JP6504066B2 - 車両の制動制御装置 - Google Patents

車両の制動制御装置 Download PDF

Info

Publication number
JP6504066B2
JP6504066B2 JP2016016893A JP2016016893A JP6504066B2 JP 6504066 B2 JP6504066 B2 JP 6504066B2 JP 2016016893 A JP2016016893 A JP 2016016893A JP 2016016893 A JP2016016893 A JP 2016016893A JP 6504066 B2 JP6504066 B2 JP 6504066B2
Authority
JP
Japan
Prior art keywords
torque
wheel
braking
slip
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016016893A
Other languages
English (en)
Other versions
JP2017136868A (ja
Inventor
太田 順也
順也 太田
磯野 宏
宏 磯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016016893A priority Critical patent/JP6504066B2/ja
Publication of JP2017136868A publication Critical patent/JP2017136868A/ja
Application granted granted Critical
Publication of JP6504066B2 publication Critical patent/JP6504066B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

この発明は、駆動力源の出力トルクを左右の駆動輪に伝達するとともに、それらの駆動輪に伝達するトルクの分配率を路面と各車輪とのスリップ率に応じて制御することができる車両の制動制御装置に関するものである。
特許文献1には、車輪のロック防止と、制動距離の短縮化とを両立し得ることを目的とした車両のスリップ制御装置が記載されている。この特許文献1に記載された制御装置は、車輪のスリップ率が所定値を超えたときに、制動力低下の状態から制動力の制御を開始する第1開始手段と、車速から車輪速を差し引いた偏差が所定値以上になったときに制動力保持の状態から制動力の制御を開始する第2開始手段とを備えている。そのため、例えば、急ブレーキ時などには第1開始手段によって制動力低下の状態から制御が開始されることにより車輪の急激なロックを防止することができる。一方、車輪と路面との摩擦力が大きい時などには第2開始手段によって制動力保持の状態から制動力の制御が開始されることにより不必要に制動力が低下することなく制動距離の短縮化を図ることができる。
また、特許文献2には、路面と車輪とのスリップ率を正確に制御することを目的としたアンチロックブレーキ装置が記載されている。この特許文献2に記載された装置は、車体の前後加速度、軸荷重、車速、および車輪速から求めた切替ブレーキトルクの目標値と、ブレーキの操作量および車速ならびに車輪速から求めた等価ブレーキトルクの目標値とを加算してブレーキトルクの目標値を定め、その定められたブレーキトルクの目標値に基づいてブレーキトルクを調整するように構成されている。
特開平05−162630号公報 特開平09−267737号公報
車両が停止する際は駆動輪に伝達する制動トルクを制御する。しかしながら、その制動トルクが大きすぎると路面と車輪とのスリップ率が増大するおそれがある。そのような場合、上記の特許文献1に記載されているように、車輪のスリップ率の情報を用いて制動トルクを制御することが有効である。しかしながら、車輪の加速度から車輪のスリップ率を検出して制動トルクを制御する場合、スリップ状態であることを検知するまでに時間を要する。そのような場合、スリップしているか否かの判断における正確性もしくは迅速性に欠け、ひいては車両の走行安定性が欠如する可能性がある。
この発明は上記の技術的課題に着目してなされたものであり、路面と車輪とのスリップ率をより正確かつ迅速に把握して、左右輪に伝達するトルクを適切に制御することにより走行安定性を向上させることができる車両の制動制御装置を提供することを目的とするものである。
上記の目的を達成するために、この発明は、各車輪に制動トルクを作用させる制動装置を備え、前記各車輪のスリップ状態に応じて、前記各車輪に伝達する制動トルクを制御するように構成された車両の制動制御装置において、前記制動装置の制動トルクを制御するコントローラを備え、前記コントローラは、各車輪の目標制動トルクと各車輪の車輪速とに応じた目標仕事率と、前記各車輪に実際に作用している実トルクと前記車輪速とに応じた実仕事率との偏差を算出し、前記偏差に基づいて前記各車輪の前記スリップ状態を判定し、前記判定されたスリップ状態に基づいて前記制動装置の制動トルクを制御するように構成されていることを特徴とするものである。
この発明によれば、各車輪を制動する際に、目標仕事率と実際の仕事率(実仕事率)との偏差から車輪のスリップ状態を判定している。そのため、スリップ状態を正確かつ迅速に検知することができる。また、上記の判定されたスリップ状態に基づいて制動トルクを制御しているため、制動トルクを精度よく制御することができる。したがって、精度よく制動トルクを制御できるため車両の走行安定性を向上させることができ、さらには制動距離が長くなることを抑制することができる。
この発明の実施例における制御の一例を説明するためのフローチャートであり、特に制動トルクを定めるための制御例を示すフローチャートである。 この発明の実施例における制御の一例を説明するためのフローチャートである。 図1の制御例を実行した場合におけるモードの切替え、実行トルクの演算式、各仕事率、および各トルクの変化を説明するタイムチャートである。 スリップ率と仕事率との関係、スリップ率と実行トルクとの関係を説明する図である。 この発明の実施例における車両の制御システムの構成の一例を説明するための模式図である。 第1モータから前輪へトルクを伝達する構成、および前輪に制動トルクを作用させるための構成を説明するための模式図である。 第1ECUの構成を説明するためのブロック図である。 第2ECUの構成を説明するためのブロック図である。
この発明で対象とすることのできる車両における駆動装置の制御システムの構成例を図5に模式的に示している。なお、図5では、電気的な接続関係を破線で示している。図6には、駆動力源とした駆動用モータ1,2を二つ設けた車両Veを示している。これらのモータ1,2は、従来知られたハイブリッド車両や電気自動車に駆動力源として設けられているモータと同様に構成することができ、例えば、永久磁石形の同期電動機である。一方のモータ(以下、第1モータと記す)1は、車両Veの前輪3L,3Rにトルクを伝達するものであって、車両Veの前方に設けられている。また、他方のモータ(以下、第2モータと記す)2は、車両Veの後輪4L,4Rにトルクを伝達するものであって、車両Veの後方に設けられている。なお、いずれのモータ1,2も、車幅方向における中央部に配置されている。
上記第1モータモータ6が、第1差動機構5に連結されている。具体1には、図6に示すように第1差動機構5が連結されている。この第1差動機構5は、遊星歯車機構を主体として構成することができ、第1モータ1の出力トルクを、左右の駆動輪3L,3Rに伝達するように構成されている。また、そのように左右の駆動輪3L,3Rに伝達する際におけるトルクの分配率を制御するための第1差動用的には、第1差動機構5のいずれかの回転要素に第1差動用モータ6からトルクを入力することができるように構成されており、第1差動用モータ6から第1差動機構5にトルクを入力することにより、一方の駆動輪3L(3R)に伝達されるトルクの分配率が増大し、他方の駆動輪3R(3L)に伝達されるトルクの分配率が、一方の駆動輪3L(3R)に伝達されるトルクの分配率の増大と同じ数値、減少するように構成されている。すなわち、第1差動機構5と第1差動用モータ6とによりトルクベクタリング装置を構成している。トルクの分配率とは、駆動用モータ1の出力トルクに対する一方の車輪3R(3L)に伝達されるトルクの割合である。
さらに、第1モータ1から第1差動機構5に到るトルクの伝達経路における第1差動機構5よりも第1モータ1側に設けられた回転部材、または第1差動機構5の入力要素と接触することにより、摩擦力を発生させて制動トルクを作用させる第1ブレーキ機構7が設けられている。図6に示す例では、第1モータ1の出力軸8の端部にプレート部材9が連結されており、そのプレート部材9に制動トルクを作用させるように第1ブレーキ機構7が設けられている。この第1ブレーキ機構7は、電磁アクチュエータに通電することにより制動トルクを発生させるように構成されており、図6に示す例では、ブレーキディスク10にコイル11を設け、そのコイル11に通電することによる電磁力により、ブレーキロータとして機能するプレート部材9に、ブレーキディスク10が引き付けられて接触するように構成されている。
上記のように第1ブレーキ機構7を設けることにより、第1ブレーキ機構7で発生した制動トルクは第1差動機構5を介して左右の駆動輪3L,3Rに伝達される。また、制動時に、第1差動用モータ6を制御すれば、左右の駆動輪3L,3Rに作用する制動トルクの分配率を制御することができる。
一方、駐車時には電源がオフされるため、上記の第1ブレーキ機構7は、制動トルクを作用させ続けることができない。そのため、非通電時に制動トルクを作用させることができるように構成された第1パーキングロック機構12が設けられている。図6に示す第1パーキングロック機構12は、ブレーキディスク10を、プレート部材9に向けて押圧する押圧部材13と、通電されることによりブレーキディスク10とプレート部材9とが接触するように押圧部材13を移動させ、非通電時にその押圧部材13の位置が変化することを防止するように構成された電磁アクチュエータ14とにより構成することができる。
このように構成された第1パーキングロック機構12では、通電時における押圧部材13の移動量に応じてブレーキディスク10とプレート部材9との接触圧を制御すること、すなわち、制動トルクを制御することができることになり、その状態で非通電とすることで、その制動トルクを維持することができる。したがって、第1ブレーキ機構7に代えて第1パーキングロック機構12を制御しても第1ブレーキ機構7と同様に制動トルクを制御することができる。すなわち、第1パーキング機構12を第1ブレーキ機構7のバックアップとしても機能させることができる。
上述した第1モータ1および第1差動用モータ6ならびに第1ブレーキ機構7には、従来知られたハイブリッド車両や電気自動車に搭載された蓄電装置と同様に、バッテリーやキャパシタなどにより構成された高電圧の蓄電装置15が電気的に接続され、その蓄電装置15から電力が供給されるように構成されている。また、蓄電装置15には、第1モータ1により発電された電力が供給されるように構成されている。この蓄電装置15と各モータ1,6またはコイル11との間には、直流電流と交流電流とを切替えるとともに、各モータ1,6またはコイル11に供給される電流値やその周波数を制御することができる第1インバータ16が設けられている。
上記のように第1モータ1により前輪3L,3Rを駆動する構成、および第1ブレーキ機構7により前輪3L,3Rに制動トルクを作用させる構成と同様に、第2モータ2により後輪4L,4Rを駆動するとともに、第2モータ2から第2差動機構17に到るトルクの伝達経路上に設けられた回転部材に制動トルクを作用させる第2ブレーキ機構18が設けられ、その第2ブレーキ機構18により後輪4L,4Rに制動トルクを作用させるように構成されている。また、第2ブレーキ機構18へ電力を供給する電気系統がフェールした場合であっても、バックアップとして制動トルクを作用させることができるように、第1パーキングロック機構12と同様に構成された、第2パーキングロック機構19が設けられている。すなわち、前輪3L,3Rを駆動または制動させる構成と、後輪4L,4Rを駆動または制動させる構成とは同一である。したがって、後輪4L,4Rを駆動または制動させる構成の説明を省略する。
上述した第1モータ1、第2モータ2、第1差動用モータ6、第2差動機構17におけるトルクの分配率を制御する第2差動用モータ20、第1ブレーキ機構7、第2ブレーキ機構18を、一括して制御するための第1電子制御装置(以下、第1ECUと記す)21が設けられている。この第1ECU21は、従来知られている車両に搭載された電子制御装置と同様にマイクロコンピュータを主体として構成されており、この発明の実施例における「コントローラ」に相当する。その第1ECU21の構成を説明するためのブロック図を図7に示している。
この第1ECU21には、車両Veの姿勢に関連するデータや、運転者による操作部の操作状態などの信号が入力され、その入力される信号、および予め記憶されている演算式またはマップなどに基づいて、第1インバータ16や、蓄電装置15と各モータ2,20または第2ブレーキ機構18との間に配置され、直流電流と交流電流とを切替えるとともに、各モータ2,20または第2ブレーキ機構18に供給される電流値やその周波数を制御することができる第2インバータ22に制御信号を出力するように構成されている。なお、第1ECU21から第1インバータ16や第2インバータ22に出力する制御信号を求める際には、従来知られたアンチロックシステム(ABS)、トラクションコントロール(TRC)、エレクトロニックスラビリティコントロール(ESC)、ダイナミックヨーレートコントロール(DYC)などを考慮して求めている。
上記第1ECU21に入力される操作状態の信号の一例としては、アクセルペダルの踏み込み量を検出するアクセルペダルセンサ23、ブレーキペダルの踏み込み力を検出する第1ブレーキペダルセンサ24、ブレーキペダルの踏み込み量を検出する第2ブレーキペダルセンサ25、ステアリングの操舵角を検出する操舵角センサ26、ステアリングの操舵トルクを検出するトルクセンサ27からの信号であり、車両Veの姿勢に関連するデータの信号の一例としては、車両Veの前後加速度を検出する第1Gセンサ28、車両Veの横加速度を検出する第2Gセンサ29、車両Veのヨーレートを検出するヨーレートセンサ30、各車輪3L,3R,4L,4Rの周速を検出する車輪速センサ31,32,33,34からの信号である。
なお、第1ECU21を作動させるためや、第1インバータ16に搭載されている図示しないトランジスタを制御するための電力を供給するために、第1補機バッテリ35が設けられている。この第1補機バッテリ35は、蓄電装置15よりも低電圧である。
上述したように第1パーキングロック機構12は、第1ブレーキ機構7のバックアップとしても機能するため、上記第1ECU21と第1補機バッテリ35との電気系統にフェールが生じた場合、または蓄電装置15と第1インバータ16との電気系統にフェールが生じた場合などにも、各パーキングロック機構12,19を制御することができるように、第1ECU21とは別に他の電子制御装置(以下、第2ECUと記す)36が設けられている。この第2ECU36も第1ECU21と同様にマイクロコンピュータを主体として構成されている。この第2ECU36の構成を説明するためのブロック図を図8に示している。この第2ECU36には、車両Veの姿勢に関連するデータや、運転者による操作部の操作状態などの信号が入力され、その入力される信号、および予め記憶されている演算式またはマップなどに基づいて各パーキングロック機構12,19を作動させることを許可するか否かを判断するとともに、各パーキングロック機構12,19の制御量を演算などにより定め、その定められた制御量に基づいて、各パーキングロック機構12,19に制御信号を出力するように構成されている。
上記第2ECU36に入力される操作状態の信号の一例としては、第1ブレーキペダルセンサ24、第2ブレーキペダルセンサ25、各ブレーキ機構7,18に通電されている電流値を検出する図示しないセンサからの信号であり、車両Veの姿勢に関連するデータの信号の一例としては、車輪速センサ31,32,33,34からの信号である。また、各パーキングロック機構12,19を作動させることの許可は、所定の時間以上停車していること、電磁アクチュエータ14を作動させるためのスイッチが運転者などによりオンされていること、停車中でかつイグニッションがオフされていること、少なくともいずれか一方のブレーキ機構7(18)が作動することができないことなどのいずれか一つが成立していることで判定することができる。さらに、ブレーキペダルの踏み込み力や踏み込み量と、各車輪3L,3R,4L,4Rの車輪速とから各パーキングロック機構12,19による制動トルクを定め、その制動トルクを得られるように、電磁アクチュエータ14および第2パーキングロック機構19を制御するための図示しない電磁アクチュエータへ電流を出力するように構成されている。そして、第2ECU36を作動させるためや、各パーキングロック機構12,19を制御するための電力を供給するために、第2補機バッテリ37が設けられている。なお、第1ECU21からの信号を第2ECU36が受けることができ、第1ECU21がフェールした場合などには、第2ECU36が作動することを許可するように構成することができる。
つぎに、各駆動用のモータ1,2、各差動用モータ6,20、各ブレーキ機構7,18に通電する電流値を定めるための制御例について説明する。図2は、その制御例を説明するためのフローチャートであり、第1ECU21で実行される。
図2に示す例では、先ず、入力1次処理として、各センサ23,24,25,26,27,28,29,30,31,32,33,34から入力された信号を読み込む(ステップS1)。ついで、いずれかの車輪速3L(3R,4L,4R)、または四輪の各車輪速の平均速度と前後加速度Gとから、車速Vを推定するなどの入力2次処理を行う(ステップS2)。
つぎに、運転者が要求するトルクに基づいて各車輪に作用させるトルクを算出する(ステップS3)。このステップS3で算出するトルクは車両Veを加速させる駆動トルク、および車両Veを減速させる制動トルクの両方を含み、ブレーキペダルの踏み込み量が予め定められた閾値より大きい場合には制動トルクT reqとして算出し、ブレーキペダルの踏み込み量が閾値以下である場合には、駆動トルクとして算出する。上記制動トルクT reqは、ブレーキペダルの踏み込み量やブレーキ踏み込み力等から求めることができる要求トルクを車輪の数で除算して算出することができる。また、駆動トルクは、アクセルペダルの操作量などに基づいて求めることができる要求トルクを車輪の数で除算して算出することができる。
ついで、旋回走行時などにおける走行安定性を向上させるために、左右輪のトルクの分配率を考慮して、上記ステップS3で算出した値を補正する(ステップS4)。具体的には、上記のように運転者による要求トルクを算出した後に、車両Veの右側の駆動輪(前輪3Rと後輪4Rとから出力するトルクの和)に伝達するべきトルクと、車両Veの左側の駆動輪(前輪3Lと後輪4Lとから出力するトルクの和)に伝達するべきトルクとを算出(加算)する。これは、上述したように旋回走行時などにおける走行安定性を向上させるためであって、従来知られているアンチロックシステム(ABS)、トラクションコントロール(TRC)、エレクトロニックスラビリティコントロール(ESC)、ダイナミックヨーレートコントロール(DYC)を考慮した制御であり、車両Veの姿勢に関連するデータ、より具体的には、ヨーレートセンサ30により検出された実際のヨーレートに基づいて車両Veの右側の駆動輪に伝達するべきトルクと、車両Veの左側の駆動輪に伝達するべきトルクを算出する。
このステップS4は、走行安定性を向上させるために一方側の駆動輪3R,4R(3L,4L)に伝達するトルクを増大させ、他方側の駆動輪3L,4L(3R,4R)に伝達するトルクを減少させる量を求めるためであり、その増大量と減少量とが同一となるように定めている。これは、上述したように図5,6に示す差動機構5は、一方の駆動輪3R(3L)に伝達するトルクの分配率を増大させるように差動用モータ6を制御した場合には、他方の駆動輪3L(3R)に伝達するトルクの分配率が同じ数値、減少するように構成されているためである。
つぎに、運転者が駆動トルクもしくは制動トルクを要求しているか否かを判断する(ステップS5)。具体的には、運転車が要求している目標トルクTreqが正か否かの判断を行う。これを数式で表すと以下のように示すことができる。
req>0
ステップS5で、運転者が駆動トルクを要求していることにより肯定的に判断された場合には、各車輪3L,3R,4L,4Rに伝達するべきトルクを算出する(ステップS6)。なお、このステップS6ではステップS4で算出されたトルクが採用される。
一方、ステップS5で否定的に判断された場合には、図1に示すフローチャートに基づいて、各車輪3L,3R,4L,4Rに伝達するべきトルクを算出する(ステップS7)。
図1には、制動時における各車輪の制動トルクの目標値を定める制御例を示している。先ず、前回の制動モードが通常モードであったかスリップ制御モードであったかの判断を行う(ステップS100)。通常モードとは、各車輪のいずれもがスリップしていない状態もしくは許容できる程度のスリップ状態で実行されるモードをいい、一方、スリップ制御モードとは、各車輪のうち少なくともいずれかの車輪と路面とのスリップ率が所定値以上の場合に実行されるモードである。なお。制動開始時には通常モードが設定される。
ついで、上記のステップS100で肯定的に判断された場合、すなわち通常モードの場合には各車輪の仕事率Pを演算する。具体的には、目標仕事率P reqと実際の仕事率(実仕事率)P とを演算する(ステップS101)。その演算方法は以下の式から求めることができる。先ず、目標仕事率P reqは、
req=T req×(V/rtire
により算出することができる。一方、実際の仕事率P は、
=T ×(V /rtire
により算出することができる。なお、P reqは、各車輪の運転者の要求する仕事率を示し、T reqは、各車輪の運転者の要求する制動トルクを示し、Vは車速を示し、rtireは、車輪の有効半径を示している。またP は、各車輪の実際の仕事率を示し、T は、各車輪の実際の制動トルクを示し、V は、実際の各車輪の周速を示し、車速Vで車輪の有効半径rtirを除算したもの、すなわちV/rtireは車輪速を示している。さらに、ここでは、便宜上、一つの式を示しているものの、実際には、各車輪3L,3R,4L,4R毎に上式でスリップ率を演算する。以下の説明では、便宜上、各車輪3L,3R,4L,4R毎に演算する式を一つのみ示し、その演算に用いられるパラメータに、「」を付して示す。そして上述したT reqがこの発明の実施例における「各車輪の目標制動トルク」に相当する。
ついで、ステップS101で求めた目標仕事率P reqと実際の仕事率P との偏差P devを以下の式から演算する(ステップS102)。
dev=P req−P
偏差P devの変化率ならびに実際の車輪の仕事率P の変化率に基づいて各車輪にスリップが発生しているか否かの判断を行う(ステップS103)。具体的には、上記で求めた偏差P devの変化率が正の値であり、かつ実際の仕事率P の変化率が負の値であり、さらに偏差P devが予め定められた閾値Pより大きい値であるか否かの判断を行う。これを簡略化して数式で表すと以下のように示すことができる。
(dP dev/dt>0)&(dP /dt<0)&(P dev>P
なお、この数式のうちいずれかの条件を満たさない場合はスリップは発生していないと判断される。したがって、このステップS103で否定的に判断された場合には、ステップS104に進む。なお、いずれかの車輪が少なくともスリップしている場合にはこのステップS103の判断は肯定的に判断される。
そして、このステップS104では実行トルクT が演算される(演算A)。すなわち、この実行トルクT は、上記のステップS103のスリップ判定によりスリップしていないと判断されているため、各車輪に実行する制御トルクT と各車輪における運転者の要求する制動トルクT reqとが一致する。これを簡略化して数式で表すと以下のように示すことができる。
=T req
この場合、通常の制御が実行され、引き続き通常の制御モードが設定される(ステップS105)。そして、上記の制御モードが設定されたらこのルーチンを一旦終了する。
一方、上記のステップS103のスリップ判定により肯定的に判断された場合には、ステップS104と同様に実行トルクT が演算Bにより演算される(ステップS106)。この実行トルクの演算Bは上記のステップS104で演算した実行トルクT と異なり、スリップが発生しているため、スリップ状態を収束するようにトルクが演算される。つまり、要求トルクT reqから予め定められたトルクTが減算される。これを簡略化して数式で表すと以下のように示すことができる。
=T req−T
この場合、前回のルーチンの通常モードからスリップ制御モードに制御モードが切り替える(ステップS107)。
つぎに、上述したステップS100で前回の制御モードがスリップ制御モードと判断された場合のフローについて説明する。これは例えば、上述したステップS107で通常モードからスリップ制御モードに切り替わった場合などに、このフローに沿って制御が実行される。具体的には、スリップ制御モードが設定されており、ステップS100で否定的に判断された場合には、ステップS101と同様に目標仕事率P reqsと実際の仕事率P との各仕事率を演算する(ステップS108)。各仕事率は以下の式により表すことができる。先ず目標仕事率P reqsは、
reqs=T pp×(V/rtire
により演算することができる。一方、実際の仕事率P は、
=T ×(V /rtire
により演算することができる。なお、P reqsは、スリップ制御時の各車輪の目標仕事率を示し、T ppは、前回のルーチンの各車輪の実行制動トルクを示し、またこのT ppがこの発明の実施例における「各車輪の目標制動トルク」に相当する。他の記号は、上述した式と同様の符号を付しているため説明を省略する。
ついで、上記のステップS108で求めた各仕事率からこれらの値の偏差、すなわちスリップ制御時の各車輪の仕事率の偏差P devsを演算する(ステップS109)。これは、ステップS102と同様の演算処理であり、ステップS108で求めた目標仕事率P reqsから実際の仕事率P を減算して求めることができる。簡略化して数式で表すと以下のように示すことができる。
devs=P reqs−P
ついで、上記で求めたスリップ時の仕事率の偏差P devsならびに車速Vと車輪の速度V とからスリップが収束しているか否かの判断を行う(ステップS110)。具体的には、上記の偏差P devsの絶対値が予め定めれた閾値Pより小さく、かつスリップ率が予め定められたスリップ率の閾値λより小さいか否かの判断を行う。簡略化して数式で表すと以下のように示すことができる。
|P devs|<P & (V−V )/V<λ
なお、この数式のうちいずれかの条件を満たさない場合はスリップは収束していないと判断され、また、いずれかの車輪が少なくともスリップしている場合にはこのステップS110の判断は否定的に判断される。。したがって、このステップS110で否定的に判断された場合には、ステップS111に進む。
この場合、ステップS111では実行トルクが演算Cにより演算される。また、ここでの実行トルクは、前回の収束制御(例えば、ステップS106)での実行トルクと同様に、予め定められたトルクを減算して求める。具体的には、前回のルーチンの各車輪の実行制動トルクT ppから予め定められたトルクTを減算する。これを簡略化して数式で表すと以下のように示すことができる。なお、トルクTは上述したトルクTと同一の値でもよい。
=T pp−T
この場合、前回のルーチンのスリップ制御モードが継続される(ステップS112)。
一方、ステップS110のスリップ収束判定で肯定的に判断された場合には、ステップS113に進む。つまり、ステップS110の演算により全ての条件を満たすと判断された場合にはスリップが収束されたこととなる。したがって、ステップS110で肯定的に判断された場合にはトルクの増大制御を行う(ステップS113)。具体的には、前回のルーチンの各車輪の実行制動トルクT ppからトルクTを加算する。これを簡略化して数式で表すと以下のように示すことができる。
=T pp+T
なお、この増大トルクは急激にトルクを増大すると車輪をロックするおそれがあるため、徐々にトルクを増大する。具体的には、トルクの増大を行う継続時間が通常の制御モードに復帰できるための時間t以上になったか否かの判断を行う(ステップS114)。このステップS114のtは、例えば道路もしくは路面環境が低μ路から高μ路に切り替わり、トルクを増大させてもスリップしない程度の時間の長さなどに定められている。したがって、ステップS114で否定的に判断、すなわち通常モードに復帰するためのトルクの増大の継続時間がt未満と判断された場合には、スリップ制御モードが引き続き継続される(ステップS115)。これとは反対に、通常モードに復帰するためのトルクの増大の継続時間がt以上と判断された場合には、スリップ制御モードから通常モードに移行する(ステップS116)。
上述したように駆動時には、ステップS6で各車輪3L,3R,4L,4Rに伝達するべきトルクを算出する。同様に制動時には、ステップS7および図1のフローチャートにより実行すべきトルクを算出する。
具体的には、ステップ6およびステップS7で算出された実行トルクT に基づいて、各駆動用モータ1,2および各差動用モータ6,20ならびにブレーキ機構12,18へ通電する電流値I*m,I*s,I*bを定める。まず、駆動時には、ステップS6で算出された実行トルクT から各駆動用モータ1,2へ通電する電流値I、および各差動用モータ6,20へ通電するIを以下の式に基づいて算出する(ステップS8)。
trc=(T*R +T*L /γtrc
diff=(T*R −T*L /γdiff
上式における「T trc」は、駆動用モータの目標トルクを示し、「T diff」は、差動用モータの目標トルクを示している、また「γtrc」は制動部および駆動部の減速比を示し、「γdiff」は差動部の減速比を示している。さらに、「」は、前輪および後輪のそれぞれについての値を示している。すなわち、Iは、右前輪3Rと左前輪3Lとについて算出された実行トルクを加算し、その実行トルクに図示しない変換定数を積算して、第1モータ1へ通電する電流値を求めるとともに、右後輪4Rと左後輪4Lとについて算出された実行トルクを加算し、その実行トルクに変換定数を積算して、第2モータ2へ通電する電流値を求める。また、Iは、右前輪3Rについて算出された実行トルクと左前輪3Lとについて算出された実行トルクとを減算し、その値に変換定数を積算して、第1モータ1へ通電する電流値を求めるとともに、右後輪4Rについて算出された実行トルクと左後輪4Lについて算出された実行トルクとを減算し、その値に変換定数を積算して、第2モータ2へ通電する電流値を求める。そして、ステップS8により算出された電流値I,Iを各駆動用モータ1,2および各差動用モータ6,20に出力する(ステップS12)。
一方、運転者が減速を意図している場合であって、ステップS5で否定的に判断され、ステップS7で各車輪3L,3R,4L,4Rに伝達するための実行トルク(制動トルク)を算出した場合には、ついで、全ての車輪3L,3R,4L,4Rに伝達するための実行トルクを加算して、駆動時と同様にステップS8の演算式を用いて全制動トルクTtrcを算出する。そして、その算出された全制動トルクTtrcが、第1モータ1および第2モータ2で回生可能か否かが判断される(ステップS9)。すなわち、各モータ1,2が回生制御することにより生じる制動トルクにより全制動トルクTtrcを受け持つことができるか否かが判断される。これは、各駆動用モータ1.2により制動トルクを各車輪に作用させることができるため、主に各駆動用モータ1,2で制動トルクを各車輪に発生させることができるためである。したがって、各駆動用モータ1,2ならびに各ブレーキ機構7,18がこの発明の実施例における「制動装置」に相当する。
そのステップS9では、以下の式が成立するか否かが判断される。
trc<Ttrcmax
なお、上式におけるTtrcmaxは、各モータ1,2の特性などに基づいて予め定められている回生トルクの最大値であり、この発明の実施例における「限界トルク」に相当する。
各モータ1,2で全制動トルクTtrcを回生することができ、ステップS9で肯定的に判断された場合には、ステップS7で算出された実行トルクT に変換係数を積算して各駆動用モータ1,2および各差動用モータ6,20へ通電する電流値I,Iを算出する(ステップS10)。なお、Iは、駆動用モータの電流値を示し、Iは、差動用モータの電流値を示している。
一方、全制動トルクTtrcを各駆動用モータ1,2で回生することができず、ステップS9で否定的に判断された場合には、まず、回生可能な範囲で各駆動用モータ1,2を回生制御し、余剰の制動トルクをブレーキ機構7,18で生じさせるように電流制御を行う(ステップS11)。なお、その際における各差動用モータ6,20へ通電する電流値I*s は、ステップ10と同様に算出する。具体的には、ステップS7で算出された実行トルクT に変換係数を積算して各駆動用モータ1,2へ通電する電流値I、各差動用モータ6,20へ通電する電流値I、各ブレーキ機構12,18へ通電する電流値Iを算出する。なお、上式における「BEF」は、摩擦ブレーキ係数を示している。
そして、ステップS11により算出された電流値I,I,Iを各駆動用モータ1,2および各差動用モータ6,20ならびにブレーキ機構12,18に出力する(ステップS12)。
図3は、図1および図2のフローチャートを実行したときの制御モード、トルクの増大制御の演算方法(A,B,C,D)、各仕事率P、各トルクT、ならびに制御モードの遷移条件の変化の一例を示すタイムチャートである。また図4は、スリップ率と仕事率P との関係、スリップ率と実行トルクT との関係を説明する図である。以下、具体的に説明する。
先ず、図3に示すように、t0時点では制御モードは通常モードである。したがって、
目標仕事率P reqと実際の仕事P との偏差P devは許容範囲程度であり、また実行トルクT は通常制御、つまり演算Aにより算出される。
ついで、上記のt0時点から仕事率の偏差P devsが拡がり始める。すなわち、少なくともいずれかの車輪がスリップし始めていると判断できる。具体的にはステップS103の演算式で求めたように、偏差P devの変化率が正の値であり、かつ実際の仕事率P の変化率が負の値であり、さらに偏差P devがスリップ判定における仕事率の偏差の閾値Pより大きい値であるか否かの判断が成立してスリップが発生したと判断できる。したがって、実行トルクT は演算Bにより要求トルクから減算され、また制御モードは通常モードからスリップ制御モードへと移行する(t1時点)。
ついでt2時点では、t1時点からスリップ制御モードが引き続き継続されている。一方、上記の減算トルクの制御によりスリップ率が小さくなることに伴い車輪速V が速くなり、それに伴って一時的に仕事率P および実行トルクT が増大している。これは図4に示すように、t1時点からスリップし始め、c地点からb地点へと推移する。しかし、未だ上記のステップS110の演算式に示した条件のうちのスリップ収束判定のλの条件を満たさず、スリップが収束されていないと判断されている。したがって、実行トルクT は演算Cにより算出され、更に減算される。
ついで、t3時点では、スリップ時の目標仕事率P rcqsと実際の仕事率P との偏差P devsが許容範囲となり、上記のステップS110のスリップ判定の条件が成立してスリップが収束し始める。したがって、実行トルクT は演算Dにより算出され増算、つまりトルクの増大制御が実行される。なお、このようにスリップが収束し始めているので図4に示す関係はb地点からa地点と推移する。
ついで、t3’時点では、ステップS114の通常制御に復帰するためのトルクの増大制御が1ルーチン毎に実行される。そして、t3時点からt4時点にかけて通常制御に復帰可能な時間tD以上となり、t4時点で通常の制御モードに移行する。つまり、低μ路から高μ路に切り替わり仕事率ならびにトルクが目標値に近似する。
このように、図1および図2に示すフローチャートならびに図3に示すタイムチャートでは、各車輪を制動する際に、目標仕事率P req(P reqs)と実際の仕事率P との偏差から車輪のスリップ状態の判定している。そのため、スリップ状態を正確かつ迅速に検知することができる。また、上記の判定されたスリップ状態に基づいて制動トルクを制御しているため、制動トルクを精度よく制御することができる。したがって、精度よく制動トルクを制御できるため車両の走行安定性を向上させることができ、さらには制動距離が長くなることを抑制することができる。また、このように制動トルクを制御することにより最大摩擦力に近いところで制動もしくは制御することができる。
なお、この発明の実施例における車両は、図6に示す四輪駆動車に限らず、前輪3L,3Rまたは後輪4L,4Rのいずれか一方を駆動輪とした二輪駆動車であってもよい。また、二輪駆動車の場合には、非駆動輪となる左右の車輪が差動機構を介して連結されていてもよく、その差動機構に更にブレーキ機構を内蔵した構成としてもよい。
1,2…駆動用モータ、 3…前輪、 4…後輪、 7,18…ブレーキ機構、 21,36…電子制御装置(ECU)、 23…アクセルペダルセンサ、 24,25…ブレーキペダルセンサ、 26…操舵角センサ、 27…トルクセンサ、 28,29…Gセンサ、 30…ヨーレートセンサ、 31,32,33,34…車輪速センサ、 35,37…補助バッテリ、 Ve…車両。

Claims (1)

  1. 各車輪に制動トルクを作用させる制動装置を備え、前記各車輪のスリップ状態に応じて、前記各車輪に伝達する制動トルクを制御するように構成された車両の制動制御装置において、
    前記制動装置の制動トルクを制御するコントローラを備え、
    前記コントローラは、
    各車輪の目標制動トルクと各車輪の車輪速とに応じた目標仕事率と、前記各車輪に実際に作用している実トルクと前記車輪速とに応じた実仕事率との偏差を算出し、
    前記偏差に基づいて前記各車輪の前記スリップ状態を判定し、
    前記判定されたスリップ状態に基づいて前記制動装置の制動トルクを制御する
    ように構成されている
    ことを特徴とする車両の制動制御装置。
JP2016016893A 2016-02-01 2016-02-01 車両の制動制御装置 Expired - Fee Related JP6504066B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016016893A JP6504066B2 (ja) 2016-02-01 2016-02-01 車両の制動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016016893A JP6504066B2 (ja) 2016-02-01 2016-02-01 車両の制動制御装置

Publications (2)

Publication Number Publication Date
JP2017136868A JP2017136868A (ja) 2017-08-10
JP6504066B2 true JP6504066B2 (ja) 2019-04-24

Family

ID=59566566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016016893A Expired - Fee Related JP6504066B2 (ja) 2016-02-01 2016-02-01 車両の制動制御装置

Country Status (1)

Country Link
JP (1) JP6504066B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020005401A (ja) * 2018-06-28 2020-01-09 本田技研工業株式会社 自動運転車両の制御装置
CN113561950B (zh) * 2020-04-28 2024-04-19 北京新能源汽车股份有限公司 分布式驱动电动汽车的稳定性控制方法、装置及电动汽车

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4180223A (en) * 1977-12-28 1979-12-25 The Boeing Company Limited-slip brake control system
JP3826838B2 (ja) * 2001-09-18 2006-09-27 トヨタ自動車株式会社 前後力制御装置
JP4792763B2 (ja) * 2005-02-21 2011-10-12 株式会社アドヴィックス アンチロックブレーキ制御装置

Also Published As

Publication number Publication date
JP2017136868A (ja) 2017-08-10

Similar Documents

Publication Publication Date Title
JP6414044B2 (ja) 車両の駆動力制御装置
US10144430B2 (en) Control system for drive unit
JP5302749B2 (ja) 電気自動車の制御装置
JP6261154B2 (ja) インホイールモータを利用した車両制御方法
US8577531B2 (en) Method for the automatic control of wheel brake-slip and wheel brake-slip control system for a motor vehicle with an electric drive
US20160221468A1 (en) Device for controlling electric vehicle and method for controlling electric vehicle
US10787167B2 (en) Drive force control system
US11214308B2 (en) Drive force control system
US20160368384A1 (en) System and method for delimiting regenerative braking
JP2008113541A (ja) 車両およびその制御方法
US10933878B2 (en) Drive force control system
JP5506632B2 (ja) 車両用ブレーキ装置
WO2019031147A1 (ja) 車両の制御装置、車両の制御システムおよび車両の制御方法
JP2016111878A (ja) 車両の駆動トルク制御装置
JP6504066B2 (ja) 車両の制動制御装置
JP3972535B2 (ja) 自動車の制動力制御装置
CN107848426B (zh) 车轮独立驱动式车辆的驱动控制装置
JP2010241166A (ja) 車両の四輪駆動制御装置及び四輪駆動制御方法
JP4935022B2 (ja) 車両の左右トルク配分制御装置
KR20240053087A (ko) 차량의 트랙션 제어 방법
JP6838478B2 (ja) 駆動力制御装置
KR102576314B1 (ko) 전기자동차의 후륜 제어 방법
KR20210077084A (ko) 친환경 자동차 및 그를 위한 구동력 제어 방법
JP2013141896A (ja) 車両の駆動力制御装置
JP6443266B2 (ja) 車両の制御方法および車両用制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R151 Written notification of patent or utility model registration

Ref document number: 6504066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees