WO2016092587A1 - 制駆動力制御装置及び制駆動力制御方法 - Google Patents

制駆動力制御装置及び制駆動力制御方法 Download PDF

Info

Publication number
WO2016092587A1
WO2016092587A1 PCT/JP2014/006124 JP2014006124W WO2016092587A1 WO 2016092587 A1 WO2016092587 A1 WO 2016092587A1 JP 2014006124 W JP2014006124 W JP 2014006124W WO 2016092587 A1 WO2016092587 A1 WO 2016092587A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking
driving force
vehicle speed
wheel
operation amount
Prior art date
Application number
PCT/JP2014/006124
Other languages
English (en)
French (fr)
Inventor
光紀 太田
裕樹 塩澤
鈴木 達也
識史 大田
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP14908040.0A priority Critical patent/EP3231657B1/en
Priority to PCT/JP2014/006124 priority patent/WO2016092587A1/ja
Priority to US15/519,218 priority patent/US9950697B2/en
Priority to CN201480083386.5A priority patent/CN107000607B/zh
Priority to JP2016563284A priority patent/JP6237933B2/ja
Publication of WO2016092587A1 publication Critical patent/WO2016092587A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/72Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration responsive to a difference between a speed condition, e.g. deceleration, and a fixed reference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D61/00Brakes with means for making the energy absorbed available for use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/461Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a braking / driving force control device and a braking / driving force control method for controlling a braking force and a driving force of a vehicle by operating one braking / driving force operator.
  • a regenerative braking force setting unit capable of arbitrarily setting a regenerative braking force of an electric motor (drive motor) is provided, and the regenerative braking force set by the regenerative braking force setting unit is provided.
  • a regenerative brake control device for an electric vehicle that regenerates a drive motor.
  • the vehicle speed calculated from the number of rotations of the output shaft included in the drive motor is the torque generated by the drive motor.
  • Use to set if a braking force (friction braking force) is generated by the friction brake while the output shaft is rotating, the driving force transmission path (drive shaft, etc.) from the driving motor to the driving wheel will be twisted, resulting in an incorrect vehicle speed.
  • the present invention has been made paying attention to the above-described problems, and is capable of reducing the occurrence of erroneous detection of the vehicle speed even if the friction braking force is generated during the rotation of the output shaft.
  • An object is to provide a force control device and a braking / driving force control method.
  • the braking / driving force is controlled using the output shaft side vehicle speed, and the friction braking force is reduced. If it is generated, the braking / driving force is controlled using the wheel side vehicle speed.
  • the output shaft side vehicle speed is a vehicle speed calculated from the rotation state of the output shaft of the drive source that generates the driving force
  • the wheel side vehicle speed is the vehicle speed detected from the rotation state of the wheels.
  • the wheel side vehicle speed detected from the rotation state of the wheel that is less affected by the twist generated in the driving force transmission path is used.
  • the braking force and driving force can be controlled.
  • the braking / driving force control device 1 is a device that controls the braking force and driving force generated by the vehicle C.
  • the vehicle C including the braking / driving force control device 1 includes an accelerator operation amount sensor 2, a brake operation amount sensor 4, an output shaft rotation state detection unit 6, a wheel speed sensor 8, A driving force controller 10 is provided.
  • the vehicle C includes a brake actuator 12, a wheel cylinder 14, a power control unit 16, a drive motor 18, wheels W (right front wheel WFR, left front wheel WFL, right rear wheel WRR, left rear wheel WRL. ).
  • the accelerator operation amount sensor 2 is a sensor that detects an operation amount (depression operation amount) of the acceleration / deceleration pedal 20 (accelerator pedal) by the driver, which is formed by using, for example, a pedal stroke sensor.
  • the acceleration / deceleration pedal 20 is a pedal that the driver of the vehicle C steps on in response to a braking force request or a driving force request. Further, the accelerator operation amount sensor 2 sends an information signal including the operation amount of the acceleration / deceleration pedal 20 by the driver (in the following description, it may be described as “accelerator operation amount signal”) to the braking / driving force controller 10. Output.
  • the configuration of the accelerator operation amount sensor 2 is not limited to the configuration formed by using the pedal stroke sensor, and for example, the configuration may be such that the opening degree of the acceleration / deceleration pedal 20 is detected by the driver's stepping operation.
  • the accelerator operation amount sensor 2 is a sensor that detects the operation amount of the acceleration / deceleration pedal 20 by the driver.
  • the brake operation amount sensor 4 is a sensor that detects an operation amount (depression operation amount) of the brake pedal 22 (brake pedal) by the driver, which is formed by using, for example, a pedal stroke sensor.
  • the brake pedal 22 is a pedal that the driver of the vehicle C steps on only in response to a braking force request, and is provided separately from the acceleration / deceleration pedal 20.
  • the brake operation amount sensor 4 sends an information signal including the operation amount of the brake pedal 22 by the driver (in the following description, sometimes described as “brake operation amount signal”) to the braking / driving force controller 10. Output.
  • the configuration of the brake operation amount sensor 4 is not limited to the configuration formed using the pedal stroke sensor, like the accelerator operation amount sensor 2, and for example, the opening degree of the brake pedal 22 by the driver's stepping operation It is good also as a structure which detects. That is, the brake operation amount sensor 4 is a sensor that detects an operation amount of the brake pedal 22 by the driver.
  • the output shaft rotation state detection unit 6 is formed of a resolver that detects the rotation speed (rotation state) of the motor driving force output shaft 24 (see FIG. 2) of the drive motor 18. Further, the output shaft rotation state detection unit 6 detects the rotation speed (rotation state) of the motor driving force output shaft 24 in accordance with the output shaft pulse signal. Then, the output shaft rotation state detection unit 6 outputs an information signal including the detected rotation number (in the following description, sometimes described as “output shaft rotation number signal”) to the braking / driving force controller 10.
  • the output shaft pulse signal is a pulse signal indicating the rotation state of the motor driving force output shaft 24.
  • the wheel speed sensor 8 is provided corresponding to each wheel W and generates a predetermined number of wheel speed pulses for one rotation of the corresponding wheel W. Then, the wheel speed sensor 8 outputs an information signal including the generated wheel speed pulse (may be described as “wheel speed pulse signal” in the following description) to the braking / driving force controller 10. Thereby, the wheel speed sensor 8 is provided corresponding to each wheel W, and detects the rotation state of the corresponding wheel W as a wheel speed pulse.
  • a wheel speed sensor 8 that generates a wheel speed pulse for one rotation of the right front wheel WFR is indicated as a wheel speed sensor 8FR
  • a wheel speed sensor 8 that generates a wheel speed pulse for one rotation of the left front wheel WFL is indicated as a wheel speed sensor 8FR, and a wheel speed sensor 8 that generates a wheel speed pulse for one rotation of the left front wheel WFL.
  • a wheel speed sensor 8FL Is shown as a wheel speed sensor 8FL.
  • a wheel speed sensor 8 that generates a wheel speed pulse for one rotation of the right rear wheel WRR is indicated as a wheel speed sensor 8RR
  • a wheel that generates a wheel speed pulse for one rotation of the left rear wheel WRL is indicated as a wheel speed sensor 8RL.
  • each wheel W and each wheel speed sensor 8 may be indicated as described above.
  • the braking / driving force controller 10 controls the braking force and driving force generated in the vehicle C, and is constituted by a microcomputer.
  • the microcomputer includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. Further, the braking / driving force controller 10 performs various processes, which will be described later, using various input information signals, and command signals (brake command signal, drive command) for controlling the brake actuator 12 and the drive motor 18. Signal). A specific configuration of the braking / driving force controller 10 will be described later.
  • the braking command signal is an information signal including a braking force command value for controlling the braking force generated by the vehicle C.
  • the braking force command value includes at least one of a friction braking torque command value that is a command value for controlling the hydraulic pressure of each wheel cylinder 14 and a regenerative braking torque command value generated by the driving motor 18.
  • the braking force command value is calculated by the braking / driving force controller 10 in response to a braking force request from the driver of the vehicle C.
  • the drive command signal is an information signal including a drive force command value for controlling the drive force generated by the drive motor 18.
  • the driving force command value is calculated by the braking / driving force controller 10 in response to a driving force request from the driver of the vehicle C.
  • the brake actuator 12 is a hydraulic pressure control device interposed between a master cylinder (not shown) and each wheel cylinder 14. Further, the brake actuator 12 changes the hydraulic pressure of each wheel cylinder 14 in accordance with the braking force command value included in the braking command signal received from the braking / driving force controller 10. As a result, the brake actuator 12 applies a braking force to each wheel W.
  • the wheel cylinder 14 generates a pressing force for pressing a brake pad (not shown) constituting the disc brake against a disc rotor (not shown).
  • the disk rotor is a member that rotates integrally with each wheel W and generates a friction coefficient by contacting with the brake pad. That is, the brake actuator 12, the master cylinder, and each wheel cylinder 14 are provided on each of the front wheel WF and the rear wheel WR to form a friction brake that generates a friction braking force on each wheel W.
  • the friction brake provided in the vehicle C generates a friction braking force on all the wheels W (the right front wheel WFR, the left front wheel WFL, the right rear wheel WRR, and the left rear wheel WRL).
  • the wheel cylinder 14 disposed with respect to the right front wheel WFR is referred to as a wheel cylinder 14FR
  • the wheel cylinder 14 disposed with respect to the left front wheel WFL is referred to as a wheel cylinder 14FL.
  • the wheel cylinder 14 disposed with respect to the right rear wheel WRR is denoted as a wheel cylinder 14RR
  • the wheel cylinder 14 disposed with respect to the left rear wheel WRL is denoted as a wheel cylinder 14RL.
  • each wheel cylinder 14 may be indicated as described above.
  • the power control unit 16 controls the drive torque generated by the drive motor 18 in accordance with the drive force command value included in the drive command signal received from the braking / driving force controller 10. In addition, the power control unit 16 controls and drives an information signal including the current torque (motor torque) generated by the drive motor 18 (in the following description, it may be described as “current torque signal”). Output to the force controller 10. The power control unit 16 controls the regenerative torque generated by the drive motor 18 in accordance with the regenerative braking torque command value included in the braking command signal received from the braking / driving force controller 10.
  • the driving motor 18 is configured to generate the driving force or regenerative braking force of the vehicle C, and only the right front wheel WFR and the left front wheel WFL, that is, the front wheel WF are driven or regeneratively controlled via the driving force transmission path. Generate power. Therefore, the vehicle C according to the first embodiment is a two-wheel drive vehicle (2WD vehicle). In the vehicle C of the first embodiment, the right front wheel WFR and the left front wheel WFL are drive wheels, and the right rear wheel WRR and the left rear wheel WRL are driven wheels. As shown in FIG. 2, the driving force transmission path includes a motor driving force output shaft 24, a drive shaft 26, and a differential gear 28.
  • the motor driving force output shaft 24 is included in the driving motor 18 and rotates according to the driving force command value and the regenerative braking torque command value.
  • the drive shaft 26 individually connects the right front wheel WFR and the left front wheel WFL and the differential gear 28.
  • the differential gear 28 includes a ring gear and the like (not shown), and individually transmits the rotation of the motor driving force output shaft 24 to the drive shaft 26 connected to the right front wheel WFR and the drive shaft 26 connected to the left front wheel WFL. To do.
  • the braking / driving force controller 10 includes an accelerator operation state calculation unit 30, a brake operation state calculation unit 32, a vehicle speed calculation signal switching unit 34, and a vehicle speed calculation unit 36.
  • the braking / driving force controller 10 includes a vehicle speed value filter unit 38, a braking / driving force control unit 40, a driving force calculation unit 42, and a braking force calculation unit 44.
  • the accelerator operation state calculation unit 30 calculates the operation amount of the acceleration / deceleration pedal 20 using the operation amount included in the accelerator operation amount signal received from the accelerator operation amount sensor 2. Then, an information signal including the calculated operation amount (which may be described as “accelerator pedal operation amount signal” in the following description) is output to the vehicle speed calculation signal switching unit 34 and the braking / driving force control unit 40.
  • the brake operation state calculation unit 32 calculates the operation amount of the brake pedal 22 using the operation amount included in the brake operation amount signal received from the brake operation amount sensor 4. Then, an information signal including the calculated operation amount (which may be described as a “brake pedal operation amount signal” in the following description) is output to the braking / driving force control unit 40.
  • the vehicle speed calculation signal switching unit 34 receives input of information signals from the accelerator operation state calculation unit 30 and the vehicle speed calculation unit 36. Further, the vehicle speed calculation signal switching unit 34 performs a process of generating a command for switching the information signal used by the vehicle speed calculation unit 36 to calculate the vehicle speed, using parameters included in the various information signals received.
  • the vehicle speed calculation signal switching unit 34 sends an information signal including a command for switching an information signal used for calculation of the vehicle speed (in the following description, sometimes referred to as “switching command signal”) to the vehicle speed calculation unit 36.
  • switching command signal an information signal used for calculation of the vehicle speed
  • the process of switching the information signal used by the vehicle speed calculation unit 36 to calculate the vehicle speed includes the output shaft rotation number signal output from the output shaft rotation state detection unit 6 and the wheel output from the wheel speed sensor 8RR and the wheel speed sensor 8RL.
  • This is a process of switching the fast pulse signal.
  • a preset calculation vehicle speed threshold for example, 7 [km / h]
  • an information signal used by the vehicle speed calculation unit 36 to calculate the vehicle speed is output.
  • a command (output shaft side command) for switching to the shaft speed signal is generated.
  • the switching command signal including the output shaft side command is output to the vehicle speed calculation unit 36 and the vehicle speed value filter unit 38.
  • the vehicle speed calculation unit 36 calculates the vehicle speed.
  • a command (wheel side command) for switching the information signal to be used to a wheel speed pulse signal is generated.
  • the switching command signal including the wheel side command is output to the vehicle speed calculation unit 36 and the vehicle speed value filter unit 38.
  • the braking range is a range from the operation amount when the acceleration / deceleration pedal 20 is not operated until the operation amount of the acceleration / deceleration pedal 20 becomes a preset braking / driving force change point operation amount.
  • the vehicle speed calculation unit 36 receives input of information signals from the output shaft rotation state detection unit 6, the wheel speed sensor 8, and the vehicle speed calculation signal switching unit 34.
  • the vehicle speed calculation unit 36 receives the output shaft rotational speed signal received from the output shaft rotation state detection unit 6.
  • the vehicle speed is calculated from the rotational speed of the motor drive force output shaft 24 including the motor speed.
  • the vehicle speed calculation unit 36 outputs an information signal indicating the calculated vehicle speed (may be described as “vehicle speed signal” in the following description) to the vehicle speed value filter unit 38.
  • the vehicle speed calculated from the rotation speed of the motor driving force output shaft 24 may be referred to as “output shaft side vehicle speed”.
  • the vehicle speed calculation unit 36 when the switching command signal received from the vehicle speed calculation signal switching unit 34 includes a wheel-side command, adds the wheel speed pulse signal received from the wheel speed sensor 8 to the wheel W. The vehicle speed is calculated from the generated wheel speed pulse. Then, a vehicle speed signal indicating the calculated vehicle speed is output to the vehicle speed value filter unit 38.
  • the vehicle speed calculated from the wheel speed pulse generated by the wheel speed sensor 8 may be described as “wheel side vehicle speed”. That is, the wheel side vehicle speed is a vehicle speed calculated from the rotation state detected by the wheel speed sensor 8.
  • the configuration of the vehicle speed calculation unit 36 is calculated from the wheel speed pulse generated by the wheel speed sensor 8RR on the wheel WRR and the wheel speed pulse generated by the wheel speed sensor 8RL on the wheel WRL. A case where the side vehicle speed is calculated will be described.
  • the configuration of the vehicle speed calculation unit 36 is a wheel generated in the driven wheel when the switching command signal received from the vehicle speed calculation signal switching unit 34 includes a wheel side command. A case where the wheel side vehicle speed is calculated from the speed pulse will be described.
  • the vehicle speed value filter unit 38 receives input of information signals from the vehicle speed calculation unit 36 and the vehicle speed calculation signal switching unit 34.
  • the vehicle speed value filter unit 38 includes a first vehicle speed value filter unit 46 and a second vehicle speed value filter unit 48.
  • the first vehicle speed value filter unit 46 performs low-pass filter processing on the vehicle speed signal only when the switching command signal received from the vehicle speed calculation signal switching unit 34 includes a command different from the previous processing (in the following description, May be described as “first vehicle speed value filter processing”). Then, the first vehicle speed value filter unit 46 outputs the vehicle speed signal after the first vehicle speed value filter process (in the following description, it may be referred to as “first filtered vehicle speed signal”) to the braking / driving force control unit. Output to 40.
  • the vehicle speed pulse signal is a pulse signal indicating the vehicle speed (output shaft side vehicle speed, wheel side vehicle speed) calculated by the vehicle speed calculation unit 36.
  • the second vehicle speed value filter unit 48 may describe the vehicle speed signal as a low-pass filter process having a cutoff frequency higher than that of the first vehicle speed value filter unit 46 (in the following description, “second vehicle speed value filter process”). )
  • the second vehicle speed value filter unit 48 performs the second vehicle speed value filter process only when the switching command signal received from the vehicle speed calculation signal switching unit 34 includes the same command as the previous process.
  • the second vehicle speed value filter unit 48 converts the vehicle speed signal that has been subjected to the second vehicle speed value filter process (in the following description, may be referred to as “second filtered vehicle speed signal”) into the braking / driving force control. To the unit 40.
  • the vehicle speed value filter unit 38 immediately after the braking / driving force control unit 40 switches the vehicle speed used for setting the braking force command value and the driving force command value between the output shaft side vehicle speed and the wheel side vehicle speed.
  • the single vehicle speed value filter unit 46 performs low-pass filter processing.
  • the braking / driving force control unit 40 receives information signals from the accelerator operation state calculation unit 30, the brake operation state calculation unit 32, and the vehicle speed value filter unit 38.
  • the braking / driving force control unit 40 includes a braking / driving torque map storage unit 50 and a braking / driving torque command value calculation unit 52.
  • the braking / driving torque map storage unit 50 stores a braking / driving torque map.
  • the braking / driving torque map is a map showing the relationship between the operation amount of the acceleration / deceleration pedal 20, the driving torque and regenerative torque generated by the driving motor 18, and the vehicle speed V.
  • the operation amount of the acceleration / deceleration pedal 20 is indicated as “accelerator opening”, and the regenerative torque is indicated as “braking torque”.
  • the upper limit value of the drive torque is indicated as “drive torque upper limit value”
  • the upper limit value of the regenerative torque is indicated as “braking torque upper limit value”.
  • the braking / driving torque command value calculation unit 52 inputs the parameters included in the various information signals received to the braking / driving torque map stored in the braking / driving torque map storage unit 50, and causes the vehicle C to generate braking. A torque command value and a drive torque command value are calculated.
  • the operation amount of the acceleration / deceleration pedal 20 included in the accelerator pedal operation amount signal received from the accelerator operation state calculation unit 30 and the vehicle speed included in the filtered vehicle speed signal received from the vehicle speed value filter unit 38. Is input to the braking / driving torque map. Then, a braking torque command value and a driving torque command value are calculated from the input operation amount (accelerator opening) of the acceleration / deceleration pedal 20 and the driving torque or the regenerative torque corresponding to the vehicle speed V.
  • the braking torque command value includes at least one of a friction braking torque command value generated by the friction brake (brake actuator 12, master cylinder, and each wheel cylinder 14) and a regenerative braking torque command value generated by the drive motor 18.
  • the drive torque command value is a command value of the drive torque generated by the drive motor 18.
  • the pedal opening corresponding to the operation amount included in the accelerator operation amount signal is equal to or greater than the neutral point, the drive generated by the vehicle C as the opening of the acceleration / deceleration pedal 20 increases.
  • a drive torque command value is calculated so as to increase the force.
  • the operation amount of the acceleration / deceleration pedal 20 is calculated based on the preset neutral point using the operation amount included in the accelerator pedal operation amount signal.
  • the neutral point is a point at which the acceleration and deceleration generated in the vehicle C are switched, that is, a command signal output from the braking / driving force controller 10 is switched to a braking command signal or a driving command signal.
  • the neutral point is a parameter corresponding to the opening degree of the acceleration / deceleration pedal 20 (pedal opening degree) according to the operation amount included in the accelerator operation amount signal.
  • the opening degree of the acceleration / deceleration pedal 20 is about 25%.
  • the neutral point is an operation amount included in the accelerator operation amount signal, and indicates a braking / driving force change point operation amount that is a parameter corresponding to the operation amount of the acceleration / deceleration pedal 20.
  • the braking / driving force change point operation amount is set to a braking torque command value according to an increase in the operation amount of the acceleration / deceleration pedal 20 as described below. This is a threshold value for decreasing from the braking torque command value.
  • the braking / driving force change point operation amount is the braking / driving force change point operation amount and the acceleration / deceleration pedal 20 operation amount in the driving range where the operation amount of the acceleration / deceleration pedal 20 is equal to or greater than the braking / driving force change point operation amount.
  • the braking / driving force control unit 40 that has calculated the braking torque command value to be generated for the vehicle C is an information signal including the calculated braking torque command value (in the following description, it may be referred to as “braking torque command value signal”). Is output to the braking force calculation unit 44.
  • the braking / driving force control unit 40 that has calculated the drive torque command value to be generated in the vehicle C is an information signal including the calculated drive torque command value (in the following description, it may be referred to as “drive torque command value signal”). Is output to the driving force calculation unit 42.
  • the braking / driving force control unit 40 increases the braking force command value from the initial braking torque command value when the operation amount of the acceleration / deceleration pedal 20 detected by the accelerator operation amount sensor 2 is within the braking range. It is set to a value that is decreased by an increase in the operation amount of the deceleration pedal 20. Further, when the operation amount of the acceleration / deceleration pedal 20 is within the drive range, the braking / driving force control unit 40 determines that the operation amount of the acceleration / deceleration pedal 20 corresponding to the initial braking torque command value and the accelerator operation amount sensor 2 are A driving force command value corresponding to the deviation from the detected operation amount of the acceleration / deceleration pedal 20 is set.
  • the braking / driving force control unit 40 determines the braking force from the braking force corresponding to the unoperated state.
  • the accelerator operation amount sensor 2 decreases the operation amount of the acceleration / deceleration pedal 20 detected.
  • the braking / driving force change point operation amount and the acceleration / deceleration pedal 20 detected by the accelerator operation amount sensor 2 are detected. A driving force corresponding to the deviation from the operation amount is generated.
  • the braking / driving force control unit 40 uses the output shaft side vehicle speed of the output shaft side vehicle speed and the wheel side vehicle speed to use the braking force and driving force. To control.
  • the braking force and the driving force are controlled using the wheel side vehicle speed of the output shaft side vehicle speed and the wheel side vehicle speed.
  • the driving force calculation unit 42 calculates the driving force command value using the driving torque command value included in the driving torque command value signal received from the braking / driving force control unit 40. Then, the driving force calculation unit 42 outputs an information signal including the calculated driving force command value (may be described as “driving force command value signal” in the following description) to the power control unit 16.
  • the braking force calculation unit 44 calculates a braking force command value using the braking torque command value included in the braking torque command value signal received from the braking / driving force control unit 40. Then, the braking force calculation unit 44 transmits an information signal including the calculated braking force command value (may be described as “braking force command value signal” in the following description) of the brake actuator 12 and the power control unit 16. Output to at least one of them. Specifically, when the braking torque command value included in the braking torque command value signal is a friction braking torque command value and a regenerative braking torque command value, the braking force command value signal is sent to the brake actuator 12 and the power control unit 16. Output.
  • the braking force command value signal is output only to the brake actuator 12.
  • the braking torque command value included in the braking torque command value signal is only the regenerative braking torque command value
  • the braking force command value signal is output only to the power control unit 16.
  • step S100 the vehicle speed calculation signal switching unit 34 performs a process of determining whether or not the vehicle C is traveling at a vehicle speed that is equal to or lower than the calculation vehicle speed threshold ("lower than the calculation vehicle speed threshold" in the figure). If it is determined in step S100 that the vehicle C is traveling at a vehicle speed equal to or lower than the calculation vehicle speed threshold ("Yes" shown in the figure), the operation performed using the braking / driving force control device 1 proceeds to step S102. To do.
  • step S100 when it is determined in step S100 that the vehicle C is traveling at a vehicle speed exceeding the calculation vehicle speed threshold ("No" shown in the drawing), the operation performed using the braking / driving force control device 1 is performed in step S110.
  • the vehicle speed calculation signal switching unit 34 performs a process of determining whether or not the vehicle C is stopped ("stopped” shown in the figure). If it is determined in step S102 that the vehicle C is stopped (“Yes” shown in the figure), the operation performed using the braking / driving force control device 1 proceeds to step S104.
  • step S102 the operation performed using the braking / driving force control device 1 proceeds to step S106.
  • step S104 the vehicle speed calculation signal switching unit 34 outputs a switching command signal including the output shaft side command to the vehicle speed calculation unit 36 and the vehicle speed value filter unit 38.
  • the vehicle speed calculation unit 36 calculates the output shaft side vehicle speed from the rotation speed of the motor driving force output shaft 24 (“motor rotation speed” shown in the figure).
  • step S104 the operation performed using the braking / driving force control device 1 proceeds to step S112.
  • step S106 the vehicle speed calculation signal switching unit 34 performs a process of determining whether or not the friction braking force is generated in the vehicle C ("Friction braking force is being generated” in the figure). If it is determined in step S106 that the friction braking force is generated in the vehicle C ("Yes” shown in the figure), the operation performed using the braking / driving force control device 1 proceeds to step S108. On the other hand, when it is determined in step S106 that the friction braking force is not generated in the vehicle C ("No" shown in the drawing), the operation performed using the braking / driving force control device 1 proceeds to step S110.
  • step S ⁇ b> 108 the vehicle speed calculation signal switching unit 34 outputs a switching command signal including a wheel side command to the vehicle speed calculation unit 36 and the vehicle speed value filter unit 38. Then, the vehicle speed calculation unit 36 calculates the output shaft side vehicle speed from the wheel speed pulse generated by the wheel speed sensor 8RR on the wheel WRR and the wheel speed pulse generated by the wheel speed sensor 8RL on the wheel WRL (in the figure). Show "driven wheel speed”).
  • step S ⁇ b> 110 the vehicle speed calculation signal switching unit 34 outputs a switching command signal including an output shaft side command to the vehicle speed calculation unit 36 and the vehicle speed value filter unit 38.
  • the vehicle speed calculation unit 36 calculates the output shaft side vehicle speed from the rotation speed of the motor driving force output shaft 24 (“motor rotation speed” shown in the figure).
  • the output shaft side vehicle speed is calculated in step S110, the operation performed using the braking / driving force control device 1 proceeds to step S112.
  • step S112 the vehicle speed value filter unit 38 determines whether or not the switching command signal received from the vehicle speed calculation signal switching unit 34 includes a command different from the previous processing ("motor” shown in the figure). / Wheel speed switching "). If it is determined in step S112 that the switching command signal received from the vehicle speed calculation signal switching unit 34 includes a command different from the previous processing ("Yes” shown in the figure), the braking / driving force control device 1 is set. The operation performed using the process proceeds to step S114. On the other hand, when it is determined that the switching command signal received from the vehicle speed calculation signal switching unit 34 includes the same command as the previous process ("No" shown in the figure), the braking / driving force control device 1 is used. The operation to be performed proceeds to step S116.
  • step S114 the first vehicle speed value filter unit 46 performs first vehicle speed value filter processing ("strong filter” shown in the drawing) in which the degree of convergence of fluctuations generated in the vehicle speed pulse signal is larger than that in the second vehicle speed value filter processing. Do.
  • first vehicle speed value filter processing strong filter shown in the drawing
  • second vehicle speed value filter unit 48 performs second vehicle speed value filter processing ("weak filter” shown in the figure) in which the degree of convergence of fluctuations generated in the vehicle speed pulse signal is smaller than in the first vehicle speed value filter processing.
  • step S118 the second vehicle speed value filter processing
  • step S118 a drive torque command value is calculated ("drive torque calculation” shown in the drawing) using the vehicle speed subjected to the filter process in step S114 or step S116.
  • the operation performed using the braking / driving force control device 1 is ended (END).
  • the accelerator operation amount sensor 2 described above corresponds to a braking / driving force operation element operation amount detection unit.
  • the drive motor 18 described above corresponds to a drive source.
  • the acceleration / deceleration pedal 20 described above corresponds to a braking / driving force operator.
  • the motor driving force output shaft 24 described above corresponds to the output shaft of the driving source. Further, the above-described regenerative braking force corresponds to the load braking force. Further, as described above, in the braking / driving force control method implemented by the operation of the braking / driving force control device 1 of the first embodiment, when only the regenerative braking force is generated as the braking force, the output shaft side vehicle speed Is used to control the braking force and the driving force. In addition to this, when the friction braking force is generated, the braking force and the driving force are controlled using the wheel side vehicle speed.
  • the above-described first embodiment is an example of the present invention, and the present invention is not limited to the above-described first embodiment, and the present invention may be applied to other forms than this embodiment. Various modifications can be made according to the design or the like as long as they do not depart from the technical idea.
  • the braking / driving force control unit 40 controls the braking force and the driving force using the output shaft side vehicle speed. For this reason, it is possible to improve the detection accuracy of the vehicle speed in the low speed range as compared with the case where the vehicle speed is calculated using the wheel speed sensor 8 having a lower detection accuracy of the rotational speed than the output shaft rotation state detection unit 6. It becomes. As a result, when the vehicle C is traveling at a vehicle speed exceeding the calculation vehicle speed threshold, it is possible to suppress a decrease in the calculation accuracy of the vehicle speed.
  • the driving motor 18 generates a driving force only on the front wheels WF that are driving wheels.
  • the wheel speed sensor 8 generates a wheel speed pulse for only one rotation of the rear wheel WR that is a driven wheel. For this reason, even if the friction braking force is generated during the rotation of the motor driving force output shaft 24, the vehicle speed calculated from the rotation state of the rear wheel WR is less likely to cause a slip as compared with the front wheel WF.
  • the braking force and driving force can be controlled. As a result, even if a friction braking force is generated during the rotation of the motor driving force output shaft 24, it is possible to suppress a decrease in vehicle speed calculation accuracy.
  • the braking / driving force control unit 40 controls the braking force and the driving force using the vehicle speed signal subjected to the low-pass filter processing by the vehicle speed value filter unit 38. For this reason, it becomes possible to control the braking force and the driving force while suppressing the influence of the rapid fluctuation or disappearance of the vehicle speed using the braking force and the driving force for the control. As a result, it is possible to suppress the fluctuation of the torque generated by the drive motor 18 and to suppress the fluctuation of the longitudinal acceleration generated in the vehicle C.
  • the first vehicle speed value filter The unit 46 performs low-pass filter processing. Therefore, when the rotational state used by the vehicle speed calculation unit 36 to calculate the vehicle speed is different from the previous process, it is possible to perform the first vehicle speed value filter process having a higher cutoff frequency than the second vehicle speed value filter process. It becomes. As a result, even when the rotational state used by the vehicle speed calculation unit 36 to calculate the vehicle speed is different from the previous processing, and there is a high possibility that sudden fluctuation or disappearance of the vehicle speed occurs, the drive motor 18 is generated. It is possible to suppress fluctuations in torque to be applied.
  • the braking / driving force control unit 40 determines the braking force, the braking force, and the acceleration / deceleration pedal 20 from the braking force corresponding to the unoperated state. Decrease by the increase of the operation amount. Further, when the operation amount of the acceleration / deceleration pedal 20 is within the braking range, the friction braking force and the regenerative braking force are controlled so that only the regenerative braking force is generated when the vehicle speed exceeds the calculation vehicle speed threshold. To do.
  • the vehicle C can be decelerated only by the regenerative braking force. As a result, it becomes possible to increase the situation in which the battery can be charged, and to improve the energy efficiency of the vehicle C.
  • the braking / driving force control unit 40 operates the acceleration / deceleration pedal 20 corresponding to the braking / driving force change point operation amount and the accelerator operation amount.
  • a driving force corresponding to the deviation from the operation amount of the acceleration / deceleration pedal 20 detected by the sensor 2 is generated.
  • the magnitude of the drive torque can be controlled according to the operation amount of the acceleration / deceleration pedal 20. As a result, it is possible to control the acceleration and deceleration of the vehicle C and drive the vehicle C only by the operation of the acceleration / deceleration pedal 20 by the driver.
  • the output shaft side vehicle speed is used. Controls braking and driving forces.
  • the friction braking force is generated, the braking force and the driving force are controlled using the wheel side vehicle speed. For this reason, even if the friction braking force is generated during the rotation of the motor driving force output shaft 24, the wheel side vehicle speed calculated from the rotating state of the wheel W that is less affected by the twist generated in the driving force transmission path is used. It becomes possible to control power and driving force.
  • the right front wheel WFR and the left front wheel WFL are drive wheels, and the right rear wheel WRR and the left rear wheel WRL are driven wheels.
  • the configuration of the vehicle C is not limited to this. . That is, the right front wheel WFR and the left front wheel WFL may be driven wheels, and the right rear wheel WRR and the left rear wheel WRL may be drive wheels. Further, all the wheels W may be drive wheels.
  • the configuration of the vehicle C is an electric vehicle (EV) including only the drive motor 18 as a drive source. However, the configuration of the vehicle C is not limited to this. .
  • the configuration of the vehicle C may be a hybrid electric vehicle (HEV) including a drive motor 18 and an engine as a drive source.
  • the load braking force is a regenerative braking force and an engine brake.
  • the configuration of the vehicle C may be an automobile including an engine as a drive source. In this case, the load braking force is engine brake.
  • SYMBOLS 1 ... Braking / driving force control apparatus, 2 ... Accelerator operation amount sensor, 4 ... Brake operation amount sensor, 6 ... Output shaft rotation state detection part, 8 ... Wheel speed sensor, 10 ... Braking / driving force controller, 12 ... Brake actuator, 14 DESCRIPTION OF SYMBOLS ... Wheel cylinder, 16 ... Power control unit, 18 ... Driving motor, 20 ... Acceleration / deceleration pedal, 22 ... Brake pedal, 24 ... Motor driving force output shaft, 26 ... Drive shaft, 28 ... Differential gear, 30 ... Accelerator operation State calculation unit, 32 ... brake operation state calculation unit, 34 ... vehicle speed calculation signal switching unit, 36 ... vehicle speed calculation unit, 38 ...
  • vehicle speed value filter unit 40 ... braking / driving force control unit, 42 ... driving force calculation unit, 44 ... braking force calculation unit, 46 ... first vehicle speed value filter unit, 48 ... second vehicle speed value filter unit, 50 ... braking / driving torque map storage unit, 52 ... braking / braking Torque command value calculating section, C ... vehicle, W ... wheel (left front wheel WFL, right front wheel WFR, left rear wheel WRL, right rear wheel WRR)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Regulating Braking Force (AREA)

Abstract

 出力軸の回転中に摩擦制動力を発生させても、車速の誤検出の発生を低減させることが可能な、制駆動力制御装置及び制駆動力制御方法を提供する。車両の走行中に、制動力としては回生制動力のみを発生させている場合には、ドライブシャフトを含む駆動力伝達経路を介して車輪に駆動力を発生させる駆動源の出力軸の回転数から算出した車速である出力軸側車速を用いて、制動力及び駆動力を制御し、車両の走行中に摩擦制動力を発生させている場合には、車輪の回転状態から算出した車速である車輪側車速を用いて、制動力及び駆動力を制御する。

Description

制駆動力制御装置及び制駆動力制御方法
 本発明は、一つの制駆動力操作子を操作して車両の制動力及び駆動力を制御する、制駆動力制御装置及び制駆動力制御方法に関する。
 従来、例えば、特許文献1に開示されているように、電動機(駆動用モータ)の回生制動力を任意に設定可能な回生制動力設定部を備え、回生制動力設定部で設定した回生制動力で、駆動用モータの回生を行う電気自動車用の回生ブレーキ制御装置がある。
特開平8-79907号公報
 しかしながら、特許文献1に記載されている技術のように、駆動源として駆動用モータを備える車両では、駆動用モータが発生させるトルクを、駆動用モータが備える出力軸の回転数から算出した車速を用いて設定する。このため、出力軸の回転中に摩擦ブレーキで制動力(摩擦制動力)を発生させると、駆動用モータから駆動輪までの駆動力伝達経路(ドライブシャフト等)にねじれが発生し、車速の誤検出が発生するという問題点があった。
 本発明は、上記のような問題点に着目してなされたもので、出力軸の回転中に摩擦制動力を発生させても、車速の誤検出の発生を低減させることが可能な、制駆動力制御装置及び制駆動力制御方法を提供することを目的とする。
 上記課題を解決するために、本発明の一態様は、制動力としては負荷制動力のみを発生させている場合には、出力軸側車速を用いて制駆動力を制御し、摩擦制動力を発生させている場合には、車輪側車速を用いて制駆動力を制御する。
 ここで、出力軸側車速は、駆動力を発生する駆動源の出力軸の回転状態から算出した車速であり、車輪側車速は、車輪の回転状態から検出した車速である。
 本発明の一態様によれば、出力軸の回転中に摩擦制動力を発生させても、駆動力伝達経路に発生するねじれの影響が少ない車輪の回転状態から検出した車輪側車速を用いて、制動力及び駆動力を制御することが可能となる。
 これにより、出力軸の回転中に摩擦制動力を発生させても、車速の誤検出の発生を低減させることが可能となり、駆動源が発生させるトルクの変動を抑制して、車両に発生する前後方向加速度の変動を抑制することが可能となる。
本発明の第一実施形態の制駆動力制御装置を備える車両の構成を示すブロック図である。 本発明の第一実施形態の駆動力伝達経路の構成を示す図である。 本発明の第一実施形態の制駆動力コントローラの構成を示すブロック図である。 本発明の第一実施形態の制駆動トルクマップ記憶部が記憶しているマップを示す図である。 本発明の第一実施形態の制駆動力制御装置を用いて行なう動作を示すフローチャートである。
 以下の詳細な説明では、本発明の実施形態について、完全な理解を提供するように、特定の細部について記載する。しかしながら、かかる特定の細部が無くとも、一つ以上の実施形態が実施可能であることは明確である。また、図面を簡潔なものとするために、周知の構造及び装置を、略図で示す場合がある。
(第一実施形態)
 以下、本発明の第一実施形態について、図面を参照しつつ説明する。
(車両の構成)
 図1及び図2を参照して、制駆動力制御装置1を備える車両Cの構成について説明する。
 制駆動力制御装置1は、車両Cに発生させる制動力と駆動力を制御する装置である。
 図1中に示すように、制駆動力制御装置1を備える車両Cは、アクセル操作量センサ2と、ブレーキ操作量センサ4と、出力軸回転状態検出部6と、車輪速センサ8と、制駆動力コントローラ10を備える。これに加え、車両Cは、ブレーキアクチュエータ12と、ホイールシリンダ14と、動力コントロールユニット16と、駆動用モータ18と、車輪W(右前輪WFR、左前輪WFL、右後輪WRR、左後輪WRL)を備える。
 アクセル操作量センサ2は、例えば、ペダルストロークセンサを用いて形成した、運転者による加減速ペダル20(アクセルペダル)の操作量(踏み込み操作量)を検出するセンサである。
 加減速ペダル20は、車両Cの運転者が制動力要求または駆動力要求に応じて踏込むペダルである。
 また、アクセル操作量センサ2は、運転者による加減速ペダル20の操作量を含む情報信号(以降の説明では、「アクセル操作量信号」と記載する場合がある)を、制駆動力コントローラ10へ出力する。
 なお、アクセル操作量センサ2の構成は、ペダルストロークセンサを用いて形成した構成に限定するものではなく、例えば、運転者の踏み込み操作による加減速ペダル20の開度を検出する構成としてもよい。
 すなわち、アクセル操作量センサ2は、運転者による加減速ペダル20の操作量を検出するセンサである。
 ブレーキ操作量センサ4は、例えば、ペダルストロークセンサを用いて形成した、運転者による制動用ペダル22(ブレーキペダル)の操作量(踏み込み操作量)を検出するセンサである。
 制動用ペダル22は、車両Cの運転者が制動力要求のみに応じて踏込むペダルであり、加減速ペダル20とは個別に設ける。
 また、ブレーキ操作量センサ4は、運転者による制動用ペダル22の操作量を含む情報信号(以降の説明では、「ブレーキ操作量信号」と記載する場合がある)を、制駆動力コントローラ10へ出力する。
 なお、ブレーキ操作量センサ4の構成は、アクセル操作量センサ2と同様、ペダルストロークセンサを用いて形成した構成に限定するものではなく、例えば、運転者の踏み込み操作による制動用ペダル22の開度を検出する構成としてもよい。
 すなわち、ブレーキ操作量センサ4は、運転者による制動用ペダル22の操作量を検出するセンサである。
 出力軸回転状態検出部6は、駆動用モータ18が有するモータ駆動力出力軸24(図2を参照)の回転数(回転状態)を検出するレゾルバで形成する。
 また、出力軸回転状態検出部6は、出力軸パルス信号に応じて、モータ駆動力出力軸24の回転数(回転状態)を検出する。そして、出力軸回転状態検出部6は、検出した回転数を含む情報信号(以降の説明では、「出力軸回転数信号」と記載する場合がある)を、制駆動力コントローラ10へ出力する。
 出力軸パルス信号は、モータ駆動力出力軸24の回転状態を示すパルス信号である。
 車輪速センサ8は、各車輪Wに対応して設けられ、且つ対応する車輪Wの一回転について予め設定した数の車輪速パルスを発生させる。そして、車輪速センサ8は、発生させた車輪速パルスを含む情報信号(以降の説明では、「車輪速パルス信号」と記載する場合がある)を、制駆動力コントローラ10へ出力する。これにより、車輪速センサ8は、各車輪Wに対応して設けられ、且つ対応する車輪Wの回転状態を、車輪速パルスとして検出する。
 なお、図1中では、右前輪WFRの一回転について車輪速パルスを発生させる車輪速センサ8を、車輪速センサ8FRと示し、左前輪WFLの一回転について車輪速パルスを発生させる車輪速センサ8を、車輪速センサ8FLと示す。同様に、図1中では、右後輪WRRの一回転について車輪速パルスを発生させる車輪速センサ8を、車輪速センサ8RRと示し、左後輪WRLの一回転について車輪速パルスを発生させる車輪速センサ8を、車輪速センサ8RLと示す。また、以降の説明においても、各車輪Wや各車輪速センサ8を、上記のように示す場合がある。
 制駆動力コントローラ10は、車両Cに発生させる制動力と駆動力を制御するものであり、マイクロコンピュータで構成する。なお、マイクロコンピュータは、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を備えた構成である。
 また、制駆動力コントローラ10は、入力される各種の情報信号を用いて、後述する各種の処理を行い、ブレーキアクチュエータ12及び駆動用モータ18を制御するための指令信号(制動指令信号、駆動指令信号)を出力する。なお、制駆動力コントローラ10の具体的な構成については、後述する。
 制動指令信号は、車両Cに発生させる制動力を制御するための制動力指令値を含む情報信号である。
 また、制動力指令値は、各ホイールシリンダ14の油圧を制御するための指令値である摩擦制動トルク指令値、及び駆動用モータ18で発生させる回生制動トルク指令値のうち少なくとも一方を含む。
 また、制動力指令値は、車両Cの運転者による制動力要求に応じて、制駆動力コントローラ10により算出する。
 駆動指令信号は、駆動用モータ18が発生させる駆動力を制御するための駆動力指令値を含む情報信号である。また、駆動力指令値は、車両Cの運転者による駆動力要求に応じて、制駆動力コントローラ10により算出する。
 ブレーキアクチュエータ12は、マスタシリンダ(図示せず)と各ホイールシリンダ14との間に介装した液圧制御装置である。また、ブレーキアクチュエータ12は、制駆動力コントローラ10から入力を受けた制動指令信号が含む制動力指令値に応じて、各ホイールシリンダ14の油圧を変化させる。これにより、ブレーキアクチュエータ12は、各車輪Wに制動力を付与する。
 ホイールシリンダ14は、ディスクブレーキを構成するブレーキパッド(図示せず)を、ディスクロータ(図示せず)に押し付けるための押圧力を発生させる。ディスクロータは、各車輪Wと一体に回転し、ブレーキパッドと接触して摩擦係数を発生させる部材である。
 すなわち、ブレーキアクチュエータ12、マスタシリンダ、各ホイールシリンダ14は、前輪WF及び後輪WRのそれぞれに設けられて、各車輪Wに摩擦制動力を発生させる摩擦ブレーキを形成する。
 したがって、車両Cが備える摩擦ブレーキは、全ての車輪W(右前輪WFR、左前輪WFL、右後輪WRR、左後輪WRL)に、摩擦制動力を発生させる。
 なお、図1中では、右前輪WFRに対して配置したホイールシリンダ14を、ホイールシリンダ14FRと示し、左前輪WFLに対して配置したホイールシリンダ14を、ホイールシリンダ14FLと示す。同様に、図1中では、右後輪WRRに対して配置したホイールシリンダ14を、ホイールシリンダ14RRと示し、左後輪WRLに対して配置したホイールシリンダ14を、ホイールシリンダ14RLと示す。また、以降の説明においても、各ホイールシリンダ14を、上記のように示す場合がある。
 動力コントロールユニット16は、制駆動力コントローラ10から入力を受けた駆動指令信号が含む駆動力指令値に応じて、駆動用モータ18が発生させる駆動トルクを制御する。
 また、動力コントロールユニット16は、駆動用モータ18が発生させている現在のトルク(モータトルク)を含む情報信号(以降の説明では、「現在トルク信号」と記載する場合がある)を、制駆動力コントローラ10へ出力する。
 また、動力コントロールユニット16は、制駆動力コントローラ10から入力を受けた制動指令信号が含む回生制動トルク指令値に応じて、駆動用モータ18が発生させる回生トルクを制御する。
 駆動用モータ18は、車両Cの駆動力または回生制動力を発生させる構成であり、駆動力伝達経路を介して、右前輪WFR及び左前輪WFL、すなわち、前輪WFのみに、駆動力または回生制動力を発生させる。
 したがって、第一実施形態の車両Cは、駆動方式が二輪駆動の車両(2WD車両)である。また、第一実施形態の車両Cは、右前輪WFR及び左前輪WFLが駆動輪であり、右後輪WRR及び左後輪WRLが従動輪である。
 駆動力伝達経路は、図2中に示すように、モータ駆動力出力軸24と、ドライブシャフト26と、ディファレンシャルギア28を含む。
 モータ駆動力出力軸24は、駆動用モータ18が有し、駆動力指令値及び回生制動トルク指令値に応じて回転する。
 ドライブシャフト26は、右前輪WFR及び左前輪WFLと、ディファレンシャルギア28とを、個別に連結する。
 ディファレンシャルギア28は、図示しないリング・ギヤ等を有し、モータ駆動力出力軸24の回転を、右前輪WFRに連結するドライブシャフト26と、左前輪WFLに連結するドライブシャフト26へ、個別に伝達する。
(制駆動力コントローラ10の構成)
 図1及び図2を参照しつつ、図3を用いて、制駆動力コントローラ10の構成について説明する。
 図3中に示すように、制駆動力コントローラ10は、アクセル操作状態算出部30と、ブレーキ操作状態算出部32と、車速算出用信号切換部34と、車速算出部36を備える。これに加え、制駆動力コントローラ10は、車速値フィルタ部38と、制駆動力制御部40と、駆動力算出部42と、制動力算出部44を備える。
 アクセル操作状態算出部30は、アクセル操作量センサ2から入力を受けたアクセル操作量信号が含む操作量を用いて、加減速ペダル20の操作量を算出する。そして、算出した操作量を含む情報信号(以降の説明では、「アクセルペダル操作量信号」と記載する場合がある)を、車速算出用信号切換部34と制駆動力制御部40へ出力する。
 ブレーキ操作状態算出部32は、ブレーキ操作量センサ4から入力を受けたブレーキ操作量信号が含む操作量を用いて、制動用ペダル22の操作量を算出する。そして、算出した操作量を含む情報信号(以降の説明では、「ブレーキペダル操作量信号」と記載する場合がある)を、制駆動力制御部40へ出力する。
 車速算出用信号切換部34は、アクセル操作状態算出部30と、車速算出部36から、情報信号の入力を受ける。
 また、車速算出用信号切換部34は、入力を受けた各種の情報信号が含むパラメータを用いて、車速算出部36が車速の算出に用いる情報信号を切り換える指令を生成する処理を行う。そして、車速算出用信号切換部34は、車速の算出に用いる情報信号を切り換える指令を含む情報信号(以降の説明では、「切換指令信号」と記載する場合がある)を、車速算出部36と車速値フィルタ部38へ出力する。
 ここで、車速算出部36が車速の算出に用いる情報信号を切り換える処理は、出力軸回転状態検出部6が出力した出力軸回転数信号と、車輪速センサ8RR及び車輪速センサ8RLが出力した車輪速パルス信号を切り換える処理である。
 具体的には、予め設定した算出用車速閾値(例えば、7[km/h])を超える車速で車両Cが走行していると、車速算出部36が車速の算出に用いる情報信号を、出力軸回転数信号に切り換える指令(出力軸側指令)を生成する。そして、出力軸側指令を含む切換指令信号を、車速算出部36と車速値フィルタ部38へ出力する。
 また、加減速ペダル20の操作量が制動範囲内にあり、さらに、算出用車速閾値以下の車速で走行する車両Cに摩擦制動力を発生させていると、車速算出部36が車速の算出に用いる情報信号を、車輪速パルス信号に切り換える指令(車輪側指令)を生成する。そして、車輪側指令を含む切換指令信号を、車速算出部36と車速値フィルタ部38へ出力する。
 ここで、制動範囲は、加減速ペダル20が未操作状態の操作量から、加減速ペダル20の操作量が予め設定した制駆動力変更点操作量となるまでの範囲である。
 また、加減速ペダル20の操作量が制動範囲内にあり、さらに、算出用車速閾値以下の車速で走行する車両Cに回生制動力を発生させていると、出力軸側指令を生成する。そして、出力軸側指令を含む切換指令信号を、車速算出部36と車速値フィルタ部38へ出力する。
 また、車両Cが停止していると、出力軸側指令を生成し、出力軸側指令を含む切換指令信号を、車速算出部36と車速値フィルタ部38へ出力する。
 車速算出部36は、出力軸回転状態検出部6と、車輪速センサ8と、車速算出用信号切換部34から、情報信号の入力を受ける。
 また、車速算出部36は、車速算出用信号切換部34から入力を受けた切換指令信号が出力軸側指令を含む場合、出力軸回転状態検出部6から入力を受けた出力軸回転数信号が含むモータ駆動力出力軸24の回転数から車速を算出する。そして、車速算出部36は、算出した車速を示す情報信号(以降の説明では、「車速信号」と記載する場合がある)を、車速値フィルタ部38へ出力する。
 なお、以降の説明では、モータ駆動力出力軸24の回転数から算出した車速を、「出力軸側車速」と記載する場合がある。
 また、車速算出部36は、車速算出用信号切換部34から入力を受けた切換指令信号が車輪側指令を含む場合、車輪速センサ8から入力を受けた車輪速パルス信号が含む、車輪Wに発生させた車輪速パルスから車速を算出する。そして、算出した車速を示す車速信号を、車速値フィルタ部38へ出力する。
 なお、以降の説明では、車輪速センサ8が発生させた車輪速パルスから算出した車速を、「車輪側車速」と記載する場合がある。すなわち、車輪側車速は、車輪速センサ8が検出した回転状態から算出した車速である。
 第一実施形態では、一例として、車速算出部36の構成を、車輪速センサ8RRが車輪WRRに発生させた車輪速パルスと、車輪速センサ8RLが車輪WRLに発生させた車輪速パルスから、車輪側車速を算出する場合を説明する。すなわち、第一実施形態では、一例として、車速算出部36の構成を、車速算出用信号切換部34から入力を受けた切換指令信号が車輪側指令を含む場合に、従動輪に発生させた車輪速パルスから、車輪側車速を算出する場合を説明する。
 車速値フィルタ部38は、車速算出部36と、車速算出用信号切換部34から、情報信号の入力を受ける。
 また、車速値フィルタ部38は、第一車速値フィルタ部46と、第二車速値フィルタ部48を備える。
 第一車速値フィルタ部46は、車速算出用信号切換部34から入力を受けた切換指令信号が、前回の処理と異なる指令を含む場合にのみ、車速信号をローパスフィルタ処理(以降の説明では、「第一車速値フィルタ処理」と記載する場合がある)する。そして、第一車速値フィルタ部46は、第一車速値フィルタ処理後の車速信号(以降の説明では、「第一フィルタ処理済車速信号」と記載する場合がある)を、制駆動力制御部40へ出力する。
 車速パルス信号は、車速算出部36が算出した車速(出力軸側車速、車輪側車速)を示すパルス信号である。
 第二車速値フィルタ部48は、車速信号を、第一車速値フィルタ部46よりもカットオフ周波数が高いローパスフィルタ処理(以降の説明では、「第二車速値フィルタ処理」と記載する場合がある)する。
 また、第二車速値フィルタ部48は、車速算出用信号切換部34から入力を受けた切換指令信号が、前回の処理と同じ指令を含む場合にのみ、第二車速値フィルタ処理を行う。そして、第二車速値フィルタ部48は、第二車速値フィルタ処理を行った車速信号(以降の説明では、「第二フィルタ処理済車速信号」と記載する場合がある)を、制駆動力制御部40へ出力する。
 以上により、車速値フィルタ部38は、制駆動力制御部40が制動力指令値及び駆動力指令値の設定に用いる車速を出力軸側車速と車輪側車速との間で切り換えた直後は、第一車速値フィルタ部46でローパスフィルタ処理を行う。
 制駆動力制御部40は、アクセル操作状態算出部30と、ブレーキ操作状態算出部32と、車速値フィルタ部38から、情報信号の入力を受ける。
 また、制駆動力制御部40は、制駆動トルクマップ記憶部50と、制駆動トルク指令値算出部52を備える。
 制駆動トルクマップ記憶部50は、制駆動トルクマップを記憶している。
 制駆動トルクマップは、図4中に示すように、加減速ペダル20の操作量と、駆動用モータ18で発生させる駆動トルク及び回生トルクと、車速Vとの関係を示すマップである。なお、図4中では、加減速ペダル20の操作量を「アクセル開度」と示し、回生トルクを「制動トルク」と示す。また、図4中では、駆動トルクの上限値を「駆動トルク上限値」と示し、回生トルクの上限値を「制動トルク上限値」と示す。
 制駆動トルク指令値算出部52は、入力を受けた各種の情報信号が含むパラメータを、制駆動トルクマップ記憶部50が記憶している制駆動トルクマップに入力して、車両Cに発生させる制動トルク指令値及び駆動トルク指令値を算出する。
 具体的には、アクセル操作状態算出部30から入力を受けたアクセルペダル操作量信号が含む加減速ペダル20の操作量と、車速値フィルタ部38から入力を受けたフィルタ処理済車速信号が含む車速を、制駆動トルクマップに入力する。そして、入力した加減速ペダル20の操作量(アクセル開度)及び車速Vに対応する駆動トルクまたは回生トルクから、制動トルク指令値及び駆動トルク指令値を算出する。
 制動トルク指令値は、摩擦ブレーキ(ブレーキアクチュエータ12、マスタシリンダ、各ホイールシリンダ14)で発生させる摩擦制動トルク指令値と、駆動用モータ18で発生させる回生制動トルク指令値のうち少なくとも一方を含む。
 駆動トルク指令値は、駆動用モータ18で発生させる駆動トルクの指令値である。
 駆動トルク指令値を算出する際には、アクセル操作量信号が含む操作量に応じたペダル開度が中立点以上となると、加減速ペダル20の開度が増加するにつれて、車両Cに発生させる駆動力を増加させるように、駆動トルク指令値を算出する。
 また、駆動トルク指令値を算出する際には、アクセルペダル操作量信号が含む操作量を用いて、予め設定した中立点を基準とした、加減速ペダル20の操作量を算出する。
 中立点は、車両Cに発生させる加速度と減速度を切り替える点、すなわち、制駆動力コントローラ10が出力する指令信号を、制動指令信号または駆動指令信号に切り替える点である。また、中立点は、アクセル操作量信号が含む操作量に応じた、加減速ペダル20の開度(ペダル開度)に対応するパラメータであり、例えば、25%程度の加減速ペダル20の開度に対応する。
 また、中立点とは、アクセル操作量信号が含む操作量であり、加減速ペダル20の操作量に応じたパラメータである制駆動力変更点操作量を示す。また、制駆動力変更点操作量は、加減速ペダル20の操作量が制動範囲内にある場合には、加減速ペダル20の操作量の増加に応じて、制動トルク指令値を、後述する初期制動トルク指令値から減少させるための閾値である。これに加え、制駆動力変更点操作量は、加減速ペダル20の操作量が制駆動力変更点操作量以上である駆動範囲では、制駆動力変更点操作量と加減速ペダル20の操作量との偏差に応じた駆動トルク指令値を算出するための閾値である。
 初期制動トルク指令値は、加減速ペダル20の操作量が未操作状態(加減速ペダル20開度=0)で発生させる制動力信号が含む制動力指令値であり、例えば、車両Cの制動能力等に応じて、予め設定する。
 車両Cに発生させる制動トルク指令値を算出した制駆動力制御部40は、算出した制動トルク指令値を含む情報信号(以降の説明では、「制動トルク指令値信号」と記載する場合がある)を、制動力算出部44へ出力する。
 車両Cに発生させる駆動トルク指令値を算出した制駆動力制御部40は、算出した駆動トルク指令値を含む情報信号(以降の説明では、「駆動トルク指令値信号」と記載する場合がある)を、駆動力算出部42へ出力する。
 以上により、制駆動力制御部40は、アクセル操作量センサ2が検出した加減速ペダル20の操作量が制動範囲内にある場合には、制動力指令値を、初期制動トルク指令値から、加減速ペダル20の操作量の増加分だけ減少させた値に設定する。
 また、制駆動力制御部40は、加減速ペダル20の操作量が駆動範囲内にある場合には、初期制動トルク指令値に対応する加減速ペダル20の操作量と、アクセル操作量センサ2が検出した加減速ペダル20の操作量との偏差に応じた駆動力指令値を設定する。
 これにより、制駆動力制御部40は、アクセル操作量センサ2が検出した加減速ペダル20の操作量が制動範囲内にある場合には、制動力を、未操作状態に対応する制動力から、アクセル操作量センサ2が検出した加減速ペダル20の操作量の増加分だけ減少させる。これに加え、アクセル操作量センサ2が検出した加減速ペダル20の操作量が駆動範囲内にある場合には、制駆動力変更点操作量とアクセル操作量センサ2が検出した加減速ペダル20の操作量との偏差に応じた駆動力を発生させる。
 また、制駆動力制御部40は、制動力としては回生制動力のみを発生させている場合には、出力軸側車速及び車輪側車速のうち出力軸側車速を用いて、制動力及び駆動力を制御する。これに加え、摩擦制動力を発生させている場合には、出力軸側車速及び車輪側車速のうち車輪側車速を用いて、制動力及び駆動力を制御する。
 駆動力算出部42は、制駆動力制御部40から入力を受けた駆動トルク指令値信号が含む駆動トルク指令値を用いて、駆動力指令値を算出する。そして、駆動力算出部42は、算出した駆動力指令値を含む情報信号(以降の説明では、「駆動力指令値信号」と記載する場合がある)を、動力コントロールユニット16へ出力する。
 制動力算出部44は、制駆動力制御部40から入力を受けた制動トルク指令値信号が含む制動トルク指令値を用いて、制動力指令値を算出する。そして、制動力算出部44は、算出した制動力指令値を含む情報信号(以降の説明では、「制動力指令値信号」と記載する場合がある)を、ブレーキアクチュエータ12及び動力コントロールユニット16のうち、少なくとも一方へ出力する。
 具体的には、制動トルク指令値信号が含む制動トルク指令値が、摩擦制動トルク指令値及び回生制動トルク指令値である場合は、制動力指令値信号を、ブレーキアクチュエータ12及び動力コントロールユニット16へ出力する。また、制動トルク指令値信号が含む制動トルク指令値が、摩擦制動トルク指令値のみである場合は、制動力指令値信号を、ブレーキアクチュエータ12のみへ出力する。また、制動トルク指令値信号が含む制動トルク指令値が、回生制動トルク指令値のみである場合は、制動力指令値信号を、動力コントロールユニット16のみへ出力する。
(動作)
 次に、図1から図4を参照しつつ、図5を用いて、第一実施形態の制駆動力制御装置1を用いて行なう動作を説明する。
 図5中に示すように、制駆動力制御装置1を用いて行なう動作を開始(START)すると、まず、ステップS100の処理を行う。
 ステップS100では、車速算出用信号切換部34により、算出用車速閾値以下の車速で車両Cが走行しているか否かを判定する処理(図中に示す「算出用車速閾値以下」)を行う。
 ステップS100において、算出用車速閾値以下の車速で車両Cが走行している(図中に示す「Yes」)と判定した場合、制駆動力制御装置1を用いて行なう動作は、ステップS102へ移行する。
 一方、ステップS100において、算出用車速閾値を超える車速で車両Cが走行している(図中に示す「No」)と判定した場合、制駆動力制御装置1を用いて行なう動作は、ステップS110へ移行する。
 ステップS102では、車速算出用信号切換部34により、車両Cが停止中であるか否かを判定する処理(図中に示す「停止中」)を行う。
 ステップS102において、車両Cが停止中である(図中に示す「Yes」)と判定した場合、制駆動力制御装置1を用いて行なう動作は、ステップS104へ移行する。
 一方、ステップS102において、車両Cが走行中である(図中に示す「No」)と判定した場合、制駆動力制御装置1を用いて行なう動作は、ステップS106へ移行する。
 ステップS104では、車速算出用信号切換部34により、出力軸側指令を含む切換指令信号を、車速算出部36と車速値フィルタ部38へ出力する。そして、車速算出部36は、モータ駆動力出力軸24の回転数から出力軸側車速を算出(図中に示す「モータ回転数」)する。ステップS104において、出力軸側車速を算出すると、制駆動力制御装置1を用いて行なう動作は、ステップS112へ移行する。
 ステップS106では、車速算出用信号切換部34により、車両Cに摩擦制動力が発生しているか否かを判定する処理(図中に示す「摩擦制動力発生中」)を行う。
 ステップS106において、車両Cに摩擦制動力が発生している(図中に示す「Yes」)と判定した場合、制駆動力制御装置1を用いて行なう動作は、ステップS108へ移行する。
 一方、ステップS106において、車両Cに摩擦制動力が発生していない(図中に示す「No」)と判定した場合、制駆動力制御装置1を用いて行なう動作は、ステップS110へ移行する。
 ステップS108では、車速算出用信号切換部34により、車輪側指令を含む切換指令信号を、車速算出部36と車速値フィルタ部38へ出力する。そして、車速算出部36は、車輪速センサ8RRが車輪WRRに発生させた車輪速パルスと、車輪速センサ8RLが車輪WRLに発生させた車輪速パルスから、出力軸側車速を算出(図中に示す「従動輪速」)する。ステップS108において、出力軸側車速を算出すると、制駆動力制御装置1を用いて行なう動作は、ステップS112へ移行する。
 ステップS110では、車速算出用信号切換部34により、出力軸側指令を含む切換指令信号を、車速算出部36と車速値フィルタ部38へ出力する。そして、車速算出部36は、モータ駆動力出力軸24の回転数から出力軸側車速を算出(図中に示す「モータ回転数」)する。ステップS110において、出力軸側車速を算出すると、制駆動力制御装置1を用いて行なう動作は、ステップS112へ移行する。
 ステップS112では、車速値フィルタ部38により、車速算出用信号切換部34から入力を受けた切換指令信号が、前回の処理と異なる指令を含むか否かを判定する処理(図中に示す「モータ/車輪速切り換え」)を行う。
 ステップS112において、車速算出用信号切換部34から入力を受けた切換指令信号が、前回の処理と異なる指令を含む(図中に示す「Yes」)と判定した場合、制駆動力制御装置1を用いて行なう動作は、ステップS114へ移行する。
 一方、車速算出用信号切換部34から入力を受けた切換指令信号が、前回の処理と同じ指令を含む(図中に示す「No」)と判定した場合、制駆動力制御装置1を用いて行なう動作は、ステップS116へ移行する。
 ステップS114では、第一車速値フィルタ部46により、第二車速値フィルタ処理よりも車速パルス信号に発生する変動の収束度合いが大きい第一車速値フィルタ処理(図中に示す「強フィルタ」)を行う。ステップS114において、第一車速値フィルタ処理を行うと、制駆動力制御装置1を用いて行なう動作は、ステップS118へ移行する。
 ステップS116では、第二車速値フィルタ部48により、第一車速値フィルタ処理よりも車速パルス信号に発生する変動の収束度合いが少ない第二車速値フィルタ処理(図中に示す「弱フィルタ」)を行う。ステップS116において、第二車速値フィルタ処理を行うと、制駆動力制御装置1を用いて行なう動作は、ステップS118へ移行する。
 ステップS118では、ステップS114またはステップS116でフィルタ処理を行った車速を用いて、駆動トルク指令値を算出(図中に示す「駆動トルク算出」)する。ステップS118において、駆動トルク指令値を算出すると、制駆動力制御装置1を用いて行なう動作を終了(END)する。
 なお、上述したアクセル操作量センサ2は、制駆動力操作子操作量検出部に対応する。
 また、上述した駆動用モータ18は、駆動源に対応する。
 また、上述した加減速ペダル20は、制駆動力操作子に対応する。
 また、上述したモータ駆動力出力軸24は、駆動源の出力軸に対応する。
 また、上述した回生制動力は、負荷制動力に対応する。
 また、上述したように、第一実施形態の制駆動力制御装置1の動作で実施する制駆動力制御方法では、制動力として回生制動力のみを発生させている場合には、出力軸側車速を用いて制動力及び駆動力を制御する。これに加え、摩擦制動力を発生させている場合には、車輪側車速を用いて制動力及び駆動力を制御する。
 なお、上述した第一実施形態は、本発明の一例であり、本発明は、上述した第一実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
(第一実施形態の効果)
 第一実施形態の制駆動力制御装置1であれば、以下に記載する効果を奏することが可能となる。
(1)制駆動力制御部40が、制動力としては回生制動力のみを発生させている場合には、出力軸側車速を用いて制動力及び駆動力を制御し、摩擦制動力を発生させている場合には、車輪側車速を用いて制動力及び駆動力を制御する。
 このため、モータ駆動力出力軸24の回転中に摩擦制動力を発生させても、駆動力伝達経路に発生するねじれの影響が少ない車輪Wの回転状態から算出した車輪側車速を用いて、制動力及び駆動力を制御することが可能となる。
 その結果、モータ駆動力出力軸24の回転中に摩擦制動力を発生させても、車速の誤検出の発生を低減させることが可能となり、駆動用モータ18が発生させるトルクの変動を抑制して、車両Cに発生する前後方向加速度の変動を抑制することが可能となる。
(2)制駆動力制御部40が、算出用車速閾値を超える車速で車両Cが走行している場合には、出力軸側車速を用いて制動力及び駆動力を制御する。
 このため、出力軸回転状態検出部6よりも低い回転数の検出精度が低い車輪速センサ8を用いて車速を算出した場合と比較して、低速域における車速の検出精度を向上させることが可能となる。
 その結果、算出用車速閾値を超える車速で車両Cが走行している場合には、車速の算出精度低下を抑制することが可能となる。
(3)駆動用モータ18が、駆動輪である前輪WFのみに駆動力を発生させる。これに加え、車輪速センサ8は、従動輪である後輪WRのみの一回転について、車輪速パルスを発生させる。
 このため、モータ駆動力出力軸24の回転中に摩擦制動力を発生させても、前輪WFと比較してスリップが発生する可能性が低い後輪WRの回転状態から算出した車速を用いて、制動力及び駆動力を制御することが可能となる。
 その結果、モータ駆動力出力軸24の回転中に摩擦制動力を発生させても、車速の算出精度低下を抑制することが可能となる。
(4)制駆動力制御部40が、車速値フィルタ部38でローパスフィルタ処理した車速信号を用いて、制動力及び駆動力を制御する。
 このため、制動力及び駆動力を制御に用いる車速の急激な変動や消失の影響を抑制して、制動力及び駆動力を制御することが可能となる。
 その結果、駆動用モータ18が発生させるトルクの変動を抑制して、車両Cに発生する前後方向加速度の変動を抑制することが可能となる。
(5)車速値フィルタ部38が、制駆動力制御部40が制動力及び駆動力の制御に用いる車速を出力軸側車速と車輪側車速との間で切り換えた直後は、第一車速値フィルタ部46でローパスフィルタ処理を行う。
 このため、車速算出部36が車速を算出するために用いる回転状態が前回の処理と異なる場合に、第二車速値フィルタ処理よりもカットオフ周波数が高い第一車速値フィルタ処理を行うことが可能となる。
 その結果、車速算出部36が車速を算出するために用いる回転状態が前回の処理と異なり、車速の急激な変動や消失が発生する可能性が高い場合であっても、駆動用モータ18が発生させるトルクの変動を抑制することが可能となる。
(6)制駆動力制御部40が、加減速ペダル20の操作量が駆動範囲内にある場合には、制動力を、制動力を、未操作状態に対応する制動力から、加減速ペダル20の操作量の増加分だけ減少させる。さらに、加減速ペダル20の操作量が制動範囲内にある場合には、車速が算出用車速閾値を超えていると、回生制動力のみを発生させるように、摩擦制動力及び回生制動力を制御する。
 このため、加減速ペダル20の操作量が制動範囲内にあり、車速が算出用車速閾値を超えていると、回生制動力のみで車両C減速させることが可能となる。
 その結果、バッテリに充電可能な状況を増加させることが可能となり、車両Cのエネルギー効率を向上させることが可能となる。
(7)制駆動力制御部40が、加減速ペダル20の操作量が駆動範囲内にある場合には、制駆動力変更点操作量に対応する加減速ペダル20の操作量と、アクセル操作量センサ2が検出した加減速ペダル20の操作量と、の偏差に応じた駆動力を発生させる。
 このため、加減速ペダル20の操作量が駆動範囲内にある場合には、加減速ペダル20の操作量に応じて、駆動トルクの大きさを制御することが可能となる。
 その結果、運転者による加減速ペダル20のみの操作により、車両Cの加速及び減速を制御して、車両Cを走行させることが可能となる。
(8)第一実施形態の制駆動力制御装置1の動作で実施する制駆動力制御方法では、制動力としては回生制動力のみを発生させている場合には、出力軸側車速を用いて制動力及び駆動力を制御する。これに加え、摩擦制動力を発生させている場合には、車輪側車速を用いて制動力及び駆動力を制御する。
 このため、モータ駆動力出力軸24の回転中に摩擦制動力を発生させても、駆動力伝達経路に発生するねじれの影響が少ない車輪Wの回転状態から算出した車輪側車速を用いて、制動力及び駆動力を制御することが可能となる。
 その結果、モータ駆動力出力軸24の回転中に摩擦制動力を発生させても、車速の誤検出の発生を低減させることが可能となり、駆動用モータ18が発生させるトルクの変動を抑制して、車両Cに発生する前後方向加速度の変動を抑制することが可能となる。
(変形例)
(1)第一実施形態では、右前輪WFR及び左前輪WFLを駆動輪とし、右後輪WRR及び左後輪WRLを従動輪としたが、車両Cの構成は、これに限定するものではない。すなわち、右前輪WFR及び左前輪WFLを従動輪とし、右後輪WRR及び左後輪WRLを駆動輪としてもよい。また、全車輪Wを駆動輪としてもよい。
(2)第一実施形態では、車両Cの構成を、駆動源として駆動用モータ18のみを備える電気自動車(EV:Electric Vehicle)としたが、車両Cの構成は、これに限定するものではない。
 すなわち、車両Cの構成を、駆動源として駆動用モータ18及びエンジンを備えるハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)としてもよい。この場合、負荷制動力は、回生制動力及びエンジンブレーキとなる。
 また、車両Cの構成を、駆動源としてエンジンを備える自動車としてもよい。この場合、負荷制動力は、エンジンブレーキとなる。
 1…制駆動力制御装置、2…アクセル操作量センサ、4…ブレーキ操作量センサ、6…出力軸回転状態検出部、8…車輪速センサ、10…制駆動力コントローラ、12…ブレーキアクチュエータ、14…ホイールシリンダ、16…動力コントロールユニット、18…駆動用モータ、20…加減速ペダル、22…制動用ペダル、24…モータ駆動力出力軸、26…ドライブシャフト、28…ディファレンシャルギア、30…アクセル操作状態算出部、32…ブレーキ操作状態算出部、34…車速算出用信号切換部、36…車速算出部、38…車速値フィルタ部、40…制駆動力制御部、42…駆動力算出部、44…制動力算出部、46…第一車速値フィルタ部、48…第二車速値フィルタ部、50…制駆動トルクマップ記憶部、52…制駆動トルク指令値算出部、C…車両、W…車輪(左前輪WFL,右前輪WFR,左後輪WRL,右後輪WRR)

Claims (8)

  1.  制駆動力操作子の操作量に応じて、制駆動力を制御する制駆動力制御装置であって、
     前記制駆動力操作子の操作量である制駆動力操作量を検出する操作量検出部と、
     駆動力を発生する駆動源と、
     各車輪に摩擦制動力を発生させる摩擦ブレーキと、
     前記駆動源の出力軸に設けられ、前記出力軸の回転状態を検出する出力軸回転状態検出部と、
     前記出力軸回転状態検出部により検出された出力軸の回転状態から出力軸側車速を算出する出力側車速算出部と、
     前記車輪の回転状態から車輪速側車速を検出する車輪速センサと、
     前記制駆動力操作量と前記出力軸側車速及び前記車輪側車速とを用いて、前記制駆動力を制御する制駆動力制御部と、を備え、
     前記駆動源は、自身の抵抗を負荷として負荷制動力を発生させ、
     前記制駆動力制御部は、制動力として前記負荷制動力のみを発生させている場合には、出力軸側車速を用いて前記制駆動力を制御し、前記摩擦制動力を発生させている場合には、車輪側車速を用いて前記制駆動力を制御することを特徴とする制駆動力制御装置。
  2.  前記制駆動力制御部は、予め設定した算出用車速閾値を超える車速で車両が走行している場合には、前記出力軸側車速及び前記車輪側車速のうち出力軸側車速を用いて前記制駆動力を制御することを特徴とする請求項1に記載した制駆動力制御装置。
  3.  前記駆動源は、前輪及び後輪のうち一方に前記駆動力を発生させ、
     前記車輪速センサは、前記前輪及び後輪のうち他方に対応して設けられていることを特徴とする請求項1または請求項2に記載した制駆動力制御装置。
  4.  前記算出した車速を示す車速信号をローパスフィルタ処理する車速値フィルタ部をさらに備え、
     前記制駆動力制御部は、前記ローパスフィルタ処理後の車速信号を用いて前記制駆動力を制御することを特徴とする請求項1から請求項3のうちいずれか1項に記載した制駆動力制御装置。
  5.  前記車速値フィルタ部は、第一車速値フィルタ部と、前記第一車速値フィルタ部よりもカットオフ周波数が高い第二車速値フィルタ部と、を備えるとともに、前記制駆動力制御部が前記制動力及び前記駆動力の制御に用いる車速を前記出力軸側車速と前記車輪側車速との間で切り換えた直後は、前記第一車速値フィルタ部で前記ローパスフィルタ処理を行うことを特徴とする請求項4に記載した制駆動力制御装置。
  6.  前記駆動源は、車輪に前記負荷制動力である回生制動力及び前記駆動力を発生させる駆動用モータであり、
     前記制動力は、前記摩擦制動力と、前記回生制動力と、を含み、
     前記制駆動力制御部は、検出した前記制駆動力操作量が未操作状態から予め設定した制駆動力変更点操作量までの制動範囲内にある場合には、前記制動力を、前記未操作状態に対応する制動力から検出した前記制駆動力操作量の増加分だけ減少させ、さらに、車速が予め設定した算出用車速閾値を超えていると、前記回生制動力のみを発生させるように前記制駆動力を制御することを特徴とする請求項1から請求項5のうちいずれか1項に記載した制駆動力制御装置。
  7.  前記制駆動力制御部は、検出した前記制駆動力操作量が未操作状態から予め設定した制駆動力変更点操作量までの制動範囲内にある場合には、前記制動力を、前記未操作状態に対応する制動力から検出した前記制駆動力操作量の増加分だけ減少させ、検出した前記制駆動力操作量が前記制動範囲よりも大きい駆動範囲内にある場合には、前記制駆動力変更点操作量と検出した前記制駆動力操作量との偏差に応じた前記駆動力を発生させることを特徴とする請求項1から請求項6のうちいずれか1項に記載した制駆動力制御装置。
  8.  制駆動力操作子の操作量に応じて、制駆動力を制御する制駆動力制御方法であって、
     前記制駆動力操作子の操作量である制駆動力操作量と、駆動力を発生する駆動源の出力軸の回転状態と、を検出し、
     前記出力軸の回転状態から出力軸側車速を算出し、
     前記車輪の回転状態から車輪速側車速を検出し、
     前記駆動源が制動力として自身の抵抗を負荷として負荷制動力を発生させている場合には、出力軸側車速を用いて前記制駆動力を制御し、前記駆動源が制動力として摩擦ブレーキにより各車輪に摩擦制動力を発生させている場合には、車輪側車速を用いて前記制駆動力を制御することを特徴とする制駆動力制御方法。
PCT/JP2014/006124 2014-12-08 2014-12-08 制駆動力制御装置及び制駆動力制御方法 WO2016092587A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14908040.0A EP3231657B1 (en) 2014-12-08 2014-12-08 Braking/drive power control device and braking/drive power control method
PCT/JP2014/006124 WO2016092587A1 (ja) 2014-12-08 2014-12-08 制駆動力制御装置及び制駆動力制御方法
US15/519,218 US9950697B2 (en) 2014-12-08 2014-12-08 Braking-driving force control system and braking-driving force control method
CN201480083386.5A CN107000607B (zh) 2014-12-08 2014-12-08 制动力驱动力控制装置以及制动力驱动力控制方法
JP2016563284A JP6237933B2 (ja) 2014-12-08 2014-12-08 制駆動力制御装置及び制駆動力制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/006124 WO2016092587A1 (ja) 2014-12-08 2014-12-08 制駆動力制御装置及び制駆動力制御方法

Publications (1)

Publication Number Publication Date
WO2016092587A1 true WO2016092587A1 (ja) 2016-06-16

Family

ID=56106842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006124 WO2016092587A1 (ja) 2014-12-08 2014-12-08 制駆動力制御装置及び制駆動力制御方法

Country Status (5)

Country Link
US (1) US9950697B2 (ja)
EP (1) EP3231657B1 (ja)
JP (1) JP6237933B2 (ja)
CN (1) CN107000607B (ja)
WO (1) WO2016092587A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108363344B (zh) * 2017-10-24 2022-09-02 山东省农业机械科学研究院 基于云网络测控***的农业机械可靠性试验方法
JP6898843B2 (ja) * 2017-12-26 2021-07-07 日立Astemo株式会社 電動車両の制御装置、制御方法および制御システム
JP6990115B2 (ja) * 2018-01-15 2022-01-12 日立Astemo株式会社 電動車両の制御装置、電動車両の制御システム及び電動車両の制御方法
JP7390220B2 (ja) * 2020-03-13 2023-12-01 本田技研工業株式会社 駆動力制御装置
CN113492682B (zh) * 2020-04-02 2023-03-14 长城汽车股份有限公司 一种能量回收控制方法、***及车辆
CN115027280A (zh) * 2021-03-05 2022-09-09 台达电子工业股份有限公司 用于电动载具中的速度命令产生单元及速度命令产生方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324612A (ja) * 1999-05-12 2000-11-24 Honda Motor Co Ltd 前後輪駆動車両
WO2007043447A1 (ja) * 2005-10-07 2007-04-19 Toyota Jidosha Kabushiki Kaisha 乗り物
WO2014038591A1 (ja) * 2012-09-06 2014-03-13 アイシン・エィ・ダブリュ株式会社 車両用駆動装置の制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879907A (ja) 1994-09-01 1996-03-22 Mitsubishi Motors Corp 電気自動車用回生ブレーキ制御装置
JP3442266B2 (ja) * 1997-09-16 2003-09-02 トヨタ自動車株式会社 車両用制動装置
JP4743121B2 (ja) * 2006-03-29 2011-08-10 日産自動車株式会社 車両の衝突時ブレーキ配分制御装置
US8311718B2 (en) * 2009-09-04 2012-11-13 GM Global Technology Operations LLC Negative wheel slip control systems and methods
JP5109101B2 (ja) * 2009-09-17 2012-12-26 日立オートモティブシステムズ株式会社 車両制御装置
JP5126628B2 (ja) * 2010-04-02 2013-01-23 アイシン・エィ・ダブリュ株式会社 制御装置
JP5720701B2 (ja) * 2011-01-21 2015-05-20 トヨタ自動車株式会社 車両制御装置
JP5561435B2 (ja) * 2011-06-30 2014-07-30 日産自動車株式会社 ハイブリッド車両の制御装置
JP5720799B2 (ja) * 2011-11-08 2015-05-20 トヨタ自動車株式会社 車両の制駆動力制御装置
DE102013000276A1 (de) * 2013-01-09 2014-07-10 Wabco Gmbh Elektronisches Bremsensteuergerät, Bremssystem und Verfahren zum Betrieb desselben
US9637004B2 (en) * 2015-06-18 2017-05-02 E-Aam Driveline Systems Ab System and method for delimiting regenerative braking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324612A (ja) * 1999-05-12 2000-11-24 Honda Motor Co Ltd 前後輪駆動車両
WO2007043447A1 (ja) * 2005-10-07 2007-04-19 Toyota Jidosha Kabushiki Kaisha 乗り物
WO2014038591A1 (ja) * 2012-09-06 2014-03-13 アイシン・エィ・ダブリュ株式会社 車両用駆動装置の制御装置

Also Published As

Publication number Publication date
CN107000607A (zh) 2017-08-01
JPWO2016092587A1 (ja) 2017-04-27
EP3231657A1 (en) 2017-10-18
EP3231657B1 (en) 2019-03-27
US9950697B2 (en) 2018-04-24
CN107000607B (zh) 2018-04-27
EP3231657A4 (en) 2018-03-14
US20170240145A1 (en) 2017-08-24
JP6237933B2 (ja) 2017-11-29

Similar Documents

Publication Publication Date Title
JP6237933B2 (ja) 制駆動力制御装置及び制駆動力制御方法
CN111601731B (zh) 电动车辆的控制装置、控制***以及控制方法
CN106467111B (zh) 车身稳定控制方法、***及汽车
US9637004B2 (en) System and method for delimiting regenerative braking
JP5302749B2 (ja) 電気自動車の制御装置
JP5906173B2 (ja) 車両制御装置
CN107009914B (zh) 电动汽车的辅助制动***、控制方法及电动汽车
JP3380397B2 (ja) アンチロックブレーキ制御装置
JP6476801B2 (ja) 制駆動力制御装置及び制駆動力制御方法
JP2016020100A (ja) 車両制御装置および車両制御方法
US11161499B2 (en) Vehicle driving assistance device
CN108859863B (zh) 驱动力控制装置
CN106114287B (zh) 一种电动汽车防滑控制***及控制方法
US8494702B2 (en) Method and driveline stability control system for a vehicle
JP4193706B2 (ja) 路面摩擦係数検出装置
WO2016092586A1 (ja) 制駆動力制御装置及び制駆動力制御方法
JP7435731B2 (ja) 電動車両の制御方法、及び電動車両の制御装置
WO2020179266A1 (ja) 駆動制御装置
US20210188098A1 (en) System for an electrically driven vehicle, vehicle having same and method for same
JP4701941B2 (ja) 車輌の車体速度推定装置
JP6504066B2 (ja) 車両の制動制御装置
JP2009184625A (ja) 路面摩擦係数推定装置、及び、この路面摩擦係数推定装置を備えた4輪駆動車の駆動力配分制御装置
JP2005219580A (ja) 車両の挙動制御装置
JP4239861B2 (ja) 車両の挙動制御装置
JP2023016554A (ja) 電動式全輪駆動車

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563284

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15519218

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014908040

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE