WO2016078292A1 - 抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法 - Google Patents

抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法 Download PDF

Info

Publication number
WO2016078292A1
WO2016078292A1 PCT/CN2015/076060 CN2015076060W WO2016078292A1 WO 2016078292 A1 WO2016078292 A1 WO 2016078292A1 CN 2015076060 W CN2015076060 W CN 2015076060W WO 2016078292 A1 WO2016078292 A1 WO 2016078292A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
iron oxide
catalyst
carbon nanotubes
temperature
Prior art date
Application number
PCT/CN2015/076060
Other languages
English (en)
French (fr)
Inventor
郑玉婴
张延兵
陈桓
Original Assignee
福州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福州大学 filed Critical 福州大学
Publication of WO2016078292A1 publication Critical patent/WO2016078292A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium

Definitions

  • the invention belongs to the field of flue gas denitration, and particularly relates to a sulfur dioxide-resistant low-temperature manganese-iron oxide denitration catalyst and a preparation method thereof.
  • NO x as a common air pollutant, has given rise to a series of environmental problems such as acid rain, photochemical ozone pollution and destruction, States have enacted stringent NO x emissions law.
  • researchers from various countries have also invested a lot of energy in researching flue gas denitration technology.
  • ammonia-selective catalytic reduction of NO (NH 3 -SCR) is recognized as the most mature and effective denitration technology.
  • the NH 3 -SCR technology is characterized in that ammonia or other reducing gas selectively reduces NO to N 2 and H 2 O under the action of a catalyst, thereby achieving the purpose of removing NO.
  • Vanadium-titanium catalyst system is a commercially NH 3 -SCR catalyst.
  • its operating temperature window is high (300-400 ° C) and is susceptible to deactivation by the influence of SO 2 in the flue gas. Therefore, such catalysts need to be installed after flue gas desulfurization and electrostatic precipitator equipment.
  • the temperature after flue gas desulfurization and dedusting is usually lower than 200 ° C, which makes the vanadium-titanium catalyst with a higher operating temperature window difficult to function. Therefore, the development of anti-SO 2 type NH 3 -SCR catalyst with excellent catalytic effect at low temperature ( ⁇ 200 ° C) has become the focus of research at this stage.
  • the object of the present invention is to provide a sulfur dioxide-resistant low-temperature manganese-iron oxide denitration catalyst and a preparation method thereof, in view of the deficiencies of the prior art.
  • the invention adopts carbon nanotubes with special physical and chemical properties as a carrier, and obtains a sulfur dioxide-resistant low-temperature denitration catalyst by supporting a manganese-iron oxide active component, and the catalyst has excellent activity at low temperature (80-180° C.) and is resistant to SO. 2 significant advantages of performance.
  • the present invention adopts the following solutions:
  • An anti-sulphur dioxide type low-temperature manganese-iron oxide denitration catalyst comprising a carbon nanotube carrier and a manganese-iron oxide active component; the carbon nanotube has a diameter of 40 to 60 nm, and the active component has a precursor
  • the body is manganese acetate and iron nitrate.
  • a sulfur dioxide-resistant low-temperature manganese-iron oxide denitration catalyst having a composition of yMn z -FeO x /CNTs, wherein y and z represent molar ratios of (Mn+Fe)/CNTs and Mn/(Mn+Fe), respectively .
  • the molar ratio of (Mn + Fe) / CNTs in the catalyst was 0.3% to 1.8%; and the molar ratio of Mn / (Mn + Fe) was 0.75%.
  • step 2) using an equal volume impregnation method, the solution prepared in step 2) is added dropwise to the oxidized modified carbon nanotubes, immersed at room temperature, dried at 100 ° C, and then calcined at 300 ° C to obtain anti-sulphur dioxide-type low-temperature manganese-iron oxide denitration. catalyst.
  • the low-temperature supported denitration catalyst prepared by the invention has excellent denitration activity at low temperature (80 ° C ⁇ 180 ° C), and the denitration rate (NO) is more than 40%;
  • the catalyst prepared by the invention has a lower conversion rate of NO in the presence of sulfur dioxide, but is still much higher than the conversion rate of other denitration catalysts, indicating that the catalyst prepared by the invention has good anti-sulfur dioxide effect.
  • Figure 1 is a NO conversion map of the catalyst prepared by the present invention
  • Figure 2 is a TEM (a), (b) and EDX map (c), (d) of the catalyst prepared by the present invention
  • Figure 3 is an XRD pattern of the catalyst prepared by the present invention.
  • Figure 4 is an anti-SO 2 performance of a catalyst prepared in accordance with the present invention.
  • step 2) The solvent prepared in step 2) is added dropwise to 0.3 g of carbon nanotubes, immersed at room temperature for 24 h, dried at 100 ° C for 12 h, and finally calcined at 280 ° C for 30 min in a tube furnace to obtain 0.3% Mn 0.75 -FeO x /CNTs.
  • step 2) The solvent prepared in step 2) is added dropwise to 0.3 g of carbon nanotubes, immersed at room temperature for 24 h, dried at 100 ° C for 12 h, and finally calcined at 300 ° C for 30 min in a tube furnace to obtain 0.8% Mn 0.75 -FeO x /CNTs.
  • 3g ethanol solution should be prepared, and finally the solution is: 3g ethanol, 0.2757g manganese acetate and 0.1525g iron nitrate;
  • step 2) The solvent prepared in step 2) is added dropwise to 0.3 g of carbon nanotubes, immersed at room temperature for 24 h, dried at 100 ° C for 12 h, and finally calcined at 290 ° C for 30 min in a tube furnace to obtain 1.2% Mn 0.75 -FeO x /CNTs.
  • step 2) The solvent prepared in step 2) is added dropwise to 0.3 g of carbon nanotubes, immersed at room temperature for 24 h, dried at 100 ° C for 12 h, and finally calcined at 280 ° C for 30 min in a tube furnace to obtain a low temperature of 1.8% Mn 0.75 -FeO. x /CNTs.
  • the NO conversion test of the denitration catalyst prepared in the examples was carried out, and the test results are shown in Fig. 1. It can be seen from Fig. 1 that in the range of 80 °C - 120 °C, the NO conversion rate of the catalyst increases remarkably with the increase of temperature to a temperature range of 120 ° C - 140 ° C, and slowly increases to 140 ° C - In the interval of 180 °C, the NO conversion tends to be stable; indicating the denitration of the present invention
  • the catalyst has a very high catalytic activity in the range of 80 ° C to 180 ° C;
  • Figure 2 is a TEM (a), (b) and EDX map (c), (d) of the catalyst prepared by the present invention
  • Figure 3 is an XRD pattern of the catalyst prepared by the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明属于烟气脱硝领域,具体涉及一种抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法。该脱硝催化剂由碳纳米管(CNTs)载体,锰-铁氧化物(Mn-FeOx)活性组分组成。通过掺杂铁氧化物,得到抗SO2型低温Mn-FeOx/CNTs催化剂,所制备的催化剂具有低温(80~180℃)活性优异、抗SO2性能显著和制备工艺简单等优点。

Description

抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法 技术领域
本发明属于烟气脱硝领域,具体涉及一种抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法。
背景技术
NOx作为一种常见的大气污染物,已经引起一系列的环境问题,如酸雨、光化学污染和臭氧破坏等,因此各国都制定了严格的NOx排放法。同时,各国科研人员也投入大量的精力研究烟气脱硝技术。其中,氨气选择性催化还原NO(NH3-SCR)被公认为是最成熟和有效的脱硝技术。NH3-SCR技术的特点是,氨气或其它还原性气体在催化剂的作用下选择性地还原NO为N2和H2O,以此达到脱除NO的目的。
钒钛催化剂体系是一种商业化的NH3-SCR催化剂。但是,其操作温度窗口较高(300-400℃),且易受烟气中SO2的影响而减活。因此,该类催化剂需安装在烟气脱硫和静电除尘设备之后。而烟气经过脱硫和除尘后的温度通常低于200℃,这使操作温度窗口较高的钒钛催化剂难以发挥作用。因此,开发低温(<200℃)催化效果优良的抗SO2型NH3-SCR催化剂成为现阶段研究的重点。
发明内容
本发明的目的在于针对现有技术的不足,提供一种抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法。本发明采用具有特殊物理和化学性质的碳纳米管为载体,通过负载锰-铁氧化物活性组分,得到抗二氧化硫型低温脱硝催化剂,该催化剂具有低温(80~180℃)活性优异、抗SO2性能显著的优点。
为了实现上述发明目的,本发明采用如下解决方案:
一种抗二氧化硫型低温锰-铁氧化物脱硝催化剂,包括碳纳米管载体和锰-铁氧化物活性组分;所述碳纳米管的管径为40~60nm,所述的活性组分其前驱体为乙酸锰和硝酸铁。
一种抗二氧化硫型低温锰-铁氧化物脱硝催化剂,其组成为:yMnz-FeOx/CNTs,其中y,z分别代表(Mn+Fe)/CNTs和Mn/(Mn+Fe)的摩尔比。
所述的催化剂中(Mn+Fe)/CNTs摩尔比为0.3%~1.8%;Mn/(Mn+Fe)的摩尔比为0.75%。
一种制备上所述的抗二氧化硫型低温锰-铁氧化物脱硝催化剂的制备方法,包括以下步骤:
1)将碳纳米管置于65~68wt%的硝酸中回流12h后,经处理得到氧化改性的碳纳米管;
2)按摩尔比Mn/(Mn+Fe)=0.75%,(Mn+Fe)/CNTs=0.3%~1.8%,将乙酸锰和硝酸配制成乙醇溶液;
3)采用等体积浸渍法,将步骤2)配制的溶液滴加到氧化改性的碳纳米管上,常温浸渍,100℃烘干,然后300℃煅烧得到抗二氧化硫型低温锰-铁氧化物脱硝催化剂。
本发明的有益效果在于:
1)本发明制得的低温负载型脱硝催化剂,在低温(80℃~180℃)具有优异的脱硝活性,脱硝率(NO)大于40%;
2)本发明制得的催化剂在二氧化硫存在的情况下,NO的转化率虽有所下降,但是比其他脱硝催化剂的转化率仍然高出很多,说明本发明制得的催化剂抗二氧化硫效果好。
附图说明
图1是本发明制备的催化剂的NO转化率图谱;
图2是本发明制备的催化剂的TEM(a)、(b)和EDX图谱(c)、(d);
图3是本发明制备的催化剂的XRD图谱;
图4是本发明制备的催化剂的抗SO2性能。
具体实施方式
以下结合具体的实施方式对本发明做进一步阐述,旨在使阅读人容易理解本专利的实施过程。
实施例1
1)硝酸(65~68%)处理碳纳米管12h,抽滤,水洗,105℃烘干12h,研磨得到氧化改性的碳纳米管;
2)将0.3g步骤1)得到的碳纳米管置于坩埚(0.3g碳纳米管能够等体积吸附0.6g乙醇),按(Mn+Fe)/C摩尔比为0.3%,Mn/(Mn+Fe)=0.75%计算得出,0.6g乙醇中溶剂需0.01379g乙酸锰、0.007575g硝酸铁,为保证浸渍液量充足,需配制3g乙醇溶液,最后配制溶液量为:3g乙醇、0.06895g乙酸锰和0.03788g硝酸铁;
3)将步骤2)配制的溶剂等体积滴加到0.3g碳纳米管中,室温浸渍24h,100℃烘干12h,最后在管式炉中280℃煅烧30min,得到0.3%Mn0.75-FeOx/CNTs。
实施例2
1)硝酸(65~68%)处理碳纳米管12h,抽滤,水洗,105℃烘干12h,研磨得到氧化改性的碳纳米管;
2)将0.3g步骤1)得到的碳纳米管置于坩埚(0.3g碳纳米管能够等体积吸附0.6g乙醇),按(Mn+Fe)/C摩尔比为0.8%,Mn/(Mn+Fe)=0.75%计算得出,0.6g乙醇中溶剂需溶剂0.03677g乙酸锰、0.0202g硝酸铁。为保证浸渍液量充足,需配制3g乙醇溶液,最后配制溶液为:3g乙醇、0.1838g乙酸锰和0.101g硝酸铁;
3)将步骤2)配制的溶剂等体积滴加到0.3g碳纳米管中,室温浸渍24h,100℃烘干12h,最后在管式炉中300℃煅烧30min,得到0.8%Mn0.75-FeOx/CNTs。
实施例3
1)硝酸(65~68%)处理碳纳米管12h,抽滤,水洗,105℃烘干12h,研磨得到氧化改性的碳纳米管;
2)将0.3g步骤1)得到的碳纳米管置于坩埚(0.3g碳纳米管能够等体积吸附0.6g乙醇),按(Mn+Fe)/C摩尔比为1.2%,Mn/(Mn+Fe)=0.75%计算得出,0.6g乙醇中溶剂需溶剂0.05515g乙酸锰、0.0303g硝酸铁。为保证浸渍液量充足,需配制3g乙醇溶液,最后配制溶液为:3g乙醇、0.2757g乙酸锰和0.1525g硝酸铁;
3)将步骤2)配制的溶剂等体积滴加到0.3g碳纳米管中,室温浸渍24h,100℃烘干12h,最后在管式炉中290℃煅烧30min,得到1.2%Mn0.75-FeOx/CNTs。
其他步骤相同,只是Mn含量不同,制备得到1.2%Mn1-FeOx/CNTs作为对比。
实施例4
1)硝酸(65~68%)处理碳纳米管12h,抽滤,水洗,105℃烘干12h,研磨得到氧化改性的碳纳米管;
2)将0.3g步骤1)得到的碳纳米管置于坩埚(0.3g碳纳米管能够等体积吸附0.6g乙醇),按(Mn+Fe)/C摩尔比为1.8%,Mn/(Mn+Fe)=0.75%计算得出,0.6g乙醇中溶剂需溶剂0.08272g乙酸锰、0.04545g硝酸铁;为保证浸渍液量充足,需配制3g乙醇溶液,最后配制溶液为:3g乙醇、0.4136g乙酸锰和0.2273g硝酸铁;
3)将步骤2)配制的溶剂等体积滴加到0.3g碳纳米管中,室温浸渍24h,100℃烘干12h,最后在管式炉中280℃煅烧30min,得到低温1.8%Mn0.75-FeOx/CNTs。
性能测试:
1)NO转化率测试:
对实施例所制得的脱硝催化剂进行NO转化率测试,测试结果如图1所示。从图1中可得出,在80℃-120℃的范围内,催化剂的NO转化率随着温度的升高显著增大,至120℃-140℃温度区间,缓慢增长,而至140℃-180℃区间,NO转化率趋于稳定;说明本发明的脱硝 催化剂在80℃-180℃区间,催化活性非常高;
图2是本发明制备的催化剂的TEM(a)、(b)和EDX图谱(c)、(d);
图3是本发明制备的催化剂的XRD图谱;
2)抗二氧化硫测试:
从图4中可以看出,当在催化体系中加入SO2的时候,1.2%Mn0.75-FeOx/CNTs脱硝催化剂的NO转化率下降至60%以后稳定,而1.2%Mn1-FeOx/CNTs的脱硝催化剂的NO转化率急剧下降至28%左右,说明按本发明方法制备的脱硝催化剂抗二氧化硫效果显著。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (3)

  1. 一种抗二氧化硫型低温锰-铁氧化物脱硝催化剂,其特征在于:包括碳纳米管载体和锰-铁氧化物活性组分;所述碳纳米管的管径为40~60nm,所述的活性组分其前驱体为乙酸锰和硝酸铁。
  2. 根据权利要求1所述的一种抗二氧化硫型低温锰-铁氧化物脱硝催化剂,其特征在于:所述的催化剂中(Mn+Fe)/CNTs摩尔比为0.3%~1.8%;Mn/(Mn+Fe)的摩尔比为0.75%。
  3. 一种制备如权利要求1所述的抗二氧化硫型低温锰-铁氧化物脱硝催化剂的制备方法,其特征在于:包括以下步骤:
    1)将碳纳米管置于硝酸中回流12h后,经处理得到氧化改性的碳纳米管;
    2)按摩尔比Mn/(Mn+Fe)=0.75%,(Mn+Fe)/CNTs=0.3%~1.8%,将乙酸锰和硝酸配制成乙醇溶液;
    3)采用等体积浸渍法,将步骤2)配制的溶液滴加到氧化改性的碳纳米管上,常温浸渍,100℃烘干,然后280℃~300℃煅烧得到抗二氧化硫型低温锰-铁氧化物脱硝催化剂。
PCT/CN2015/076060 2014-11-18 2015-04-08 抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法 WO2016078292A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410674561.X 2014-11-18
CN201410674561.XA CN104437537A (zh) 2014-11-18 2014-11-18 抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2016078292A1 true WO2016078292A1 (zh) 2016-05-26

Family

ID=52884746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076060 WO2016078292A1 (zh) 2014-11-18 2015-04-08 抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN104437537A (zh)
WO (1) WO2016078292A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333290A (zh) * 2018-04-17 2018-07-27 河北工业大学 一种水泥窑用低温烟气脱硝催化剂抗硫耐水性能的测试装置及测试方法
CN110152653A (zh) * 2019-05-15 2019-08-23 南京师范大学 一种空心纳米管状锰基低温脱硝催化剂及其制备方法
CN111203205A (zh) * 2019-12-30 2020-05-29 安徽元琛环保科技股份有限公司 一种基于稀土掺杂zif-8纳米多孔碳催化剂及其制备方法与应用
CN111375445A (zh) * 2018-12-29 2020-07-07 中化近代环保化工(西安)有限公司 一种分子筛负载锰基脱硝催化剂的制备方法及用途
CN113769755A (zh) * 2021-07-15 2021-12-10 上海电力大学 低温scr锰钴二维纳米片脱硝催化剂及其制备和应用
CN113877611A (zh) * 2021-09-26 2022-01-04 安徽工业大学 一种磷酸改性锰氧化物负载型催化剂及制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437537A (zh) * 2014-11-18 2015-03-25 福州大学 抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法
CN105289640A (zh) * 2015-10-27 2016-02-03 福州大学 三元Mn-Cu-FeOx/CNTs脱硝催化剂和制备
CN106215949A (zh) * 2016-08-02 2016-12-14 上海应用技术学院 一种低温选择性催化还原脱硝催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098991A (zh) * 2004-11-16 2008-01-02 海珀里昂催化国际有限公司 用于由载有金属的碳纳米管制备负载型催化剂的方法
CN101596403A (zh) * 2009-06-23 2009-12-09 山东大学 一种金属氧化物催化剂用于选择性催化还原NOx的应用
CN102114424A (zh) * 2010-12-29 2011-07-06 国电科学技术研究院 一种低温烟气脱硝scr催化剂及制备方法
EP2401069A2 (en) * 2009-02-27 2012-01-04 Corning Incorporated Method of manufacturing a catalyst body by post-impregation
CN104437537A (zh) * 2014-11-18 2015-03-25 福州大学 抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916493B2 (en) * 2008-09-08 2014-12-23 Amminex Emissions Technology A/S Additives for highly compacted ammonia storage materials
CN102294248A (zh) * 2011-05-30 2011-12-28 浙江大学 一种同时脱硝脱汞的锰铁复合氧化物催化剂及其制备方法
CN102806090A (zh) * 2012-08-26 2012-12-05 西北化工研究院 一种用于固定源低温脱硝的条形锰基催化剂及其制备方法
CN103191603A (zh) * 2013-04-09 2013-07-10 福州大学 一种具有脱硝和除尘功能的催化过滤滤料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101098991A (zh) * 2004-11-16 2008-01-02 海珀里昂催化国际有限公司 用于由载有金属的碳纳米管制备负载型催化剂的方法
EP2401069A2 (en) * 2009-02-27 2012-01-04 Corning Incorporated Method of manufacturing a catalyst body by post-impregation
CN101596403A (zh) * 2009-06-23 2009-12-09 山东大学 一种金属氧化物催化剂用于选择性催化还原NOx的应用
CN102114424A (zh) * 2010-12-29 2011-07-06 国电科学技术研究院 一种低温烟气脱硝scr催化剂及制备方法
CN104437537A (zh) * 2014-11-18 2015-03-25 福州大学 抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108333290A (zh) * 2018-04-17 2018-07-27 河北工业大学 一种水泥窑用低温烟气脱硝催化剂抗硫耐水性能的测试装置及测试方法
CN111375445A (zh) * 2018-12-29 2020-07-07 中化近代环保化工(西安)有限公司 一种分子筛负载锰基脱硝催化剂的制备方法及用途
CN111375445B (zh) * 2018-12-29 2023-09-05 中化近代环保化工(西安)有限公司 一种分子筛负载锰基脱硝催化剂的制备方法及用途
CN110152653A (zh) * 2019-05-15 2019-08-23 南京师范大学 一种空心纳米管状锰基低温脱硝催化剂及其制备方法
CN111203205A (zh) * 2019-12-30 2020-05-29 安徽元琛环保科技股份有限公司 一种基于稀土掺杂zif-8纳米多孔碳催化剂及其制备方法与应用
CN113769755A (zh) * 2021-07-15 2021-12-10 上海电力大学 低温scr锰钴二维纳米片脱硝催化剂及其制备和应用
CN113877611A (zh) * 2021-09-26 2022-01-04 安徽工业大学 一种磷酸改性锰氧化物负载型催化剂及制备方法
CN113877611B (zh) * 2021-09-26 2023-10-31 安徽工业大学 一种磷酸改性锰氧化物负载型催化剂及制备方法

Also Published As

Publication number Publication date
CN104437537A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
WO2016078292A1 (zh) 抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法
CN105107514B (zh) 一种蜂窝状非钒脱硝成型催化剂、制备方法及其用途
WO2015149499A1 (zh) 一种低温高效脱硝催化剂及其制备方法
CN107362807B (zh) 一种Mn/Co基低温SCO催化剂及其制备方法
WO2021088277A1 (zh) 氢化TiO2脱硝催化剂及其制备方法和应用
CN110508309B (zh) 一种氮化碳负载铬氧化物催化剂及其制备方法和应用
CN113413904B (zh) 一种g-C3N4负载型锰铈复合氧化物低温NH3-SCR催化剂及其制备方法与应用
CN107983338B (zh) 一种提高钙钛矿型复合金属氧化物催化性能的方法
CN104014331B (zh) 介孔二氧化钛球负载的Mn-Ce-W复合氧化物脱硝催化剂的制备方法
CN110801848B (zh) 平板式宽温抗硫scr脱硝催化剂及其制备方法
CN101011659A (zh) 一种用于锅炉低温烟气的scr脱硝的催化剂及制备方法
CN103816799B (zh) 提高sncr脱硝效率的脱硝剂及其制备方法
CN103406122B (zh) 一种低温脱除氮氧化物和一氧化碳的催化剂及其制备方法
WO2015161627A1 (zh) 一种用于400℃~600℃烟气蜂窝脱硝催化剂及其制备方法
CN101804344A (zh) 锰/碳纳米管脱氮催化还原催化剂及制备方法
CN104056658A (zh) 一种低温抗硫脱硝催化剂及其制备方法
CN108993476B (zh) 金属氧化物-钒酸盐/TiO2催化剂及其制备方法和应用
CN101554589A (zh) 铜,铁改性的二氧化钛柱撑膨润土催化剂及其制备方法
CN103599783B (zh) 铁氧化物纳米粒子负载碳纳米管脱硝催化剂的制备方法
CN114210320A (zh) 一种异质双原子低温耐硫scr催化剂及其制备方法
JP6495470B2 (ja) 複層カーボン・ナノチューブ触媒、その製造方法およびその使用
CN111686716A (zh) WOx改性碳纳米管负载金属氧化物的低温SCR烟气脱硝催化剂及制备方法与应用
CN112264016A (zh) 用于甲醛催化氧化的高缺陷四氧化三钴催化剂及其制备方法和应用
CN105642339B (zh) 一种无需还原气的同时脱硫脱硝催化剂及制备方法
CN102806083B (zh) 脱除含二氧化硫的高温烟气中的氮氧化物的催化剂及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861047

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.09.2017)