WO2016091198A1 - 电梯参数的获取、控制、运行和载荷监控的方法及*** - Google Patents

电梯参数的获取、控制、运行和载荷监控的方法及*** Download PDF

Info

Publication number
WO2016091198A1
WO2016091198A1 PCT/CN2015/097059 CN2015097059W WO2016091198A1 WO 2016091198 A1 WO2016091198 A1 WO 2016091198A1 CN 2015097059 W CN2015097059 W CN 2015097059W WO 2016091198 A1 WO2016091198 A1 WO 2016091198A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
value
parameter
energy balance
calculation
Prior art date
Application number
PCT/CN2015/097059
Other languages
English (en)
French (fr)
Inventor
冯春魁
Original Assignee
冯春魁
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 冯春魁 filed Critical 冯春魁
Publication of WO2016091198A1 publication Critical patent/WO2016091198A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/02Control systems without regulation, i.e. without retroactive action
    • B66B1/06Control systems without regulation, i.e. without retroactive action electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • B66B5/0031Devices monitoring the operating condition of the elevator system for safety reasons

Definitions

  • the invention relates to the field of elevator technology, and is particularly suitable for elevators with counterweights. More specifically, it relates to a method and system for acquiring, controlling, operating, and monitoring elevator parameters.
  • Elevator is an important type of personnel transportation equipment. It is used frequently and its safety and reliability are directly related to the safety of the occupants.
  • B. Car outside sensor weighing It is also possible to install a tension sensor on the top of the car and weigh it according to the output signal of the tension sensor; the European elevator also has a weighing method for installing the tension measuring instrument at the end of the traction rope, which needs to be A tension measuring instrument is installed on each wire rope; the Hitachi elevator adopts another technical scheme, and the traction rope is connected as a measured resistance in series to the impedance detecting sensor, and the impedance of the traction rope is measured and weighed; the scheme is not only There are shortcomings of high cost and single function, and there is no in-depth study on the shifting operation of the elevator.
  • the elevator must enter the acceleration operation after starting, it must enter the deceleration operation when approaching the parking position, so the existing Class B technology can only be applied to In constant speed operation, it is inevitable to make mistakes during acceleration and deceleration, thus reducing the meaning of use;
  • One of the technical problems solved by the present invention is to provide an adaptive parameter acquisition, control, and operation of an elevator. And methods and systems for load monitoring.
  • the present invention provides a method for obtaining the value of an elevator operating parameter, that is, a method for calculating an elevator operating parameter, the obtaining method acquiring the value of the input parameter of the elevator when the elevator is going up or down, according to the Calculating a joint operation value of the measurement object of the elevator; the calculation is an elevator operation energy balance calculation, and the input parameter is a parameter required for calculating a joint operation value of the measurement object of the elevator,
  • the measurement object is any one of elevator quality, source power parameter and system operation parameter
  • the elevator operation energy balance is calculated according to data including at least two parameters of elevator quality, source power parameter and system operation parameter. Calculate another parameter.
  • the present invention also provides an acquisition system for an elevator operating parameter, that is, a measurement system for an elevator operating parameter, including:
  • An acquiring module configured to acquire a value of an input parameter of the elevator when the elevator is going up or down, and calculate a joint operation value of the measurement object of the elevator according to the value of the input parameter; the calculation is an energy balance of the elevator operation Calculating, the input parameter is a parameter required for calculating a joint operation value of the measurement object of the elevator, and the measurement object is any one of an elevator quality, a source power parameter, and a system operation parameter, and the elevator operation energy balance The calculation is to calculate another parameter based on data including at least two of the elevator mass, the source power parameter, and the system operating parameter.
  • the present invention provides a monitoring method (#1) for an elevator during a lifting operation, comprising the steps;
  • the step of acquiring the joint operation value may be further included before the above step.
  • the energy transmission status of the elevator is determined according to the joint operation value, and the specificity is determined according to the joint operation value and the reference data of the measurement object. Whether the energy transfer condition of the elevator is abnormal.
  • the invention also provides a monitoring system (#1) for elevator lifting operation, comprising:
  • the energy transfer status determining module is configured to: acquire a joint operation value of the measurement object of the elevator, and identify an energy transfer status of the elevator according to the joint operation value; wherein the measurement object is any one of elevator operation parameters One or more kinds, the joint operation value is calculated based on the energy balance of the elevator operation.
  • the present invention also provides an elevator load monitoring method (#2).
  • the monitoring method includes the following steps. :
  • the present invention also provides an elevator load monitoring system (#2), including a joint operation value acquisition module (1); the monitoring system further includes any one of an overload processing module (2) and an output module (3). Kind or multiple modules;
  • the overload processing module (2) is configured to: determine whether the joint operation value is greater than a rated load of the elevator, and perform any one or more of the following 26B11, 26B12 processing;
  • the output module (3) is configured to: output the joint operation value to a human machine interface of the car and/or a human machine interface of the hall door and/or a human machine interface of the control center.
  • the present invention also provides a control method for an elevator, which can be used to improve the operating efficiency of the elevator.
  • the solution steps are as follows: the mechanical operating parameters of the elevator are pre-set with at least two different grades, based on at least the elevator.
  • the parameter carrying the item quality selects the grade of the mechanical operating parameter; or; calculates a joint operation value of the mechanical operating parameter based on a parameter including at least the quality of the carried item of the elevator, when the quality of the carried item is from zero to the rated load
  • the mechanical operating parameter has at least two joint operation values of different sizes when changing; the elevator operation is controlled according to the joint operation value or grade of the mechanical operation parameter; the mechanical operation parameters include an uplink speed, a downlink speed, and an acceleration uplink Any one or more of the acceleration and the acceleration at the time of deceleration.
  • the invention also provides a control system for elevator operating efficiency, comprising a control module (1) for realizing: the mechanical operating parameters of the elevator are pre-set with at least two different grades, based on at least the carrying item of the elevator
  • the parameter including the quality selects the grade of the mechanical operating parameter; or; calculates a joint operation value of the mechanical operating parameter based on a parameter including at least the quality of the carried item of the elevator, when the quality of the carried item varies from zero to the rated load
  • the mechanical operating parameter has at least two joint operation values of different sizes; the elevator operation is controlled according to the joint operation value or grade of the mechanical operation parameter; the mechanical operation parameters include an uplink speed, a downlink speed, and an acceleration when the uplink is accelerated. And decelerate any one or more of the accelerations in the downward direction.
  • the present invention also provides a monitoring method (#3) for an elevator operating parameter overrun, comprising the steps of:
  • the present invention also provides a monitoring system for an elevator operating parameter overrun, comprising:
  • a joint operation value detecting module (1) configured to acquire a joint operation value of source power parameters of the elevator
  • the source power parameter overrun monitoring module (2) is configured to: determine whether the joint operation value exceeds a system preset value or a safety limit threshold of the source dynamic parameter; and the joint operation value is based on an elevator operation energy balance calculation Income.
  • the present invention also provides an elevator monitoring method comprising the steps of: obtaining a joint operation value of a measurement object; and outputting the joint operation value for electronic equipment and/or portable personal consumer electronics in the car and / or display on the man-machine interface of the elevator door; and / or: the joint computing value of the measurement object in the car electronics and / or portable personal consumer electronics and / or the elevator door
  • the interface is displayed, and the measurement object is any one or more parameters of an elevator operating parameter of the elevator, and the joint operation value is calculated by using an elevator running energy balance.
  • the present invention also provides an elevator monitoring system for solving the technical problems thereof, including:
  • a monitoring processing module configured to obtain a joint operation value of the measurement object; output the joint operation value to display on the human-machine interface of the electronic device and/or the portable personal consumer electronic product in the car and/or the hall door of the elevator And/or: displaying the joint operation value of the measurement object on the human-machine interface of the electronic device in the car and/or the portable personal consumer electronic product and/or the hall door of the elevator, the measurement object is the elevator operation of the elevator Any one or more of the parameters, the joint operation value is calculated based on the energy balance of the elevator operation.
  • FIG. 1 is a schematic view showing the mechanical structure of an elevator during lifting operation according to the present invention
  • Fig. 2 is a flow chart showing a method of monitoring an elevator in a lift operation according to a sixth embodiment of the present invention.
  • the present invention is mainly applicable to elevators with counterweight; because there is no counterweight elevator, its working principle and structure The complexity and technical solution are much less difficult than the counterweight elevator; as shown in Figure 1 of the accompanying drawings, the elevator of the present invention usually has a traction machine, a guide wheel B5, and a car B0 (corresponding no-load)
  • the car mass is m0
  • the carrying item B1 corresponding carrying item quality is m1
  • the counterweight B3 corresponding counterweight mass is m3
  • the wire rope the guide rail, the guide shoe, the compensating device, etc.
  • the traction machine is It may include a traction motor and a traction sheave B2; from the classification of the transmission system, the traction machine can be further divided into a turbine type, a helical gear, a star gear, a gearless traction machine, and the like;
  • the invention takes the elevator car as the core research object.
  • the operation of the invention refers to the elevator car running in the vertical direction;
  • Speed/or acceleration refers to the speed/or acceleration of the elevator car running in the vertical direction;
  • the up/down direction of the elevator refers to the upward or downward movement of the elevator car in the vertical direction;
  • the opening or closing of the elevator door does not belong to In the operation of the present invention, when the elevator door is opened and closed, the elevator is prohibited from operating in the vertical direction.
  • 1.2. Overview of power plant refers to the device that can directly drive the elevator to run in the vertical direction; the power device of the elevator is usually a motor; the motor described in the present invention refers to a motor that can directly drive the elevator to run in the vertical direction.
  • the main types of motors include Not limited to: AC asynchronous motor, AC synchronous motor, DC motor, switched reluctance motor, permanent magnet brushless motor, linear motor, hub motor, etc.;
  • the power control device of the elevator is usually a motor driver, and refers to a device capable of driving the motor of the present invention and a connecting cable thereof, including but not limited to: a frequency converter, a servo driver, a DC motor controller , switched reluctance motor driver, permanent magnet brushless motor driver, linear motor driver, integrated controller with motor drive capability, etc.;
  • the driving, the motor driver, the driving motor running, and the driving in the driving operation of the invention are not the single-finger driving motor running in the electric state and the drag motor, but also controlling the motor braking operation and working in the system. Dynamic state.
  • the energy supply device of an elevator which can be called a power supply device, refers to a device that can provide driving energy to a motor driver, a motor, an elevator, and a connection cable thereof, including a conventional AC power source, a backup power source, and the like. Wait;
  • the electric power system of the present invention includes the category of the device depending on the collection point of the specific electric power parameter group signal; if the source power parameter signal is collected at the input end of the power supply device, the electric power system is simultaneously The power supply device including the elevator, the motor driver and the motor are three devices; if the collection point of the source power parameter signal is at the output end of the power supply device or the input end of the motor driver, the electric power system includes both the motor driver and the motor device; The collection point of the source power parameter signal is at the output of the motor driver or the terminal of the motor, and the electric power system only contains the motor;
  • the power device, the power control device and the energy supply device according to the present invention are mainly It can be classified; from the device structure, any two or three of the three can be combined into one of the following integrated systems: a two-in-one integrated system of power control devices and power plants, energy supply devices and power control A two-in-one integrated system of devices, an energy supply device, and a three-in-one integrated system of power control devices and power devices; the specification and claims of the present invention also encompass any of the above two-in-one, three-in-one integrated systems.
  • measured directly measure the parameter value with physical instruments, hardware sensors, etc., the result is called the measured value; such as the elevator speed measured by the speed measuring instrument, such as the acceleration measured by the acceleration sensor, such as the current sensor measurement Motor current
  • Joint operation If the data obtained by the calculation method of the elevator operating parameters provided by the present invention is used, the obtained result belongs to the joint operation value; for example, the joint operation value of the elevator mass is calculated by the electric power parameter and the system operation parameter. ;
  • Reading reading the parameter value input by an external device (such as a motor driver), reading the existing parameter value, etc.; the existing parameter value may include the measured value, the joint operation value, the manual input value, and the system. Default value, history value, etc.;
  • the reading parameter value includes reading a local parameter value, reading a parameter value through a communication method (such as CAN, 485, 232, WIFI, Bluetooth, infrared, etc.), and transmitting the data through the network (for example, Various wired and wireless networks) remotely reading elevator operating parameter values and other methods;
  • a communication method such as CAN, 485, 232, WIFI, Bluetooth, infrared, etc.
  • the definition of the source power parameters of the elevator; the parameter that can represent or calculate the force or torque or power that directly drives the elevator to run in the vertical direction is the source power parameter; the source power parameter can be distinguished from the components of the signal value. It is divided into the dynamic parameters of the traction parts, the dynamic parameters of the mechanical rotating parts, the electric power parameters, etc. Among them, the dynamic parameters of the traction parts mainly include the pulling force of the steel wire rope, etc.
  • the dynamic parameters of the mechanical rotating parts are mainly included in the rear end of the motor (motor output)
  • the acquired source dynamic parameters with electrical parameter properties are called electrical dynamic parameters (also referred to as motor drive parameters or electrical drive parameters);
  • the electrical parameters of the motor mainly include and are not limited to the following parameters: motor voltage Uo, motor current Io, power factor ⁇ 1 (also denoted by ⁇ ), electrical power Po (also denoted by Pm), electromagnetic torque Te, motor Rotation speed n1, rotating magnetic field speed n0;
  • the electrical parameters of the motor driver mainly include, but are not limited to, the following parameters: output voltage U2o, output current I2o, output power factor ⁇ 2, output electrical power P2o, electromagnetic torque Te, input voltage U2i (also represented by Ui), Input current I2i (also denoted by Ii), input electrical power P2i, driver DC bus voltage Udc, torque current component iq;
  • the torque current component iq refers to a vector-controlled motor driver (such as a frequency converter or a servo driver). After vector transformation, the motor current is stripped of the torque component of the excitation component; the torque current component iq is compared with the motor torque. Direct mapping relationship; the conversion coefficient Ki, Ki*iq through torque current and electromagnetic torque can be used to directly calculate the torque;
  • the electrical parameters of the power supply unit mainly include but are not limited to the following parameters:
  • the usual power supply unit can include the following output electrical parameters: output voltage U3o (also indicated by Ub1), output current I3o (also denoted by Ib1), output electrical power P3o, power factor ⁇ 3, input voltage U3i, input current I3i, input Electrical power P3i;
  • the power generation feedback brake voltage U4, the power generation feedback braking current I4, the braking current and the braking voltage power factor ⁇ 4; the power generation feedback braking (reverse delivery to the power supply) electrical power (referred to as power generation feedback power) P4 ; P4 can be calculated by braking current and braking voltage (such as P4 ⁇ 3 * U4 * I4 * cos ⁇ 4);
  • P2o Po
  • the electromagnetic torque Te according to the present invention refers to the motor torque calculated according to the voltage or current or magnetic field parameters of the motor, including the electromagnetic torque calculated in the motor driver.
  • the electromagnetic torque Te calculated by measuring the motor voltage and the motor current outside the motor driver is also included; the measurement of the electromagnetic torque Te according to the present invention is very simple, low in cost, and high in precision.
  • the electromagnetic torque Te does not include the mechanical torque machine obtained by installing the mechanical stress measurement principle (such as the dynamic torque tester) on the motor output shaft or other mechanical drive shaft or flywheel; the two are in the measurement principle, the measurement path, and the cost performance of the measurement. There are significant differences.
  • the electrical parameters of the present invention are further divided into electrical power parameters and electrical auxiliary parameters;
  • Common electrical and power parameters include, but are not limited to, the following types: electrical power, electromagnetic torque, Current, electromechanical combination parameters, etc.:
  • the first type electrical power; in the absence of additional instructions or qualifications, the electrical power of the present invention refers to active power; the way to obtain electrical power is as follows:
  • Electrical power value acquisition method 1 first obtain current and voltage, and then indirectly obtain power value by calculation; such as (Uo, Io, ⁇ 1), or (U2o, I2o, ⁇ 2), or (U2i, I2i), or (U3o, I3o, ⁇ 3), or (U3i, I3i); calculating electrical power by voltage and current, is a well-known technique;
  • Electrical power value acquisition method 3 directly read the internal parameters of the motor driver to obtain electrical power values; such as Po, Pm, P2o, P2i, P3o, P3i, P4, P5;
  • Electrical power value acquisition method 4 Obtain electrical power value by measuring with active power meter; such as Po, Pm, P2o, P2i, P3o, P3i, P4, P5;
  • Electromagnetic torque Te value acquisition mode 1 directly read the internal parameters of the motor driver to obtain the Te value; such as directly reading the electromagnetic torque Te value in the inverter or servo drive;
  • Electromagnetic torque Te value acquisition mode 3 By measuring the motor driver output voltage and output current, and then indirectly obtaining the Te value by calculation;
  • the current value acquisition mode 2 the current sensor is used to measure the current of the device, the power factor factor is used to measure the power factor, and then the current value is obtained by calculation;
  • a single torque or a single current or a single power can be independent electrical power parameters; the voltage and the corresponding current parameters can be used as electrical power parameters; the speed and the corresponding torque parameters can be used as electrical power parameters;
  • electromechanical combination type parameter refers to the parameter calculated according to the aforementioned combination of electric power parameters, and the specific definition manner is described later;
  • Electrical auxiliary parameters refer to parameters that can be used to identify the operating conditions of the motor and the state of the motor.
  • the main parameters include, but are not limited to, the following parameters: motor running status word, motor control command word, etc.; because existing motor drives such as inverters It can output fault information such as accelerating overcurrent, deceleration overcurrent, constant speed overcurrent, etc., so it is also possible to obtain acceleration, deceleration, constant speed and other operating states from the inside of the motor driver through relevant electrical auxiliary parameters;
  • the method of obtaining the electrical auxiliary parameter value is as follows: reading the internal parameters of the motor driver and obtaining;
  • the traction component of the elevator is usually a steel wire rope.
  • the dynamic parameters of the traction component mainly include the comprehensive pulling force F1 of the vertical running of the traction car on the steel wire rope; the comprehensive tensile force F1 is usually measured by a tensile force sensor, which is installed on the passenger car.
  • the hook of the car can also be installed at the connection with the wire rope and the hook; the tension sensor can be either an integral tension sensor corresponding to all the wire ropes; or a tension sensor can be provided for each wire rope. Then the signals of the respective wire rope tension sensors are added to obtain a comprehensive pulling force F1;
  • the tension sensor can also be set at some other position (such as the support of the guide wheel above the elevator shaft).
  • the tension of the tension sensor is used to obtain the comprehensive tension F2, and then the integrated tension F1 is calculated according to the angle of the F2 and the wire rope;
  • the tension sensor It can be a whole tension sensor corresponding to all the wire ropes, or a tension sensor can be provided for each wire rope, and then the signals of the respective wire rope tension sensors are added to obtain a comprehensive tension F2;
  • the traction rope is connected as the measured resistance in series to the impedance detecting sensor, and the comprehensive calculation of the impedance change of the traction rope is calculated.
  • the dynamic parameters of the mechanical rotating member mainly include the source dynamic parameters obtained on the mechanical components of the rear end of the motor (the motor output shaft, the traction sheave, and the intermediate mechanical transmission component between the motor output shaft and the traction sheave, etc.);
  • the dynamic parameters of the mechanical rotating part mainly include the mechanical torque, which can be measured by a torque sensor mounted on a rotating part at the rear end of the motor, so the dynamic parameter can also be called the source dynamic parameter of the rear end; of course, relative to the foregoing
  • the total tensile force F1 is measured by the tension sensor or the tension sensor, and the cost of measuring the torque with the torque sensor is greatly increased; especially compared with the measurement cost of the electric power parameter, the measurement cost of the torque sensor is greatly increased, so practical Relatively lower in sex, but still creative and practical compared to the prior art for the safety monitoring of elevators and the control of energy-efficient operation.
  • the source dynamic parameters can be divided into the source dynamic parameters strongly related to the power system and the source dynamic parameters weakly related to the power system; generally, the signal can be valued
  • the source and power parameters of the motor and motor front end are classified into source power parameters that are strongly related to the power system; for example, three source dynamic parameters of electric power, electromagnetic torque, and current, and related electromechanical combinations.
  • the type parameters are all source dynamic parameters that are strongly related to the power system.
  • the dynamic parameters of the traction member such as the pulling force F1
  • the dynamic parameters of the mechanical rotating member such as T1, etc.
  • the source dynamic parameters can be classified into source dynamic parameters that are strongly related to the power system.
  • the power parameter (such as the pulling force F1) of the traction member when decelerating downward or the dynamic parameter (such as T1, etc.) of the mechanical rotating member calculated according to F1 and R1 is because
  • the nature of the source dynamic parameters is mainly used to describe the force or torque generated by the self-weight and acceleration of the carrying mass; at this time, the source dynamic parameters can be classified into the source-dynamic parameters of the weak correlation of the power system; and generally speaking
  • the root cause of the acceleration signal, that is, the acceleration and deceleration, is derived from the control of the power system.
  • the carrying quality of the present invention is any one or two parameters of the mass of the carrying item m1 and the total mass m2 of the elevator car; the total mass m2 of the elevator car refers to the mass m1 of the carrying item and the mass m0 of the empty car at the same time. Data; the mass of the carried item m1 refers to the quality of the personnel loaded outside the net weight of the empty car; the national standard stipulates that the passenger lift is calculated according to 75kg per person, and the number of passengers in the elevator can be calculated according to m1;
  • no-load car mass m0, counterweight mass m3 can be accurately learned by manufacturer parameters, or weighing scales, no need to measure; the quality of traction parts (such as wire rope) is usually negligible; traction parts (such as wire rope)
  • the mass is included in the no-load car mass m0 and/or the counterweight mass m3; when the no-load car and the counterweight are in the same horizontal position, the no-load car mass m0 and the counterweight mass m3 each contain half the wire rope mass When the car is at the top/counter weight at the bottom, the counterweight mass m3 contains the mass of most of the wire rope; when the car is at the bottom/counterweight at the top, the car mass m0 contains the mass of most of the wire rope;
  • the mass m0 and the counterweight mass m3 may also include the quality of the respective compensation ropes;
  • the quality of the ropes contained in the no-load car mass m0 and the counterweight mass m3 is related to the position.
  • the function of the no-load car mass m0 and the counterweight mass m3 and the position can be set, which can be relatively accurate by theoretical calculation or actual measurement.
  • the operating parameters of the system according to the present invention refer to the elevator operating parameters except the elevator mass and the source power parameters.
  • the parameters include any one or two of the mechanical operating parameters and the inherent parameters of the system.
  • the mechanical operating parameters of the present invention mainly include, but are not limited to, the following parameters: speed Vq, acceleration aj, wind resistance fw, angular acceleration ⁇ of the internal integrated rotating rigid body, and the like.
  • the speed Vq according to the present invention refers to the speed of the vertical displacement of the elevator car; and includes any one or two parameters of the uplink speed V1 and the downlink speed V2; the speed value is obtained in the following manners:
  • Vq value acquisition mode 1 directly obtain the Vq value by the speed sensor measurement set on the car; the Vq unit can be expressed in meters per second (m/s);
  • All speed-related parameters can be used to obtain the Vq value; such as the motor drive operating frequency FR (for example, the rated frequency of the frequency converter usually corresponds to the rated speed of the motor), the gear speed, the intermediate rotating angular velocity, the intermediate transmission Line speed;
  • the acceleration aj (also denoted by a or acc) of the present invention, refers to the acceleration of the vertical displacement of the elevator car;
  • the parameter design principle of the rotating rigid body cannot be directly applied, and the car acceleration aj and the counterweight acceleration ad may be equal. May not equal; the weight acceleration ad can be measured and calculated separately; in the simplified calculation, the car acceleration aj is equal to the counterweight acceleration ad;
  • the invention stipulates that the value of the acceleration can be positive or negative; the direction of the speed can be set to a positive value regardless of the elevator ascending or the elevator descending; when the absolute value of the speed increases, this The acceleration is positive, and the acceleration is positive; when the absolute value of the velocity decreases, the acceleration is negative, and the acceleration is negative; of course, the user is allowed to define acceleration, velocity, and source in other and more complicated ways. Positive and negative of the power parameters.
  • Aj value acquisition method 1 directly measured by the acceleration sensor set on the car; if the acceleration sensor output signal also contains the value of g, can be combined processing: (g + aj)
  • Fw value acquisition mode 2 preset an association table of elevator speed and wind resistance fw value, and when the elevator is running, the corresponding wind resistance fw value is obtained by looking up the speed value table;
  • the angular acceleration of the internal integrated rotating rigid body ⁇ The internal comprehensive rotating rigid body refers to all the rigid mechanical rotating parts in the elevator internal transmission system.
  • the ⁇ parameter can be obtained by the speed sensor or by first obtaining the motor speed n1. Or the speed Vq of the elevator or the acceleration aj of the elevator is calculated and obtained;
  • the system inherent parameter of the present invention refers to a parameter caused by an elevator or an inherent property of the environment, and the inherent parameter of the system of the present invention may also be referred to as a system setting parameter;
  • Common system intrinsic parameters include, but are not limited to, the following: rolling frictional resistance coefficient ⁇ 1, frictional force f0 of the rail and the car in the elevator shaft, the integrated gear ratio im, the rear gear ratio im3, the traction Wheel radius R1 (also denoted by R), conversion coefficient Ki of torque current and electromagnetic torque, conversion coefficient Ko of motor current active component and electromagnetic torque, efficiency coefficient Km of mechanical transmission system, efficiency coefficient Kea of electric power system , the efficiency coefficient Km3 at the back end, the moment of inertia L0 of the internal integrated rotating rigid body, the drag coefficient C d (also denoted by Cd), the air density p0, the windward area A 0 (also denoted by S), and the gravitational acceleration g (also called It is a gravity acceleration factor, its meaning and value 9.8 are all known techniques, basic physical common sense, and the preset time range of parameter values.
  • the efficiency coefficient of the electric power system Kea includes and is not limited to the following parameters:
  • the efficiency coefficient of the motor Ke refers to the conversion efficiency of the electrical power of the motor to the mechanical power output of the motor shaft; the Ke value may be different in view of the electric state and the motor braking state; the efficiency coefficient of the motor in the electric state is named Ke1, Name the efficiency coefficient of the motor when the motor is in the braking state as Ke2;
  • the efficiency coefficient k21 of the motor driver to the motor refers to the conversion efficiency of the input power of the motor driver to the electrical power of the motor when the operating condition of the motor is the electric state; and the conversion efficiency of the output power of the power source to the electrical power of the motor;
  • the power factor to motor efficiency coefficient k31 refers to the conversion efficiency of the input power of the power source to the electrical power of the motor when the operating condition of the motor is the electric state;
  • the efficiency coefficient of the motor braking power to the power supply k14 the efficiency coefficient from the braking power of the motor to the power of the power supply device when the motor is in the braking state;
  • the efficiency coefficient Km of the mechanical transmission system also referred to as mechanical transmission system efficiency: refers to the motor output shaft including the elevator, the traction sheave, and the intermediate transmission components between the motor output shaft and the traction sheave.
  • the efficiency coefficient of the integrated transmission in order to cope with the possible fluctuation of the Km value in different speed ranges, a one-dimensional function can be set, Km ( Vq ) one, that is, according to different speed intervals (such as zero speed, low speed, high speed) Km value; the Km value may be different in view of the electric state and the motor braking state; the efficiency coefficient of the mechanical transmission system in the electric state is named Km1, and the efficiency coefficient of the mechanical transmission system in the motor braking state is named Km2 ;
  • the comprehensive efficiency coefficient Kem of electromechanical transmission can also be called the comprehensive efficiency Kem of electromechanical transmission;
  • Kem contains the efficiency coefficient Ke of the motor, including the efficiency coefficient Km of the mechanical transmission system;
  • the relevant efficiency coefficient k31, k21, k14, Ke, Km value is basically constant within a certain speed and load interval;
  • the change of k31, k21, k14 value means that the internal rectifier bridge of the power supply or the motor driver, the IGBT may have a short circuit, or an open circuit, parameter variation and other abnormal conditions;
  • the change of the Ke value means that the internal rotating magnetic field parameter variation of the motor or the motor winding is short-circuited, or Variations that may cause serious consequences, such as a broken circuit;
  • the current, voltage and speed torque of the elevator can be changed, but the basic values of k31, k21, k14, and Ke cannot be changed; therefore, the above k31, k21, k14, and Ke values are not only used as the efficiency coefficient of the electric power system, but also as the electric power. An important basis for the security status of the system;
  • the change in the efficiency coefficient Km of the mechanical transmission system may represent severe wear and tear in the mechanical transmission system of the elevator including the motor output shaft, the traction sheave, and the intermediate transmission component between the motor output shaft and the traction sheave, or Variations that may cause serious consequences, such as deformation or gear embrittlement;
  • the mechanical torque speed of the elevator can be changed, and even the frictional force can vary with the size of the load, but the basic Km value cannot be changed greatly, or it may be a serious fault; therefore, the Km value can be used not only as the efficiency of the mechanical transmission component.
  • the coefficient can also be used as an important basis for the safety condition of mechanical transmission components;
  • the elevator can be effectively monitored.
  • the operating conditions of the electrical power system are directly monitoring the k31, k21, k14, and Ke values as the measurement objects, or by indirectly monitoring the k31, k21, k14, and Ke values by calculating the joint operation values of other measurement objects (such as the carrier quality).
  • the comprehensive efficiency coefficient Keem of the electric power system of an elevator which includes the efficiency coefficient Km of the mechanical transmission system and the efficiency coefficient Kea of the electric power system; the Keem value is the Km value of the elevator and the efficiency coefficient value of the electric power system Kea Product of
  • Rolling friction resistance coefficient ⁇ 1 Because of the structural characteristics of the elevator, the traction sheave and the guide wheel are subjected to the pressure generated by the gravity of the car and the counterweight; therefore, the rolling friction coefficient of the elevator is ⁇ 1 (along with the rolling frictional resistance fr ) mainly for the data of the traction sheave and the guide wheel components;
  • Integrated transmission ratio im refers to the comprehensive transmission ratio including the motor output shaft, the traction sheave and the intermediate transmission component between the motor output shaft and the traction sheave;
  • the efficiency coefficient Km of the mechanical transmission system usually refers to the motor to the traction Between wheels The efficiency coefficient of the transmission system; because the source power parameter of the present invention includes the source power parameters of the back end, the corresponding gear ratio and efficiency coefficient need to be set; and the parameters of the source power parameters of the back end are taken to the traction wheel
  • the transmission ratio is called the transmission ratio im3 of the rear end, and the efficiency coefficient between the parameter points of the source dynamic parameters of the rear end to the traction sheave is called the efficiency coefficient Km3 of the rear end;
  • the transmission ratio im and im3 of the elevator are usually a fixed value; if the values of im and im3 are variable, the current value needs to be given by the central controller during the calculation;
  • the frictional force f0 between the object and the car in the guide rail and/or the elevator shaft is the core information of the safe operation of the elevator. It is a technical point neglected by the prior art. In recent years, many passengers have been caught in the car. The serious safety accident causing death of the person between the car and the elevator shaft is that the elevator does not fully consider the measurement and abnormal monitoring of the friction force f0 during the safety design; the technical solution provided by the present invention is to measure the friction force f0 High-precision/high-sensitivity measurement and energy transmission status monitoring of the joint calculation values of objects, or other measurement objects (such as the carrying quality of the elevator), so that real-time direct or indirect measurement and monitoring friction during elevator operation
  • the value of the inherent parameters of the system generally has the system preset value, which can be given by the central controller of the elevator.
  • the correctness of the system's inherent parameters and system preset values is also guaranteed by the central controller of the elevator;
  • the set value can be known by the elevator production service manufacturer or professional testing organization; the user can also test, verify, adjust and set it by himself; if the self-learning of the hoistway parameters is carried out, the relevant parameters (especially f0, ⁇ 1) are learned during the ascending and descending process of the elevator. Parameters such as Kem at different positions and at different speeds). If the deviation of the system preset value of the parameter or even the error causes the monitoring effect of the method or system of the present invention to decrease, the effectiveness of the technical solution is not affected.
  • Source power combined parameters are also classified into source dynamic parameters; electrical dynamic parameters are combined with other parameters to form parameters, called electromechanical combined parameters; electromechanical combined parameters are typical source dynamic parameters, and their types still belong to electrical dynamic parameters;
  • An example of a typical electromechanical combination parameter is as follows: ((Ke*Km)*(Po/Vq) represents a driving force calculated according to the motor power; eg (Te*im/R) represents a calculation based on the electromagnetic torque Te
  • the driving force such as (Te*n1/9.55/Vq), represents another driving force calculated based on the motor power, which is calculated by torque and speed;
  • the source power combination type parameter has an infinite number of expressions, and the present invention is not exemplified;
  • the acquisition method of the source power combined type parameter value 1 obtain the value of the source dynamic power parameter in the source power combined type parameter by the foregoing manner, obtain the value of the other parameter in the source power combined type parameter by the foregoing manner, and further adopt the source power combined type Obtaining the value of the source power combination parameter by calculating the calculation formula of the parameter;
  • the method for obtaining the mechanical combination type parameter value 1 obtaining the value of the mechanical operation parameter in the mechanical combination type parameter by the foregoing method, obtaining the value of the other parameter in the mechanical combination type parameter by the foregoing manner, and further calculating the calculation formula of the mechanical operation parameter And obtaining the value of the source power combination parameter;
  • Elevator operating parameters Obviously, all parameters that affect the operating state of the elevator, or all parameters related to elevator operation, can be referred to as elevator operating parameters; the source dynamic parameters, elevator quality, system described in the present invention The operating parameters (including the mechanical operating parameters and the system inherent parameters) constitute the operating parameters of the elevator;
  • Derived parameters Any parameters described in the present invention are derived, deformed, renamed, expanded, reduced, increased offset, filtered, weighted, averaged, estimated interference, compensated for interference, processed by RLS algorithm, recursive The parameters obtained by the least squares processing and the like are referred to as derived parameters of the parameters, and all the derived parameters still belong to the original parameter type;
  • the energy transfer condition correlation factor refers to a parameter directly or indirectly related to the energy transfer status judgment of the elevator, which includes the condition information of the elevator, the load condition information, the position information, the elevator quality, and the source. Any one or more of the dynamic parameters and the operating parameters of the system; the condition of the machine according to the present invention mainly refers to the condition of the elevator power system and the transmission system, such as good mechanical parts of the elevator, good lubrication, and small wear condition, the condition of the machine is good.
  • the load condition mainly refers to the condition of the elevator loader or the item, such as the frequent jumping of the personnel in the elevator or the arbitrary rolling of the article, the good condition of the load condition is low;
  • the position of the invention Information can be obtained according to the encoder, limiter measurement, etc.
  • the safety limit threshold of elevator operating parameters can be divided into fixed safety limit thresholds and safety limit thresholds of active parameters;
  • the threshold is usually the safety value of the elevator operating parameters to avoid damage to the device according to the electrical system and/or mechanical system design specifications of the elevator: such as the current safety value of the motor Io_ena, the voltage safety of the motor Value Uo_ena, electromagnetic torque safety value Te_ena, motor power safety value Po_ena (usually equal to motor rated power), safety value of power generation feedback braking power P4_ena, safety of power consumption braking power
  • the value P5_ena the rated load of the elevator m1_ena (also known as the rated load or rated load, etc., in kilograms/kg);
  • the safety limit threshold of the activity parameter usually refers to the permissible value of the mechanical operation parameter that can be adjusted according to the operating conditions of the elevator (such as the quality of the carried goods, the flow of energy to the working condition, etc.), such as the allowable value of the upstream speed V1_ena, The allowable value of the downlink speed V2_ena, the absolute value of the permissible value of the accelerating acceleration in the ascending acceleration aj1_ena, the absolute value of the permissible value of the accelerating acceleration at the deceleration ascending aj3_ena, the absolute value of the permissible value of the accelerating acceleration in the downward direction aj2_ena, and the permissible value of the acceleration in the decelerating downward
  • the absolute value of aj4_ena, etc.; the invention will accelerate the ascending, decelerating up, accelerating down, decelerating down and other states are called the fast change direction;
  • the safety value of the elevator operating parameters can be further subdivided into instantaneous working safety values, long-term continuous working safety values, and the like.
  • Eleator lift operation as used in the present invention is equivalent to “elevator operation” is equivalent to “operation”, which means that the elevator runs up and down in the vertical direction; “Elevator lift operation” defaults to the elevator brake system.
  • the brake release command (including rigid release, flexible release, etc.) has been issued, and other mechanical brake systems have issued a mechanical brake release command;
  • Eleator lift operation usually does not include the elevator door switch All “elevator non-lifting operation” time periods such as door movement, stop, brake, etc.; it is not convenient to monitor the operation of the elevator by collecting electric power parameters and calculations during “elevator non-lifting operation”.
  • the elevator lifting operation of the invention comprises two states of zero speed running and non-zero speed running;
  • the non-zero speed operation of the present invention includes a variable speed operation and a non-zero constant speed operation; wherein the variable speed operation includes an acceleration operation and a deceleration operation;
  • Eleator lift operation status or “Elevator non-lift operation” status can be identified and given by the central controller of the elevator; the motor drive operation status word or motor drive control command word can also be obtained to identify and judge the motor. "Forward or reverse or stop” status.
  • the invention provides a monitoring method for elevator lifting operation, and the “elevator running and running” may have a starting point and an ending point in time;
  • each "elevator lift operation” (that is, the running process) can be as long or as short as possible, from a few minutes to a few seconds;
  • the energy flow of the elevator to the working condition can also be called the operating condition of the elevator;
  • the energy flow of the elevator according to the present invention eliminates the shutdown state to the working condition.
  • the energy flow of the elevator to the working condition is a very important state parameter. Because the elevator structure is special (there is the existence of counterweight), even in the process of the elevator cargo moving up, the motor may be in a braking state; even if the elevator is loaded Downstream, the motor may be in an electric state;
  • the motor speed n1 and the elevator speed Vq are all agreed to be positive values; each electric power parameter ( The electric power, the electromagnetic torque Te, the torque current component iq, and the motor current Io) are all positive values; the mechanical driving force calculated according to the electrical energy is also a positive value, indicating that the motor is in a state of converting electrical energy into mechanical energy at this time;
  • the method for identifying the energy flow direction of the elevator provided by the present invention is as follows:
  • the identification method of the elevator running direction is as follows: the signal of the central controller can be read, or the control command or status information of the motor driver (such as the forward rotation, reverse rotation of the inverter), or (such as by rotating the encoder) ) Measuring the direction of the motor's speed, you can easily obtain the elevator running direction;
  • the current motor operating condition can be identified as: an electric state
  • the current motor operating condition can be identified as: motor braking state;
  • Some models of motor drives such as four-quadrant inverters, can also directly identify and judge the motor operating conditions by reading its internal status word;
  • the positive and negative of the source dynamic parameters of the non-electrical power parameter type can be measured (such as using a torque sensor to measure the dynamic parameters of the mechanical rotating parts), then according to the source dynamic parameters
  • the positive and negative can identify the operating condition of the motor; when the value of the source dynamic parameter is positive, it can be judged that the motor operating condition is the electric state, and when the value of the source dynamic parameter is negative, the motor operating condition can be judged as the motor braking. status;
  • the critical switching zone when the motor is in the critical switching zone of the electric state, it means that it is easy to enter the motor braking state;
  • the critical switching zone of the motor braking state when the motor is in the critical switching zone of the motor braking state, it means that it is easy to enter the electric state;
  • a critical state identification threshold Te_gate may be set, and when
  • the working condition is in the critical switching area;
  • the network system of the present invention includes, but is not limited to, various wired or wireless mobile 3G, 4G networks, the Internet, the Internet of Things, etc.; the network system may include a corresponding human-computer interaction interface, a storage system, and data processing. System, etc.; personnel or institutions related to elevator operation (such as operators, safety supervisors) can monitor elevator operation status in real time or afterwards through the network system.
  • Special statement 1 The method for obtaining the value of any elevator operation parameter and the method for identifying the energy flow direction of the elevator in all the embodiments provided by the present invention described later may be performed by the foregoing method, and of course, other reference may be made.
  • the prior art is performed; any setting conditions, operating conditions, thresholds, time, period, data assignment, etc. described in the present invention may be adjusted by the system, the operating environment, or the user as needed, not a single A fixed value. For example, when the main power grid is used for power supply and the backup power supply is used, the safety limit threshold of the electric power needs to be adjusted and switched.
  • the method corresponding to the technical problems of the present invention respectively corresponds to the system, that is, the essential principles of the technical solutions of the method items and the system items are the same, and the technical solutions can be applied to each other.
  • One of the technical problems to be solved by the present invention is to provide a new technical solution for obtaining the value of the elevator operating parameter, which can realize the acquisition of the value of the measuring object when any one of the elevator operating parameters is used as the measuring object.
  • the method for directly acquiring the object by using the sensor in the prior art can be avoided, and the obtaining method can be used as a basis for each of the other technical problems described below, so as to further analyze the operating safety condition of the elevator in a deeper analysis;
  • the acquisition object is also an estimation object;
  • the acquisition method in the present invention is also a measurement method;
  • a method for obtaining a value of an elevator operating parameter provided by the present invention, wherein a specific technical solution is: acquiring a value of an input parameter of the elevator, and calculating a measurement object of the elevator according to a value of the input parameter a joint operation value; the calculation is an elevator operation energy balance calculation, and the input parameter is a parameter required for calculating a joint operation value of the measurement object of the elevator, and the measurement object is an elevator quality, a source dynamic parameter, and a system operation parameter.
  • the elevator running energy balance is calculated to calculate another parameter according to data including at least two of the elevator mass, the source power parameter, and the system operating parameter.
  • the input parameter when the measurement object is the elevator quality, the input parameter includes at least the source dynamic parameter and the system operation parameter; when the measurement object is the source dynamic parameter, the input parameter includes at least the elevator quality and the system operation parameter; when the measurement object is When the system operates parameters, the input parameters include at least the elevator mass and source power parameters.
  • the obtaining method is performed when the elevator is ascending or descending; and/or: in the obtaining method, the elevator running energy balance calculation is associated with the elevator running direction.
  • the elevator running energy balance calculation is associated with the elevator running direction, that is, the algorithm for adjusting the elevator running energy balance calculation according to the elevator running direction, and ensuring the accuracy, effectiveness, and improvement of the parameter calculation for the elevator when operating at a non-zero speed Defects with well-known technical solutions are of key importance.
  • the elevator operating energy balance calculation satisfies any one or more of the following conditions 3A1, 3A2, 3A3, 3A4, 3A5, 3A6:
  • the parameters participating in the calculation of the energy balance calculation of the elevator include an efficiency coefficient;
  • the efficiency coefficient is adjusted according to the operating condition of the motor
  • the source power parameter included in the elevator operation energy balance calculation is electrical power
  • the setting of the electrical power is performed according to a motor operating condition
  • the parameters participating in the calculation of the energy balance calculation of the elevator include friction correlation data of the mechanical rotating parts.
  • the joint operation value of the measurement object can be used for:
  • the measured object is the quality of the carried item, determining whether the value of the measured object is greater than the rated load of the elevator to determine whether the elevator is overloaded; and/or,
  • the elevator operation is controlled according to a joint operation value of the measurement object;
  • the measured object is a source dynamic parameter
  • whether the joint operation value of the measured object is greater than a safety limit threshold of the source dynamic parameter to determine whether the source power parameter of the elevator is over-limit
  • the joint operation value is output and/or saved to analyze the elevator operation data to determine whether the elevator has failed or analyzes the cause of the failure. Further, when the measurement object is any one of the system inherent parameters, the joint operation value is outputted and/or saved; when the measurement object is any one of the elevator operation parameters except the system inherent parameter And obtaining a reference value of the measurement object, outputting and/or saving the joint operation value and the reference value, and/or outputting a difference between the joint operation value and the reference value and/or save.
  • the inherent parameters of the system are closely related to the power of the elevator or the wear/or aging/safety of the transmission components, and the operational data of the elevator can be analyzed to determine whether the elevator has failed or analyzed the cause of the failure.
  • the reference value and the joint operation value of the type parameter may fluctuate greatly, at this time, if only by its reference value or joint operation alone Value, it is impossible to judge whether the elevator is faulty or analyze the cause of the fault, so it is necessary to simultaneously output and/or save the reference value and the joint operation value; output and/or save and output the difference between the joint operation value and the reference value And/or the joint operation value of the saved measurement object has the same meaning as the reference value.
  • the frictional force f0 between the object and the car in the guide rail and/or the elevator shaft is the core information of the safe operation of the elevator, and is a technical point neglected by the prior art;
  • the frictional force f0 is taken as the calculation object.
  • the factor of the frictional force f0 is included in the calculation of the joint calculation value of other measurement objects (such as the quality of the carried goods of the elevator), and the value of the frictional force f0 is measured and monitored in real time while the elevator is running, which helps to prevent (occupant being A serious safety accident that causes death of a person between the car and the elevator shaft has important safety significance;
  • the electric motor when the motor is in the electric state, the electric motor absorbs electric energy and converts it into mechanical energy. At this time, the electric power must select the electric power of the electric system when the electric state is in the motor state; when the motor is in the motor braking state, the motor absorbs the mechanical energy conversion For electric energy, at this time, the electric power must select the power of the electric system when the motor is in braking state (such as power generation feedback braking power P4, or energy consumption braking power P5, etc.); the nature and magnitude of each electrical power are completely different;
  • the motor operating condition is used to set the type of the electric power. Under different working conditions, according to different types of electric power, corresponding power parameters participating in the calculation of the energy balance of the elevator operation are set, and the existing known technical solutions are optimized and the speed is improved. The safety and accuracy of control are of key importance;
  • the calculated parameters include friction correlation data of the mechanical rotating parts, which can improve the parameter calculation accuracy.
  • the present invention also provides an acquisition system for an elevator operating parameter, including:
  • An acquiring module configured to acquire a value of an input parameter of the elevator when the elevator is going up or down, and calculate a joint operation value of the measurement object of the elevator according to the value of the input parameter; the calculation is an energy balance of the elevator operation Calculating, the input parameter is a parameter required for calculating a joint operation value of the measurement object of the elevator, and the measurement object is any one of an elevator quality, a source power parameter, and a system operation parameter, and the elevator operation energy balance The calculation is to calculate another parameter based on data including at least two of the elevator mass, the source power parameter, and the system operating parameter.
  • the acquisition system described in the present invention is also a measurement system.
  • the elevator running energy balance calculation is associated with an elevator running direction.
  • the elevator operation energy balance calculation in the acquisition system satisfies any one or more of the following 4A1, 4A2, 4A3, 4A4, 4A5, 4A6:
  • the parameters participating in the calculation of the energy balance calculation of the elevator include an efficiency coefficient;
  • the efficiency coefficient is adjusted according to the operating condition of the motor
  • the parameters participating in the calculation of the energy balance calculation of the elevator include the frictional force between the object and the car in the guide rail and/or the elevator shaft;
  • the electrical power setting is performed according to a motor operating condition
  • the parameters participating in the calculation of the energy balance calculation of the elevator include friction correlation data of the mechanical rotating parts.
  • the implementation method and system for obtaining the value of the elevator operating parameter provided by the present invention are as follows:
  • the joint operation value of the present invention refers to a data type and/or data acquisition path, which means that the value is not obtained by actual measurement, but is calculated by other types of data, especially based on the energy balance calculation of the elevator operation.
  • Calculate the joint operation value of velocity and/or acceleration for example, by carrying a mass look-up table, or calculate the joint operation value of velocity and/or acceleration by the carrier mass and source dynamics parameter look-up table, or by carrying mass and source dynamic parameters
  • the elevator operation energy balance calculates a joint operation value of speed and/or acceleration; therefore, the joint operation value in the present invention is substantially calculated by using elevator operation parameters other than the measurement object, including table lookup calculation and elevator operation energy balance.
  • the calculated value according to the parameters including at least the system operating parameter and/or the source dynamic parameter is the joint operation value, when the measured object is the source dynamic parameter, according to The calculated value of the parameter including less elevator quality and/or system operation parameters is the joint operation value.
  • the calculated value is calculated according to the parameter including at least the elevator mass and/or the source dynamic parameter. That is the joint operation value.
  • the parameter participating in the energy balance calculation of the elevator operation includes a parameter having a subordinate meaning: the elevator operation energy balance calculation has an input parameter and an output parameter (ie, a joint operation value of the measurement object), and the input parameter and the output parameter. Together constitute the parameters involved in the energy balance calculation of the elevator operation. Therefore, including a certain parameter in the parameter participating in the energy balance calculation of the elevator operation means that the certain parameter can be either an input parameter or an output parameter.
  • the "elevator running energy balance calculation" of the present invention refers to calculating another parameter according to any two parameters of the elevator mass, the source dynamic parameter, and the system operating parameter;
  • the energy balance calculation is usually based on the energy balance of the elevator operation. It can be understood that in the following embodiments and formulas in the present invention, the formula related to the power balance and the correlation formula of the force balance are also essential to the energy. Balance is a rule calculation; because power can also be understood as energy per unit time, power balance is also the energy balance per unit time.
  • the elevator running energy balance calculation of the present invention includes, in addition to the combination of the elevator running characteristic and the energy conservation law, and Newton's law (Newton's first motion law, Newton's second motion law, and Newton's third motion law). Or a combination of multiple, that is, the energy balance calculation of the elevator operation is essentially a combination of the law of conservation of energy, the operating characteristics of the elevator, and Newton's law.
  • the so-called combination refers to the calculation of a, the law of conservation of energy and the operating characteristics of the elevator.
  • source dynamic parameters and system operating parameters to calculate another parameter or b, in accordance with the premise of energy conservation, adopt the elevator mass and source dynamic parameters through Newton's law and elevator running characteristics.
  • another parameter is calculated according to any two parameters of the elevator mass, the source dynamic parameter, and the system operating parameter
  • the parameters participating in the calculation may further include Other data, ie, elevator operating energy balance calculations, generally refers to calculating another parameter based on data including at least two of the elevator mass, the source dynamics parameter, and the system operating parameters.
  • the object to be calculated is the item mass m1 in the formulas 1-1 and 1-4 in the embodiment 1
  • the parameters participating in the calculation also include m0 in the elevator mass; in the formula 4-13 in the embodiment 4, the measurement object is the system operation.
  • the parameters involved in the calculation are also The frictional force f0 of the object and the car in the guide rail and/or the elevator shaft is included; when the measured object in the formula 5-1 in the embodiment 5 is the elevator speed in the system operation parameter, the parameters involved in the calculation also include g in the system operation parameter. , not listed here, specific reference can be made to the following embodiments.
  • the joint operation value of the elevator quality is calculated according to the source power parameter and the system operation parameter, and of course, the parameters required to participate in the calculation may further include other data such as other parameters in the elevator quality; That is, when the measurement object is the elevator quality, the joint operation value may be calculated according to data including at least the source power parameter and the system operation parameter.
  • the joint operation value of the source dynamic parameter is calculated according to the elevator quality and the system operation parameter, and of course, the parameter required to participate in the calculation may further include other data; that is, when the measurement object is
  • the source operational value may be calculated based on data including at least elevator mass and system operating parameters.
  • the joint operation value of the system operation parameter is calculated according to the elevator quality and the source dynamic parameter, and of course, the parameters required to participate in the calculation may further include other data, such as in addition to the measurement object.
  • Other system operating parameters that is, when the measured object is a system operating parameter, the joint operation value may be calculated according to data including at least the elevator mass (usually the total mass of the elevator) and the source power parameter;
  • the elevator quality includes the total mass of the elevator car, or the counterweight mass, or both the total mass of the elevator car and the weight of the counterweight.
  • the type setting of the parameters of the elevator quality is determined according to the signal value position of the source power parameter.
  • the elevator mass can select the total mass of the elevator car (which includes the quality of the empty car and the mass of the carried goods); when the signal value of the source dynamic parameter is the traction position
  • the wheel and its front end the traction sheave, or the transmission component between the traction sheave and the motor, or the motor, or the motor drive, or the power supply device, etc.
  • the elevator mass can select the total mass and the counterweight mass of the elevator car;
  • the signal value of the source power parameter is the wire rope on the opposite side, the elevator mass can select the counterweight quality;
  • the invention relates to "the elevator running energy balance calculation is associated with the elevator running direction", that is, “the algorithm for adjusting the elevator running energy balance calculation according to the elevator running direction”, which refers to a technical solution, the nature of the calculation applicable range It is not necessary to start the calculation in a certain running direction;
  • the value of the upward speed and/or the upward acceleration is calculated by using the safety limit threshold of the electric power parameter of the elevator and the current value of the carrying quality, and the value is generally used as the upper limit threshold of the operation when the elevator is ascending.
  • the value of the source power parameter calculated by the preset command value of the descending speed and/or the downlink acceleration and the current value of the carrier mass when the elevator is running at zero speed which is generally used to determine the source power parameter when the elevator is descending ( Such as the comprehensive tension of the wire rope) will exceed the limit;
  • the "elevator running energy balance calculation is associated with the elevator running direction” includes any one or two of the following running direction association 1 and the running direction association 2, and the association 1 and/or the running direction according to the running direction.
  • Correlation 2 deformation, derived association relationship set the calculation formula according to the association principle when the elevator goes up and the elevator goes down;
  • Running direction correlation 1 When the elevator is going up: the gravity component (m2*g) generated by the carrying mass m2 and the gravitational acceleration g is the energy absorption factor, and the gravity component (m3*g) generated by the counterweight mass m3 and the gravitational acceleration g is energy.
  • Running direction correlation 2 When the elevator goes up and the elevator goes down, the calculation formula of the gravity component generated by the elevator mass and the gravity acceleration g does not change, but the positive and negative polarities of the source dynamic parameters are switched when the elevator goes up and the elevator goes down;
  • Equation 3-1 the calculation formula 3-100 is used when the elevator is ascending:
  • the form of the calculation formula 3-100 is not changed, but the (T1/R1) is substantially switched to a negative value; for example, when the elevator is ascending, the T1 is forced to be positive, and when the elevator is descending, the T1 is forced to be negative. value.
  • the running direction association 1 is clearer and more concise than the running direction correlation 2; the running direction correlation 1 is more in line with the energy flow direction rule in the elevator operation; because the positive and negative of the source dynamic parameters reflect the motor operating conditions, compared with the use source The positive and negative of the dynamic parameters reflect the more scientific direction of the elevator; the direction of operation 3 is easy to make the calculation expression complicated and chaotic.
  • the method for calculating the efficiency coefficient according to the operating condition of the motor is simply referred to as "adjusting the efficiency coefficient according to the operating conditions of the motor", which includes the following motor operating conditions: 1.
  • Motor operating conditions Any one or more of the associations 2, and the associated relationship between the motor condition 1 and/or the motor operating condition 2 deformation and derivation;
  • Motor operating condition correlation 1 When the motor is in the electric state, the motor absorbs electric energy and converts it into mechanical energy. According to the principle of energy conservation, the electric power parameter is multiplied by an efficiency coefficient less than 1 (such as Kem1), or the electric power parameter and an efficiency. The loss value is subtracted;
  • Motor operating condition correlation 2 When the motor is in the motor braking state, the motor absorbs mechanical energy into electrical energy. According to the principle of energy conservation, the electrical power parameter is divided by an efficiency coefficient less than 1 (such as Kem2), or the electrical dynamic parameter and Adding an efficiency loss value;
  • the present invention “types the electrical power according to the operating conditions of the motor”, which is simply referred to as “the setting of the electrical power according to the operating conditions of the motor”, which includes the following motor operating conditions. Any one or more of the working condition associations 4, and the associated relationship between the motor operating condition association 3 and/or the motor operating condition correlation 4;
  • Motor operating condition correlation 3 When the motor is in the electric state, the motor absorbs electric energy and converts it into mechanical energy. At this time, the electric power is selected as the electric system power in the electric state (such as the electric state power of the power source, the motor driver, or the motor). );
  • Motor operating condition correlation 4 When the motor is in the motor braking state, the motor absorbs mechanical energy into electrical energy. At this time, the electrical power is selected as the power of the electrical system when the motor is in braking state (such as power generation feedback braking power P4, or energy consumption). Braking power P5, etc.);
  • the principle of the speed change of the elevator is as follows: When the acceleration is running, the speed component of the elevator mass and acceleration is the energy absorption factor; when the speed is running, the speed component of the elevator mass and acceleration is the energy release factor; when the speed is running, the acceleration At zero, the shifting force component produced by the elevator mass and acceleration is also zero.
  • the present invention calculates the elevator operation energy balance according to the elevator speed change condition", comprising performing the following speed change association 1 and/or speed change association 2 processing according to the speed change condition correlation principle;
  • Rapid change correlation 1 The parameters participating in the calculation of the energy balance calculation of the elevator include acceleration;
  • Speed change correlation 2 Identify the speed change condition of the elevator, and perform the elevator operation energy balance calculation or processing separately during the constant speed operation and the variable speed operation.
  • the identification of the speed change condition can be identified by the acceleration aj value: when the ag is 0 or less than a preset threshold when the elevator is running, the current speed change condition can be identified as non-zero constant speed operation; when aj is not 0 Or greater than a preset threshold, the current speed change condition can be identified as a variable speed operation; wherein the acceleration aj value can adopt various acquisition manners as described above (such as by an acceleration sensor, or a speed Vq, or a speed n1, etc.) It can also be obtained through the information of the motor driver (such as the existing inverter has a uniform flow overcurrent, acceleration overcurrent and other information, through which the speed change can be extracted); and an easier way to distinguish the speed according to the running time.
  • the change condition such as the acceleration running time of the motor driver (such as the inverter) is 2 seconds, the setting is the shift running time period within 3 seconds after the start, and the non-zero constant speed running time period after 3 seconds;
  • the parameter participating in the calculation of the energy balance calculation of the elevator includes acceleration, which is measured according to the acceleration sensor.
  • the acceleration measured by the acceleration sensor it has the advantages of fast response and high precision, and can be well applied to low speed operation, especially Zero speed operation, significantly improve the measurement accuracy of elevator operating parameters;
  • the elevator because the elevator is either up or down, it must start from zero speed and gradually accelerate to a constant speed. First, judge whether it is overloaded at zero speed or whether it should give up running/warning signal; then the target acceleration can be performed. / Scientific planning of target acceleration time and target speed; once the current car sensor weighing scheme in the car is abandoned due to cost problems, the accelerometer measurement acceleration is further combined with the elevator running energy balance calculation. It is of great significance for elevator overload/safe operation of elevators and efficiency improvement.
  • the total mass m2 of the elevator car is calculated, then m2 is the directly obtained joint operation value; and the mass of the carried item m1 or the empty car is calculated according to the total mass m2 of the elevator car.
  • Mass m0, then m1 or m0 are indirectly obtained joint operation values;
  • the joint operation value of the present invention is a value obtained by a joint operation for any one parameter (such as m2/ or m1/ or m0), and the value is relatively complete for the measurement object, and the parameter is not divided or culled. Actual value; obviously, the actual value in the present invention is usually a natural and true value of an attribute of an object;
  • the joint operation value of the quality of the carried goods can be represented by m1, and the reference value can be expressed by m1_org; for example, the joint operation value of the total mass of the elevator car can be represented by m2, and the reference value can be represented by m2_org; special note 1: for convenience of description and industry
  • the joint operation value or the non-joint operation value can be directly represented by the parameter name m1 or m2; when the measurement object is the source dynamic parameter or the system operation parameter, the joint operation value
  • the expression may be followed by a suffix after the parameter name: _cal; for the parameter name aj of the acceleration, the joint operation value is represented by aj_cal; for the parameter name V1 of the uplink speed, the joint operation value is represented by V1_cal; for example, the comprehensive pull of the Q point wire rope
  • the parameter name is F1, and the joint operation value is represented by F1_cal or ⁇ 1_cal; all the data with
  • Embodiment 1 This embodiment includes the following steps 1A1, 1A2:
  • Embodiment 1 of Embodiment 1 With reference to Embodiment 1, the joint operation value F1_cal of the comprehensive tensile force of the Q-point wire rope on the car can be measured, and the calculation formula is:
  • Embodiment 2 of Embodiment 1 Referring to Embodiment 1, the joint operation value aj_cal of the acceleration can be measured, and the calculation formula is:
  • Embodiment 2 This embodiment includes the following steps 2A1, 2A2:
  • Embodiment 3 This embodiment includes the following steps 3A1, 3A2:
  • 3A1-3-1 Output a status information of "elevator shifting"
  • 3A1-3-2 According to different combinations of speed changes of the elevator and energy flow conditions, the following 3A1-3-2-1, 3A1-3-2-2, 3A1-3-2-3, Any one or more of the calculation processes of 3A1-3-2-4;
  • Equation 3-3 When accelerating the uplink, Equation 3-3 is calculated as follows:
  • Equation 3-5 When accelerating the downside, calculate Equation 3-5 as follows:
  • any one of the formulas of Embodiment 3 except for the mass of the carried item m1 may be used as a measurement object (for example, m0, m3, T1, etc.)
  • Extended Embodiment 1 of Embodiment 3 In any one or more of Embodiment 3 and its alternative embodiments, the frictional force f0 and/or mechanical rotation of the object and the car in the guide rail and/or the elevator shaft may be added.
  • Piece friction data (such as friction fr);
  • Equation 3-1 For example, extend Equation 3-1 to Equation 3-8 below:
  • the friction-related data of the mechanical rotating member is any one or more of frictional force, friction coefficient and friction torque;
  • the frictional force fr of the mechanical rotating component mainly includes frictional resistance on the traction sheave and the guide wheel, and the root source thereof is Frictional resistance formed by the gravity of the car, the carrying object, and the counterweight; fr ⁇ (m1+m0+m3)*g* ⁇ 1, before m1 is not accurately measured, fr ⁇ (m1_ena/2+m0+m3)* G* ⁇ 1;
  • ⁇ 1 is the rolling friction coefficient of the traction sheave and the guide wheel; under normal circumstances, the value of the frictional force f0 between the object and the car in the guide rail and/or the elevator shaft is usually small and negligible; the friction of the rotating member
  • the force fr is the actual parameter, of course, because its value is compared to the total gravity of the car. ((m1+m0)*g), the weight of the counterweight (m3*g) is low or negligible; the description
  • Embodiment 4 This embodiment includes the following steps 4A1, 4A2:
  • 4A1-5-2 According to different combinations of speed changes of the elevator and energy flow conditions, the following 4A1-5-2-1, 4A1-5-2-2, 4A1-5-2-3, Any one or more of the calculation processes of 4A1-5-2-4, 4A1-5-2-5, 4A1-5-2-6, 4A1-5-2-7, 4A1-5-2-8;
  • M1 ((Kem1*Te)*im/R1-(m0*g-m3*g))/g, (Formula 4-1 variant 1)
  • Extended Embodiment 1 of Embodiment 4 In any one or more of Embodiment 4 and any alternative (or extended) embodiments, the friction between the object and the car in the guide rail and/or the elevator shaft may be added. F0 and/or the frictional force fr of the rotating member; for example, when non-zero constant speed operation + electric up, formula 4-1 is extended to the following formula 4-13:
  • Extended Embodiment 2 of Embodiment 4 In any one or more of Embodiment 4 and any other alternative (or extended) embodiments, the moment of inertia L0 and internal of the internal integrated rotating rigid body of the traction machine are added. Integrating the angular acceleration ⁇ of the rotating rigid body; for example, when accelerating operation + electric upward, formula 4-5 is extended to the following formula 4-14;
  • the electromagnetic torque Te in Embodiment 4 and any other alternative (or extended) embodiment may be (Io*cos ⁇ 1*Ko) or (k21*I2o*cos ⁇ 2*Ko) or (k31) *I3o*cos ⁇ 3*Ko) or (iq*Ki) or (P(w)*9.55/n1) any expression substitution;
  • the motorized up-time expression ((Kem1*Te)*im/R1) can be replaced by either (Kem1*Po/V1) or (k21*Kem1*P2i/V1) or (k21*Kem1*P3o/V1) expressions;
  • the motor brake upstream expression (Te/Kem2)*im/R1) can be replaced by any expression ((P4/(K14*Kem2))/V1) or ((P5/Kem2)/V1);
  • the motorized downtime expression ((Kem1*Te)*im/R1) can be replaced by either (Kem1*Po/V2) or (k21*Kem1*P2i/V2) or (k21*Kem1*P3o/V2) expressions;
  • the expression of the motor brake down (Te/Kem2)*im/R1) can be replaced by any expression ((P4/(K14*Kem2))/V2) or ((P5/Kem2)/V2);
  • any one of the formulas of any of the alternatives (or extensions) of Embodiment 4 and any other alternative (or extended) embodiment may be used as a measurement object (eg, Choose Kem1, m0, m3, Te, etc.), obtain the value of the parameter required to calculate the joint operation value of the measurement object according to the formula, and calculate the joint operation value of the measurement object; as shown in the following examples 1, 2, and 3;
  • Te_cal ((m1+m0)*g-m3*g)*R1/( Kem1*im), (Formula 4-15),;
  • Kem1_cal ((m1+m0)*g-m3*g)*R1/( Te*im), (Equation 4-16);
  • Example 3 When non-zero constant speed operation + electric uplink, the joint operation value of f0 is measured by the deformation formula 4-17 of formula 4-13:
  • F0_cal (Kem1*Te)*im/R1-((m1+m0)*g-m3*g+fr), (Equation 4-17);
  • Aj_cal ((Kem1*Te)*im/R1-(m1+m0-m3)*g)/(m1+m0+m3), (Equation 4-18);
  • Aj_cal ((Te/Kem2)*im/R1-(m1+m0-m3)*g)/(m1+m0+m3), (Equation 4-19)
  • Wind resistance fw may be added in any one or more of Embodiment 4 and any other alternative (or extended) embodiments; the higher the elevator speed, the higher the wind resistance fw may increase the calculation Accuracy.
  • formula 4-1 is extended to the following formula 4-22-1;
  • Embodiment 5 This embodiment includes the following steps 5A1, 5A2:
  • V1_cal Kem1*Po/((m1+m0)*g-m3*g), (Equation 5-1);
  • V2_cal Kem1*Po/(m3*g-(m1+m0)*g), (Equation 5-2);
  • V1_cal (P4/(K14*Kem2))/((m1+m0)*g-m3*g), (Equation 5-3-1);
  • V1_cal (P5/Kem2)/((m1+m0)*g-m3*g), (Formula 5-3-2);
  • V2_cal (P4/(K14*Kem2))/(m3*g-(m1+m0)*g), (Equation 5-4-1);
  • V2_cal (P5/Kem2)/(m3*g-(m1+m0)*g), (Formula 5-4-2);
  • the table lookup calculation if the elevator quality, the source dynamic parameter, and the system operation parameter are preset, the table can be checked when any two parameters are input. The value of another parameter is obtained; for example, obtaining the source dynamic parameter of the elevator and the value of the system operation parameter; calculating the joint operation value of the elevator quality according to the value of the source dynamic parameter and the system operation parameter; because different elevator structures and machines
  • the capacity of the table is limited and the hardware device cost, and all the parameters in the table need to be preset or learned to run; The larger the table size/parameter setting, the higher the hardware cost and the higher the parameter setting/learning cost;
  • One is calculated by a model (also called a mathematical formula); the foregoing embodiments 1, 2, 3, and 4 of the present invention all calculate a joint operation value by a model; if an energy balance model is operated by an elevator, a mathematical calculation method is used.
  • a model also called a mathematical formula
  • the foregoing embodiments 1, 2, 3, and 4 of the present invention all calculate a joint operation value by a model; if an energy balance model is operated by an elevator, a mathematical calculation method is used.
  • To obtain the joint operation value of the measurement object it is only necessary to set the model rule and/or the mathematical operation rule in advance, and adjust the relevant parameter value. Compared with the table lookup calculation, the acquisition cost of the joint operation value can be greatly reduced/or Improve the joint operation value acquisition accuracy / energy transfer abnormality monitoring judgment sensitivity.
  • the invention provides a method and system for obtaining the value of the operating parameters of the elevator:
  • Low-cost motor drive weighing/overload monitoring makes it easy for elevator passengers or supervisors to visually and quickly identify whether the elevator is running normally; it is easy to construct an intelligent monitoring system that can automatically monitor the elevator's energy transfer anomaly, so that it is easy to find the elevator running up and down.
  • Friction between the object and the car in the middle rail and/or the elevator shaft facilitates the current value according to the quality of the load
  • the safety limit threshold of the source dynamic parameters calculate the permissible value of the mechanical operating parameters, which is convenient for more efficient and energy-saving control; it is convenient to calculate the predicted value based on the current value of the carrying quality and the mechanical operating parameters - (not yet) Whether the power parameters will exceed the limit is of great significance for the safe operation of the elevator.
  • the acquisition method and system when used for predicting the calculation of mechanical operating parameters or source dynamic parameters, can usually be calculated before the elevator runs; when used for weighing/overload monitoring or energy transmission abnormal monitoring, usually in the elevator Real-time work when lifting and running;
  • the second technical problem to be solved by the present invention is to provide a new monitoring technology scheme for elevator operation; in order to realize the safety status of the elevator operation (including the elevator guide rail and/or the elevator shaft before the elevator operating parameter does not exceed the safety limit threshold) Monitoring of the running resistance of the medium object and the car.
  • the present invention provides a monitoring method (#1) for an elevator when it is running up and down.
  • the monitoring method includes the steps of: acquiring a joint operation value of the measurement object of the elevator, and identifying the elevator according to the joint operation value.
  • the identifying the energy transfer status of the elevator according to the joint operation value is specifically: according to the joint operation value and The reference data of the measurement object determines whether the energy transfer condition of the elevator is abnormal.
  • any one or more of the following 7B1 and 7B2 may be processed;
  • the joint calculation value is calculated based on the elevator operation energy balance; and the monitoring method satisfies any one of the following 8A11 and 8A12. Or a variety of conditions:
  • the elevator running energy balance calculation is associated with the elevator running direction
  • the joint operation value and the reference data are only derived from a parameter acquisition system, that is, the joint operation value and the reference data are based on energy balance of the elevator operation. Calculated.
  • the monitoring method (#1) is a continuation based on the inventive idea of the method for calculating the operating parameters of the elevator described above, and the continuation is for monitoring the safety of the elevator operation;
  • the joint operation value of the measured object such as the mass of the carried item m1;
  • Obtaining the joint operation value of the measurement object may be implemented by multiple acquisition methods; for example, reading the joint operation value outputted by other systems; for example, measuring the joint operation value of the elevator by the monitoring system itself; or partially reading the current There are equipment output data, some are self-measurement data, etc.;
  • Obtaining the joint operation value of the measurement object of the elevator can be specifically referred to the following various embodiments (such as Embodiment 1, Embodiment 2, Embodiment 3, Embodiment 4, Embodiment 5, etc.):
  • the reference data of the present invention that is, the reference data of the measurement object, that is, the data for energy transfer condition recognition, that is, the energy transfer condition identification data, is used for performing the energy transfer abnormality judgment in conjunction with the joint operation value. /Compared data or values, because a single data does not constitute a complete comparison/judgment operation.
  • the reference data includes any one or more of a reference value, a license deviation value, and a first reference value; the reference value used in the present invention is also a reference value for energy transfer condition identification, that is, an energy transfer condition identification reference value.
  • the permission deviation value in the present invention is also the deviation value for the energy transmission condition identification, that is, the energy transmission condition identification deviation value;
  • the reference value which must consider a practical technical means or implementation scheme, the value of which is naturally constrained to a specific value time and/or value mode;
  • the specific setting scheme of the reference data such as the source of the data or the selection of the value path, the setting method, the value time, etc.
  • the related embodiments Examples 1-10
  • the reference value of the present invention is a value subordinate to the type of the measurement object and/or the actual value setting mode, and is a concept of amplitude (ie, size), which is an intermediate layer data;
  • the reference value of the present invention is usually The actual value of the elevator's measured object when the joint operation value is close to or equal to the value; generally speaking, the majority of the situation here, most of the time, the range of the reference value can be applied to most types of The measurement object, such as the source dynamic parameter and the mechanical operation parameter; as shown in Embodiments 7 and 9, when the reference value is set according to the measured value within the same time range when the value is calculated from the joint operation value, the reference is used.
  • the value (that is, the measured value) is usually a value that is close to or equal to the actual value of the measured object of the elevator when the joint operation value is taken;
  • the reference value when the setting method of the reference value is set according to the joint operation value acquired when the setting condition is satisfied, the reference value is also naturally set to satisfy the "(specific)"
  • the value of the joint operation value when the condition is set is close or equal; since "(a specific one satisfies the set condition)" is the time specified by the user or the system (used to set the reference data), usually by default
  • the reference value (that is, the joint operation value) is usually a value close to or equal to the actual value of the measurement object when "(a certain) meets the set condition; such reference value
  • the setting method is usually applicable when the measurement object is the elevator quality (m0, m1, m2, m3) or the system inherent parameters; when the measurement object is the elevator quality, because the same "elevator is controlled by the power unit”
  • the value of the elevator mass in the time period usually does not change much, so the value of the reference value may still be close to the actual value of the joint calculation value of the estimated object of the elevator (a
  • the reference value when the reference value is set according to the system default value, the reference value (that is, the system default value) is usually in the system default (usually the standard state) with the measurement object.
  • the values of the actual values that are equal or close to each other are usually the calibration values; the setting of such reference values is usually applied when the measurement object is the inherent parameter of the system or the elevator mass (m0, m3) with a fixed amplitude.
  • the energy transfer condition abnormality of the present invention may be simply referred to as energy transfer abnormality, and the energy transfer abnormality of the present invention includes any one or more of the following A1-1 and A1-3:
  • the joint operation value exceeds a first reference value of the measurement object
  • the license deviation value includes any one or more of an upper limit deviation value and a lower limit deviation value;
  • the upper limit deviation value is an upper limit deviation value for identifying an energy transfer condition, that is, an energy transfer condition identifying an upper limit deviation value;
  • the lower limit deviation value is a lower limit deviation value for identifying the energy transfer condition, that is, the energy transfer condition identifies the lower limit deviation value;
  • the first reference value includes any one or more of the first reference value upper limit value and the first reference value lower limit value; the excess of the present invention includes greater than a certain upper limit value, less than a certain lower limit value, and the like. Any one or more of the conditions;
  • A1-1 includes any one or two of the following A1-1-1 and A1-1-2;
  • A1-1-1 The difference between the joint operation value and the reference value is greater than the upper limit deviation value
  • A1-3 includes any one or two of the following A1-3-1, A1-3-2;
  • the joint operation value is greater than a first reference value upper limit value
  • the joint operation value is less than a first reference value lower limit value
  • the first reference value the reference value+the permission deviation value
  • the permission deviation value has at least one of an upper limit deviation value or a lower limit deviation value
  • the first reference value corresponds to the first reference value upper limit value and the first reference value
  • the first reference value upper limit value is a reference value plus a positive value
  • the first reference value lower limit value is a reference value plus a negative value or a positive value.
  • the permission deviation value has an upper limit deviation value and does not have a lower limit deviation value: whether the energy transfer condition of the elevator is abnormal according to whether the joint operation value is greater than the first reference value, and when the joint operation value is greater than the first reference value, the energy transfer is performed. The situation is abnormal, otherwise no abnormality occurs;
  • the permission deviation value has a lower limit deviation value and does not have an upper limit deviation value: whether the energy transfer condition of the elevator is abnormal according to whether the joint operation value is smaller than the first reference value, and when the joint operation value is smaller than the first reference value, the energy is indicated The delivery status is abnormal, otherwise no abnormality occurs;
  • the first reference value upper limit value reference value+upper limit deviation value
  • the first reference value lower limit value reference value+lower limit deviation value
  • the first reference value reference value x scale factor
  • the license deviation value is as small as possible to improve the sensitivity of monitoring, but it must maintain a certain number of values to reduce the false trigger rate of monitoring; because the value of the license deviation value is small, according to the first reference value set by it.
  • the limit value can be far lower than the safety limit threshold of the measurement object; therefore, the monitoring method (#1) provided by the present invention can break through the limitation of the prior art that the safety operation is not convenient when the elevator operation parameter does not exceed the safety limit threshold.
  • the core step 3 of the monitoring method (#1) Perform any one or more of the following 8B1 and 8B2 treatments; the abnormal energy transmission in the elevator operation may lead to serious safety accidents, and need to respond in time; if not timely Respond to/or initiate related security actions; this monitoring will have no practical significance.
  • the information about the energy transfer status of the present invention includes a determination result of determining whether the energy transfer condition of the elevator is abnormal; and the value of the energy transfer condition correlation factor of the elevator may also be included, as well as the value of the external control system requirement, and may also include a joint operation value, a reference value, a license deviation value, a difference between the joint operation value and the reference value, and any one or more data of the first reference value
  • the output of the present invention includes a human-machine interface, a network system, a connection port, an external control system, etc. for outputting data to the car and/or the monitoring center; in particular, the monitoring method/system provided by the present invention ( #1), independent of the elevator control/drive system, it is more necessary to output data to an external control/drive system to process abnormal information in time;
  • the human-computer interaction interface includes a display, a voice system, an indicator light, etc.
  • the connection port can be used by an external human-machine interface, the network system to read data directly or by communication, so that relevant personnel (such as elevator passengers and/or elevator service personnel) or institutions (such as building services, remote network supervision centers) ) can directly or indirectly view the listening and monitoring data.
  • the preservation of the present invention includes storing the data in a storage system, a network system, an external control system, and the like in the monitoring system; so that the personnel or institutions (such as occupants and supervision centers) associated with the elevator operation can arbitrarily retrieve and monitor the data;
  • the storage module includes a U disk, a hard disk, etc.; it can form a black box function similar to an airplane, which is convenient for post-mortem analysis.
  • the energy transmission abnormality processing mechanism of the present invention includes, but is not limited to, a voice prompt alarm, an audible and visual alarm, a selective execution of a protection action according to an elevator current operating condition, an activation energy transmission failure monitoring mechanism, and an alarm information output to the car.
  • Human-computer interaction interface, man-machine interface of the hall door, network system, connection port, etc.; emergency stop, immediate reverse operation, set distance, etc.; machine system and manual can be arbitrarily combined to set various processing actions; energy transfer exception handling
  • the mechanism can also be referred to as a security processing mechanism.
  • the alarm information of the present invention may include, but is not limited to, time, location, cause of the alarm, value of any one or more elevator operating parameters during the alarm, and the like;
  • the selective execution of the protection action according to the current operating conditions of the elevator refers to checking the current operating conditions of the elevator and then performing related actions; and may include but not limited to the following solutions:
  • Case 1 Check whether the reference data is set correctly; if the reference data is not set correctly or is not set, the related alarm information is masked and no protection action is performed;
  • Case 2 Check whether the value of each input parameter in the calculation of the joint operation value is within the preset time range; if the preset time range is exceeded, such as 1 millisecond, the related alarm information is masked and output is not executed. Protection action
  • the reference data of the present invention needs to consider two aspects; one is the data property of the reference data (including the data type/path of data acquisition); the other is the value of the reference data or the set time;
  • the data type of the reference data of the present invention and/or the method for obtaining the data may include the measured value, the command response value, the estimated value, the learned value of the current running, the system preset value, the manual input value, and the like; wherein the system The preset value can be divided into historical record values, system default values, and the like;
  • the value of the elevator running parameter according to the present invention can be divided into a current value and a preset value according to time;
  • the current value refers to the current actual value of the elevator running parameter, and may include the current measured value, the current joint operation value, and the current value.
  • Command response value, etc. preset values of mechanical operation parameters include system preset values, manual input values, command preset values, etc.;
  • the preset values of the source power parameters include system preset values, manual input values, and the like;
  • the current value of the carrying quality including the current joint operation value, the current measured value (measured by the load cell), etc.;
  • the preset value of the carrying quality including the system preset value, manual input value, etc.;
  • the command value is divided into a preset value and a command response value;
  • the preset value is a software control command for the elevator uplink speed and the downlink speed and the acceleration in each speed change direction, and the command preset value is usually generated by software for controlling the speed of the elevator.
  • And/or acceleration that is, as the target value of the elevator upstream speed and/or the down speed and/or the acceleration of each speed change direction for controlling the operation of the elevator; in general, if there is no limit, the command value is divided into preset values.
  • the elevator usually needs an acceleration process to reach the target speed;
  • the command response value refers to the value that the elevator can actually respond/execute after receiving the preset value of the command. Compared with the preset value of the command, the meaning tends to the target value, and the meaning of the command response value tends to the process value; if the acceleration running time of the elevator's frequency converter is set to 4 seconds, the inverter will issue 2m/ at zero speed. After 2 seconds of the speed command of s, the actual speed of the elevator is about 1 m/s (not 2 m/s);
  • the estimated value refers to the numerical value calculated according to the computer or network system, which can simulate/simulate the elevator operation
  • the learning value of the current running is generally a value set in the current running flow, based on the joint operation value obtained by calculating the elevator running energy balance performed when the set condition is satisfied;
  • the historical record value refers to the value of the learned record that has been experienced in the elevator's past lifting operation; if the learned operation value of the learned record is the historical record original value, if the learned record's reference value is the historical record reference value, such as The actual value of the learned record is the actual value of the history;
  • the system default value also known as the original value, the factory value; is the simplest data setting method, each parameter can set the system default value when the elevator leaves the factory;
  • the manual input value refers to the value set by the elevator controller according to the actual situation
  • the reference data includes various setting manners and times according to different measurement objects:
  • the measured object is the mass of the carrying item whose amplitude may vary greatly
  • the value is usually unchanged during the running of the elevator; the preferred method is obtained by calculating the energy balance of the elevator running according to the set condition. Combining the operational values to set the reference data; as shown in subsequent embodiment 6 and its alternative and/or extended embodiments;
  • the measurement object is the inherent parameter of the system (such as rolling friction resistance coefficient, efficiency coefficient)
  • this kind of parameter is not convenient for actual measurement in elevator operation, but the amplitude of this type of parameter is relatively stable during normal operation of the elevator; according to the default value of the system
  • the reference data is the simplest method, and the reference data can also be set according to the joint operation value obtained by calculating the elevator operation energy balance performed when the set condition is satisfied; the set time of the reference data can be used in the elevator. Before the operation, it may be the beginning of the current operation; as shown in subsequent embodiments 7, 8 and their alternative and/or extended embodiments;
  • the preferred method sets the reference data according to the measured value; and the time value of the reference data is combined with the reference
  • the value of the operation value is within a preset time range (ie, synchronization); as shown in subsequent embodiment 9 and its alternative and/or extended embodiments; the measured value is more capable than other command values and estimated values.
  • the subsequent energy transfer abnormality judgment/execution is performed after the reference data has been set, which simplifies the system; of course, it also allows direct execution of the energy transfer abnormality judgment, and checks the reference data (or the reference in the subsequent energy transfer abnormality processing mechanism). Value) Whether the setting is completed/or the setting is correct. If the reference data (or reference value) is not set correctly, the current monitoring warning signal/and action is blocked.
  • the joint operation value, the reference data, and the like of the measurement object of the present invention refer to the amplitude (ie, the size) of the parameter, without limiting the description and/or additional description; of course, the measurement object itself may also be Time parameters, such as acceleration response time, deceleration response time, parameter change rate, etc.; for example, the measurement object can be either speed, rate of change of speed (ie, acceleration), or rate of change of acceleration (ie, jerk).
  • Embodiment 6 (This embodiment is a preferred embodiment of the monitoring method (#1) provided by the present invention)
  • the monitoring method (#1) includes steps A, B, and C;
  • Step A This step includes step A1, step A2, and step A3;
  • Step A1 Referring to the method of the foregoing Embodiment 4, taking the quality of the carried item of the elevator as a measurement object, obtaining the joint operation value m1;
  • Step A2 When the reference data has been set, step A3 can be directly executed; when the reference data is not set, the following steps must be performed to set the reference data: the joint operation value of m1 is obtained when the elevator runs at zero speed for 1.0 second.
  • the set value m1_org is set; the upper limit deviation value m1_def_u and the lower limit deviation value -m1_def_d are set according to the historical record value calculated based on the elevator operation energy balance; and the upper limit value m1_ref1_u of the first reference value may be further set, the first reference
  • the lower limit value of the value m1_ref1_d; m1_def_u and m1_def_d are both positive values, m1_def_u and m1_def_d are equal or inequitable; and a state information of "reference data has been set" is set; the first value is set according to the reference value and the permission deviation value.
  • the formula for the reference value
  • Step A3 When the reference data has been set, perform any one or more of the following four energy transfer condition determination conditions: judgment condition 1: ((m1-m1_org)>m1_def_u); judgment condition 2: ((m1- M1_org) ⁇ (-m1_def_d)); judgment condition 3: (m1>m1_ref1_u); judgment condition 4: (m1 ⁇ m1_ref1_d);
  • step C is directly executed; when Te is less than the preset threshold 1 (such as a rated value of 5%), it can be determined that the elevator is in an unsteady driving state;
  • step B1, B2, B3, and B4 are performed in parallel, and then step C is performed;
  • step A If any of the four energy transfer condition determination conditions in step A is YES, the energy transfer abnormality processing mechanism (such as voice alarm, light alarm, start energy transfer fault monitoring mechanism, etc.) is activated;
  • the energy transfer abnormality processing mechanism such as voice alarm, light alarm, start energy transfer fault monitoring mechanism, etc.
  • Step C Perform step A and step B1 in real time in a cycle of 0.1 milliseconds; steps B2, B3, and B4 are executed in a cycle of 1 second; of course, the specific time of each cycle in this step may be based on the actual situation of each elevator or User requirements are arbitrarily adjusted.
  • Embodiment 1 of Embodiment 6 In the step A1 of Embodiment 6, the joint operation value of the carried item mass m1 of the elevator is obtained by referring to the method of the foregoing Embodiment 4; reference may also be made to Embodiments 1, 2, 3, and 5. A method of any of the other embodiments (including various alternative or extended embodiments) obtaining a joint operational value of the carried item mass m1 of the elevator;
  • Embodiment 6 refers to the method of the foregoing Embodiment 4 to measure the joint operation value of m1 in the parameter acquisition system built in the monitoring system; and can directly read the external device (such as the elevator central controller, etc.) The result of the joint operation value m1 is input instead of step A1;
  • step A2 of Embodiment 6 when the elevator runs at zero speed for 1.0 second, the joint operation value of m1 is obtained and set as the reference value m1_org; in the alternative, the following A, B can also be used. , C, D any one scheme to replace the setting conditions of the reference data:
  • a “confirmation” signal may be manually input; the signal may also be combined with the “closed door” signal in the elevator car; Is at When the motor drive is used for weighing, the passenger input door closing command first confirms that the current weighing is correct (that is, the motor drive, the motor, the traction sheave, and the wire rope suspension system work normally), and the motor starts up and down; then the operation is also in progress.
  • the current weighing that is, the motor drive, the motor, the traction sheave, and the wire rope suspension system work normally
  • Embodiment 5 of Embodiment 6 The upper limit deviation value m1_def_u and the lower limit deviation value -m1_def_d are preset in step A2 according to a fuzzy algorithm (such as automatically selecting the most recent runtime reference data).
  • a fuzzy algorithm such as automatically selecting the most recent runtime reference data.
  • the reference value m2_org of the total mass of the elevator car, the upper limit deviation value m2_def_u, and the lower limit deviation value -m2_def_d are set;
  • judgment condition 1 ((m2-m2_org)>m2_def_u); judgment condition 2: ((m2-m2_org) ⁇ (-m2_def_d)); judgment condition 3: (m2>m2_ref1_u); judgment condition 4: (m2 ⁇ m2_ref1_d);
  • step B method of the sixth embodiment the processing after the energy transfer condition determination is performed.
  • Extended Embodiment 2 of Embodiment 6 In the alternative embodiment 1 of Embodiment 6, or Embodiment 6, obtaining the absolute value of the reference value of the source dynamic parameter (Te or F1) in the energy transfer condition correlation factor of the elevator, when
  • Extended Embodiment 3 of Embodiment 6 setting the critical switching region of the motor to an unsteady driving state; when
  • Extended Embodiment 4 of Embodiment 6 When the result of any one or more of the four energy transfer condition determination conditions is YES in step A3, the time period corresponding to the value of the joint operation value m1 is acquired within the same preset time range
  • the operating environment information of the elevator when it is judged that the elevator operating environment is normal according to the obtained operating environment information, generates information that the energy transmission fault flag is valid, triggers the energy transmission fault processing mechanism to perform relevant monitoring and protection; when determining that the elevator operating environment is abnormal, then Still only triggering the energy transfer exception handling mechanism;
  • Embodiment 7 (This embodiment is a preferred embodiment of the monitoring method (#1) provided by the present invention)
  • the monitoring method (#1) includes steps A, B, and C;
  • Step A This step includes step A1, step A2, and step A3;
  • Step A1 Referring to the method of Example 3 in the foregoing Embodiment 2 or Embodiment 3 of Embodiment 4, the frictional force of the object and the car in the elevator guide rail and/or the elevator shaft is taken as a calculation object, and the joint operation value is obtained. F0_cal;
  • Step A3 When the reference data has been set, perform one or more of the following four energy transfer condition determination conditions: judgment condition 1: ((f0_cal-f0_org)>f0_def_u); judgment condition 2: ((f0_cal- F0_org) ⁇ (-f0_def_d)); judgment condition 3: (f0_cal>f0_ref1_u); judgment condition 4: (f0_cal ⁇ f0_ref1_d);
  • Step B Parallel execution of the following steps B1, B2, B3, and B4, and then performing step C;
  • step A If any of the four energy transfer condition determination conditions in step A is YES, the energy transfer abnormality processing mechanism (such as voice alarm, light alarm, start energy transfer fault monitoring mechanism, etc.) is activated;
  • the energy transfer abnormality processing mechanism such as voice alarm, light alarm, start energy transfer fault monitoring mechanism, etc.
  • Step C Step A and step B1 are performed in real time in a cycle of 0.2 milliseconds; steps B2, B3, and B4 are cyclically executed in a cycle of 0.5 seconds.
  • the monitoring method (#1) includes steps A, B, and C;
  • Step A This step includes step A1, step A2, and step A3;
  • Step A1 Referring to the method of Example 2 (Formula 4-16) in the alternative embodiment 3 of the foregoing Embodiment 4, the integrated efficiency coefficient of the electromechanical transmission in the electric state is taken as the measurement object, and the joint operation value Kem1_cal is obtained;
  • Step A3 When the reference data has been set, perform any one or more of the following four energy transfer condition determination conditions: judgment condition 1: ((Kem1_cal-Kem1_org)>Kem1_def_u); judgment condition 2: ((Kem1_cal- Kem1_org) ⁇ (-Kem1_def_d)); judgment condition 3: (Kem1_cal>Kem1_ref1_u); judgment condition 4: (Kem1_cal ⁇ Kem1_ref1_d);
  • Step B Parallel execution of the following steps B1, B2, B3, and B4, and then performing step C;
  • step A If any of the four energy transfer condition determination conditions in step A is YES, the energy transfer abnormality processing mechanism (such as voice alarm, light alarm, start energy transfer fault monitoring mechanism, etc.) is activated;
  • the energy transfer abnormality processing mechanism such as voice alarm, light alarm, start energy transfer fault monitoring mechanism, etc.
  • Step C Step A and step B1 are performed in real time in a cycle of 0.3 milliseconds; steps B2, B3, and B4 are cyclically executed in a cycle of 2 seconds.
  • Embodiment 1 of Embodiment 8 the efficiency coefficient of the electromechanical transmission integrated in the electric state is taken as the measurement object, and the foregoing embodiments 1, 2, 3, 4, 5 and various alternatives (or extensions) may also be used. Any one of the other system intrinsic parameters in the embodiment is used as a measurement object, and the joint operation value is calculated.
  • the reference value and the permission deviation value of the measurement object are set in the manner of step A2 in Embodiment 8, and the steps in the embodiment 8 are referred to. A2.
  • the method of step B performs abnormal monitoring of the energy transfer condition of the elevator.
  • the monitoring method (#1) includes steps A, B, and C;
  • Step A This step includes step A1, step A2, and step A3;
  • Step A1 Referring to the method of Example 1 (Formula 4-15) in the alternative embodiment 3 of the foregoing Embodiment 4, taking the electromagnetic torque output by the motor driver as a measurement object, obtaining the joint operation value Te_cal thereof;
  • Step A2 When the reference data has been set, step A3 can be directly executed; when the reference data is not set, the following steps must be performed to set the reference data: obtaining the measured value of the electromagnetic torque Te (the specific acquisition method is reading)
  • the motor driver communication data, or the electromagnetic torque Te) of the motor is measured by the external measurement system of the motor driver, and the measured value Te is used as the reference value Te_org of the electromagnetic torque; the upper limit deviation value Te_def_u and the lower limit deviation value Te_def_d are read.
  • Te_ref1_u Te_org+Te_def_u
  • Te_ref1_d Te_org-Te_def_d
  • Step A3 When the reference data has been set, perform one or more of the following four energy transfer condition determination conditions: judgment condition 1: ((Te_cal-Te_org)>Te_def_u); judgment condition 2: ((Te_cal- Te_org) ⁇ (-Te_def_d)); judgment condition 3: (Te_cal>Te_ref1_u); judgment condition 4: (Te_cal ⁇ Te_ref1_d);
  • Step B Parallel execution of the following steps B1, B2, B3, and B4, and then performing step C;
  • step A If any of the four energy transfer condition determination conditions in step A is YES, the energy transfer abnormality processing mechanism (such as voice alarm, light alarm, start energy transfer fault monitoring mechanism, etc.) is activated;
  • the energy transfer abnormality processing mechanism such as voice alarm, light alarm, start energy transfer fault monitoring mechanism, etc.
  • Step C Step A and step B1 are performed in real time in a cycle of 0.01 milliseconds; steps B2, B3, and B4 are cyclically executed in a cycle of 0.1 second.
  • Embodiment 1 of Embodiment 9 The electromagnetic torque is used as the measurement object in Embodiment 9, and the other embodiments in the foregoing Embodiments 1, 2, 3, 4, and 5 and various alternative (or extension) embodiments may also be used. Any one of the dynamic parameters and the mechanical operating parameters is used as a measurement object, and the joint operation value is calculated.
  • the reference value and the permission deviation value of the measurement object are set in the manner of step A2 in the embodiment 9, and refer to step A3 in the embodiment 9.
  • the method of step B performs abnormal monitoring of the energy transfer condition of the elevator.
  • the license deviation values are all based on system preset values or historical record values, and may be in a simpler manner, such as combining the measured objects.
  • the calculated value or the reference value is multiplied by a coefficient as a permissible deviation value, which can be arbitrarily determined by the user depending on the on-site demand (for example, 0.1 or 0.3, etc.), or the first reference value is set according to the permissible deviation value, and the energy transfer condition is performed.
  • the first reference value may be directly set, if the set upper limit value of the first reference value is greater than the actual value of the measurement object and less than the limit safety valve A value in the value; if the set lower limit value of the first reference value is a value smaller than the actual value of the measurement object.
  • the preferred solution is that the values of all the parameters are acquired in real time, and the steps A and B are performed in real time, and are executed cyclically in a set time period, and the set cycle period is set.
  • the value of the parameter (such as the joint operation value, the reference value in the reference data, the value of the input parameter required to calculate the joint operation value), and the acquisition time; the value of the parameter refers to the parameter generation time. Refers to the time corresponding to the value of the input parameter required to calculate the parameter; because there are multiple ways to acquire (read, measure, etc.); if you read the parameter value generated 100 milliseconds before the time1 time, the parameter is obtained. The time is time1, but the value of this parameter is the first 100 milliseconds of time1.
  • the optimal solution is all parameters (such as joint operation value, reference value in reference data, calculation joint operation)
  • the value of the input parameter required by the value) is taken in the preset time range (as much as possible), real-time calculation, real-time acquisition (read or measurement) joint operation value and reference data, real-time judgment, real-time disposal judgment result, At this time, the value of the parameter can be equal to the acquisition time;
  • the time value of the joint operation value (along with the value of the input parameter required for calculating the joint operation value) is compared.
  • the best way is to take values in the preset time range (as much as possible), real-time calculation, real-time acquisition (read or measurement), real-time energy transmission abnormality judgment/monitoring; but the reference data time or set time It is not required to be at the same time as the value of the joint operation value; then the acquisition time (only read) of the reference data before the energy transfer abnormality judgment is allowed to be different from the value time of the reference data;
  • the control method of the value of the parameter value 1 In the strict sense, it is inconvenient to obtain the values of multiple parameters at the same time; in the actual operation process, the value of each parameter group may have the value before and after. At this time, it is only necessary to control the value of each parameter to a preset time range, which may be determined according to the actual software processing speed and hardware response speed; if it is 100 milliseconds, Or 10 milliseconds, or 1 millimeter, or 0.1 millisecond; the shorter the preset time range, the higher the measurement/monitoring accuracy, but the system cost is also increased;
  • Control method of the value of the parameter value 2 If the elevator operating conditions are basically unchanged, for example, if the speed of the elevator is maintained at a constant speed of 1 m/speed within 10 seconds, the current value of the speed, or the first of the 10 seconds is taken. The value of the time is the same as the value at the end of the 10 seconds; therefore, the preset time range of the value of each parameter value can be adjusted according to the operating conditions of the elevator, that is, when the operating conditions of the elevator are unchanged. At this time, you can get the value of the parameter at any point in time when the operating conditions are unchanged.
  • the first reference value and the license deviation value may be set by a preset value of the system, and may be set in various manners, for example, by a limited number of experimental methods, a manual trial method, a type test method, and the like. set.
  • the elevator running energy balance calculation further satisfies any one or more of the following 9A1, 9A2, 9A3, 9A4, 9A5, and 9A9:
  • the parameters participating in the calculation of the energy balance calculation of the elevator include an efficiency coefficient;
  • the efficiency coefficient is adjusted according to the operating condition of the motor
  • the parameters participating in the calculation of the energy balance calculation of the elevator include the frictional force between the object and the car in the guide rail and/or the elevator shaft;
  • the parameter participating in the elevator running energy balance calculation includes friction correlation data of the mechanical rotating member.
  • the acquiring the joint operation value of the measurement object of the elevator includes the following steps: acquiring a value of an input parameter of the elevator, where the input parameter is a calculation center The parameters required for the joint operation value are calculated; and the joint operation value is calculated according to the obtained value of the input parameter.
  • the determining whether the energy transfer status of the elevator is abnormal according to the joint operation value and the reference data of the measurement object may include the following 11A1, 11A2 Any one or more options:
  • the technical solution can clearly realize the typical abnormality of energy transfer monitoring.
  • the setting of the reference data may include any one of the following 12A1, 12A2, 12A3, and 12A4:
  • the reference value and/or the first reference value of the measurement object is calculated according to an elevator operation energy balance performed when the set condition is satisfied. And the obtained joint operation value is set;
  • the license deviation value of the measurement object, the reference value of the measurement object with the system inherent parameter, and the first reference value of the measurement object with the system inherent parameter as the measurement object are based on the history of the measurement object Setting any one or more of the record value, the factory default value, and the manual input value; when the historical record value includes the historical record original value, the historical record original value is calculated based on the elevator running energy balance;
  • the license deviation value of the measurement object, the reference value of the measurement object with the system inherent parameter, and the first reference value of the measurement object with the system inherent parameter as the measurement target are set according to the fuzzy algorithm;
  • the reference value is any one or more data according to the measured value, the command response value, and the estimated value of the measurement object.
  • the setting time of the data reference value and the value of the joint operation value are within a preset time range.
  • the principle of setting the license deviation value of the measurement object is: the value needs to be as small as possible to improve the sensitivity of the monitoring, but not too small to reduce the false trigger rate of the monitoring; similarly,
  • the first reference value is also set as follows: it is as close as possible to the reference value of the measurement object but must maintain a suitable difference with the reference value; if the upper limit value of the first reference value is set to 1.2 to 1.5 times the reference value Or the lower limit of the first reference value is set to 0.7 to 0.9 times the reference value, or the upper limit deviation value is set to 0.1 to 0.3 times the reference value, or the lower limit deviation value is set to -0.3 to -0.1 of the reference value.
  • the reference data may be set according to a historical record value (such as performing any one or more of the following steps 9A2_1, 9A2_2, 9A2_3);
  • the common law in the above 9A2_1, 9A2_2, and 9A2_3 is to set a certain value 2 according to a certain value 1.
  • a certain value 2 is set according to a certain value 1, and a value 1 can be directly assigned to a value of 2, or a certain value can be The value 1 is increased or decreased according to the situation, or the additional offset is set to a value of 2, which can be handled flexibly;
  • the preferred mode of the reference data setting is: setting the reference value in the reference data according to the joint operation value obtained by calculating the elevator operation energy balance performed when the set condition is satisfied; setting according to the preset history value
  • the reference deviation value in the reference data can be combined to obtain ideal reference data, which can maximize the sensitivity of energy transmission abnormal monitoring and reduce the false positive rate of monitoring;
  • the fuzzy algorithm includes any one or more of the following fuzzy algorithm rules: statistically analyzing the reference data that has been used most frequently according to a certain number of running times; or automatically selecting the number of times of the most recent running selections The most reference data; or automatically select the most recent runtime reference data; or set different weight index of each reference data (such as user presets the most valuable, most protective reference data) to set the reference data; or the total number of times Statistical analysis and weight index to set reference data, etc.;
  • the technical solution is one of the core ideas of the present invention, because the carrying quality of the elevator may vary greatly in each operation, and by adopting the technical solution, a self-learning mechanism is actually established, which can be automatically Flexibly adjust the reference data following the normal change of the load (the key target is the reference value or the first reference value); on this basis, the monitoring sensitivity can be improved and the adaptability to environmental changes can be improved;
  • the technical solution is one of the core ideas of the present invention.
  • the measurement object is the elevator quality and the system inherent parameter
  • the reference data is set according to the historical record value of the measurement object (the key target is The permission deviation value or the first reference value can improve the parameter setting accuracy and the monitoring sensitivity hierarchically, from the conventional fuzzy control to the precise control.
  • the beneficial significance of the scheme 12A4 The scheme can be applied to the monitoring of the energy transmission anomaly when the object is measured as any of the source dynamic parameters and the mechanical operating parameters.
  • monitoring method (#1) may also satisfy any one or more of the following conditions 13A1, 13A2, and 13A3:
  • the measurement object is any one of a carrier quality and a system inherent parameter
  • the joint operation value and the reference data are only derived from a parameter acquisition system, that is, both are energy balance according to elevator operation.
  • the energy transfer exception handling mechanism includes activating an energy transfer fault monitoring mechanism.
  • the source dynamic parameters such as the tension of the wire rope, the output torque of the traction sheave, the electromagnetic torque, the current, the electrical power, etc.
  • the mechanical operating parameters such as speed, acceleration, etc.
  • the difficulty/cost is high, and the accuracy/performance is also reduced; the magnitude of the measured joint operation value of the measuring object may change rapidly to increase the measurement error of the first incentive, and usually the actual measured value or the command value needs to be acquired to set
  • the reference data amplitude may also change rapidly to bring the measurement error of the second incentive; and because the joint operation value and reference data may be in a low amplitude state (relative to full scale measurement), it is more likely to cause the third cause.
  • Measurement error even monitoring failure; because the quality of the load may vary greatly in different operational processes, if the source dynamic parameters or system operating parameters are used as the measurement targets, the value of the carrier mass must be obtained first, resulting in the measurement of the fourth incentive. Errors and make the measurement/monitoring system more complicated/high cost;
  • the measurement object is preferably a carrier quality, and the carrier quality value is relatively stable in the current operation of the elevator, and is convenient for the elevator occupant or the supervisor to visually judge the monitoring effect, thereby greatly improving the monitoring reliability;
  • the sub-optimal object is the inherent parameter of the system (especially the efficiency coefficient); the efficiency coefficient essentially represents the wear condition of the elevator parts and the safety condition of the machine parts, and the parameter has little change in the amplitude of the elevator operation, and is easy to measure and compare; This method also has the measurement error of the fourth incentive mentioned above, and it is not convenient for the elevator operator to visually judge the monitoring effect;
  • a typical parameter acquisition system has a class A car inner sensor weighing system, a class B car outer sensor weighing system, and a class C inverter weighing at zero speed.
  • System in the prior art, also a method for judging whether a sensor weighing system is faulty by a combination of class AB and class C technology, which greatly increases the cost by using a multi-way weighing system at the same time;
  • the method and system for calculating the operating parameters of the elevator can allow parameter estimation and operation safety monitoring to be realized by only one parameter acquisition system (such as any sensor outside the car or the inverter), which can greatly reduce the cost of the monitoring system.
  • the use of motor drives (such as frequency converters) for parameter calculation (including weighing) can greatly reduce the operating safety monitoring cost of the elevator.
  • the monitoring method in the monitoring method (#1) further includes any one or more of the following 14A1, 14A2, and 14A3:
  • Abnormal energy transmission usually includes abnormal operating environment of the elevator, energy transmission failure, etc.; typical abnormal operating environment of the elevator includes abnormal conditions of the load (such as jumping or sharp shaking in the elevator/abnormal rolling of the item);
  • the 14A1 scheme can also be called synchronous energy transfer fault monitoring. mechanism;
  • the second is to adopt the 14A3 scheme, and then restart the energy transmission fault monitoring mechanism when the energy transmission abnormality of the elevator has been detected, and the 14A3 scheme may also be referred to as a progressive energy transmission fault monitoring mechanism;
  • the elevator can be directly determined to be in an energy transfer fault condition; if the measured external environmental information has an abnormal condition and an energy transfer abnormality occurs, the current energy of the elevator can be determined.
  • the transmission anomaly may be caused by the external environment; the elevator may continue to issue the energy transmission abnormal warning information instead of the energy transmission failure information; at the same time, the elevator may continue to perform the monitoring operation to determine whether the energy transmission abnormality is eliminated with the elimination of the operating environment abnormality, if it is not possible to synchronize If the elimination or energy transfer abnormality continues to be longer than the set time, the energy transfer failure can still be determined;
  • the identification and judgment can be made by acquiring (reading or measuring) the operating environment information of the elevator; the operating environment information can be obtained in various ways: through relevant vibration sensors, optical, ultrasonic, infrared sensors, radar The device measures the identification; the operator can also distinguish the above situation by visual recognition; the time value of the joint operation value and the value of the operation environment information are within a preset time range.
  • the energy transmission failure mainly includes: the frictional force between the object and the car in the guide rail and/or the elevator shaft is abnormal or the abnormality of the personnel being caught in the elevator shaft, the abnormal rotation of the rotating parts of the elevator, aging, bursting, breaking, the rotor holding shaft of the motor, etc.;
  • the energy transfer fault monitoring mechanism of the elevator confirms that an energy transfer fault occurs, and an emergency treatment scheme such as deceleration, shutdown, fault alarm, or reverse operation is usually required to be started immediately.
  • the beneficial significance of the 14A2 solution regardless of the type of the object to be measured, at any time, the value of the carrying quality is output (to the man-machine interface in the car and/or the man-machine interface of the hall door), which helps the elevator passenger to glance at the eye. Identifying whether the elevator is running normally is of great significance for the safe operation of the elevator;
  • the joint operation value of the quality of the carried item is saved, like the black box function of the aircraft safety, which is convenient for post-mortem analysis.
  • the electric power can combine the electrical energy; the invention also allows the use of the energy type of the source power combination type parameter (such as the power consumption of a certain period of time, or the sum of work of a certain period of time) As a measurement object; power and energy are easily confused from physical concepts, but for elevator operation, the meaning of the two is different; power is the differentiation of energy versus time, with the concept of instant-fast, energy is the power in time.
  • the energy type of the source power combination type parameter such as the power consumption of a certain period of time, or the sum of work of a certain period of time
  • the core parenthesis step is also required (acquiring the joint operation value of the measurement object, setting the reference data, and judging the energy transfer condition based on the joint operation value and the reference data) Whether the abnormality or the judgment result of the energy transfer condition has a clear treatment scheme can be referred to the following embodiment 10:
  • Embodiment 10 The monitoring method (#1) includes steps A, B, and C;
  • Step A This step includes step A1, step A2, and step A3;
  • Step A1 Referring to the method of the foregoing Embodiment 5, identifying the energy flow of the elevator to the working condition (electrical ascending, motor) Brake up, electric down, motor brake down), identify the speed change of the elevator (non-zero constant speed operation, acceleration operation, deceleration operation), first obtain (read or measure) the parameters in the same time range (motor).
  • the values of the efficiency coefficients Ke1 and/or Ke2, the efficiency coefficients Km1 and/or Km2 of the mechanical transmission system, the integrated gear ratio im, the no-load car mass m0, the counterweight mass m3, the upstream speed V1, and the downstream speed V2) are different.
  • the energy flow to the working condition and the speed change condition is calculated by any one or more of the following 10A1-1, 10A1-2, and 10A1-3, and the joint operation value Pm_cal of the electrical power of the motor is calculated, and the calculation formula is as follows:
  • P4_cal (m1+m0)*g-m3*g)*V1*(K14*Kem2), (Formula 4-28-1);
  • P5_cal (m1+m0)*g-m3*g)*V1*Kem2, (Equation 4-28-2);
  • P5_cal (m3*g-(m1+m0)*g)*V2*Kem2, (Formula 4-29-1);
  • joint operation value Po_cal or P4_cal or P5_cal is calculated (for example, integrated) to obtain an electrical energy value EM1_cal within 2 seconds, and EM1_cal is an indirectly obtained joint operation value;
  • Step A2 Obtain the Pm_cal and EM1_cal values, obtain the electrical power reference value Pm_r (read the data measured by the motor driver or measure with the power meter), and then integrate the Pm_r operation to obtain the electrical within 2 seconds of the EM1_cal period.
  • Step A3 Perform one or more of the following two energy transfer condition determination conditions: judgment condition 1: ((EM1_cal-EM2)>EM_def3), judgment condition 2: ((EM1_cal-EM2) ⁇ (-EM_def3)) ,
  • Step B If any of the two energy transfer condition determination conditions in step A3 is YES, the energy transfer abnormality processing mechanism (such as voice alarm, etc.) is started;
  • the time period of energy calculation can be set from 2 seconds to 1 second, 0.1 second, 0.01 second, etc.; the longer the time, such as more than 5 seconds and 10 seconds, etc., the loss of energy transmission abnormal monitoring is lost. Meaning; the shorter the time, the faster the energy transmission anomaly monitors the response, but the combined calculation value, the measured value, and the reference data (caused by four incentives) will be larger/the effect will be worse; thus, the source dynamic parameters will be seen. Or the source power combined parameters (such as energy) as the measurement object of the energy transfer anomaly monitoring effect, far less than the carrier quality or system inherent parameters as the measurement object.
  • the system is allowed to switch the measurement object according to the need, and even multiple measurement objects are enabled at the same time, and multiple energy transfer status judgments of multiple different measurement objects are performed; if the carrier quality is allowed as the measurement object The energy transfer condition is judged and monitored. At the same time, the rolling friction resistance coefficient is used as another measurement object to perform another energy transfer condition judgment and monitoring. As long as any energy transfer condition judgment result is an energy transfer abnormality, the energy transfer abnormality processing mechanism is started. ;
  • the system is also allowed to switch the source dynamic parameters.
  • the torque type parameter such as electromagnetic torque
  • the power type parameter such as motor power
  • the source power parameter can be used as the source power parameter to improve the calculation accuracy of the joint operation value of the measurement object and improve the sensitivity of the energy transmission abnormality monitoring;
  • the integrated tension force F1 of the wire rope is used as the source power parameter to construct an energy transmission condition judgment and monitoring #100 system, and the system can mainly monitor the abnormality of the friction between the object and the car in the guide rail and/or the elevator shaft (if the person is stuck in the car) When the relationship with the elevator shaft is increased, the frictional force f0 is increased.
  • another power transmission condition determination and monitoring system 101 is constructed by using the power input electric power P3i as the source power parameter, and the system can simultaneously monitor the power supply device of the elevator.
  • the elevator can be directly verified with the electric power Pm of the P3i and the motor and the efficiency coefficient k31 Whether the energy transmission status of the power supply unit and the motor driver is normal, and the verification method is judged ((P3i*k31)-Pm) Whether it is greater than the preset threshold (such as P3i/20), if it is greater than the power supply unit or the motor drive is abnormal;
  • the layer-by-layer or multi-layer energy transmission abnormality monitoring is performed, and the elevator can be When the operating parameters do not exceed the safety limit threshold, it is convenient to carry out all-round sensitive and accurate protection of the overall power system and mechanical transmission system of the elevator.
  • the reference data is a joint operation value obtained according to an elevator operation energy balance calculation performed when the set condition is satisfied;
  • the input parameter of the elevator operation energy balance calculation includes the carrier quality, and the parameter of the carrier quality as the input parameter is based on the satisfaction setting.
  • the reference data is a first reference value or consists of a license deviation value and a reference value.
  • the first reference value and the energy state identification reference value are both set according to a joint operation value obtained by calculating an elevator operation energy balance performed when the set condition is satisfied;
  • the input parameter of the elevator operation energy balance calculation includes at least one parameter of the carrier quality, and the carrier quality is used as the input parameter.
  • the parameters are obtained from the joint operation values obtained by calculating the elevator operation energy balance performed when the set conditions are satisfied.
  • the elevator operating parameters are composed of source power parameters, system operating parameters, and elevator quality.
  • the measured objects are source power parameters, system operating parameters, and elevator quality. Any one or more of them.
  • the present invention also provides a monitoring system (#1) for an elevator lifting operation, a monitoring system for an elevator during lifting operation, comprising: an energy transmission status determining module, configured to: acquire an estimated object of the elevator Combining the operation value, identifying an energy transfer condition of the elevator according to the joint operation value; wherein the measurement object is any one or more of an elevator operation parameter, and the joint operation value is calculated based on an elevator operation energy balance Income.
  • the joint operation value obtaining module (1) may be further configured to acquire a joint operation value of the measurement object of the elevator to provide the energy transfer status determination module (2), that is, the energy transfer status judgment.
  • the above joint operation value in the module (2) is provided by the joint operation value acquisition module (1).
  • the monitoring system of the elevator lifting operation of the present invention has the same principle as the monitoring method of the elevator lifting operation described above, and the above technical solutions applied to the monitoring method during the elevator lifting operation can be directly applied to the monitoring system.
  • the energy transfer condition of the elevator is determined according to the joint operation value, specifically: according to the joint operation value and the calculation
  • the reference data of the object determines whether the energy transfer condition of the elevator is abnormal.
  • the monitoring system further includes an energy transfer abnormality processing module (3), an output module (4), and a saving module (5). Any one or more of the modules;
  • the energy transfer abnormality processing module (3) is configured to: if the determination result includes yes, initiate a set energy transfer abnormality processing mechanism;
  • the output module (4) is configured to output a result of the determining
  • the saving module (5) is configured to save the result of the determining
  • the monitoring system (#1) satisfies any one or more of the following conditions 21A11 and 21A21:
  • the elevator running energy balance calculation is associated with the elevator running direction
  • the joint operation value and the reference data are derived from a parameter acquisition system, that is, both are calculated according to the elevator operation energy balance.
  • monitoring system (#1) also satisfies any one or more of the following 22A1 to 22A3:
  • the function of acquiring the joint operation value of the measurement object of the elevator in the joint operation value detection module (1) includes the following function: acquiring a value of an input parameter of the elevator; the input parameter is Calculating a parameter required by the joint operation value; calculating the joint operation value according to the obtained value of the input parameter;
  • the measurement object is any one of a carrier quality and a system inherent parameter
  • the joint operation value and the reference data are calculated according to an elevator running energy balance.
  • the invention provides a monitoring method and system (#1) for elevator lifting operation with beneficial effects:
  • the invention deeply analyzes the structure and working principle of the counterweight elevator: the operation of the elevator is essentially the energy transfer process, that is, the power transmission process of driving the elevator; the step A of the monitoring method (#1) provided by the present invention
  • the method comprises the steps of: obtaining a joint operation value calculated based on an elevator operation energy balance of the measurement object of the elevator; in the elevator operation energy balance calculation of the elevator operation, the elevator source power parameter represents power supply information, and the elevator quality represents a power receiver.
  • the system operating parameters of the elevator represent the basic conditions of energy transfer (such as the inherent parameters of various systems) and the mechanical operating parameters generated by the elevator under the action of power, that is, the motion results (such as speed, acceleration, etc.);
  • the monitoring system uses the source dynamic parameters as the measurement object, Then, when other related elevator operating conditions (such as elevator quality, speed, acceleration, etc.) are constant, it is necessary to consume more power and cause the joint operation value of the reference value of the source power parameter and the elevator running energy balance calculated by the elevator. If the monitoring system uses the speed in the mechanical operating parameters as the measurement object, such as the reference value of the source power parameter of the elevator and other related elevator operating conditions (such as elevator quality, acceleration, etc.), It may lead to the deviation of the reference value of the speed of the elevator and the calculated joint operation value of the elevator running energy balance of the elevator operation.
  • other related elevator operating conditions such as elevator quality, speed, acceleration, etc.
  • the difference is increased; if the elevator mass (such as the mass of the carried item m1 or the total mass m2) is used as the measurement object and other relevant elevator operating conditions (such as acceleration) are not changed, the elevator operation energy balance calculation will be caused by the elevator operation.
  • the joint operation value of the obtained elevator quality changes; therefore, by comparing the joint operation value of the measurement object with the reference data, it can be determined whether the energy transfer condition in the elevator operation is abnormal, and is judged by the subsequent energy transfer condition.
  • the processing steps can timely realize energy transmission abnormality monitoring and early warning;
  • the state is also the condition, and both are equivalent;
  • the energy transfer state is the energy transfer state.
  • the elevator source power parameter represents the supply information of the power, that is, the condition of the electric power system of the elevator (depending on the collection point of the specific electric power parameter group signal, the condition of the power supply device of the elevator, the motor driver, and the device in the motor);
  • the system operating parameters of the elevator represent the basic conditions of energy transfer (such as various system inherent parameters)
  • the relevant electrical efficiency coefficient reflects the safety status of the electric power system
  • the mechanical transmission component efficiency coefficient reflects the safety condition of the mechanical transmission components
  • the personnel are stuck. Between the entrance car and the elevator shaft, the friction between the object of the elevator and/or the object in the elevator shaft and the car can be reflected.
  • the energy transmission condition in the present invention that is, the condition of the energy transfer system, especially The condition of the energy transfer system directly related to the rise or fall of the elevator, that is, the condition of the power transmission system that drives the elevator to run and lower, that is, the power transmission condition;
  • the energy transfer condition is a condition closely related to the safety of the elevator operation; Limited to the condition of the components in the car, the components in the car are generally driven The elevator run is not directly related;
  • determining whether the energy transfer condition of the elevator is abnormal according to the joint operation value and the reference data of the measurement object is very important for improving the operational safety of the energy transfer system of the elevator; Exceeding the judgment of the failure of a similar device such as a load cell.
  • the reference data is set based on the reference value of the measurement object (not based on the safety limit threshold), it is allowed to be much smaller than the safety limit threshold; therefore, when the elevator operation parameter does not exceed the safety limit threshold, it is also easy to implement (including The reason that the personnel is stuck between the car and the elevator shaft is that the elevator energy transmission is abnormally monitored and early warning, so as to avoid the occurrence of more serious and unpredictable safety accidents (including wire rope breakage, elevator runaway, etc.); The diagnosis of cancer in human medicine, if it is found in the late stage, usually means the end of life. If the early detection usually means normal life, the technical solution is of great significance for the safe operation of the elevator.
  • the third technical problem to be solved by the present invention is to provide a monitoring method for elevator load, which can reduce the cost of overload monitoring or improve its safety on the basis of the prior known technology;
  • the present invention also provides an elevator load monitoring method (#2).
  • the monitoring method includes the following steps. :
  • the joint operation value is based on the elevator operation Calculating the line energy balance, and the source dynamic parameter required in the elevator running energy balance calculation is an electric power parameter or a power parameter of the mechanical rotating member;
  • the technical solution of the invention 23A is mainly to provide a weighing scheme of a motor driver (such as a frequency converter); the motor driver is weighed, and can be divided into a zero speed running weighing of the motor driver and a non-zero speed running weighing of the motor driver; The motor driver is not zero-speed running weighing, and it is necessary to identify the energy flow of the elevator to the working condition.
  • the specific implementation can be referred to the foregoing embodiment 4; the non-zero speed running weighing of the motor driver can be performed only when a certain setting condition is met (such as an elevator).
  • the monitoring method may also include the step of obtaining the joint operation value of the quality of the carried item of the elevator in 23A, and judging
  • the solution adopted thereafter is not limited to 23B11, 23B12, and other solutions may be employed, which are only preferred embodiments.
  • the core of the scheme is to determine whether the joint calculation value of the quality of the carried goods of the elevator is greater than the rated load of the elevator to determine whether it is overloaded.
  • the quality of the carried item belongs to a parameter in the quality of the elevator, and the joint operation value is calculated according to the parameters including the system operating parameter and the source dynamic parameter of the elevator. For details, refer to the carrying case in each of the embodiments 1-5.
  • the formula for the quality of the item refer to the carrying case in each of the embodiments 1-5.
  • the motor drive zero-speed operation weighing system can be composed of a motor driver control system, a parameter acquisition and calculation system, and a brake system; more preferably, a displacement acquisition system is also provided, and the brake system is a flexible brake system;
  • the elevator displacement acquisition system can detect the elevator car through a rotary encoder (positive cosine or incremental type) on a motor or traction sheave or displacement detection on other components (such as a position sensor on the car, an acceleration sensor), etc.
  • a rotary encoder positive cosine or incremental type
  • traction sheave or displacement detection on other components (such as a position sensor on the car, an acceleration sensor), etc.
  • the brake system can be divided into a rigid brake system and a flexible brake system;
  • the rigid brake system of the present invention means that the magnitude of the brake torque of the brake system cannot be actively hierarchically controlled, that is, the brake system is only divided.
  • the flexible brake system of the present invention means that the magnitude of the brake torque of the brake system can be actively and hierarchically controlled, and the brake torque level can be divided into two levels or Above;
  • the change of the brake torque caused by the fluctuation of the external power supply (or voltage) of the brake system cannot be called active grading control, which belongs to passive control;
  • the active grading control of the amplitude of the brake torque can be passed through IGBT, thyristor, MOS tube is realized by PWM pulse width adjustment voltage and current, etc.
  • the output transformer adjusts the voltage. If the transformer has multiple output poles, it can output various coil voltages such as 100%, 70%, 30%, etc. to adjust the brake torque;
  • the basic motor drive zero-speed operation weighing method the motor drive control system allows the motor drive to operate at zero speed, the brake system releases the brake, the parameter acquisition and calculation system acquires the electromagnetic torque at zero speed operation and Calculate the quality of the carried goods;
  • a more optimized method of zero-speed operation of the motor drive when the above-mentioned basic motor drive zero-speed operation weighing method is being performed, detecting the vertical displacement of the elevator car, when the vertical displacement is greater than the preset displacement valve When the value (eg 2 mm) is displaced vertically, the brake system can be braked immediately, thus ensuring safety when weighing.
  • the value eg 2 mm
  • a more optimized method for zero-speed operation of the motor drive in the above-mentioned method of zero-speed operation of the motor drive, the brake system releases the brake to a flexible release brake, once the elevator car is vertically displaced When the standard exceeds the standard, the brake can be quickly re-braked immediately;
  • the flexible release brake of the present invention refers to grading and gradually reducing the brake torque; thereby improving the safety of the system and improving the comfort and safety of the passenger riding the elevator;
  • the overload processing mechanism in the technical solution of the invention 23B11 includes a voice prompt alarm, an audible and visual alarm, a refusal to close the door, a refusal operation, and the like in an overload; the machine system and the manual can arbitrarily combine various processing actions.
  • the information determined in the technical solution described in the 23B12 of the present invention includes a determination result of determining whether the joint operation value is greater than a rated load capacity of the elevator; and if the external control system requires, the information may further include the quality of the carried item. Any one or more of the combined operation value and the safety limit threshold.
  • the monitoring method (#2) satisfies any one or more of the following 24A1, 24A2, 24A3, and 24A4:
  • 24A1 When the elevator is running at zero speed, it includes any one or two of the following 24A11, 24A12:
  • the brake system releases the brake to a flexible release brake
  • the joint operation value is output to a human machine interface of the car and/or a human machine interface of the hall door and/or a human machine interface of the control center;
  • the joint operation value for acquiring the quality of the carried item of the elevator comprises the steps of: obtaining a value of an input parameter of the elevator; the input parameter is a parameter required for calculating the joint operation value; The value of the obtained input parameter calculates the joint operation value;
  • the elevator operating energy balance calculation is associated with the elevator operating direction.
  • the beneficial significance of the 24A1 solution of the present invention if the brake system performs a brake, it is not convenient to use the motor driver to weigh; if the elevator is being lifted and the brake motor driver is loosened during the process of getting on and off, it brings safety again.
  • Hidden danger The ideal control method is: detecting the vertical displacement of the elevator car when the elevator is being weighed at the zero speed, and the brake system performs the brake when the vertical displacement is greater than the preset displacement threshold Especially for the flexible brake system, the loose brake is released, the brake brake torque is gradually and flexibly reduced (not immediately and completely disappeared), and the abnormal vertical displacement of the elevator can quickly restore the brake; Greatly improve the safety of the elevator, thus improving the practicality of the motor drive weighing scheme.
  • the monitoring method (#2), the elevator running energy balance calculation satisfies any one or more of the following 25A1, 25A2, 25A3, 25A4, 25A5:
  • the parameters participating in the energy balance calculation of the elevator operation include an efficiency coefficient;
  • the efficiency coefficient is adjusted according to the operating condition of the motor
  • the source power parameter included in the elevator operation energy balance calculation is electrical power
  • the setting of the electrical power is performed according to a motor operating condition
  • the parameter participating in the elevator running energy balance calculation includes friction correlation data of the mechanical rotating member.
  • the present invention also provides an elevator load monitoring system (#2), including a joint operation value detecting module (1); the monitoring system further includes any one of an overload processing module (2) and an output module (3) Kind or multiple modules;
  • the joint operation value detecting module (1) is configured to: acquire a joint operation value of the quality of the carried item of the elevator; the joint operation value is calculated based on an energy balance of the elevator operation, and the calculation of the energy balance calculation of the elevator operation
  • the source dynamic parameters of the demand are electrical power parameters or dynamic parameters of the mechanical rotating parts
  • the overload processing module (2) is configured to: determine whether the joint operation value is greater than a rated load of the elevator, and perform any one or more of the following 26B11, 26B12 processing;
  • the output module (3) is configured to: output the joint operation value to a human machine interface of the car and/or a human machine interface of the hall door and/or a human machine interface of the control center.
  • the core is in the overload processing module (2) determining whether the joint operation value is greater than the rated load of the elevator to determine whether it is overloaded.
  • the joint operation value acquisition module (1) may not be used, and the 26B11-26B12 may be replaced by other methods.
  • monitoring system (#2) further includes any one or more of the following functions 27A1, 27A2, and 27A3:
  • the brake system releases the brake to a flexible release brake
  • the joint operation value is output to the man-machine interface of the car and/or the man-machine interface of the hall door and/or the man-machine of the control center. interface;
  • the function of acquiring the joint operation value of the quality of the carried item of the elevator in the joint operation value obtaining module (1) includes the following function: acquiring a value of an input parameter of the elevator; the input parameter is a calculation The parameter required by the joint operation value; the joint operation value is calculated according to the value of the acquired input parameter.
  • the invention provides an elevator load monitoring method (#2) and the beneficial effects of the system:
  • the prior art inverter weighing scheme due to lack of research on the energy flow direction of the elevator, the weight cannot be calculated when the elevator is running at a non-zero speed; the prior art is based on the overload monitoring of the car sensor weighing.
  • the invention has high cost/complex structure; the monitoring scheme based on the motor driver (such as frequency converter) weighing elevator load provided by the invention has great significance for omitting the traditional sensor weighing system and reducing the weighing cost of the elevator;
  • the weighing result can only detect whether the overload is performed before the elevator runs, and it cannot reflect the friction and drag of the object and the car in the guide rail and/or the elevator shaft.
  • the safety condition of the guide wheel, motor, intermediate transmission parts and motor drive has no practical significance for the safety monitoring of the elevator in the vertical lifting operation of the elevator; however, if the motor drive weighing technical scheme is adopted, the quality of the carried item will be at any time.
  • the numerical output (to the man-machine interface in the car) helps the elevator passengers to recognize whether the elevator is running normally or not, and helps the non-professional elevator passengers (without the use of professional and professional equipment) to be quick and easy.
  • Identification of elevator operation safety information (this information may include the friction of the object and the car in the elevator shaft and the traction shaft, the traction wheel, the motor, the intermediate transmission component, the safety condition of the motor drive), which is significant for the safe operation of the elevator significance.
  • the fourth technical problem to be solved by the present invention is to provide an elevator control method for improving the operating efficiency of the elevator, that is, to provide a control method for the elevator operating efficiency, so as to improve the efficiency of the elevator operation under the premise of safe operation;
  • the present invention also provides a control method for an elevator, which can be used to improve the operating efficiency of the elevator, including the following steps:
  • the mechanical operating parameter of the elevator is pre-set with at least two different grades, the grade of the mechanical operating parameter is selected based on a parameter including at least the mass of the carried item of the elevator; or; based on the mass of the carrying item including at least the elevator
  • the parameter calculates the joint operation value of the mechanical operating parameter when the quality of the carried item is between zero and the rated load.
  • the mechanical operating parameter has at least two joint operation values of different sizes when changing; controlling elevator operation according to the joint operation value or grade of the mechanical operation parameter; the mechanical operation parameter includes an uplink speed, a downlink speed, and an acceleration uplink Any one or more of the accelerations during acceleration and deceleration.
  • the at least two differently sized joint operation values or at least two different grades have two meanings: the first one is a finite joint operation value or grade greater than or equal to 2, which is equivalent to According to the finite joint operation value or grade, the corresponding quality of the carried item is divided into a plurality of parts, each part corresponds to a running speed and/or acceleration; the second type is an infinite number of values greater than or equal to 2, at this time carrying The quality of the item corresponds to the speed and/or the value of the acceleration, and the elevator is now steplessly regulated.
  • Each grade of the mechanical operating parameters of the elevator has its corresponding value, which is simply referred to as the corresponding value. Selecting a certain grade also selects the corresponding value of a certain grade; the above selection of the grade of the mechanical operating parameter is also based on the carrier including at least the elevator. After the parameters such as the quality of the item are calculated, the grade of the mechanical operating parameter is selected; since the grade of the mechanical operating parameter is calculated according to other types of data (the quality of the carried item, etc.), or calculated by a formula or a look-up table, the mechanical operating parameter is The corresponding value of a certain grade is a joint operation value;
  • the calculation is based on parameters and presets including at least the quality of the carried item of the elevator. Mapping relationship calculation; specific mapping relationship, as described later.
  • control the elevator operation according to the joint operation value or grade of the mechanical operation parameter includes two cases, one is controlled in the control system implementing the control method, and the other is outputting the mechanical operation The joint operation value or grade of the parameter to control the elevator operation to the external control system;
  • the “controlling the elevator operation according to the joint operation value or the grade of the mechanical operation parameter” includes two implementation manners; one is to use the joint operation value of the mechanical operation parameter or the corresponding value of the grade as the preset value of the instruction In order to control the elevator operation; the other is to use the joint operation value of the mechanical operation parameter or the corresponding value of the grade as the operation upper limit threshold to control the elevator operation; the specific control method is described in detail later.
  • the joint operation value of the mechanical operation parameter for controlling the operation of the elevator or the corresponding value of the grade cannot be greater than the safety value of the mechanical operation parameter
  • the safety value of the mechanical operating parameter is a permissible value of the upward speed of the electric uplink, a permissible value of the downward speed of the electric motor, and an allowable value of the upward speed of the motor braking, At least one of a permissible value of the downward speed when the motor brakes down, an absolute value of the permissible value of the accelerating acceleration in the ascending acceleration, and an absolute value of the permissible value of the acceleration in the decelerating down time;
  • the absolute value of the permissible value of the acceleration at the time of deceleration ascending and the absolute value of the permissible value of the acceleration at the time of accelerating the downlink are related to the counterweight mass m3 and are not directly related to the mass of the vehicle;
  • the safety value of the mechanical operating parameter is calculated based on a parameter including at least the mass of the carried item (preferably the current actual value) and the source dynamic parameter (preferably a safety limit threshold); the mechanical operating parameter
  • the calculation of the safety value can be calculated at any time before the elevator is controlled, either in the internal system or in the external system; if it is done in an external system, only the result needs to be read. For example, the result is read from the second associated table and the first associated table described later; the emphasis is not on the calculation process, but on the approval of the result: only the value of the mechanical operation parameter for controlling the operation of the elevator is not greater than the safety value or the mechanical operation parameter.
  • the corresponding value of the grade is not greater than the security value;
  • the “controlling the elevator operation according to the joint operation value or the grade of the mechanical operation parameter” is: the joint operation value of the mechanical operation parameter or the corresponding value of the grade is used as an instruction pre- Set the value to control the elevator operation.
  • the preset value of the upward speed of the elevator at the time of light load or heavy load is smaller than the preset value of the upward speed when the load is balanced; and/or: at the time of light load or under heavy load
  • the preset value of the line speed command is smaller than the command preset value of the down speed at the time of load balancing;
  • the parameter calculation based on the quality of the carrier item including at least the elevator is specifically calculated according to parameters including at least the quality of the carried item of the elevator and the source dynamic parameter of the elevator;
  • the calculation is an elevator operation energy balance calculation; and the elevator operation energy balance calculation is associated with an elevator operation direction.
  • the elevator operation energy balance calculation satisfies any one or more of the following conditions 33A1, 33A2, 33A3, 33A4, and 33A5:
  • the parameter participating in the energy balance calculation of the elevator operation includes an efficiency coefficient
  • the efficiency coefficient is adjusted according to the operating condition of the motor
  • the parameters participating in the calculation of the elevator operation energy balance include friction correlation data of the mechanical rotary member.
  • any one or more of the following conditions 34A1, 34A2, and 34A3 are also satisfied:
  • the value of the quality of the carried item is calculated based on electrical power parameters
  • the value of the quality of the carried item is calculated based on the energy balance of the elevator operation
  • the value of the quality of the carried item is a current actual value, and the value of the source dynamic parameter is a safety limit threshold;
  • control method according to any one of the items 29-32 further includes any one or more of the following 35A1, 35A2, and 35A3:
  • the elevator running energy balance calculation is specifically: acquiring a value of an input parameter of the elevator, where the input parameter is a parameter required for calculating an operation value of the elevator operation energy balance calculation, such as performing energy balance of the elevator operation Calculating required source dynamic parameters, system operating parameters, etc.; calculating the joint operation value according to the obtained input parameter values.
  • the calculation or acquisition of the security value, preferred embodiment 28A includes the following 28A-1, 28A-2 schemes:
  • the 28A-1 implementation is as follows:
  • the value of the carrying quality is the value of the quality of the carrying item in the carrying mass; it may be the current actual value or the preset value; because the core purpose of the control method is to control the elevator running according to the current actual value of the carrying quality.
  • the safety value of the mechanical operating parameter to improve the operating efficiency of the elevator, so the value of the carrying quality is preferably the current actual value, and the current actual value is preferentially calculated based on the electric energy parameter based on the operating energy balance of the elevator;
  • the current actual value also allows the energy balance calculation of the elevator operation from other source dynamic parameters, and also allows the sensor to weigh the gain, but the latter two methods will raise the cost;
  • the value of the source dynamic parameter preferably the safety limit threshold of the source dynamic parameter, is calculated in conjunction with the current actual value of the carrier mass, so that the maximum operating efficiency of the elevator is facilitated; or the value less than the safety limit threshold may be selected. Will not be conducive to improving efficiency;
  • safety limit thresholds that can be set according to the elevator model and site requirements
  • the absolute value aj_ena of the permissible value of the acceleration is calculated according to the permissible value of the force or torque or instantaneous power type (eg F1_ena) and according to the different energy flow conditions (or together with the speed operating conditions);
  • the suffix _ena indicates that the parameter is a security value or a license value preset by the system.
  • the preferred scheme 28-1 is as follows:
  • the permissible value of the upward speed of the electric uplink is calculated according to the permissible value of the electric power of the electric system in the electric state, and the following formula 28-1 can be obtained by referring to the above formula 5-1:
  • V1_ena Kem1*Po_ena/((m1+m0)*g-m3*g), (Equation 28-1);
  • the permissible value of the downward speed of the electric motor is calculated according to the permissible value of the electric power of the electric system in the electric state, and the following formula 28-2 can be obtained by referring to the above formula 5-2:
  • V2_ena Kem1*Po_ena/(m3*g-(m1+m0)*g), (Equation 28-2);
  • V1_ena4 (P4_ena/(K14*Kem2))/((m1+m0)*g-m3*g), (Equation 28-3-1);
  • V1_ena5 (P5_ena/Kem2)/((m1+m0)*g-m3*g), (Formula 28-3-2);
  • V2_ena4 (P4_ena/(K14*Kem2))/(m3*g-(m1+m0)*g), (Equation 28-4-1);
  • V2_ena5 (P5_ena/Kem2)/(m3*g-(m1+m0)*g), (Equation 28-4-2);
  • Permitted values of the above formulas 28-1, 28-2, 28-3-1, 28-3-2, 28-4-1, 28-4-1 can be understood as the permission value of the speed approved by safety; obviously, the above calculation formula knows that the permission value is applicable to the current carrying quality value; when the carrying quality value is different, the permitted value of the speed will be different;
  • the 28A-2 implementation is as follows:
  • the above 28A-2-1, 28A-2-2 scheme calculates the absolute value of the allowable value of the acceleration according to the allowable value F1_ena of the integrated tensile force of the wire rope, and the allowable value of the integrated tension of the wire rope F1_ena is usually based on the wire rope
  • the breaking stress is further divided by a predetermined safety factor.
  • the breaking stress can be obtained from the relevant mechanical manual of the wire rope.
  • the safety factor can usually be set to about 12; usually the default wire rope is the weakest of the elevator.
  • the absolute value of the allowable value of the acceleration can be set by the shear stress safety value of the mechanical rotating member (such as the traction sheave, the transmission gear, and the rotor shaft of the motor) (by referring to Equation 3-3, 3- in Embodiment 3) 4, 3-5, 3-6), it is also possible to set the absolute value of the allowable value of the acceleration according to the safety value of the electromagnetic torque or the safety value of the current or the safety value of the instantaneous electrical power (by referring to the formula in the foregoing embodiment 4) 4-5 to 4-12); the system can perform safety accounting, confirm the allowable value of the comprehensive tension of the wire rope, the safety value of the shear stress of the mechanical rotating parts, the safety value of the electromagnetic torque or the safe value of the current or the instantaneous electrical work.
  • the value of the weakest security parameters to determine the absolute value of the permissible value of acceleration based on the weakest argument.
  • the mass m1 is irrelevant and is related to the counterweight mass m3.
  • Each action of the elevator lifting operation will be issued by the control system with a target parameter (the acceleration of the elevator running speed and the descending speed in the mechanical operating parameters and the acceleration in each speed change direction) (that is, the command preset value), and then An actuator such as an elevator's powertrain drives the elevator to operate at a target value (ie, a preset value);
  • a target parameter the acceleration of the elevator running speed and the descending speed in the mechanical operating parameters and the acceleration in each speed change direction
  • An actuator such as an elevator's powertrain drives the elevator to operate at a target value (ie, a preset value);
  • the preset value of the command is used to actively control the speed and/or acceleration of the elevator, that is, the target value of the mechanical running parameters (elevator up speed and down speed and acceleration in each speed change direction) for actively controlling the operation of the elevator, for direct use Controlling the operation of the elevator;
  • the control mode is an active control mode; as described above, because the preset value of the command is based on at least the carrying quality of the elevator (current actual value) and the source dynamic parameter of the elevator
  • the parameters safety limit threshold
  • Elevator operation is safe;
  • the upper limit threshold of operation refers to the upper limit threshold of the acceleration of the elevator in the running speed, the descending speed and the acceleration direction; the upper limit threshold is used to control the elevator operation, which is an inactive but beneficial safety control.
  • the control method includes the following scheme: when the uplink speed/down speed of the elevator (the current value or the target value) is not greater than the running upper threshold of the running direction, the original running action of the elevator is not limited; The upward speed/downward speed of the elevator (the current value or the target value) is greater than the running upper limit threshold in the running direction, that is, the speed limit, or the overspeed alarm, or the shutdown protection processing; the speed limit refers to the uplink speed/down The speed (the current or target value) is limited to a value that is not greater than the upper threshold of the run;
  • the original running action of the elevator is not limited; when the acceleration of the elevator (the current value or target) When the absolute value of the value is greater than the running upper limit threshold of the acceleration in the speed change direction, the acceleration limit, or the over limit alarm, or the stop protection process is performed; the acceleration limit refers to the acceleration in the speed change direction
  • the absolute value of the current or target value is limited to a value not greater than the upper threshold of the operation;
  • Specific speed limit measures can be referred to existing control techniques, such as reducing the current target value of speed or acceleration. Or command the preset value (such as lowering the set frequency of the inverter) to decelerate the motor, etc.
  • the specific acceleration limit measures can be referred to the existing control technology, such as reducing the current target value of the speed or the preset value of the command.
  • the rate of change (such as reducing the rate of change of the set frequency of the inverter, reducing the slope of the speed curve, etc.) to allow the motor to perform acceleration limiting and the like.
  • the acceleration can be directly controlled to control the elevator operation; when the motor driver does not have the direct acceleration control function, the acceleration can be controlled indirectly by controlling the acceleration/deceleration running time;
  • the current frequency that is, the current speed
  • the target frequency ie, the target speed
  • the difference between the target frequency and the current frequency is divided by the value of the acceleration to convert the ideal. Acceleration and deceleration running time.
  • the inventive 28A-1 and/or 28A-2 scheme calculates the mechanical operating parameters for controlling the operation of the elevator based on the quality of the goods carried by the elevator (preferably the current actual value) and the source dynamic parameters (preferably the safety limit threshold).
  • the safety value, the safety value of the mechanical operation parameter includes at least one of the permissible value of the safety approved speed and the absolute value of the safety approved acceleration value, and the elevator speed can be the fastest/efficiency while ensuring safety.
  • the calculated joint operation value of the mechanical operating parameter is also the current value; according to the invention, according to the mechanical operating parameter
  • the joint operation value or the corresponding value of the grade controls the elevator operation may further include the following scheme: detecting whether the current value of the mechanical operation parameter obtained through the joint calculation exceeds a preset safety limit threshold, and if so, correlating Alarm, or speed limit processing;
  • the rated value/manual preset value of the source dynamic parameter can also be selected to be calculated in conjunction with the current actual value of the carrying quality, and the corresponding value of the mechanical operating parameter can be understood as: the load in the elevator is The current speed or acceleration rating/manual preset value when carrying the mass value; the upper limit threshold may also be operated as the command preset value according to the speed or acceleration rating/manual preset value to control the elevator operation,
  • the control method can refer to the above scheme.
  • the value of the mechanical operating parameter of the elevator in addition to the preferred calculation scheme of 28A above, can also perform low performance according to the carrying quality and source dynamic parameters of the elevator, but is simple Calculating; if preset, the associated form of the elevator's carrying quality, source dynamic parameters, and mechanical operating parameters, the associated table is the second associated table; when the known carrying mass and source dynamic parameters are input, the checklist is derived.
  • Running a value of the parameter (joint operation value) controlling the elevator operation according to the value of the mechanical operation parameter;
  • the description of the 28C implementation is as follows: preset an association table of the carrying quality of the elevator and the mechanical operating parameters, the associated table is the first associated table; when the known carrying quality is input, the look-up table obtains the mechanical operating parameters (upstream speed, a value of a downlink speed, an acceleration at an acceleration uplink, and an acceleration at a deceleration downlink (joint calculation value); controlling the elevator operation according to a value of the mechanical operation parameter;
  • 28D Embodiment Description: The above 28A, 28B, and 28C are calculations of values (joint operation values) of mechanical operation parameters of the elevator inside the control system; and values of mechanical operation parameters by external and other systems are also allowed (joint operation) The calculation of the value) only needs to be calculated by the calculation method described in 28A, 28B, and 28C; the value of the mechanical operation parameter calculated by the external and other systems (joint operation value) is read; The value of the parameter controls the operation of the elevator;
  • the look-up table is also a calculation method, a table calculation;
  • Formula 28-4-1, formula 28-4-1, formula 28-5, formula 28-6, second association table, any formula in the first association table, and a table may be referred to as at least one of The mapping relationship between the parameters of the elevator's carrying quality and the mechanical operating parameters of the elevator;
  • Determining the value of the value of the mechanical operating parameter according to the carrying quality usually at a certain time, such as when the elevator is closed, before starting the lifting operation; of course, the value action can also be performed during the lifting process.
  • the value is chosen by the user.
  • controlling the elevator operation refers to controlling the elevator to meet the safety specification operation
  • the above content has solved the source of the safety value of the mechanical operation parameter for controlling the operation of the elevator, and analyzed how to control the elevator operation according to the preset value of the command and the upper limit threshold of the operation.
  • the following content will focus on how to perform the binning and how to perform the binning according to the grade. Or discrete values control elevator operation, the specific content is as follows:
  • the core purpose of the control scheme is to adjust the elevator uplink speed and downlink speed according to the carrier quality (current actual value) and the allowable value of the electric power; when the mechanical operating parameter is the uplink speed or the downlink speed, when the "at least two" When it is only two, it can be simply understood as a high speed value and a low speed value (high speed value > low speed value); when the "at least two" is only two, it can also be understood as two different speeds of the speed.
  • One high speed gear and one low speed gear have a corresponding value for each grade; (speed of high speed gear > speed of low speed gear);
  • the special agreement of the present invention is as follows: “at least two” does not include the case where the mechanical operating parameter is zero or the difference between the mechanical operating parameter value and zero is less than a predetermined value; the main purpose of the agreement is for the technical personnel in the industry. Easy to understand and operate, eliminate zero speed in "at least two".
  • a judgment threshold is set, that is, a third preset value. If the value of the carrier quality is greater than the third preset value, an instruction preset value of the uplink speed is output; for example, the carrier quality If the value is less than the third preset value, another different size command preset value of the uplink speed is output; for example, when the absolute value of the difference between the value of the carried item quality and the balance value is less than the third preset value, Using the high speed value as the command preset value of the up speed or the running upper limit threshold, or controlling the elevator to operate at the high speed; when the absolute value of the difference between the value of the carried item mass and the balance value is greater than or equal to the third preset Value, the low speed value is used as the command preset value of the up speed or the upper limit threshold, or the elevator is controlled to run at the low speed;
  • the three speeds can be simply understood as "high speed value, medium speed value, low speed value", the high speed value is greater than the medium speed value, and the medium speed value is greater than Low speed value; can also be understood as three different speeds of the speed, one high speed, one medium speed, one low speed, the high speed speed is greater than the middle speed speed, the middle speed speed is greater than the low speed speed; Two judgment thresholds (ie, the fourth preset value and the fifth preset value) are set, and the absolute values of the difference between the value of the carried item mass and the balance value are simply divided into three types: large, medium, and small.
  • Interval for example, the absolute value of the difference between the balance value and 0 can be set as the maximum difference, or the absolute value of the difference between the rated load and the balance value is set as the maximum difference; (0 ⁇ fourth preset value ⁇ The fifth preset value ⁇ maximum difference value, the "small” area is the interval from 0 to the fourth preset value, the "middle” area is the interval from the fourth preset value to the fourth preset value, and the "large” area is The interval from the fifth preset value to the maximum difference; when the absolute value of the difference between the value of the carried item quality and the balance value is "large" When the zone is used, the low speed value is used as the command preset value of the up speed or the upper limit threshold of the operation, or the elevator is controlled to run at the low gear; when the absolute value of the difference between the value of the carried item mass and the balance value is in the middle "In the zone, the medium speed value is used as the command preset value of the up speed or the upper limit threshold value, or the elevator is controlled to
  • the foregoing partitioning according to the third preset value, the fourth preset value, and the fifth preset value is merely an example, and is not limited; the user may adjust the preset values and self-zoning by referring to the manner;
  • the value of the mechanical operating parameter is substantially a plurality of discrete values
  • the elevator is based on the plurality of discrete values. Divided into multiple files for control.
  • the specific value of the value can be set according to the type test, a limited number of experiments, and a manual test.
  • the scheme is determined by the scheme, and can also be set by referring to any of the above mapping relationships (formulas or tables). All preset values in this paper can be determined according to the type test setting, limited number of experiments, manual trial and error methods.
  • the load condition of the elevator is called load balance;
  • the balance value is the absolute value of the difference between the weight mass value m3 and the no-load car mass value m0; since the balance value is usually half of the rated load weight m1_ena of the elevator, Therefore, load balancing can also be called half load;
  • the invention provides that when the quality value of the carried item is greater than zero and less than the first preset value (0 ⁇ m1 ⁇ first preset value), it is light load; when the quality value of the carried item is greater than or equal to the second preset value And is less than the rated load weight m1_ena of the elevator (the second preset value ⁇ m1 ⁇ m1_ena) is a heavy load;
  • the first preset value ⁇ the second preset value for example, the first preset value may take 0.5 times the balance value, and the second preset value may take 1.5 times the balance value; of course, the value is the first preset value,
  • the second preset value can be adjusted by the user; but in general, for the convenience of understanding, it is better to comply with the following mathematical rule: (0 ⁇ first preset value ⁇ balance value), (balance value ⁇ second preset value ⁇ m1_ena )
  • the allowable value of the downstream speed is lower than that of the load balance; and this value is subject to the absorption power of the electric power system to the braking power, and is independent of the power safety value Po_ena of the motor (usually equal to the rated power of the motor). ;
  • controlling the elevator operation in the present invention means “controlling the elevator to control the elevator to comply with safety specifications"
  • the compliance with the safety specification is at least one of the following safety conditions 1, safety conditions 2, and safety conditions 3;
  • Safety condition 1 The process as shown in embodiment 28A, the joint operation value of the mechanical operation parameter for controlling the operation of the elevator or the corresponding value of the gear (that is, the command preset value or the operation upper limit threshold) is a mechanical operation parameter.
  • a safety value the safety value of the mechanical operating parameter being calculated based on a parameter comprising at least a carrying mass (preferably a current actual value) and a source dynamic parameter (preferably a safety limit threshold) (as shown in embodiment 28A); It can be understood that it is safe to control the elevator operation with the safety value of the mechanical operating parameter;
  • Safety condition 2 According to the 28B, 28C, 28D scheme, the joint operation value of the mechanical operation parameter for controlling the elevator operation or the corresponding value of the grade (that is, the instruction preset value) is obtained by looking up the table or from the external and other systems. Or run the upper threshold) and verify from the result that the value is not greater than the safe value of the mechanical operating parameters;
  • the safety value of the mechanical operating parameter is calculated based on parameters including at least the carrying mass (preferably the current actual value) and the source dynamic parameter (preferably the safety limit threshold) (as shown in embodiment 28A); understandable It is safe to control the elevator operation with the value of the mechanical operating parameter;
  • Safety condition 3 the joint operation value of the mechanical operation parameter for controlling the operation of the elevator or the corresponding value of the gear (that is, the command preset value or the operation upper limit threshold) and the source corresponding to the carrying quality (current actual value)
  • the value of the dynamic parameter is not greater than the safety limit threshold of the source dynamic parameter; in the specific implementation manner, the value of the corresponding source dynamic parameter may be obtained by the above formulas 28-1, 28-2, 28-3-1, 28-3-2
  • the deformation formula of 28-4-1, 28-4-2 is calculated.
  • the elevator operation is controlled according to the joint operation value of the mechanical operation parameter or the corresponding value of the grade, and when the value of the carried item quality is greater than zero, that is, non-no-load operation, the following adjustment may be followed.
  • Speed regulation scheme 1 The allowable value of the upward speed of the elevator at light load or heavy load should be less than the allowable value of the upward speed at the time of load balancing;
  • Speed regulation scheme 2 The preset value of the upward speed of the elevator at light load or heavy load should be less than the preset value of the upward speed of the load balance time;
  • Speed regulation scheme 3 The upper limit threshold of the upward speed at light load or heavy load should be less than the upper limit threshold of the upward speed at load balance;
  • Speed regulation scheme 4 The allowable value of the descending speed of the elevator at light load or heavy load shall be less than the allowable value of the descending speed of the elevator at the time of load balancing;
  • Speed regulation scheme 5 The preset value of the downward speed command at light load or heavy load should be less than the preset value of the downward speed at load balancing;
  • Speed regulation scheme 6 The upper limit operating threshold of the down speed at light load or heavy load should be less than the upper limit threshold of the down speed at load balancing;
  • the identification of the presence or absence of personnel in the car can be identified by various means such as optical, infrared, video sensor, weighing, etc., and preferably combined by two or more modes.
  • the presence or absence of personnel in the car includes two conditions in the car, no one in the car, such as when the weighing result is zero and the infrared detection is unmanned, the current car can be identified;
  • the safety limit threshold of the source power parameter when there is no one in the car can be higher than the safety limit threshold of the time source power parameter in the car; therefore,
  • the allowable speed value (command preset value/operating upper limit threshold) when no one is in the car can be set to be larger than at light load, so that the elevator can be at a higher speed or higher when no one is in the car. Acceleration operation can greatly improve the operating efficiency of the elevator;
  • the higher operating efficiency of the present invention may include any of the following 35A1-1, 35A1-2, and 35A1-3:
  • 35A1-2 Directly increase the command preset value and/or the running upper limit threshold of the mechanical operating parameter.
  • the beneficial effect of the 35A1 solution of the present invention is that the elevator will often be in an unmanned state in the car. From the common sense, the safety factor can be correspondingly reduced when there is no one in the elevator; when there is someone in the elevator car, the safety factor of the elevator needs to be maintained. To ensure safety; through this 34A1 solution, the elevator can be operated at a higher speed or higher acceleration when no one is in the car, which can greatly improve the operating efficiency of the elevator.
  • the present invention also provides an elevator control system, comprising a control module (1);
  • the control module (1) is configured to: the mechanical operating parameters of the elevator are pre-set with at least two different grades, and the grade of the mechanical operating parameter is selected based on a parameter including at least the quality of the carried item of the elevator; or; Calculating a joint operation value of the mechanical operating parameter based on a parameter including at least the mass of the carried item of the elevator, the mechanical operating parameter having at least two combined operational values of different sizes when the mass of the carrying item varies from zero to the rated load. And controlling the elevator operation according to the joint operation value or grade of the mechanical operation parameter; the mechanical operation parameter includes any one or more parameters of an uplink speed, a downlink speed, an acceleration when the uplink is accelerated, and an acceleration when the vehicle is decelerated.
  • the corresponding value of the grade, the preset value of the command, and the upper limit of the operating limit of the mechanical operating parameter for controlling the operation of the elevator cannot be greater than the safe value of the mechanical operating parameter;
  • the safety value of the mechanical operating parameter is calculated based on parameters including at least the mass of the carried item (preferably the current actual value) and the source dynamic parameter (preferably the safety limit threshold); of course, the calculation can be performed in the internal system It can also be done in an external system;
  • the joint operation value is an instruction preset value.
  • the preset value of the upward speed of the elevator during light load or heavy load is less than the preset value of the upward speed when the load is balanced; and/or: when the load is light or heavy
  • the preset value of the speed command is less than the preset value of the downward speed of the load balance;
  • the parameter calculation based on at least the quality of the carried item including the elevator is specifically: according to the quality of the carried item including at least the elevator and the source dynamic parameter of the elevator Parameter calculation within;
  • the grade of the mechanical operating parameter is calculated based on a parameter including at least the mass of the carried item of the elevator, specifically: the grade of the mechanical operating parameter is based on at least Calculating parameters including the quality of the carried goods of the elevator and the source dynamic parameters of the elevator;
  • control system has any one or more of the following 38A1, 38A2, 38A3, 38A4, 38A5, 38A6, 38A7, 38A8, 38A9 scenarios:
  • the value of the quality of the carried item is calculated based on electrical power parameters
  • the value of the quality of the carried item is calculated based on the energy balance of the prior elevator operation
  • the controlling the elevator operation comprising setting the mechanical operating parameter according to the joint operation value Command preset value or operating upper limit threshold;
  • the value of the quality of the carried item is the current actual value, and the value of the source dynamic parameter is a safety limit threshold.
  • the value of the mechanical operating parameter is calculated based on the mass of the carried item and the source dynamic parameter of the elevator;
  • the calculation is an elevator operation energy balance calculation; the elevator operation energy balance calculation is associated with an elevator running direction;
  • the obtaining the value of the mechanical operating parameter comprises: obtaining a value of an input parameter of the elevator; the input parameter is a parameter required to calculate a value of the mechanical operating parameter; The value of the input parameter calculates the value of the mechanical operating parameter.
  • Hierarchical cross-field electromechanical combination of elevator operation energy balance calculation in the complex elevator operation energy balance calculation, it also needs to be related to the elevator running direction, motor working condition correlation 1, motor working condition correlation 2, motor working condition correlation 3, motor working condition correlation 4, speed change correlation 1, speed change association 2, etc.
  • Correlation calculation need to overcome many industry biases, need to carry out a lot of creative analysis and research, it is possible to obtain a mechanical operating parameter that meets safety regulations (upward speed, down speed, acceleration when accelerating up, acceleration at deceleration down or Multiple parameters) safe and efficient control of elevator operation;
  • the inertial thinking in the industry may think that the elevator speed is not suitable for adjustment. It may be considered that the high speed will damage the safety, and the fast running speed may easily lead to the steel wire rope breaking, which are all industry biases; industry bias may consider the elevator ascending speed, The downstream speed can be divided, and it is not necessary to distinguish between the electric motor state and the motor braking state; even if the motor braking state is distinguished, it may be considered that the higher the braking state is, the higher the power generation is, the better;
  • the control method of the elevator provided by the present invention has the core purpose as the effect: overcomes many technical problems and overcomes industrial prejudice; and analyzes the formulas of formulas 28-1, 2, 3, and 4 provided by the present invention, and is accurate Differentiate the energy flow of the elevator to the working conditions (such as elevator ascending, descending, electric state, motor braking state, etc.) and then calculate the safe value of the running speed according to the current carrying item mass m1; when the elevator goes up/down, the basic The calculation limit structure is different.
  • the safety limit threshold of the electric state electric power is usually the minimum rated power value among the power source, the motor driver and the motor.
  • the safety limit threshold of the electric power in the motor braking state is usually the power source, the motor driver and the motor.
  • the safety limit threshold of each electrical power may have a large difference; if the elevator is not distinguished
  • the speed adjustment of the energy flow to the blind condition of the working condition not only fails to adjust the speed, but also causes the elevator to operate unsafely; even in the Motor braking state, if the speed is too high, the braking power will exceed the absorption capacity of the electric power system, which will cause the bus voltage in the inverter to rise/easy to cause the fault/explosion.
  • the stress is greater than the safety threshold (such as the wire rope pulling force is greater than the breaking stress and breaking, such as the instantaneous torque overrun / shear stress overrun causes the drive shaft to break, the gear burst, etc.); when accelerating the upward movement, or when decelerating down,
  • the safety threshold such as the wire rope pulling force is greater than the breaking stress and breaking, such as the instantaneous torque overrun / shear stress overrun causes the drive shaft to break, the gear burst, etc.
  • the safety threshold such as the wire rope pulling force is greater than the breaking stress and breaking, such as the instantaneous torque overrun / shear stress overrun causes the drive shaft to break, the gear burst, etc.
  • the safe running speed and/or acceleration of the elevator can be accurately set, which plays an important role in improving the operating efficiency of the elevator and improving the safety performance of the elevator operation; It has become the basic equipment in modern life.
  • the elevators of the same number and the same type if using this control method and system, can control the elevator operation efficiently on the basis of ensuring safety, that is, let the elevator run faster. More reasonable; shorten the waiting time of passengers, take the elevator time, reduce the passenger's use time and use cost; if the same amount of transportation is guaranteed, the safety of the elevator, the number of uses, the frequency of use can be reduced, and the elevator can be greatly reduced.
  • the consumption of space resources, equipment funds and electricity in buildings is conducive to environmental protection, energy conservation and consumption reduction.
  • the fifth technical problem to be solved by the present invention is to provide a monitoring method for an elevator operating parameter overrun to be used in an elevator. Improve safety during operation;
  • the present invention further provides a monitoring method (#3) for an elevator operating parameter overrun, comprising the steps of: acquiring a joint operation value of the source power parameter of the elevator, and determining whether the joint operation value exceeds the source dynamic parameter. System preset or safety limit threshold; the joint operation value is calculated based on the elevator operating energy balance.
  • the preset value of the system can be selected according to the actual demand, but generally satisfies: 0 ⁇ system preset value ⁇ source power parameter Safety limit threshold.
  • the source power parameter is the pulling force of the wire rope of the elevator
  • the preset value of the system may be the normal value (ie, the rated value or the calibration value) of the pulling force of the wire rope, which is usually passed the type test, or the manufacturer, or the professional.
  • the detection mechanism is given; the system preset value can also be used as the ideal value required by the user on site and confirmed on site; the system preset value can also be the safety limit threshold value ⁇ 80% value; once the joint operation value of the tensile force of the wire rope exceeds the safety limit threshold value, Then the source power parameters are exceeded.
  • system preset value may also be set to multiple to achieve the grading parameter overrun; for example, the normal value of the tension of the wire rope is taken as the first system preset value (assuming that the value is 50% ⁇ the tension of the wire rope) Safety limit threshold); set the safety limit threshold of the pulling force of 85% ⁇ wire rope to the second system preset value;
  • the protection measures such as emergency speed limit, acceleration limit, stop, prohibition of operation, and alarm signal can be activated;
  • the red light may be illuminated at this time to indicate that the warning source power parameter is in the second overrun range
  • the yellow light may be illuminated at this time to indicate that the warning source power parameter is in the first overrun range
  • the green light may be illuminated at this time to indicate that the source power parameter is not exceeded.
  • the system operating parameters required in the elevator running energy balance calculation include speed and/or acceleration, and the speed and/or acceleration The value is set according to the preset value or the measured value of the command; the energy balance calculation of the elevator running is associated with the running direction of the elevator.
  • the monitoring method (#3) satisfies any one or more of the following conditions 42A1, 42A2, 42A3, 42A4, 42A5, 42A6, 42A7, 42A8:
  • the parameters participating in the calculation of the energy balance calculation of the elevator include an efficiency coefficient;
  • the efficiency coefficient is adjusted according to the operating condition of the motor
  • the source power parameter is electrical power
  • the electrical power is set according to a motor operating condition
  • the parameter participating in the calculation of the elevator running energy balance includes friction correlation data of the mechanical rotating member
  • the joint operation value of acquiring the source dynamic parameter of the elevator in the monitoring method (#3) includes the following steps: acquiring a value of an input parameter of the elevator; and the input parameter is calculating the joint operation value a parameter of the requirement; calculating the joint operation value according to the value of the obtained input parameter.
  • the present invention further provides a monitoring system (#3) for an elevator operating parameter overrun, comprising a source power parameter overrun monitoring module (2), configured to: determine whether the joint operation value exceeds the source dynamic parameter System preset or safety limit threshold; the joint operation value is calculated based on the elevator operating energy balance.
  • a monitoring system (#3) for an elevator operating parameter overrun comprising a source power parameter overrun monitoring module (2), configured to: determine whether the joint operation value exceeds the source dynamic parameter System preset or safety limit threshold; the joint operation value is calculated based on the elevator operating energy balance.
  • It may further comprise a joint operation value detecting module (1) for acquiring a joint operation value of the source power parameters of the elevator to provide a joint operation value in the source power parameter overrun monitoring module (2).
  • the system operating parameters required in the elevator running energy balance calculation include speed and/or acceleration, and the values of the speed and/or acceleration are set according to preset or measured values of the command;
  • the elevator running direction is associated;
  • the monitoring method (#3) is a technology rooted in the same idea as the control method of the foregoing elevator, and it can be understood that the monitoring method (#3) is the aforementioned control method of the elevator. Inverse operation; the solution is applicable to locations where the speed and/or acceleration of the elevator is not required and/or not allowed to be actively adjusted;
  • the integrated tension of the wire rope can be predicted according to the default value of the system of the counterweight mass and the preset value of the acceleration when the acceleration is up or down. Whether it is overrun; when the energy balance calculation of the elevator operation includes the mass of the carried item, the value of the quality of the carried item is a current value or a preset value; the wire rope can be predicted under the setting conditions of various carrying item quality Whether the combined tension or the torque of the rotating machine will exceed the limit.
  • the acceleration in the preset value of the command can be directly read; when the motor driver (such as the frequency converter) does not have the direct acceleration control function, the motor drive can be driven through the motor.
  • the preset value of the command that the actuator has issued and is ready to execute (known current frequency (ie, current speed), set target frequency (ie target speed), set acceleration/decel run time, set acceleration and deceleration The slope of the curve) gives the acceleration of the preset value of the command; in general, the command preset value of the speed can be easily read from the motor driver.
  • Embodiment 1 of the monitoring method (#3) provided by the present invention is a diagrammatic representation of Embodiment 1 of the monitoring method (#3) provided by the present invention:
  • Embodiment 2 of the monitoring method (#3) provided by the present invention is a diagrammatic representation of Embodiment 2 of the monitoring method (#3) provided by the present invention:
  • Embodiment 3 of the monitoring method (#3) provided by the present invention is a diagrammatic representation of Embodiment 3 of the monitoring method (#3) provided by the present invention:
  • the source power parameter overrun processing mechanism is similar to the energy transfer exception processing mechanism, and may include but is not limited to: voice prompt alarm, sound and light alarm, and alarm information. Output to the human-computer interaction interface, network system, connection port, etc. in the car; emergency stop; etc.; machine system and manual can be combined to set various processing actions.
  • the determined information includes a determination result according to whether the joint operation value of the source dynamic parameter exceeds a safety limit threshold of the source dynamic parameter, if an external system requires
  • the information may further include any one or more of the joint operation value of the source dynamic parameter and the safety limit threshold of the source dynamic parameter;
  • This program includes the following steps:
  • the preset value of the instruction (that is, the control instruction, the target value) may be determined to be incorrect, and if the instruction is executed, the instruction may be generated. (such as the wire rope exceeds the breaking stress, or the gear is damaged, or the electrical power system is damaged) safety risk; at this time, the system can output a warning signal, or forcibly cut off the execution of the command, or forcibly stop; in a sense, prevent The role of future (not yet occurring, but will occur) security risks is of great importance to the safe operation of elevators.
  • the warning signal is output; whether (1) the scheme predicts whether the upcoming control command (that is, the manual or the system issues the command) causes the future security risk to be different; (2) the scheme monitors whether there is currently a parameter super Limited safety risks; also important for the safe operation of elevators.
  • Obtaining a preset value of the quality of the carried item of the elevator obtaining (by measurement) a current value of the running speed and/or acceleration of the elevator; and a current value of the preset value, running speed and/or acceleration based on the acquired quality of the carried item Value calculation (check table calculation or elevator operation energy balance calculation) joint operation value of the source dynamic parameter, the joint operation value of the source dynamic parameter is substantially the current value (set according to the preset value of the quality);
  • This program includes the following steps:
  • Obtaining a preset value of the quality of the carried item of the elevator obtaining a preset value of the running speed and/or acceleration of the elevator; calculating based on the preset value of the obtained item quality, the running speed and/or the preset value of the acceleration (check Table calculation Or the elevator operation energy balance calculation) the joint operation value of the source power parameter, determining whether the joint operation value exceeds the safety limit threshold/system preset value of the source dynamic parameter;
  • This solution is usually used to make reasonable predictions of motion planning, delivery quality, operating speed and/or acceleration; it can promote the efficiency of elevator operation.
  • the invention provides a monitoring method and system for elevator running parameter overrun (#3): the current elevators are all controlled by microcomputer, and the speed and/or acceleration of the elevator running are preset by software instructions.
  • the prediction and judgment of the source dynamic parameters can be predicted and predicted before the execution of the preset values of the speed and/or acceleration (to be performed but not yet occurred). Whether it will exceed the limit, in a sense to prevent future risks, is of great significance for the safe operation of elevators.
  • the sixth technical problem to be solved by the present invention is to monitor an elevator, and the monitoring method comprises the following steps:
  • the electronic device in the monitoring method is typically a display;
  • the portable personal consumer electronic product includes a mobile phone, a palmtop computer, a smart watch, a smart bracelet, a digital camera, a game machine, etc.;
  • the invention outputs on the human-machine interface
  • the joint operation value includes a display operation and/or a voice prompt joint operation value in any one or more of a text, an image, a sound, a voice, and the like;
  • the human-machine interface of the hall door in the present invention is disposed on the elevator hall door.
  • a human-machine interface in the vicinity thereof, the human-machine interface can be used to send any one or more kinds of information such as text, image, sound, voice, etc. to the passenger waiting for the elevator at the hall door.
  • the obtaining in the solution may include receiving a joint operation value of the measurement object sent by the external device by using a wireless receiving manner, or receiving a joint operation value of the measurement object sent by the external device through a wired manner such as a USB or a CAN bus;
  • the elevator operating parameters can also be directly received by wired/wireless method, and then the received elevator mass, source power parameters, system operating parameters, and then calculated in the elevator operating energy balance calculation principle are used in the electronic device.
  • the joint operation value of the measured object
  • the beneficial effects of the technical solution compared with the existing car weighing method and result in the car, the significance of observing the safe operation state of the elevator during the elevator lifting operation is weak; comprehensively, the monitoring method provided by the present invention, choose a special data acquisition method (the data calculated according to the energy balance of the elevator operation includes the condition of the energy transfer system of the elevator, that is, the safety status of the elevator operation), displayed in a special place (electronic equipment and/or portable in the car) Personalized consumer electronics and/or the human-machine interface of the elevator door, thereby achieving an unexpected special safety effect, especially when selecting a particular display object such as the quality of the elevator (especially the quality of the carried item therein); It helps the passengers in the elevator or the door to directly judge whether the elevator is running normally in a very intuitive way.
  • a special data acquisition method the data calculated according to the energy balance of the elevator operation includes the condition of the energy transfer system of the elevator, that is, the safety status of the elevator operation
  • the elevator passenger when the quality of the goods carried in the elevator quality is used as the calculation object, it helps the elevator passengers to pass the electrons.
  • the joint operation value of the passenger's weight displayed on the device directly determines whether the elevator is currently running normally; for example, when the above line speed and/or the down speed are used as the measurement targets, the elevator passenger can help the elevator passenger to observe the uplink speed displayed on the electronic device and/or Or the combined value of the downstream speed and the actual value of the elevator upstream speed and/or the downstream speed or Setting, direct current determines the elevator is operating normally; therefore the technical solution as compared to the prior art is also an important step forward.
  • the actual value of the measurement object is also output, and the electronic device and/or the portable personal consumer electronic product and/or the hall door of the elevator are simultaneously in the car with the joint operation value. Displayed on the display unit.
  • the implementation description and the beneficial effects of the technical solution simultaneously display the joint operation value and the actual value of the measurement object on the display interface of the electronic device in the same space, so as to facilitate the more intuitive comparison and judgment of the passengers.
  • the elevator operation energy balance calculation satisfies any one or more of the following 45A1, 45A2, 45A45, 45A4, 45A5, and 45A6, and the functions of the technical conditions can be referred to the above. 3A1-3A6.
  • the parameters participating in the calculation of the energy balance calculation of the elevator include an efficiency coefficient;
  • the calculation method of the efficiency coefficient is adjusted according to the operating condition of the motor
  • the parameters participating in the calculation of the energy balance calculation of the elevator include the frictional force between the object and the car in the guide rail and/or the elevator shaft;
  • the type setting of the electrical power is performed according to a motor operating condition
  • the parameters involved in the energy balance calculation of the elevator operation include friction correlation data of the mechanical rotating parts.
  • the measurement object is one or more parameters that have been output on the human-machine interface on the electronic device and/or the portable personal consumer electronic product and/or the hall door.
  • the portable personal consumer electronic product includes any one or more of a mobile phone, a smart watch, and a smart wristband.
  • the mobile phone, the smart watch, the smart wristband have the characteristics of being widely carried by the passengers, and monitoring on the same, which has better portability than other products, and can be greatly improved.
  • the measurement object is elevator mass (especially the mass of the carried item therein) and/or the upstream speed and/or the descending speed and/or the object and the car in the guide rail and/or the elevator shaft. Friction force f0 and / or efficiency coefficient.
  • the elevator quality (especially the quality of the carried goods therein) is most familiar and concerned by the elevator passengers, and is special for visual monitoring. Meaningful parameter; at any time, outputting the value of the carrying quality (to the man-machine interface in the car and/or the man-machine interface of the hall door) helps the elevator passenger to recognize at a glance whether the elevator is running normally, for the elevator Safe operation is of great significance; for example, when a passenger weighing 75 kg enters the elevator car, if the man-machine interface in the elevator car shows that the mass of the carried item is 200kg, such as a calf, or 20kg as light as a small sheep, the passenger can immediately recognize the
  • the energy transfer system of the elevator that is, the core components that drive the elevator operation, such as the electric power system, the wire rope traction system, the friction condition of the guide rail and the car, etc.
  • the energy transfer system of the elevator that is, the core components that drive the elevator operation, such as the electric power system, the wire rope traction system, the friction condition of the guide
  • the passenger is one person weighing 75kg. If the man-machine interface elevator of the hall door shows that the quality of the carrying item is 200kg, such as a calf, or 20kg as light as a small sheep, the passenger waiting for the elevator at the hall door can immediately identify it. Whether the energy transfer system of the elevator is normal or not, whether the elevator is safe, and taking corresponding measures (such as refusing to enter the elevator, or reporting an elevator abnormality to the service organization, etc.);
  • the uplink speed and/or the downlink speed can directly sense the actual speed; these parameters are all convenient to improve the effect of the elevator passengers to intuitively monitor the elevator running condition, and help to improve the safety performance;
  • the frictional force f0 between the object and the car in the guide rail and/or the elevator shaft is the core information of the safe operation of the elevator, and is a technical point neglected by the prior art; convenient for monitoring whether the occupant is stuck between the car and the elevator shaft Key information such as the friction condition of the object and the car in the guide rail and/or the elevator shaft; the elevator service personnel or passengers can quickly and easily know which guide rail is severely deformed and the resistance is increased.
  • the present invention also provides a monitoring system for an elevator, comprising:
  • a monitoring processing module configured to obtain a joint operation value of the measurement object; output the joint operation value to display on the human-machine interface of the electronic device and/or the portable personal consumer electronic product in the car and/or the hall door of the elevator And/or: displaying the joint operation value of the measurement object on the human-machine interface of the electronic device in the car and/or the portable personal consumer electronic product and/or the hall door of the elevator, the measurement object is the elevator operation of the elevator Any one or more of the parameters, the joint operation value is calculated based on the energy balance of the elevator operation.
  • a parameter acquisition module may be further included for acquiring the joint operation value for being provided to the monitoring processing module for output.
  • the monitoring processing module is further configured to output an actual value of the measurement object to simultaneously be in the car with the combined operation value of the electronic device and/or the portable personal consumer electronic product and/or the elevator. Displayed on the display unit on the hall door.
  • the monitoring system corresponds to the above monitoring method, and the above method provided in the monitoring method can be applied to the monitoring system.
  • the invention provides a monitoring method and system (#1) for an elevator during lifting operation, an elevator load monitoring method and system (#2), an elevator control method and system, and an elevator operating parameter
  • the core inventive idea of the system is related to: a scheme for acquiring the joint operation value of the measurement object of the elevator, and the joint operation value is calculated based on the energy balance calculation of the elevator operation, and the energy balance calculation of the elevator operation is associated with the running direction of the elevator;
  • the invention provides a monitoring method and system (#1) for elevator lifting operation, and the core idea is to compare the joint operation value of the measuring object of the elevator with the reference data; the first reference value in the reference data is required to be as close as possible
  • the actual value of the object such as the quality of the carried item
  • the first reference value can be much smaller than the safety limit threshold of the parameter (such as the maximum legal load of the elevator); for example, when 4 people take the elevator (assuming each person weighs 75kg), the normal name is The weight result should be 300kg.
  • the safety processing mechanism can be started immediately; to realize the abnormality of elevator energy transmission caused by the reason that the person is stuck between the car and the elevator shaft.
  • the monitoring method and system (#1) can usually work in real time when the elevator is running up and down;
  • the invention provides a method and system for monitoring elevator load (#2), the core idea is that the combined operation value of the quality of the carried goods of the elevator is compared with the safety limit threshold, for example, when the mass of the carried item is greater than 1.0 times the elevator
  • the maximum legal load (assuming 14 people / 1050kg) is to initiate a voice alarm to remind the passengers to reduce the quality of the carrier/item; even if the actual 4 passengers take the elevator / the normal weighing result should be 300kg, but when the weighing system is called
  • the amount is 1000kg, the traditional elevator control system will still consider the elevator's energy transfer system to work properly.
  • the elevator load monitoring method and system (#2) can work intermittently at a certain time (such as when the elevator runs at zero speed), and can also monitor the work continuously/real time during elevator lifting operation.
  • the former (the monitoring method and system (#1) of the elevator lifting operation) provided by the present invention is much higher than the latter in the elevator lifting operation (a type of elevator load monitoring) Method and system (#2)), of course, the latter can achieve weighing and overload monitoring before the elevator runs at zero speed; it can play a necessary supplementary role for the former, and still has important significance.
  • the invention provides a method and a system for controlling the operating efficiency of an elevator.
  • the core idea is to set the permission value of the mechanical operating parameters of the elevator (such as the maximum speed allowed, the highest acceleration), or the mechanical operating parameters of the elevator have exceeded the permissible value.
  • Time limit control (such as overspeed, super acceleration) for control and protection, such as speed limit, acceleration limit, alarm, shutdown, etc.;
  • the control method and system, the core purpose is elevator efficient, energy saving control.
  • the present control method and system when used for planning of target speed and/or target acceleration, may be intermittently operated after acquiring the mass of the vehicle and at some time before the high speed operation; when used for the speed threshold and/or the acceleration threshold When the limit is controlled, it can also work continuously/real time when the elevator is running up and down;
  • the invention provides a monitoring method and system (#3) for an elevator operating parameter overrun, and the core idea is to calculate a joint of source power parameters according to an instruction preset value of speed and/or acceleration (to be executed but not yet occurring). Whether the calculated value, prediction and judgment (such as electric power or wire rope tension) will exceed the limit, in a sense, has the effect of preventing future risks; the control method and system, the core purpose is the elevator operation safety control.
  • the monitoring method and system (#3) can work before the elevator runs, predict whether the source power parameters will exceed the limit according to the preset value of the speed and/or acceleration command; or can work continuously/real time during the elevator running,
  • the source dynamic parameter overrun prediction is performed on each of the command preset values of the speed and/or acceleration to be executed.
  • the ideal control method of the elevator can be: selecting the safety limit valve of the electric power/power generation feedback power/or the energy consumption braking power in the electric state according to the motor operating condition (electric/motor braking state) in the elevator energy flow direction. Value, and then set the elevator running speed according to the safety limit threshold of the electrical quantity of the goods and the electrical power of the motor operating conditions (refer to the above 28A-1 scheme), set the core with safety and high speed; the setting of the running acceleration is Can refer to the above 28A-2 scheme, with strict safety as the core (ensure that the acceleration does not cause mechanical stress to exceed the limit, and does not cause broken rope, transmission shaft/gear damage);
  • the operating speed of the elevator can be set to greatly improve the operating efficiency of the elevator.
  • the number of elevator installations can be reduced, thereby saving
  • the installation cost, manufacturing cost, maintenance cost and power consumption of the idle elevator have significant energy conservation and environmental protection significance.
  • the jerk J of the elevator that is, the setting parameter of the S degree of the acceleration/deceleration S curve, is related to the comfort of the human body; when the jerk J is too large, the acceleration and deceleration stress that the human body is subjected to is too large to cause discomfort or even no Safety
  • the jerk J can be set according to the national or related industry regulations; when the elevator speed, acceleration, and jerk J have been set, the elevator can run on the ideal S curve to achieve efficient, safe and comfortable operation;
  • the system can further set the ideal deceleration distance;
  • the S curve deceleration operation can be divided into three sections (initial deceleration phase S5, uniform deceleration phase S6, final deceleration phase S7);
  • the acceleration value of phase S6 is 0, and the acceleration is the set safety limit threshold;
  • the time of S5 and S7 can be obtained by dividing the acceleration permission value by the absolute value of the permissible value of the jerk; because each segment of S5, S6, S7 The speed value and time can be obtained, so the deceleration distance can be accurately known.
  • the invention provides a method for obtaining the value of an elevator operating parameter, a monitoring method for an elevator during lifting operation, a monitoring method for an elevator load, an elevator control method, and an overrun monitoring of an elevator operating parameter.
  • the method, an elevator monitoring method can be operated in a separate device or integrated into an existing central controller, or a motor drive, or a human-machine interaction interface in the car.
  • the invention provides an estimation system for elevator operating parameters, a monitoring system for elevators during lifting operation, a monitoring system for elevator loads, a control method for elevator operating efficiency, and a monitoring of elevator operating parameter overruns.
  • the system, an elevator monitoring system can exist as a stand-alone device or integrated into an existing central controller, or a motor drive, or a human-machine interface in the car.
  • the technical solution provided by the invention can basically be realized when the new hardware cost is zero, can greatly improve the safe running coefficient of the elevator, and is beneficial to guarantee the safety of the life and property of the elevator occupant; or can greatly improve the elevator operating efficiency and save Cost and power consumption have significant energy conservation and environmental protection significance.
  • Elevator operation energy balance calculation can be regarded as a unique data in itself
  • the invention deeply studies the relationship between “elevator running energy balance calculation” and “elevator operation safety”, and Based on the data acquired by “Elevator Operation Energy Balance Calculation” as a key technical means to construct a variety of monitoring systems or processing systems, thereby achieving a major breakthrough in elevator operation safety technology; this is also an important creative point of the inventive idea;
  • the invention makes an in-depth study on “elevator operation energy balance calculation” and “elevator operation safety”, and proposes that a certain parameter is used as a calculation object, and the data obtained by “elevator operation energy balance calculation” (joint operation value) is obtained, which is different from By comparing the reference data set by the route or different time, and judging whether the power transmission status of the elevator is abnormal, as a key technical means to construct the monitoring system, thereby realizing a major breakthrough in the safety technology of the elevator operation; this is also the idea of the present invention. An important creative point;
  • the invention analyzes the influence of the data (especially the inherent parameters of the system) in the energy balance calculation of the elevator on the operation safety of the elevator, and deeply studies the scientific laws therein; and proposes the inherent parameters of the system (such as the guide rail and/or the elevator shaft) The friction between the medium object and the car f0, etc.) as a key object to construct the monitoring system as a key technical means, thus achieving a major breakthrough in the safety technology of the elevator operation; this is also an important creative point of the inventive idea;
  • the electrical power parameters are used as the source dynamic parameters in the energy balance calculation of the elevator, which brings significant advantages in cost, sensitivity, accuracy and other performance, that is, a significant impact on the elevator operation safety monitoring system (cost performance, sensitivity, accuracy). Breakthrough; this is also an important creative point of the inventive idea;
  • a plurality of scientific reference setting schemes (such as the actual measurement mode, the self-learning mode, and the calibration mode) are formulated, thereby constructing a complete and automatic energy transfer abnormality.
  • the invention aims at calculating the data calculated by the energy balance calculation of the elevator operation (that is, the joint operation value), and performs in-depth research on the influence of the elevator operation safety on the occasion of different occasions; the data calculated by using the energy balance calculation of the elevator operation as a principle It is displayed in the device or area that is convenient for visual observation of the passengers in the vehicle, which will significantly improve the safety monitoring performance of the elevator; this is also an important creative point of the inventive idea;
  • the invention is based on the calculation of the energy balance calculation of the elevator operation (that is, the joint operation value), and can be used as a historical record original value, and one or two data can be used to clearly reflect the safety status of the elevator, avoiding useless purposes. Untargeted, confusing big data to measure the cost increase and lack of performance brought by elevator safety conditions Lost; this is also an important creative point of the inventive idea;
  • the invention is directed to the data characteristics of various data (such as rolling resistance coefficient, power plant operating condition, operating environment information, and even the unique point brought by the elevator quality as the display object in the elevator operation), and the safety monitoring performance of the elevator operation
  • various data such as rolling resistance coefficient, power plant operating condition, operating environment information, and even the unique point brought by the elevator quality as the display object in the elevator operation
  • the safety monitoring performance of the elevator operation The impact of the in-depth study, and thus propose various optimization programs; this is also an important creative point of the idea of the present invention.
  • the elevator in the present invention may also be referred to as an elevator, especially an electric drive elevator, especially suitable for a lift with counterweight; all the technical solutions, methods and systems of the present invention can be used in the field of elevators;
  • "elevator” and “elevator” can be directly replaced, for example, “elevator operating parameter” can be replaced by “elevator operating parameter”, for example, “elevator quality” can be replaced by “elevator quality”, for example, “elevator running energy balance” It can be replaced with "elevator running energy balance", for example, "car” can be replaced with “item loading mechanism” and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Elevator Control (AREA)

Abstract

公开了一种电梯参数的获取、控制、运行和载荷监控的方法及***。该方法在电梯上行或者下行时,获取电梯的输入参数的值,并根据该输入参数的值计算出该电梯的测算对象的联合运算值。该测算对象为电梯质量、源动力参数、***运行参数中任意一种参数,该输入参数是计算该电梯的测算对象的联合运算值所需的参数,该计算为电梯运行能量平衡计算,在计算过程中,根据至少包括电梯质量、源动力参数、***运行参数中的任意两种参数的数据去计算另一种参数。该方法可以提高电梯运行参数的适用范围。

Description

电梯参数的获取、控制、运行和载荷监控的方法及*** 技术领域
本发明涉及电梯技术领域,尤其适用于具有对重的电梯。更具体的说,涉及一种电梯参数的获取、控制、运行和载荷监控的方法及***。
背景技术
电梯是一种重要的人员物品输送型机器设备,使用频率高,其安全可靠性直接关系到乘员的生命安全。
目前电梯行业称重应用技术中,常分下述A、B、C三类称重方案;
A.轿厢内传感器称重:常用涡流传感器、称重压力传感器、干簧管等传感器称重(如通过涡流传感器检测轿底的形变量得到轿厢的载重),该结构轿底通常采用双层结构,两层轿底间需垫上称重橡胶,材料成本、安装成本、建筑施工成本高;且因轿底都属于运动部件,而涡流传感器对距离十分敏感,称重零点易漂移,工程人员需经常重新调整称重零点、满载点与舒适感,导致维保难度大,费用高。
B.轿厢外传感器称重:也可以在轿厢顶部安装一拉力传感器,根据该拉力传感器输出信号称重;欧洲电梯还有在牵引绳端部安装张力测量仪的称重方法,其需在每根钢丝绳上安装张力测量仪;日立电梯采用了另一种技术方案,将牵引绳作为被测电阻串联接入所述阻抗检测传感器,通过测量牵引绳的阻抗变化称重;该类方案不仅仅存在成本高、功能单一的缺点,且对于电梯的变速运行缺乏深入研究,因为电梯在启动后必然进入加速运行中、接近停机位时必然进入减速运行中,从而现有B类技术只能适用于匀速运行中,在加减速运行时必然出错,从而降低了使用意义;
C.变频器称重:申请号201310116151.9的中国专利申请,还提出了一种电梯轿厢内捣乱的判断方法,其中提出了零速时电机的转矩计算乘客重量技术,m=(m3-m1-T*I/R)/g;因电梯的机械机构/运行原理复杂,该计算公式不适用于在电梯升降运行时。
综合分析现有技术:现有的电梯运行参数的测算方法欠缺广泛适用性,导致了不便于更深入分析了解的电梯的运行安全状况,不便于在电梯运行参数未超出安全极限阀值前实现对电梯运行安全状况的监控,不便于实现对电梯实现更先进的高效、节能控制。
发明内容
本发明解决的技术问题之一是提供一种提高适应性的电梯参数的获取、控制、运行 和载荷监控的方法及***。
1、本发明提供了一种电梯运行参数的值的获取方法,也即一种电梯运行参数的测算方法,该获取方法在电梯上行或者下行时,获取所述电梯的输入参数的值,根据所述输入参数的值计算出所述电梯的测算对象的联合运算值;所述计算为电梯运行能量平衡计算,所述输入参数是计算所述电梯的测算对象的联合运算值所需求的参数,所述测算对象为电梯质量、源动力参数、***运行参数中任意一种参数,所述电梯运行能量平衡计算为根据至少包括电梯质量、源动力参数、***运行参数中的任意两种参数的数据去计算另一种参数。
2、相应的,本发明还提供一种电梯运行参数的获取***,也即一种电梯运行参数的测算***,包括:
获取模块,用于在电梯上行或者下行时,获取所述电梯的输入参数的值,根据所述输入参数的值计算出所述电梯的测算对象的联合运算值;所述计算为电梯运行能量平衡计算,所述输入参数是计算所述电梯的测算对象的联合运算值所需求的参数,所述测算对象为电梯质量、源动力参数、***运行参数中任意一种参数,所述电梯运行能量平衡计算为根据至少包括电梯质量、源动力参数、***运行参数中的任意两种参数的数据去计算另一种参数。
3.根据本发明的另一方面,本发明提供还一种电梯在升降运行时的监控方法(#1),包括步骤;
获取所述电梯的测算对象的联合运算值,根据所述联合运算值识别所述电梯的能量传递状况;其中,所述测算对象为电梯运行参数中的任意一种或者多种,所述联合运算值是基于电梯运行能量平衡计算所得。
优选地,在本监控方法(#1)中,在上述步骤之前还可以包含获取联合运算值的步骤。
4、进一步的,在本发明的监控方法(#1)中,上述根据所述联合运算值识别所述电梯的能量传递状况具体为:根据所述联合运算值和所述测算对象的参考数据判断所述电梯的能量传递状况是否异常。
5.本发明还提供一种电梯升降运行时的监控***(#1),包括:
能量传递状况判断模块,用于:获取所述电梯的测算对象的联合运算值,根据所述联合运算值识别所述电梯的能量传递状况;其中,所述测算对象为电梯运行参数中的任意一种或者多种,所述联合运算值是基于电梯运行能量平衡计算所得。
6.本发明还提供一种电梯载荷的监控方法(#2),当电梯的抱闸***松开抱闸,所述电梯以零速或非零速运行时,所述监控方法包括下述步骤:
23A.获取所述电梯的运载物品质量的联合运算值;所述联合运算值是基于电梯运行能量平衡计算所得,且所述电梯运行能量平衡计算中所需求的源动力参数为电气动力参数或机械旋转件的动力参数;
23B.进行下述23B1、23B2中任意一种或多种方案处理:
23B1.判断所述联合运算值是否大于所述电梯的额定载重量,并进行下述23B11、23B12中任意一种或多种方案处理;
23B11.如所述判断结果包括是,则启动设定的超载处理机制;
23B12.输出和/或保存所述判断的信息;
23B2.将所述联合运算值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面。
7.本发明还提供一种电梯载荷的监控***(#2),包括联合运算值获取模块(1);所述监控***还包括超载处理模块(2)、输出模块(3)中的任意一种或多种模块;
所述联合运算值获取模块(1)用于:获取所述电梯的运载物品质量的联合运算值;所述联合运算值是基于电梯运行能量平衡计算所得,且所述电梯运行能量平衡计算中所需求的源动力参数为电气动力参数或机械旋转件的动力参数;
所述超载处理模块(2)用于:判断所述联合运算值是否大于所述电梯的额定载重量,并进行下述26B11、26B12中任意一种或多种方案处理;
26B11.如所述判断结果包括是,则启动设定的超载处理机制;
26B12.输出和/或保存所述判断的信息;
所述输出模块(3)用于:将所述联合运算值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面。
8.本发明还提供一种电梯的控制方法,该方法可以用来提高电梯的运行效率,方案步骤如下:该电梯的机械运行参数预设有至少两个不同的档次,基于至少包括该电梯的运载物品质量在内的参数选择该机械运行参数的档次;或;基于至少包括该电梯的运载物品质量在内的参数计算该机械运行参数的联合运算值,当运载物品质量在零到额定载重量间变化时该机械运行参数具有至少两个大小不同的联合运算值;以根据该该机械运行参数的联合运算值或档次控制电梯运行;所述机械运行参数包括上行速度、下行速度、加速上行时的加速度、减速下行时的加速度中任意一个或多个参数。
9.本发明还提供一种电梯运行效率的控制***,包括控制模块(1),用于实现:该电梯的机械运行参数预设有至少两个不同的档次,基于至少包括该电梯的运载物品质量在内的参数选择该机械运行参数的档次;或;基于至少包括该电梯的运载物品质量在内的参数计算该机械运行参数的联合运算值,当运载物品质量在零到额定载重量间变化 时该机械运行参数具有至少两个大小不同的联合运算值;以根据该该机械运行参数的联合运算值或档次控制电梯运行;所述机械运行参数包括上行速度、下行速度、加速上行时的加速度、减速下行时的加速度中任意一个或多个参数。
10.本发明还提供一种电梯运行参数超限的监控方法(#3),包括步骤:
获取所述电梯的源动力参数的联合运算值,判断所述联合运算值是否超出所述源动力参数的***预设值或安全极限阀值;所述联合运算值是基于电梯运行能量平衡计算所得。
11、本发明还提供了一种电梯运行参数超限的监控***,包括:
联合运算值检测模块(1),用于获取所述电梯的源动力参数的联合运算值
源动力参数超限监控模块(2),用于:判断所述联合运算值是否超出所述源动力参数的***预设值或安全极限阀值;所述联合运算值是基于电梯运行能量平衡计算所得。
12、本发明同时还提供一种电梯的监视方法,包含下述步骤:获取测算对象的联合运算值;输出该联合运算值,以在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上进行显示;和/或:将测算对象的联合运算值在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上显示,所述测算对象是电梯的电梯运行参数中任意一种或多种参数,所述联合运算值是以电梯运行能量平衡计算所得。
13、本发明为解决其技术问题还提供了一种电梯的监视***,包括:
监视处理模块,用于获取测算对象的联合运算值;输出该联合运算值,以在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上进行显示;和/或:将测算对象的联合运算值在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上显示,所述测算对象是电梯的电梯运行参数中任意一种或多种参数,所述联合运算值是以电梯运行能量平衡计算所得。
附图说明
图1是本发明一种电梯升降运行时的机械结构的示意图;
图2是本发明的实施例6的电梯在升降运行时的监控方法的流程示意图。
具体实施方式
第一部分内容:针对本发明技术方案所述的名词、参数,特做如下的解释说明:
1、基础性的说明:
1.1、本发明主要适用于具有对重的电梯;因为无对重的电梯,其工作原理、结构 的复杂性和技术方案的难度远低于有对重的电梯;如说明书附图的图1所示,本发明所述电梯通常具有曳引机、导向轮B5、轿厢B0(对应的空载轿厢质量为m0)、运载物品B1(对应的运载物品质量为m1)、对重B3(对应的对重质量为m3)、钢丝绳、导轨、导靴、补偿装置等组成;其中曳引机又可包括曳引电机、曳引轮B2;从传动***分类,曳引机又可分为涡轮式、斜齿轮、星型齿轮、无齿轮曳引机等;
本发明以电梯轿厢为核心研究对象,为了便于描述和业内技术人员理解本发明,在没有限定说明或附加说明时:本发明所述的运行指电梯轿厢沿垂直方向运行;如后续电梯的速度/或加速度,均指电梯轿厢沿垂直方向运行的速度/或加速度;电梯的上行/或下行,均指电梯轿厢沿垂直方向运行的上行或下行;电梯门的开启或关闭,不属于本发明所述的运行,电梯门开关时,电梯禁止沿垂直方向运行。
1.2、动力装置的概述:指能直接驱动电梯沿垂直方向运行的装置;电梯的动力装置通常为电机;本发明所述的电机,指能直接驱动电梯沿垂直方向运行的电机,电机主要类型包括而不局限于:交流异步电机、交流同步电机、直流电机、开关磁阻电机、永磁无刷电机、直线电机、轮毂电机等;
1.3、动力控制装置的概述:电梯的动力控制装置通常为电机驱动器,指能驱动本发明所述电机的装置及其连接线缆,包括而不局限于:变频器、伺服驱动器、直流电机控制器、开关磁阻电机驱动器、永磁无刷电机驱动器、直线电机驱动器、具备电机驱动能力的一体化控制器等;
显而易见的,本发明中所述驱动、电机驱动器、驱动电机运行、驱动电梯运行中“驱动”,并非单指驱动电机以电动状态、拖动电机运行,也包括控制电机制动运行、工作于制动状态。
1.4、能源供应装置的概述:电梯的能源供应装置,可称为电源装置,是指能给电机驱动器、电机、电梯提供驱动能量的装置及其连接线缆,包括常规的AC电源、后备电源等等;
1.5、动力***具体所包含器件的说明:
1.5.1、本发明所述电气动力***,所包含器件的范畴视具体的电气动力参数组信号的采集点而定;如源动力参数信号的采集点在电源装置的输入端则电气动力***同时包含电梯的电源装置、电机驱动器以及电机三个器件;如源动力参数信号的采集点在电源装置的输出端或电机驱动器的输入端,则电气动力***同时包含电机驱动器、电机两个器件;如源动力参数信号的采集点在电机驱动器的输出端或电机的接线端,则电气动力***只包含电机;
1.5.3、本发明所述的动力装置、动力控制装置、能源供应装置,三者主要是从功 能上分类;从器件构造上说,可以把三者中任意两者或者三者组合成下述任一种综合***:动力控制装置和动力装置的二合一综合***,能源供应装置和动力控制装置的二合一综合***,能源供应装置和动力控制装置和动力装置的三合一综合***;本发明的说明书和权利要求范围也包含上述任何一种二合一、三合一综合***。
1.6、本发明所述的获取数据,获取途径解释如下:
1.6.1、参数值的获取,包括而不仅限于如下方式:
1.6.1.1、实测:用物理仪器、硬件传感器等直接测量参数值,所得结果称为实测值;如用速度测量仪器测量所得的电梯速度,如加速度传感器测量所得的加速度,如电流传感器测量所得的电机电流;
先实测一数据,进而再根据该数据进行相关的衍生、组合计算,所得结果仍称为该数据的实测值;
1.6.1.2、联合运算:如用本发明提供的一种电梯运行参数的测算方法测算所得的数据,所得结果属于联合运算值;如通过电气动力参数和***运行参数计算出电梯质量的联合运算值;
1.6.1.3、读取:读取外部设备(如电机驱动器)输入的参数值、读取已存在的参数值等;该已存在的参数值可包括实测值、联合运算值、人工输入值、***默认值、历史记录值等;
1.6.2、本发明所述的读取参数值,包括读取本地参数值、通过通讯方式(如CAN、485、232、WIFI、蓝牙、红外等)读取参数值、通过网络传输方式(如各种有线无线网络)远程读取电梯运行参数值等多种方式等;
2、电梯的源动力参数的定义;能代表或计算出直接驱动电梯沿垂直方向运行的力或转矩或功率的参数即为源动力参数;从信号取值的部件来区分,源动力参数可分为牵引件的动力参数、机械旋转件的动力参数、电气动力参数等;其中,牵引件的动力参数主要包括钢丝绳的拉力等;其中机械旋转件的动力参数主要包括在电机后端(电机输出轴、曳引轮、以及电机输出轴和曳引轮之间的中间机械传动部件等)的机械部件上所获取的源动力参数;本发明将电机及电机前端(包括电源装置、电机驱动器等)所获取的具有电气参数属性的源动力参数称为电气动力参数(也可称为电机驱动参数或电气驱动参数);
2.1、电梯的电气动力参数的详细说明:
2.1.1、从物理性质上区分,常规的电气参数主要包括而不仅限于如下:电气功率、电磁转矩、电流、电压、电机转速;
2.1.2、从器件上,可分为电机、电机驱动器、电源装置的电气参数;
2.1.3、电机的电气参数主要包括而不仅限于如下参数:电机电压Uo,电机电流Io,功率因素φ1(也可用φ表示),电气功率Po(也可用Pm表示),电磁转矩Te,电机转速n1,旋转磁场转速n0;
2.1.4、电机驱动器的电气参数主要包括而不仅限于如下参数:输出电压U2o,输出电流I2o,输出功率因素φ2,输出电气功率P2o,电磁转矩Te,输入电压U2i(也可用Ui表示),输入电流I2i(也可用Ii表示),输入电气功率P2i,驱动器直流母线电压Udc、转矩电流分量iq;
转矩电流分量iq,是指矢量控制型电机驱动器(如变频器或伺服驱动器),经过矢量变换,将电机电流剥离了励磁分量的转矩电流;转矩电流分量iq,与电机转矩具有比较直接的映射关系;通过转矩电流与电磁转矩的转化系数Ki,Ki*iq可用于直接计算转矩;
2.1.5、电源装置的电气参数主要包括而不仅限于如下参数:
通常的电源装置可包含下述输出电气参数:输出电压U3o(也可用Ub1表示),输出电流I3o(也可用Ib1表示),输出电气功率P3o,功率因素φ3;输入电压U3i,输入电流I3i,输入电气功率P3i;
发电回馈制动的电压U4,发电回馈制动的电流I4,制动电流与制动电压的功率因素φ4;发电回馈制动(反向输送到电源)的电气功率(简称为发电回馈功率)P4;P4可用制动电流与制动电压来计算(如P4=√3*U4*I4*cosφ4);
电阻和/或直流能耗制动的电压U5,电阻和/或直流能耗制动的电流I5,电阻和/或直流能耗制动的电气功率(简称为能耗制动功率)P5;P5可用制动电阻的阻值Rb1、制动电流、制动电压来计算(如P5=I5*I5*Rb1,或P5=U5*U5/Rb1,或P5=U5*I5);
2.1.6、功能连接上相邻的前级输出的电气参数与后级输入的电气参数,在计算时可相互替代;如Uo=U2o,如Io=I2o,如φ1=φ2,如P2o=Po,如电机和电机驱动器的Te,如U2i=U3o,如I2i=I3o,如P2i=P3o,等。
2.1.7、电磁转矩Te的特别说明:本发明所述的电磁转矩Te指根据电机的电压或电流或磁场参数计算所得的电机转矩,包括在电机驱动器内部计算所得的电磁转矩Te,也包括在电机驱动器外部通过测量电机电压和电机电流而计算所得的电磁转矩Te;本发明所述的电磁转矩Te的测量非常简便、成本很低、且精度高。电磁转矩Te不包括在电机输出轴或其他机械传动轴或飞轮上安装机械应力测量原理(如动态扭矩测试仪)所得的机械转矩机;两者在测量原理、测量途径、测量的性价比上具有重大区别。
2.1.8、本发明所述电气参数,又分为电气动力参数、电气辅助参数;
2.1.8.1、常见的电气动力参数包括而不仅限于下述几种类型:电气功率、电磁转矩、 电流、机电组合型参数等:
2.1.8.1.1、第一种:电气功率;在没有附加说明或限定条件时,本发明所述电气功率均指有功功率;电气功率的获取方式如下:
电气功率值获取方式1:先获取电流和电压,进而通过计算间接获取功率值;如(Uo、Io、φ1),或(U2o、I2o、φ2),或(U2i、I2i),或(U3o、I3o,φ3),或(U3i、I3i);通过电压和电流计算电气功率,属于公知技术;
电气功率值获取方式2:先获取电磁转矩和电机转速,进而通过计算间接获取功率值;如Te和n1,两参数组合可用于计算功率;P(kw)*9550=Te*n1,则P(w)=Te*n1/9.55;P(kw)表示该功率以KW为单位,P(w)表示该功率以W为单位。
电气功率值获取方式3:直接读取电机驱动器内部参数而获取电气功率值;如Po,Pm,P2o,P2i,P3o,P3i,P4,P5;
电气功率值获取方式4:用有功功率表测量而获取电气功率值;如Po,Pm,P2o,P2i,P3o,P3i,P4,P5;
2.1.8.1.2、第二种:电磁转矩;如Te,电磁转矩Te的获取方式如下:
电磁转矩Te值获取方式1:直接读取电机驱动器内部参数而获取Te值;如直接读取变频器或伺服驱动器中的电磁转矩Te值;
电磁转矩Te值获取方式2:先获取电气功率值和电机转速值,进而通过计算间接获取Te值;因为功率P(w)=Te*n1/9.55=U*I,所以在电气功率可测的器件中Te都可经过简易计算计算所得,公式为:Te=P(w)*9.55/n1;
电磁转矩Te值获取方式3:通过测量电机驱动器输出电压和输出电流,进而通过计算间接获取Te值;
2.1.8.1.3、第三种:电流;该参数可用于计算转矩和力;iq,Io*cosφ1,I2o*cosφ2,I3o*cosφ3等;在没有附加说明或限定条件时,本发明所述电流,通常指转矩电流分量、或电流中有功分量;
电流值获取方式1:直接读取电机驱动器内部参数而获取电流值;
电流值获取方式2:用电流传感器测量器件的电流,用功率因素表测量功率因素,进而通过计算而获取电流值;
单一的转矩或单一电流或单一的功率,均可以成为独立的电气动力参数;电压与相应的电流参数配合,可成为电气动力参数;转速与相应的转矩参数配合,可成为电气动力参数;
2.1.8.1.4、第四种:机电组合型参数,指根据前述的电气动力参数组合计算而成的参数,其具体定义方式见后文描述;
2.1.8.2、电气辅助参数,指能配合识别电机运行工况、电机状态的参数,主要包括而不仅限于如下参数:电机运行状态字、电机控制命令字等;因为现有的电机驱动器如变频器可输出加速过流、减速过流、恒速过流等故障信息,所以也可以通过相关的电气辅助参数从电机驱动器内部获取加速、减速、恒速等运行状态;
电气辅助参数值的获取方式1:读取电机驱动器内部参数而获取;
2.2、电梯的牵引件的动力参数的详细说明:
2.1.1、电梯的牵引件通常为钢丝绳,牵引件的动力参数主要包括钢丝绳上牵引轿厢垂直运行的综合拉力F1等;该综合拉力F1通常可由拉力传感器测量所得,该拉力传感器既安装于轿厢的吊钩之内,也可安装于与钢丝绳与吊钩的连接处;该拉力传感器既可为一个对应于所有钢丝绳的整体的拉力传感器;也可为由每根钢丝绳各设置一个拉力传感器,然后由各根钢丝绳拉力传感器的信号相加得到综合拉力F1;
也可在其他某个位置(如电梯井上方的导向轮支撑处)设置张力传感器,先由张力传感器的信号得到综合张力F2,然后根据该F2与钢丝绳的角度计算出综合拉力F1;该张力传感器既可为一个对应于所有钢丝绳的整体的张力传感器,也可为由每根钢丝绳各设置一个张力传感器,然后由各根钢丝绳张力传感器的信号相加得到综合张力F2;
钢丝绳拉力或张力还有一种获取方式,如采用背景技术中B类钢丝绳称重方案所述,将牵引绳作为被测电阻串联接入所述阻抗检测传感器,通过测量牵引绳的阻抗变化计算出综合拉力F1或综合张力F2;
2.3、电梯的机械旋转件的动力参数的详细说明:
机械旋转件的动力参数主要包括在电机后端(电机输出轴、曳引轮、以及电机输出轴和曳引轮之间的中间机械传动部件等)的机械部件上所获取的源动力参数;该机械旋转件的动力参数主要包括机械转矩,可采用安装于电机后端某一旋转件上转矩传感器测量所得,所以该动力参数也可称为后端的源动力参数;当然,相对于前述的用拉力传感器或张力传感器测量综合拉力F1,用转矩传感器测转矩的成本大为升高;尤其相较于用电气动力参数的测量成本,转矩传感器的测量成本大幅度升高,所以实用性相对降低,但相对于现有技术对于电梯的安全监控、高效节能运行控制的束手无策,仍然具有创造性和实用性。
进一步的,根据与动力***强相关性的强弱,源动力参数又可分与动力***强相关的源动力参数、与动力***弱相关的源动力参数;通常来说,可将信号取值于电机及电机前端(包括电源装置、电机驱动器等)的源动力参数归类于与动力***强相关的源动力参数;例如电气功率、电磁转矩、电流三种源动力参数以及根据相关的机电组合型参数,均属于与动力***强相关的源动力参数。
当然,该与动力***强相关性的强弱是一个相对的概念;
例如:当加速上行时、匀速上行时、匀速下行时牵引件的动力参数(如拉力F1)和机械旋转件的动力参数(如T1等);因为此时源动力参数的性质主要用于描述动力***需要发出的、用于克服运载质量的自重与加速度而产生的力或转矩;此时该源动力参数均可归类于与动力***强相关的源动力参数,
例如,后述监控方法(#3)的实施例1中,减速下行时牵引件的动力参数(如拉力F1)或根据F1与R1计算所得该机械旋转件的动力参数(如T1等),因为此时源动力参数的性质主要用于描述因运载质量的自重与加速度而产生的力或转矩;此时该源动力参数均可归类于动力***弱相关的源动力参数;且通常来说,该加速度信号的根源,也即加速、减速的动作源于动力***的控制。
3、本发明所述电梯质量,是指与运载质量、对重质量、空载轿厢质量中至少一种直接相关或者间接相关的参数;质量单位可用公斤(KG或kg)表示;直接相关是指上述三种参数直接作为测算对象或者输入参数,间接相关是指将上述三种参数经过变形后得到的质量,但是其方案的实施的实质为上述三种参数,如将上述三种质量可以分别等效为其各部分的和,以其各部分的和作为测算对象或者输入参数,或者以上述三种参数中的某一质量中的一部分的质量作为测算对象(即一部分的质量=某一质量-其他部分的质量,此时该其他部分的质量已知)。
3.1、本发明所述运载质量,为运载物品质量m1、电梯轿厢总质量m2中任意一个或两个参数;电梯轿厢总质量m2指同时包含运载物品质量m1和空载轿厢质量m0的数据;运载物品质量m1指空载轿厢净重以外所装载的人员物品的质量;国标规定载人电梯按每人75kg计算,可根据m1计算出电梯乘客的人数;
3.2、电梯轿厢总质量m2的计算:m2=m0+m1;
3.3、空载轿厢质量m0、对重质量m3可通过厂家参数,或磅秤称量准确得知,无须测算;牵引件(如钢丝绳)的质量通常可忽略不计;也可将牵引件(如钢丝绳)的质量计入空载轿厢质量m0和/或对重质量m3中;当空载轿厢与对重在同一水平位置时,空载轿厢质量m0、对重质量m3各自包含一半钢丝绳质量;当轿厢在顶/对重在底时,对重质量m3包含绝大部分钢丝绳的质量;当轿厢在底/对重在顶时,轿厢质量m0包含绝大部分钢丝绳的质量;轿厢质量m0、对重质量m3还可包括各自补偿绳的质量;
可见空载轿厢质量m0、对重质量m3各自所包含钢丝绳质量与位置有关,可设置以空载轿厢质量m0、对重质量m3与位置关联的函数,可通过理论计算或实际测量相对准确的得知空载轿厢质量m0、对重质量m3各自所包含钢丝绳质量;
4、本发明所述***运行参数,是指电梯运行参数中除电梯质量和源动力参数外之 的参数,包括机械运行参数、***固有参数中任意一种或两种参数。
4.1、本发明所述机械运行参数主要包括而不仅限于如下参数:速度Vq、加速度aj、风阻fw、内部综合旋转刚体的角加速度β等。
4.1.1、本发明所述速度Vq,指电梯轿厢的垂直位移的速度;包括上行速度V1、下行速度V2中任意一个或两个参数;速度值的获取,有如下多种方式:
Vq值获取方式1:通过设置于轿厢上的速度传感器测量而直接获取Vq值;Vq单位可用米/秒(m/s)表示;
Vq值获取方式2:通过测量电机的转速n1间接获取Vq值:供参考的计算式如下:Vq=(2π*n1/im)*R1/60;当电梯钢丝绳打滑时此方法欠准;
所有与速度相关联的参数,都可以用来获取Vq值;如电机驱动器的运行频率FR(例如变频器的额定频率通常对应于电机的额定转速)、齿轮转速、中间旋转件角速度、中间传动件线速度;
Vq值获取方式3:通过加速度aj间接获取Vq值;供参考的计算式如下:Vq_1=Vq_0+aj*t;t为单位时间,Vq_0为上一时间周期的Vq值,Vq_1为当前周期的速度Vq值;
4.1.2、本发明所述加速度aj(也可用a或acc表示),指电梯轿厢的垂直位移的加速度;
通过深入分析研究电梯的结构,因为轿厢和对重采用柔性牵引件(如钢丝绳)连接而非刚性连接,不能直接套用旋转刚体的参数设计原理,轿厢加速度aj与对重加速度ad可能相等也可能不等;对重加速度ad可以单独测量、计算;在简化计算时可默认为轿厢加速度aj等于对重加速度ad;
为了便于描述和业内技术人员理解本发明,本发明约定:加速度的值可正可负;无论电梯上行或电梯下行,速度的方向均可设为正值;当速度的绝对值增大时,此时为加速,此时加速度为正值;当速度的绝对值减小时,此时为减速,此时加速度为负值;当然也允许用户采用其他的、更复杂的方式来定义加速度、速度、源动力参数的正负。
加速度aj的获取,有如下多种方式:
aj值获取方式1:通过设置于轿厢上的加速度传感器直接测量所得;如加速度传感器输出信号还包含g的值,可以合并处理:(g+aj)
aj值获取方式2:通过电机的转速n1,或速度Vq间接测量而获取;供参考的计算式如下:aj=(Vq_1-Vq_0)/t;
4.1.4、风阻fw的获取,有如下多种方式:
fw值获取方式1:先获取电梯的速度Vq再通过计算得到fw值;供参考的计算式如下:fw=(1/2)*Cd*(p0*A0*(Vq)2);其中Cd为电梯的风阻系数,p0为空气密度,A0为电 梯的迎风面积;Cd,p0,A0都属于***固有参数,均可通过读取***预设值而获取;通过测量速度Vq而获取风阻fw,具有成本低、简易的优点;
fw值获取方式2:预先设置一电梯速度与风阻fw值的关联表格,在电梯运行时,通过速度的值查表得出对应的风阻fw值;
4.1.6、内部综合旋转刚体的角加速度β:内部综合旋转刚体,指电梯内部传动***中所有刚性机械旋转部件综合折算刚体;β参数既可通过转速传感器获取,也可通过先获取电机转速n1或电梯的速度Vq或电梯的加速度aj再计算而获取;
4.2、本发明所述***固有参数:指因电梯、或环境固有属性而带来的参数,本发明所述***固有参数也可称为***设定参数;
4.2.1、常见的***固有参数包括而不仅限于如下:滚动摩擦阻力系数μ1、导轨和/或电梯井道中物体与轿厢的摩擦力f0、综合传动比im、后端的传动比im3、曳引轮半径R1(也可用R表示),转矩电流与电磁转矩的转化系数Ki,电机电流有功分量与电磁转矩的转化系数Ko,机械传动***的效率系数Km,电气动力***的效率系数Kea、后端的效率系数Km3、、内部综合旋转刚体的转动惯量L0,风阻系数Cd(也可用Cd表示),空气密度p0,迎风面积A0(也可用S表示)、重力加速度g(也可称为重力加速度因子,其含义、取值9.8均为现有公知技术,基础的物理常识)、参数取值的预设的时间范围等。
***固有参数的详细说明如下:
4.2.2、电气动力***的效率系数Kea、机械传动***的效率系数Km:
4.2.2.1、电气动力***的效率系数Kea包括而不局限于如下参数:
电机的效率系数Ke:指电机的电气功率到电机轴输出机械功率的转换效率;鉴于电动状态、电机制动状态时的Ke值可能不等;将电动状态时的电机的效率系数命名为Ke1,将电机制动状态时的电机的效率系数命名为Ke2;
电机驱动器到电机的效率系数k21:指电机运行工况为电动状态时该电机驱动器的输入功率到电机的电气功率的转换效率;也可指电源的输出功率到电机的电气功率的转换效率;
电源到电机的效率系数k31:指电机运行工况为电动状态时该电源的输入功率到电机的电气功率的转换效率;
电机制动功率到电源的效率系数k14:指电机制动状态时从电机制动功率到回馈到电源装置功率的效率系数;
4.2.2.2、机械传动***的效率系数Km,也可简称为机械传动***效率:指包括电梯的电机输出轴、曳引轮、以及电机输出轴和曳引轮之间的中间传动部件等部件的综合 传动的效率系数;为应对Km值在不同速度区间可能的波动,可设置一个一维函数,Km(Vq)一,也即根据不同的速度区间(如零速、低速、高速)取相应的Km值;鉴于电动状态、电机制动状态时的Km值可能不等;将电动状态时的机械传动***的效率系数命名为Km1,将电机制动状态时的机械传动***的效率系数命名为Km2;
机电传动综合的效率系数Kem,也可称为机电传动综合效率Kem;Kem包含电机的效率系数Ke,包含了机械传动***的效率系数Km;Kem=Ke*Km,Kem1=Ke1*Km1,Kem2=Ke2*Km2;
4.2.2.4、相关效率系数k31、k21、k14、Ke,Km值,在一定的速度、载荷区间内是基本不变的;
k31、k21、k14值变化意味着电源或电机驱动器内部整流桥、IGBT可能存在短路、或断路、参数变异等异常情况;Ke值的变化意味着电机内部旋转磁场参数变异、或电机绕组短路、或断路等可能造成严重后果的变异;
电梯的电流电压转速转矩都可以变,但基本的k31、k21、k14、Ke值不能变;所以上述k31、k21、k14、Ke值不仅仅作为电气动力***的效率系数,也可作为电气动力***的安全状况的重要依据;
机械传动***的效率系数Km值的变化可能代表电梯的包括电机输出轴、曳引轮、以及电机输出轴和曳引轮之间的中间传动部件在内的机械传动***中,出现严重磨损、或变形、或齿轮脆裂等可能造成严重后果的变异;
电梯的机械的转矩转速都可以变,甚至摩擦力也可以随着载荷的大小变化,但是基本的Km值不能大幅变化,或则就可能是严重故障;所以Km值不仅仅可作为机械传动部件效率系数,也可以作为机械传动部件的安全状况的重要依据;
通过将k31、k21、k14,Ke值作为测算对象进行直接监控,或通过计算其他测算对象(如运载质量)的联合运算值间接的监控k31、k21、k14,Ke值,可以有效的监控电梯的电气动力***的运行状况;
也可设置一个电梯的电气动力***综合效率系数Keem,该系数同时包含机械传动***的效率系数Km和电气动力***的效率系数Kea;Keem值为电梯的Km值和电气动力***的效率系数值Kea的乘积;
4.2.3、滚动摩擦阻力系数μ1:因为电梯结构特点,曳引轮和导向轮承受轿厢和对重的重力所产生压力;所以电梯的滚动摩擦阻力系数μ1(连同其产生的滚动摩擦阻力fr)主要为曳引轮和导向轮部件的数据;
4.2.4、综合传动比im:指包括电机输出轴、曳引轮以及电机输出轴和曳引轮之间的中间传动部件的综合传动比;机械传动***的效率系数Km通常指电机到曳引轮之间 传动***的效率系数;因为本发明所述源动力参数包括后端的源动力参数,则需要设置相应的传动比、效率系数;将后端的源动力参数的参数取值点到曳引轮之间的传动比称为后端的传动比im3,将后端的源动力参数的参数取值点到曳引轮之间的效率系数称为后端的效率系数Km3;
电梯的传动比im和im3通常为一固定值;如果im和im3值可变,则在测算时需要由中央控制器给定出当前值;
4.2.5、导轨和/或电梯井道中物体与轿厢的摩擦力f0,是电梯安全运行的核心信息,是现有公知技术忽略的技术点;近年来发生的多起(乘员被卡入轿厢与电梯井之间)导致人员死亡的严重安全事故,其实质原因就是电梯在安全设计时没有充分考虑摩擦力f0的测算和异常监控;本发明提供的技术方案,通过将摩擦力f0作为测算对象,或者对其他的测算对象(如电梯的运载质量)的联合运算值的进行高精度/高灵敏度的测算和能量传递状况监控,从而在电梯运行时实时的直接的或间接的测算和监测摩擦力f0的值,当摩擦力f0(或其他测算对象的偏差值)超出预设的安全值时即刻启动相应的安全处理机制(如停机,甚至反向运行一设定距离如10厘米),则有助于预防(乘员被卡入轿厢与电梯井之间)导致人员死亡的严重安全事故。
4.2.7、***固有参数的值,一般都有***预设值,可由电梯的中央控制器给定,***固有参数、***预设值的正确性,也由电梯的中央控制器保证;***预设值可通过电梯生产服务厂商、专业检测机构得知;用户也可自行测试、验证、调整、设置;如进行井道参数自学习,在电梯上行下行过程中学习相关参数(尤其是f0、μ1、Kem等参数在不同位置、不同速度下的值)。如因参数的***预设值的偏差甚至错误造成本发明方法或***的监控效果下降,不影响本技术方案的有效性。
5、源动力组合型参数的解释:
源动力组合型参数也归类于源动力参数;电气动力参数与其他参数组合而成参数,称为机电组合型参数;机电组合型参数是典型的源动力参数,其类型仍然属于电气动力参数;
典型的机电组合型参数示例如下:如((Ke*Km)*(Po/Vq)表示一个根据电机功率进而计算的驱动力;如(Te*im/R)表示一个根据电磁转矩Te计算的驱动力,如(Te*n1/9.55/Vq)表示另一个根据电机功率计算的驱动力,该电气功率的计算途径为转矩与转速;
源动力组合型参数具有无穷多的表达式,本发明不一一例举;
源动力组合型参数值的获取方式1:通过前述方式获取源动力组合型参数中的源动力参数的值,通过前述方式获取源动力组合型参数中的其他参数的值,进而通过源动力组合型参数的计算式计算而获取源动力组合型参数的值;
6、不包含源动力参数的组合型参数:
6.1、机械组合型参数也归类于机械运行参数;
典型的机械组合型参数示例如下:如((m0+m1)*(g+aj))表示电梯轿厢上的综合作用力;
机械组合型参数值的获取方式1:通过前述方式获取机械组合型参数中的机械运行参数的值,通过前述方式获取机械组合型参数中的其他参数的值,进而通过机械运行参数的计算式计算而获取源动力组合型参数的值;
6.2、质量组合型参数也归类于电梯质量;(m1+m0)、(m2-m0)、(m1+m0+m3)等都属于电梯质量;如(m2*g)、(m1*g)等参数虽然变成了物体承受的重力,但在本发明中仍将其归类于电梯质量。
6.3、当两个或以上的***固有参数组合成一个计算式(如((Ke*Km)*(im/R))、或(im/R)等),则该计算式仍然归类于***固有参数。
7、电梯运行参数::显而易见的,所有对电梯运行状态有影响的参数,或所有与电梯运行相关的参数,均可简称为电梯运行参数;本发明所述的源动力参数、电梯质量、***运行参数(包括其中的机械运行参数、***固有参数)构成该电梯运行参数;
7.1、衍生参数:本发明所述任何参数,在其基础上衍生、变形、变名、扩大、缩小、增加偏移值、进行滤波、加权、平均、估计干扰、补偿干扰、RLS算法处理、递归最小二乘方处理等等处理所得参数,均称为参数的衍生参数,所有衍生参数仍然属于原参数类型;
7.2、本发明所述能量传递状况关联因子,指与电梯的能量传递状况判断有直接或间接关联的参数,其包括所述电梯的机件状况信息、载况信息、位置信息、电梯质量、源动力参数、***运行参数中任意一个或多个参数;本发明所述机件状况主要指电梯动力***和传动***的状况,如电梯的机件良好、润滑良好、磨损小则机件状况良好指数高;如电梯磨损严重则机件状况良好指数低;载况,主要指电梯装载人员或物品的状况,如电梯内人员频繁跳动或物品任意滚动,则载况良好指数低;本发明所述位置信息可根据编码器、限位器测量等方式获取;
7.3、电梯运行参数的安全极限阀值,可分为固定类安全极限阀值、活动类参数的安全极限阀值;
7.3.1、固定类安全极限阀值通常为根据电梯的电气***和/或机械***设计规格而制定的避免器件损坏的电梯运行参数的安全值:如电机的电流安全值Io_ena、电机的电压安全值Uo_ena、电磁转矩安全值Te_ena、电动状态时电机的功率安全值Po_ena(通常等于电机的额定功率)、发电回馈制动功率的安全值P4_ena、能耗制动功率的安全 值P5_ena、电梯的额定载重量m1_ena(也可称为额定载荷或额定负载等,单位为公斤/kg);
7.3.2、活动类参数的安全极限阀值,通常指可根据电梯运行条件(如运载物品质量、能量流向工况等)而调节的机械运行参数的许可值,如上行速度的许可值V1_ena、下行速度的许可值V2_ena、加速上行时加速度的许可值的绝对值aj1_ena、减速上行时加速度的许可值的绝对值aj3_ena、加速下行时加速度的许可值的绝对值aj2_ena、减速下行时加速度的许可值的绝对值aj4_ena等;本发明将加速上行、减速上行、加速下行、减速下行等各种状态均称为速变方向;
电梯运行参数的安全值还可进一步细分为瞬间工作安全值、长期连续工作安全值等。
8、本发明所述的“电梯升降运行”的说明:
8.1、本发明约定:本发明中所述“电梯升降运行”等同于“电梯运行”等同于“运行”,均指电梯沿垂直方向升降运行;“电梯升降运行时”默认为电梯的抱闸***已发出抱闸松开的命令(包括刚性松开、柔性松开等),以及其他的机械制动***均已发出机械制动解除的命令;“电梯升降运行时”通常不包括电梯门的开关门动作、停机、抱闸等所有“电梯非升降运行”时间段;因为在“电梯非升降运行时”时不便于通过采集电气动力参数及计算来监控电梯的运行。
本发明所述电梯升降运行包括零速运行、非零速运行两种状态;
本发明所述非零速运行包括变速运行、非零匀速运行;其中,所述变速运行包括加速运行、减速运行;
8.2、“电梯升降运行”状态或“电梯非升降运行”状态,可由电梯的中央控制器来识别与给定;也可以通过获取电机驱动器运行状态字或电机驱动器控制命令字来识别、判断电机的“正转或反转或停机”状态。
8.3、本发明提供的一种电梯升降运行时的监控方法,所述的“电梯升降运行时”可有时间上的起点、结束点;
可设定从“电梯非升降运行”的状态进入“电梯升降运行”状态时,作为本“电梯升降运行”的时间段的起点,典型的起点为抱闸松开,意味着一个新的“电梯升降运行”的时间段的开始;可设定从“电梯升降运行”进入“电梯非升降运行”状态如抱闸、停机、开关门等时,作为本“电梯升降运行”的时间段的结束点;该“电梯升降运行”的时间段也可称为“运行流程”
每一个“电梯升降运行”的时间段(也即运行流程)的长度,可长可短,从几分钟到几秒均有可能;
即使同一辆电梯,在不同的“电梯升降运行”的时间段中(也即不同的运行流程中), 某些参数尤其是电梯的运载物品质量m1可能发生变化,如乘客增加则m1自然变大,如乘客减少则m1自然变小。
9、电梯的能量流向工况,也可称为电梯的运行工况;
从电梯运行方向,可简单分为电梯上行、电梯下行等;
从电机运行工况,可分为电动状态、电机制动状态等;
综合电梯运行方向和电机运行工况,电梯的能量流向工况分为电动上行、电机制动上行、电动下行、电机制动下行等多种状态;
因为电梯停机时通常处于机械抱闸状态,因为本发明的主要目的为解决电梯运行中的参数测算、安全监控、运行控制等问题,所以本发明所述的电梯的能量流向工况排除停机状态。
9.1、电梯的能量流向工况,是一个非常重要的状态参数,因为电梯结构特殊(有对重的存在),即使在电梯载物上行过程中,电机也可能处于制动状态;即使电梯载物下行,电机可能处于电动状态;
为了便于描述和业内技术人员理解本发明,本发明约定如下9.2和9.3的参数设置方法:
9.2、在本发明的后述实施例中,无论电梯运行方向为电梯上行、电梯下行中,当电机处于电动状态时,电机转速n1、电梯的速度Vq均约定为正值;各电气动力参数(电气功率、电磁转矩Te、转矩电流分量iq、电机电流Io)均为正值;依据电气能量所计算的机械驱动力也为正值,表示电机此时处于将电能转化成机械能的状态;
9.3、在本发明的后述实施例中,无论电梯运行方向为电梯上行、电梯下行中,当电机处于电机制动状态时,电机转速n1、电梯的速度Vq仍约定为正值:各电气动力参数(电气功率、电磁转矩Te、转矩电流分量iq)为负值;依据电气能量所计算的机械驱动力也为负值,表示电机此时处于将机械能转化成电能的状态;
9.4、本发明提供的供参考的电梯的能量流向工况的识别方法如下:
9.4.1、电梯运行方向的识别方法如下:可读取中央控制器的信号,或电机驱动器的控制命令或状态信息(如变频器的正转、反转等),或(如通过旋转编码器)测量电机的转速的方向,均可简单的获取电梯运行方向;
9.4.2、电机运行工况的识别方法如下:
供参考的电机运行工况的识别方法1:
先获取电机的电磁转矩Te与电机转速n1,进而进行如下识别:
当Te与n1方向相同时,可识别当前电机运行工况为:电动状态;
当Te与n1方向相反时,可识别当前电机运行工况为:电机制动状态;
根据前述约定,则根据Te的正负可自然的识别出电机运行工况。
供参考的交流电机的运行工况识别方法2:
当Udc小于U2i的峰值时,当前电机运行工况趋向于电动状态;
当Udc大于U2i的峰值时,当前电机运行工况趋向于电机制动状态;
供参考的交流异步电机的电机运行工况识别方法3:
当n1<n0时,当前电机运行工况趋向于电动状态;
当n1>n0时,当前电机运行工况趋向于电机制动状态;
供参考的电机运行工况的识别方法4:部分型号的电机驱动器如四象限变频器,也可通过读取其的内部状态字,直接识别判断电机运行工况;
供参考的电机运行工况的识别方法5:当非电气动力参数类型的源动力参数的正负可测量时(如采用转矩传感器测量机械旋转件的动力参数信号),则根据该源动力参数的正负可识别电机运行工况;当该源动力参数的值为正时可判断电机运行工况为电动状态,当该源动力参数的值为负时可判断电机运行工况为电机制动状态;
供参考的临界切换区识别方法1:
电机运行工况中,无论是在电动状态,还是电机制动状态,均包含一个较特殊的阶段:临界切换区;当电机处于电动状态的临界切换区,意味着很容易进入电机制动状态;当电机处于电机制动状态的临界切换区,意味着很容易进入电动状态;
当电机运行工况处于临界切换区时,可能影响计算的准确性,可以中止参数的计算或监控;可设置一临界状态识别门限值Te_gate,当|Te|<Te_gate时,可判断当前电机运行工况处于临界切换区;
9.4.3、综合上述9.4.1和9.4.2的文件内容,可识别出电梯的能量流向工况;
9.4.4、其他的电梯的能量流向工况的识别方法:
电梯的能量流向工况,与电梯运行方向,以及运载物品质量m1、电梯轿厢质量m0、对重质量m3值、摩擦阻力、甚至速度参数的变化都有关系;
当电梯上行时,m1+m0>m3时,电梯趋向于电动上行状态;
当电梯上行时,m1+m0<m3时,电梯趋向于电机制动上行状态;
当电梯下行时,m1+m0>m3时,电梯趋向于电机制动下行状态;
当电梯下行时,m1+m0<m3时,电梯趋向于电动下行状态;
10、本发明所述的网络***,包括而不局限于:各种有线或无线的移动3G、4G网、互联网、物联网等;网络***可包含相应的人机交互界面、存储***、数据处理***等;与电梯运行相关的人员或机构(如操作人员、***人员)可通过网络***实时或事后监控电梯运行状况。
特别声明1:本发明后述所提供的所有实施例中任一电梯运行参数的值的获取方法和电梯的能量流向工况的识别方法,均可采用前述的方法进行,当然也可以参考其他的现有公知技术进行;本发明中所述的任何设定条件、运行条件、阀值、时间、周期、数据的赋值等,均可由***、运行环境、或用户视需求而调整,并非单一的、固定不变的值。例如当采用主电网供电时、后备电源供电时,电气功率的安全极限阀值需要调整、切换。
第二部分内容:本发明的具体发明内容及具体实施例如下:
本发明的各技术问题所对应的方法与***分别相对应,即方法项和***项的技术方案的实质的原理相同,其技术方案可以相互应用。
技术问题一:
本发明要解决的技术问题之一是提供一种新的电梯运行参数的值的获取的技术方案,可实现当电梯运行参数中任一种参数作为测算对象时,对该测算对象的值的获取,能够避免现有技术中直接采用传感器测量获取对象的方式,同时该获取方法或者可作为下述各其他技术问题的基础,以便于更深入分析了解的电梯的运行安全状况;本发明中所述获取对象也即测算对象;本发明中所述获取方法也即测算方法;
1、本发明所提供的一种电梯运行参数的值的获取方法,其具体技术方案为,获取所述电梯的输入参数的值,根据所述输入参数的值计算出所述电梯的测算对象的联合运算值;所述计算为电梯运行能量平衡计算,所述输入参数是计算所述电梯的测算对象的联合运算值所需求的参数,所述测算对象为电梯质量、源动力参数、***运行参数中任意一种参数,所述电梯运行能量平衡计算为根据至少包括电梯质量、源动力参数、***运行参数中的任意两种参数的数据去计算另一种参数。
在上述获取方法中,当测算对象为电梯质量时,输入参数至少包括源动力参数与***运行参数;当测算对象为源动力参数时,输入参数至少包括电梯质量与***运行参数;当测算对象为***运行参数时,输入参数至少包括电梯质量与源动力参数。
显而易见的,如同公式28-1、公式28-2、公式28-3-1、公式28-3-2、公式28-4-1、公式28-4-1、公式28-5、公式28-6中任一公式所示,该公式右边的参数即为输入参数,该公式左边的参数即为测算对象,也可称为输出参数。
2、进一步的,该获取方法为在电梯上行或者下行时进行;和/或:该获取方法中,所述电梯运行能量平衡计算与电梯运行方向关联。
本技术方案的意义:现有技术方案中,在电梯上行或者下行时,唯有直接采用传感器测量获取对象的方式;本技术方案,在电梯上行或者下行时提供了一种全新的、可实 现多种重要用途的电梯运行参数的值的获取方法。
所述电梯运行能量平衡计算与电梯运行方向关联,也即根据电梯运行方向调整所述电梯运行能量平衡计算的算法,对于电梯在非零速运行时保证参数测算的准确性、有效性、改进现有公知技术方案的缺陷具有关键意义。
3.进一步的,在本发明的电梯运行参数的获取方法中,所述电梯运行能量平衡计算满足下述3A1、3A2、3A3、3A4、3A5、3A6中任意一种或多种条件:
3A1.参与所述电梯运行能量平衡计算的参数中包括效率系数;
3A2.当参与所述电梯运行能量平衡计算的参数中包括效率系数时,根据电机运行工况调整所述效率系数;
3A3.参与所述电梯运行能量平衡计算的参数中包括导轨和/或电梯井道中物体与轿厢的摩擦力;
3A4.当所述电梯运行能量平衡计算中包括的源动力参数为电气功率时,根据电机运行工况进行所述电气功率的设置;
3A5.根据电梯速度变化状况进行所述电梯运行能量平衡计算;
3A6.参与所述电梯运行能量平衡计算的参数中包括机械旋转件的摩擦关联数据。
进一步的,该获取方法中,可将该测算对象的的联合运算值用于:
和所述测算对象的参考数据进行比较以判断所述电梯的能量传递状况是否异常;和/或,
当该测算对象为运载物品质量时,判断测算对象的值是否大于所述电梯的额定载重量以判断所述电梯是否超载;和/或,
当该测算对象为上行速度、下行速度、加速上行时的加速度、减速下行时的加速度中一个或多个参数时,根据该测算对象的的联合运算值控制所述电梯运行;和/或,
当该测算对象为源动力参数时,根据该测算对象的的联合运算值是否大于所述源动力参数的安全极限阀值以判断所述电梯的源动力参数是否超限;和/或,
输出该联合运算值,以在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上进行显示;和/或:将测算对象的联合运算值在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上显示;和/或,
输出和/或保存所述联合运算值,以进行电梯运行数据的分析,从而判断该电梯是否发生故障或者对故障的原因进行分析。进一步的,所述测算对象为***固有参数中任意一个参数时,将所述联合运算值输出和/或保存;当所述测算对象为除***固有参数之外的电梯运行参数中任一参数时,还获取所述测算对象的基准值,将所述联合运算值和所述基准值输出和/或保存,和/或将所述联合运算值和所述基准值的差值输出和/或 保存。
***固有参数与电梯的动力或传动部件的磨损/或老化/或安全状况紧密关联,就可以对电梯的运行数据进行分析,从而判断该电梯是否发生故障或者对故障的原因进行分析。对于测算对象为除***固有参数之外的其他电梯运行参数时,因为该类型参数(如速度)的基准值和联合运算值均可能大幅波动,在此时如果仅仅单独凭借其基准值或联合运算值,无法实现判断该电梯是否发生故障或者对故障的原因进行分析,所以需要同时输出和/或保存基准值及联合运算值;将联合运算值和基准值的差值输出和/或保存与输出和/或保存测算对象的联合运算值和基准值意义相同。本3A1技术方案的有益意义:无论电梯的曳引机的类型(涡轮式、斜齿轮、星型齿轮、无齿轮曳引机等),其电机的效率系数或机械传动***的效率系数均无法达到100%,尤其是当前广泛使用的涡轮或齿轮型曳引机的机械传动效率更低(部分型号低于70%),如在以电梯运行能量平衡计算中包含效率系数可大幅度的提高电梯运行参数计算精度;
本3A2技术方案的有益意义:从能量守恒原理分析,当电机处于电动状态时,电机吸收电能转化为机械能,电气动力参数需与小于1的效率系数(如Kem1)相乘;当电机处于电机制动状态时,电机吸收机械能转化为电能,电气动力参数需除以一个小于1的效率系数(如Kem2);即根据工况为电机为电动状态还是制动状态或者说根据工况为电机吸收电能转化为机械能还是电机吸收机械能转化为电能,来调整效率系数计算方法,从而调整效率系数,识别并关联电机运行工况,对于提高参数计算的准确度有重要意义;
本3A3技术方案的有益意义:导轨和/或电梯井道中物体与轿厢的摩擦力f0,是电梯安全运行的核心信息,是现有公知技术忽略的技术点;将摩擦力f0作为测算对象,或者在其他的测算对象(如电梯的运载物品质量)的联合运算值的测算中包含了摩擦力f0的因素,在电梯运行时实时测算和监测摩擦力f0的值,有助于预防(乘员被卡入轿厢与电梯井之间)导致人员死亡的严重安全事故,具有重要的安全意义;
本3A4技术方案的有益意义:当电机处于电动状态时,电机吸收电能转化为机械能,此时该电气功率须选择电动状态时电气***的功率;当电机处于电机制动状态时,电机吸收机械能转化为电能,此时该电气功率须选择电机制动状态时电气***的功率(如发电回馈制动功率P4、或能耗制动功率P5等);各电气功率的性质与幅值完全不同;根据电机运行工况进行所述电气功率的类型设置,在不同的工况下,根据电气功率的类型不同,设置参与电梯运行能量平衡计算的相应的功率参数,对于优化现有公知技术方案、提高速度控制的安全性、准确性具有关键意义;
本3A5技术方案的有益意义:在采用电气动力参数进行参数测算时,同时进行电梯 速度变化状况的辨识,对于优化现有公知技术方案、降低测算成本、提高测算精度、提高电梯安全性能上具有关键性、重大的意义;;
本3A6技术方案的有益意义:所述计算的参数中包括机械旋转件的摩擦关联数据,可以提高参数计算精度。
相应的,本发明还提供了一种电梯运行参数的获取***,包括:
获取模块,用于在电梯上行或者下行时,获取所述电梯的输入参数的值,根据所述输入参数的值计算出所述电梯的测算对象的联合运算值;所述计算为电梯运行能量平衡计算,所述输入参数是计算所述电梯的测算对象的联合运算值所需求的参数,所述测算对象为电梯质量、源动力参数、***运行参数中任意一种参数,所述电梯运行能量平衡计算为根据至少包括电梯质量、源动力参数、***运行参数中的任意两种参数的数据去计算另一种参数。本发明中所述获取***也即测算***。
进一步的,所述获取***中,所述电梯运行能量平衡计算与电梯运行方向关联。
进一步的,所述获取***中所述电梯运行能量平衡计算满足下述4A1、4A2、4A3、4A4、4A5、4A6中任意一种或多种条件:
4A1.参与所述电梯运行能量平衡计算的参数中包括效率系数;
4A2.当参与所述电梯运行能量平衡计算的参数中包括效率系数时,根据电机运行工况调整所述效率系数;
4A3.参与所述电梯运行能量平衡计算的参数中包括导轨和/或电梯井道中物体与轿厢的摩擦力;
4A4.当所述电梯运行能量平衡计算中包括的源动力参数为电气功率时,根据电机运行工况进行所述电气功率的设置;
4A5.根据电梯速度变化状况进行所述电梯运行能量平衡计算;
4A6.参与所述电梯运行能量平衡计算的参数中包括机械旋转件的摩擦关联数据。
本发明提供的一种电梯运行参数的值的获取方法和***的实施说明如下:
本发明所述联合运算值,是指一种数据类型/或数据获取的途径,表示该数值不是通过实际测量而得,而是通过其他类型的数据计算所得,尤其是基于电梯运行能量平衡计算所得;例如通过运载质量查表计算出速度和/或加速度的联合运算值,或通过运载质量和源动力参数查表计算出速度和/或加速度的联合运算值,或通过运载质量和源动力参数以电梯运行能量平衡计算出速度和/或加速度的联合运算值;因此,本发明中的联合运算值实质是通过除测算对象之外的电梯运行参数所计算得到,包括查表计算和电梯运行能量平衡计算,如测算对象是电梯质量时,根据至少包括***运行参数和/或源动力参数在内的参数计算所得值即为联合运算值,当测算对象为源动力参数时,根据至 少包括电梯质量和/或***运行参数在内的参数计算所得值即为联合运算值,当测算对象为***运行参数时,根据至少包括电梯质量和/或源动力参数在内的参数计算所得值即为联合运算值。应当理解的是,从联合运算值的输入参数的个数而言,查表计算与电梯运行能量平衡计算的区别在于:查表计算的输入参数至少为一种参数,而电梯运行能量平衡计算至少为二种。本发明中,阀值即阈值,两者实质等同。
在本发明中,参与电梯运行能量平衡计算的参数中包括某一参数具有下属含义:电梯运行能量平衡计算具有输入参数和输出参数(即测算对象的联合运算值),该些输入参数和输出参数共同构成参与电梯运行能量平衡计算的参数。因此,参与电梯运行能量平衡计算的参数中包括某一参数是指该某一参数既可以是输入参数也可以是输出参数。
本发明所述“电梯运行能量平衡计算”,也即电梯运动平衡计算,指根据电梯质量、源动力参数、***运行参数中任意两种参数去计算另一种参数;本发明所述“电梯运行能量平衡计算”通常以电梯运行的能量平衡为计算规则,可以理解的是在在本发明中下述各实施例及公式中,与功率平衡相关的公式以及力平衡的相关公式其实质也属于能量平衡为规则的计算;因为功率也可理解为单位时间内的能量,所以功率平衡也即单位时间内的能量平衡,在功率平衡相关的公式两端分别乘以相等的时间就是能量平衡的公式;力也可理解为单位时间单位移动距离的能量,力平衡也即单位时间单位移动距离的能量平衡,力平衡的相关公式两端乘以相应的时间和相应的移动距离也就是能量平衡的公式。因此本发明的电梯运行能量平衡计算除包含电梯运行特征与能量守恒定律结合外,必要时还与牛顿定律(牛顿第一运动定律、牛顿第二运动定律和牛顿第三运动定律中的任意一种或者多种)结合,即电梯运行能量平衡计算其实质是能量守恒定律、电梯运行特征以及牛顿定律的结合,所谓的结合是指进行上述计算时,计算是a、通过能量守恒定律与电梯运行特征去采用电梯质量、源动力参数、***运行参数中两种参数去计算另一种参数,或者是b、符合能量守恒的前提下,通过牛顿定律与电梯运行特征去采用电梯质量、源动力参数、***运行参数中两种参数去计算另一种参数,或者是c、通过能量守恒定律、牛顿定律与电梯运行特征去采用电梯质量、源动力参数、***运行参数中两种参数去计算另一种参数。
结合下述的实施例1至6等,显而易见的可知,本发明中根据电梯质量、源动力参数、***运行参数中任意两种参数去计算另一种参数,参与该计算的参数还可能进一步包括其他数据,即电梯运行能量平衡计算通常指根据至少包括电梯质量、源动力参数、***运行参数中的任意两种参数的数据去计算另一种参数。如实施例1中公式1-1、1-4中测算对象为物品质量m1时,参与计算的参数还包括电梯质量中的m0;实施例4中的公式4-13中,测算对象为***运行参数中的旋转件的摩擦力fr时,参与计算的参数还 包括导轨和/或电梯井道中物体与轿厢的摩擦力f0;实施例5中公式5-1中测算对象为***运行参数中的电梯速度时,参与计算的参数还包括***运行参数中的g,这里不一一列举,具体的可参考下述各实施例。
当测算对象为电梯质量时,所述电梯质量的联合运算值是根据源动力参数和***运行参数计算所得,当然参与该计算所需求的参数还可能进一步包括其他数据如电梯质量中的其他参数;也即当测算对象为电梯质量时,所述联合运算值可根据至少包括源动力参数和***运行参数在内的数据计算所得。
当测算对象为源动力参数时,所述源动力参数的联合运算值是根据电梯质量和***运行参数计算所得,当然参与该计算所需求的参数还可能进一步包括其他数据;也即当测算对象为源动力参数时,所述联合运算值可根据至少包括电梯质量和***运行参数在内的数据计算所得。
当测算对象为***运行参数时,所述***运行参数的联合运算值是根据电梯质量和源动力参数计算所得,当然参与该计算所需求的参数还可能进一步包括其他数据,如除测算对象之外的其他的***运行参数;也即当测算对象为***运行参数时,所述联合运算值可根据至少包括电梯质量(通常为电梯总质量)和源动力参数在内的数据计算所得;
最典型的电梯运行的电梯运行能量平衡计算公式如:(m1+m0)*g-m3*g=(Kem1*Te)*im/R1,电梯运行的电梯运行能量平衡计算公式有无穷多变形、演绎;
电梯质量包括电梯轿厢总质量、或对重质量、或同时包括电梯轿厢总质量和对重质量,电梯质量的参数的类型设置需根据源动力参数的信号取值位置而决定,当源动力参数的信号取值位置为轿厢侧的钢丝绳时,则电梯质量可选择电梯轿厢总质量(其包括空载轿厢质量和运载物品质量);当源动力参数的信号取值位置为曳引轮及其前端(曳引轮、或曳引轮与电机中间的传动部件、或电机、或电机驱动器、或电源装置等)时,则电梯质量可选择电梯轿厢总质量和对重质量;当源动力参数的信号取值位置为对重侧的钢丝绳时,则电梯质量可选择对重质量;
本发明“所述电梯运行能量平衡计算与电梯运行方向关联”,也即“根据电梯运行方向调整所述电梯运行能量平衡计算的算法”,指的是一种技术方案,该计算适用范围的性质,并非一定要在某个运行方向时才能展开计算;
例如可以在电梯零速运行时,用电梯的电气动力参数的安全极限阀值和运载质量的当前值计算上行速度和/或上行加速度的值,该值通常可作为电梯上行时的运行上限阀值;例如可以在电梯零速运行时,用下行速度和/或下行加速度的预设指令值和运载质量的当前值计算的源动力参数的值,该值通常用于判断电梯下行时源动力参数(如钢丝绳的综合拉力)会否超限;
本发明所述“电梯运行能量平衡计算与电梯运行方向关联”,包括下述运行方向关联1、运行方向关联2中任意一种或两种方案,以及根据该运行方向关联1和/或运行方向关联2变形、派生的关联关系;在电梯上行、电梯下行时分别按该关联原理设置计算公式;
运行方向关联1:当电梯上行时:运载质量m2与重力加速度g产生的重力分量(m2*g)为能量吸收因素,对重质量m3与重力加速度g产生的重力分量(m3*g)为能量释放因素;当电梯下行时:运载质量m2与重力加速度g产生的重力分量为能量释放因素,对重质量m3与重力加速度g产生的重力分量为能量吸收因素;根据该能量吸收/或释放规律在电梯不同的运行方向中,对运载质量m2与对重质量m3设置不同的计算公式;例如后述计算公式3-1、公式4-1、公式4-2、公式3-2、公式4-3、公式4-4所示;
运行方向关联2:当电梯上行与电梯下行时,电梯质量与重力加速度g产生的重力分量的计算公式不变,但是在电梯上行、电梯下行时切换源动力参数的正负极性;
如参考后述公式3-1,电梯上行时采用计算公式3-100:
(m1+m0)*g-m3*g=T1/R1,(公式3-100);
电梯下行时采用计算公式3-101:
(m1+m0)*g-m3*g=-T1/R1,(公式3-101);
或者在电梯下行时,不改变计算公式3-100的形式,但实质性的将(T1/R1)切换为负值;如在电梯上行时强制T1为正值,在电梯下行时强制T1为负值。
在上述运行方向关联2,在电梯上行、电梯下行时切换源动力参数的正负极性是必须步骤。
由此可见,当电梯非零速运行时,电梯运行能量平衡计算与电梯运行方向关联是有必要的,否则将导致计算的结果出错。且在实际应用中,运行方向关联1比运行方向关联2要清晰简洁;运行方向关联1更符合电梯运行中能量流向规则;因为用源动力参数的正负体现电机运行工况,比用用源动力参数的正负体现电梯运行方向更科学;运行方向关联3易使计算表达复杂化、混乱。
本发明“根据电机运行工况调整所述效率系数的计算方法”,在本发明中简称为“根据电机运行工况调整所述效率系数”,其包括下述电机工况关联1、电机工况关联2中任意一种或多种方案,以及根据该电机工况关联1和/或电机工况关联2变形、派生的关联关系;:
电机工况关联1:当电机处于电动状态时,电机吸收电能转化为机械能,根据能量守恒原理,该电气动力参数与小于1的效率系数(如Kem1)相乘,或该电气动力参数与一效率损耗值相减;
电机工况关联2:当电机处于电机制动状态时,电机吸收机械能转化为电能,根据能量守恒原理,该电气动力参数除以一个小于1的效率系数(如Kem2),或该电气动力参数与一效率损耗值相加;
本发明“根据电机运行工况进行所述电气功率的类型设置”,在本发明中简称为“根据电机运行工况进行所述电气功率的设置”,其包括下述电机工况关联3、电机工况关联4中任意一种或多种方案,以及根据该电机工况关联3和/或电机工况关联4变形、派生的关联关系;
电机工况关联3:当电机处于电动状态时,电机吸收电能转化为机械能,此时该电气功率选择为电动状态时电气***的功率(如电源、或电机驱动器、或电机等器件的电动状态功率);
电机工况关联4:当电机处于电机制动状态时,电机吸收机械能转化为电能,此时该电气功率选择为电机制动状态时电气***的功率(如发电回馈制动功率P4、或能耗制动功率P5等);
电梯的速度变化状况关联原理如下:加速运行时,电梯质量与加速度产生的变速力分量为能量吸收因素;减速运行时,电梯质量与加速度产生的变速力分量为能量释放因素;匀速运行时,加速度为零,电梯质量与加速度产生的变速力分量也为零。
本发明“根据电梯速度变化状况进行所述电梯运行能量平衡计算”,包括根据上述速度变化状况关联原理进行下述速变关联1和/或速变关联2处理等;
速变关联1.参与所述电梯运行能量平衡计算的参数中包括加速度;
速变关联2.识别电梯的速度变化状况,在匀速运行、变速运行时分别进行所述电梯运行能量平衡计算或处理。
速度变化状况的识别,可通过加速度aj值识别:当电梯运行时aj为0或小于某一预设的阀值时,则可识别当前的速度变化状况为非零匀速运行;当aj不为0或大于某一预设的阀值时,则可识别当前的速度变化状况为变速运行;其中,加速度aj值可采用前述多种获取方式(如通过加速度传感器、或速度Vq、或转速n1等);还可通过电机驱动器的信息获取(如现有变频器普遍具有匀速过流、加速过流等信息,通过该信息可提取速度变化状况);还有更简易的方式,按运行时间来区分速度变化状况,如电机驱动器(如变频器等)的加速运行时间为2秒,则设定在启动后的3秒之内为变速运行时间段,3秒之后为非零匀速运行时间段;
优选的,参与所述电梯运行能量平衡计算的参数中包括加速度,该加速度为根据加速度传感器测量得到。根据检测速度或转速变化等计算方式所得的加速度:aj=(Vq_1-Vq_0)/t;该方式首先得检测速度Vq,当电梯低速运行时,因Vq远小于满量程,导致测 量误差大,尤其是在接近零速运行是,该误差更大,基本无法实用;而根据加速度传感器测得加速度,具有响应快和精度高的优势,能够很好的适用于低速运行,尤其是零速运行,显著的提高电梯运行参数的测算精度;
更重要的是:因电梯无论是上行、或下行,首先必然从零速开始,逐步加速到匀速;首先在零速时判断其是否超载/是否该放弃运行/发出警示信号;然后才能进行目标加速度/目标加速时间、目标速度的科学规划;一旦将来因成本问题放弃了当前的轿厢内霍尔传感器称重方案,此时,加速度传感器测量加速度进而用电梯运行能量平衡计算相结合进行称重,其对于电梯超载/也即电梯安全运行、效率提高具有重要意义。
因为在电梯运行中,必然经历启动、零速运行、加速运行、匀速运行、减速运行、零速运行、停机等步骤;计算时,采用速变关联1,或者速变关联2方式,才能得到准确的结果。
例如,根据电梯的源动力参数和***运行参数计算出电梯轿厢总质量m2,则m2为直接得到的联合运算值;根据电梯轿厢总质量m2再计算出运载物品质量m1或空载轿厢质量m0,则m1或m0均为间接得到的联合运算值;
本发明所述联合运算值,为任意一个参数(如m2/或m1/或m0)根据联合运算所得的数值,且该数值对于该测算对象而言相对完整,该参数没有分割或剔除该参数的实际值;显而易见的,本发明中所述实际值,通常为某对象某一属性的自然的、真实的数值;
例如:运载物品质量的联合运算值可用m1表示,基准值可用m1_org表示;例如:电梯轿厢总质量的联合运算值可用m2表示,基准值可用m2_org表示;特别注明1:为了便于描述和业内技术人员理解本发明:当测算对象为运载质量时,联合运算值或非联合运算值均可直接用参数名m1或m2表示;当测算对象为源动力参数或***运行参数时,联合运算值的表达式可能会在参数名后加一后缀:_cal;如加速度的参数名aj,联合运算值用aj_cal表示;如上行速度的参数名V1,联合运算值用V1_cal表示;如Q点钢丝绳的综合拉力参数名为F1,该联合运算值用F1_cal或μ1_cal表示;所有后缀为(_cal)的数据,表示该数据为通过基于电梯运行能量平衡计算所得的联合运算值,以与其他方式(如实测值、或人工给定值、或***默认值)获取的数据相区别。
下述实施例1、实施例2、实施例3、实施例4、实施例5及相关的替代(或延伸)实施例,是本发明提供的一种电梯运行参数的测算方法(也即获取方法)的具体实施方式:
实施例1:本实施例包括下述步骤1A1、1A2:
1A1.获取电梯的轿厢上Q点钢丝绳的综合拉力F1、空载轿厢质量m0、轿厢加速度aj、重力加速度g的值,根据下述公式1-1(该公式符合电梯运行的能量平衡原理)计 算运载物品质量m1(或测算出m2或m0的值);
当电梯加速上行时:m1=F1/(g+aj)-m0,(公式1-1)
1A2.计算出运载物品质量m1的值,输出m1值(到轿厢内显示屏);
实施例1的替代实施例1:参考实施例1,可测算出轿厢上Q点钢丝绳的综合拉力的联合运算值F1_cal,计算公式为:
当电梯加速上行时:F1_cal=(m1+m0)*(g+aj),(公式1-2);
实施例1的替代实施例2:参考实施例1,可测算出加速度的联合运算值aj_cal,计算公式为:
当电梯加速上行时:aj_cal=F1/(m1+m0)-g,(公式1-3);
实施例1的替代实施例3:
1A1.获取电梯的轿厢上Q点钢丝绳的综合拉力F1、空载轿厢质量m0、重力加速度g的值,识别电梯的速度变化状况,在电梯处于匀速运行时根据下述公式1-4(该公式符合电梯运行的能量平衡原理)计算运载物品质量m1;当电梯处于变速运行时输出一个“电梯变速中”的状态信息;
当电梯处于匀速运行时:m1=F1/g-m0,(公式1-4)
1A2.计算出运载物品质量m1的值,在轿厢内显示屏上输出m1值;
如上述实施例1的替代实施例3中,如果按照现有公知技术方案不识别速度变化状况和限定速度变化状况,则在变速运行时用公式1-4计算必然会得到错误的结果;
实施例2:本实施例包括下述步骤2A1、2A2:
2A1.获取电梯的轿厢上Q点钢丝绳的综合拉力F1、运载物品质量m1、空载轿厢质量m0、轿厢加速度aj、重力加速度g的值,根据下述公式2-1(该公式符合电梯运行的能量平衡原理)计算导轨和/或电梯井道中物体与轿厢的摩擦力的联合运算值f0_cal;
f0_cal=F1-(m1+m0)*(g+aj),(公式2-1);
2A2.计算出摩擦力的联合运算值f0_cal,输出f0_cal值到轿厢内显示屏和中央控制器***;
实施例3:本实施例包括下述步骤3A1、3A2:
3A1.识别电梯的能量流向工况,识别电梯的速度变化状况,(如可通过设置于曳引轮上转矩传感器测量等方式)获取电梯的曳引轮上驱动转矩T1、空载轿厢质量m0、对重质量m3、轿厢加速度aj、对重加速度ad、重力加速度g的值,根据下述系列公式(该公式符合电梯运行的能量平衡原理)计算运载物品质量m1的值;
3A1-1.当能量流向工况为电梯上行,且速度变化状况为非零匀速运行时,电梯运行的能量平衡原理计算公式3-1如下:
(m1+m0)*g-m3*g=T1/R1,(公式3-1);
3A1-2.当能量流向工况为电梯下行,且速度变化状况为非零匀速运行时,电梯运行的能量平衡原理计算公式3-2如下:
-(m1+m0)*g+m3*g=T1/R1,(公式3-2);
3A1-3.当速度变化状况为变速运行时,可采取下述3A1-3-1的处理、或下述3A1-3-2所述的计算中任意一种处理方式:
3A1-3-1:输出一个“电梯变速中”的状态信息;
3A1-3-2:根据电梯的速度变化状况和能量流向工况的不同的组合,可进行下述3A1-3-2-1、3A1-3-2-2、3A1-3-2-3、3A1-3-2-4中任意一种或多种计算处理;
3A1-3-2-1.当加速上行时,计算公式3-3如下:
((m1+m0)-m3)*g+(m1+m0)*aj+m3*ad=T1/R1,(公式3-3);
3A1-3-2-2.当减速上行时,仍用公式3-3,加速度为负值;
3A1-3-2-3.当加速下行时,计算公式3-5如下:
(m3-(m1+m0))*g+(m1+m0)*aj+m3*ad=T1/R1,(公式3-5);
3A1-3-2-4.当减速下行时,仍用公式3-5,加速度为负值
3A2.计算出运载物品质量m1的值,输出和/保存m1的值到轿厢内显示屏、中央控制器***、网络***中任意一种或多种***中;
实施例3的替代实施例1:参考实施例3,可以将实施例3中任一公式中除运载物品质量m1之外任一个参数作为测算对象(如选择m0、m3、T1等),获取按该公式计算测算对象的联合运算值所需求的参数的值,计算出该测算对象的联合运算值;例如采用公式3-1的变形公式测算T1_cal的联合运算值:T1_cal=((m1+m0)*g-m3*g)*R1,(公式3-7)
实施例3的延伸实施例1:可在实施例3及其替代实施例中的任意一个或多个公式中,增添导轨和/或电梯井道中物体与轿厢的摩擦力f0和/或机械旋转件的摩擦关联数据(如摩擦力fr);
例如将公式3-1延伸为下述公式3-8:
(m1+m0)*g-m3*g+f0+fr=T1/R1,(公式3-8);
所述机械旋转件的摩擦关联数据为摩擦力、摩擦系数、摩擦转矩中任意一种或多种参数;机械旋转件的摩擦力fr主要包括曳引轮和导向轮上摩擦阻力,其根源为轿厢、运载物品、对重所产生重力进而形成的摩擦阻力;fr≈(m1+m0+m3)*g*μ1,在m1未准确测量之前,fr≈(m1_ena/2+m0+m3)*g*μ1;μ1为曳引轮和导向轮的滚动摩擦阻力系数;在正常情况下导轨和/或电梯井道中物体与轿厢的摩擦力f0的值通常很小可以忽略不计;旋转件的摩擦力fr则是实际存在的参数,当然因为其值相较于轿厢总重力 ((m1+m0)*g)、对重的重力(m3*g)要低,也可以忽略不计;本说明也适用于本发明的其他实施例。
实施例4:本实施例包括下述步骤4A1、4A2:
4A1.识别电梯的能量流向工况(电动上行、电机制动上行、电动下行、电机制动下行),识别电梯的速度变化状况(非零匀速运行、加速运行、减速运行),(如读取变频器数据)获取电机的电磁转矩Te、电机的效率系数Ke1和/或Ke2、机械传动***的效率系数Km1和/或Km2、综合传动比im、空载轿厢质量m0、对重质量m3、轿厢加速度aj、对重加速度ad、重力加速度g的值根据下述系列公式(该公式符合电梯运行的能量平衡原理)计算运载物品质量m1的值;
4A1-1.当能量流向工况为电动上行,且速度变化状况为非零匀速运行时,电梯运行的能量平衡原理计算公式4-1如下:
(m1+m0)*g-m3*g=(Kem1*Te)*im/R1,(公式4-1);
4A1-2.当电机制动上行+非零匀速运行时,计算公式4-2如下:
(m1+m0)*g-m3*g=(Te/Kem2)*im/R1,(公式4-2);
4A1-3.当电动下行+非零匀速运行时,计算公式4-3如下:
-(m1+m0)*g+m3*g=(Kem1*Te)*im/R1,(公式4-3);
4A1-4.当电机制动下行+非零匀速运行时,计算公式4-4如下:
-(m1+m0)*g+m3*g=(Te/Kem2)*im/R1,(公式4-4);
4A1-5.当速度变化状况为变速运行时,可采取下述4A1-5-1的处理、或下述4A1-5-2所述的计算中任意一种处理方式:
4A1-5-1:输出一个“电梯变速中”的状态信息;
4A1-5-2:根据电梯的速度变化状况和能量流向工况的不同的组合,可进行下述4A1-5-2-1、4A1-5-2-2、4A1-5-2-3、4A1-5-2-4、4A1-5-2-5、4A1-5-2-6、4A1-5-2-7、4A1-5-2-8中任意一种或多种计算处理;
4A1-5-2-1.当加速运行+电动上行时,计算公式4-5如下:
((m1+m0)-m3)*g+(m1+m0)*aj+m3*ad=(Kem1*Te)*im/R1,(公式4-5);
4A1-5-2-2.当加速运行+电机制动上行时,计算公式4-6如下:
((m1+m0)-m3)*g+(m1+m0)*aj+m3*ad=(Te/Kem2)*im/R1,(公式4-6);
4A1-5-2-3.当减速运行+电动上行时,仍用公式4-5,加速度为负值;
4A1-5-2-4.当减速运行+电机制动上行时,用公式4-6,加速度为负值;
4A1-5-2-5.当加速运行+电动下行时,计算公式4-9如下:
(m3-(m1+m0))*g+(m1+m0)*aj+m3*ad=(Kem1*Te)*im/R1,(公式4-9);
4A1-5-2-6.当加速运行+电机制动下行时,计算公式4-10如下:
(m3-(m1+m0))*g+(m1+m0)*aj+m3*ad=(Te/Kem2)*im/R1,(公式4-10);
4A1-5-2-7.当减速运行+电动下行时,仍用公式4-9,加速度为负值:
4A1-5-2-8.当减速运行+电机制动下行时,用公式4-10,加速度为负;
4A2.上述公式4-1至公式4-10均为母公式,该系列中任一公式均可简单变形为运载物品质量m1的直接计算公式,如公式4-1变形为下:
m1=((Kem1*Te)*im/R1-(m0*g-m3*g))/g,(公式4-1变形公式1)
计算出运载物品质量m1的联合运算值,输出和/保存m1的联合运算值到轿厢内显示屏、中央控制器***、网络***中任意一种或多种***中;
实施例4的延伸实施例1:可在实施例4及其它任一替代(或延伸)实施例中的任意一个或多个公式中,增添导轨和/或电梯井道中物体与轿厢的摩擦力f0和/或旋转件的摩擦力fr;例如当非零匀速运行+电动上行时,将公式4-1延伸为下述公式4-13:
(m1+m0)*g-m3*g+f0+fr=(Kem1*Te)*im/R1,(公式4-13);
实施例4的延伸实施例2:可在实施例4及其它任一替代(或延伸)实施例中的任意一个或多个公式中,增添曳引机的内部综合旋转刚体的转动惯量L0和内部综合旋转刚体的角加速度β;例如当加速运行+电动上行时,将公式4-5延伸为下述公式4-14;
((m1+m0)-m3)*g+(m1+m0)*aj+m3*ad+L0*β=(Kem1*Te)*im/R1,(公式4-14);
实施例4的替代实施例1:实施例4及其它任一替代(或延伸)实施例中的电磁转矩Te可用(Io*cosφ1*Ko)或(k21*I2o*cosφ2*Ko)或(k31*I3o*cosφ3*Ko)或(iq*Ki)或(P(w)*9.55/n1)任一表达式替代;
实施例4的替代实施例2:实施例4及其它任一替代(或延伸)实施例中:
电动上行时表达式((Kem1*Te)*im/R1)可用(Kem1*Po/V1)或(k21*Kem1*P2i/V1)或(k21*Kem1*P3o/V1)任一表达式替代;
电机制动上行时表达式((Te/Kem2)*im/R1)可用((P4/(K14*Kem2))/V1)或((P5/Kem2)/V1)任一表达式替代;
电动下行时表达式((Kem1*Te)*im/R1)可用(Kem1*Po/V2)或(k21*Kem1*P2i/V2)或(k21*Kem1*P3o/V2)任一表达式替代;
电机制动下行时表达式((Te/Kem2)*im/R1)可用((P4/(K14*Kem2))/V2)或((P5/Kem2)/V2)任一表达式替代;
实施例4的替代实施例3:参考实施例4,可以将实施例4及其它任一替代(或延伸)实施例中任一公式中除运载物品质量m1之外任一个参数作为测算对象(如选择 Kem1、m0、m3、Te等),获取按该公式计算测算对象的联合运算值所需求的参数的值,计算出该测算对象的联合运算值;如下述示例1、2、3所示;
示例1:当非零匀速运行+电动上行时,采用公式4-1的变形公式4-15测算Te的联合运算值:Te_cal=((m1+m0)*g-m3*g)*R1/(Kem1*im),(公式4-15),;
示例2:当非零匀速运行+电动上行时,采用公式4-1的变形公式4-16测算Kem1的联合运算值:Kem1_cal=((m1+m0)*g-m3*g)*R1/(Te*im),(公式4-16);
示例3:当非零匀速运行+电动上行时,采用公式4-13的变形公式4-17测算f0的联合运算值:
f0_cal=(Kem1*Te)*im/R1-((m1+m0)*g-m3*g+fr),(公式4-17);
示例4:当加速运行+电动上行时,采用公式4-5的变形公式4-18测算aj的联合运算值:为了计算简化假设aj=ad;
aj_cal=((Kem1*Te)*im/R1-(m1+m0-m3)*g)/(m1+m0+m3),(公式4-18);
示例5:当加速运行+电机制动上行时,采用公式4-6的变形公式4-19测算aj的联合运算值:为了计算简化假设aj=ad;
aj_cal=((Te/Kem2)*im/R1-(m1+m0-m3)*g)/(m1+m0+m3),(公式4-19)
实施例4的延伸实施例3:可在实施例4及其它任一替代(或延伸)实施例中的任意一个或多个公式中,增添风阻fw;电梯速度越高,增加风阻fw可提高计算准确度。
如当非零匀速运行+电动上行时,将公式4-1延伸为下述公式4-22-1;
(m1+m0)*g-m3*g+fw=(Kem1*Te)*im/R1,(公式4-22-1);
如当非零匀速运行+电动下行时,将公式4-3延伸为下述公式4-22-2;
-(m1+m0)*g+m3*g+fw=(Kem1*Te)*im/R1,(公式4-22-2);
实施例5:本实施例包括下述步骤5A1、5A2:
5A1.识别电梯的能量流向工况(电动上行、电机制动上行、电动下行、电机制动下行),识别电梯的速度变化状况(非零匀速运行、加速运行、减速运行),获取电梯的电机的电气功率Po或发电回馈制动功率P4或电阻能耗制动功率P5、电机的效率系数Ke1和/或Ke2、机械传动***的效率系数Km1和/或Km2、综合传动比im、空载轿厢质量m0、对重质量m3、轿厢加速度a、重力加速度g的值;根据不同的能量流向工况和速度变化状况进行下述5A1-1、5A1-2、5A1-3、5A1-4中任意一种或多种计算:
5A1-1.当能量流向工况为电动上行,且速度变化状况为非零匀速运行时,根据下述公式5-1测算电梯速度的联合运算值V1_cal;
V1_cal=Kem1*Po/((m1+m0)*g-m3*g),(公式5-1);
5A1-2.当能量流向工况为电动下行,且速度变化状况为非零匀速运行时,根据下述公式5-2测算电梯速度的联合运算值V2_cal;
V2_cal=Kem1*Po/(m3*g-(m1+m0)*g),(公式5-2);
5A1-3.当电梯为电机制动上行+非零匀速运行时,根据下述公式5-3-1(或5-3-2)测算电梯速度的联合运算值V1_cal;
V1_cal=(P4/(K14*Kem2))/((m1+m0)*g-m3*g),(公式5-3-1);
V1_cal=(P5/Kem2)/((m1+m0)*g-m3*g),(公式5-3-2);
5A1-4.当电梯为电机制动下行+非零匀速运行时,根据下述公式5-4-1(或5-4-2)测算电梯速度的联合运算值V2_cal;;
V2_cal=(P4/(K14*Kem2))/(m3*g-(m1+m0)*g),(公式5-4-1);
V2_cal=(P5/Kem2)/(m3*g-(m1+m0)*g),(公式5-4-2);
5A2.计算出速度的联合运算值V1_cal和/或V2_cal的值,输出和/保存到轿厢内显示屏、中央控制器***、网络***中任意一种或多种***中;
从上述实施例3、4、5分析得知,即使电梯处于简单的匀速运行状态时,不同的能量流向工况下,测算对象的联合运算值的计算方式均有结构性的不同;现有公知技术中(如申请号201310116151.9的中国专利申请)零速时电机的转矩计算乘客重量技术,m=(m3-m1-T*I/R)/g;正因为缺乏对于电梯结构的深入研究,忽略了电梯的能量流向工况,所以该计算公式只适用于电梯零速运行时,不适用于在电梯升降运行时。
测算对象的联合运算值有多种计算方式,一种是查表计算;如先预设电梯质量、源动力参数、***运行参数的关联表格;当输入其中任意两种参数时,可查表计算出另一参数的值;例如获取电梯的源动力参数、***运行参数的值;根据该源动力参数、***运行参数的值查表计算出电梯质量的联合运算值;因为不同电梯的构造、机况、载况千差万别;通过查表方式计算测算对象的联合运算值有很多局限性;一来表格的容量受限与硬件器件成本,二来表格中所有参数都需要预先设定或学习才能运行;表格容量大/参数设置越多,则硬件成本越高参数设置/学习成本越高;
一种是用模型(也可称为数学公式)计算;本发明前述的实施例1、2、3、4均为通过模型计算联合运算值;如果用电梯运行的能量平衡模型,用数学计算方式获取测算对象的联合运算值,则只需预先设置好模型规则/或数学运算规则,调整好相关的参数值,相较于查表计算,可大幅度降低联合运算值的获取成本/或大幅度提高联合运算值获取精度低/能量传递异常监控判断灵敏度。
本发明提供的一种电梯运行参数的值的获取方法和***的有益意义:
现有公知技术(如背景技术所示,尤其是A类轿厢内传感器称重技术)无法反馈出电梯在上下运行中导轨和/或电梯井道中物体与轿厢的摩擦力状况、不便于反馈电梯的电气动力***、曳引机、钢丝绳的工作状况;现有变频器称重技术只能在零速运行时适用;而本发明通过对重式电梯的结构和工作原理进行深入研究分析,依据电梯运行能量平衡计算求出测算对象(如运载物品质量m1)的联合运算值;本发明提供的一种电梯运行参数的值的获取方法和***,当以运载物品质量为测算对象时,便于实现低成本的电机驱动器称重/超载监控,便于电梯的乘客或监管人员直观、快速的识别出电梯运行是否正常;便于构建可自动监控电梯的能量传递异常的智能监控***,便于发现电梯在上下运行中导轨和/或电梯井道中物体与轿厢的摩擦状况;便于根据运载质量的当前值和源动力参数的安全极限阀值计算出机械运行参数的许可值,便于实现更高效更节能的控制;便于根据运载质量的当前值和机械运行参数的指令预测值计算-(尚未发生的)源动力参数的会否超限,对于电梯的安全运行具有重要意义。
本获取方法和***,当用于机械运行参数的许可值或源动力参数预测计算时,通常可在电梯运行前计算;当用于称重/超载监控或能量传递异常监控时,通常可在电梯升降运行时实时工作;
技术问题二:
本发明要解决的技术问题之二是提供一种新的电梯运行的监控技术方案;以便于在电梯运行参数未超出安全极限阀值前实现对电梯运行安全状况(包括电梯导轨和/或电梯井道中物体与轿厢的运行阻力在内)的监控。
本发明的目的是通过以下技术方案来实现的:
5.本发明提供还一种电梯在升降运行时的监控方法(#1),所述监控方法包括步骤:获取所述电梯的测算对象的联合运算值,根据所述联合运算值识别所述电梯的能量传递状况;其中,所述测算对象为电梯运行参数中的任意一种或者多种,所述联合运算值是基于电梯运行能量平衡计算所得。
6、优选地,在本发明上述的电梯在升降运行时的监控方法(#1)中,所述根据所述联合运算值识别所述电梯的能量传递状况具体为:根据所述联合运算值和所述测算对象的参考数据判断所述电梯的能量传递状况是否异常。
7、在本发明上述的电梯在升降运行时的监控方法(#1)中,还可进行下述7B1、7B2中任意一种或多种方案处理;
7B1.如所述判断的结果包括存在是(即为是的判断的结果至少有一个),则启动设定的能量传递异常处理机制;
7B2.输出和/或保存所述判断结果;
8、在本发明上述的电梯在升降运行时的监控方法(#1)中,所述联合运算值是基于电梯运行能量平衡计算所得;且所述监控方法满足下述8A11、8A12中任意一种或多种条件:
8A11.所述电梯运行能量平衡计算与电梯运行方向关联;
8A12.当所述电梯以零速运行时,所述联合运算值和所述参考数据只源于一种参数获取***,也即所述联合运算值和所述参考数据均是基于电梯运行能量平衡计算所得。
本监控方法(#1)的实施说明:
本监控方法(#1)是前文所述的一种电梯运行参数的测算方法的发明思想的基础上一种延续,该延续是以监控电梯运行是否安全为目的;
本监控方法(#1)的核心步骤1:获取所述电梯的测算对象的联合运算值;本发明通过对对重式电梯的结构和工作原理进行深入研究分析,依据电梯运行能量平衡计算求出测算对象(如运载物品质量m1)的联合运算值;
获取所述测算对象的联合运算值,可以通过多种获取方式来实现;如读取其他***输出的联合运算值;如通过监控***自身测量部件测量电梯的联合运算值;或部分为读取现有设备输出数据,部分为自身测量数据等;
获取电梯的测算对象的联合运算值,具体可参考下述前述诸多实施例(如实施例1、实施例2、实施例3、实施例4、实施例5等)进行:
本监控方法(#1)的核心步骤2:根据所述联合运算值和所述测算对象的参考数据判断所述电梯的能量传递状况是否异常;
本发明所述参考数据,即为测算对象的参考数据,也即用于能量传递状况识别的数据,也即能量传递状况识别数据,是指用于与所述联合运算值配合进行能量传递异常判断/比较的数据或数值,这是因为单个数据无法构成完整的比较/判断运算。参考数据包括基准值、许可偏差值、第一参考值中任意一种或多种数据;本发明中所述基准值也即用于能量传递状况识别的基准值,也即能量传递状况识别基准值;本发明中所述许可偏差值也即用于能量传递状况识别的偏差值,也即能量传递状况识别偏差值;
本发明所阐述主题的一种技术方案,所述基准值,其必须考虑切实可行的技术手段或实现方案,其值自然的受约束于具体的取值时间和/或取值方式;根据后述的参考数据的具体设置方案(如数据的来源或取值途径的选取、设定方式、取值时间等)的以及相关实施例(实施例1-10),显而易见的可得知:根据测算对象不同和/或实际值设置方式的不同,本发明所述基准值有多种不同的取值时间范围、多种不同的值域、可由多种不同的技术方法或方案来实现。
本发明所述基准值是从属于测算对象类型和/或实际值设置方式的一个数值,是一个幅值(也即大小)的概念,是一个中间层数据;本发明所述基准值通常为与电梯的测算对象在联合运算值取值时的实际值接近或相等的数值;此处所述的通常,指大多数情况,大多数时候,该基准值的幅值范围可以适用于大多数类型的测算对象,如源动力参数、机械运行参数;如实施例7、9所示,当基准值的设定方式为根据与联合运算值取值时同一时间范围内的实测值设定时,该基准值(也即实测值)通常为与电梯的测算对象在联合运算值取值时的实际值接近或相等的数值;
如实施例6所示:当基准值的设定方式为根据(满足设定条件时)所获取的联合运算值设定时,该基准值也自然为与该“(某一特定的)满足设定条件时”的联合运算值接近或相等的数值;因“(某一特定的)满足设定条件时”是用户或***特意指定的(用于设置参考数据)的时间,通常可以默认为此时电梯工作于正常状态,该基准值(也即该联合运算值)通常为与在“(某一特定的)满足设定条件时”测算对象的实际值接近或相等的数值;此种基准值的设定方式通常适用于当测算对象为电梯质量(m0、m1、m2、m3)或***固有参数时;当测算对象为电梯质量时,因为在同一个的“电梯由动力装置控制运行”的时间段中电梯质量的值通常变化不大,所以该基准值的数值通常仍然可能与电梯的测算对象在(用于能量传递状况异常判断的所获取的)联合运算值取值时的实际值接近或相等;
如实施例8所示:当基准值的设定方式为根据根据***默认值设定时,该基准值(也即该***默认值)通常为与该测算对象在***默认(通常也即标准状态下)的实际值相等或接近的数值,通常为标定值;此种基准值的设定方式通常适用于当测算对象为***固有参数或幅值固定的电梯质量(m0,m3)时。
本发明所述能量传递状况异常可简称为能量传递异常,本发明所述能量传递异常包括下述A1-1、A1-3中任意一种或多种情况:
A1-1.所述联合运算值和所述基准值的差值超出所述许可偏差值;
A1-3.所述联合运算值超出所述测算对象的第一参考值;
从发明原理和基础技术方案和效果上分析,上述A1-1情况实质等同于A1-3;
其中,所述许可偏差值包括上限偏差值、下限偏差值中任意一个或多个数据;该上限偏差值为用于能量传递状况识别的上限偏差值,也即能量传递状况识别上限偏差值;该下限偏差值为用于能量传递状况识别的下限偏差值,也即能量传递状况识别下限偏差值;
所述第一参考值包括第一参考值上限值、第一参考值下限值中任意一个或多个数据;本发明所述超出包括大于某个上限值、小于某个下限值等任意一种或多种情况;
所述A1-1情况包括下述A1-1-1、A1-1-2中任意一种或两种情况;
A1-1-1.联合运算值与基准值的差值大于上限偏差值;
A1-1-2.联合运算值与基准值的差值小于下限偏差值;
所述A1-3情况包括下述A1-3-1、A1-3-2中任意一种或两种情况;;
A1-3-1.所述联合运算值大于第一参考值上限值;
A1-3-2.所述联合运算值小于第一参考值下限值;
综上所述,第一参考值=基准值+许可偏差值,许可偏差值具有上限偏差值或者下限偏差值中的至少一种,第一参考值对应的具有第一参考值上限值和第一参考值下限值,第一参考值上限值为基准值加一正值,第一参考值下限值为基准值加上一负值或者减去一正值。
许可偏差值具有上限偏差值而不具有下限偏差值时:根据联合运算值是否大于第一参考值判断电梯的能量传递状况是否发生异常,当联合运算值大于第一参考值时,则说明能量传递状况发生异常,否则未发生异常;
许可偏差值具有下限偏差值而不具有上限偏差值时:根据联合运算值是否小于第一参考值判断电梯的能量传递状况是否发生异常,当联合运算值小于于第一参考值时,则说明能量传递状况发生异常,否则未发生异常;
许可偏差值同时具有上限偏差值和下限偏差值时:第一参考值上限值=基准值+上限偏差值,第一参考值下限值=基准值+下限偏差值,根据联合运算值是否小于第一参考值下限值和联合运算值是否大于第一参考值上限值判断电梯的能量传递状况是否发生异常,当联合运算值大于第一参考值上限值和联合运算值小于第一参考值下限值任意一种成立时,则说明能量传递状况发生异常,否则未发生异常。
应当理解的是,第一参考值=基准值×比例系数,此时许可偏差值=基准值×比例系数-基准值。如比例系数为0.8-1.1,则上限偏差值=0.1×基准值,下限偏差值=-0.2×基准值
通常来说,许可偏差值尽量的小以提高监控的灵敏度,但又须保持某个数量的值以降低监控的误触发率;因为许可偏差值数值小,根据其设定的第一参考值上限值可远远低于测算对象的安全极限阀值;所以本发明提供的监控方法(#1)可以突破现有公知技术在电梯运行参数未超出安全极限阀值时不便于进行安全监控的局限:
本监控方法(#1)的核心步骤3:进行下述8B1、8B2中任意一种或多种方案处理;电梯运行中的能量传递异常有可能导致严重安全事故,需要及时响应处理;如果不及时 响应/或启动相关的安全处理措施;该监控将没有实际意义。
本发明所述能量传递状况的信息包括判断所述电梯的能量传递状况是否异常的判断结果;如外部控制***需求,还可以包括所述电梯的若干个能量传递状况关联因子的值,还可以包括所述测算对象的联合运算值、基准值、许可偏差值、联合运算值与基准值的差值、第一参考值中任意一个或多个数据
当本发明所述输出,包括将数据输出到轿厢和/或监控中心的人机交互界面、网络***、连接端口、外部的控制***等;特别是当本发明所提供的监控方法/***(#1),独立于电梯的控制/驱动***时,则更加需要将数据输出到外部的控制/驱动***,以便及时处理异常信息;该人机交互界面包括显示器、语音***、指示灯等;该连接端口可供外部人机交互界面、网络***直接或以通讯方式读取数据,以让相关人员(如电梯乘客和/或电梯服务人员)或机构(如楼宇服务处、远程的网络监管中心的)可直接或间接的查看收听、监控数据。
本发明所述保存,包括将数据保存入监控***内存储***、网络***、外部的控制***等;以让与电梯运行相关人员或机构(如乘员、监管中心)可任意调取、监控数据;存储模块包括U盘、硬盘等;可形成类似于飞机黑匣子功能,便于事后分析。
本发明所述的能量传递异常处理机制包括但不局限于:语音提示告警、声光告警、根据电梯当前运行条件选择性执行保护动作、启动能量传递故障监控机制、将告警信息输出到轿厢内人机交互界面、厅门的人机界面、网络***、连接端口等;紧急停机、即刻反向运行一设定距离等;机器***和人工可任意组合设定各种处理动作;能量传递异常处理机制也可简称为安全处理机制。
本发明所述的告警信息可包含但不局限于:时间、位置、告警原因、告警时任一或多个电梯运行参数的值等;
本发明所述根据电梯当前运行条件选择性执行保护动作,是指先检查电梯当前的运行条件再执行相关动作;可包括而不局限于下述方案:
情况1:检查参考数据是否设置正确;如参考数据未正确设置或未设置完毕,则屏蔽相关的告警信息输出、不执行任何保护动作;
情况2:检查联合运算值计算中各输入参数的取值时间是否在预设的时间范围之内;如超出了预设的时间范围如1毫秒时,则屏蔽相关的告警信息输出、不执行任何保护动作;
情况3:当电梯处于调试、参数测试过程中,可不执行任何保护动作。
本发明所述参考数据,需考虑两方面的问题;一为参考数据的数据性质(包括数据类型/或数据获取的途径);二为参考数据的取值或设定时间;
本发明所述参考数据的数据类型/或数据获取的途径,可包括实测值、指令响应值、推算值、当次运行的学习值、***预设值、人工输入值等;其中,所述***预设值又可分历史记录值、***默认值等;
本发明所述的电梯运行参数的值,从时间上区分可分为当前值、预设值;当前值指电梯运行参数当前的实际值,可包括当前的实测值、当前的联合运算值、当前的指令响应值等;机械运行参数的预设值包括***预设值、人工输入值、指令预设值等;
源动力参数的预设值包括***预设值、人工输入值等;
运载质量的当前值,包括当前的联合运算值、当前的实测值(称重传感器测量所得)等;
运载质量的预设值,包括***预设值、人工输入值等;
指令值分指令预设值、指令响应值;指令预设值为电梯上行速度和下行速度和各速变方向的加速度的软件控制指令,指令预设值通常由软件生成,用于控制电梯的速度和/或加速度,也即作为控制电梯运行的电梯上行速度和/或下行速度和/或各速变方向的加速度的目标值;通常情况下,如没有限定说明时指令值分指令预设值,如当前速度为零,当***发出2m/s速度的指令预设值,电梯通常需要一个加速过程才能到达目标速度;指令响应值指电梯在接收到指令预设值后实际能响应/执行的值;相比较于指令预设值的意义倾向于目标值,指令响应值的意义倾向于过程值;假设电梯的变频器的加速运行时间设置为4秒,则当变频器在零速时发出2m/s的速度指令的2秒之后,电梯实际速度约为1m/s(而非2m/s);
推算值,指根据计算机或网络***虚拟推算所得数值,该种推算可以模拟/仿真电梯运行;
当次运行的学***衡计算而获取的联合运算值而设定的数值;
历史记录值,指在电梯过去的升降运行中已经历的、已学习记录的值;如已学习记录的联合运算值为历史记录原值,如已学习记录的基准值为历史记录基准值,如已学习记录的实际值为历史记录实际值;
***默认值,也称原始值,出厂值;是最简单的数据设置方式,每一个参数在电梯出厂时可设***默认值;
人工输入值,指电梯操控人员根据实际情况,现场设置的值;
所述参考数据,根据测算对象的不同,包括多种设定方式和时间:
当测算对象为幅值可能大幅变化的运载物品质量时,因该参数在电梯运行过程中数值通常不变;较优方式为根据满足设定条件时所进行的电梯运行能量平衡计算而获取的 联合运算值设定所述参考数据;如后续实施例6及其各替代和/或延伸实施例所示;
当测算对象为***固有参数时(如滚动摩擦阻力系数、效率系数),该类参数不便于在电梯运行中实际测量,但该类参数在电梯正常运行中幅值相对稳定;根据***默认值设定参考数据为最简单的方式,也可根据满足设定条件时所进行的电梯运行能量平衡计算而获取的联合运算值设定所述参考数据;参考数据的设定时间既可在电梯当次运行之前,也可再当次运行之初;如后续实施例7、8及其各替代和/或延伸实施例所示;
当测算对象为幅值可能大幅变化的源动力参数、机械运行参数中任一参数时,较优的方式根据实测值设定所述参考数据;且所述参考数据的取值时间与所述联合运算值的取值时间在预设的时间范围内(也即同步);如后续实施例9及其各替代和/或延伸实施例所示;实测值,比其他的指令值、推算值更能真实代表电梯运行参数的状况;还有一种可行性,根据所述测算对象的历史记录值设定所述参考数据;
通常在参考数据已设定后,才执行后续的能量传递异常判断/执行,这样可以简化***;当然也允许直接执行能量传递异常判断,在后续的能量传递异常处理机制中检查参考数据(或基准值)是否设置完毕/或设定是否正确,如参考数据(或基准值)未正确设置则屏蔽当次监控警示信号/及动作。
在通常情况下,在没有限定说明/或附加说明时,本发明所述测算对象的联合运算值、参考数据等,均指参数的幅值(也即大小);当然,测算对象本身也可以是时间参数,如加速响应时间、减速响应时间、参数变化率等;如测算对象既可是速度,也可是速度的变化率(也即加速度),也可是加速度的变化率(也即加加速度)。
实施例6:(本实施例为本发明所提供监控方法(#1)的优选实施例)
本监控方法(#1)包括步骤A、B、C;
步骤A:本步骤包括步骤A1、步骤A2、步骤A3;
步骤A1:参考前述实施例4的方法,以电梯的运载物品质量作为测算对象,获取其联合运算值m1;
步骤A2:当参考数据已设定后可直接执行步骤A3;当参考数据未设定时,须首先执行下述步骤设定参考数据:将电梯以零速运行1.0秒时获取m1的联合运算值设定为基准值m1_org;根据基于电梯运行能量平衡计算所得的历史记录值设定上限偏差值m1_def_u、下限偏差值-m1_def_d;也可进而设定第一参考值的上限值m1_ref1_u、第一参考值的下限值m1_ref1_d;m1_def_u与m1_def_d均为正值,m1_def_u与m1_def_d相等或不等均允许;并设置一个“参考数据已设定”的状态信息;根据基准值和许可偏差值设定第一参考值的公式如下:m1_ref1_u=m1_org+m1_def_u, m1_ref1_d=m1_org-m1_def_d;
步骤A3:当参考数据已设定后,进行下述4个能量传递状况判断条件中任意一个或多个:判断条件1:((m1-m1_org)>m1_def_u);判断条件2:((m1-m1_org)<(-m1_def_d));判断条件3:(m1>m1_ref1_u);判断条件4:(m1<m1_ref1_d);
步骤B:
当参考数据未设定时或当电梯处于非稳定驱动状态时,直接执行步骤C;当Te小于预设阀值1(如额定值5%),可判定电梯处于非稳定驱动状态;
当参考数据已设定且电机运行工况没有处于非稳定驱动状态时,并列执行下述B1、B2、B3、B4步骤,再执行步骤C;
B1.如步骤A中4个能量传递状况判断条件中任一判断结果为是,则启动能量传递异常处理机制(如语音报警、灯光报警、启动能量传递故障监控机制等);
B2.输出所述判断结果到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面;
B3.保存所述判断结果到轿厢和/或控制中心的存储***;
B4.输出所述m1的联合运算值到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面网络***中;
步骤C:以0.1毫秒为周期循环实时执行步骤A和步骤B1;步骤B2、B3、B4以1秒为周期循环执行;当然,本步骤中各周期的具体时间,可根据各电梯的实际情况或用户需求任意调整。
实施例6的替代实施例1:在实施例6的A1步骤中,为参考前述实施例4的方法获取电梯的运载物品质量m1的联合运算值;也可参考实施例1、2、3、5中其他任一实施例(包括各种替代或延伸实施例)的方法获取电梯的运载物品质量m1的联合运算值;
实施例6的替代实施例2:实施例6为参考前述实施例4的方法在监控***内置的参数获取***测量出m1的联合运算值;也可直接读取外部装置(如电梯中央控制器等)输入的联合运算值m1的结果以替代步骤A1;
实施例6的替代实施例4:实施例6的步骤A2中电梯以零速运行1.0秒时获取m1的联合运算值并设定为基准值m1_org;在替代方案中,也可用下述A、B、C、D任意一种方案来替换参考数据的设定条件:
A、如电梯乘客主观认定当前的运载物品质量的联合运算值m1准确无误时,可人工输入一个“确认”信号;该信号也可与电梯轿厢内的“关门”信号合二为一;特别是在 采用电机驱动器称重时,先由乘客输入关门指令确认当前称重正确(也即电机驱动器、电机、曳引轮、钢丝绳悬挂***工作基本正常),电机才启动上下运行;然后再运行过程中也实时监控能量传递状况,一旦发生能量传递异常即刻启动保护,对于电梯的安全运行具有重要意义;从安全性上,远远超越当前轿厢内传感器称重的技术方案。
B、如电梯运行到设定的速度时(如0.1m/s)、
C、如电梯垂直运行设定的距离时(如1厘米或其他距离);
D、或其他可符合现场需求的条件,如变频器的运行频率到达2HZ等;
实施例6的替代实施例5:在步骤A2中根据模糊算法(如自动选择最近一次运行时参考数据)预设上限偏差值m1_def_u和下限偏差值-m1_def_d。
实施例6的替代实施例7:实施例6步骤A1以电梯的运载物品质量作为测算对象,也可以电梯轿厢总质量作为测算对象,获取其联合运算值m2,m2=m1+m0;
参考实施例6的步骤A2方法设置电梯轿厢总质量的基准值m2_org、上限偏差值m2_def_u、下限偏差值-m2_def_d;
参考实施例6的步骤A3方法,当参考数据已设定后,进行下述4个能量传递状况判断条件中任意一个或多个:判断条件1:((m2-m2_org)>m2_def_u);判断条件2:((m2-m2_org)<(-m2_def_d));判断条件3:(m2>m2_ref1_u);判断条件4:(m2<m2_ref1_d);
参考实施例6的步骤B方法,进行能量传递状况判断后的处理。
实施例6的延伸实施例2:在实施例6、或实施例6的替代实施例1中,获取电梯的能量传递状况关联因子中源动力参数(Te或F1)的基准值的绝对值,当|Te|小于预设阀值1(如额定值20%)或|F1|小于预设阀值1(如额定值30%)时将上限偏差值m1_def_u和下限偏差值-m1_def_d各增大一倍,以降低误报率。
实施例6的延伸实施例3:设定电机的临界切换区为非稳定驱动状态;当|Te|<Te_gate时(Te_gate可设为额定值3%或5%),可判断当前电机运行工况处于临界切换区也即非稳定驱动状态,在此时可中止本次监控。
实施例6的延伸实施例4:在步骤A3中当4个能量传递状况判断条件中任意一个或多个的结果为是时,获取与联合运算值m1的取值时同一预设的时间范围内电梯的运行环境信息,当根据获取的运行环境信息判断电梯运行环境正常时,则生成能量传递故障标志有效的信息,触发能量传递故障处理机制进行相关监控保护;当判断电梯运行环境异常时,则仍然只触发能量传递异常处理机制;
实施例7:(本实施例为本发明所提供监控方法(#1)的优选实施例)
本监控方法(#1)包括步骤A、B、C;
步骤A:本步骤包括步骤A1、步骤A2、步骤A3;
步骤A1:参考前述实施例2、或实施例4的替代实施例3中示例3的方法,以电梯的导轨和/或电梯井道中物体与轿厢的摩擦力作为测算对象,获取其联合运算值f0_cal;
步骤A2:当参考数据已设定后可直接执行步骤A3;当参考数据未设定时,须首先执行下述步骤设定参考数据:读取下述的***预设值:基准值f0_org、上限偏差值f0_def_u、下限偏差值-f0_def_d;或根据f0_org、f0_def_u、f0_def_d设定第一参考值;第一参考值的上限值f0_ref1_u、第一参考值的下限值f0_ref1_d可用下述方式计算:f0_ref1_u=f0_org+f0_def_u,f0_ref1_d=f0_org-f0_def_d;
步骤A3:当参考数据已设定后,进行下述4个能量传递状况判断条件中任意一个或多个:判断条件1:((f0_cal-f0_org)>f0_def_u);判断条件2:((f0_cal-f0_org)<(-f0_def_d));判断条件3:(f0_cal>f0_ref1_u);判断条件4:(f0_cal<f0_ref1_d);
步骤B:并列执行下述B1、B2、B3、B4步骤,再执行步骤C;
B1.如步骤A中4个能量传递状况判断条件中任一判断结果为是,则启动能量传递异常处理机制(如语音报警、灯光报警、启动能量传递故障监控机制等);
B2.输出所述判断结果到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面;
B3.保存所述判断结果到轿厢和/或控制中心的存储***;
B4.输出所述m1的联合运算值到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面网络***中;
步骤C:以0.2毫秒为周期循环实时执行步骤A和步骤B1;步骤B2、B3、B4以0.5秒为周期循环执行。
实施例8:
本监控方法(#1)包括步骤A、B、C;
步骤A:本步骤包括步骤A1、步骤A2、步骤A3;
步骤A1:参考前述实施例4的替代实施例3中示例2(公式4-16)的方法,以电动状态时机电传动综合的效率系数作为测算对象,获取其联合运算值Kem1_cal;
步骤A2:当参考数据已设定后可直接执行步骤A3;当参考数据未设定时,须首先执行下述步骤设定参考数据:读取下述的***预设值:基准值Kem1_org、上限偏差值Kem1_def_u、下限偏差值-Kem1_def_d;或根据Kem1_org、Kem1_def_u、Kem1_def_d设定第一参考值;第一参考值的上限值Kem1_ref1_u、第一参考值的下限值 Kem1_ref1_d可用下述方式计算:Kem1_ref1_u=Kem1_org+Kem1_def_u,Kem1_ref1_d=Kem1_org-Kem1_def_d;
步骤A3:当参考数据已设定后,进行下述4个能量传递状况判断条件中任意一个或多个:判断条件1:((Kem1_cal-Kem1_org)>Kem1_def_u);判断条件2:((Kem1_cal-Kem1_org)<(-Kem1_def_d));判断条件3:(Kem1_cal>Kem1_ref1_u);判断条件4:(Kem1_cal<Kem1_ref1_d);
步骤B:并列执行下述B1、B2、B3、B4步骤,再执行步骤C;
B1.如步骤A中4个能量传递状况判断条件中任一判断结果为是,则启动能量传递异常处理机制(如语音报警、灯光报警、启动能量传递故障监控机制等);
B2.输出所述判断结果到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面;
B3.保存所述判断结果到轿厢和/或控制中心的存储***;
B4.输出所述m1的联合运算值到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面网络***中;
步骤C:以0.3毫秒为周期循环实时执行步骤A和步骤B1;步骤B2、B3、B4以2秒为周期循环执行。
实施例8的替代实施例1:实施例8中以电动状态时机电传动综合的效率系数作为测算对象,也可将前述实施例1、2、3、4、5及各种替代(或延伸)实施例中其他的***固有参数中任一参数作为测算对象,测算出其联合运算值,参考实施例8中步骤A2的方式设置该测算对象的基准值和许可偏差值,参考施例8中步骤A2、步骤B的方法进行电梯的能量传递状况异常监控。
实施例9:
本监控方法(#1)包括步骤A、B、C;
步骤A:本步骤包括步骤A1、步骤A2、步骤A3;
步骤A1:参考前述实施例4的替代实施例3中示例1(公式4-15)的方法,以电机驱动器输出的电磁转矩作为测算对象,获取其联合运算值Te_cal;
步骤A2:当参考数据已设定后可直接执行步骤A3;当参考数据未设定时,须首先执行下述步骤设定参考数据:获取电磁转矩Te的实测值(具体获取方式为读取电机驱动器通讯数据,或通过电机驱动器外部测量***测量出电机的电磁转矩Te),并将该实测值Te作为电磁转矩的基准值Te_org;读取上限偏差值Te_def_u、下限偏差值-Te_def_d的***预设值;或根据Te_org、Te_def_u、Te_def_d设定第一参考值;第一参考值的 上限值Te_ref1_u、第一参考值的下限值Te_ref1_d可采用如下计算公式:Te_ref1_u=Te_org+Te_def_u,Te_ref1_d=Te_org-Te_def_d;
步骤A3:当参考数据已设定后,进行下述4个能量传递状况判断条件中任意一个或多个:判断条件1:((Te_cal-Te_org)>Te_def_u);判断条件2:((Te_cal-Te_org)<(-Te_def_d));判断条件3:(Te_cal>Te_ref1_u);判断条件4:(Te_cal<Te_ref1_d);
步骤B:并列执行下述B1、B2、B3、B4步骤,再执行步骤C;
B1.如步骤A中4个能量传递状况判断条件中任一判断结果为是,则启动能量传递异常处理机制(如语音报警、灯光报警、启动能量传递故障监控机制等);
B2.输出所述判断结果到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面;
B3.保存所述判断结果到轿厢和/或控制中心的存储***;
B4.输出所述m1的联合运算值到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面网络***中;
步骤C:以0.01毫秒为周期循环实时执行步骤A和步骤B1;步骤B2、B3、B4以0.1秒为周期循环执行。
实施例9的替代实施例1:实施例9中以电磁转矩作为测算对象,也可将前述实施例1、2、3、4、5及各种替代(或延伸)实施例中其他的源动力参数、机械运行参数中任一参数作为测算对象,测算出其联合运算值,参考实施例9中步骤A2的方式设置该测算对象的基准值和许可偏差值,参考施例9中步骤A3、步骤B的方法进行电梯的能量传递状况异常监控。
实施例6、7、8、9及各替代或延伸实施例中,所述许可偏差值,均采用了***预设值或历史记录值,还可采用更简单的方式,如将测算对象的联合运算值或基准值乘以一个系数作为许可偏差值,该系数可由用户视现场需求任意决定(如取0.1或0.3等),或者进而根据该许可偏差值设定第一参考值,进行能量传递状况判断及后续处理;也可以不设定许可偏差值,可直接设定第一参考值,如设定的该第一参考值的上限值为大于所述测算对象的实际值和小于极限安全阀值中某个数值;如设定的该第一参考值的下限值为小于所述测算对象的实际值的某个数值。
本发明所提供的监控方法(#1)中,优选方案为所有参数的值为实时获取,步骤A、B均为实时执行,且以设定的时间周期循环执行,且该设定的循环周期为越短越好,越短就越能提高监控的灵敏度和时效性。当然,也可以非实时的,或间歇性的执行。
参数的值(如联合运算值、参考数据中基准值、计算联合运算值所需求的输入参数的值)的取值时间与获取时间的说明;本发明所述取值时间,指参数生成时间,指计算该参数所需求的输入参数的值所对应的时间;因为获取有多种方式(读取、测量等);如读取在time1时间前100毫秒所生成的参数值,则该参数的获取时间为time1,但该参数的取值时间为time1时前100毫秒的时间;
本发明监控方法(#1)中,当所述测算对象为源动力参数、机械运行参数中任一参数时,较优方案是所有参数(如联合运算值、参考数据中基准值、计算联合运算值所需求的输入参数的值)都在预设的时间范围内取值(尽量同步)、实时计算、实时获取(读取或测量)联合运算值和参考数据、实时判断、实时处置判断结果,在此时,参数的取值时间可等同于获取时间;
监控方法(#1)中,当所述测算对象为电梯质量、***固有参数中任意一种参数时,联合运算值(连同计算联合运算值所需求的输入参数的值)的取值时间的较优方式为都在预设的时间范围内取值(尽量同步)、实时计算、实时获取(读取或测量)、实时进行能量传递异常判断/监控;但参考数据的取值时间或设定时间不需要与联合运算值的取值时间在同一时间;则进行能量传递异常判断前的参考数据的获取时间(只需读取)与参考数据的取值时间允许不同;
参数值的取值时间的控制方式1:严格意义上来说在同一时间获取多个参数的值,可能不方便实现;在实际操作过程中,各参数组的值的取值时间可能有前有后,在此时只需要将各参数的值的取值时间控制在一个预设的时间范围内,该预设的时间范围可根据实际的软件处理速度、硬件响应速度而定;如可取100毫秒,或10毫秒,或1毫米,或0.1毫秒;该预设的时间范围时间越短,则测算/监控精度越高,但***成本也增高;
参数值的取值时间的控制方式2:如果电梯运行条件基本不变,例如电梯的速度在10秒之内均维持1m/速度匀速运行,则取速度的当前值,或所述10秒之首时的值,与所述10秒之尾时的值,效果是一样的;所以各参数值的取值时间的预设的时间范围可根据电梯运行条件来调整,也即当电梯运行条件不变时,可获取该参数在运行条件不变时任意时间点上的值。
上述参数值的取值时间、获取时间的说明适用于本发明任一实施例。
在本发明中所述第一参考值、许可偏差值,可通过***预设值设定,有多种方式设定,比如通过有限次的实验法,人工试凑法,型式试验法等方法设定。
9.进一步的,所述监控方法(#1)中,所述电梯运行能量平衡计算还满足下述9A1、9A2、9A3、9A4、9A5、9A9中任意一种或多种条件:
9A1.参与所述电梯运行能量平衡计算的参数中包括效率系数;
9A2.当参与所述电梯运行能量平衡计算的参数中包括效率系数时,根据电机运行工况调整所述效率系数;
9A3.参与所述电梯运行能量平衡计算的参数中包括导轨和/或电梯井道中物体与轿厢的摩擦力;
9A4.当所述电梯运行能量平衡计算中包括的源动力参数为电气功率时,根据电机运行工况进行所述电气功率的设置;
9A5.根据电梯速度变化状况进行所述电梯运行能量平衡计算;
9A6.当所述电梯运行能量平衡计算中包括的源动力参数为电气动力参数或机械旋转件的动力参数时,参与所述电梯运行能量平衡计算的参数中包括机械旋转件的摩擦关联数据。
10.进一步的,所述监控方法(#1)中,所述获取所述电梯的测算对象的联合运算值包括下述步骤:获取所述电梯的输入参数的值,所述输入参数为计算所述联合运算值所需求的参数;根据所获取的输入参数的值计算出所述联合运算值。
本方案的有益意义:允许测算对象的联合运算与本监控***一体化设计,可大为降低监控***的信号连接、传输成本,降低传输误差。
11.进一步的,所述监控方法(#1)中,所述根据所述联合运算值和所述测算对象的参考数据判断所述电梯的能量传递状况是否异常,可包括下述11A1、11A2中任意一种或多种方案:
11A1.当所述参考数据由所述测算对象的基准值和所述测算对象的许可偏差值构成时,判断所述联合运算值和所述基准值的差值是否超出所述许可偏差值。
本方案的有益效果:该技术方案可清晰的实现典型的能量传递异常监控。
12.进一步的,所述监控方法(#1)中,所述参考数据的设定可包括下述12A1、12A2、12A3、12A4中任一方案:
12A1.当所述测算对象为运载质量、***固有参数中任意一种参数时,所述测算对象的基准值和/或第一参考值为根据满足设定条件时所进行的电梯运行能量平衡计算而获取的联合运算值所设定;
12A2.所述测算对象的许可偏差值、以***固有参数为测算对象的基准值、以***固有参数为测算对象的第一参考值中任意一种或多种参数为根据所述测算对象的历史记录值、出厂默认值、人工输入值中任意一种或多种数据所设定;当所述历史记录值包括历史记录原值时,所述历史记录原值是基于电梯运行能量平衡计算所得;
12A3.所述测算对象的许可偏差值、以***固有参数为测算对象的基准值、以***固有参数为测算对象的第一参考值中任意一种或多种参数为根据模糊算法所设定;
12A4.当所述测算对象为源动力参数、机械运行参数中任一参数时,所述基准值为根据所述测算对象的实测值、指令响应值、推算值中任意一种或多种数据所设定,且所述数据基准值的取值时间与所述联合运算值的取值时间在预设的时间范围内。
方案12A1的实施细节:见实施例6、7、8及其替代和/或延伸实施例;
方案12A2的实施细节:通常情况下,测算对象的许可偏差值的设定原则是:该值需要尽量的小以提高监控的灵敏度,但又不能过小以降低监控的误触发率;同理,第一参考值的设定原则也为:就是尽量接近测算对象的基准值但又须与基准值保持合适的差值;如将第一参考值的上限值设为基准值的1.2~1.5倍,或将第一参考值的下限值设为基准值的0.7~0.9倍,或上限偏差值设为基准值的0.1~0.3倍,或将下限偏差值设为基准值的-0.3~-0.1倍;但该参考数据的精确设定,如靠人工试凑法,或经验法去慢慢摸索,去慢慢验证,参考数据调整准确度低、效率低;且不同电梯运行时的机况、载况变化万千,更为增大参考数据的精确设定的难度。
根据所述测算对象的历史记录值设定所述参考数据(重点目标为其中的许可偏差值或第一参考值),是优选方法之一;
当所述历史记录值已生成时,可根据历史记录值设定所述参考数据(如进行下述9A2_1、9A2_2、9A2_3中任意一种或多种步骤);
9A2_1.根据所述历史记录原值与所述历史记录基准值的差值设定所述许可偏差值;
9A2_3.根据所述历史记录原值设定所述第一参考值;
上述9A2_1、9A2_2、9A2_3中共同规律为根据某值1设定某值2;本发明中,根据某值1设定某值2,可将某值1直接赋值给某值2,也可将某值1视情增大/或缩小/或附加偏置量再设定为某值2,可灵活处理;
参考数据设定的较优方式为:根据满足设定条件时所进行的电梯运行能量平衡计算而获取的联合运算值设定所述参考数据中的基准值;根据预设的历史记录值设定参考数据中的许可偏差值,两者相结合可得到理想的参考数据,可最大限度的提高能量传递异常监控的灵敏度、降低监控的误报率;
方案12A3的实施细节:所述模糊算法包括下述任意一种或多种模糊算法规则:可根据在一定运行次数内统计分析曾使用次数最多的参考数据;或自动选择最近数次运行中选择次数最多的参考数据;或自动选择最近一次运行时参考数据;或设置各参考数据的不同的权重指数(如用户预设最有价值、最有保护意义的参考数据)设定参考数据;或综合次数统计分析和权重指数而设定参考数据等;
方案12A4的实施细节:见实施例9及其各替代和/或延伸实施例;
方案12A1的有益意义:该技术方案是本发明核心思路之一,因为电梯的运载质量在每次运行中均可能发生大幅度变化,通过该采用该技术方案,实质建立一个自学习机制,可以自动跟随载荷的正常变化而柔性调整参考数据(重点目标为其中的基准值或第一参考值);在此基础上可提高监控灵敏度、提高对环境变化的适应能力;
方案12A2的有益意义:该技术方案是本发明核心思路之一,当测算对象为电梯质量、***固有参数时,根据所述测算对象的历史记录值设定所述参考数据(重点目标为其中的许可偏差值或第一参考值),可以将参数设置准确性、监控灵敏度得到层次性提高,从常规的模糊控制变为精确控制。
方案12A3的有益意义:模糊算法预设参数,可提高***的简便度;
方案12A4的有益意义:该方案可适用于测算对象为源动力参数、机械运行参数中任一参数时的能量传递异常监控。
13.进一步的,所述监控方法(#1)还可满足下述13A1、13A2、13A3中任意一种或多种条件:
13A1.所述测算对象为运载质量、***固有参数中任意一种参数;
13A2.当所述测算对象为运载质量、***固有参数中任意一种参数时,所述联合运算值和所述参考数据只源于一参数获取***,也即二者均为根据电梯运行能量平衡计算所得;
13A3.所述能量传递异常处理机制包括启动能量传递故障监控机制。
本13A1方案的有益意义:
将源动力参数(如钢丝绳的拉力、曳引轮的输出转矩、电磁转矩、电流、电气功率等)或机械运行参数(如速度、加速度等)作为测算对象是效果最差监控方案,测控难度/成本高,也降低了精度/性能;该类测算对象的测量联合运算值的幅值可能快速变化从而增大第一诱因的测量误差,通常还需要获取实测值/或指令值进而设定参考数据,参考数据幅值也可能快速变化进而带来第二诱因的测量误差;且因联合运算值、参考数据随时可能处于低幅值状态(相对于满量程测量)更容易造成第三诱因的测量误差,甚至监控失效;因为运载质量在不同的运行流程中可能大幅度变化,如果将源动力参数或***运行参数作为测算对象,又必须先获取运载质量的值,从而导致第四诱因的测量误差,且使测算/监控***更为复杂/高成本;
所述测算对象优选为运载质量,运载质量值在电梯当次运行中相对稳定,且便于电梯乘员或监管人员直观目视判断监控效果,大为提高监控可信度;
测算对象次优为***固有参数(尤其为效率系数);该效率系数实质代表电梯机件的磨损状况、机件安全状况,且该参数在电梯运行中幅值变化不大,易于测控比较;但 该种方式也存在上述第四诱因的测量误差,且不便于电梯操作人员直观目视判断监控效果;
本13A2方案的有益意义:如背景技术中所述,典型的参数获取***有A类轿厢内传感器称重***、B类轿厢外传感器称重***、C类在零速时变频器称重***,在现有技术中还一种方法,通过AB类和C类技术组合判断传感器称重***是否故障,该方法因为同时采用了多路称重***大幅度的增加了成本;本发明所提供的一种电梯运行参数的测算方法及***,可允许只采用一种参数获取***(如轿厢外传感器或变频器中任一***)实现参数测算和运行安全监控,可大幅度降低监控***成本;尤其是用电机驱动器(如变频器)进行参数测算(包括称重),可大幅度降低电梯的运行安全监控成本。
本13A3方案的有益意义:在能量传递状况异常发生后,通过启动能量传递故障监控机制提醒操作人员警觉/及时处理。如一旦发生能量传递异常,即刻启动语音和/或灯光指示***,以提醒操作人员,并告之进行能量传递异常的故障排查。
14.进一步的,所述监控方法(#1)中所述监控方法还包括下述14A1、14A2、14A3中任意一种或多种方案:
14A1.根据所述获取的联合运算值和所述参考数据和所述运行环境信息判断是否发生能量传递异常中的能量传递故障情况;
14A2.输出和/或保存所述运载质量的值;
14A3,在已探测到电梯的能量传递异常时再启动能量传递故障监控机制;
该本11A1方案的实施细节说明:
能量传递异常通常包括电梯运行环境异常、能量传递故障等;典型的电梯运行环境异常包括载况异常(如电梯内跳动或大幅晃动/物品异常滚动)等;
能量传递故障有两种识别和处理方式;一为采用14A1方案,根据联合运算值、参考数据、运行环境信息直接判断是否发生能量传递故障情况,该14A1方案也可称为同步型能量传递故障监控机制;
二为采用14A3方案,在已探测到电梯的能量传递异常时再启动能量传递故障监控机制,该14A3方案也可称为递进型能量传递故障监控机制;
如所测量的外部环境信息正常而发生了能量传递异常,则可直接判定电梯处于能量传递故障状况;如所测量的外部环境信息有异常情况而发生了能量传递异常,则可判定电梯当前的能量传递异常可能是因外部环境而引起;电梯可继续发出能量传递异常警示信息而非能量传递故障信息;同时电梯可继续进行监控运行判断能量传递异常是否随运行环境异常的消除而消除,如果不能同步消除或能量传递异常持续大于设定时间,则仍然可判定能量传递故障;
电梯运行环境是否异常,可通过获取(读取或测量)电梯的运行环境信息进而进行识别判断;运行环境信息的有多种获取方式:可通过相关的振动传感器、光学、超声波、红外传感器、雷达等设施测量识别;也可由操作人员通过目视识别区分上述情况;所述联合运算值的取值时间和所述运行环境信息的取值时间都在预设的时间范围内。
能量传递故障主要包括:导轨和/或电梯井道中物体与轿厢的摩擦力异常或人员被异常卡入电梯井道、电梯旋转件的异常磨损,老化,爆裂,断裂、电机转子抱轴等;当电梯的能量传递故障监控机制确认发生能量传递故障,通常需要即刻启动减速、停机、故障告警、或反向运行等紧急处理方案。
本14A1方案的有益意义:通过能量传递故障监控机制,可更深入的识别区分能量传递异常状况的形成原因(是否运行环境异常、或是否能量传递故障),从而便于做出更加合适的安全处理响应(如因人员在电梯内的跳动导致能量传递异常时只需发出语音提示或警告,如因能量传递故障时则需减速、停机甚至反转等)。
本14A2方案的有益意义:无论测算对象的类型,在任何时候,将所述运载质量的数值输出(到轿厢内人机界面和/或厅门的人机界面),有助于电梯乘客一眼识别电梯运行是否正常,对于电梯的安全运行有重大意义;
保存运载物品质量的联合运算值,如同飞机安全的黑匣子功能,便于事后分析。
根据前述源动力组合型参数的描述,电气功率可组合出电气能量;本发明也允许使用能量类型的源动力组合型参数(如某一时间段的电能消耗、或某一时间段做功的总和)作为测算对象;动力与能量从物理概念容易混淆,但是对于电梯运行来说,两者的意义有所不同;动力是能量对时间的微分,具有瞬间-快速的概念,能量是动力在时间上的累计,具有时间延滞-慢速的概念;所以用本发明提供的方案进行能量传递异常监控,最好使用源动力参数的瞬间值(如瞬间功率、瞬间转矩、瞬间驱动力、瞬间电流等)进行实时能量传递异常监控;如果使用能量类型的源动力组合型参数进行能量传递异常监控效果,则需将能量累计的时间控制得越小越好(如100毫米、10毫秒、1毫秒、0.1毫米)。
如果用能量类型的源动力组合型参数作为测算对象进行能量传递异常,也需具备核心括号内步骤(获取测算对象的联合运算值、设定参考数据、根据联合运算值和参考数据判断能量传递状况是否异常、对能量传递状况的判断结果有明确的处理方案),可参照下述实施例10:
实施例10:本监控方法(#1)包括步骤A、B、C;
步骤A:本步骤包括步骤A1、步骤A2、步骤A3;
步骤A1:参考前述实施例5的方法,识别电梯的能量流向工况(电动上行、电机 制动上行、电动下行、电机制动下行),识别电梯的速度变化状况(非零匀速运行、加速运行、减速运行),先获取(读取或测量)同一时间范围内的各参数(电机的效率系数Ke1和/或Ke2、机械传动***的效率系数Km1和/或Km2、综合传动比im、空载轿厢质量m0、对重质量m3、上行速度V1、下行速度V2)的值,根据不同的能量流向工况和速度变化状况进行下述10A1-1、10A1-2、10A1-3中任意一种或多种计算,计算电机的电气功率的联合运算值Pm_cal,计算公式如下:
10A1-1.当能量流向工况为电动上行,且速度变化状况为非零匀速运行时,根据下述公式4-26测算电机的电气功率的联合运算值Po_cal;
Po_cal=((m1+m0)*g-m3*g)*V1/Kem1,(公式4-26);
10A1-2.当能量流向工况为电动下行,且速度变化状况为非零匀速运行时,根据下述公式4-27测算电机的电气功率的联合运算值Po_cal;
Po_cal=(m3*g-(m1+m0)*g)*V2/Kem1,(公式4-27);
10A1-3.当电梯为电机制动上行+非零匀速运行时,根据下述公式4-28测算发电回馈制动功率的联合运算值P4_cal或电阻能耗制动功率P5_cal;
P4_cal=(m1+m0)*g-m3*g)*V1*(K14*Kem2),(公式4-28-1);
P5_cal=(m1+m0)*g-m3*g)*V1*Kem2,(公式4-28-2);
10A1-4.当电梯为电机制动下行+非零匀速运行时,根据下述公式4-29测算发电回馈制动功率的联合运算值P4_cal或电阻能耗制动功率P5_cal;
P4_cal=(m3*g-(m1+m0)*g)*V2*(K14*Kem2),(公式4-29-1),
P5_cal=(m3*g-(m1+m0)*g)*V2*Kem2,(公式4-29-1);
进而将上述联合运算值Po_cal或P4_cal或P5_cal进行运算(如积分)获取在2秒之内的电气能量值EM1_cal,EM1_cal为间接得到的联合运算值;
步骤A2:在上述获取Pm_cal和EM1_cal值同时,获取(读取电机驱动器测算所得数据或用功率表测量)电气功率基准值Pm_r,进而对Pm_r积分运算以获取与EM1_cal同时期的2秒内的电气能量的实测值EM2,或者用有功电表直接测量而获取EM2值;EM2作为参考数据中基准值;设定许可偏差值EM_def3:EM_def3=EM2/10,或EM_def3=EM1_cal/8;
步骤A3:进行下述2个能量传递状况判断条件中任意一个或多个:判断条件1:((EM1_cal-EM2)>EM_def3)、判断条件2:((EM1_cal-EM2)<(-EM_def3))、
步骤B:如步骤A3中2个能量传递状况判断条件中任一判断结果为是,则启动能量传递异常处理机制(如语音报警等);
实施例10的替代方案1:可将能量计算的时间周期从2秒设为1秒、0.1秒、0.01秒等;时间越长,如大于5秒10秒等,则失去了能量传递异常监控的意义;时间越短,能量传递异常监控响应越快,但是联合运算值、实测值、参考数据的(四个诱因所致)测量误差将越大/效果越差;由此可见,将源动力参数或将源动力组合型参数(如能量)作为测算对象的能量传递异常监控效果,远不如将运载质量或***固有参数作为测算对象。
在上述能量传递监控方法和***中,允许***根据需要切换测算对象,甚至同时启用多个测算对象,进行多个不同测算对象的多个能量传递状况判断;如既允许以运载质量作为测算对象进行能量传递状况判断和监控,同时也允许以滚动摩擦阻力系数作为另一个测算对象进行另一个能量传递状况判断和监控,只要任意一个能量传递状况判断结果为能量传递异常,则启动能量传递异常处理机制;
在监控过程中,也允许***切换源动力参数,如电梯低速高转矩运行时,可以用转矩类型的参数(如电磁转矩)作为源动力参数;如电梯以高速低转矩运行时,可以用功率类型的参数(如电机功率)作为源动力参数,以提高测算对象的联合运算值计算精度,提高能量传递异常监控的灵敏度;
也允许以同一个测算对象,采用多个源动力参数同时进行同一个测算对象的多个联合运算值的测算,进行多个能量传递状况判断和监控;如以运载物品质量m1为测算对象,以钢丝绳的综合拉力F1作为源动力参数构建一个能量传递状况判断和监控#100***,则该***主要可以监控导轨和/或电梯井道中物体与轿厢的摩擦状况异常(如人员被卡入轿厢与电梯井道之间时将导致摩擦力f0增大);同时以电源输入电气功率P3i作为源动力参数构建另一个能量传递状况判断和监控#101***,则该***可以同时监控电梯的电源装置、电机驱动器、电机及后端机械传动***;如果仅仅启用#100***(未启用#101***)监控电机及后端机械传动***,则可直接用P3i和电机的电气功率Pm和效率系数k31验证电梯的电源装置、电机驱动器的能量传递状况是否正常,验证方法为判断((P3i*k31)-Pm)是否大于预设阀值(如P3i/20),如大于则电源装置或电机驱动器运行异常;
总体而言,在本发明提供的一种电梯升降运行时的监控方法及***(#1)的基础上,根据电梯的能量传递原理,进行逐层或多层的能量传递异常监控,可在电梯运行参数未超出安全极限阀值时,便于对电梯的整体动力***、机械传动***进行全方位的灵敏而准确的保护。
15、进一步的,所述监控方法(#1)中,当所述测算对象为运载质量中任一种参 数时,所述参考数据为根据满足设定条件时所进行的电梯运行能量平衡计算而获取的联合运算值;
当所述测算对象为电梯运行参数中除运载质量外的任意一种参数时,所述电梯运行能量平衡计算的输入参数包含运载质量,运载质量中作为所述输入参数的参数为根据满足设定条件时所进行的电梯运行能量平衡计算而获取的联合运算值。
16、进一步的,所述监控方法(#1)中,当所述测算对象为运载质量中任一种参数时,所述参考数据为第一参考值或者由许可偏差值与基准值组成,所述第一参考值与所述能量状态识别基准值均是根据满足设定条件时所进行的电梯运行能量平衡计算而获取的联合运算值所设定;
当所述测算对象为电梯运行参数中除运载质量外的任意一种参数时,所述电梯运行能量平衡计算的输入参数包含运载质量中至少一种参数,且运载质量中作为所述输入参数的参数均是根据满足设定条件时所进行的电梯运行能量平衡计算而获取的联合运算值所得。
17、进一步的,所述监控方法(#1)中,电梯运行参数由源动力参数、***运行参数、电梯质量中构成,此时所述测算对象为源动力参数、***运行参数、电梯质量中的任意一种或多种。
18.本发明还提供一种电梯升降运行时的监控***(#1),一种电梯在升降运行时的监控***,包括:能量传递状况判断模块,用于:获取所述电梯的测算对象的联合运算值,根据所述联合运算值识别所述电梯的能量传递状况;其中,所述测算对象为电梯运行参数中的任意一种或者多种,所述联合运算值是基于电梯运行能量平衡计算所得。
在其他实施例中,还可能包括联合运算值获取模块(1),用于获取所述电梯的测算对象的联合运算值以提供给所述能量传递状况判断模块(2),即能量传递状况判断模块(2)中的上述联合运算值由联合运算值获取模块(1)所提供。
本发明的电梯升降运行时的监控***与上述的电梯升降运行时的监控方法原理相同,上述应用到电梯升降运行时的监控方法中的技术方案均可以直接应用到本监控***中。
19、优选地,在本发明的电梯升降运行时的监控***(#1)中,上述根据所述联合运算值识别所述电梯的能量传递状况具体为:根据所述联合运算值和所述测算对象的参考数据判断所述电梯的能量传递状况是否异常。
20、在本发明的电梯升降运行时的监控***(#1)中,在其他实施例中,上述监控***还包括能量传递异常处理模块(3)、输出模块(4)、保存模块(5)中的任意一种或多种模块;
所述能量传递异常处理模块(3)用于:如所述判断结果包括是,则启动设定的能量传递异常处理机制;
所述输出模块(4)用于输出所述判断的结果;
所述保存模块(5)用于保存所述判断的结果;
21、进一步的,所述监控***(#1)满足下述21A11、21A21中任意一种或多种条件:
21A11.所述电梯运行能量平衡计算与电梯运行方向关联;
21A21.当所述电梯以零速运行时,所述联合运算值和所述参考数据源于一参数获取***,即二者均根据电梯运行能量平衡计算所得。
22.进一步的,所述监控***(#1)还满足下述22A1至22A3中任意一种或多种条件:
22A1.上述联合运算值检测模块(1)中所述获取所述电梯的测算对象的联合运算值的功能包括下述功能:获取所述电梯的输入参数的值;所述输入参数为计算所述联合运算值所需求的参数;根据所述获取的输入参数的值计算出所述联合运算值;
22A2.所述测算对象为运载质量、***固有参数中任意一种参数;
22A3.当所述测算对象为运载质量、***固有参数中任意一种参数时,所述联合运算值和所述参考数据均为根据电梯运行能量平衡计算所得。
本发明所提供的一种电梯升降运行时的监控方法及***(#1)的有益效果:
本发明通过对对重式电梯的结构和工作原理进行深入研究分析:电梯的运行实质就是能量传递过程,也即驱动电梯的动力传递过程;本发明提供的监控方法(#1)的步骤A中包含步骤:获取所述电梯的测算对象的基于电梯运行能量平衡计算所得联合运算值;在电梯运行的电梯运行能量平衡计算中,电梯源动力参数代表动力的供应信息,电梯质量代表动力受体最基本属性,电梯的***运行参数代表能量传递的基础条件(如各种***固有参数)和电梯在动力作用下产生的机械运行参数也即运动结果(如速度、加速度等);
如果电梯的导轨和/或电梯井道中物体与轿厢的摩擦力增大时(包括人员被卡入轿厢与电梯井道之间的原因所导致):假如监控***以源动力参数作为测算对象,则在其他相关的电梯运行条件(如电梯质量、速度、加速度等)不变时,必然要耗费更多的动力而造成源动力参数的基准值与电梯运行的电梯运行能量平衡计算所得联合运算值的偏差值增大;假如监控***以机械运行参数中速度作为测算对象,如电梯的源动力参数的基准值不变以及其他相关的电梯运行条件(如电梯质量、、加速度等)不变时,则可能导致电梯的速度的基准值与电梯运行的电梯运行能量平衡计算所得联合运算值的偏 差值增大;假如以电梯质量(如运载物品质量m1或总质量m2)作为测算对象以及其他相关的电梯运行条件(如加速度等)不变时,则将导致电梯运行的电梯运行能量平衡计算所得电梯质量的联合运算值变化;所以通过将测算对象的联合运算值与参考数据进行比较,就可判断出所述电梯运行中的能量传递状况是否异常,并且通过后续的能量传递状况判断后的处理步骤可及时实现能量传递异常监控和预警;
在本发明中,状态也即状况,两者等同;能量传递状况也即能量传递状态。
因为电梯源动力参数代表动力的供应信息也即代表电梯的电气动力***的状况(视具体的电气动力参数组信号的采集点而定的电梯的电源装置、电机驱动器、电机中器件的状况);电梯的***运行参数代表能量传递的基础条件(如各种***固有参数),相关的电气类效率系数体现电气动力***的安全状况,机械传动部件效率系数体现机械传动部件的安全状况,人员被卡入轿厢与电梯井道之间可通过电梯的导轨和/或电梯井道中物体与轿厢的摩擦力体现,显而易见的,本发明中所述能量传递状况,也即能量传递***的状况,尤其为与电梯上升或下降直接相关的能量传递***的状况,也即驱动电梯升降运行的动力传递***的状况,也即动力传递状况;该能量传递状况为与电梯运行安全紧密相关的状况;而非仅仅局限于轿厢内器件的状况,轿厢内器件一般与驱动电梯升降运行没有直接关系;
综合而言,根据所述联合运算值和所述测算对象的参考数据判断所述电梯的能量传递状况是否异常,对于提高电梯的能量传递***的运行安全性具有非常重大的意义;其安全意义远超于进行称重传感器等类似器件故障的判断。
因为参考数据是根据测算对象的基准值(并非根据安全极限阀值)而设定的,允许其远小于安全极限阀值;所以电梯运行参数未超出安全极限阀值时,也便于实现对(包括人员被卡入轿厢与电梯井道之间的原因所导致)电梯能量传递异常进行监控和早期预警,便于尽量避免发生更严重的、不可预测的安全事故(包括钢丝绳断裂、电梯失控等);如同人体医学的癌症诊断,如果晚期才发现通常意味生命终结,如果早期发现通常意味生命正常存活;所以本技术方案对于电梯的安全运行具有重要意义。
技术问题三:
本发明要解决的技术问题之三是提供一种电梯载荷的监控方法,以在现有公知技术基础上,降低超载监控的成本,或提高其安全性;
本发明的目的是通过以下技术方案来实现的:
23.本发明还提供一种电梯载荷的监控方法(#2),当电梯的抱闸***松开抱闸,所述电梯以零速或非零速运行时,所述监控方法包括下述步骤:
23A.获取所述电梯的运载物品质量的联合运算值;所述联合运算值是基于电梯运 行能量平衡计算所得,且所述电梯运行能量平衡计算中所需求的源动力参数为电气动力参数或机械旋转件的动力参数;
23B.进行下述23B1、23B2中任意一种或多种方案处理:
23B1.判断所述联合运算值是否大于所述电梯的额定载重量,并进行下述23B11、23B12中任意一种或多种方案处理。
23B11.如所述判断的结果中存在是,则启动设定的超载处理机制;
23B12.输出和/或保存所述判断的信息;
23B2.将所述联合运算值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面。
本监控方法(#2)的实施说明:
本发明23A所述技术方案,主要目的为提供一种电机驱动器(如变频器)称重方案;电机驱动器称重,可分为电机驱动器零速运行称重、电机驱动器非零速运行称重;电机驱动器非零速运行称重,需要识别电梯的能量流向工况进行,具体实施可参考前述实施例4进行;电机驱动器非零速运行称重可只在符合某设定条件时进行(如电梯运行0.5秒,或移动0.5厘米等)称重,也可全程进行;在其他实施例中,该监控方法也可以不包含23A中获取所述电梯的运载物品质量的联合运算值这一步骤,判断之后所采取的方案也不限于23B11、23B12,还可以采用其他方案,其仅为较优的实施方式。本方案的核心在于,判断电梯的运载物品质量的联合运算值是否大于电梯的额定载重量来判断是否超载。其中,运载物品质量属于电梯质量中的一种参数,其联合运算值是根据包括电梯的***运行参数和源动力参数在内的参数计算所得,具体的可参照实施例1-5中各含有运载物品质量的公式。
电机驱动器零速运行称重***,可由电机驱动器控制***,参数获取和计算***、抱闸***组成;更优化的,还可包括位移获取***,所述抱闸***为柔性抱闸***;
该电梯的位移获取***可通过电机或曳引轮上的旋转编码器(正余弦或增量式等)或其他部件上的位移检测(如轿厢上的位置传感器、加速度传感器)等检测电梯轿厢的位移状况;
所述抱闸***可分为刚性抱闸***、柔性抱闸***;本发明所述刚性抱闸***指该抱闸***的抱闸力矩的幅值不可主动分级控制,也即抱闸***只分进行抱闸、松开抱闸两种动作;本发明所述柔性抱闸***指该抱闸***的抱闸力矩的幅值可主动分级控制,所述抱闸力矩级数可分为两级或以上;抱闸***外部电源(或电压)的波动变化而导致的抱闸力矩变化,不能称为主动分级控制,属于被动控制;抱闸力矩的幅值的主动分级控制,可通过IGBT、晶闸管、MOS管以PWM脉宽调节电压电流等方式实现,还可通过多 输出端变压器调节电压,如变压器具有多个输出极,可输出100%、70%、30%等多种线圈电压,以调整抱闸力矩;
基础的电机驱动器零速运行称重的方法:电机驱动器控制***让电机驱动器工作于零速运行状态,抱闸***松开抱闸,参数获取和计算***获取在零速运行时的电磁转矩并计算运载物品质量;
更优化的电机驱动器零速运行称重的方法:当上述基础的电机驱动器零速运行称重的方法在进行时,检测所述电梯轿厢的垂直位移,当所述垂直位移大于预设位移阀值(如2毫米)垂直位移时,抱闸***可即刻进行抱闸,从而确保称重时安全。
更优化的电机驱动器零速运行称重的方法:上述基础的电机驱动器零速运行称重的方法中,所述抱闸***松开抱闸为柔性的松开抱闸,一旦电梯轿厢垂直位移超标时,可即刻快速重新抱闸;本发明所述柔性的松开抱闸指分级、逐步的减少抱闸力矩;进而提高***的安全度,提高乘客乘坐电梯的舒适度和安全感;
本发明23B11所述技术方案中所述超载处理机制,包括在超载时语音提示告警、声光告警、拒绝关门、拒绝运行等;机器***和人工可任意组合设定各种处理动作。
本发明23B12所述技术方案中所述判断的信息,包括判断所述联合运算值是否大于所述电梯的额定载重量的判断结果;如外部控制***需求,该信息还可以包括所述运载物品质量的联合运算值、安全极限阀值中任意一个或多个数据。
24.进一步的,所述监控方法(#2)满足下述24A1、24A2、24A3、24A4中任意一个或多个条件:
24A1.当所述电梯以零速运行时,包括下述24A11、24A12中任意一种或两种方案:
24A11.检测所述电梯轿厢的垂直位移,当所述垂直位移大于预设位移阀值时抱闸***进行抱闸;
24A12.所述抱闸***松开抱闸为柔性的松开抱闸;
24A2.当所述监控方法中未包括所述14B2方案时,将所述联合运算值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面;
24A3.所述获取所述电梯的运载物品质量的联合运算值包括下述步骤:获取所述电梯的输入参数的值;所述输入参数为计算所述联合运算值所需求的参数;根据所述获取的输入参数的值计算出所述联合运算值;
24A4.当所述电梯以非零速运行时,所述电梯运行能量平衡计算与电梯运行方向关联。
本发明所述24A1方案的有益意义:如果抱闸***进行抱闸,则不便于用电机驱动器称重;如果电梯正处与上下客过程中松开抱闸电机驱动器称重,则又带来安全隐患; 理想的控制方式为:当所述电梯以零速运行时进行电机驱动器称重时,检测所述电梯轿厢的垂直位移,当所述垂直位移大于预设位移阀值时抱闸***进行抱闸;尤其是柔性抱闸***柔性的松开抱闸,抱闸力矩为逐渐、柔性的消减(而不会即刻、完全的消失),当所述电梯发生异常的垂直位移可快速恢复抱闸;可大幅度的提高电梯的安全性,从而提高电机驱动器称重方案的实用性。
25.进一步的,所述监控方法(#2),所述电梯运行能量平衡计算满足下述25A1、25A2、25A3、25A4、25A5中任意一个或多个条件:
25A1.参与所述电梯运行能量平衡计算的参数中包括效率系数;
25A2.当参与所述电梯运行能量平衡计算的参数中包括效率系数时,根据电机运行工况调整所述效率系数;
25A3.当所述电梯运行能量平衡计算中包括的源动力参数为电气功率时,根据电机运行工况进行所述电气功率的设置;
25A4.根据电梯速度变化状况进行所述电梯运行能量平衡计算;
25A5.当所述电梯运行能量平衡计算中包括的源动力参数为电气动力参数或机械旋转件的动力参数时,参与所述电梯运行能量平衡计算的参数中包括机械旋转件的摩擦关联数据。
26.本发明还提供一种电梯载荷的监控***(#2),包括联合运算值检测模块(1);所述监控***还包括超载处理模块(2)、输出模块(3)中的任意一种或多种模块;
所述联合运算值检测模块(1)用于:获取所述电梯的运载物品质量的联合运算值;所述联合运算值是基于电梯运行能量平衡计算所得,且所述电梯运行能量平衡计算中所需求的源动力参数为电气动力参数或机械旋转件的动力参数;
所述超载处理模块(2)用于:判断所述联合运算值是否大于所述电梯的额定载重量,并进行下述26B11、26B12中任意一种或多种方案处理;
26B11.如所述判断结果包括是,则启动设定的超载处理机制;
26B12.输出和/或保存所述判断的信息;
所述输出模块(3)用于:将所述联合运算值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面。与上述的电梯载荷的监控方法对象相同,本实施例中,核心在在于超载处理模块(2)判断所述联合运算值是否大于所述电梯的额定载重量以判断是否超载,在其他实施例中,联合运算值获取模块(1)可以无需采用,26B11-26B12也可以用其他方式替代。
27.进一步的,所述监控***(#2)还包括下述27A1、27A2、27A3中任意一种或多种功能:
27A1.当所述电梯以零速运行时,具有下述27A11、27A12中任意一种或两种功能:
27A11.检测所述电梯轿厢的垂直位移,当所述垂直位移大于预设位移阀值时抱闸***进行抱闸;
27A12.所述抱闸***松开抱闸为柔性的松开抱闸;;
27A2.当所述监控***中未包括所述输出模块(3)时,将所述联合运算值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面;
27A3.所述联合运算值获取模块(1)中所述获取所述电梯的运载物品质量的联合运算值的功能包括下述功能:获取所述电梯的输入参数的值;所述输入参数为计算所述联合运算值所需求的参数;根据所述获取的输入参数的值计算出所述联合运算值。
本发明所提供的一种电梯载荷的监控方法(#2)及***的有益效果:
现有公知技术的变频器称重方案中,因缺乏对于电梯的能量流向工况的研究,在电梯升降非零速运行时无法计算重量;现有公知技术的基于轿厢传感器称重的超载监控方案中成本高/结构复杂;本发明提供的基于电机驱动器(如变频器)称重电梯载荷的监控方案,对于省略传统的传感器称重***、降低电梯的称重成本具有重大意义;
电梯现有技术中,因为通常采用轿厢内传感器称重方法,该称重结果仅仅能在电梯运行前检测是否超载,其无法反应导轨和/或电梯井道中物体与轿厢的摩擦力、曳引轮、电机、中间传动部件、电机驱动器的安全状况,在电梯垂直升降运行中对于电梯的安全监控没有实际意义;但如果采用电机驱动器称重技术方案,在任何时候,将所述运载物品质量的数值输出(到轿厢内人机界面),有助于电梯乘客一眼识别电梯运行是否正常,有助于非专业人员的电梯乘客(而无需借助专业人员、专业仪器设备的检测)快捷、简便的识别电梯运行安全信息(该信息可包括导轨和/或电梯井道中物体与轿厢的摩擦力、曳引轮、电机、中间传动部件、电机驱动器的安全状况),对于电梯的安全运行有重大意义。
技术问题四:
本发明要解决的技术问题之四是提供电梯的控制方法,用于提高电梯的运行效率,也即提供了一种电梯运行效率的控制方法,以在安全运行前提下提高电梯运行的效率;
本发明的目的是通过以下技术方案来实现的:
28.本发明还提供一种电梯的控制方法,该控制方法可用于提高电梯的运行效率,包括下述步骤:
该电梯的机械运行参数预设有至少两个不同的档次,基于至少包括该电梯的运载物品质量在内的参数选择该机械运行参数的档次;或;基于至少包括该电梯的运载物品质量在内的参数计算该机械运行参数的联合运算值,当运载物品质量在零到额定载重量间 变化时该机械运行参数具有至少两个大小不同的联合运算值;以根据该该机械运行参数的联合运算值或档次控制电梯运行;所述机械运行参数包括上行速度、下行速度、加速上行时的加速度、减速下行时的加速度中任意一个或多个参数。
该控制方法中,所述至少两个不同大小的联合运算值或至少两个不同的档次,具有两种含义:第一种为大于或等于2的有限个联合运算值或档次,此时相当于按这有限个联合运算值或档次将运载物品质量对应的划分为多个部分,每个部分对应一个运行的速度和/或加速度;第二种为大于或等于2的无限个值,此时运载物品质量与运行的速度和/或加速度的值分别一一对应,电梯此时为进行无极调速。
电梯的机械运行参数的每一档次均有与其对应的值,简称为对应值,选择某档次也即选择某档次的对应值;上述选择该机械运行参数的档次,也是基于至少包括该电梯的运载物品质量在内的参数计算后再选择该机械运行参数的档次;因该机械运行参数的档次为根据其他类型数据(运载物品质量等),经过公式或查表计算所得,所以该机械运行参数的某档次的对应值为一种联合运算值;
该控制方法中,无论“计算该机械运行参数的联合运算值”或“计算后再选择该机械运行参数的档次”该计算也即基于至少包括该电梯的运载物品质量在内的参数和预设的映射关系计算;具体映射关系,见后文详述。
该控制方法中:“以根据该该机械运行参数的联合运算值或档次控制电梯运行”;包括两种情况,一种在实施本控制方法的控制***内控制,另一种为输出该机械运行参数的联合运算值或档次,以给外部的控制***控制电梯运行;
所述“根据该该机械运行参数的联合运算值或档次控制电梯运行”,包括两种实现方式;一种为将该该机械运行参数的联合运算值或该档次的对应值作为指令预设值,以控制电梯运行;另一种为将该该机械运行参数的联合运算值或该档次的对应值作为运行上限阀值,以控制电梯运行;具体控制方法,见后文详述。
该控制方法中:用于控制电梯运行的该机械运行参数的的联合运算值或该档次的对应值不能大于该机械运行参数的安全值;
关于机械运行参数的安全值的描述:因为当该机械运行参数为速度时,该速度具有电动上行、电动下行、电机制动上行、电机制动下行等多种工作状况;上行速度又分电动上行时上行速度、电机制动上行时上行速度;下行速度又分电动下行时下行速度、电机制动下行时下行速度;当该机械运行参数为加速度时,该加速度具有加速上行、减速下行、加速下行、减速上行等多种工作状况:
所以相应的,根据多种不同的工作状态,该机械运行参数的安全值为电动上行时上行速度的许可值、电动下行时下行速度的许可值、电机制动上行时上行速度的许可值、 电机制动下行时下行速度的许可值、加速上行时加速度的许可值的绝对值、减速下行时加速度的许可值的绝对值中至少一种;
减速上行时加速度的许可值的绝对值、加速下行时加速度的许可值的绝对值,与对重质量m3相关,与运载质量无直接关系;
上述控制方法中,该机械运行参数的安全值为基于至少包括运载物品质量(优选为当前的实际值)和源动力参数(优选为安全极限阀值)的参数进行计算所得;该机械运行参数的安全值的计算可在控制电梯运行前的任何时候计算,该计算既可在内部***中也可在外部***中进行;如在外部***中进行,则只需要读取其结果。例如从后述的第二关联表格、第一关联表格读取结果;重点不在于计算过程,而在于结果的核准:只需要保障控制电梯运行的机械运行参数的值不大于安全值或机械运行参数的档次的对应值不大于安全值即可;
29,优选的,上述控制方法中,所述“根据该该机械运行参数的联合运算值或档次控制电梯运行”为:将该该机械运行参数的联合运算值或该档次的对应值作为指令预设值,以控制电梯运行。
30,进一步的,上述控制方法中,轻载时或重载时电梯的上行速度的指令预设值,小于载荷平衡时时上行速度的指令预设值;和/或:轻载时或重载时下行速度的指令预设值,小于载荷平衡时下行速度的指令预设值;
31.进一步的,所述基于至少包括该电梯的运载物品质量在内的参数计算,具体为:根据至少包括所述电梯的运载物品质量和所述电梯的源动力参数在内的参数计算;
32.进一步的,在上述31条内容所述控制方法中,所述计算是电梯运行能量平衡计算;所述电梯运行能量平衡计算与电梯运行方向关联。
33.进一步的,在上述32条内容所述控制方法中,所述电梯运行能量平衡计算满足下述33A1、33A2、33A3、33A4、33A5中任意一种或多种条件:
33A1.根据电梯速度变化状况进行所述电梯运行能量平衡计算。
33A2.参与所述电梯运行能量平衡计算的参数中包括效率系数;
33A3.当参与所述电梯运行能量平衡计算的参数中包括效率系数时,根据电机运行工况调整所述效率系数;
33A4.当所述电梯运行能量平衡计算中包括的源动力参数为电气功率时,根据电机运行工况进行所述电气功率的设置;
33A5.当所述电梯运行能量平衡计算中包括的源动力参数为电气动力参数或机械旋转件的动力参数时,参与所述电梯运行能量平衡计算的参数中包括机械旋转件的摩擦关联数据。
34.进一步的在上述29-32任一条所述控制方法中,还满足下述34A1、34A2、34A3中任意一种或多种条件:
34A1.所述运载物品质量的值为根据电气动力参数计算所得;
34A2.所述运载物品质量的值为基于电梯运行能量平衡计算所得;
34A3.所述运载物品质量的值为当前的实际值,所述源动力参数的值为安全极限阀值;
35.进一步的,如第29-32任一条内容所述控制方法,还包括下述35A1、35A2、35A3中任意一种或多种方案:
35A1.识别轿厢内有无人员状况,当轿厢内无人时比轿厢内有人时设置更高的运行效率;
35A2.将所述运载物品质量的值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面;
35A3.所述电梯运行能量平衡计算具体为:获取所述电梯的输入参数的值,所述输入参数为进行电梯运行能量平衡计算计算所述联合运算值所需求的参数,如进行电梯运行能量平衡计算所需的源动力参数、***运行参数等;根据所述获取的输入参数的值计算出所述联合运算值。
本控制方法的实施说明:
本控制方法的核心内容之(一):
演示如何根据至少包括运载物品质量(优选为当前的实际值)和源动力参数(优选为安全极限阀值)的参数计算用于控制电梯运行的机械运行参数的安全值。
该安全值的计算或获取,优选实施方案28A包括下述28A-1、28A-2方案:
(一.1)
28A-1实施方案如下:
所述运载质量的值,为运载质量中运载物品质量的值;可为当前的实际值或预设值;因为本控制方法的核心目的为根据运载质量的当前的实际值设置用于控制电梯运行的机械运行参数的安全值,以提高电梯的运行效率,所以该运载质量的值优选为当前的实际值,且该当前的实际值优先为根据电气动力参数基于电梯运行能量平衡计算所得;当然该当前的实际值也允许由其他源动力参数进行电梯运行能量平衡计算所得,也允许由传感器称重所得,只是后两种方式将抬升成本;
所述源动力参数的值,优选为源动力参数的安全极限阀值,与运载质量的当前的实际值配合进行计算,这样便于实现电梯最高运行效率;也可选择为小于安全极限阀值的数值,将不利于提高效率;
通过深入研究分析对重式电梯的结构,参考前述实施例4可取得下述公式28-1、2、3、4、5、6、7中计算方式;Po_ena为电机功率的许可值,Te_ena为电磁转矩的许可值,P4_ena为发电回馈制动功率的许可值,P5_ena为能耗制动功率的安全极限阀值,F1_ena为钢丝绳综合拉力的许可值;
上述诸多许可值,均为可由根据电梯型号、现场需求设定的安全极限阀值;
根据功率类型的许可值(如Po_ena或P4_ena或P5_ena)以及根据各不同的能量流向工况(或连同速度运行状况)计算出上行速度的许可值V1_ena和/或下行速度的许可值V2_ena;
根据力或转矩或瞬间功率类型的许可值(如F1_ena)以及根据各不同的能量流向工况(或连同速度运行状况)计算出加速度的许可值的绝对值aj_ena;特别声明,如某参数加以后缀_ena,则表示该参数为***预设的安全值或许可值。
(一.2)
当所述机械运行参数为上行速度或下行速度时,优选方案28-1说明如下:
根据电动状态时电气***的功率的许可值计算电动上行时上行速度的许可值,参考前述公式5-1可获得下述公式28-1:
V1_ena=Kem1*Po_ena/((m1+m0)*g-m3*g),(公式28-1);
根据电动状态时电气***的功率的许可值计算电动下行时下行速度的许可值,参考前述公式5-2可获得下述公式28-2:
V2_ena=Kem1*Po_ena/(m3*g-(m1+m0)*g),(公式28-2);
根据发电回馈功率和/或能耗制动功率的安全极限阀值计算在电机制动上行时上行速度的许可值,参考前述公式5-3可获得下述公式28-3:
V1_ena4=(P4_ena/(K14*Kem2))/((m1+m0)*g-m3*g),(公式28-3-1);
V1_ena5=(P5_ena/Kem2)/((m1+m0)*g-m3*g),(公式28-3-2);
根据发电回馈功率和/或能耗制动功率的安全极限阀值计算在电机制动下行时下行速度的许可值,参考前述公式5-4可获得下述公式28-4:
V2_ena4=(P4_ena/(K14*Kem2))/(m3*g-(m1+m0)*g),(公式28-4-1);
V2_ena5=(P5_ena/Kem2)/(m3*g-(m1+m0)*g),(公式28-4-2);
上述公式28-1、28-2、28-3-1、28-3-2、28-4-1、28-4-1所计算出的(各种能量流向工况下速度)的许可值,可理解为经过安全核准的速度的许可值;显而易见的,由上述计算公式得知,该许可值适用于当前的运载质量值;当该运载质量值不同时,该速度的许可值将不同;
(一.3)
28A-2实施方案如下:
当所述机械运行参数为加速上行时的加速度、减速下行时的加速度、加速下行时的加速度、减速上行时的加速度中任意一个参数时,优选方案28A-2的详细方案28A-2-1、28A-2-2、28A-2-3说明如下:
28A-2-1.根据电梯轿厢总质量m2也即(m1+m0)和钢丝绳综合拉力的许可值F1_ena计算加速上行时加速度和/或减速下行时加速度的许可值;当电梯为加速上行时,或当电梯为减速下行时,钢丝绳承受的最大冲击力将出现在电梯轿厢侧;参考前述公式1-3可获得下述公式28-5:
|aj1_ena|=|aj4_ena|=F1_ena/(m1+m0)-g,(公式28-5);
28A-2-2.根据对重质量m3和钢丝绳综合拉力的许可值F1_ena计算减速上行时加速度和/或加速下行时加速度的许可值的绝对值;当电梯为加速下行时,或当电梯为减速上行时,钢丝绳承受的最大冲击力将出现在对重侧(而不是轿厢侧);参考前述公式28-5可获得下述公式28-6:
|aj2_ena|=|aj3_ena|=F1_ena/m3-g,(公式28-6);
28A-2-3.上述28A-2-1、28A-2-2方案,为根据钢丝绳综合拉力的许可值F1_ena计算加速度的许可值的绝对值,该钢丝绳综合拉力的许可值F1_ena通常可根据钢丝绳的破断应力再除以一预设的安全系数得知,该破断应力可根据钢丝绳的材质查询相关的机械手册得知,该安全系数通常可设为12左右;通常可默认钢丝绳为电梯的最薄弱环节,当然也可通过机械旋转件(如曳引轮、传动齿轮、电机转子轴)的剪切应力安全值设置加速度的许可值的绝对值(通过参考实施例3中公式3-3、3-4、3-5、3-6进行),还可以根据电磁转矩的安全值或电流的安全值或瞬间电气功率的安全值设置加速度的许可值的绝对值(通过参考前述实施例4中公式4-5至4-12进行);***可进行安全核算,确认钢丝绳综合拉力的许可值、机械旋转件的剪切应力安全值、电磁转矩的安全值或电流的安全值或瞬间电气功率的安全值中最薄弱的参数,根据该最薄弱的参数确定加速度的许可值的绝对值。
因为即使在同一运行方向,加速度可能存在正负之分;上述28A-2-1、28A-2-2、28A-2-3方案所得的(各种状况下加速度的)许可值,可理解为经过安全核准的加速度的许可值的绝对值;显而易见的,由上述计算公式得知,该许可值适用于当前的运载质量值;当该运载质量值不同时,该加速度的许可值的绝对值将不同;
经过上述计算,显而易见的得知,当电梯为加速上行时,或当电梯为减速下行时,钢丝绳承受的最大冲击力将出现在电梯轿厢侧;运载物品质量m1的值越小,则经过安全核准的加速度的许可值的绝对值越大;运载物品质量m1的值越大,则经过安全核准 的加速度的许可值的绝对值越小;
当电梯为加速下行时,或当电梯为减速上行时,钢丝绳承受的最大冲击力将出现在对重侧(而不是轿厢侧);则经过安全核准的加速度的许可值的绝对值与运载物品质量m1无关,与对重质量m3相关。
本控制方法的核心内容之(二):
(二.1)
分析如何用指令预设值、运行上限阀值控制所述电梯运行;具体如下:
电梯升降运行的每一个动作,均会由控制***发出一个目标参数(机械运行参数中电梯上行速度和下行速度和各速变方向的加速度)的目标值(也即指令预设值),然后由执行机构如电梯的动力***驱动电梯按目标值(也即指令预设值)运行;
(二.2)、用指令预设值控制电梯运行的说明:
指令预设值用于主动控制电梯的速度和/或加速度,即用作主动控制电梯运行的机械运行参数的(电梯上行速度和下行速度和各速变方向的加速度)的目标值,用于直接控制该电梯的运行;该控制方式为一种主动控制方式;如上所述,因为该指令预设值为根据至少包括所述电梯的运载质量(当前的实际值)和所述电梯的源动力参数(安全极限阀值)在内的参数计算所得,所以该方式可使电梯上行速度和/或下行速度和/或各速变方向的加速度运行于最大值,可以提高电梯运行效率,同时也可保障电梯运行安全;
(二.3)、用运行上限阀值控制电梯运行的说明:
运行上限阀值,指电梯在运行过程中上行速度、下行速度、各速变方向的加速度的上限阀值;用运行上限阀值控制电梯运行,为一种非主动的、但有益于安全的控制方式;该控制方式包括下述方案:当电梯的上行速度/或下行速度(的当前值或目标值)不大于所述运行方向的运行上限阀值时,电梯的原运行动作不受限制;当电梯的上行速度/或下行速度(的当前值或目标值)大于所述运行方向的运行上限阀值即进行限速、或超速报警、或停机保护处理;该限速指将上行速度/或下行速度(的当前值或目标值)限制为不大于运行上限阀值的值;
当电梯的加速度(的当前值或目标值)的绝对值不大于所述速变方向的加速度的运行上限阀值时,电梯的原运行动作不受限制;当电梯的加速度(的当前值或目标值)的绝对值大于所述速变方向的加速度的运行上限阀值时即进行加速度限幅、或超限报警、或停机保护处理;该加速度限幅指将所述速变方向的加速度(的当前值或目标值)的绝对值限制为不大于运行上限阀值的值;
具体的限速措施,可参考现有控制技术进行,如降低速度或加速度的当前的目标值 或指令预设值(如降低变频器的设定频率)以让电机减速等;具体的加速度限幅的措施,可参考现有控制技术进行,如降低速度当前的目标值或指令预设值的变化率(如降低变频器的设定频率的变化率、使速度变化曲线的斜率降低等)以让电机进行加速度限幅等。
当电梯的电机驱动器具备直接的加速度控制功能时,可直接控制加速度以控制电梯运行;当该电机驱动器不具备直接的加速度控制功能时,可通过控制加减速运行时间间接的控制加速度;如变频器当前频率(也即当前速度)已知,目标频率(也即目标速度)已知,则通过目标频率和当前频率的差值(也即速度的差值)除以加速度的值即可换算出理想的加减速运行时间。
(二.4)、
本发明28A-1和/或28A-2方案为根据电梯的运载物品质量(优选为当前的实际值)和源动力参数(优选为安全极限阀值)计算出用于控制电梯运行的机械运行参数的安全值,机械运行参数的安全值包括经过安全核准的速度的许可值、经过安全核准的加速度的许可值的绝对值中至少一种,在确保安全的前提下可使电梯速度最快/效率最高,属于电梯运动控制中高度智能化的方案;
当源动力参数为当前的实测值,运载质量为当前的联合运算值或实测值时,所计算出的机械运行参数的联合运算值也为当前值;本发明所述“根据该机械运行参数的联合运算值或该档次的对应值控制所述电梯运行”还可包括下述方案:检测经过联合计算所得的机械运行参数的当前值是否超出已预设的安全极限阀值,如是则进行相关的报警、或限速处理;
参考上述计算方法,也可选择源动力参数的额定值/人工预设值与运载质量的当前的实际值配合进行计算,相应的所得出的机械运行参数的值可理解为:在电梯的载荷为当前的运载质量值时的速度或加速度的额定值/人工预设值;也可根据该速度或加速度的额定值/人工预设值作为指令预设值运行上限阀值以控制所述电梯运行,控制方法可参考上述方案。
本控制方法的核心内容之(三):
控制电梯运行的机械运行参数的安全值的计算或获取,除了上述基础实施方案28A之外,还有查表式实施方案28B、最简化实施方案28C、28D实施方案等多种方式;
28B实施方案说明如下:所述电梯的机械运行参数的值(联合运算值),除了采用上述28A的优选计算方案外,还可根据所述电梯的运载质量和源动力参数进行性能低、但简便的计算;如预设一电梯的运载质量、源动力参数、机械运行参数的关联表格,该关联表格为第二关联表格;当输入已知的运载质量、源动力参数时,查表得出机械运行 参数的值(联合运算值);根据所述机械运行参数的值控制所述电梯运行;
28C实施方案说明如下:预设一电梯的运载质量、机械运行参数的关联表格,该关联表格为第一关联表格;当输入已知的运载质量时,查表得出机械运行参数(上行速度、下行速度、加速上行时的加速度、减速下行时的加速度)的值(联合运算值);根据所述机械运行参数的值控制所述电梯运行;
28D实施方案说明:上述28A、28B、28C为在控制***内部进行所述电梯的机械运行参数的值(联合运算值)的计算;也允许由外部、其他***进行机械运行参数的值(联合运算值)的计算,只需要其计算方法采用28A、28B、28C中所述计算方法即可;读取该由外部、其他***计算所得机械运行参数的值(联合运算值);根据所述机械运行参数的值控制所述电梯运行;
本发明中,除了用公式/模型进行计算外,查表也为一种计算方法,表格计算;上述公式28-1、公式28-2、公式28-3-1、公式28-3-2、公式28-4-1、公式28-4-1、公式28-5、公式28-6、第二关联表格、第一关联表格中任一公式、表格,均可称为一种至少包括所述电梯的运载质量在内的参数与该电梯的机械运行参数的映射关系;
根据所述运载质量值得所述机械运行参数的值的取值动作,通常在某一特定时候进行,如电梯关门、启动升降运行运行前;当然,该取值动作也可在升降过程中进行该取值,由用户自行选择。
当然,上述28A、28B、28C、28D任一方案中,“根据所述机械运行参数的值控制所述电梯运行”,该控制所述电梯运行均指控制所述电梯符合安全规范运行;
本控制方法的核心内容之(四):
上述内容已解决了控制电梯运行的机械运行参数的安全值的来源、分析如何根据指令预设值、运行上限阀值控制所述电梯运行,下述内容将重点介绍如何进行分档、如何根据档次或离散值控制电梯运行,具体内容如下:
本控制方案的核心目的为根据运载质量(当前的实际值)和电气功率的许可值调整电梯上行速度、下行速度;当该机械运行参数为上行速度或下行速度时,当该“至少两个”为仅为两个时,可简单理解为高速值、低速值,(高速值>低速值);当该“至少两个”为仅为两个时,也可理解为该速度两个不同档次,一高速档、一低速档,每一档次均有一对应值;(高速档的速度>低速档的速度);
本发明特约定如下:“至少两个”不包括该该机械运行参数为零或该该机械运行参数值与零的差值小于一预设值的情况;此约定的主要目的就是为了业内技术人员理解和操作方便,在“至少两个”中排除零速。
当电梯上行或准备上行时,设定一个判断阀值也即第三预设值,如运载质量的值大于该第三预设值,则输出一个上行速度的指令预设值;如运载质量的值小于该第三预设值,则输出该上行速度的另一个不同大小的指令预设值;例如:当运载物品质量的值与平衡值的差值的绝对值小于第三预设值,则将高速值作为上行速度的指令预设值/或运行上限阀值,或控制所述电梯运行于高速档;当运载物品质量的值与平衡值的差值的绝对值大于或等于第三预设值,则将低速值作为上行速度的指令预设值/或运行上限阀值,或控制所述电梯运行于低速档;
当电梯下行或准备下行时,当该“至少两个”为三个时,三个速度可简单理解为“高速值、中速值、低速值”,高速值大于中速值,中速值大于低速值;也可理解为该速度三个不同档次,一高速档、一中速档、一低速档,高速档的速度大于中速档的速度,中速档的速度大于低速档的速度;如设定两个大小不同的判断阀值(也即第四预设值、第五预设值),将运载物品质量的值与平衡值的差值的绝对值简单分为大、中、小三个区间;例如:可将平衡值与0的差值的绝对值设为最大差值,或额定载重量与平衡值的差值的绝对值设为最大差值;(0<第四预设值<第五预设值<最大差值),“小”区为0到第四预设值的区间,“中”区为第四预设值到第四预设值的区间,“大”区为第五预设值到最大差值的区间;当运载物品质量的值与平衡值的差值的绝对值处于“大”区时,则将低速值作为上行速度的指令预设值/或运行上限阀值,或控制所述电梯运行于低速档;当运载物品质量的值与平衡值的差值的绝对值处于“中”区时,则将中速值作为上行速度的指令预设值/或运行上限阀值,或控制所述电梯运行于中速档;当运载物品质量的值与平衡值的差值的绝对值处于“小”区时,则将高速值作为上行速度的指令预设值/或运行上限阀值,或控制所述电梯运行于高速档;
当然,上述根据第三预设值、第四预设值、第五预设值分区,仅仅为一示例,并非限定;用户可参照该方式,自行调整各预设值、自行分区;
因此,当该“至少两个”为有限个数时(如4、5、6、8等),其实质为该机械运行参数的的值是多个离散值,根据这多个离散值将电梯分为多档进行控制。至于上述的高速值/高速档的速度、中速值/中速档的速度、低速值/低速档的速度,其值的具体大小,可根据型式试验设定、有限次的实验、人工试凑法等方案确定,也可参考上述任一映射关系(公式或表格)进行设定。本文中所有预设值,均可根据型式试验设定、有限次的实验、人工试凑法等方案确定。
根据28A、28B、28C、28D方案,其实允许更多的档次/离散值,甚至是无极调速,以使电梯处于空载到满载间任一负载量时,均可提高电梯运行效率;
本控制方法的核心内容之(五):
分析各种载荷状况(如空载、轻载、载荷平衡、重载、满载)时,与机械运行参数的安全值(尤其为速度的许可值)的关系;
(五.1)
显而易见的,当运载物品质量的当前值为零(m1=0)时为空载;当运载物品质量的当前值等于电梯的额定载重量m1_ena(m1=m1_ena)时为满载;因本发明研究对象为有对重的电梯,且该对重质量m3通常大于空载轿厢质量m0;
经过上述公式28-1、28-2、28-3-1、28-3-2、28-4-1、28-4-2计算分析表明:当运载物品质量值m1与空载轿厢质量值m0的和与对重质量值m3的差值越小时,则经过安全核准的速度的许可值越大;从理论上分析,当运载物品质量值m1与空载轿厢质量值m0的和等于对重质量值m3(也即:m1+m0=m3)时,也即曳引轮左右两边的质量平衡时,此时速度的许可值最大,该情况下的运载物品质量m1的值为平衡值,此时电梯的载荷情况称为载荷平衡;平衡值也即对重质量值m3和空载轿厢质量值m0的差值的绝对值;因平衡值通常为电梯的额定载重量m1_ena的一半,所以载荷平衡也可称为半载;
为了便于理解,本发明约定:当运载物品质量值大于零且小于第一预设值(0<m1<第一预设值)时为轻载;当运载物品质量值大于等于第二预设值且小于电梯的额定载重量m1_ena(第二预设值≤m1<m1_ena)时为重载;
(第一预设值≤第二预设值);例如,第一预设值可取平衡值的0.5倍,第二预设值可取平衡值的1.5倍;当然,该值第一预设值、第二预设值可由用户调整;但是通常来说,为了理解便利,符合下述数学法则较佳:(0<第一预设值<平衡值),(平衡值<第二预设值<m1_ena)
当电梯越趋近于满载时上行速度和/或下行速度的许可值越小;
电梯满载上行时,消耗电动功率多,上行速度的许可值比载荷平衡时更低;且该值受制于电动状态时电机的功率安全值Po_ena(通常等于电机的额定功率);
电梯满载下行时,下行速度的许可值比载荷平衡时更低;且该值受制于电气动力***对制动功率的吸纳能力,与电机的功率安全值Po_ena(通常等于电机的额定功率)无关,;
与常规偏见(如电梯轻载下行时允许比载荷平衡时以更高、更快的下行速度)不同的是:当电梯轻载下行(也即运载物品质量m1的值趋近于零)时,消耗电动功率多,此时下行速度的许可值比载荷平衡时更低;且该值受制于电动状态时电机的功率安全值Po_ena(通常等于电机的额定功率);
与常规偏见(如电梯轻载上行时允许比载荷平衡时以更高、更快的上行速度)不同 的是:当电梯轻载上行时,上行速度的许可值比载荷平衡时更低;且该值受制于制动功率的安全值P4_ena或P5_ena,与电机的功率安全值Po_ena(通常等于电机的额定功率)无关。
(五.2)
综合而言,与与常规偏见不同的是,并非电梯轻载时允许快速运行;控制电梯运行的电梯上行速度和下行速度和各速变方向的加速度的目标值、运行上限阀值、每一档次的对应值,均需要经过深入的安全计算方可得知;本发明所述“控制所述电梯运行”,指“控制所述电梯控制所述电梯符合安全规范运行”;
所述符合安全规范,为下述安全条件1、安全条件2、安全条件3中至少一种;
安全条件1:如实施方案28A所示过程,用于控制电梯运行的该机械运行参数的联合运算值或该档次的对应值(也即指令预设值或运行上限阀值)为机械运行参数的安全值,该机械运行参数的安全值是根据至少包括运载质量(优选为当前的实际值)和源动力参数(优选为安全极限阀值)的参数进行计算所得(如实施方案28A所示);可以理解的,用该机械运行参数的安全值控制电梯运行是安全的;
安全条件2:如28B、28C、28D方案,通过查表或从外部、其他***获取该用于控制电梯运行的该机械运行参数的联合运算值或该档次的对应值(也即指令预设值或运行上限阀值),从结果上验证:该值不大于机械运行参数的安全值;
该机械运行参数的安全值是根据至少包括运载质量(优选为当前的实际值)和源动力参数(优选为安全极限阀值)的参数进行计算所得(如实施方案28A所示结果);可以理解的,用该机械运行参数的值控制电梯运行是安全的;
安全条件3:用于控制电梯运行的该机械运行参数的联合运算值或该档次的对应值(也即指令预设值或运行上限阀值)和运载质量(当前的实际值)所对应的源动力参数的值不大于该源动力参数的安全极限阀值;具体实施方式,所对应的源动力参数的值可由上述公式28-1、28-2、28-3-1、28-3-2、28-4-1、28-4-2的变形公式计算所得。
(五.3)
根据上述内容分析得知,根据该机械运行参数的联合运算值或该档次的对应值控制所述电梯运行,当运载物品质量的值大于零也即非空载运行时,还可遵循下述调速方案1、2、3、4、5、6、7中至少一种;
调速方案1:轻载时或重载时电梯的上行速度的许可值,应小于载荷平衡时的上行速度的许可值;
调速方案2:轻载时或重载时电梯的上行速度的指令预设值,应小于载荷平衡时时上行速度的指令预设值;
调速方案3:轻载时或重载时上行速度的运行上限阀值,应小于载荷平衡时上行速度的运行上限阀值;
调速方案4:轻载时或重载时电梯的下行速度的许可值,应小于载荷平衡时电梯的下行速度的许可值;
调速方案5:轻载时或重载时下行速度的指令预设值,应小于载荷平衡时下行速度的指令预设值;
调速方案6:轻载时或重载时下行速度的运行上限阀值,应小于载荷平衡时下行速度的运行上限阀值;
本控制方法的核心内容之(六):控制方法的优化方案说明:
本发明35A 1方案的实施说明:识别轿厢内有无人员状况可通过光学、红外、视频传感器、称重等多种方式识别,且最好是采用两种或两种以上的方式组合识别,以免误判;所述轿厢内有无人员状况包括轿厢内有人、轿厢内无人两种状况,如当称重结果为零且红外探测无人时可识别当前轿厢内无人;
从理论分析角度,上述公式28-1、公式28-2、公式28-3-1、公式28-3-2、公式28-4-1、公式28-4-2表明,当源动力参数的安全极限阀值不变时,轿厢内无人时(也即运载物品质量m1为0)经过安全核准的速度的许可值比轻载时更小;
但是因为当轿厢内无人时对安全系数的要求降低,当轿厢内无人时源动力参数的安全极限阀值可比在轿厢内有人时源动力参数的安全极限阀值高;所以,当轿厢内无人时速度的许可值(指令预设值/运行上限阀值)可以设置为比轻载时更大,让电梯在轿厢内无人时以更高的速度、或更高的加速度运行,可大幅度的提高电梯的运行效率;
本发明所述设置更高的运行效率,可包括下述35A1-1、35A1-2、35A1-3中任一方案:
35A1-1、增大所述控制方法中所述源动力参数的值或调整其他可以影响所述电梯的该机械运行参数的联合运算值或档次,从而使控制电梯运行的所述机械运行参数的指令预设值和/或运行上限阀值间接增大;
35A1-2、直接增大该机械运行参数的指令预设值和/或运行上限阀值。
本发明35A1方案的有益效果:电梯会经常处于轿厢内无人状态,从常理来说电梯内无人时可相应降低安全系数;当电梯轿厢内有人时则需要保持电梯正常的安全系数以确保安全;通过本34A1方案可让电梯在轿厢内无人时以更高的速度、或更高的加速度运行,可大幅度的提高电梯的运行效率。
本控制方法的核心内容之(七):控制***的说明:
36.本发明还提供一种电梯的控制***,包括控制模块(1);
该控制模块(1),用于实现:该电梯的机械运行参数预设有至少两个不同的档次,基于至少包括该电梯的运载物品质量在内的参数选择该机械运行参数的档次;或;基于至少包括该电梯的运载物品质量在内的参数计算该机械运行参数的联合运算值,当运载物品质量在零到额定载重量间变化时该机械运行参数具有至少两个大小不同的联合运算值;以根据该该机械运行参数的联合运算值或档次控制电梯运行;所述机械运行参数包括上行速度、下行速度、加速上行时的加速度、减速下行时的加速度中任意一个或多个参数。
在上述控制模块(1)中,用于控制电梯运行的该机械运行参数的该档次的对应值、指令预设值、运行上限阀值不能大于该机械运行参数的安全值;
该机械运行参数的安全值为根据至少包括运载物品质量(优选为当前的实际值)和源动力参数(优选为安全极限阀值)的参数进行计算所得;当然,该计算即可在内部***中也可在外部***中进行;
进一步的,在上述控制***中,该联合运算值为指令预设值。
进一步的,在上述控制***中,轻载时或重载时电梯的上行速度的指令预设值,小于载荷平衡时时上行速度的指令预设值;和/或:轻载时或重载时下行速度的指令预设值,小于载荷平衡时下行速度的指令预设值;
进一步的,在上述控制模块(1)中,所述基于至少包括该电梯的运载物品质量在内的参数计算,具体为:根据至少包括所述电梯的运载物品质量和所述电梯的源动力参数在内的参数计算;
进一步的,在上述控制模块(1)中,所述机械运行参数的档次为基于至少包括所述电梯的运载物品质量在内的参数计算所得,具体为:所述机械运行参数的档次为基于至少包括所述电梯的运载物品质量和所述电梯的源动力参数在内的参数计算所得;
38.进一步的,所述控制***,具有下述38A1、38A2、38A3、38A4、38A5、38A6、38A7、38A8、38A9方案中任意一种或多种功能:
38A1.识别轿厢内有无人员状况,当轿厢内无人时比轿厢内有人时设置更高的运行效率;
38A2.所述运载物品质量的值为根据电气动力参数计算所得;
38A3.所述运载物品质量的值为基于在先的电梯运行能量平衡计算所得;
38A4.将所述运载物品质量的值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面;
38A5.所述控制所述电梯运行,包括根据所述联合运算值设置所述机械运行参数的 指令预设值或运行上限阀值;
38A6.所述运载物品质量的值为当前的实际值,所述源动力参数的值为安全极限阀值
38A7.所述所述机械运行参数的值是根据所述运载物品质量和所述电梯的源动力参数计算所得;
38A8.所述计算是电梯运行能量平衡计算;所述电梯运行能量平衡计算与电梯运行方向关联;
38A9.所述获取所述机械运行参数的值包括下述方案:获取所述电梯的输入参数的值;所述输入参数为计算所述机械运行参数的值所需求的参数;根据所述获取的输入参数的值计算出所述机械运行参数的值。
本控制方法的核心内容之(七):
本发明所提供的一种电梯运行效率的控制方法及***的有益效果::
当前电梯的现有技术中,无论有人或无人乘坐,无论负载轻重,都以同一速度运行,这是低效的、不科学、不利于节能环保的;
通过本申请文件内容分析可知,如果要想安全、高效的控制电梯运行,需要克服多种技术难题:需要深刻的理解对重质量m3给电梯运行带来的独特影响;需要区分零速运行、变速运行、非零匀速运行等各种状况,需要区分电动上行、电机制动上行、电动下行、电机制动下行等各种能量流向工况;需要将电梯质量、源动力参数、***运行参数三种参数再根据能量守恒定律、牛顿定律、独特的电梯运行特征等因素相结合进行电梯运行能量平衡计算,尤其是对电梯的机械运行特性和作为源动力参数的电气动力参数深刻理解,以实现深层次的跨领域的机电结合的电梯运行能量平衡计算;在进行复杂的电梯运行能量平衡计算时,还需要进行与电梯运行方向关联、电机工况关联1、电机工况关联2、电机工况关联3、电机工况关联4、速变关联1、速变关联2等多种复杂的关联计算;需要克服诸多行业偏见,需要进行诸多创造性分析研究,才有可能得出符合安全规范的机械运行参数(上行速度、下行速度、加速上行时的加速度、减速下行时的加速度中一个或多个参数)安全、高效的控制电梯运行;
行业领域内的惯性思维可能认为,电梯速度是不适合调节的,可能认为速度高了会有损安全,运行速度快了可能容易导致钢丝绳断裂,皆属于行业偏见;行业偏见可能认为电梯上行速度、下行速度可以不分,无须区分电动状态、电机制动状态;即使区分了电机制动状态,也可能认为制动状态下速度越高/发电量越高越好;
正因在诸多技术难题、行业偏见的存在,所以当前电梯已形成一个整体的行业偏见 如下:固定型号的电梯,只有在固定速度下运行才是安全的;如果根据运载质量的不同设置不同的运行速度,是不安全的;
本发明所提供的一种电梯的控制方法,核心目的如效果就在于此:攻克诸多技术难题、克服行业偏见;通过本发明所提供的公式28-1、2、3、4公式分析,在准确区分电梯的能量流向工况(如电梯上行、下行、电动状态、电机制动状态等)再根据当前的运载物品质量m1才能相对准确的计算出运行速度的安全值;电梯上行/下行时,基本计算结构不同,电动状态电气功率的安全极限阀值通常为电源、电机驱动器、电机三者中最小的额定功率值,电机制动状态时电气功率的安全极限阀值通常为电源、电机驱动器、电机、制动***四者之间的发电回馈制动功率和/或能耗制动功率中最小许可值,状态不同时各电气功率的安全极限阀值可能有大幅度差值;如不区分电梯的能量流向工况盲目的进行速度调整非但起不到速度调整的效果,反而导致电梯运行不安全;即使在电机制动状态,如果速度过高容易导致制动功率超出电气动力***的吸纳能力,从而导致变频器内母线电压升高/容易导致报故障/炸机。
在电梯领域,对于电梯机械装置的损坏研究缺少公开文献;根据牛顿2定律(F=m*a)和本发明提供的公式1-2(F1_cal=(m1+m0)*(g+aj))分析,机械装置的损坏与速度/功率直接关系并不大(在速度快/功率大时并不会导致钢丝绳断裂);机械装置的损坏的直接原因为在一定的载重时加速度过大将导致机械***应力大于安全阀值(如钢丝绳拉力大于破断应力而断裂,如瞬间转矩超限/剪切应力超限导致传动轴断轴、齿轮爆裂等);当加速上行时,或当减速下行时,可根据公式28-5根据电梯当前的运载物品质量m1值计算出合理的加速度才能便于避免钢丝绳的综合拉力F1超限(甚至断裂);当加速下行时,或当减速上行时,须根据公式28-6根据电梯的对重质量m3值(而非m1值)计算出合理的加速度才能便于避免钢丝绳的综合拉力F1超限(甚至断裂);
运用本发明提供的一种电梯运行效率的控制方法及***,可准确的设置电梯的安全运行速度和/或加速度,对于提高电梯的运行效率、提高电梯运行的安全性能具有重要作用;因当前电梯已成为现代生活中基础设备,在同一楼宇中,数量相同、型号相同的电梯,如采用该控制方法及***,可在确保安全的基础上,高效的控制电梯运行,也即让电梯运行更快、更合理;缩短乘客的等待时间、乘坐电梯时间,降低乘客的使用时间、使用成本;如在保障同等的输送量前提下,可缩减电梯的安全、使用台数、使用频率,大幅度降低所电梯对楼宇中空间资源、设备资金资源、电能的消耗,有利于环保节能降耗。
技术问题五:
本发明要解决的技术问题之五是提供一种电梯运行参数超限的监控方法,以在电梯 运行时提高安全性;
本发明的目的是通过以下技术方案来实现的:
39.本发明还提供一种电梯运行参数超限的监控方法(#3),包括步骤:获取所述电梯的源动力参数的联合运算值,判断所述联合运算值是否超出所述源动力参数的***预设值或安全极限阀值;所述联合运算值是基于电梯运行能量平衡计算所得。
本监控方法(#3)中,用于判断所属电梯的源动力参数是否超限;该***预设值的大小可根据实际需求进行选取,但通常满足:0<***预设值≤源动力参数安全极限阈值。
例如,源动力参数为电梯的钢丝绳的拉力,***预设值既可为该钢丝绳的拉力的正常值(也即额定值或标定值),该值通常为通过型式试验、或生产厂商、或专业检测机构给定;***预设值也可用用户现场需要、现场确认的理想值;***预设值也可为安全极限阈值×80%值;一旦钢丝绳的拉力的联合运算值超过该安全极限阈值,则说明源动力参数超限。
进一步的,***预设值还可以设置为多个,以实现分级的参数超限;如将钢丝绳的拉力的正常值作为第一***预设值(假设将其取值50%×钢丝绳的拉力的安全极限阈);将85%×钢丝绳的拉力的安全极限阈设为第二***预设值;
当钢丝绳的拉力的联合运算值>安全极限阈,则可启动紧急限速、加速度限幅、停机、禁止运行、发出报警信号等保护措施;
当安全极限阈>钢丝绳的拉力的联合运算值>第二***预设值时,此时可亮红灯,以示警示源动力参数处于第二超限范围;
当第二***预设值>钢丝绳的拉力的联合运算值>第一***预设值时,此时可亮黄灯,以示警示源动力参数处于第一超限范围;
当钢丝绳的拉力的联合运算值<第一***预设值时,此时可亮绿灯,以表示源动力参数未超限。
40、优选地,在本电梯运行参数超限的监控方法(#3)中,所述电梯运行能量平衡计算中需求的***运行参数包括速度和/或加速度,且所述速度和/或加速度的值是根据指令预设值或实测值设定;所述电梯运行能量平衡计算与电梯运行方向关联。
41、进一步的,所述监控方法(#3)中,在进行判断之后还可以采取下述的措施:
如所述判断结果包括是,则启动设定的源动力参数超限处理机制;或,
输出和/或保存所述判断的信息。
42.进一步的,所述监控方法(#3),满足下述42A1、42A2、42A3、42A4、42A5、42A6、42A7、42A8中任意一种或多种条件:
42A1.参与所述电梯运行能量平衡计算的参数中包括效率系数;
42A2.当参与所述电梯运行能量平衡计算的参数中包括效率系数时,根据电机运行工况调整所述效率系数;
42A3.当所述源动力参数为电气功率时,根据电机运行工况进行所述电气功率的设置;
42A4.当所述源动力参数为电气动力参数或机械旋转件的动力参数时,参与所述电梯运行能量平衡计算的参数中包括机械旋转件的摩擦关联数据;
42A5.根据电梯速度变化状况进行所述电梯运行能量平衡计算;
42A6.当所述电梯运行能量平衡计算中需求运载质量的值时,所述运载质量的值为根据电气动力参数计算所得;
42A7.计算所述源动力参数的联合运算值所需求的运载质量的值,为基于在先的电梯运行能量平衡计算所得;
42A8.所述监控方法(#3)中获取所述电梯的源动力参数的联合运算值包括下述步骤:获取所述电梯的输入参数的值;所述输入参数为计算所述联合运算值所需求的参数;根据所述获取的输入参数的值计算出所述联合运算值。
相应的,本发明还提供一种电梯运行参数超限的监控***(#3),包括源动力参数超限监控模块(2),用于:判断所述联合运算值是否超出所述源动力参数的***预设值或安全极限阀值;所述联合运算值是基于电梯运行能量平衡计算所得。
其还可以包括联合运算值检测模块(1),用于获取所述电梯的源动力参数的联合运算值以提供源动力参数超限监控模块(2)中的联合运算值。
所述电梯运行能量平衡计算中需求的***运行参数包括速度和/或加速度,且所述速度和/或加速度的值是根据指令预设值或实测值设定;所述电梯运行能量平衡计算与电梯运行方向关联;
本监控方法(#3)的实施说明:本监控方法(#3)是与前述一种电梯的控制方法同一思想根源的技术,可以理解为监控方法(#3)是前述一种电梯的控制方法的逆运算;该方案适用于不需要和/或不允许主动调整电梯的速度和/或加速度的场所;
当所述电梯运行能量平衡计算中电梯质量为对重质量时,可根据该对重质量的***默认值和加速上行或减速下行时的加速度的指令预设值预测出钢丝绳的综合拉力,进而判断其是否会超限;当所述电梯运行能量平衡计算中包括运载物品质量时,所述运载物品质量的值为当前值或预设值;可在各种运载物品质量的设置条件下预测出钢丝绳的综合拉力或旋转机械的转矩是否会超限。
当电梯的电机驱动器具备直接的加速度控制功能时,可直接读取指令预设值中的加速度;当该电机驱动器(如变频器)不具备直接的加速度控制功能时,可通过该电机驱 动器已发出的、准备执行的指令预设值(已知的当前频率(也即当前速度)、设定的目标频率(也即目标速度)、设定加减速运行时间、设定的加减速曲线的斜率),可得出该指令预设值的加速度;通常来说,速度的指令预设值可从电机驱动器中简便的读取得知。
本发明所提供的监控方法(#3)的实施例1:
当电梯上行+加速运行时,或电梯下行+减速运行时,利用实施例1的替代实施例1中公式1-2可测算出轿厢上Q点钢丝绳的综合拉力的联合运算值F1_cal:F1_cal=(m1+m0)*(g+aj),(公式1-2);
判断(F1_cal>F1_ena)是否成立,如判断结果为是则启动设定的源动力参数超限处理机制;
本发明所提供的监控方法(#3)的实施例2:
当能量流向工况为电动上行,且速度变化状况为非零匀速运行时,利用实施例4的替代实施例3示例1中公式4-15可测算出电磁转矩Te的联合运算值:Te_cal=((m1+m0)*g-m3*g)*R1/(Kem1*im),(公式4-15);
判断(Te_cal>Te_ena)是否成立,输出和/或保存所述判断的信息;
本发明所提供的监控方法(#3)的实施例3:
当能量流向工况为电动上行,且速度变化状况为非零匀速运行时,利用实施例5的5A1-1中公式5-1的变形公式(公式19-7)计算电机的电气功率的联合运算值:Po_cal=((m1+m0)*g-m3*g)*V1/Kem1,(公式19-7);
判断(Po_cal>Po_ena)是否成立,如判断结果为是则启动设定的源动力参数超限处理机制和/或输出所述判断的信息。
本发明监控方法(#3)中41A1方案中,所述源动力参数超限处理机制,与能量传递异常处理机制类同,可包括但不局限于:语音提示告警、声光告警、将告警信息输出到轿厢内人机交互界面、网络***、连接端口等;紧急停机等;机器***和人工可任意组合设定各种处理动作。
本发明监控方法(#3)中41A2方案中,所述判断的信息包括根据所述源动力参数的联合运算值是否超出所述源动力参数的安全极限阀值的判断结果,如果外部***需要,该信息还可以包括所述源动力参数的联合运算值、所述源动力参数的安全极限阀值中任意一个或多个数据;
针对本发明监控方法(#3),本申请提供了如下具体技术方案:
(1)本方案包括如下步骤:
获取电梯的运载物品质量的当前值、***或人工发送的用于设置的电梯运行速度和/或加速度的指令预设值(也即控制指令、目标值);
基于获取到的运载物品质量的当前值、所述指令预设值计算(查表计算或电梯运行能量平衡计算)出源动力参数的联合运算值,判断所述联合运算值是否超过该源动力参数的安全极限阈值/***预设值;
当所述联合运算值未超过该源动力参数的安全极限阈值/***预设值时:则继续执行该控制指令;
当所述联合运算值超过该源动力参数的安全极限阈值/***预设值时:则可判定所述指令预设值(也即控制指令、目标值)不正确,如果执行该指令将可能产生(诸如钢丝绳超过破断应力、或齿轮损坏、或电气动力***损坏的)安全风险;此时,***可则输出警示信号、或强行截止该指令的执行、或强制停机;在某种意义上具有防范未来(尚未发生、但将要发生的)安全风险的作用,对于电梯的安全运行具有重要意义。
(2)本方案包括如下步骤:
(通过电梯运动平衡计算获取、或传感器称重)获取电梯的运载物品质量的当前值、(通过测量方式)获取电梯运行速度和/或加速度的的当前值;
基于获取到的运载物品质量的当前值、运行速度和/或加速度的的当前值计算(查表计算或电梯运行能量平衡计算)出源动力参数的联合运算值,该源动力参数的联合运算值实质为(非通过传感器测量途径获取)的当前值;判断所述联合运算值是否超过该源动力参数的安全极限阈值/***预设值;
如否:则表明当前状况安全,可继续进行当前运行;
如是,则输出警示信号;与上述(1)本方案预测即将执行的控制指令(也即人工或***发出命令)是否导致未来安全风险不同;该(2)本方案监测的是当前是否存在参数超限的安全风险;对于电梯的安全运行也具有重要意义。
(3)本方案包括如下步骤:
获取电梯的运载物品质量的预设值、(通过测量方式)获取电梯运行速度和/或加速度的的当前值;基于获取到的运载物品质量的预设值、运行速度和/或加速度的的当前值计算(查表计算或电梯运行能量平衡计算)出源动力参数的联合运算值,该源动力参数的联合运算值实质为(根据质量的预设值设定)的当前值;
判断联合运算值是否超过该源动力参数的安全极限阈值/***预设值,进而可得知许可、安全的运载物品质量值,甚至可预测该电梯可运载的人数;对于乘客合理的安排乘坐电梯、控制等待时间,具有一定作用。
(4)本方案包括下述步骤:
获取电梯的运载物品质量的预设值、获取电梯运行速度和/或加速度的的预设值;基于获取到的运载物品质量的预设值、运行速度和/或加速度的预设值计算(查表计算 或电梯运行能量平衡计算)出源动力参数的联合运算值,判断该所述联合运算值是否超过该源动力参数的安全极限阈值/***预设值;
该方案通常用于进行运动规划、运载质量、运行速度和/或加速度的合理预测;对于提高电梯的运营效率有促进作用。
本发明所提供的一种电梯运行参数超限的监控方法及***(#3)的有益效果:现在的电梯都采用微电脑智能控制,电梯运行的速度和/或加速度都是由软件指令预设的,运用本发明提供的技术方案,可以在(将要执行、而尚未发生的)速度和/或加速度的指令预设值执行前进行源动力参数(如电气功率或钢丝绳拉力)的预测和判断,预测其是否会超限,在某种意义上具有防范未来风险的作用,对于电梯的安全运行具有重要意义。
技术问题六:
43、本发明要解决的技术问题之六是对电梯进行监视,该监视方法包含下述步骤:
获取所述电梯的测算对象的联合运算值;输出该联合运算值,以在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上进行显示;和/或:将测算对象的联合运算值在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上显示;所述测算对象是电梯的电梯运行参数中任意一种或多种参数,所述联合运算值是以电梯运行能量平衡计算所得;以给相关人员查看电梯的能量传递状况,也即电梯的能量传递***的状况,也即电梯运行安全状况。
本监视方法中所述电子设备,典型为显示器;所述便携式个人消费电子产品包括手机、掌上电脑、智能手表、智能手环、数码相机、游戏机等;本发明所述在人机界面上输出联合运算值,包括以文字、图像、声音、语音等任意一种或多种方式显示和/或语音提示联合运算值;本发明中所述厅门的人机界面,指设置于电梯厅门上及其附近区域的人机界面,该人机界面能用于向厅门处等待乘坐电梯的乘客发送以文字、图像、声音、语音等任意一种或多种信息。
本方案中所述获取,可包括通过无线接收方式接收外部设备所发出的测算对象的联合运算值、或通过USB、CAN总线等有线方式接收外部设备所发出的测算对象的联合运算值等方式;也可通过用有线/或无线方式直接接收电梯运行参数,然后在该电子设备内部用所接收的电梯质量、源动力参数、***运行参数中参数,然后进行以电梯运行能量平衡计算为原理计算得出测算对象的联合运算值;
本技术方案的有益效果:相比于现有的轿厢内传感器称重方式及结果,对于在电梯升降运行过程中观测电梯运行安全状况意义微弱;综合而言,本发明提供的监视方法, 选择一种特殊的数据获取方式(根据电梯运行能量平衡计算的数据包含电梯的能量传递***的状况,也即电梯运行安全状况)、显示在特殊的场所(轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面),从而实现一种意想不到的特殊的安全效果,尤其为选择特殊的显示对象如电梯质量(尤其是其中的运载物品质量)时;有助于电梯内或厅门处乘客以非常直观的、以目见耳闻的方式,直接判断电梯运行状况是否正常;比如以电梯质量中运载物品质量作为测算对象时,有助于电梯乘客通过电子设备上显示的乘客的体重的联合运算值直接判断电梯当前运行是否正常;比如以上行速度和/或下行速度作为测算对象时,有助于电梯乘客可通过观察电子设备上显示的上行速度和/或下行速度的联合运算值与电梯上行速度和/或下行速度的实际值或标定值,直接判断电梯当前运行是否正常;因此本技术方案相比较于现有技术也是一种重要进步。
44、在本电梯的监视方法,还输出所述测算对象的实际值,以与所述联合运算值同时在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上进行显示。本技术方案的实施说明与有益效果:在同一空间的电子设备的显示界面上,同时显示测算对象的联合运算值和实际值,便于司乘人员更直观的比较判断。
45在本电梯的监视方法中,所述电梯运行能量平衡计算满足下述45A1、45A2、45A45、45A4、45A5、45A6中任意一种或多种条件,该些技术条件所起的作用可参照上述3A1-3A6。
45A1.参与所述电梯运行能量平衡计算的参数中包括效率系数;
45A2.当参与所述电梯运行能量平衡计算的参数中包括效率系数时,根据电机运行工况调整所述效率系数的计算方法;
45A45.参与所述电梯运行能量平衡计算的参数中包括导轨和/或电梯井道中物体与轿厢的摩擦力;
45A4.当所述电梯运行能量平衡计算中包括的源动力参数为电气功率时,根据电机运行工况进行所述电气功率的类型设置;
45A5.根据电梯速度变化状况进行所述电梯运行能量平衡计算;
45A6.参与所述电梯运行能量平衡计算的参数中包括机械旋转件的摩擦关联数据。
进一步的,所述监视方法中,所述测算对象为电子设备和/或便携式个人消费电子产品和/或厅门上的人机界面上已输出的一种或多种参数。本技术方案的实施说明与有益效果:同上;
进一步的,所述监视方法中,所述便携式个人消费电子产品包括手机、智能手表、智能手环中任意一种或多种设备。
本技术方案的实施说明与有益效果:手机、智能手表、智能手环具有广泛被司乘人员携带的特点,在其上进行监视,相较于其他产品具有更良好的便携性,可大幅度的降 低监视的硬件成本、运行速度、电气功率中任意一种或多种参数。
进一步的,所述监视方法中,所述测算对象为电梯质量(尤其是其中的运载物品质量)和/或上行速度和/或下行速度和/或导轨和/或电梯井道中物体与轿厢的摩擦力f0和/或效率系数。
本技术方案的实施说明与有益效果:相较于其他测算对象(加速度、效率系数等),电梯质量(尤其是其中的运载物品质量)最为电梯乘客熟知和关注,是实现目视监控中具有特殊意义的参数;在任何时候,将所述运载质量的数值输出(到轿厢内人机界面和/或厅门的人机界面),有助于电梯乘客一眼识别电梯运行是否正常,对于电梯的安全运行有重大意义;例如当体重75kg的乘客进入电梯轿厢时,如果电梯轿厢内人机界面显示运载物品质量为200kg重如小牛,或为20kg轻如小绵羊,乘客可立马识别该电梯的能量传递***(也即驱动电梯运行的核心部件,如电气动力***、钢丝绳牵引***、导轨与轿厢的摩擦状况等)是否正常,该电梯是否安全,并采取相应措施(如立即退出电梯、或呼救等)。例如当前电梯轿厢内为乘客1人体重75kg,如果厅门的人机界面电梯显示运载物品质量为200kg重如小牛,或为20kg轻如小绵羊,厅门处等待电梯的乘客可立马识别该电梯的能量传递***是否正常是否正常,该电梯是否安全,并采取相应措施(如拒绝进入电梯、或向服务机构报告电梯异常等);
其次是上行速度和/或下行速度,司乘人员均可直接感知实际速度;这几种参数均便于提高电梯乘客直观的监控电梯运行状况的效果,更有助于提高安全性能;
导轨和/或电梯井道中物体与轿厢的摩擦力f0,是电梯安全运行的核心信息,是现有公知技术忽略的技术点;便于简便的监控乘员是否被卡入轿厢与电梯井之间、导轨和/或电梯井道中物体与轿厢的摩擦状况等关键信息;电梯服务人员或乘客,查看该信息变可快捷得知哪处导轨变形严重、阻力增大等信息。
46、本发明还提供一种电梯的监视***,包括:
监视处理模块,用于获取测算对象的联合运算值;输出该联合运算值,以在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上进行显示;和/或:将测算对象的联合运算值在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上显示,所述测算对象是电梯的电梯运行参数中任意一种或多种参数,所述联合运算值是以电梯运行能量平衡计算所得。
在其他实施例中,还可能包括参数获取模块,用于获取所述联合运算值以提供给监视处理模块进行输出。在其他实施例中,监视处理模块,还用于输出所述测算对象的实际值,以与所述联合运算值同时在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门上的人机界面上进行显示。
应当理解的是,本监视***与上述监控方法相对应,监视方法中所提供的上述方法可以应用到本监控***中。
综合说明:
本发明所提供的一种电梯在升降运行时的监控方法及***(#1)、一种电梯载荷的监控方法及***(#2)、一种电梯的控制方法及***、一种电梯运行参数超限的监控方法及***(#3)、一种电梯的监视方法及***,五者之间具有部分相同的技术特征,均于本发明所提供的一种电梯运行参数的值的获取方法及***的核心发明思想关联:即获取所述电梯的测算对象的联合运算值的方案,联合运算值的都是基于电梯运行能量平衡计算所得,所述电梯运行能量平衡计算与电梯运行方向关联;
但是五者之间的功能、作用点又各有区别;
本发明所提供的一种电梯升降运行时的监控方法及***(#1),核心思想在于电梯的测算对象的联合运算值与参考数据的比较;该参考数据中第一参考值均要求尽量接近测算对象(如运载物品质量)的实际值;第一参考值可远小于参数的安全极限阀值(如电梯最大法定载重量);如当4人乘坐电梯(假设每人重75kg),正常称重结果应为300kg,一旦电梯轿厢显示为350kg或250kg,可即刻启动安全处理机制;以实现对(包括人员被卡入轿厢与电梯井道之间的原因所导致)电梯能量传递异常进行监控和早期预警,便于在电梯的安全极限阀值超限保护触发之前、发生更严重的、不可预测的安全事故(包括人员被卡死、钢丝绳断裂、传动齿轮爆裂、电机驱动器炸机、电梯失控等)之前进行监控和保护;虽然电梯具有安全钳极限限速、蹲底保护、电气过流、过压保护等多种参数的安全极限阀值超限保护,但电梯一旦触发各种极限保护时,电梯将进入未知的、不可控状态;各参数的极限阀值超限功能的效果在电梯正常运行时是难以测试的,且作为安全保护灵敏度严重偏低,基本上为事后极限动作;假设安全钳极限限速能正常卡死导轨,其高速下骤然急刹车,也将严重惊吓电梯乘客、容易导致孕妇、老年乘客、孩童伤亡;即使是壮年乘客,如果发生被卡入轿厢与井壁之间的异常事故,在安全钳进行极限限速前早已可能严重伤亡。
本监控方法和***(#1),通常可在电梯升降运行时实时工作;
本发明提供的一种电梯载荷的监控方法及***(#2),核心思想在于电梯的运载物品质量的联合运算值与安全极限阀值的比较于设别,例如当运载物品质量大于1.0倍电梯最大法定载重量(假设为14人/1050kg)即启动语音报警,提醒司乘人员减少运载人员/物品质量;即使实际为4人乘坐电梯/正常称重结果应为300kg,但当称重***称量为1000kg时,传统的电梯控制***仍将认为电梯的能量传递***工作正常。
本电梯载荷的监控方法和***(#2),既可在某个特定时刻(如电梯零速运行时)间歇性工作,也可在电梯升降运行时连续/实时监控工作。
据此分析,本发明提供的前者(一种电梯升降运行时的监控方法及***(#1)),在电梯升降运行时的安全监控效果上要远高于后者(一种电梯载荷的监控方法及***(#2)),当然,后者可在电梯非零速运行前实现称重、超载监控;对于前者可起到一种必要的补充作用,仍旧具有重要意义。
本发明提供的一种电梯运行效率的控制方法及***,核心思想在于设定电梯的机械运行参数的许可值(如允许的最高速度、最高加速度),或者在电梯的机械运行参数已超出许可值时超限控制(如超速、超加速度)进行控制和保护,如限速、限加速度、报警、停机等;该控制方法及***,核心目的在于电梯高效、节能控制。
本控制方法和***,当用于目标速度和/或目标加速度的规划时,可在获取运载质量之后和高速运行前的某个时刻间歇性工作;当用于速度阀值和/或加速度阀值超限控制时,也可在电梯升降运行时连续/实时工作;
本发明提供的一种电梯运行参数超限的监控方法及***(#3),核心思想在于根据(将要执行、而尚未发生的)速度和/或加速度的指令预设值计算源动力参数的联合运算值,预测和判断(如电气功率或钢丝绳拉力)是否会超限,在某种意义上具有防范未来风险的作用;该控制方法及***,核心目的在于电梯运行安全控制。
本监控方法和***(#3),可在电梯运行前工作,根据速度和/或加速度的指令预设值预测源动力参数会否超限;也可以在电梯运行过程中连续/实时工作,以对每个待执行的速度和/或加速度的指令预设值进行源动力参数超限预测。
电梯的理想控制方式可为:根据电梯能量流向工况中电机运行工况(电动/或电机制动状态)选择电动状态下电气功率/或发电回馈功率/或能耗制动功率的安全极限阀值,再根据运载物品质量、符合电机运行工况的电气功率的安全极限阀值设定电梯的运行速度(参考上述28A-1方案进行),以安全和高速为设置核心;运行加速度的设置则可参照上述28A-2方案进行,以严格保障安全为核心(确保加速度不导致机械应力超限、不导致断绳、传动轴/齿轮损伤);
根据运载物品质量、符合电机运行工况的功率的安全极限阀值设定电梯的运行速度,可大幅度提高电梯运行效率,在满足相同的乘员需求情况下,可减少电梯的安装数量、从而节省出闲置电梯的安装成本、制造成本、维护成本、电能消耗,具有重大的节能、环保意义。
电梯的加加速度J,也即加减速S曲线的S度的设置参数,与人体的舒适感有关;当加加速度J过大时,将导致人体承受的加减速应力过大而产生不适感甚至不安全;所 以加加速度J可根据国家或相关行业规定而设置;当电梯的速度、加速度、加加速度J均已设置时,电梯可以理想的S曲线运行,实现高效、安全、舒适的运行;
根据已设定的S曲线,***还可进而设定理想的减速距离;S曲线减速运行可分为三段(初变减速阶段S5、匀减速阶段S6、末变减速阶段S7)运行;匀减速阶段S6的加加速度值为0,加速度即已设定的安全极限阀值;S5与S7的时间可通过加速度许可值除以加加速度的许可值的绝对值得知;因为S5、S6、S7各段的速度值和时间均可求,所以减速距离可准确得知。
且本发明所提供的所有技术方案,尽可能不使用传感器称重,优选为用电气动力***的电气动力参数尤其是电磁转矩或转矩电流进行称重、超载监控、速度和/或加速度的规划,可以提高控制精度,降低成本。
因为当前电梯均具有成熟的电机驱动器(如变频器或一体化电梯控制器)、中央控制器、网络传输***、成熟的轿厢内人机交互界面(显示或语音方式);
本发明提供的一种电梯运行参数的值的获取方法、一种电梯在升降运行时的监控方法、一种电梯载荷的监控方法、一种电梯的控制方法、一种电梯运行参数超限的监控方法、一种电梯的监视方法,既可以在独立的设备中运行,也可以集成入现有的中央控制器、或电机驱动器、或轿厢内人机交互界面中运行。
本发明提供的一种电梯运行参数的测算***、一种电梯在升降运行时的监控***、一种电梯载荷的监控***、一种电梯运行效率的控制方法、一种电梯运行参数超限的监控***、一种电梯的监视***,既可以作为独立的设备存在,也可以集成入现有的中央控制器、或电机驱动器、或轿厢内人机交互界面中。
本发明所提供技术方案,基本上可以在硬件新增成本为零时实现,可以大幅度的提高电梯的安全运行系数,利于保障电梯乘员的生命财产安全;或者可以大幅度提高电梯运行效率,节省成本与电能消耗,具有重大的节能、环保意义。
数据的研究本身就是重要的科学课题;未来的世界、网络的世界就是数据的世界;所谓大数据的实质之一,就说明研究各种关键类型数据的重要性;
电梯运行能量平衡计算,本身就可以视为一种独特的数据;
现有技术中,对于“电梯运行能量平衡计算”对于电梯运行安全的影响缺乏研究;现有技术,对可参与电梯运行能量平衡计算中的数据,尤其是***固有参数类的数据对于电梯运行安全的影响研究不足;现有技术,即使是电梯质量,对其在不同运行流程中幅值是否固定的数据特性对于电梯运行安全的影响研究不足;综合起来,所以现有技术,无法构建一个完整的、自动的能量传递监控***;
本发明对“电梯运行能量平衡计算”与“电梯运行安全”的关系进行深入研究,并 基于以“电梯运行能量平衡计算”所获取的数据作为关键技术手段构建多种监控***或处理***,从而实现对电梯运行安全技术的一种重大突破;这也是本发明思路一个重要创造点;
本发明对“电梯运行能量平衡计算”与“电梯运行安全”进行深入研究,提出了以某个参数作为测算对象,通过获取其“电梯运行能量平衡计算”所得数据(联合运算值),与不同途径或不同时间所设定的参考数据对比,进而判断电梯的动力传递状况是否异常,以此作为关键技术手段构建监控***,从而实现对电梯运行安全技术的一种重大突破;这也是本发明思路一个重要创造点;
本发明对电梯运行能量平衡计算中的数据(尤其是***固有参数)对电梯运行安全的影响,对其中的科学规律进行深入研究;提出了以***固有参数(如其中的导轨和/或电梯井道中物体与轿厢的摩擦力f0等)作为测算对象作为关键技术手段构建监控***,从而实现对电梯运行安全技术的一种重大突破;这也是本发明思路一个重要创造点;
甚至在同样以电梯质量作为测算对象时,而针对其在不同运行流程中幅值是否固定的数据特性进行深入研究;根据该数据特性的不同,制定不同的基准值设置的技术方案;进而构建一个完整的、自动的动力传递异常的监控***,从而实现对电梯运行安全监控技术的一种重大突破;这也是本发明思路一个重要创造点;
同为以电梯运行能量平衡计算为原理计算中的源动力参数,而针对电气动力参数、非电气动力参数(在获取途径、获取成本、参数灵敏度、精度等方面)的数据特性进行深入研究;优先以电气动力参数作为电梯运行能量平衡计算中的源动力参数,从而带来在成本、灵敏度、精度等性能的重大优势,也即对电梯运行安全监控***(性价比、灵敏度、精度)的一种重大突破;这也是本发明思路一个重要创造点;
本发明根据多种不同特性的数据对于电梯运行安全的影响,制定多种科学的基准值的设置方案(如实测方式、自学习方式、标定方式),进而构建一个完整的、自动的能量传递异常的监控***,从而实现对电梯运行安全监控技术的一种重大突破;这也是本发明思路一个重要创造点;
本发明针对以电梯运行能量平衡计算为原理计算所得数据(也即联合运算值),在不同的场合显示场合对于电梯运行安全的影响进行深入研究;将以电梯运行能量平衡计算为原理计算所得数据显示在便于车内司乘人员目视监控的器件或区域内,将显著提高电梯运行安全监控性能;这也是本发明思路一个重要创造点;
本发明针对以电梯运行能量平衡计算为原理计算所得数据(也即联合运算值),可以作为一种历史记录原值,可以用一个或两个数据即可清晰体现电梯安全状况,避免用无目的、无针对性、纷繁杂乱的大数据去衡量电梯安全状况所带来的成本升高、性能缺 失;这也是本发明思路一个重要创造点;
本发明针对多种数据(如滚阻系数、动力装置运行工况、运行环境信息、甚至在电梯运行中以电梯质量作为显示对象所带来的独特点)的数据特性,对电梯运行安全监控性能的影响进行深入研究,从而提出各种优化方案;这也是本发明思路一个重要创造点。
本发明中所述电梯,也可指一种升降机,尤其为一种电力驱动的升降机,尤其适用于具有对重的升降机;本发明中所有技术方案、方法和***,均可用于升降机领域;本发明中,可将“电梯”和“升降机”直接替换,例如“电梯运行参数”可替换为“升降机运行参数”,例如“电梯质量”可替换为“升降机质量”,例如“电梯运行能量平衡”可替换为“升降机运行能量平衡”,例如“轿厢”可替换为“物品装载机构”等。
本申请文件中任意一处的名词解释、文字说明、计算公式、参数获取方法、实施方式、实施例及各替换实施例、各延伸实施例等内容均可应用于前、后的任意一个技术方案中;且各部分内容可任意组合、替换;例如本申请文件的监视方法、超载监控方法中的联合运算值的计算方法、获取方法等,可任意调用前述的动力传递状况监控方法、参数测算方法、获取方法中的内容。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干推演或替换,都应当视为属于本发明的保护范围。

Claims (48)

  1. 一种电梯运行参数的值的获取方法,其特征在于,在电梯上行或者下行时,获取所述电梯的输入参数的值,根据所述输入参数的值计算出所述电梯的测算对象的联合运算值;所述计算为电梯运行能量平衡计算,所述输入参数是计算所述电梯的测算对象的联合运算值所需求的参数,所述测算对象为电梯质量、源动力参数、***运行参数中任意一种参数,所述电梯运行能量平衡计算为根据至少包括电梯质量、源动力参数、***运行参数中的任意两种参数的数据去计算另一种参数。
  2. 如权利要求1所述的获取方法,其特征在于,所述电梯运行能量平衡计算与电梯运行方向关联。
  3. 如权利要求1所述的获取方法,其特征在于,所述电梯运行能量平衡计算满足下述3A1、3A2、3A3、3A4、3A5、3A6中任意一种或多种条件:
    3A1.参与所述电梯运行能量平衡计算的参数中包括效率系数;
    3A2.当参与所述电梯运行能量平衡计算的参数中包括效率系数时,根据电机运行工况调整所述效率系数;
    3A3.参与所述电梯运行能量平衡计算的参数中包括导轨和/或电梯井道中物体与轿厢的摩擦力;
    3A4.当所述电梯运行能量平衡计算中包括的源动力参数为电气功率时,根据电机运行工况进行所述电气功率的设置;
    3A5.根据电梯速度变化状况进行所述电梯运行能量平衡计算;
    3A6.参与所述电梯运行能量平衡计算的参数中包括机械旋转件的摩擦关联数据。
  4. 一种电梯运行参数的获取***,其特征在于,包括:
    获取模块,用于在电梯上行或者下行时,获取所述电梯的输入参数的值,根据所述输入参数的值计算出所述电梯的测算对象的联合运算值;所述计算为电梯运行能量平衡计算,所述输入参数是计算所述电梯的测算对象的联合运算值所需求的参数,所述测算对象为电梯质量、源动力参数、***运行参数中任意一种参数,所述电梯运行能量平衡计算为根据至少包括电梯质量、源动力参数、***运行参数中的任意两种参数的数据去计算另一种参数。
  5. 一种电梯在升降运行时的监控方法,其特征在于,所述监控方法包括步骤
    获取所述电梯的测算对象的联合运算值,根据所述联合运算值识别所述电梯的能量传递状况;其中,所述测算对象为电梯运行参数中的任意一种或者多种,所述联合运算值是基于电梯运行能量平衡计算所得。
  6. 如权利要求5所述的一种电梯在升降运行时的监控方法,其特征在于,所述根据所述联合运算值识别所述电梯的能量传递状况具体为:根据所述联合运算值和所述测 算对象的参考数据判断所述电梯的能量传递状况是否异常。
  7. 如权利要求5所述的一种电梯在升降运行时的监控方法,其特征在于,还包括下述7B1、7B2中任意一种或多种方案处理;
    7B1.如所述判断的结果中存在是,则启动设定的能量传递异常处理机制;
    7B2.输出和/或保存所述判断结果。
  8. 如权利要求6所述的一种电梯在升降运行时的监控方法,其特征在于,所述监控方法满足下述8A11、8A12中任意一种或多种条件:
    8A11.所述电梯运行能量平衡计算与电梯运行方向关联;
    8A12.当所述电梯以零速运行时,所述联合运算值和所述参考数据均是基于电梯运行能量平衡计算所得。
  9. 如权利要求5所述的一种电梯在升降运行时的监控方法,其特征在于,所述电梯运行能量平衡计算还满足下述9A1、9A2、9A3、9A4、9A5、9A6中任意一种或多种条件:
    9A1.参与所述电梯运行能量平衡计算的参数中包括效率系数;
    9A2.当参与所述电梯运行能量平衡计算的参数中包括效率系数时,根据电机运行工况调整所述效率系数;
    9A3.参与所述电梯运行能量平衡计算的参数中包括导轨和/或电梯井道中物体与轿厢的摩擦力;
    9A4.当所述电梯运行能量平衡计算中包括的源动力参数为电气功率时,根据电机运行工况进行所述电气功率的设置;
    9A5.根据电梯速度变化状况进行所述电梯运行能量平衡计算;
    9A6.当所述电梯运行能量平衡计算中包括的源动力参数为电气动力参数或机械旋转件的动力参数时,参与所述电梯运行能量平衡计算的参数中包括机械旋转件的摩擦关联数据。
  10. 如权利要求5所述的一种电梯在升降运行时的监控方法,其特征在于,所述获取所述电梯的测算对象的联合运算值包括下述步骤:获取所述电梯的输入参数的值,所述输入参数为计算所述联合运算值所需求的参数;根据所获取的输入参数的值计算出所述联合运算值。
  11. 如权利要求6所述的一种电梯在升降运行时的监控方法,其特征在于,所述根据所述联合运算值和所述测算对象的参考数据判断所述电梯的能量传递状况是否异常,包括下述11A1方案:
    11A1 当所述参考数据由所述测算对象的基准值和所述测算对象的许可偏差值构成 时,判断所述联合运算值和所述基准值的差值是否超出所述许可偏差值。
  12. 如权利要求6所述的一种电梯在升降运行时的监控方法,其特征在于,所述参考数据的设定包括下述12A1、12A2、12A3、12A4中任一方案:
    12A1.当所述测算对象为运载质量、***固有参数中任意一种参数时,所述测算对象的基准值和/或第一参考值为根据满足设定条件时所进行的电梯运行能量平衡计算而获取的联合运算值所设定;
    12A2.所述测算对象的许可偏差值、以***固有参数为测算对象的基准值、以***固有参数为测算对象的第一参考值中任意一种或多种参数为根据所述测算对象的历史记录值、出厂默认值、人工输入值中任意一种或多种数据所设定;所述历史记录值是基于电梯运行能量平衡计算所得;
    12A3.所述测算对象的许可偏差值、以***固有参数为测算对象的基准值、以***固有参数为测算对象的第一参考值中任意一种或多种参数为根据模糊算法所设定;
    12A4.当所述测算对象为源动力参数、机械运行参数中任一参数时,所述基准值为根据所述测算对象的实测值、指令响应值、推算值中任意一种或多种数据所设定,且所述数据基准值的取值时间与所述联合运算值的取值时间在预设的时间范围内。
  13. 如权利要求6所述的一种电梯在升降运行时的监控方法,其特征在于,所述监控方法还满足下述13A1、13A2、13A3中任意一种或多种条件:
    13A1.所述测算对象为运载质量、***固有参数中任意一种参数;
    13A2.当所述测算对象为运载质量、***固有参数中任意一种参数时,所述联合运算值和所述参考数据均是基于电梯运行能量平衡计算所得;
    13A3.所述能量传递异常处理机制包括启动能量传递故障监控机制。
  14. 如权利要求6任一所述的一种电梯在升降运行时的监控方法,其特征在于,所述监控方法还包括下述14A1、14A2中任意一种或多种方案:
    14A1.根据所述获取的联合运算值和所述参考数据和所述运行环境信息判断是否发生能量传递异常中的能量传递故障情况;
    14A2.输出和/或保存所述运载质量的值。
  15. 如权利要求6所述的一种电梯在升降运行时的监控方法,其特征在于,当所述测算对象为运载质量中任一种参数时,所述参考数据为根据满足设定条件时所进行的电梯运行能量平衡计算而获取的联合运算值;
    当所述测算对象为电梯运行参数中除运载质量外的任意一种参数时,所述电梯运行能量平衡计算的输入参数包含运载质量,运载质量中作为所述输入参数的参数为根据满足设定条件时所进行的电梯运行能量平衡计算而获取的联合运算值。
  16. 如权利要求6或者15所述的一种电梯在升降运行时的监控方法,其特征在于,当所述测算对象为运载质量中任一种参数时,所述参考数据为第一参考值或者由许可偏差值与基准值组成,所述第一参考值与所述能量状态识别基准值均是根据满足设定条件时所进行的电梯运行能量平衡计算而获取的联合运算值所设定;
    当所述测算对象为电梯运行参数中除运载质量外的任意一种参数时,所述电梯运行能量平衡计算的输入参数包含运载质量包含运载质量中的至少一种参数,且运载质量中作为所述输入参数的参数均是根据满足设定条件时所进行的电梯运行能量平衡计算而获取的联合运算值所得。
  17. 如权利要求5所述的一种电梯在升降运行时的监控方法,其特征在于,所述电梯运行参数由源动力参数、***运行参数、电梯质量构成。
  18. 一种电梯在升降运行时的监控***,其特征在于,包括:
    能量传递状况判断模块,用于:获取所述电梯的测算对象的联合运算值,根据所述联合运算值识别所述电梯的能量传递状况;其中,所述测算对象为电梯运行参数中的任意一种或者多种,所述联合运算值是基于电梯运行能量平衡计算所得。
  19. 如权利要求18所述的一种电梯在升降运行时的监控***,其特征在于:所述根据所述联合运算值识别所述电梯的能量传递状况具体为:根据所述联合运算值和所述测算对象的参考数据判断所述电梯的能量传递状况是否异常。
  20. 如权利要求18所述的一种电梯在升降运行时的监控***,其特征在于,还包括能量传递异常处理模块(3)、输出模块(4)、保存模块(5)中的任意一种或多种模块;
    所述能量传递异常处理模块(3)用于:如所述判断的结果中存在是,则启动设定的能量传递异常处理机制;
    所述输出模块(4)用于输出所述判断的结果;
    所述保存模块(5)用于保存所述判断的结果。
  21. 如权利要求19所述的一种电梯在升降运行时的监控***,其特征在于:所述监控***满足下述21A11、21A12中任意一种或多种条件:
    21A11.所述电梯运行能量平衡计算与电梯运行方向关联;
    21A21.当所述电梯以零速运行时,所述联合运算值和所述参考数据均根据电梯运行能量平衡计算所得。
  22. 如权利要求19所述的一种电梯在升降运行时的监控***,其特征在于:所述监控***还满足下述22A1至22A3中任意一种或多种条件:
    22A1.所述监控***还具有联合运算值获取模块(1),用于获取所述电梯的输入参 数的值并根据所述获取的输入参数的值计算出所述联合运算值;所述输入参数为计算所述联合运算值所需求的参数;
    22A2.所述测算对象为运载质量、***固有参数中任意一种参数;
    22A3.当所述测算对象为运载质量、***固有参数中任意一种参数时,所述联合运算值和所述参考数据均为根据电梯运行能量平衡计算所得。
  23. 一种电梯载荷的监控方法,当电梯的抱闸***松开抱闸,所述电梯以零速或非零速运行时;其特征在于,所述监控方法包括下述步骤:
    23A.获取所述电梯的运载物品质量的联合运算值;所述联合运算值是基于电梯运行能量平衡计算所得,且所述电梯运行能量平衡计算中所需求的源动力参数为电气动力参数或机械旋转件的动力参数;
    23B.进行下述23B1、23B2中任意一种或多种方案处理:
    23B1.判断所述联合运算值是否大于所述电梯的额定载重量,并进行下述23B11、23B12中任意一种或多种方案处理;
    23B11.如所述判断的结果包括存在是,则启动设定的超载处理机制;
    23B12.输出和/或保存所述判断的信息;
    23B2.将所述联合运算值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面。
  24. 如权利要求23所述的一种电梯载荷的监控方法,其特征在于,所述监控方法满足下述24A1、24A2、24A3、24A4中任意一个或多个条件:
    24A1.当所述电梯以零速运行时,包括下述24A11、24A12中任意一种或两种方案:
    24A11.检测所述电梯轿厢的垂直位移,当所述垂直位移大于预设位移阀值时抱闸***进行抱闸;
    24A12.所述抱闸***松开抱闸为柔性的松开抱闸;
    24A2.当所述监控方法中未包括所述14B2方案时,将所述联合运算值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面;
    24A3.所述获取所述电梯的运载物品质量的联合运算值包括下述步骤:获取所述电梯的输入参数的值;所述输入参数为计算所述联合运算值所需求的参数;根据所述获取的输入参数的值计算出所述联合运算值;
    24A4.当所述电梯以非零速运行时,所述电梯运行能量平衡计算与电梯运行方向关联。
  25. 如权利要求23、24所述的一种电梯载荷的监控方法,其特征在于,所述电梯运行能量平衡计算满足下述25A1、25A2、25A3、25A4、25A5中任意一个或多个条件:
    25A1.参与所述电梯运行能量平衡计算的参数中包括效率系数;
    25A2.当参与所述电梯运行能量平衡计算的参数中包括效率系数时,根据电机运行工况调整所述效率系数;
    25A3.当所述电梯运行能量平衡计算中包括的源动力参数为电气功率时,根据电机运行工况进行所述电气功率的设置;
    25A4.根据电梯速度变化状况进行所述电梯运行能量平衡计算;
    25A5.当所述电梯运行能量平衡计算中包括的源动力参数为电气动力参数或机械旋转件的动力参数时,参与所述电梯运行能量平衡计算的参数中包括机械旋转件的摩擦关联数据。
  26. 一种电梯载荷的监控***,其特征在于,所述控制***包括联合运算值获取模块(1);所述监控***还包括超载处理模块(2)、输出模块(3)中的任意一种或多种模块;
    所述联合运算值获取模块(1)用于:获取所述电梯的运载物品质量的联合运算值;所述联合运算值是基于电梯运行能量平衡计算所得,且所述电梯运行能量平衡计算中所需求的源动力参数为电气动力参数或机械旋转件的动力参数;
    所述超载处理模块(2)用于:判断所述联合运算值是否大于所述电梯的额定载重量,并进行下述26B11、26B12中任意一种或多种方案处理;
    26B11.如所述判断结果中存在是,则启动设定的超载处理机制;
    26B12.输出和/或保存所述判断的信息;
    所述输出模块(3)用于:将所述联合运算值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面。
  27. 如权利要求26所述的一种电梯载荷的监控***,其特征在于,所述监控***还包括下述27A1、27A2、27A3中任意一种或多种功能:
    27A1.当所述电梯以零速运行时,具有下述27A11、27A12中任意一种或两种功能:
    27A11.检测所述电梯轿厢的垂直位移,当所述垂直位移大于预设位移阀值时抱闸***进行抱闸;
    27A12.所述抱闸***松开抱闸为柔性的松开抱闸;;
    27A2.当所述监控***中未包括所述输出模块(3)时,将所述联合运算值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面;
    27A3.所述联合运算值获取模块(1)中所述获取所述电梯的运载物品质量的联合运算值的功能包括下述功能:获取所述电梯的输入参数的值,所述输入参数为计算所述联合运算值所需求的参数;根据所述获取的输入参数的值计算出所述联合运算值。
  28. 一种电梯的控制方法,其特征在于,包括下述步骤:
    该电梯的机械运行参数预设有至少两个不同的档次,基于至少包括该电梯的运载物品质量在内的参数选择该机械运行参数的档次;或;基于至少包括该电梯的运载物品质量在内的参数计算该机械运行参数的联合运算值,当运载物品质量在零到额定载重量间变化时该机械运行参数具有至少两个大小不同的联合运算值;以根据该该机械运行参数的联合运算值或档次控制电梯运行;所述机械运行参数包括上行速度、下行速度、加速上行时的加速度、减速下行时的加速度中任意一个或多个参数。
  29. 如权利要求28所述的一种电梯的控制方法,其特征在于,该联合运算值为指令预设值。
  30. 如权利要求29所述的一种电梯的控制方法,其特征在于,轻载时或重载时电梯的上行速度的指令预设值,小于载荷平衡时时上行速度的指令预设值;和/或:轻载时或重载时下行速度的指令预设值,小于载荷平衡时下行速度的指令预设值。
  31. 如权利要求29所述的一种电梯的控制方法,其特征在于,所述基于至少包括该电梯的运载物品质量在内的参数计算,具体为:基于至少包括所述电梯的运载物品质量和所述电梯的源动力参数在内的参数计算。
  32. 如权利要求29所述的一种电梯的控制方法,其特征在于,所述计算是电梯运行能量平衡计算;所述电梯运行能量平衡计算与电梯运行方向关联。
  33. 如权利要求29所述的一种电梯的控制方法,其特征在于,所述电梯运行能量平衡计算满足下述33A1、33A2、33A3、33A4、33A5中任意一种或多种条件:
    33A1.根据电梯速度变化状况进行所述电梯运行能量平衡计算。
    33A2.参与所述电梯运行能量平衡计算的参数中包括效率系数;
    33A3.当参与所述电梯运行能量平衡计算的参数中包括效率系数时,根据电机运行工况调整所述效率系数;
    33A4.当所述电梯运行能量平衡计算中包括的源动力参数为电气功率时,根据电机运行工况进行所述电气功率的设置;
    33A5.当所述电梯运行能量平衡计算中包括的源动力参数为电气动力参数或机械旋转件的动力参数时,参与所述电梯运行能量平衡计算的参数中包括机械旋转件的摩擦关联数据。
  34. 如权利要求29至32任一所述的一种电梯的控制方法,其特征在于,所述控制方法还满足下述34A1、34A2、34A3中任意一种或多种条件:
    34A1.所述运载物品质量的值为根据电气动力参数计算所得;
    34A2.所述运载物品质量的值为基于电梯运行能量平衡计算所得;
    34A3.所述运载物品质量的值为当前的实际值,所述源动力参数的值为安全极限阀值。
  35. 如权利要求29至32任一所述的一种电梯的控制方法,其特征在于,所述控制方法还包括下述35A1、35A2、35A3中任意一种或多种方案:
    35A1.识别轿厢内有无人员状况,当轿厢内无人时比轿厢内有人时设置更高的运行效率;
    35A2.将所述运载物品质量的值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面;
    35A3.所述所述控制方法还包括预先进行的下述步骤:获取所述电梯的输入参数的值,所述输入参数为计算所述联合运算值所需求的参数;根据所述获取的输入参数的值计算出所述联合运算值。
  36. 一种电梯的控制***,其特征在于,包括控制模块(1),
    该控制模块(1),用于实现:该电梯的机械运行参数预设有至少两个不同的档次,基于至少包括该电梯的运载物品质量在内的参数选择该机械运行参数的档次;或;基于至少包括该电梯的运载物品质量在内的参数计算该机械运行参数的联合运算值,当运载物品质量在零到额定载重量间变化时该机械运行参数具有至少两个大小不同的联合运算值;以根据该该机械运行参数的联合运算值或档次控制电梯运行;所述机械运行参数包括上行速度、下行速度、加速上行时的加速度、减速下行时的加速度中任意一个或多个参数。
  37. 如权利要求36所述的一种电梯的控制***,其特征在于,所述基于至少包括该电梯的运载物品质量在内的参数计算,具体为:基于至少包括所述电梯的运载物品质量和所述电梯的源动力参数在内的参数计算。
  38. 如权利要求37所述的一种电梯的控制***,其特征在于,具有下述38A1、38A2、38A3、38A4、38A5、38A6、38A7、38A8、38A9方案中任意一种或多种功能:
    38A1.识别轿厢内有无人员状况,当轿厢内无人时比轿厢内有人时设置更高的运行效率;
    38A2.所述运载物品质量的值为根据电气动力参数计算所得;
    38A3.所述运载物品质量的值为基于电梯运行能量平衡计算所得;
    38A4.将所述运载物品质量的值输出到轿厢的人机界面和/或厅门的人机界面和/或控制中心的人机界面;
    38A5.所述控制所述电梯运行,包括根据所述联合运算值设置所述机械运行参数的指令预设值或运行上限阀值;
    38A6.所述运载物品质量的值为当前的实际值,所述源动力参数的值为安全极限阀值
    38A7.所述联合运算值是根据所述运载物品质量和所述电梯的源动力参数计算所得;
    38A8.所述计算是电梯运行能量平衡计算;所述电梯运行能量平衡计算与电梯运行方向关联;
    38A9.所述控制***还包括联合运算值获取模块(1),用于实现下述功能:获取所述电梯的输入参数的值,所述输入参数为计算所述联合运算值所需求的参数;根据所述获取的输入参数的值计算出所述联合运算值。
  39. 一种电梯运行参数超限的监控方法,其特征在于,包括步骤:
    获取所述电梯的源动力参数的联合运算值,判断所述联合运算值是否超出所述源动力参数的***预设值或安全极限阀值;所述联合运算值是基于电梯运行能量平衡计算所得。
  40. 如权利要求39所述的一种电梯运行参数超限的监控方法,其特征在于,所述电梯运行能量平衡计算中需求的***运行参数包括速度和/或加速度,且所述速度和/或加速度的值是根据指令预设值或实测值设定;所述电梯运行能量平衡计算与电梯运行方向关联。
  41. 如权利要求39所述的一种电梯运行参数超限的监控方法,其特征在于,还包括下述41A1、41A2中任意一种或多种方案处理;
    41A1.如所述判断的结果中存在是,则启动设定的源动力参数超限处理机制;
    41A2.输出和/或保存所述判断的信息。
  42. 如权利要求40所述的一种电梯运行参数超限的监控方法,其特征在于,所述监控方法满足下述42A1、42A2、42A3、42A4、42A5、42A6、42A7、42A8中任意一种或多种条件:
    42A1.参与所述电梯运行能量平衡计算的参数中包括效率系数;
    42A2.当参与所述电梯运行能量平衡计算的参数中包括效率系数时,根据电机运行工况调整所述效率系数;
    42A3.当所述源动力参数为电气功率时,根据电机运行工况进行所述电气功率的设置;
    42A4.当所述源动力参数为电气动力参数或机械旋转件的动力参数时,参与所述电梯运行能量平衡计算的参数中包括机械旋转件的摩擦关联数据;
    42A5.根据电梯速度变化状况进行所述电梯运行能量平衡计算;
    42A6.当所述电梯运行能量平衡计算中需求运载质量的值时,所述运载质量的值为 根据电气动力参数计算所得;
    42A7.计算所述源动力参数的联合运算值所需求的运载质量的值,为基于在先的电梯运行能量平衡计算所得;
    42A8.所述监控方法中获取所述电梯的源动力参数的联合运算值包括下述步骤:获取所述电梯的输入参数的值,所述输入参数为计算所述联合运算值所需求的参数;根据所述获取的输入参数的值计算出所述联合运算值。
  43. 一种电梯运行参数超限的监控***,其特征在于,包括:
    联合运算值检测模块(1),用于获取所述电梯的源动力参数的联合运算值
    源动力参数超限监控模块(2),用于:判断所述联合运算值是否超出所述源动力参数的***预设值或安全极限阀值;所述联合运算值是基于电梯运行能量平衡计算所得。
  44. 一种电梯的监视方法,其特征在于,包含下述步骤:
    获取所述电梯的测算对象的联合运算值;输出该联合运算值,以在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上进行显示;和/或:将测算对象的联合运算值在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上显示;所述测算对象是电梯的电梯运行参数中任意一种或多种参数,所述联合运算值是以电梯运行能量平衡计算所得。
  45. 如权利要求43所述的一种电梯的监视方法,其特征在于,
    还输出所述测算对象的实际值,以与所述联合运算值同时在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门上的人机界面上进行显示。
  46. 如权利要求43所述的监视方法,其特征在于,所述电梯运行能量平衡计算满足下述45A1、45A2、45A3、45A4、45A5、45A6中任意一种或多种条件:
    45A1.参与所述电梯运行能量平衡计算的参数中包括效率系数;
    45A2.当参与所述电梯运行能量平衡计算的参数中包括效率系数时,根据电机运行工况调整所述效率系数;
    45A3.参与所述电梯运行能量平衡计算的参数中包括导轨和/或电梯井道中物体与轿厢的摩擦力;
    45A4.当所述电梯运行能量平衡计算中包括的源动力参数为电气功率时,根据电机运行工况进行所述电气功率的设置;
    45A5.根据电梯速度变化状况进行所述电梯运行能量平衡计算;
    45A6.参与所述电梯运行能量平衡计算的参数中包括机械旋转件的摩擦关联数据。
  47. 如权利要求43所述的监视方法,其特征在于,所述获取所述电梯的测算对象的联合运算值包括下述步骤:获取所述电梯的输入参数的值,所述输入参数为计算所述 联合运算值所需求的参数;根据所述获取的输入参数的值计算出所述联合运算值。
  48. 一种电梯的监视***,其特征在于,包括:
    监视处理模块,用于获取测算对象的联合运算值;输出该联合运算值,以在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上进行显示;和/或:将测算对象的联合运算值在轿厢内的电子设备和/或便携式个人消费电子产品和/或电梯的厅门的人机界面上显示,所述测算对象是电梯的电梯运行参数中任意一种或多种参数,所述联合运算值是以电梯运行能量平衡计算所得。
PCT/CN2015/097059 2014-12-11 2015-12-10 电梯参数的获取、控制、运行和载荷监控的方法及*** WO2016091198A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410765248 2014-12-11
CN201410765248.7 2014-12-11

Publications (1)

Publication Number Publication Date
WO2016091198A1 true WO2016091198A1 (zh) 2016-06-16

Family

ID=55981069

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2015/097062 WO2016091199A1 (zh) 2014-12-11 2015-12-10 电梯参数的获取、控制、运行和载荷监控的方法及***
PCT/CN2015/097059 WO2016091198A1 (zh) 2014-12-11 2015-12-10 电梯参数的获取、控制、运行和载荷监控的方法及***

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097062 WO2016091199A1 (zh) 2014-12-11 2015-12-10 电梯参数的获取、控制、运行和载荷监控的方法及***

Country Status (2)

Country Link
CN (1) CN105600627A (zh)
WO (2) WO2016091199A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108584618A (zh) * 2018-06-12 2018-09-28 深圳市特种设备安全检验研究院 复合钢带当量摩擦系数的测试装置及测试方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017097261A1 (zh) * 2015-12-10 2017-06-15 冯春魁 电梯参数的获取、控制、运行和载荷监控的方法及***
JP6801520B2 (ja) * 2017-03-06 2020-12-16 株式会社デンソー モータ制御装置
CN106927327B (zh) * 2017-03-27 2020-06-16 无锡英威腾电梯控制技术有限公司 一种电梯安全检测方法及装置
CN106956984A (zh) * 2017-04-07 2017-07-18 浙江梅轮电梯股份有限公司 一种用于电梯安全逃生控制***及其控制方法
CN106946132A (zh) * 2017-05-04 2017-07-14 上海贝思特门机有限公司 自动识别门质量的电梯门机控制装置
EP3434634B2 (en) 2017-07-25 2024-07-03 Otis Elevator Company Elevator safety device
CN107947645B (zh) * 2017-11-29 2021-03-05 苏州汇川技术有限公司 高压变频器快速制动***及控制方法
CN108345731A (zh) * 2018-01-30 2018-07-31 中国矿业大学 一种不完备信息条件下深井提升机关键部件耦合失效相关性建模方法
EP3608274A1 (en) * 2018-08-10 2020-02-12 Otis Elevator Company Enhancing the transport capacity of an elevator system
CN109626164A (zh) * 2018-12-24 2019-04-16 浙江工商大学 一种基于物联网的电梯运行安全监测***
CN110329857A (zh) * 2019-07-12 2019-10-15 东南大学 一种基于uwb检测的智能电梯控制***
CN110940402A (zh) * 2019-12-10 2020-03-31 厦门恩格节能科技有限公司 一种垃圾吊垃圾称重方法、终端设备及存储介质
CN110921446B (zh) * 2019-12-10 2022-04-12 佳格科技(浙江)股份有限公司 设备属性获取***
CN110902514B (zh) * 2019-12-19 2022-05-17 无锡英威腾电梯控制技术有限公司 一种电梯运行控制方法及相关设备
CN111776898B (zh) * 2020-06-29 2022-08-09 浙江富士美电梯有限公司 一种载重量和运行速率可调节的电梯
CN112158696B (zh) * 2020-09-29 2022-07-05 中国人民解放军国防科技大学 一种判断电梯劳损程度的方法
CN112723071B (zh) * 2020-12-28 2022-06-17 上海三菱电梯有限公司 电梯部件性能监测方法
CN112875454A (zh) * 2021-01-20 2021-06-01 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) 电梯打滑检测方法
CN113253771A (zh) * 2021-05-14 2021-08-13 长沙市日业电气有限公司 一种摆闸运行位置控制方法
CN113406151A (zh) * 2021-06-18 2021-09-17 秦皇岛开发区前景光电技术有限公司 钢带断丝检测方法及***
CN113734929B (zh) * 2021-09-17 2023-05-05 猫岐智能科技(上海)有限公司 电梯运行加速度数据连续采集***及方法
CN114229645A (zh) * 2021-12-27 2022-03-25 日立电梯(中国)有限公司 一种带自诊断及自调节的电梯控制***及监测方法
CN114314234B (zh) * 2021-12-28 2023-10-03 上海三菱电梯有限公司 电梯客流模式识别方法
CN114538230B (zh) * 2022-01-10 2024-01-02 衢州市特种设备检验中心 一种电梯125%载荷下行制动性能的检测方法及***
CN114572789B (zh) * 2022-03-17 2024-05-28 广东省特种设备检测研究院东莞检测院 一种电梯性能远程检测方法及装置
CN114920101B (zh) * 2022-05-27 2024-05-07 日立电梯(中国)有限公司 电梯验证方法、***、装置、计算机设备和存储介质
FI130456B (en) * 2022-09-05 2023-09-07 Virte Metalli Oy SYSTEM AND METHOD FOR COLLECTING WATER FROM THE AIR
CN116873690B (zh) * 2023-09-06 2023-11-17 江苏省特种设备安全监督检验研究院 电梯安全监控数据处理***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1676455A (zh) * 2004-03-30 2005-10-05 三菱电机株式会社 电梯控制装置
CN1767995A (zh) * 2004-03-30 2006-05-03 三菱电机株式会社 电梯控制装置
US20060175153A1 (en) * 2002-10-15 2006-08-10 Otis Elevator Company Detecting elevator brake and other dragging by monitoring motor current
JP2007254069A (ja) * 2006-03-22 2007-10-04 Hitachi Ltd 省電力エレベーターシステム
CN102198900A (zh) * 2010-03-23 2011-09-28 上海三菱电梯有限公司 能量回馈电梯后备电源运行控制***
CN102556782A (zh) * 2010-12-22 2012-07-11 株式会社日立制作所 电梯控制***
CN103010877A (zh) * 2011-09-20 2013-04-03 株式会社日立制作所 节能电梯

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884264A1 (de) * 1997-06-09 1998-12-16 Inventio Ag Verfahren und Vorrichtung zum Regeln eines Antriebes
CN101844718B (zh) * 2003-11-21 2012-01-25 三菱电机株式会社 电梯装置
CN1918061B (zh) * 2004-03-26 2011-07-20 三菱电机株式会社 电梯控制装置
EP1731466B1 (en) * 2004-03-29 2012-04-25 Mitsubishi Electric Corporation Elevator control device
CN101044080B (zh) * 2004-10-28 2011-05-11 三菱电机株式会社 电梯用旋转机的控制装置
CN102030233B (zh) * 2010-10-29 2013-06-05 广州市标准化研究院 基于差额质量速度积分法的电梯能效测量方法
JP2013147328A (ja) * 2012-01-20 2013-08-01 Hitachi Ltd 非常用電源で運転されるエレベータ
CN103231952A (zh) * 2013-04-03 2013-08-07 深圳市海浦蒙特科技有限公司 电梯轿厢内捣乱的判断方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060175153A1 (en) * 2002-10-15 2006-08-10 Otis Elevator Company Detecting elevator brake and other dragging by monitoring motor current
CN1676455A (zh) * 2004-03-30 2005-10-05 三菱电机株式会社 电梯控制装置
CN1767995A (zh) * 2004-03-30 2006-05-03 三菱电机株式会社 电梯控制装置
JP2007254069A (ja) * 2006-03-22 2007-10-04 Hitachi Ltd 省電力エレベーターシステム
CN102198900A (zh) * 2010-03-23 2011-09-28 上海三菱电梯有限公司 能量回馈电梯后备电源运行控制***
CN102556782A (zh) * 2010-12-22 2012-07-11 株式会社日立制作所 电梯控制***
CN103010877A (zh) * 2011-09-20 2013-04-03 株式会社日立制作所 节能电梯

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108584618A (zh) * 2018-06-12 2018-09-28 深圳市特种设备安全检验研究院 复合钢带当量摩擦系数的测试装置及测试方法
CN108584618B (zh) * 2018-06-12 2024-05-07 深圳市质量安全检验检测研究院 复合钢带当量摩擦系数的测试装置及测试方法

Also Published As

Publication number Publication date
CN105600627A (zh) 2016-05-25
WO2016091199A1 (zh) 2016-06-16

Similar Documents

Publication Publication Date Title
WO2016091198A1 (zh) 电梯参数的获取、控制、运行和载荷监控的方法及***
WO2017097261A1 (zh) 电梯参数的获取、控制、运行和载荷监控的方法及***
WO2016091201A1 (zh) 起重机参数的测算、控制、运行和载荷监控的方法及***
CN105173943B (zh) 一种电梯体检***
AU2014262180B2 (en) Method for condition monitoring of elevator ropes and arrangement for the same
EP1866231A1 (en) Condition monitoring system
US20190002238A1 (en) Elevator accelerometer sensor data usage
JP5704700B2 (ja) エレベータの制御装置及び感知器
CN112225028B (zh) 一种电流感应的电梯运行数据采集***及其采集方法
JP2008127180A (ja) エレベーターシステム
CN104787628A (zh) 一种带有安全***的电梯一体化控制***
CN110371856A (zh) 一种塔式起重机电气双重保护***
CN104692205A (zh) 基于zigbee网络的电梯故障检测***及方法
CN110697532B (zh) 电梯运行的后台监控方法
WO2020079843A1 (ja) エレベーターのドア装置異常診断システム
CN109896382A (zh) 电梯故障诊断方法、装置、设备和介质
CN104817018A (zh) 一种以矢量变压变频变频器为电源的变力臂起重机控制方法
CN205906839U (zh) 电梯故障诊断装置、和用于电梯故障诊断的控制器
JP5535441B2 (ja) エレベータの管制運転装置
CN105314487B (zh) 电梯的保养方法以及电梯***
JP2008297079A (ja) エレベータかご内負荷監視装置
Anand et al. Elevator drives energy analysis with duty loads and behavior in dynamic conditions
CN101161579A (zh) 井道内安置的数台无机房电梯并联/群控***
Liu et al. The Research Of Elevator Fault Diagnosis Method Based On Decision Tree Algorithm
CN108726332B (zh) 确定电梯曳引***的传动效率的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868079

Country of ref document: EP

Kind code of ref document: A1