resol type phenol resin. And polyoxystyrene such as polyparaoxystyrene. Of these phenol resins, phenol novolac resins and phenol aralkyl resins are particularly preferred. This is because the connection reliability of the semiconductor device can be improved.
 エポキシ樹脂とフェノール樹脂との配合割合は、例えば、エポキシ樹脂成分中のエポキシ基1当量当たりフェノール樹脂中の水酸基が0.5~2.0当量になるように配合することが好適である。より好適なのは、0.8~1.2当量である。即ち、両者の配合割合が前記範囲を外れると、十分な硬化反応が進まず、硬化物の特性が劣化し易くなるからである。 The mixing ratio of the epoxy resin and the phenol resin is preferably such that, for example, the hydroxyl group in the phenol resin is 0.5 to 2.0 equivalents per equivalent of the epoxy group in the epoxy resin component. More preferred is 0.8 to 1.2 equivalents. That is, if the blending ratio of both is out of the above range, sufficient curing reaction does not proceed and the properties of the cured product are likely to deteriorate.
 接着剤層3がエポキシ樹脂、フェノール樹脂及びアクリル樹脂を含む場合、アクリル樹脂100重量部に対して、エポキシ樹脂及びフェノール樹脂の合計含有量は、好ましくは100重量部~1300重量部である。 When the adhesive layer 3 contains an epoxy resin, a phenol resin, and an acrylic resin, the total content of the epoxy resin and the phenol resin is preferably 100 parts by weight to 1300 parts by weight with respect to 100 parts by weight of the acrylic resin.
 接着剤層3を予めある程度架橋をさせておく場合には、作製に際し、重合体の分子鎖末端の官能基等と反応する多官能性化合物を架橋剤として添加させておくのがよい。これにより、高温下での接着特性を向上させ、耐熱性の改善を図ることができる。 When the adhesive layer 3 is previously crosslinked to some extent, it is preferable to add a polyfunctional compound that reacts with a functional group at the molecular chain end of the polymer as a crosslinking agent. Thereby, the adhesive property under high temperature can be improved and heat resistance can be improved.
 架橋剤としては、従来公知のものを採用することができる。特に、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、p-フェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、多価アルコールとジイソシアネートの付加物等のポリイソシアネート化合物がより好ましい。架橋剤の添加量としては、重合体100重量部に対し、通常0.05~7重量部とするのが好ましい。架橋剤の量が7重量部より多いと、接着力が低下するので好ましくない。その一方、0.05重量部より少ないと、凝集力が不足するので好ましくない。また、この様なポリイソシアネート化合物と共に、必要に応じて、エポキシ樹脂等の他の多官能性化合物を一緒に含ませるようにしてもよい。 A conventionally well-known thing can be employ | adopted as a crosslinking agent. Particularly preferred are polyisocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, p-phenylene diisocyanate, 1,5-naphthalene diisocyanate, adducts of polyhydric alcohol and diisocyanate. The addition amount of the crosslinking agent is preferably 0.05 to 7 parts by weight with respect to 100 parts by weight of the polymer. When the amount of the cross-linking agent is more than 7 parts by weight, the adhesive force is lowered, which is not preferable. On the other hand, if it is less than 0.05 parts by weight, the cohesive force is insufficient, which is not preferable. Moreover, you may make it include other polyfunctional compounds, such as an epoxy resin, together with such a polyisocyanate compound as needed.
 また、接着剤層3には、その用途に応じて無機充填剤を適宜配合することができる。無機充填剤の配合は、導電性の付与や熱伝導性の向上、弾性率の調節等を可能とする。無機充填剤としては、例えば、シリカ、クレー、石膏、炭酸カルシウム、硫酸バリウム、酸化アルミナ、酸化ベリリウム、炭化珪素、窒化珪素等のセラミック類、アルミニウム、銅、銀、金、ニッケル、クロム、鉛、錫、亜鉛、パラジウム、半田等の金属、又は合金類、その他カーボン等からなる種々の無機粉末が挙げられる。 Further, an inorganic filler can be appropriately blended in the adhesive layer 3 according to its use. The blending of the inorganic filler makes it possible to impart conductivity, improve thermal conductivity, adjust the elastic modulus, and the like. Examples of inorganic fillers include silica, clay, gypsum, calcium carbonate, barium sulfate, alumina oxide, beryllium oxide, silicon carbide, silicon nitride and other ceramics, aluminum, copper, silver, gold, nickel, chromium, lead, Examples thereof include various inorganic powders made of metals such as tin, zinc, palladium, solder, or alloys, and other carbon.
 接着剤層3は、熱硬化触媒を含むことが好ましい。熱硬化触媒の含有量は、アクリル樹脂100重量部に対し0.01~3重量部が好ましく、0.05~1重量部がより好ましい。 The adhesive layer 3 preferably contains a thermosetting catalyst. The content of the thermosetting catalyst is preferably 0.01 to 3 parts by weight and more preferably 0.05 to 1 part by weight with respect to 100 parts by weight of the acrylic resin.
 熱硬化触媒としては特に限定されず、例えば、イミダゾール系化合物、トリフェニルフォスフィン系化合物、アミン系化合物、トリフェニルボラン系化合物、トリハロゲンボラン系化合物等が挙げられる。 The thermosetting catalyst is not particularly limited, and examples thereof include imidazole compounds, triphenylphosphine compounds, amine compounds, triphenylborane compounds, and trihalogenborane compounds.
 イミダゾール系化合物としては、2-メチルイミダゾール(商品名;2MZ)、2-ウンデシルイミダゾール(商品名;C11Z)、2-ヘプタデシルイミダゾール(商品名;C17Z)、1,2-ジメチルイミダゾール(商品名;1.2DMZ)、2-エチル-4-メチルイミダゾール(商品名;2E4MZ)、2-フェニルイミダゾール(商品名;2PZ)、2-フェニル-4-メチルイミダゾール(商品名;2P4MZ)、1-ベンジル-2-メチルイミダゾール(商品名;1B2MZ)、1-ベンジル-2-フェニルイミダゾール(商品名;1B2PZ)、1-シアノエチル-2-メチルイミダゾール(商品名;2MZ-CN)、1-シアノエチル-2-ウンデシルイミダゾール(商品名;C11Z-CN)、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト(商品名;2PZCNS-PW)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2MZ-A)、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;C11Z-A)、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2E4MZ-A)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物(商品名;2MA-OK)、2-フェニル-4,5-ジヒドロキシメチルイミダゾール(商品名;2PHZ-PW)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(商品名;2P4MHZ-PW)等が挙げられる(いずれも四国化成(株)製)。 Examples of imidazole compounds include 2-methylimidazole (trade name; 2MZ), 2-undecylimidazole (trade name; C11Z), 2-heptadecylimidazole (trade name; C17Z), and 1,2-dimethylimidazole (trade name). 1.2DMZ), 2-ethyl-4-methylimidazole (trade name; 2E4MZ), 2-phenylimidazole (trade name; 2PZ), 2-phenyl-4-methylimidazole (trade name; 2P4MZ), 1-benzyl -2-Methylimidazole (trade name; 1B2MZ), 1-benzyl-2-phenylimidazole (trade name; 1B2PZ), 1-cyanoethyl-2-methylimidazole (trade name; 2MZ-CN), 1-cyanoethyl-2- Undecylimidazole (trade name; C11Z-CN), 1-cyanoethyl-2 -Phenylimidazolium trimellitate (trade name; 2PZCNS-PW), 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine (trade name; 2MZ-A) 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine (trade name; C11Z-A), 2,4-diamino-6- [2′-ethyl -4'-methylimidazolyl- (1 ')]-ethyl-s-triazine (trade name; 2E4MZ-A), 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl- s-Triazine isocyanuric acid adduct (trade name; 2MA-OK), 2-phenyl-4,5-dihydroxymethylimidazole (trade name; 2PHZ-PW), 2-phenyl-4-methyl-5-hydroxy Methylimidazole (trade name; 2P4MHZ-PW), and the like (all made by Shikoku Kasei Co., Ltd.).
 トリフェニルフォスフィン系化合物としては特に限定されず、例えば、トリフェニルフォスフィン、トリブチルフォスフィン、トリ(p-メチルフェニル)フォスフィン、トリ(ノニルフェニル)フォスフィン、ジフェニルトリルフォスフィン等のトリオルガノフォスフィン、テトラフェニルホスホニウムブロマイド(商品名;TPP-PB)、メチルトリフェニルホスホニウム(商品名;TPP-MB)、メチルトリフェニルホスホニウムクロライド(商品名;TPP-MC)、メトキシメチルトリフェニルホスホニウム(商品名;TPP-MOC)、ベンジルトリフェニルホスホニウムクロライド(商品名;TPP-ZC)等が挙げられる(いずれも北興化学社製)。 The triphenylphosphine compound is not particularly limited, and examples thereof include triorganophosphine such as triphenylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, and diphenyltolylphosphine. , Tetraphenylphosphonium bromide (trade name; TPP-PB), methyltriphenylphosphonium (trade name; TPP-MB), methyltriphenylphosphonium chloride (trade name; TPP-MC), methoxymethyltriphenylphosphonium (trade name; TPP-MOC), benzyltriphenylphosphonium chloride (trade name: TPP-ZC), etc. (all manufactured by Hokuko Chemical Co., Ltd.).
 トリフェニルボラン系化合物としては特に限定されず、例えば、トリ(p-メチルフェニル)フォスフィン等が挙げられる。また、トリフェニルボラン系化合物としては、更にトリフェニルフォスフィン構造を有するものも含まれる。当該トリフェニルフォスフィン構造及びトリフェニルボラン構造を有する化合物としては特に限定されず、例えば、テトラフェニルホスホニウムテトラフェニルボレート(商品名;TPP-K)、テトラフェニルホスホニウムテトラ-p-トリボレート(商品名;TPP-MK)、ベンジルトリフェニルホスホニウムテトラフェニルボレート(商品名;TPP-ZK)、トリフェニルホスフィントリフェニルボラン(商品名;TPP-S)等が挙げられる(いずれも北興化学社製)。 The triphenylborane compound is not particularly limited, and examples thereof include tri (p-methylphenyl) phosphine. The triphenylborane compound further includes those having a triphenylphosphine structure. The compound having the triphenylphosphine structure and the triphenylborane structure is not particularly limited. For example, tetraphenylphosphonium tetraphenylborate (trade name; TPP-K), tetraphenylphosphonium tetra-p-triborate (trade name; TPP-MK), benzyltriphenylphosphonium tetraphenylborate (trade name; TPP-ZK), triphenylphosphine triphenylborane (trade name; TPP-S), and the like (all manufactured by Hokuko Chemical Co., Ltd.).
 アミノ系化合物としては特に限定されず、例えば、モノエタノールアミントリフルオロボレート(ステラケミファ(株)製)、ジシアンジアミド(ナカライテスク(株)製)等が挙げられる。 The amino compound is not particularly limited, and examples thereof include monoethanolamine trifluoroborate (manufactured by Stella Chemifa Corporation), dicyandiamide (manufactured by Nacalai Tesque Corporation), and the like.
 トリハロゲンボラン系化合物としては特に限定されず、例えば、トリクロロボラン等が挙げられる。 The trihalogen borane-based compound is not particularly limited, and examples thereof include trichloroborane.
 なお、接着剤層3には、必要に応じて他の添加剤を適宜に配合することができる。他の添加剤としては、例えば難燃剤、シランカップリング剤又はイオントラップ剤等が挙げられる。難燃剤としては、例えば、三酸化アンチモン、五酸化アンチモン、臭素化エポキシ樹脂等が挙げられる。シランカップリング剤としては、例えば、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。イオントラップ剤としては、例えばハイドロタルサイト類、水酸化ビスマス等が挙げられる。 In addition, other additives can be appropriately blended in the adhesive layer 3 as necessary. Examples of other additives include flame retardants, silane coupling agents, ion trapping agents, and the like. Examples of the flame retardant include antimony trioxide, antimony pentoxide, brominated epoxy resin, and the like. Examples of the silane coupling agent include β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, and the like. Examples of the ion trapping agent include hydrotalcites and bismuth hydroxide.
 接着剤層3は、通常の方法で製造できる。例えば、前記各成分を含有する接着剤組成物溶液を作製し、接着剤組成物溶液を基材セパレータ上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を乾燥させることで、接着剤層3を製造できる。 The adhesive layer 3 can be manufactured by a usual method. For example, an adhesive composition solution containing each of the above components is prepared, and the adhesive composition solution is applied on a base separator so as to have a predetermined thickness to form a coating film, and then the coating film is dried. Thus, the adhesive layer 3 can be manufactured.
 接着剤組成物溶液に用いる溶媒としては特に限定されないが、前記各成分を均一に溶解、混練又は分散できる有機溶媒が好ましい。例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、トルエン、キシレンなどが挙げられる。塗布方法は特に限定されない。溶剤塗工の方法としては、例えば、ダイコーター、グラビアコーター、ロールコーター、リバースコーター、コンマコーター、パイプドクターコーター、スクリーン印刷などが挙げられる。なかでも、塗布厚みの均一性が高いという点から、ダイコーターが好ましい。 The solvent used in the adhesive composition solution is not particularly limited, but an organic solvent capable of uniformly dissolving, kneading or dispersing the above components is preferable. Examples thereof include ketone solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, acetone, methyl ethyl ketone, and cyclohexanone, toluene, xylene, and the like. The application method is not particularly limited. Examples of the solvent coating method include a die coater, a gravure coater, a roll coater, a reverse coater, a comma coater, a pipe doctor coater, and screen printing. Of these, a die coater is preferable in terms of high uniformity of coating thickness.
 基材セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤などの剥離剤により表面コートされたプラスチックフィルムや紙などが使用可能である。接着剤組成物溶液の塗布方法としては、例えば、ロール塗工、スクリーン塗工、グラビア塗工などが挙げられる。また、塗布膜の乾燥条件は特に限定されず、例えば、乾燥温度70~160℃、乾燥時間1~5分間で行うことができる。 As the base material separator, polyethylene terephthalate (PET), polyethylene, polypropylene, a plastic film or paper surface-coated with a release agent such as a fluorine-type release agent or a long-chain alkyl acrylate release agent can be used. Examples of the method for applying the adhesive composition solution include roll coating, screen coating, and gravure coating. The drying conditions for the coating film are not particularly limited, and for example, the drying can be performed at a drying temperature of 70 to 160 ° C. and a drying time of 1 to 5 minutes.
 接着剤層3の製造方法としては、例えば、前記各成分をミキサーにて混合し、得られた混合物をプレス成形して接着剤層3を製造する方法なども好適である。ミキサーとしてはプラネタリーミキサーなどが挙げられる。 As a method for producing the adhesive layer 3, for example, a method of producing the adhesive layer 3 by mixing the respective components with a mixer and press-molding the obtained mixture is also suitable. A planetary mixer etc. are mentioned as a mixer.
 接着剤層3の厚みは特に限定されないが、5μm以上が好ましく、15μm以上がより好ましい。接着剤層3の厚みは100μm以下が好ましく、50μm以下がより好ましい。 The thickness of the adhesive layer 3 is not particularly limited, but is preferably 5 μm or more, and more preferably 15 μm or more. The thickness of the adhesive layer 3 is preferably 100 μm or less, and more preferably 50 μm or less.
 接着剤層3は、リードフレームなどの被着体と半導体素子とを接着するダイアタッチフィルムとして使用できる。被着体としては、リードフレーム、インターポーザ、半導体素子などが挙げられる。 The adhesive layer 3 can be used as a die attach film for bonding an adherend such as a lead frame and a semiconductor element. Examples of the adherend include a lead frame, an interposer, and a semiconductor element.
 接着剤層3は、セパレータにより保護されていることが好ましい(図示せず)。セパレータは、実用に供するまで接着剤層3を保護する保護材としての機能を有している。セパレータは、接着剤層3に半導体ウエハを貼着する際に剥がされる。セパレータとしては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンや、フッ素系剥離剤、長鎖アルキルアクリレート系剥離剤などの剥離剤により表面コートされたプラスチックフィルムや紙なども使用可能である。 The adhesive layer 3 is preferably protected by a separator (not shown). The separator has a function as a protective material that protects the adhesive layer 3 until it is put to practical use. The separator is peeled off when the semiconductor wafer is attached to the adhesive layer 3. As the separator, it is also possible to use polyethylene terephthalate (PET), polyethylene, polypropylene, a plastic film or paper whose surface is coated with a release agent such as a fluorine release agent or a long-chain alkyl acrylate release agent.
 ダイシング・ダイボンドフィルム10は、通常の方法で製造できる。例えば、ダイシングシート1と接着剤層3とを貼り合わせることで、ダイシング・ダイボンドフィルム10を製造できる。 The dicing die bond film 10 can be manufactured by a normal method. For example, the dicing die-bonding film 10 can be manufactured by bonding the dicing sheet 1 and the adhesive layer 3 together.
 ダイシング・ダイボンドフィルム10は、半導体装置を製造するために使用できる。 The dicing die bond film 10 can be used for manufacturing a semiconductor device.
 (半導体装置の製造方法)
 図3に示すように、半導体ウエハ4Pの内部に集光点を合わせ、格子状の分割予定ライン4Lに沿ってレーザー光100を照射し、半導体ウエハ4Pの内部に改質領域41を形成する。これにより、分割ウエハ4を得る。
(Method for manufacturing semiconductor device)
As shown in FIG. 3, the condensing point is aligned inside the semiconductor wafer 4P, and the laser beam 100 is irradiated along the lattice-shaped division planned line 4L, thereby forming the modified region 41 inside the semiconductor wafer 4P. Thereby, the divided wafer 4 is obtained.
 レーザー光100の照射条件は、例えば、以下の条件の範囲内で適宜調整できる。
 (A)レーザー光100
     レーザー光源       半導体レーザー励起Nd:YAGレーザー
     波長           1064nm
     レーザー光スポット断面積 3.14×10-8cm
     発振形態         Qスイッチパルス
     繰り返し周波数      100kHz以下
     パルス幅         1μs以下
     出力           1mJ以下
     レーザー光品質      TEM00
     偏光特性         直線偏光
 (B)集光用レンズ
     倍率                100倍以下
     NA                0.55
     レーザー光波長に対する透過率    100%以下
 (C)半導体ウエハが載置される裁置台の移動速度 280mm/秒以下
The irradiation conditions of the laser beam 100 can be adjusted as appropriate within the range of the following conditions, for example.
(A) Laser beam 100
Laser light source Semiconductor laser pumped Nd: YAG laser Wavelength 1064nm
Laser light spot cross section 3.14 × 10 −8 cm 2
Oscillation form Q switch pulse Repetition frequency 100 kHz or less Pulse width 1 μs or less Output 1 mJ or less Laser light quality TEM00
Polarization characteristics Linearly polarized light (B) Condensing lens Magnification 100 times or less NA 0.55
Transmittance with respect to laser light wavelength: 100% or less (C) Moving speed of placing table on which semiconductor wafer is placed 280 mm / second or less
 なお、レーザー光100の照射により改質領域41を形成する方法については、特許第3408805号公報、特開2003-338567号公報などに詳述されているので、ここでの詳細な説明は省略することとする。 The method for forming the modified region 41 by irradiation with the laser beam 100 is described in detail in Japanese Patent No. 3408805, Japanese Patent Application Laid-Open No. 2003-338567, and the like, and detailed description thereof is omitted here. I will do it.
 図4に示すように、分割ウエハ4が、改質領域41を備える。分割ウエハ4が、半導体素子5A、5B、5C、……、5Hをさらに備える。 As shown in FIG. 4, the divided wafer 4 includes a modified region 41. The divided wafer 4 further includes semiconductor elements 5A, 5B, 5C,.
 分割ウエハ4は、表面(おもてめん)、及び表面に対向した裏面で両面が定義される。表面は、回路が設けられた面である。一方、裏面は、回路が設けられていない面である。 As for the divided wafer 4, both sides are defined by the front surface (Otemen) and the back surface facing the front surface. The surface is a surface on which a circuit is provided. On the other hand, the back surface is a surface on which no circuit is provided.
 分割ウエハ4の裏面を研削して、分割ウエハ4を薄くする。 The back surface of the divided wafer 4 is ground to make the divided wafer 4 thinner.
 図5に示すように、接着剤層3に分割ウエハ4を圧着して、積層体21を得る。積層体21は、ダイシング・ダイボンドフィルム10及び接着剤層3上に配置された分割ウエハ4を備える。 As shown in FIG. 5, the divided wafer 4 is pressure-bonded to the adhesive layer 3 to obtain a laminate 21. The laminate 21 includes the dicing die bond film 10 and the divided wafer 4 disposed on the adhesive layer 3.
 図6に示すように、周辺部12bにダイシングリング31を貼り付ける。 As shown in FIG. 6, a dicing ring 31 is attached to the peripheral portion 12b.
 図7に示すように、積層体21の下方に配置された突き上げ部33を上昇させることによりダイシングシート1を拡張し、改質領域41を起点に分割ウエハ4及び接着剤層3を分断する。これにより、ダイシングシート1及び粘着剤層12上に配置されたダイボンド用チップ2A、2B、2C、……、2Hを備える分割構造体51を得る。ダイボンド用チップ2Aは、接着フィルム22A及び接着フィルム22A上に配置された半導体素子5Aを備える。ダイボンド用チップ2Bは、接着フィルム22B及び接着フィルム22B上に配置された半導体素子5Bを備える。ダイボンド用チップ2Cは、接着フィルム22C及び接着フィルム22C上に配置された半導体素子5Cを備える。ダイボンド用チップ2Dは、接着フィルム22D及び接着フィルム22D上に配置された半導体素子5Dを備える。ダイボンド用チップ2Eは、接着フィルム22E及び接着フィルム22E上に配置された半導体素子5Eを備える。ダイボンド用チップ2Fは、接着フィルム22F及び接着フィルム22F上に配置された半導体素子5Fを備える。ダイボンド用チップ2Gは、接着フィルム22G及び接着フィルム22G上に配置された半導体素子5Gを備える。ダイボンド用チップ2Hは、接着フィルム22H及び接着フィルム22H上に配置された半導体素子5Hを備える。接着フィルム22A、22B、22C、……、22Hが粘着剤層12と接する。 As shown in FIG. 7, the dicing sheet 1 is expanded by raising the push-up portion 33 disposed below the laminated body 21, and the divided wafer 4 and the adhesive layer 3 are divided from the modified region 41 as a starting point. Thereby, the division | segmentation structure 51 provided with chip | tip 2A, 2B, 2C, ..., 2H for die bonding arrange | positioned on the dicing sheet 1 and the adhesive layer 12 is obtained. The die bonding chip 2A includes an adhesive film 22A and a semiconductor element 5A disposed on the adhesive film 22A. The die bonding chip 2B includes an adhesive film 22B and a semiconductor element 5B arranged on the adhesive film 22B. The die bonding chip 2C includes an adhesive film 22C and a semiconductor element 5C disposed on the adhesive film 22C. The die bonding chip 2D includes an adhesive film 22D and a semiconductor element 5D arranged on the adhesive film 22D. The die bonding chip 2E includes an adhesive film 22E and a semiconductor element 5E disposed on the adhesive film 22E. The die-bonding chip 2F includes an adhesive film 22F and a semiconductor element 5F disposed on the adhesive film 22F. The die-bonding chip 2G includes an adhesive film 22G and a semiconductor element 5G disposed on the adhesive film 22G. The die bonding chip 2H includes an adhesive film 22H and a semiconductor element 5H disposed on the adhesive film 22H. The adhesive films 22A, 22B, 22C,..., 22H are in contact with the pressure-sensitive adhesive layer 12.
 好ましくは、ダイシングシート1を10℃以下で拡張する。より好ましくは、0℃以下で拡張する。0℃以下であると、接着剤層3を容易に分断できる。温度の下限は特に限定されず、例えば、-20℃である。 Preferably, the dicing sheet 1 is expanded at 10 ° C. or lower. More preferably, the expansion is performed at 0 ° C. or less. The adhesive bond layer 3 can be parted easily as it is 0 degrees C or less. The lower limit of the temperature is not particularly limited, and is −20 ° C., for example.
 突き上げ部33が上昇する速度は、好ましくは0.1mm/秒以上、より好ましくは1mm/秒以上である。0.1mm/秒以上であると、容易に分断できる。一方、エキスパンド速度の上限は特に限定されない。 The speed at which the push-up portion 33 rises is preferably 0.1 mm / second or more, more preferably 1 mm / second or more. If it is 0.1 mm / second or more, it can be easily divided. On the other hand, the upper limit of the expanding speed is not particularly limited.
 図8に示すように、突き上げ部33を下降させる。突き上げ部33を下降させることにより、周辺部12bにたるみが生じる。 As shown in FIG. 8, the push-up portion 33 is lowered. When the push-up portion 33 is lowered, sagging occurs in the peripheral portion 12b.
 図9に示すように、分割構造体51の下方に配置された吸着テーブル32を上昇させることによりダイシングシート1を拡張し、拡張を維持しながら吸着テーブル32でダイシングシート1を吸引する。 As shown in FIG. 9, the dicing sheet 1 is expanded by raising the suction table 32 arranged below the divided structure 51, and the dicing sheet 1 is sucked by the suction table 32 while maintaining the expansion.
 図10に示すように、吸着テーブル32でダイシングシート1を吸引しながら、吸着テーブル32を下降させる。 As shown in FIG. 10, the suction table 32 is lowered while the dicing sheet 1 is sucked by the suction table 32.
 吸着テーブル32でダイシングシート1を吸引しながら、周辺部12bに熱風を当てる。周辺部12bに熱風を当てることによりたるみを取り除くことが可能で、ダイボンド用チップ2Aとダイボンド用チップ2B、ダイボンド用チップ2Bとダイボンド用チップ2C、……ダイボンド用チップ2Gとダイボンド用チップ2Hの接触を防止できる。 While sucking the dicing sheet 1 with the suction table 32, hot air is applied to the peripheral portion 12b. It is possible to remove slack by applying hot air to the peripheral portion 12b, and contact between the die bonding chip 2A and the die bonding chip 2B, the die bonding chip 2B and the die bonding chip 2C, ..., the contact between the die bonding chip 2G and the die bonding chip 2H Can be prevented.
 熱風の温度は、好ましくは220℃以上、より好ましくは250℃以上である。220℃以上であると、周辺部12bを容易に収縮させることができる。一方、熱風の温度は、好ましくは400℃以下、より好ましくは300℃以下で熱する。400℃以下であると、ダイシングシート1の破損を防止できる。 The temperature of the hot air is preferably 220 ° C. or higher, more preferably 250 ° C. or higher. The peripheral part 12b can be easily contracted as it is 220 degreeC or more. On the other hand, the hot air is heated at a temperature of preferably 400 ° C. or lower, more preferably 300 ° C. or lower. When the temperature is 400 ° C. or lower, the dicing sheet 1 can be prevented from being damaged.
 次いで、粘着剤層12が紫外線硬化型である場合は、粘着剤層12に紫外線を照射して、粘着剤層12を硬化させる。これにより、粘着剤層12のダイボンド用チップ2に対する粘着力を低下させることができる。紫外線照射の際の照射強度、照射時間などの条件は特に限定されず、適宜必要に応じて設定すればよい。粘着剤層12が紫外線硬化型でない場合は、粘着剤層12に紫外線を照射する必要はない。 Next, when the pressure-sensitive adhesive layer 12 is an ultraviolet curable type, the pressure-sensitive adhesive layer 12 is cured by irradiating the pressure-sensitive adhesive layer 12 with ultraviolet rays. Thereby, the adhesive force with respect to the chip | tip 2 for die-bonding of the adhesive layer 12 can be reduced. Conditions such as irradiation intensity and irradiation time at the time of ultraviolet irradiation are not particularly limited, and may be set as necessary. When the pressure-sensitive adhesive layer 12 is not an ultraviolet curable type, it is not necessary to irradiate the pressure-sensitive adhesive layer 12 with ultraviolet rays.
 ダイボンド用チップ2Aをピックアップする。ピックアップの方法としては特に限定されず、従来公知の種々の方法を採用できる。例えば、ダイボンド用チップ2Aをニードルによって突き上げ、突き上げられたダイボンド用チップ2Aをピックアップ装置によってピックアップする方法などが挙げられる。 Pick up die bonding chip 2A. The pickup method is not particularly limited, and various conventionally known methods can be employed. For example, there is a method of pushing up the die bonding chip 2A with a needle and picking up the pushed up die bonding chip 2A with a pickup device.
 図11に示すように、ダイボンド用チップ2Aを被着体6に圧着して、半導体素子付き被着体61を得る。半導体素子付き被着体61は、被着体6、被着体6上に配置された接着フィルム22A及び接着フィルム22A上に配置された半導体素子5Aを備える。 As shown in FIG. 11, the die bonding chip 2A is pressure-bonded to the adherend 6 to obtain an adherend 61 with a semiconductor element. The adherend 61 with a semiconductor element includes an adherend 6, an adhesive film 22 </ b> A disposed on the adherend 6, and a semiconductor element 5 </ b> A disposed on the adhesive film 22 </ b> A.
 圧着温度は、好ましくは80℃以上、より好ましくは90℃以上である。また、圧着温度は、好ましくは150℃以下、より好ましくは130℃以下である。 The crimping temperature is preferably 80 ° C. or higher, more preferably 90 ° C. or higher. The pressure bonding temperature is preferably 150 ° C. or lower, more preferably 130 ° C. or lower.
 続いて、半導体素子付き被着体61を加熱することにより接着フィルム22Aを熱硬化させて、半導体素子5Aを被着体6に固着させる。 Subsequently, by heating the adherend 61 with a semiconductor element, the adhesive film 22A is thermally cured, and the semiconductor element 5A is fixed to the adherend 6.
 なお、半導体素子付き被着体61を加圧下で加熱することにより接着フィルム22Aを熱硬化させることが好ましい。加圧下で接着フィルム22Aを熱硬化させることにより、接着フィルム22Aと被着体6との間に存在するボイドを容易に消滅させることができる。 In addition, it is preferable to thermally cure the adhesive film 22A by heating the adherend 61 with a semiconductor element under pressure. By thermally curing the adhesive film 22A under pressure, voids existing between the adhesive film 22A and the adherend 6 can be easily eliminated.
 加圧下で加熱する方法としては、例えば、不活性ガスが充填されたチャンバー内に配置された半導体素子付き被着体61を加熱する方法などが挙げられる。
加圧雰囲気の圧力は、好ましくは0.5kg/cm(4.9×10-2MPa)以上、より好ましくは1kg/cm(9.8×10-2MPa)以上、さらに好ましくは5kg/cm(4.9×10-1MPa)以上である。0.5kg/cm以上であると、接着フィルム22Aと被着体6との間に存在するボイドを容易に消滅させることができる。加圧雰囲気の圧力は、好ましくは20kg/cm(1.96MPa)以下、より好ましくは18kg/cm(1.77MPa)以下、さらに好ましくは15kg/cm(1.47MPa)以下である。20kg/cm以下であると、過度な加圧による接着フィルム22Aのはみ出しを抑制できる。
Examples of the method of heating under pressure include a method of heating the adherend 61 with a semiconductor element arranged in a chamber filled with an inert gas.
The pressure of the pressurized atmosphere is preferably 0.5 kg / cm 2 (4.9 × 10 −2 MPa) or more, more preferably 1 kg / cm 2 (9.8 × 10 −2 MPa) or more, and further preferably 5 kg. / Cm 2 (4.9 × 10 −1 MPa) or more. If it is 0.5 kg / cm 2 or more, voids existing between the adhesive film 22A and the adherend 6 can be easily eliminated. The pressure of the pressurized atmosphere is preferably 20kg / cm 2 (1.96MPa), more preferably 18kg / cm 2 (1.77MPa) or less, more preferably not more than 15kg / cm 2 (1.47MPa). The protrusion of the adhesive film 22A due to excessive pressurization can be suppressed as it is 20 kg / cm 2 or less.
 加圧下で加熱する際の加熱温度は、好ましくは80℃以上、より好ましくは100℃以上、さらに好ましくは120℃以上、特に好ましくは170℃以上である。80℃以上であると、接着フィルム22Aを適度な硬さとすることが可能で、加圧キュアによりボイドを効果的に消失させることができる。加熱温度は、好ましくは260℃以下、より好ましくは200℃以下、より好ましくは180℃以下である。260℃以下であると、接着フィルム22Aの分解を防ぐことができる。 The heating temperature at the time of heating under pressure is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, further preferably 120 ° C. or higher, and particularly preferably 170 ° C. or higher. When the temperature is 80 ° C. or higher, the adhesive film 22A can have an appropriate hardness, and voids can be effectively eliminated by pressure curing. The heating temperature is preferably 260 ° C. or lower, more preferably 200 ° C. or lower, more preferably 180 ° C. or lower. When the temperature is 260 ° C. or lower, the adhesive film 22A can be prevented from being decomposed.
 加熱時間は、好ましくは0.1時間以上、より好ましくは0.2時間以上、さらに好ましくは0.5時間以上である。0.1時間以上であると、加圧の効果を充分に得ることができる。加熱時間は、好ましくは24時間以下、より好ましくは3時間以下、さらに好ましくは1時間以下である。 The heating time is preferably 0.1 hour or longer, more preferably 0.2 hour or longer, and further preferably 0.5 hour or longer. When it is 0.1 hour or longer, the effect of pressurization can be sufficiently obtained. The heating time is preferably 24 hours or less, more preferably 3 hours or less, and even more preferably 1 hour or less.
 図12に示すように、被着体6の端子部(インナーリード)の先端と半導体素子5A上の電極パッド(図示しない)とをボンディングワイヤー7で電気的に接続するワイヤーボンディング工程を行う。ボンディングワイヤー7としては、例えば金線、アルミニウム線又は銅線などが用いられる。ワイヤーボンディングを行う際の温度は、好ましくは80℃以上、より好ましくは120℃以上であり、該温度は、好ましくは250℃以下、より好ましくは175℃以下である。また、その加熱時間は数秒~数分間(例えば、1秒~1分間)行われる。結線は、前記温度範囲内となる様に加熱された状態で、超音波による振動エネルギーと印加加圧による圧着エネルギーの併用により行われる。 As shown in FIG. 12, a wire bonding step of electrically connecting the tip of the terminal portion (inner lead) of the adherend 6 and an electrode pad (not shown) on the semiconductor element 5A with a bonding wire 7 is performed. As the bonding wire 7, for example, a gold wire, an aluminum wire or a copper wire is used. The temperature during wire bonding is preferably 80 ° C. or higher, more preferably 120 ° C. or higher, and the temperature is preferably 250 ° C. or lower, more preferably 175 ° C. or lower. The heating time is several seconds to several minutes (for example, 1 second to 1 minute). The connection is performed by a combination of vibration energy by ultrasonic waves and pressure energy by pressurization while being heated so as to be within the temperature range.
 続いて、封止樹脂8により半導体素子5Aを封止する封止工程を行う。本工程は、被着体6に搭載された半導体素子5Aやボンディングワイヤー7を保護する為に行われる。本工程は、封止用の樹脂を金型で成型することにより行う。封止樹脂8としては、例えばエポキシ系の樹脂を使用する。樹脂封止の際の加熱温度は、好ましくは165℃以上、より好ましくは170℃以上であり、該加熱温度は、好ましくは185℃以下、より好ましくは180℃以下である。 Subsequently, a sealing step of sealing the semiconductor element 5A with the sealing resin 8 is performed. This step is performed to protect the semiconductor element 5 </ b> A and the bonding wire 7 mounted on the adherend 6. This step is performed by molding a sealing resin with a mold. As the sealing resin 8, for example, an epoxy resin is used. The heating temperature at the time of resin sealing is preferably 165 ° C. or higher, more preferably 170 ° C. or higher, and the heating temperature is preferably 185 ° C. or lower, more preferably 180 ° C. or lower.
 必要に応じて、封止後に更に加熱をしてもよい(後硬化工程)。これにより、封止工程で硬化不足の封止樹脂8を完全に硬化できる。加熱温度は適宜設定できる。 If necessary, it may be further heated after sealing (post-curing step). Thereby, the sealing resin 8 which is insufficiently cured in the sealing process can be completely cured. The heating temperature can be set as appropriate.
 (変形例1)
 変形例1では、ダイシング・ダイボンドフィルム10に半導体ウエハ4Pを圧着する。次いで、ダイシング・ダイボンドフィルム10上に配置された半導体ウエハ4Pの内部に改質領域41を形成して、分割ウエハ4を得る。
(Modification 1)
In the first modification, the semiconductor wafer 4P is pressure-bonded to the dicing die-bonding film 10. Next, the modified region 41 is formed inside the semiconductor wafer 4 </ b> P disposed on the dicing die bond film 10 to obtain the divided wafer 4.
 (変形例2)
 変形例2では、接着フィルム22Aを熱硬化することなく、ワイヤーボンディング工程を行う。
(Modification 2)
In Modification 2, the wire bonding step is performed without thermosetting the adhesive film 22A.
 (変形例3)
 周辺部12bは、放射線照射により硬化された部分である。
(Modification 3)
The peripheral part 12b is a part cured by radiation irradiation.
 (変形例4)
 中央部12aは、放射線照射により硬化されていない部分である。
(Modification 4)
The central portion 12a is a portion that is not cured by radiation irradiation.
 以上のとおり、実施形態1の半導体装置の製造方法は、ダイシング・ダイボンドフィルム10、及び接着剤層3上に配置された、改質領域41を備える分割ウエハ4を備える分割体21を準備する工程と、ダイシングシート1を拡張することにより、改質領域41を起点に分割ウエハ4及び接着剤層3を分断する工程と、分割ウエハ4及び接着剤層3を分断する工程の後に、周辺部12bを加熱する工程とを含む。実施形態1の半導体装置の製造方法は、分割ウエハ4及び接着剤層3を分断する工程により得られたダイボンド用チップ2Aを被着体6に圧着する工程などをさらに含む。 As described above, the manufacturing method of the semiconductor device according to the first embodiment is a process of preparing the divided body 21 including the dicing die bond film 10 and the divided wafer 4 including the modified region 41 disposed on the adhesive layer 3. Then, by expanding the dicing sheet 1, after the step of dividing the divided wafer 4 and the adhesive layer 3 from the modified region 41 and the step of dividing the divided wafer 4 and the adhesive layer 3, the peripheral portion 12 b Heating. The manufacturing method of the semiconductor device of Embodiment 1 further includes a step of pressure bonding the die bonding chip 2A obtained by the step of dividing the divided wafer 4 and the adhesive layer 3 to the adherend 6 and the like.
 分割体21を準備する工程は、分割ウエハ4を形成するステップを含む。分割ウエハ4を形成するステップは、分割予定ライン4Lに沿ってレーザー光100を照射することにより、半導体ウエハ4Pの内部に改質領域41を形成する段階を含む。 The step of preparing the divided body 21 includes a step of forming the divided wafer 4. The step of forming the divided wafer 4 includes a step of forming the modified region 41 inside the semiconductor wafer 4P by irradiating the laser beam 100 along the planned division line 4L.
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist.
 [基材]
 実施例及び比較例で使用した基材A~Gを説明する。基材A~Gの厚みを表1に示す。
 基材A:グンゼ社製のファンクレア NRB#115(エチレン酢酸ビニル共重合体フィルム)
 基材B:グンゼ社製のファンクレア NRB#135(エチレン酢酸ビニル共重合体フィルム)
 基材C:オージーフィルム社製のPE-5(エチレン-アクリル酸エステル共重合体フィルム)
 基材D:ロンシール工業社製のHLフィルム(ポリ塩化ビニルフィルム)
 基材E:オージーフィルム社製のPP-1(ポリプロピレンフィルム)
 基材F:ポリプロピレン(80%)ポリエチレン(20%)2層フィルム
 基材G:ポリプロピレン(80%)ポリエチレン(20%)2層フィルム
[Base material]
The base materials A to G used in Examples and Comparative Examples will be described. Table 1 shows the thicknesses of the substrates A to G.
Base material A: Fanclaire NRB # 115 (ethylene vinyl acetate copolymer film) manufactured by Gunze
Base material B: Fanclaire NRB # 135 (ethylene vinyl acetate copolymer film) manufactured by Gunze
Base material C: PE-5 (ethylene-acrylic acid ester copolymer film) manufactured by Aussie Film
Base material D: HL film (polyvinyl chloride film) manufactured by Ron Seal Industry Co., Ltd.
Substrate E: PP-1 (polypropylene film) manufactured by Aussie Film
Base material F: Polypropylene (80%) polyethylene (20%) two-layer film Base material G: Polypropylene (80%) polyethylene (20%) two-layer film
 [ダイシング・ダイボンドフィルムの作製]
 (実施例1)
 冷却管、窒素導入管、温度計、及び、撹拌装置を備えた反応容器に、アクリル酸-2-エチルヘキシル(以下、「2EHA」ともいう。)86.4部、アクリル酸-2-ヒドロキシエチル(以下、「HEA」ともいう。)13.6部、過酸化ベンゾイル0.2部、及び、トルエン65部を入れ、窒素気流中で61℃にて6時間重合処理をし、アクリル系ポリマーBを得た。アクリル系ポリマーBに2-メタクリロイルオキシエチルイソシアネート(以下、「MOI」ともいう。)14.6部を加え、空気気流中で50℃にて48時間、付加反応処理をし、アクリル系ポリマーB’を得た。アクリル系ポリマーB’100部に対し、ポリイソシアネート化合物(商品名「コロネートL」、日本ポリウレタン(株)製)2部、及び、光重合開始剤(商品名「イルガキュア651」、チバ・スペシャルティ・ケミカルズ社製)5部を加えて、粘着剤組成物溶液を得た。粘着剤組成物溶液を、離型処理フィルム上に塗布し、120℃で2分間加熱乾燥し、厚さ30μmの粘着剤層を形成した。次いで、粘着剤層に、基材Aを貼り合せた。その後、マスクを介して、粘着剤層のうち12inchサイズのウェハが貼り付けられる予定の部分に紫外線を400mJ/cm照射し、紫外線硬化した。得られたダイシングシートは、基材A、基材A上に配置された粘着剤層を有する。
[Production of dicing die bond film]
(Example 1)
In a reaction vessel equipped with a cooling tube, a nitrogen introduction tube, a thermometer, and a stirrer, 86.4 parts of 2-ethylhexyl acrylate (hereinafter also referred to as “2EHA”), 2-hydroxyethyl acrylate ( Hereinafter, it is also referred to as “HEA”.) 13.6 parts, 0.2 part of benzoyl peroxide, and 65 parts of toluene are put into a nitrogen gas stream and polymerized at 61 ° C. for 6 hours to obtain acrylic polymer B. Obtained. To acrylic polymer B, 14.6 parts of 2-methacryloyloxyethyl isocyanate (hereinafter also referred to as “MOI”) was added, and an addition reaction treatment was carried out in an air stream at 50 ° C. for 48 hours to obtain acrylic polymer B ′. Got. For 100 parts of acrylic polymer B ′, 2 parts of polyisocyanate compound (trade name “Coronate L”, manufactured by Nippon Polyurethane Co., Ltd.) and photopolymerization initiator (trade name “Irgacure 651”, Ciba Specialty Chemicals) 5 parts) was added to obtain an adhesive composition solution. The pressure-sensitive adhesive composition solution was applied on a release treatment film and dried by heating at 120 ° C. for 2 minutes to form a pressure-sensitive adhesive layer having a thickness of 30 μm. Subsequently, the base material A was bonded to the pressure-sensitive adhesive layer. Thereafter, ultraviolet light was irradiated at 400 mJ / cm 2 on the portion of the pressure-sensitive adhesive layer where a 12 inch wafer was to be attached, and cured by ultraviolet light. The obtained dicing sheet has the adhesive layer arrange | positioned on the base material A and the base material A. FIG.
 表2に示した割合でアクリル樹脂、エポキシ樹脂A、エポキシ樹脂B、フェノール樹脂、シリカ、及び触媒をメチルエチルケトンに溶解して濃度40~50重量%の接着剤組成物溶液を調製した。 Acrylic resin, epoxy resin A, epoxy resin B, phenol resin, silica, and catalyst were dissolved in methyl ethyl ketone at a ratio shown in Table 2 to prepare an adhesive composition solution having a concentration of 40 to 50% by weight.
 各成分の詳細は以下のとおりである。
  アクリル樹脂:ナガセケムテックス社製 SG-708-6(Tg:4℃)
  エポキシ樹脂A:東都化成株式会社製 KI-3000(固形)
  エポキシ樹脂B:三菱化学株式会社製 JER YL980(液状)
  フェノール樹脂:明和化成株式会社製 MEH-7800H(固形)
  シリカ:アドマテックス株式会社製 SE-2050MC(平均粒径:0.5μm)
  触媒:北興化学株式会社製 TPP-K
Details of each component are as follows.
Acrylic resin: SG-708-6 (Tg: 4 ° C) manufactured by Nagase ChemteX Corporation
Epoxy resin A: KI-3000 (solid) manufactured by Toto Kasei Co., Ltd.
Epoxy resin B: JER YL980 (liquid) manufactured by Mitsubishi Chemical Corporation
Phenolic resin: MEH-7800H (solid) manufactured by Meiwa Kasei Co., Ltd.
Silica: SE-2050MC manufactured by Admatechs Co., Ltd. (average particle size: 0.5 μm)
Catalyst: TPP-K manufactured by Hokuko Chemical Co., Ltd.
 調製した接着剤組成物溶液を、シリコーン離型処理した厚み50μmのポリエチレンテレフタレートフィルムに塗布した後、130℃で2分間乾燥させることにより、厚み30μmの接着剤塗膜を作製した。接着剤塗膜から、直径330mmの円形状の接着剤層を切り出した。 The prepared adhesive composition solution was applied to a 50 μm-thick polyethylene terephthalate film subjected to silicone release treatment, and then dried at 130 ° C. for 2 minutes to prepare an adhesive coating film having a thickness of 30 μm. A circular adhesive layer having a diameter of 330 mm was cut out from the adhesive coating film.
 粘着剤層に、円形状の接着剤層を貼り合わせて、ダイシング・ダイボンドフィルムを作製した。 A circular adhesive layer was bonded to the pressure-sensitive adhesive layer to prepare a dicing die-bonding film.
 (実施例2)
 基材Aに代えて基材Bを使用したこと以外は実施例1と同様の方法でダイシング・ダイボンドフィルムを作製した。
(Example 2)
A dicing die-bonding film was produced in the same manner as in Example 1 except that the base material B was used instead of the base material A.
 (実施例3)
 基材Aに代えて基材Cを使用したこと以外は実施例1と同様の方法でダイシング・ダイボンドフィルムを作製した。
(Example 3)
A dicing die-bonding film was produced in the same manner as in Example 1 except that the substrate C was used instead of the substrate A.
 (実施例4)
 基材Aに代えて基材Dを使用したこと以外は実施例1と同様の方法でダイシング・ダイボンドフィルムを作製した。
Example 4
A dicing die-bonding film was produced in the same manner as in Example 1 except that the substrate D was used instead of the substrate A.
 (比較例1)
 基材Aに代えて基材Eを使用したこと以外は実施例1と同様の方法でダイシング・ダイボンドフィルムを作製した。
(Comparative Example 1)
A dicing die-bonding film was produced in the same manner as in Example 1 except that the substrate E was used instead of the substrate A.
 (比較例2)
 基材Aに代えて基材Fを使用したこと以外は実施例1と同様の方法でダイシング・ダイボンドフィルムを作製した。
(Comparative Example 2)
A dicing die-bonding film was produced in the same manner as in Example 1 except that the base material F was used instead of the base material A.
 (比較例3)
 基材Aに代えて基材Gを使用したこと以外は実施例1と同様の方法でダイシング・ダイボンドフィルムを作製した。
(Comparative Example 3)
A dicing die-bonding film was produced in the same manner as in Example 1 except that the base material G was used instead of the base material A.
 [評価1]
 ダイシングシートについて以下の評価を行った。結果を表1に示す。
[Evaluation 1]
The following evaluation was performed on the dicing sheet. The results are shown in Table 1.
 (加熱収縮率)
 ダイシング・ダイボンドフィルムから接着剤層を剥がすことにより、ダイシングシートを得た。ダイシングシートから、MD方向の長さ150mm、幅25mmの短冊状の試験片500を切り出した。図16に示すように、試験片500に100mmの間隔で2つの標線501a、501bを入れた。竿502に試験片500を吊り下げ、試験片500を乾燥機で100℃で1分加熱した。冷却後に、2つの標線501a、501bの間隔を測定し、下記式にて加熱収縮率を求めた。
   加熱収縮率=加熱後の標線間距離/加熱前の標線間距離×100
(Heat shrinkage)
A dicing sheet was obtained by removing the adhesive layer from the dicing die-bonding film. A strip-shaped test piece 500 having a length of 150 mm in the MD direction and a width of 25 mm was cut out from the dicing sheet. As shown in FIG. 16, two marked lines 501a and 501b were put in the test piece 500 at an interval of 100 mm. The test piece 500 was suspended from the basket 502, and the test piece 500 was heated at 100 ° C. for 1 minute with a dryer. After cooling, the distance between the two marked lines 501a and 501b was measured, and the heat shrinkage rate was determined by the following formula.
Heat shrinkage rate = distance between marked lines after heating / distance between marked lines before heating × 100
 (3%引張応力)
 ダイシング・ダイボンドフィルムから接着剤層を剥がすことにより、ダイシングシートを得た。ダイシングシートから、MD方向の長さ150mm、幅25mの短冊状の測定片を切り出した。引っ張り試験機(オートグラフ、島津製作所社製)を用いて、23℃、引張速度300mm/分、チャック間距離100mmの条件下で引張試験を行い、試験片が3%伸びた時点の引張応力を読み取った。
(3% tensile stress)
A dicing sheet was obtained by removing the adhesive layer from the dicing die-bonding film. A strip-shaped measurement piece having a length of 150 mm in the MD direction and a width of 25 m was cut out from the dicing sheet. Using a tensile tester (Autograph, manufactured by Shimadzu Corporation), a tensile test was performed under the conditions of 23 ° C., a tensile speed of 300 mm / min, and a distance between chucks of 100 mm. I read it.
 (6%引張応力)
 ダイシング・ダイボンドフィルムから接着剤層を剥がすことにより、ダイシングシートを得た。ダイシングシートから、MD方向の長さ150mm、幅25mの短冊状の測定片を切り出した。引っ張り試験機(オートグラフ、島津製作所社製)を用いて、23℃、引張速度300mm/分、チャック間距離100mmの条件下で引張試験を行い、試験片が6%伸びた時点の引張応力を読み取った。
(6% tensile stress)
A dicing sheet was obtained by removing the adhesive layer from the dicing die-bonding film. A strip-shaped measurement piece having a length of 150 mm in the MD direction and a width of 25 m was cut out from the dicing sheet. Using a tensile tester (Autograph, manufactured by Shimadzu Corporation), a tensile test was performed under the conditions of 23 ° C., a tensile speed of 300 mm / min, and a distance between chucks of 100 mm. I read it.
 [評価2]
 ダイシング・ダイボンドフィルムを用いて以下の評価を行った。結果を表1に示す。
[Evaluation 2]
The following evaluation was performed using a dicing die-bonding film. The results are shown in Table 1.
 (初期のピックアップ成功率)
 レーザー加工装置として株式会社東京精密製、ML300-Integrationを用いて、12inchサイズの半導体ウェハの内部に集光点を合わせ、格子状(10mm×10mm)の分割予定ラインに沿って半導体ウェハの表面(おもてめん)または裏面側からレーザー光を照射し、半導体ウェハの内部に改質領域を形成した。その後、半導体ウェハ表面にバックグラインド用保護テープを貼り合せ、ディスコ社製バックグラインダーDGP8760を用いて半導体ウェハの厚みが30μmになるように裏面を研削した。レーザー光照射条件を以下に示す。
 (A)レーザー光
     レーザー光源       半導体レーザー励起Nd:YAGレーザー
     波長           1064nm
     レーザー光スポット断面積 3.14×10-8cm
     発振形態         Qスイッチパルス
     繰り返し周波数      100kHz
     パルス幅         30ns
     出力           20μJ/パルス
     レーザー光品質      TEM00 40
     偏光特性         直線偏光
 (B)集光用レンズ
     倍率                   50倍
     NA                   0.55
     レーザー光波長に対する透過率       60%
 (C)半導体基板が載置される裁置台の移動速度  100mm/秒
 ダイシング・ダイボンドフィルムに、レーザー光による前処理を行った半導体ウェハ及びダイシングリングを貼り合わせた後、ディスコ社製ダイセパレーターDDS2300を用いて半導体ウェハの割断及びダイシングシートの熱収縮を行うことにより、サンプルを得た。すなわち、まずクールエキスパンダーユニットで、エキスパンド温度-15℃、エキスパンド速度200mm/秒、エキスパンド量12mmの条件で半導体ウェハを割断した。
その後、ヒートエキスパンダーユニットで、エキスパンド量10mm、ヒート温度250℃、風量40L/min、ヒート距離20mm、ローテーションスピード3°/secの条件でダイシングシートを熱収縮させることにより、サンプルを得た。サンプルについて株式会社新川社製ダイボンダーSPA-300を用いてピックアップ評価を行った。すなわち、エキスパンド量3mm、ニードル本数9本、ニードル突き上げ量400μm、突き上げ速度10mm/sec、突き上げ時間1secの条件で、半導体チップ及び半導体チップと接する接着剤層を有するダイボンド用チップを突き上げる動作を100回行うことにより、ピックアップ成功回数を評価した。
(Initial pickup success rate)
Using ML300-Integration, manufactured by Tokyo Seimitsu Co., Ltd. as the laser processing device, the focusing point is aligned with the interior of a 12 inch semiconductor wafer, and the surface of the semiconductor wafer (10 mm × 10 mm) along the planned dividing line (10 mm × 10 mm) Otemen) or laser light was irradiated from the back side to form a modified region inside the semiconductor wafer. Thereafter, a protective tape for back grinding was bonded to the surface of the semiconductor wafer, and the back surface was ground using a disco back grinder DGP8760 so that the thickness of the semiconductor wafer was 30 μm. The laser light irradiation conditions are shown below.
(A) Laser light Laser light source Semiconductor laser excitation Nd: YAG laser Wavelength 1064 nm
Laser light spot cross section 3.14 × 10 −8 cm 2
Oscillation form Q switch pulse Repetition frequency 100kHz
Pulse width 30ns
Output 20μJ / pulse Laser light quality TEM00 40
Polarization characteristics Linearly polarized light (B) Condensing lens Magnification 50 times NA 0.55
60% transmittance for laser wavelength
(C) The moving speed of the mounting table on which the semiconductor substrate is placed 100 mm / sec. After the semiconductor wafer and the dicing ring that have been pre-processed with laser light are bonded to the dicing die-bonding film, the die separator DDS2300 manufactured by DISCO Corporation is used. A sample was obtained by cleaving the semiconductor wafer and heat shrinking the dicing sheet. That is, first, the semiconductor wafer was cleaved by a cool expander unit under the conditions of an expansion temperature of −15 ° C., an expansion speed of 200 mm / second, and an expansion amount of 12 mm.
Then, the sample was obtained by heat-shrinking the dicing sheet with a heat expander unit under the conditions of an expansion amount of 10 mm, a heat temperature of 250 ° C., an air volume of 40 L / min, a heat distance of 20 mm, and a rotation speed of 3 ° / sec. The sample was evaluated for pickup using a die bonder SPA-300 manufactured by Shinkawa Co., Ltd. That is, the operation of pushing up a die bonding chip having a semiconductor chip and an adhesive layer in contact with the semiconductor chip 100 times under the conditions of an expansion amount of 3 mm, a needle number of 9, a needle push-up amount of 400 μm, a push-up speed of 10 mm / sec, and a push-up time of 1 sec. By doing so, the number of successful pick-ups was evaluated.
 (一週間後のピックアップ成功率)
 サンプルを23℃で1週間保存し、その後同様の方法でピックアップ成功回数を評価した。
(Pickup success rate after one week)
Samples were stored at 23 ° C. for 1 week, and then the number of successful pickups was evaluated in the same manner.
 [評価3]
 接着剤層について以下の評価を行った。結果を表2に示す。
[Evaluation 3]
The following evaluation was performed on the adhesive layer. The results are shown in Table 2.
 (ガラス転移温度)
 接着剤層を60℃の条件下で厚さ300μmになるまで重ねあわせ、次いで長さ30mm、幅10mmの短冊状の測定片を切り出した。次に、動的粘弾性測定装置(RSA(II)、レオメトリックサイエンティフィック社製)を用いて、-30℃~100℃での貯蔵弾性率及び損失弾性率をチャック間距離22.5mm、周波数1Hz、昇温速度10℃/分の条件下にて測定し、tanδのピーク値によりガラス転移温度を得た。
(Glass-transition temperature)
The adhesive layer was laminated to a thickness of 300 μm under the condition of 60 ° C., and then a strip-shaped measurement piece having a length of 30 mm and a width of 10 mm was cut out. Next, using a dynamic viscoelasticity measuring device (RSA (II), manufactured by Rheometric Scientific), the storage elastic modulus and the loss elastic modulus at −30 ° C. to 100 ° C. were measured as the distance between chucks of 22.5 mm, Measurement was performed under conditions of a frequency of 1 Hz and a heating rate of 10 ° C./min, and a glass transition temperature was obtained from the peak value of tan δ.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 
Figure JPOXMLDOC01-appb-T000002
 
 
10   ダイシング・ダイボンドフィルム
1    ダイシングシート
2A、2B、2C、2D、2E、2F、2G、2H    ダイボンド用チップ
3    接着剤層
4P   半導体ウエハ
4L   分割予定ライン
4    分割ウエハ
5A、5B、5C、5D、5E、5F、5G、5H    半導体素子
6    被着体
7    ボンディングワイヤー
8    封止樹脂
11   基材
12   粘着剤層
12a  中央部
12b  周辺部
21   積層体
22A、22B、22C、22D、22E、22F、22G、22H   接着フィルム
31   ダイシングリング
32   吸着テーブル
33   突き上げ部
41   改質領域
51   分割構造体
61   半導体素子付き被着体
100  レーザー光
10 Dicing die bond film 1 Dicing sheet 2A, 2B, 2C, 2D, 2E, 2F, 2G, 2H Die bonding chip 3 Adhesive layer 4P Semiconductor wafer 4L Divided line 4 Divided wafers 5A, 5B, 5C, 5D, 5E, 5F, 5G, 5H Semiconductor element 6 Substrate 7 Bonding wire 8 Sealing resin 11 Base material 12 Adhesive layer 12a Central part 12b Peripheral part 21 Laminated bodies 22A, 22B, 22C, 22D, 22E, 22F, 22G, 22H Adhesion Film 31 Dicing ring 32 Suction table 33 Push-up portion 41 Modified region 51 Divided structure 61 Substrate with semiconductor element 100 Laser beam
910  ダイシング・ダイボンドフィルム
901  ダイシングシート
903  接着剤層
904  ウエハ
905A、905B、905C、905D、905E、905F、905G、905H 半導体素子
911  基材
912  粘着剤層
912b 周辺部
910 Dicing die bond film 901 Dicing sheet 903 Adhesive layer 904 Wafer 905A, 905B, 905C, 905D, 905E, 905F, 905G, 905H Semiconductor element 911 Base material 912 Adhesive layer 912b Peripheral part

Claims (10)

  1.  100℃で1分加熱することにより収縮し、前記加熱前のMD方向の第1長さ100%に対して前記加熱後の前記MD方向の第2長さは95%以下であるダイシングシート。 A dicing sheet that shrinks by heating at 100 ° C. for 1 minute, and the second length in the MD direction after the heating is 95% or less with respect to the first length in the MD direction before the heating of 100%.
  2.  23℃で前記MD方向に3%伸ばしたときの引張応力は1N/mm以上である請求項1に記載のダイシングシート。 2. The dicing sheet according to claim 1, wherein the tensile stress when stretched by 3% in the MD direction at 23 ° C. is 1 N / mm 2 or more.
  3.  23℃で前記MD方向に6%伸ばしたときの引張応力は1.5N/mm以上である請求項1又は2に記載のダイシングシート。 The dicing sheet according to claim 1 or 2, wherein a tensile stress when stretched by 6% in the MD direction at 23 ° C is 1.5 N / mm 2 or more.
  4.  厚みは40μm~200μmである請求項1~3のいずれかに記載のダイシングシート。 4. The dicing sheet according to claim 1, wherein the thickness is 40 μm to 200 μm.
  5.  基材及び前記基材上に配置された粘着剤層を備える請求項1~4のいずれかに記載のダイシングシート。 The dicing sheet according to any one of claims 1 to 4, further comprising a base material and an adhesive layer disposed on the base material.
  6.  請求項5に記載のダイシングシートと、
     前記粘着剤層上に配置された接着剤層とを備えるダイシング・ダイボンドフィルム。
    A dicing sheet according to claim 5;
    A dicing die-bonding film comprising: an adhesive layer disposed on the pressure-sensitive adhesive layer.
  7.  前記接着剤層のガラス転移温度は0℃以上である請求項6に記載のダイシング・ダイボンドフィルム。 The dicing / die-bonding film according to claim 6, wherein the adhesive layer has a glass transition temperature of 0 ° C. or higher.
  8.  前記粘着剤層が、前記接着剤層と接した中央部及び前記中央部の周辺に配置された周辺部を備える請求項6又は7に記載のダイシング・ダイボンドフィルム。 The dicing die-bonding film according to claim 6 or 7, wherein the pressure-sensitive adhesive layer includes a central part in contact with the adhesive layer and a peripheral part disposed around the central part.
  9.  ダイシング・ダイボンドフィルム、及び前記接着剤層上に配置された、改質領域を備える分割ウエハを備える分割体を準備する工程と、
     前記ダイシングシートを拡張することにより、前記改質領域を起点に前記分割ウエハ及び前記接着剤層を分断する工程と、
     前記分割ウエハ及び前記接着剤層を分断する工程の後に、前記周辺部を加熱する工程とを含む半導体装置の製造方法に使用するための請求項8に記載のダイシング・ダイボンドフィルム。
    Preparing a dicing die-bonding film, and a divided body provided with a divided wafer provided with a modified region, disposed on the adhesive layer;
    Dividing the divided wafer and the adhesive layer from the modified region by expanding the dicing sheet; and
    The dicing die-bonding film according to claim 8, wherein the dicing die-bonding film is used for a semiconductor device manufacturing method including a step of heating the peripheral portion after the step of dividing the divided wafer and the adhesive layer.
  10.  請求項8に記載のダイシング・ダイボンドフィルム、及び前記接着剤層上に配置された、改質領域を備える分割ウエハを備える分割体を準備する工程と、
     前記ダイシングシートを拡張することにより、前記改質領域を起点に前記分割ウエハ及び前記接着剤層を分断する工程と、
     前記分割ウエハ及び前記接着剤層を分断する工程の後に、前記周辺部を加熱する工程とを含む半導体装置の製造方法。
     
     
    Preparing a dicing die-bonding film according to claim 8 and a divided body comprising a divided wafer having a modified region disposed on the adhesive layer;
    Dividing the divided wafer and the adhesive layer from the modified region by expanding the dicing sheet; and
    And a step of heating the peripheral portion after the step of dividing the divided wafer and the adhesive layer.

PCT/JP2015/084644 2014-12-12 2015-12-10 Dicing sheet, dicing/die-bonding film, and method for manufacturing semiconductor device WO2016093308A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580067732.5A CN107004589B (en) 2014-12-12 2015-12-10 Dicing sheet, dicing die-bonding film, and method for manufacturing semiconductor device
KR1020177019215A KR102436526B1 (en) 2014-12-12 2015-12-10 Dicing sheet, dicing/die-bonding film, and method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014252206A JP6445315B2 (en) 2014-12-12 2014-12-12 Dicing sheet, dicing die-bonding film, and semiconductor device manufacturing method
JP2014-252206 2014-12-12

Publications (1)

Publication Number Publication Date
WO2016093308A1 true WO2016093308A1 (en) 2016-06-16

Family

ID=56107485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084644 WO2016093308A1 (en) 2014-12-12 2015-12-10 Dicing sheet, dicing/die-bonding film, and method for manufacturing semiconductor device

Country Status (5)

Country Link
JP (1) JP6445315B2 (en)
KR (1) KR102436526B1 (en)
CN (1) CN107004589B (en)
TW (1) TWI667703B (en)
WO (1) WO2016093308A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108728003A (en) * 2017-04-17 2018-11-02 日东电工株式会社 Cut die bonding film
CN109906504A (en) * 2016-11-02 2019-06-18 琳得科株式会社 Stealthy adhesive sheet for use in cutting

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6773535B2 (en) * 2016-11-25 2020-10-21 積水化学工業株式会社 Manufacturing method of semiconductor devices
JP7041475B2 (en) * 2017-07-04 2022-03-24 日東電工株式会社 Manufacturing method of dicing tape, dicing die bond film, and semiconductor device
JP7105120B2 (en) 2017-07-04 2022-07-22 日東電工株式会社 Dicing tape, dicing die-bonding film, and semiconductor device manufacturing method
JP7041476B2 (en) * 2017-07-04 2022-03-24 日東電工株式会社 Dicing tape and dicing die bond film
JP7269095B2 (en) * 2019-05-29 2023-05-08 古河電気工業株式会社 glass processing tape
JP7476903B2 (en) 2019-10-28 2024-05-01 株式会社レゾナック Film-like adhesive and method for evaluating severability thereof, integrated dicing/die bonding film and method for manufacturing the same, and semiconductor device
JPWO2022186285A1 (en) 2021-03-05 2022-09-09
WO2023047594A1 (en) 2021-09-27 2023-03-30 昭和電工マテリアルズ株式会社 Film adhesive, two-in-one dicing and die-bonding film, semiconductor device, and manufacturing method for same
JP7276555B1 (en) 2021-11-08 2023-05-18 大日本印刷株式会社 Adhesive tape for semiconductor processing
JP2024000458A (en) 2022-06-20 2024-01-05 マクセル株式会社 Dicing tape, semiconductor chip using dicing tape and manufacturing method of semiconductor device
JP2024089310A (en) 2022-12-21 2024-07-03 日東電工株式会社 DICING DIE BOND FILM AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242586A (en) * 2008-03-31 2009-10-22 Sekisui Film Kk Adhesive tape substrate and adhesive sheet
WO2011004825A1 (en) * 2009-07-08 2011-01-13 古河電気工業株式会社 Wafer-pasting adhesive sheet and wafer processing method using the same
JP2011216508A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Wafer processing tape
JP2012059768A (en) * 2010-09-06 2012-03-22 Nitto Denko Corp Film for semiconductor device and semiconductor device
JP2013157589A (en) * 2012-01-06 2013-08-15 Furukawa Electric Co Ltd:The Wafer processing tape and method for manufacturing semiconductor device using the same
WO2014157471A1 (en) * 2013-03-28 2014-10-02 古河電気工業株式会社 Adhesive tape and wafer-processing tape

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408805B2 (en) 2000-09-13 2003-05-19 浜松ホトニクス株式会社 Cutting origin region forming method and workpiece cutting method
JP4358502B2 (en) 2002-03-12 2009-11-04 浜松ホトニクス株式会社 Semiconductor substrate cutting method
JP4754278B2 (en) * 2005-06-23 2011-08-24 リンテック株式会社 Chip body manufacturing method
JP2010129607A (en) * 2008-11-25 2010-06-10 Nitto Denko Corp Surface protecting tape for dicing and peel-off and removal method of the surface protecting tape for dicing
JP2012069586A (en) * 2010-09-21 2012-04-05 Nitto Denko Corp Dicing die-bonding film, manufacturing method of dicing die-bonding film, and manufacturing method of semiconductor device
CN103620742B (en) * 2011-07-01 2016-05-25 古河电气工业株式会社 Adhesive film, diced chip junction film and use the semiconductor processing method of this diced chip junction film
JP5554351B2 (en) * 2012-01-25 2014-07-23 古河電気工業株式会社 Wafer processing tape
JP5855034B2 (en) * 2013-02-18 2016-02-09 古河電気工業株式会社 Adhesive tape for semiconductor wafer processing and method for dividing semiconductor wafer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009242586A (en) * 2008-03-31 2009-10-22 Sekisui Film Kk Adhesive tape substrate and adhesive sheet
WO2011004825A1 (en) * 2009-07-08 2011-01-13 古河電気工業株式会社 Wafer-pasting adhesive sheet and wafer processing method using the same
JP2011216508A (en) * 2010-03-31 2011-10-27 Furukawa Electric Co Ltd:The Wafer processing tape
JP2012059768A (en) * 2010-09-06 2012-03-22 Nitto Denko Corp Film for semiconductor device and semiconductor device
JP2013157589A (en) * 2012-01-06 2013-08-15 Furukawa Electric Co Ltd:The Wafer processing tape and method for manufacturing semiconductor device using the same
WO2014157471A1 (en) * 2013-03-28 2014-10-02 古河電気工業株式会社 Adhesive tape and wafer-processing tape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109906504A (en) * 2016-11-02 2019-06-18 琳得科株式会社 Stealthy adhesive sheet for use in cutting
CN109906504B (en) * 2016-11-02 2023-04-14 琳得科株式会社 Adhesive sheet for stealth dicing
CN108728003A (en) * 2017-04-17 2018-11-02 日东电工株式会社 Cut die bonding film

Also Published As

Publication number Publication date
JP2016115775A (en) 2016-06-23
KR102436526B1 (en) 2022-08-25
JP6445315B2 (en) 2018-12-26
CN107004589B (en) 2021-07-16
TW201633389A (en) 2016-09-16
CN107004589A (en) 2017-08-01
TWI667703B (en) 2019-08-01
KR20170095947A (en) 2017-08-23

Similar Documents

Publication Publication Date Title
JP6445315B2 (en) Dicing sheet, dicing die-bonding film, and semiconductor device manufacturing method
JP6068386B2 (en) Thermosetting die bond film, dicing die bond film, and semiconductor device manufacturing method
KR102532978B1 (en) Dicing die bond film
JP4976522B2 (en) Thermosetting die bond film, dicing die bond film, and semiconductor device manufacturing method
JP5437111B2 (en) Die bond film, dicing die bond film and semiconductor device
JP5305501B2 (en) Thermosetting die bond film
JP5830250B2 (en) Manufacturing method of semiconductor device
WO2010074060A1 (en) Thermosetting die-bonding film
JP6312498B2 (en) Dicing film, dicing die-bonding film, and semiconductor device manufacturing method
JP6295135B2 (en) Dicing die bond film
JP2011060848A (en) Thermosetting type die bond film, dicing-die bond film and semiconductor device
JP6295132B2 (en) Dicing die bond film
JP2012079936A (en) Dicing, die-bonding film and method for manufacturing semiconductor device
JP2011102383A (en) Thermosetting die-bonding film
JP2009049400A (en) Thermoset die bond film
JP5696205B2 (en) Die bond film, dicing die bond film and semiconductor device
JP2017183705A (en) Dicing die bonding film, and method of manufacturing semiconductor device
JP2012222002A (en) Dicing die-bonding film and semiconductor device manufacturing method
JP5908543B2 (en) Manufacturing method of semiconductor device
JP5976716B2 (en) Thermosetting die bond film
JP2015211080A (en) Method for manufacturing semiconductor device
JP5219302B2 (en) Thermosetting die bond film, dicing die bond film, and semiconductor device
JP5888805B2 (en) Adhesive film and dicing die bond film
JP2017092365A (en) Dicing tape integrated adhesive sheet, and manufacturing method of semiconductor device
JP6574688B2 (en) Sheet-like resin composition, laminated sheet, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177019215

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15866684

Country of ref document: EP

Kind code of ref document: A1