WO2016075806A1 - 狭帯域化モジュール、狭帯域化レーザ装置、及び、狭帯域化モジュールを位置決めする方法 - Google Patents

狭帯域化モジュール、狭帯域化レーザ装置、及び、狭帯域化モジュールを位置決めする方法 Download PDF

Info

Publication number
WO2016075806A1
WO2016075806A1 PCT/JP2014/080171 JP2014080171W WO2016075806A1 WO 2016075806 A1 WO2016075806 A1 WO 2016075806A1 JP 2014080171 W JP2014080171 W JP 2014080171W WO 2016075806 A1 WO2016075806 A1 WO 2016075806A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
module
laser
moving
narrowband module
Prior art date
Application number
PCT/JP2014/080171
Other languages
English (en)
French (fr)
Inventor
義信 渡部
美和 五十嵐
耕志 芦川
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to PCT/JP2014/080171 priority Critical patent/WO2016075806A1/ja
Priority to JP2016559045A priority patent/JPWO2016076279A1/ja
Priority to CN201580053761.6A priority patent/CN107112714A/zh
Priority to PCT/JP2015/081525 priority patent/WO2016076279A1/ja
Publication of WO2016075806A1 publication Critical patent/WO2016075806A1/ja
Priority to US15/478,683 priority patent/US20170205631A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/101Lasers provided with means to change the location from which, or the direction in which, laser radiation is emitted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection

Definitions

  • the present disclosure relates to a narrowband module, a narrowband laser apparatus, and a method for positioning the narrowband module.
  • the semiconductor exposure apparatus As semiconductor integrated circuits are miniaturized and highly integrated, improvement in resolving power is demanded in semiconductor exposure apparatuses.
  • the semiconductor exposure apparatus is simply referred to as “exposure apparatus”. For this reason, the wavelength of light output from the light source for exposure is being shortened.
  • a gas laser device As a light source for exposure, a gas laser device is used instead of a conventional mercury lamp.
  • a gas laser apparatus for exposure a KrF excimer laser apparatus that outputs ultraviolet light with a wavelength of 248 nm and an ArF excimer laser apparatus that outputs ultraviolet light with a wavelength of 193 nm are used.
  • the spectral line width in natural oscillation of KrF and ArF excimer laser devices is as wide as about 350 to 400 pm, the chromatic aberration of laser light (ultraviolet light) projected on the wafer by the projection lens on the exposure device side is generated, resulting in high resolution. descend. Therefore, it is necessary to narrow the spectral line width of the laser light output from the gas laser device until the chromatic aberration becomes negligible.
  • the spectral line width is also called the spectral width.
  • a narrow band module (Line Narrow) Module) having a narrow band element is provided in the laser resonator of the gas laser device, and the narrow band of the spectral width is realized by this narrow band module.
  • the band narrowing element may be an etalon, a grating, or the like.
  • Such a laser device having a narrowed spectral width is called a narrow-band laser device.
  • a narrowband module includes a grating device including a grating that narrows a laser beam, a holder that holds the grating, a casing that houses the grating device, and a dispersion surface of the grating
  • a grating moving device that supports the position of the center of gravity of the grating device or a position near the center of gravity from a direction substantially perpendicular to the grating, and moves the grating device relative to the housing in a direction substantially perpendicular to the dispersion surface of the grating. Also good.
  • a narrowband module includes a grating device including a grating that narrows a laser beam, a holder that holds the grating, a bracket that holds the grating device, a grating device, and A housing that accommodates the bracket, a grating moving device that moves the grating device relative to the bracket in a direction substantially perpendicular to the dispersion surface of the grating, and a housing that is substantially perpendicular to the dispersion surface of the grating. And a shaft member that defines a rotation axis with respect to the body.
  • a narrow-band laser apparatus includes a laser chamber, a grating, a narrow-band module that narrows a laser beam output from the laser chamber and returns the laser light to the laser chamber, and a narrow-band A narrowing module moving device that supports the narrowing module at three points and moves the narrowing module relative to the laser chamber in a direction substantially perpendicular to the dispersion surface of the grating.
  • a narrow-band laser apparatus includes a laser chamber, a grating, and a housing that accommodates the grating, and narrows the laser beam output from the laser chamber to reduce the laser chamber.
  • a grating moving device that moves the grating relative to the housing.
  • a method of positioning a band-narrowing module includes a laser chamber, a grating, and a band-narrowing module that narrows a band of laser light output from the laser chamber and returns the laser beam to the laser chamber.
  • a narrowband module moving device configured to support the narrowband module and to move the narrowband module in a direction substantially perpendicular to the dispersion surface of the grating, and the narrowband module to the laser chamber.
  • the first moving mechanism that moves the holding device that is positioned and held with respect to the holding device in a direction that intersects the moving direction of the narrowing module by the narrowing module moving device.
  • a carriage configured to be able to carry and carry the narrowband module moving device that supports the narrowband module, Using a second moving mechanism that moves the band-narrowing module moving device supporting the banding module relative to the carriage in a direction that intersects the moving direction of the band-narrowing module by the band-narrowing module moving device.
  • a method of positioning the band narrowing module with respect to the laser chamber may be used.
  • the second moving mechanism By holding the narrow band module moving device supporting the narrow band module by the carriage and transporting it to the vicinity of the holding device, the second moving mechanism is connected to the first moving mechanism, the second moving mechanism, The movement mechanism of 1 moves the band-narrowing module moving device supporting the band-narrowing module to the holding device, and the holding device positions and holds the band-narrowing module with respect to the laser chamber.
  • the band narrowing module moving device may be removed from the band narrowing module and the holding device by the moving mechanism.
  • FIG. 1A schematically shows the configuration of the laser apparatus according to the first embodiment.
  • FIG. 1B schematically shows the configuration of the laser apparatus according to the first embodiment.
  • FIG. 2A shows the configuration and operation of the grating moving device in the narrowband module 14.
  • FIG. 2B shows the configuration and operation of the grating moving device in the narrowband module 14.
  • FIG. 2C shows the configuration and operation of the grating moving device in the narrowband module 14.
  • FIG. 2D shows the configuration and operation of the grating moving device in the narrowband module 14.
  • FIG. 2E shows the configuration and operation of the grating moving device in the narrowband module 14.
  • FIG. 3A shows the configuration and operation of the grating moving device in the narrowband module 14 of the second embodiment.
  • FIG. 3B shows the configuration and operation of the grating moving device in the band narrowing module 14 of the second embodiment.
  • FIG. 3C shows the configuration and operation of the grating moving device in the band narrowing module 14 of the second embodiment.
  • FIG. 3D shows the configuration and operation of the grating moving device in the narrowband module 14 of the second embodiment.
  • FIG. 3E shows the configuration and operation of the grating moving device in the narrowband module 14 of the second embodiment.
  • FIG. 3F shows the configuration and operation of the grating moving device in the band narrowing module 14 of the second embodiment.
  • FIG. 4A shows the configuration and operation of the band narrowing module 14 and the band narrowing module moving device in the third embodiment.
  • FIG. 4B shows the configuration and operation of the band narrowing module 14 and the band narrowing module moving device in the third embodiment.
  • FIG. 4C shows the configuration and operation of the narrowband module 14 and the narrowband module moving device in the third embodiment.
  • FIG. 5A shows the configuration and operation of the narrowband module 14 and the narrowband module moving device in the fourth embodiment.
  • FIG. 5B shows the configuration and operation of the band narrowing module 14 and the band narrowing module moving apparatus in the fourth embodiment.
  • FIG. 5C shows the configuration and operation of the narrowband module 14 and the narrowband module moving device in the fourth embodiment.
  • FIG. 5D shows the configuration and operation of the band narrowing module 14 and the band narrowing module moving device in the fourth embodiment.
  • FIG. 5E shows the configuration and operation of the band narrowing module 14 and the band narrowing module moving device in the fourth embodiment.
  • FIG. 6A shows the configuration and operation of the band narrowing module 14 in the fifth embodiment.
  • FIG. 6B shows the configuration and operation of the band narrowing module 14 in the fifth embodiment.
  • FIG. 6C shows the configuration and operation of the band narrowing module 14 in the fifth embodiment.
  • FIG. 6D shows the configuration and operation of the band narrowing module 14 in the fifth embodiment.
  • the surface of the grating may be damaged by the laser beam.
  • the surface of the grating may be oxidized or organic substances may be attached. If the surface of the grating is damaged, the diffraction efficiency can be reduced. However, even on the surface of the same grating, the portion that was not exposed to the laser beam may be less damaged than the portion that was irradiated with the laser beam. Accordingly, the grating may be moved so that the laser beam hits a portion where damage is small. Thereby, the lifetime of a grating can be improved and the replacement frequency of a grating can be reduced.
  • the grating used in the excimer laser apparatus can be considerably large and heavy when the holder for holding the grating is combined. For this reason, it can be difficult to move with high precision while maintaining the diffraction wavefront and maintaining the incident angle of the grating.
  • the size and weight can be further increased than when the grating and the holder are moved. Therefore, it may be difficult to move the narrowband module with high accuracy.
  • the center of gravity position of the grating device or a position in the vicinity thereof is supported from a direction substantially perpendicular to the dispersion surface of the grating, and the grating device is moved in a direction substantially perpendicular to the dispersion surface of the grating. You may let them.
  • the band narrowing module including the grating may be supported at three points, and the band narrowing module may be moved in a direction substantially perpendicular to the dispersion surface of the grating.
  • Laser apparatus having a grating moving device (first embodiment) 1A and 1B schematically show the configuration of the laser apparatus according to the first embodiment.
  • the laser apparatus shown in FIG. 1A may include a laser chamber 10, a pair of discharge electrodes 11a and 11b, a band narrowing module 14, and an output coupling mirror 15.
  • the laser device may be a master oscillator that oscillates and outputs seed light incident on an amplifier (not shown).
  • FIG. 1A shows the internal configuration of the laser device viewed from a direction substantially parallel to the discharge direction between the pair of discharge electrodes 11a and 11b.
  • FIG. 1B the internal configuration of the laser device is viewed from a direction substantially perpendicular to the discharge direction between the pair of discharge electrodes 11a and 11b and substantially perpendicular to the traveling direction of the laser beam output from the output coupling mirror 15. It is shown.
  • the traveling direction of the laser light output from the output coupling mirror 15 may be the Z direction.
  • the discharge direction between the pair of discharge electrodes 11a and 11b may be the V direction or the ⁇ V direction.
  • the direction perpendicular to both of these may be the H direction.
  • the ⁇ V direction may substantially coincide with the direction of gravity.
  • the laser chamber 10 may be a chamber in which a laser gas serving as a laser medium containing, for example, argon, neon, fluorine, and the like is sealed. Windows 10 a and 10 b may be provided at both ends of the laser chamber 10.
  • the laser chamber 10 may be supported by the holder 20.
  • the laser chamber 10 and the holder 20 may be disposed between the plate 20 a and the plate 20 b and fixed to the pedestal 30.
  • One end of each of the three invar rods 20c may be fixed to the plate 20a, and the other end of each of these invar rods 20c may be fixed to the plate 20b.
  • the plate 20b may be fixed to the pedestal 30.
  • the plate 20a may be fixed to the pedestal 30 via a linear bush (not shown) that is movable in the Z direction.
  • the plate 20a may be formed with a through hole 22a, and the plate 20b may be formed with a through hole 22b.
  • An optical path tube 21a may be connected between the plate 20a and the laser chamber 10. One end of the optical path tube 21a may be fixed in a sealed state around the through hole 22a of the plate 20a, and the other end of the optical path tube 21a may be fixed in a sealed state around the window 10a of the laser chamber 10.
  • An optical path tube 21b may be connected between the plate 20b and the laser chamber 10. One end of the optical path tube 21b may be fixed in a sealed state around the through hole 22b of the plate 20b, and the other end of the optical path tube 21b may be fixed in a sealed state around the window 10b of the laser chamber 10.
  • the pair of discharge electrodes 11a and 11b may be arranged in the laser chamber 10 as electrodes for exciting the laser medium by discharge.
  • a pulsed high voltage may be applied to the pair of discharge electrodes 11a and 11b from a pulse power module (not shown).
  • a discharge can occur between the pair of discharge electrodes 11a and 11b. Due to the energy of this discharge, the laser medium in the laser chamber 10 can be excited to shift to a high energy level. When the excited laser medium subsequently moves to a low energy level, light corresponding to the energy level difference can be emitted.
  • the windows 10a and 10b are arranged such that the light incident surfaces and the HZ planes of these windows substantially coincide with each other, and the light incident angle is substantially a Brewster angle. Also good.
  • the light generated in the laser chamber 10 may be emitted outside the laser chamber 10 through the windows 10a and 10b.
  • the narrowband module 14 includes two prisms 14a and 14b, a grating 14c, holders 24a to 24c, a bracket 41, a grating moving device 42, a shaft member 43, and a housing 24. And may be included.
  • the housing 24 may accommodate the prisms 14a and 14b, the grating 14c, the holders 24a to 24c, and the bracket 41.
  • the prism 14a may be supported by the holder 24a
  • the prism 14b may be supported by the holder 24b
  • the grating 14c may be supported by the holder 24c.
  • the holder 24c may be supported by the bracket 41.
  • the housing 24 may be supported by the plate 20a.
  • a through hole 24 d may be formed in the housing 24.
  • the prisms 14a and 14b may expand the beam width in the H direction of the light emitted from the window 10a of the laser chamber 10 and make the light incident on the grating 14c.
  • the prisms 14a and 14b may reduce the beam width in the H direction of the reflected light from the grating 14c, and return the light to the discharge region of the laser chamber 10 through the window 10a.
  • the material on the surface of the groove may be made of a highly reflective material, and a large number of grooves may be formed on the surface at predetermined intervals. Each groove may be, for example, a right triangle groove.
  • the light incident on the grating 14c from the prisms 14a and 14b may be reflected by these grooves and diffracted in a direction according to the wavelength of the light.
  • the grating 14c may be arranged in a Littrow arrangement so that the incident angle of light incident on the grating 14c from the prisms 14a and 14b matches the diffraction angle of diffracted light having a desired wavelength. Thereby, light in the vicinity of the desired wavelength may be returned to the laser chamber 10 via the prisms 14a and 14b.
  • the output coupling mirror 15 may be accommodated in the housing 26.
  • the output coupling mirror 15 may be supported by the holder 25 inside the housing 26.
  • the housing 26 may be supported by the plate 20b.
  • a through hole 26 a may be formed in the housing 26.
  • the surface of the output coupling mirror 15 may be coated with a partial reflection film. Therefore, the output coupling mirror 15 may transmit a part of the light output from the window 10 b of the laser chamber 10 and output it, and reflect the other part and return it to the laser chamber 10.
  • the band narrowing module 14 and the output coupling mirror 15 may constitute an optical resonator.
  • the light emitted from the laser chamber 10 reciprocates between the band narrowing module 14 and the output coupling mirror 15, and is amplified and laser oscillated every time it passes through the laser gain space between the discharge electrodes 11a and 11b.
  • the laser beam can be narrowed every time it is turned back by the band narrowing module 14.
  • the polarization component in the H direction can be selected by the arrangement of the windows 10a and 10b described above.
  • the laser light thus amplified can be output from the output coupling mirror 15.
  • FIGS. 2A to 2E show the configuration and operation of the grating moving device in the band narrowing module 14. 2A to 2E, the illustration of the laser chamber 10, the output coupling mirror 15, and the like is omitted.
  • FIG. 2A is a diagram viewed from a direction substantially perpendicular to the dispersion surface of the grating.
  • 2B and 2C are cross-sectional views taken along the line IIBC-IIBC in FIG. 2A.
  • 2D and 2E are views viewed from a direction substantially parallel to the dispersion surface of the grating and substantially perpendicular to the traveling direction of the laser light output from the output coupling mirror 15.
  • the holder 24c may hold the grating 14c so as to cover the lower surface, the back surface, and the upper surface of the grating 14c.
  • the grating device 40 may be configured by the grating 14c and the holder 24c.
  • the grating device 40 may be held by the bracket 41 via the linear guide 44.
  • the linear guide 44 may include a rail portion 44a fixed to the bracket 41 and a moving portion 44b fixed to the holder 24c.
  • the moving part 44b may be movable in the V direction or the ⁇ V direction along the rail part 44a.
  • the shaft member 43 may penetrate the bottom portion of the casing 24 and the bracket 41 in the V direction, and may be fixed via a linear bush (not shown).
  • the upper end of the shaft member 43 may be connected to the bottom surface of the holder 24c, and the shaft member 43 may define the rotational axes of the grating device 40 and the bracket 41.
  • the rotation axes of the grating device 40 and the bracket 41 may substantially coincide with the center position of the surface of the grating 14c.
  • the grating moving device 42 may include a positioning pole 42a and a fixing member 42b.
  • the positioning pole 42 a may penetrate the bottom portion of the housing 24 and the bracket 41.
  • the diameter of the through hole through which the positioning pole 42a penetrates the bracket 41 may have a slight margin with respect to the thickness of the positioning pole 42a so as to allow the bracket 41 to rotate with the shaft member 43 as the rotation axis.
  • the diameter of the through hole at the bottom of the housing 24 may be a diameter that allows the positioning pole 42a to move in the V direction and hardly tilts.
  • a linear bush (not shown) may be disposed in the through hole of the housing 24 so that the positioning pole 42a can be moved in the V direction via the linear bush.
  • the lower end of the positioning pole 42a may be pressed by the fixing member 42b.
  • the fixing member 42b may be fixed to the bottom surface of the housing 24 with a bolt.
  • a spacer 42c may be sandwiched between the bottom surface of the housing 24 and the fixing member 42b.
  • the position of the positioning pole 42a may be adjusted depending on the thickness of the spacer 42c or the presence or absence of the spacer 42c.
  • the upper end of the positioning pole 42a may be hemispherical.
  • the upper end of the positioning pole 42a may be in contact with the bottom surface of the holder 24c.
  • the upper end of the positioning pole 42a may support the holder 24c from the bottom surface.
  • the position of the grating device 40 in the V direction or ⁇ V direction may be adjusted by the position of the positioning pole 42a.
  • the shaft member 43 may also move together with the grating device 40.
  • the position where the upper end of the positioning pole 42a contacts the bottom surface of the holder 24c may be slightly changed by the rotation of the grating device 40 with the shaft member 43 as the rotation axis.
  • the upper end of the positioning pole 42a preferably supports the vicinity of the center of gravity of the grating device 40 from the ⁇ V direction.
  • the width in the V direction of the grating 14c may be twice or more the beam width in the V direction of the laser light.
  • the moving distance of the grating device 40 by the grating moving device 42 may be equal to or greater than the beam width in the V direction of the laser light.
  • the position of the laser beam in the V direction may not change. Therefore, as shown in FIGS. 2B and 2D, when the grating device 40 is positioned below, the upper half of the grating 14c may be used.
  • the lower half of the grating 14c may be used when the grating device 40 is positioned upward. Therefore, for example, when the upper half of the grating 14c is deteriorated, the grating moving device 42 may be able to switch to using the lower half of the grating 14c.
  • the positioning pole 42a supports the gravity center position of the grating device 40 or the vicinity thereof in the V direction, the load on the grating device 40, the linear guide 44, the shaft member 43 and the like can be reduced. Therefore, the grating moving device 42 can stably support the grating device 40, and can suppress the deviation of the alignment of the grating 14c even when the grating device 40 is moved in the V direction or the ⁇ V direction.
  • the grating moving device 42 includes the positioning pole 42a
  • An automatic micrometer may be used instead of the positioning pole 42a.
  • the prisms 14a and 14b are used as the beam expanders, the present invention is not limited to this, and other types of beam expanders may be used.
  • a grating device including a wavefront adjusting mechanism (second embodiment) 3A to 3F show the configuration and operation of the grating moving device in the narrowband module 14 of the second embodiment. 3A to 3F, the illustration of the laser chamber 10, the output coupling mirror 15, and the like is omitted.
  • FIG. 3A is a diagram viewed from a direction substantially perpendicular to the dispersion surface of the grating.
  • FIG. 3B is a cutaway view taken along line IIIB-IIIB in FIG. 3A.
  • 3C and 3D are cross-sectional views taken along line IIICD-IIICD in FIG. 3A.
  • 3E and 3F are views viewed from a direction substantially parallel to the dispersion surface of the grating and substantially perpendicular to the traveling direction of the laser light output from the output coupling mirror 15.
  • the holder 24c of the grating device 40 may include a wavefront adjusting mechanism.
  • the wavefront adjusting mechanism may include end fixing parts 101 and 102, a movable part 103, a holding part 104, and a driving part 105.
  • the grating 14c may be fixed with one end in FIG. 3A sandwiched between the end fixing portions 101.
  • the other end of the grating 14c in FIG. 3A may be sandwiched and fixed by the end fixing portion 102.
  • the central portion of the grating 14 c in FIG. 3A may be sandwiched and held by the movable portion 103.
  • the movable part 103 may be able to be pushed and pulled by the driving part 105.
  • the end fixing portions 101 and 102 and the movable portion 103 may be held by the holding portion 104.
  • the driving unit 105 may be integrated with the holding unit 104. It may be possible to change the curvature of the grating 14 c by pushing and pulling the central portion of the grating 14 c by the movable portion 103 and the driving portion 105. By changing the curvature of the grating 14c, the wavefront of the diffracted light by the grating 14c may be adjusted.
  • linear guides 44e and 44h may be disposed on both sides of the drive unit 105 that pushes and pulls the movable unit 103.
  • the linear guide 44e may include a rail portion 44c fixed to the bracket 41 and a moving portion 44d fixed to the holding portion 104.
  • the linear guide 44h may include a rail portion 44f fixed to the bracket 41 and a moving portion 44g fixed to the holding portion 104.
  • the gravity center position of the grating device 40 in the second embodiment is compared with the gravity center position of the grating device 40 in the first embodiment. However, it may be slightly shifted to the linear guide side. Therefore, as compared with the position of the positioning pole 42a in the first embodiment, the position of the positioning pole 42a in the second embodiment may be slightly shifted to the linear guide side. About another point, it may be the same as that of 1st Embodiment.
  • the grating device can be stably supported, and even when the grating device 40 is moved in the V direction or the ⁇ V direction, misalignment of the grating is performed. Can be suppressed.
  • the wavefront adjusting mechanism described in the second embodiment is an example, and other wavefront adjusting mechanisms may be used.
  • FIG. 4A is a diagram viewed from a direction substantially perpendicular to the dispersion surface of the grating.
  • 4B and 4C are views seen from a direction substantially parallel to the traveling direction of the laser beam output from the output coupling mirror 15.
  • FIG. 4A is a diagram viewed from a direction substantially perpendicular to the dispersion surface of the grating.
  • 4B and 4C are views seen from a direction substantially parallel to the traveling direction of the laser beam output from the output coupling mirror 15.
  • FIG. 4A is a diagram viewed from a direction substantially perpendicular to the dispersion surface of the grating.
  • 4B and 4C are views seen from a direction substantially parallel to the traveling direction of the laser beam output from the output coupling mirror 15.
  • FIG. 4A is a diagram viewed from a direction substantially perpendicular to the dispersion surface of the grating.
  • 4B and 4C are views seen from a direction substantially parallel to the traveling direction of the laser beam output from the output
  • the laser device may include a narrowband module moving device 50 that moves the narrowband module 14 including the prisms 14a and 14b, the grating 14c, the housing 24, and the like with respect to the laser chamber 10. .
  • the width in the V direction of the prisms 14a and 14b may be twice or more the beam width in the V direction of the laser light.
  • the width in the V direction of the grating 14c may be twice or more the beam width in the V direction of the laser light.
  • the grating moving device described in the first and second embodiments may not be included.
  • the grating 14c may be held by a holder 24c, and the holder 24c may be fixed to the housing 24 by a fixing member 24e.
  • Three mounts 46 a to 46 c may be fixed to the lower surface of the housing 24.
  • the lower surfaces of the mounts 46a to 46c may have a concave shape.
  • the band narrowing module 14 may be supported from below by these mounts 46a to 46c. When the band narrowing module 14 is viewed from the V direction, the position of the center of gravity of the band narrowing module 14 may overlap with the position inside the triangle whose apex is the position of the mounts 46a to 46c in the V direction.
  • the narrow-band module moving device 50 may include a cam feed 51, a linear cam 52, and an elevator 53.
  • the cam feed 51, the linear motion cam 52, and the elevator 53 may be located on the plate 31 fixed to the pedestal 30.
  • the cam feed 51 may include a rod support portion 51a, a rotating rod 51b, and a linear motion portion 51c.
  • the rod support 51a may be fixed to the plate 31.
  • the rotating rod 51b may be supported by the rod support portion 51a so that movement in the longitudinal direction is restricted.
  • the rotating rod 51b may be rotatable about a longitudinal rotation axis.
  • the rotating rod 51b may have a feed screw portion 51d.
  • the feed screw portion 51d may be a portion in which a male screw is formed on the outer peripheral surface of the rotating rod 51b.
  • the linear motion portion 51c may have a female screw formed on the inner peripheral surface, and the feed screw portion 51d may be screwed therein.
  • the linear motion part 51c may be fixed to the bracket 52a of the linear motion cam 52, and the rotation of the linear motion part 51c may be restricted.
  • the linear motion part 51c may reciprocate in the longitudinal direction of the rotation rod 51b with the rotation of the rotation rod 51b having the feed screw part 51d.
  • the linear cam 52 may include a bracket 52a, connection poles 52b, 52c, and 52d, and inclined portions 52e, 52f, and 52g.
  • the bracket 52 a may be fixed to the linear motion portion 51 c of the cam feed 51.
  • One end of each of the connection poles 52b, 52c, 52d may be fixed to the bracket 52a.
  • the other ends of the connection poles 52b, 52c, 52d may be fixed to the inclined portions 52e, 52f, 52g.
  • the inclined portions 52e, 52f, and 52g may have an inclination so that the H direction side is higher and the ⁇ H direction side is lower.
  • the linear motion cam 52 may reciprocate in the H direction and the ⁇ H direction as the linear motion portion 51 c of the cam feed 51 reciprocates.
  • the elevator 53 may include fixed support columns 53a, 53b, and 53c, and swing levers 53d, 53e, and 53f.
  • the fixed struts 53a, 53b, and 53c may be fixed to the plate 31.
  • Each of the swing levers 53d, 53e, 53f may be supported by the fixed columns 53a, 53b, 53c so that the swing levers 53d, 53e, 53f can swing around the respective ends.
  • the other end of each of the swing levers 53d, 53e, 53f has a hemispherical top surface and a support portion for supporting the mounts 46a to 46c, and a lower portion with wheels on the slopes of the slope portions 52e, 52f, 52g.
  • You may have a cam follower part which moves up and down along. As the linear cam 52 reciprocates, the swing levers 53d, 53e, 53f may swing up and down to move the band narrowing module 14 up and down.
  • the moving distance of the narrowband module 14 by the narrowband module moving device 50 may be equal to or greater than the beam width in the V direction of the laser light.
  • the position of the laser beam in the V direction may not change. Therefore, as shown in FIG. 4B, when the band narrowing module 14 is positioned below, the upper halves of the prisms 14a and 14b and the grating 14c may be used. As shown in FIG. 4C, the lower half of the prisms 14a, 14b and the grating 14c may be used when the band narrowing module 14 is positioned upward.
  • the optical element that is damaged by the laser beam may be damaged not only by the grating 14c but also by the prisms 14a and 14b.
  • the band narrowing module moving device 50 can switch to using the lower half of each of the prisms 14a, 14b and the grating 14c. It may be.
  • the prisms 14a and 14b move together, thereby improving the lifetime of the prisms 14a and 14b and reducing the replacement frequency of the prisms 14a and 14b.
  • the position of the center of gravity of the band narrowing module 14 is supported so as to overlap in the V direction with the position inside the triangle whose apex is the position of the mounts 46a to 46c.
  • the band narrowing module 14 can be stably supported, and the alignment of the band narrowing module 14 can be suppressed even when the band narrowing module 14 is moved in the V direction or the ⁇ V direction.
  • the position of the band narrowing module 14 in the V direction can be adjusted with high accuracy according to the number of rotations of the rotating rod 51b. About another point, it may be the same as that of 1st Embodiment.
  • the position of the center of gravity of the band narrowing module 14 may further overlap in the V direction with the position of the center of gravity of a triangle whose apex is the position of the mounts 46a to 46c.
  • Laser device capable of moving narrow band module moving device show the configuration and operation of the narrowband module 14 and the narrowband module moving device in the fourth embodiment.
  • 5A to 5E, the illustration of the laser chamber 10, the output coupling mirror 15, and the like is omitted.
  • 5A to 5E are views seen from a direction substantially parallel to the traveling direction of the laser beam output from the output coupling mirror 15. FIG.
  • the laser device including the laser chamber 10, the output coupling mirror 15, the band narrowing module 14, and the like may be held by the holding device 33.
  • the holding device 33 may include the plate 20 a and the pedestal 30.
  • Bolt holes 27 for fixing the band narrowing module 14 may be formed in the plate 20a.
  • a first moving mechanism 34 may be disposed on the pedestal 30 of the holding device 33.
  • a stopper 35 may be disposed at the end of the first moving mechanism 34 on the ⁇ H direction side.
  • the band narrowing module 14 and the band narrowing module moving device 50 may be carried by a carriage 36.
  • the carriage 36 may have wheels 36a that can travel on the floor surface.
  • the wheel 36a may have a stopper (not shown) or a height adjusting mechanism (not shown).
  • a second moving mechanism 37 may be disposed on the upper surface of the carriage 36.
  • the band-narrowing module moving device 50 according to the fourth embodiment may have wheels 54 so as to move along the second moving mechanism 37.
  • the narrow band module moving device 50 may be fixed to the carriage 36 by a fixing member 55 and a bolt.
  • the carriage 36 may move next to the holding device 33 in a state where the band narrowing module 14 and the band narrowing module moving device 50 are mounted.
  • the second moving mechanism 37 may be connected to the first moving mechanism 34 by the connecting member 56, and the carriage 36 may be fixed to the holding device 33.
  • the band narrowing module moving device 50 may be removed from the fixing member 55. Then, the narrowband module moving device 50 in a state where the narrowband module 14 is supported may be moved to the holding device 33 by the second moving mechanism 37 and the first moving mechanism 34. The narrow band module moving device 50 may be positioned by a stopper 35 disposed in the first moving mechanism 34.
  • the connecting member 56 may be removed and the carriage 36 may be removed from the holding device 33.
  • the band narrowing module moving device 50 may be fixed to the holding device 33 by the fixing member 55 and the bolt.
  • the height of the band narrowing module 14 may be adjusted by rotating the rotating rod 51b of the band narrowing module moving device 50.
  • FIG. 5C shows the case where the band narrowing module 14 is positioned downward to use the upper half of the grating 14c
  • FIG. 5D shows the band narrowing module 14 upward to use the lower half of the grating 14c. The case where it is located in is shown.
  • the narrow band module 14 may be fixed to the plate 20a of the holding device 33 with a bolt.
  • the band narrowing module moving device 50 may be removed by removing the fixing member 55 while fixing the band narrowing module 14 to the plate 20 a.
  • Other points may be the same as in the third embodiment.
  • the band narrowing module 14 be moved in the vertical direction by the band narrowing module moving device 50, but also it can be stably moved in the H direction or the ⁇ H direction.
  • Laser apparatus having a grating moving device and a narrowband module moving device show the configuration and operation of the band narrowing module 14 in the fifth embodiment.
  • 6A to 6D, the illustration of the laser chamber 10, the output coupling mirror 15, and the like is omitted.
  • 6A to 6D are views viewed from a direction substantially parallel to the dispersion surface of the grating and substantially perpendicular to the traveling direction of the laser light output from the output coupling mirror 15.
  • both the vertical movement of the grating 14c by a grating moving device (not shown) and the vertical movement of the band narrowing module 14 by a narrow band module moving device (not shown) may be possible.
  • the specific configuration and function of the grating moving device (not shown) may be the same as those described in the first or second embodiment.
  • the specific configuration and function of the narrowband module moving apparatus (not shown) may be the same as those described in the third or fourth embodiment.
  • the width in the V direction of the prisms 14a and 14b and the through hole 24d may be twice or more the beam width in the V direction of the laser light.
  • the width in the V direction of the grating 14c is four times or more the beam width in the V direction of the laser light, and may be larger than the width in the V direction of the prisms 14a and 14b.
  • the lower half of the prisms 14a and 14b may be used when the band narrowing module 14 is disposed at a high position by a narrow band module moving device (not shown).
  • a narrow band module moving device not shown
  • the grating 14c is arranged at the highest position by a grating moving device (not shown)
  • the lowermost part of the grating 14c may be used.
  • the grating 14c may be arranged at an intermediate position between the highest position and the lowest position by a grating moving device (not shown). Accordingly, the lower half of the prisms 14a and 14b may be used, and the second part from the bottom of the grating 14c may be used.
  • the narrowband module 14 is arranged at a low position by a narrowband module moving device (not shown). Also good. Thereby, the upper half of the prisms 14a and 14b may be used, and the second part from the top of the grating 14c may be used.
  • the grating 14c may be arranged at the lowest position by a grating moving device (not shown) with the band narrowing module 14 arranged at a low position.
  • a grating moving device (not shown) with the band narrowing module 14 arranged at a low position.
  • the upper half of the prisms 14a and 14b may be used, and the uppermost part of the grating 14c may be used.
  • FIGS. 6A, 6B, 6C, and 6D are possible, and the four positions of the grating 14c can be used.
  • 6A and 6B use the lower half of the prisms 14a and 14b
  • FIGS. 6C and 6D use the upper half of the prisms 14a and 14b. It can be used.
  • the prisms 14a and 14b may be damaged by the laser light, but the damage may be smaller than that of the grating 14c.
  • the prisms 14a and 14b can use four positions. It does not have to be. Therefore, the heights of the prisms 14a and 14b may be small.
  • the casing 24 of the band narrowing module 14 must be large by the stroke of the four stages. Don't be. Therefore, a large amount of inert gas filling the housing 24 may be required.
  • the moving stroke of the grating 14c is reduced, and the housing 24 may be small. For this reason, the inert gas purge flow rate and weight of the band narrowing module 14 can also be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

狭帯域化モジュールは、レーザ光を狭帯域化するグレーティングと、グレーティングを保持するホルダと、を含むグレーティング装置と、グレーティング装置を収容する筐体と、グレーティングの分散面に略垂直な方向から、グレーティング装置の重心位置又はその近傍位置を支持するとともに、グレーティングの分散面に略垂直な方向に、グレーティング装置を筐体に対して移動させるグレーティング移動装置と、を備えてもよい。

Description

狭帯域化モジュール、狭帯域化レーザ装置、及び、狭帯域化モジュールを位置決めする方法
 本開示は、狭帯域化モジュール、狭帯域化レーザ装置、及び、狭帯域化モジュールを位置決めする方法に関する。
 半導体集積回路の微細化、高集積化につれて、半導体露光装置においては解像力の向上が要請されている。半導体露光装置を以下、単に「露光装置」という。このため露光用光源から出力される光の短波長化が進められている。露光用光源には、従来の水銀ランプに代わってガスレーザ装置が用いられている。現在、露光用のガスレーザ装置としては、波長248nmの紫外線を出力するKrFエキシマレーザ装置ならびに、波長193nmの紫外線を出力するArFエキシマレーザ装置が用いられている。
 現在の露光技術としては、露光装置側の投影レンズとウエハ間の間隙を液体で満たして、当該間隙の屈折率を変えることによって、露光用光源の見かけの波長を短波長化する液浸露光が実用化されている。ArFエキシマレーザ装置を露光用光源として用いて液浸露光が行われた場合は、ウエハには水中における波長134nmの紫外光が照射される。この技術をArF液浸露光という。ArF液浸露光はArF液浸リソグラフィーとも呼ばれる。
 KrF、ArFエキシマレーザ装置の自然発振におけるスペクトル線幅は約350~400pmと広いため、露光装置側の投影レンズによってウエハ上に縮小投影されるレーザ光(紫外線光)の色収差が発生して解像力が低下する。そこで色収差が無視できる程度となるまでガスレーザ装置から出力されるレーザ光のスペクトル線幅を狭帯域化する必要がある。スペクトル線幅はスペクトル幅とも呼ばれる。このためガスレーザ装置のレーザ共振器内には狭帯域化素子を有する狭帯域化モジュール(Line Narrow Module)が設けられ、この狭帯域化モジュールによりスペクトル幅の狭帯域化が実現されている。なお、狭帯域化素子はエタロンやグレーティング等であってもよい。このようにスペクトル幅が狭帯域化されたレーザ装置を狭帯域化レーザ装置という。
米国特許第7653112号明細書 特開2006-019365号公報
概要
 本開示の1つの観点に係る狭帯域化モジュールは、レーザ光を狭帯域化するグレーティングと、グレーティングを保持するホルダと、を含むグレーティング装置と、グレーティング装置を収容する筐体と、グレーティングの分散面に略垂直な方向から、グレーティング装置の重心位置又はその近傍位置を支持するとともに、グレーティングの分散面に略垂直な方向に、グレーティング装置を筐体に対して移動させるグレーティング移動装置と、を備えてもよい。
 本開示の他の1つの観点に係る狭帯域化モジュールは、レーザ光を狭帯域化するグレーティングと、グレーティングを保持するホルダと、を含むグレーティング装置と、グレーティング装置を保持するブラケットと、グレーティング装置及びブラケットを収容する筐体と、グレーティングの分散面に略垂直な方向に、グレーティング装置をブラケットに対して移動させるグレーティング移動装置と、グレーティングの分散面に略垂直に配置され、グレーティング装置及びブラケットの筐体に対する回転軸を規定するシャフト部材と、を備えてもよい。
 本開示の他の1つの観点に係る狭帯域化レーザ装置は、レーザチャンバと、グレーティングを含み、レーザチャンバから出力されたレーザ光を狭帯域化してレーザチャンバに戻す狭帯域化モジュールと、狭帯域化モジュールを3点で支持するとともに、グレーティングの分散面に略垂直な方向に、狭帯域化モジュールをレーザチャンバに対して移動させる狭帯域化モジュール移動装置と、を備えてもよい。
 本開示の他の1つの観点に係る狭帯域化レーザ装置は、レーザチャンバと、グレーティングと、グレーティングを収容する筐体と、を含み、レーザチャンバから出力されたレーザ光を狭帯域化してレーザチャンバに戻す狭帯域化モジュールと、グレーティングの分散面に略垂直な方向に、狭帯域化モジュールをレーザチャンバに対して移動させる狭帯域化モジュール移動装置と、グレーティングの分散面に略垂直な方向に、グレーティングを筐体に対して移動させるグレーティング移動装置と、を備えてもよい。
 本開示の他の1つの観点に係る狭帯域化モジュールを位置決めする方法は、レーザチャンバと、グレーティングを含み、レーザチャンバから出力されたレーザ光を狭帯域化してレーザチャンバに戻す狭帯域化モジュールと、狭帯域化モジュールを支持し、且つ、グレーティングの分散面に略垂直な方向に、狭帯域化モジュールを移動可能に構成された狭帯域化モジュール移動装置と、狭帯域化モジュールをレーザチャンバに対して位置決めして保持する保持装置と、狭帯域化モジュール移動装置を、狭帯域化モジュール移動装置による狭帯域化モジュールの移動方向と交差する方向に、保持装置に対して移動させる第1の移動機構と、狭帯域化モジュールを支持した狭帯域化モジュール移動装置を保持して運搬可能に構成された台車と、狭帯域化モジュールを支持した狭帯域化モジュール移動装置を、狭帯域化モジュール移動装置による狭帯域化モジュールの移動方向と交差する方向に、台車に対して移動させる第2の移動機構と、を用いて、狭帯域化モジュールをレーザチャンバに対して位置決めする方法であってもよい。台車により、狭帯域化モジュールを支持した狭帯域化モジュール移動装置を保持して保持装置の近傍まで運搬し、第2の移動機構を第1の移動機構に接続し、第2の移動機構及び第1の移動機構により、狭帯域化モジュールを支持した狭帯域化モジュール移動装置を、保持装置まで移動させ、保持装置により、狭帯域化モジュールをレーザチャンバに対して位置決めして保持し、第1の移動機構により、狭帯域化モジュール移動装置を、狭帯域化モジュール及び保持装置から除去するようにしてもよい。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1Aは、第1の実施形態に係るレーザ装置の構成を模式的に示す。 図1Bは、第1の実施形態に係るレーザ装置の構成を模式的に示す。 図2Aは、狭帯域化モジュール14におけるグレーティング移動装置の構成及び動作を示す。 図2Bは、狭帯域化モジュール14におけるグレーティング移動装置の構成及び動作を示す。 図2Cは、狭帯域化モジュール14におけるグレーティング移動装置の構成及び動作を示す。 図2Dは、狭帯域化モジュール14におけるグレーティング移動装置の構成及び動作を示す。 図2Eは、狭帯域化モジュール14におけるグレーティング移動装置の構成及び動作を示す。 図3Aは、第2の実施形態の狭帯域化モジュール14におけるグレーティング移動装置の構成及び動作を示す。 図3Bは、第2の実施形態の狭帯域化モジュール14におけるグレーティング移動装置の構成及び動作を示す。 図3Cは、第2の実施形態の狭帯域化モジュール14におけるグレーティング移動装置の構成及び動作を示す。 図3Dは、第2の実施形態の狭帯域化モジュール14におけるグレーティング移動装置の構成及び動作を示す。 図3Eは、第2の実施形態の狭帯域化モジュール14におけるグレーティング移動装置の構成及び動作を示す。 図3Fは、第2の実施形態の狭帯域化モジュール14におけるグレーティング移動装置の構成及び動作を示す。 図4Aは、第3の実施形態における狭帯域化モジュール14及び狭帯域化モジュール移動装置の構成及び動作を示す。 図4Bは、第3の実施形態における狭帯域化モジュール14及び狭帯域化モジュール移動装置の構成及び動作を示す。 図4Cは、第3の実施形態における狭帯域化モジュール14及び狭帯域化モジュール移動装置の構成及び動作を示す。 図5Aは、第4の実施形態における狭帯域化モジュール14及び狭帯域化モジュール移動装置の構成及び動作を示す。 図5Bは、第4の実施形態における狭帯域化モジュール14及び狭帯域化モジュール移動装置の構成及び動作を示す。 図5Cは、第4の実施形態における狭帯域化モジュール14及び狭帯域化モジュール移動装置の構成及び動作を示す。 図5Dは、第4の実施形態における狭帯域化モジュール14及び狭帯域化モジュール移動装置の構成及び動作を示す。 図5Eは、第4の実施形態における狭帯域化モジュール14及び狭帯域化モジュール移動装置の構成及び動作を示す。 図6Aは、第5の実施形態における狭帯域化モジュール14の構成及び動作を示す。 図6Bは、第5の実施形態における狭帯域化モジュール14の構成及び動作を示す。 図6Cは、第5の実施形態における狭帯域化モジュール14の構成及び動作を示す。 図6Dは、第5の実施形態における狭帯域化モジュール14の構成及び動作を示す。
実施形態
<内容>
1.概要
2.グレーティング移動装置を有するレーザ装置(第1の実施形態)
 2.1 レーザチャンバ
 2.2 狭帯域化モジュール
 2.3 出力結合ミラー
 2.4 グレーティング移動装置
3.波面調節機構を含むグレーティング装置(第2の実施形態)
4.狭帯域化モジュール移動装置を有するレーザ装置(第3の実施形態)
5.狭帯域化モジュール移動装置を移動可能なレーザ装置(第4の実施形態)
6.グレーティング移動装置及び狭帯域化モジュール移動装置を有するレーザ装置(第5の実施形態)
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.概要
 狭帯域化レーザ装置における狭帯域化素子としてグレーティングを使用すると、グレーティングの表面がレーザ光によってダメージを受ける場合がある。例えば、グレーティングの表面が酸化したり、有機物が付着したりする可能性がある。グレーティングの表面がダメージを受けると、回折効率が低下し得る。しかし、同じグレーティングの表面でも、レーザ光が当たらなかった部分は、レーザ光が当たった部分よりもダメージが小さい場合があり得る。そこで、グレーティングを移動させることにより、ダメージが小さい部分にレーザ光が当たるようにしてもよい。これにより、グレーティングの寿命を向上し、グレーティングの交換頻度を低減し得る。
 しかしながら、エキシマレーザ装置において用いられるグレーティングは、グレーティングを保持するホルダを合わせると、かなりの大きさ及び重量となり得る。このため、回折波面を維持し、且つ、グレーティングの入射角度を維持した状態で、高精度に移動させることは困難であり得る。
 また、グレーティングを含む狭帯域化モジュール全体を移動させる場合には、グレーティング及びホルダを移動させる場合よりもさらに大きさ及び重量が増え得る。そのため、狭帯域化モジュールを高精度に移動させることも困難であり得る。
 本開示の1つの観点によれば、グレーティングの分散面に略垂直な方向から、グレーティング装置の重心位置又はその近傍位置を支持するとともに、グレーティングの分散面に略垂直な方向に、グレーティング装置を移動させてもよい。
 また、グレーティングを含む狭帯域化モジュールを3点で支持するとともに、グレーティングの分散面に略垂直な方向に、狭帯域化モジュールを移動させてもよい。
2.グレーティング移動装置を有するレーザ装置(第1の実施形態)
 図1A及び図1Bは、第1の実施形態に係るレーザ装置の構成を模式的に示す。図1Aに示されるレーザ装置は、レーザチャンバ10と、一対の放電電極11a及び11bと、狭帯域化モジュール14と、出力結合ミラー15と、を含んでもよい。レーザ装置は、図示しない増幅器に入射させるシード光をレーザ発振して出力するマスターオシレータであってもよい。
 図1Aにおいては、一対の放電電極11a及び11bの間の放電方向に略平行な方向からみたレーザ装置の内部構成が示されている。図1Bにおいては、一対の放電電極11a及び11bの間の放電方向に略垂直で、且つ、出力結合ミラー15から出力されるレーザ光の進行方向に略垂直な方向からみたレーザ装置の内部構成が示されている。出力結合ミラー15から出力されるレーザ光の進行方向は、Z方向であってよい。一対の放電電極11a及び11bの間の放電方向は、V方向又は-V方向であってよい。これらの両方に垂直な方向は、H方向であってよい。-V方向は、重力の方向とほぼ一致していてもよい。
 2.1 レーザチャンバ
 レーザチャンバ10は、例えばアルゴン、ネオン及びフッ素等を含むレーザ媒質としてのレーザガスが封入されるチャンバでもよい。レーザチャンバ10の両端にはウインドウ10a及び10bが設けられてもよい。
 レーザチャンバ10は、ホルダ20によって支持されていてもよい。レーザチャンバ10及びホルダ20は、プレート20aとプレート20bとの間に配置され、台座30に固定されもよい。プレート20aには、3本のインバーロッド20cの各一端が固定され、プレート20bには、これらのインバーロッド20cの各他端が固定されてもよい。プレート20bは、台座30に固定されてもよい。プレート20aはZ方向に移動可能な図示しないリニアブッシュを介して台座30に固定されていてもよい。
 プレート20aには、貫通孔22aが形成され、プレート20bには、貫通孔22bが形成されてもよい。プレート20aとレーザチャンバ10との間には、光路管21aが接続されていてもよい。光路管21aの一端はプレート20aの貫通孔22aの周囲にシールされた状態で固定され、光路管21aの他端はレーザチャンバ10のウインドウ10aの周囲にシールされた状態で固定されてもよい。プレート20bとレーザチャンバ10との間には、光路管21bが接続されていてもよい。光路管21bの一端はプレート20bの貫通孔22bの周囲にシールされた状態で固定され、光路管21bの他端はレーザチャンバ10のウインドウ10bの周囲にシールされた状態で固定されてもよい。
 一対の放電電極11a及び11bは、レーザ媒質を放電により励起するための電極として、レーザチャンバ10内に配置されてもよい。一対の放電電極11a及び11bには、図示しないパルスパワーモジュールからパルス状の高電圧が印加されてもよい。
 一対の放電電極11a及び11b間に高電圧が印加されると、一対の放電電極11a及び11b間に放電が起こり得る。この放電のエネルギーにより、レーザチャンバ10内のレーザ媒質が励起されて高エネルギー準位に移行し得る。励起されたレーザ媒質が、その後低エネルギー準位に移行するとき、そのエネルギー準位差に応じた光を放出し得る。
 図1Aに示されるように、ウインドウ10a及び10bは、これらのウインドウに対する光の入射面とHZ平面とが略一致し、かつ、この光の入射角度が略ブリュースター角となるように配置されてもよい。レーザチャンバ10内で発生した光は、ウインドウ10a及び10bを介してレーザチャンバ10の外部に出射してもよい。
 2.2 狭帯域化モジュール
 狭帯域化モジュール14は、2つのプリズム14a及び14bと、グレーティング14cと、ホルダ24a~24cと、ブラケット41と、グレーティング移動装置42と、シャフト部材43と、筐体24と、を含んでもよい。筐体24は、プリズム14a、14b、グレーティング14c、ホルダ24a~24c及びブラケット41を収容してもよい。筐体24の内部において、プリズム14aはホルダ24aに支持され、プリズム14bはホルダ24bに支持され、グレーティング14cはホルダ24cに支持されてもよい。ホルダ24cはブラケット41に支持されていてもよい。
 筐体24は、プレート20aに支持されていてもよい。筐体24には貫通孔24dが形成されてもよい。筐体24の貫通孔24dの位置と、プレート20aの貫通孔22aの位置とがZ方向においてほぼ重なるようにすることにより、光路管21aの内部と筐体24の内部とが連通するようにしてもよい。光路管21aの内部及び筐体24の内部には、不活性ガスが充填されていてもよい。
 プリズム14a及び14bは、レーザチャンバ10のウインドウ10aから出射された光のH方向のビーム幅を拡大させて、その光をグレーティング14cに入射させてもよい。また、プリズム14a及び14bは、グレーティング14cからの反射光のH方向のビーム幅を縮小させるとともに、その光を、ウインドウ10aを介して、レーザチャンバ10の放電領域に戻してもよい。
 グレーティング14cは、溝の表面の物質が高反射率の材料によって構成され、表面に多数の溝が所定間隔で形成されていてもよい。各溝は例えば直角三角形の溝であってもよい。プリズム14a及び14bからグレーティング14cに入射した光は、これらの溝によって反射されるとともに、光の波長に応じた方向に回折させられてもよい。グレーティング14cは、プリズム14a及び14bからグレーティング14cに入射する光の入射角と、所望波長の回折光の回折角とが一致するようにリトロー配置されてもよい。これにより、所望波長付近の光がプリズム14a及び14bを介してレーザチャンバ10に戻されてもよい。
 2.3 出力結合ミラー
 出力結合ミラー15は、筐体26に収容されていてもよい。出力結合ミラー15は、筐体26の内部で、ホルダ25によって支持されていてもよい。
 筐体26は、プレート20bに支持されていてもよい。筐体26には貫通孔26aが形成されてもよい。筐体26の貫通孔26aの位置と、プレート20bの貫通孔22bの位置とがZ方向においてほぼ重なるようにすることにより、光路管21bの内部と筐体26の内部とが連通するようにしてもよい。光路管21bの内部及び筐体26の内部には、不活性ガスが充填されていてもよい。
 出力結合ミラー15の表面には、部分反射膜がコーティングされていてもよい。従って、出力結合ミラー15は、レーザチャンバ10のウインドウ10bから出力される光のうちの一部を透過させて出力し、他の一部を反射させてレーザチャンバ10内に戻してもよい。
 狭帯域化モジュール14と出力結合ミラー15とが、光共振器を構成してもよい。レーザチャンバ10から出射した光は、狭帯域化モジュール14と出力結合ミラー15との間で往復し、放電電極11a及び11bの間のレーザゲイン空間を通過する度に増幅されレーザ発振し得る。レーザ光は、狭帯域化モジュール14で折り返される度に狭帯域化され得る。さらに、上述したウインドウ10a及び10bの配置によって、H方向の偏光成分が選択され得る。こうして増幅されたレーザ光が、出力結合ミラー15から出力され得る。
 2.4 グレーティング移動装置
 図2A~図2Eは、狭帯域化モジュール14におけるグレーティング移動装置の構成及び動作を示す。図2A~図2Eにおいて、レーザチャンバ10や出力結合ミラー15等の図示は省略されている。図2Aは、グレーティングの分散面に略垂直な方向からみた図である。図2B及び図2Cは、図2AにおけるIIBC-IIBC線における断面図である。図2D及び図2Eは、グレーティングの分散面と略平行で、且つ、出力結合ミラー15から出力されるレーザ光の進行方向に略垂直な方向からみた図である。
 ホルダ24cは、グレーティング14cの下面と、裏面と、上面とを覆うように、グレーティング14cを保持してもよい。グレーティング14cとホルダ24cとで、グレーティング装置40が構成されてもよい。
 グレーティング装置40は、リニアガイド44を介して、ブラケット41に保持されてもよい。リニアガイド44は、ブラケット41に固定されたレール部44aと、ホルダ24cに固定された移動部44bと、を含んでもよい。移動部44bは、レール部44aに沿ってV方向又は-V方向に移動できるようになっていてもよい。
 シャフト部材43は、筐体24の底部と、ブラケット41とをV方向に貫通し、図示しないリニアブッシュを介して固定されていてもよい。シャフト部材43の上端は、ホルダ24cの底面に接続され、シャフト部材43が、グレーティング装置40及びブラケット41の回転軸を規定してもよい。グレーティング装置40及びブラケット41の回転軸は、グレーティング14cの表面の中心位置とほぼ一致していてもよい。グレーティング装置40及びブラケット41がほぼ一体的に回転することにより、グレーティング14cに入射する光の入射角と、所望波長の回折光の回折角とが一致するように調節されてもよい。グレーティング装置40及びブラケット41の回転は、シャフトロック43aによってロックされてもよい。
 グレーティング移動装置42は、位置決めポール42aと、固定部材42bと、を含んでもよい。位置決めポール42aは、筐体24の底部と、ブラケット41とを貫通していてもよい。シャフト部材43を回転軸としたブラケット41の回転を許容するように、位置決めポール42aがブラケット41を貫通する貫通孔の口径は、位置決めポール42aの太さに対して若干の余裕があってもよい。筐体24の底部の貫通孔の口径は、位置決めポール42aがV方向に移動可能であって、ほとんど傾かない程度の口径であってもよい。たとえば、筐体24の貫通孔に図示しないリニアブッシュを配置して、このリニアブッシュを介して位置決めポール42aをV方向に移動可能にしてもよい。
 位置決めポール42aの下端は、固定部材42bによって押さえられてもよい。固定部材42bは、筐体24の底面に、ボルトによって固定されてもよい。図2Bに示されるように、筐体24の底面と固定部材42bとの間には、スペーサ42cが挟まれてもよい。スペーサ42cの厚み又はスペーサ42cの有無により、位置決めポール42aの位置が調節されてもよい。
 位置決めポール42aの上端は、半球面状であってもよい。位置決めポール42aの上端は、ホルダ24cの底面に接触していてもよい。位置決めポール42aの上端は、ホルダ24cを底面から支持してもよい。位置決めポール42aの位置により、グレーティング装置40のV方向又は-V方向の位置が調節されてもよい。グレーティング装置40がV方向又は-V方向に移動するとき、シャフト部材43もグレーティング装置40と一緒に移動してもよい。
 シャフト部材43を回転軸としたグレーティング装置40の回転により、位置決めポール42aの上端がホルダ24cの底面に接触する位置は若干変わってもよい。但し、位置決めポール42aの上端は、グレーティング装置40の重心位置の近傍を、-V方向から支持することが好ましい。
 グレーティング14cのV方向の幅は、レーザ光のV方向のビーム幅の2倍以上であってもよい。グレーティング移動装置42によるグレーティング装置40の移動距離は、レーザ光のV方向のビーム幅以上であってもよい。グレーティング移動装置42によってグレーティング装置40をV方向又は-V方向に移動させる場合に、レーザ光のV方向の位置は変化しなくてもよい。従って、図2B及び図2Dに示されるように、グレーティング装置40が下方に位置する場合に、グレーティング14cの上半分が使用されてもよい。図2C及び図2Eに示されるように、グレーティング装置40が上方に位置する場合に、グレーティング14cの下半分が使用されてもよい。従って、例えば、グレーティング14cの上半分が劣化した場合に、グレーティング移動装置42により、グレーティング14cの下半分の使用に切り替えることが可能であってもよい。
 本実施形態によれば、位置決めポール42aがグレーティング装置40の重心位置又はその近傍をV方向に支持しているので、グレーティング装置40、リニアガイド44、シャフト部材43等にかかる負荷を軽減し得る。従って、グレーティング移動装置42は、グレーティング装置40を安定して支持することができ、グレーティング装置40をV方向又は-V方向に移動させるときにもグレーティング14cのアライメントがずれることを抑制し得る。
 上述の説明においては、グレーティング移動装置42が位置決めポール42aを含む場合について説明したが、本開示はこれに限定されない。位置決めポール42aの代わりに、自動マイクロメータが用いられてもよい。また、ビームエキスパンダとしてプリズム14a及び14bを用いたが、これに限定されず、他の種類のビームエキスパンダが用いられてもよい。
3.波面調節機構を含むグレーティング装置(第2の実施形態)
 図3A~図3Fは、第2の実施形態の狭帯域化モジュール14におけるグレーティング移動装置の構成及び動作を示す。図3A~図3Fにおいて、レーザチャンバ10や出力結合ミラー15等の図示は省略されている。図3Aは、グレーティングの分散面に略垂直な方向からみた図である。図3Bは、図3AにおけるIIIB-IIIB線における切断図である。図3C及び図3Dは、図3AにおけるIIICD-IIICD線における断面図である。図3E及び図3Fは、グレーティングの分散面と略平行で、且つ、出力結合ミラー15から出力されるレーザ光の進行方向に略垂直な方向からみた図である。
 第2の実施形態に係るレーザ装置においては、グレーティング装置40のホルダ24cが波面調節機構を含んでもよい。波面調節機構は、端部固定部101及び102と、可動部103と、保持部104と、駆動部105とを含んでもよい。
 グレーティング14cは、図3Aにおける一端が端部固定部101によって挟まれて固定されていてもよい。グレーティング14cの図3Aにおける他端は、端部固定部102によって挟まれて固定されていてもよい。グレーティング14cの図3Aにおける中央部は、可動部103によって挟まれて保持されてもよい。可動部103は、駆動部105によって押し引き可能であってもよい。端部固定部101及び102と、可動部103とは、保持部104によって保持されていてもよい。駆動部105は、保持部104と一体であってもよい。グレーティング14cの中央部を可動部103及び駆動部105によって押し引きすることにより、グレーティング14cの曲率を変更可能であってもよい。グレーティング14cの曲率を変更することにより、グレーティング14cによる回折光の波面が調節されてもよい。
 第2の実施形態においては、可動部103を押し引きする駆動部105の両側にリニアガイド44e及び44hが配置されてもよい。リニアガイド44eは、ブラケット41に固定されたレール部44cと、保持部104に固定された移動部44dと、を含んでもよい。リニアガイド44hは、ブラケット41に固定されたレール部44fと、保持部104に固定された移動部44gと、を含んでもよい。
 また、グレーティング14cの裏面側に可動部103や駆動部105が配置されているので、第1の実施形態におけるグレーティング装置40の重心位置と比べて、第2の実施形態におけるグレーティング装置40の重心位置が、リニアガイド側に若干ずれていてもよい。従って、第1の実施形態における位置決めポール42aの位置と比べて、第2の実施形態における位置決めポール42aの位置が、リニアガイド側に若干ずれていてもよい。
 他の点については、第1の実施形態と同様でよい。
 第2の実施形態によれば、第1の実施形態と同様に、グレーティング装置を安定して支持することができ、グレーティング装置40をV方向又は-V方向に移動させるときも、グレーティングのアライメントずれを抑制し得る。
 第2の実施形態において説明された波面調節機構は一例であり、他の波面調節機構が用いられてもよい。
4.狭帯域化モジュール移動装置を有するレーザ装置(第3の実施形態)
 図4A~図4Cは、第3の実施形態における狭帯域化モジュール14及び狭帯域化モジュール移動装置の構成及び動作を示す。図4A~図4Cにおいて、レーザチャンバ10や出力結合ミラー15等の図示は省略されている。図4Aは、グレーティングの分散面に略垂直な方向からみた図である。図4B及び図4Cは、出力結合ミラー15から出力されるレーザ光の進行方向に略平行な方向からみた図である。
 第3の実施形態に係るレーザ装置は、プリズム14a及び14b、グレーティング14c、筐体24等を含む狭帯域化モジュール14をレーザチャンバ10に対して移動させる狭帯域化モジュール移動装置50を含んでもよい。プリズム14a及び14bのV方向の幅は、レーザ光のV方向のビーム幅の2倍以上であってもよい。グレーティング14cのV方向の幅は、レーザ光のV方向のビーム幅の2倍以上であってもよい。第1及び第2の実施形態において説明したグレーティング移動装置は、含まなくてもよい。グレーティング14cは、ホルダ24cに保持され、ホルダ24cは、固定部材24eによって筐体24に固定されていてもよい。
 筐体24の下面には、3つのマウント46a~46cが固定されていてもよい。マウント46a~46cのそれぞれの下面は凹面形状を有してもよい。狭帯域化モジュール14は、これらのマウント46a~46cによって下方から支持されてもよい。狭帯域化モジュール14をV方向からみたときに、狭帯域化モジュール14の重心位置が、マウント46a~46cの位置を頂点とする三角形の内部の位置とV方向において重なってもよい。
 狭帯域化モジュール移動装置50は、カム送り51と、直動カム52と、昇降機53と、を含んでもよい。これらのカム送り51、直動カム52及び昇降機53は、台座30に固定されたプレート31の上に位置していてもよい。
 図4Bに示されるように、カム送り51は、ロッド支持部51aと、回転ロッド51bと、直動部51cと、を含んでもよい。ロッド支持部51aは、プレート31に固定されていてもよい。回転ロッド51bは、長手方向の移動が規制されるように、ロッド支持部51aによって支持されていてもよい。回転ロッド51bは、長手方向の回転軸を中心に回転可能であってもよい。回転ロッド51bは、送りねじ部51dを有していてもよい。送りねじ部51dは、回転ロッド51bの外周面に雄ねじが形成された部分であってもよい。直動部51cは、内周面に雌ねじが形成されており、送りねじ部51dがねじ込まれていてもよい。直動部51cは、直動カム52のブラケット52aに固定され、直動部51cの回転が規制されてもよい。直動部51cは、送りねじ部51dを有する回転ロッド51bの回転に伴って、回転ロッド51bの長手方向に往復動してもよい。
 図4A及び図4Bに示されるように、直動カム52は、ブラケット52aと、接続ポール52b、52c、52dと、傾斜部52e、52f、52gと、を含んでもよい。ブラケット52aは、カム送り51の直動部51cに固定されてもよい。接続ポール52b、52c、52dは、それぞれの一端がブラケット52aに固定されてもよい。接続ポール52b、52c、52dは、それぞれの他端が傾斜部52e、52f、52gに固定されてもよい。傾斜部52e、52f、52gは、それぞれH方向側が高く、-H方向側が低くなるように傾斜を有していてもよい。直動カム52は、カム送り51の直動部51cが往復動するのに伴って、H方向及び-H方向に往復動してもよい。
 図4Cに示されるように、昇降機53は、固定支柱53a、53b、53cと、揺動レバー53d、53e、53fと、を含んでもよい。固定支柱53a、53b、53cは、プレート31に固定されていてもよい。揺動レバー53d、53e、53fは、それぞれの一端を中心として揺れ動くことができるように、それぞれの一端が固定支柱53a、53b、53cに支持されてもよい。揺動レバー53d、53e、53fのそれぞれの他端は、半球面状の上面を有しマウント46a~46cを支持する支持部と、下部に車輪を有し傾斜部52e、52f、52gの斜面に沿って上下動するカムフォロア部とを有してもよい。直動カム52の往復動に伴って、揺動レバー53d、53e、53fが上下に揺れ動いて、狭帯域化モジュール14を上下に移動させてもよい。
 狭帯域化モジュール移動装置50による狭帯域化モジュール14の移動距離は、レーザ光のV方向のビーム幅以上であってもよい。狭帯域化モジュール移動装置50によって狭帯域化モジュール14をV方向又は-V方向に移動させる場合に、レーザ光のV方向の位置は変化しなくてもよい。従って、図4Bに示されるように、狭帯域化モジュール14が下方に位置する場合に、プリズム14a、14b及びグレーティング14cのそれぞれ上半分が使用されてもよい。図4Cに示されるように、狭帯域化モジュール14が上方に位置する場合に、プリズム14a、14b及びグレーティング14cの下半分が使用されてもよい。レーザ光によってダメージを受ける光学素子は、グレーティング14cだけではなく、プリズム14a及び14bもダメージを受ける場合があり得る。例えば、プリズム14a、14b及びグレーティング14cのそれぞれ又はいずれかの上半分が劣化した場合に、狭帯域化モジュール移動装置50により、プリズム14a、14b及びグレーティング14cのそれぞれ下半分の使用に切り替えることが可能であってもよい。
 第3の実施形態によれば、グレーティング14だけではなく、プリズム14a及び14bも一緒に移動することにより、プリズム14a及び14bの寿命を向上し、プリズム14a及び14bの交換頻度を低減し得る。
 また、第3の実施形態によれば、狭帯域化モジュール14の重心位置が、マウント46a~46cの位置を頂点とする三角形の内部の位置とV方向において重なるような配置で支持されている。これにより、狭帯域化モジュール14を安定して支持することができ、狭帯域化モジュール14をV方向又は-V方向に移動させるときにも狭帯域化モジュール14のアライメントがずれることを抑制し得る。また、回転ロッド51bの回転数に応じて、狭帯域化モジュール14のV方向の位置を高精度に調節することができる。
 他の点については、第1の実施形態と同様でよい。
 上述の説明においては、狭帯域化モジュール14の重心位置が、マウント46a~46cの位置を頂点とする三角形の内部の位置とV方向において重なる場合について説明した。本開示では、狭帯域化モジュール14の重心位置が、さらにマウント46a~46cの位置を頂点とする三角形の重心の位置とV方向において重なるようにしてもよい。
5.狭帯域化モジュール移動装置を移動可能なレーザ装置(第4の実施形態)
 図5A~図5Eは、第4の実施形態における狭帯域化モジュール14及び狭帯域化モジュール移動装置の構成及び動作を示す。図5A~図5Eにおいて、レーザチャンバ10や出力結合ミラー15等の図示は省略されている。図5A~図5Eは、出力結合ミラー15から出力されるレーザ光の進行方向に略平行な方向からみた図である。
 第4の実施形態において、レーザチャンバ10、出力結合ミラー15、狭帯域化モジュール14等を含むレーザ装置は、保持装置33に保持されるようになっていてもよい。保持装置33には、プレート20a及び台座30が含まれてもよい。プレート20aには、狭帯域化モジュール14を固定するためのボルト穴27が形成されていてもよい。保持装置33の台座30には、第1の移動機構34が配置されていてもよい。第1の移動機構34の-H方向側の端部には、ストッパー35が配置されていてもよい。
 図5Aに示されるように、狭帯域化モジュール14及び狭帯域化モジュール移動装置50は、台車36によって運搬されてもよい。台車36は、床面を走行可能な車輪36aを有してもよい。車輪36aは、図示しないストッパーを有してもよく、図示しない高さ調整機構を有してもよい。
 台車36の上面には、第2の移動機構37が配置されていてもよい。第4の実施形態における狭帯域化モジュール移動装置50は、第2の移動機構37に沿って移動できるように、車輪54を有していてもよい。狭帯域化モジュール移動装置50は、固定部材55及びボルトによって、台車36に固定されてもよい。
 台車36は、狭帯域化モジュール14及び狭帯域化モジュール移動装置50を載せた状態で、保持装置33の隣に移動してもよい。台車36を保持装置33に横付けした状態で、接続部材56によって第2の移動機構37を第1の移動機構34に接続し、台車36を保持装置33に固定してもよい。
 次に、図5Bに示されるように、固定部材55から狭帯域化モジュール移動装置50を取り外してもよい。そして、第2の移動機構37及び第1の移動機構34により、狭帯域化モジュール14を支持した状態の狭帯域化モジュール移動装置50を保持装置33まで移動させてもよい。狭帯域化モジュール移動装置50は、第1の移動機構34に配置されたストッパー35によって位置決めされてもよい。
 次に、図5Cに示されるように、接続部材56を取り外して、台車36を保持装置33から取り外してもよい。さらに、固定部材55及びボルトによって、狭帯域化モジュール移動装置50を保持装置33に固定してもよい。そして、狭帯域化モジュール移動装置50の回転ロッド51bを回転させて、狭帯域化モジュール14の高さを調節してもよい。図5Cは、グレーティング14cの上半分を使用するために狭帯域化モジュール14を下方に位置させた場合を示し、図5Dは、グレーティング14cの下半分を使用するために狭帯域化モジュール14を上方に位置させた場合を示している。狭帯域化モジュール14の高さを決定したら、狭帯域化モジュール14をボルトによって保持装置33のプレート20aに固定してもよい。
 次に、図5Eに示されるように、狭帯域化モジュール14をプレート20aに固定したまま、固定部材55を取り外して、狭帯域化モジュール移動装置50を取り外してもよい。
 他の点については第3の実施形態と同様でよい。
 第4の実施形態によれば、狭帯域化モジュール移動装置50によって狭帯域化モジュール14を上下方向に移動できるだけでなく、H方向又は-H方向にも安定して移動することができる。
6.グレーティング移動装置及び狭帯域化モジュール移動装置を有するレーザ装置(第5の実施形態)
 図6A~図6Dは、第5の実施形態における狭帯域化モジュール14の構成及び動作を示す。図6A~図6Dにおいて、レーザチャンバ10や出力結合ミラー15等の図示は省略されている。図6A~図6Dは、グレーティングの分散面と略平行で、且つ、出力結合ミラー15から出力されるレーザ光の進行方向に略垂直な方向からみた図である。
 第5の実施形態においては、図示しないグレーティング移動装置によるグレーティング14cの上下動と、図示しない狭帯域化モジュール移動装置による狭帯域化モジュール14の上下動との両方が可能であってもよい。図示しないグレーティング移動装置の具体的な構成及び機能は、第1又は第2の実施形態において説明されたものと同様でよい。図示しない狭帯域化モジュール移動装置の具体的な構成及び機能は、第3又は第4の実施形態において説明されたものと同様でよい。
 プリズム14a、14b及び貫通孔24dのV方向の幅は、レーザ光のV方向のビーム幅の2倍以上であってもよい。グレーティング14cのV方向の幅は、レーザ光のV方向のビーム幅の4倍以上であって、プリズム14a及び14bのV方向の幅より大きくてもよい。
 図6Aに示されるように、図示しない狭帯域化モジュール移動装置によって狭帯域化モジュール14を高い位置に配置させたとき、プリズム14a及び14bの下半分が使用されてもよい。この状態で、図示しないグレーティング移動装置によってグレーティング14cを最も高い位置に配置させたとき、グレーティング14cの最も下の部分が使用されてもよい。
 図6Bに示されるように、狭帯域化モジュール14を高い位置に配置した状態で、図示しないグレーティング移動装置によってグレーティング14cを最も高い位置と最も低い位置との中間の位置に配置してもよい。これにより、プリズム14a及び14bの下半分が使用され、グレーティング14cの下から2番目の部分が使用されてもよい。
 図6Cに示されるように、グレーティング14cを最も高い位置と最も低い位置との中間の位置に配置した状態で、図示しない狭帯域化モジュール移動装置によって狭帯域化モジュール14を低い位置に配置してもよい。これにより、プリズム14a及び14bの上半分が使用され、グレーティング14cの上から2番目の部分が使用されてもよい。
 図6Dに示されるように、狭帯域化モジュール14を低い位置に配置した状態で、図示しないグレーティング移動装置によってグレーティング14cを最も低い位置に配置してもよい。これにより、プリズム14a及び14bの上半分が使用され、グレーティング14cの最も上の部分が使用されてもよい。
 第5の実施形態によれば、図6A、図6B、図6C、図6Dの4通りの配置が可能となり、グレーティング14cの4通りの位置を使用できるようになっている。また、図6A及び図6Bにおいてはプリズム14a及び14bの下半分が使用され、図6C及び図6Dにおいてはプリズム14a及び14bの上半分が使用されるので、プリズム14a及び14bの2通りの位置を使用できるようになっている。
 上述の通り、プリズム14a及び14bもレーザ光によってダメージを受ける場合があるが、グレーティング14cよりはダメージが小さい可能性がある。第5の実施形態によれば、狭帯域化モジュール14を一体的に移動させる場合だけでなく、グレーティング14cだけを移動することもできるので、プリズム14a及び14bは、4通りの位置を使用できるようになっていなくてもよい。よって、プリズム14a及び14bの高さが小さくてもよいようになっている。
 また、狭帯域化モジュール14の位置を固定してグレーティング14cの高さのみを4段階に調整可能とする場合には、4段階のストローク分だけ狭帯域化モジュール14の筐体24が大きくなければならない。従って、筐体24に充填する不活性ガスの量も多く必要となり得る。これに対し、第5の実施形態によれば、グレーティング14cの移動ストロークを低減し、筐体24が小さくてもよいようになっている。このため、狭帯域化モジュール14の不活性ガスパージ流量や重量も低減し得る。
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。

Claims (6)

  1.  レーザ光を狭帯域化するグレーティングと、前記グレーティングを保持するホルダと、を含むグレーティング装置と、
     前記グレーティング装置を収容する筐体と、
     前記グレーティングの分散面に略垂直な方向から、前記グレーティング装置の重心位置又はその近傍位置を支持するとともに、前記グレーティングの分散面に略垂直な方向に、前記グレーティング装置を前記筐体に対して移動させるグレーティング移動装置と、
    を備える狭帯域化モジュール。
  2.  レーザ光を狭帯域化するグレーティングと、前記グレーティングを保持するホルダと、を含むグレーティング装置と、
     前記グレーティング装置を保持するブラケットと、
     前記グレーティング装置及び前記ブラケットを収容する筐体と、
     前記グレーティングの分散面に略垂直な方向に、前記グレーティング装置を前記ブラケットに対して移動させるグレーティング移動装置と、
     前記グレーティングの分散面に略垂直に配置され、前記グレーティング装置及び前記ブラケットの前記筐体に対する回転軸を規定するシャフト部材と、
    を備える狭帯域化モジュール。
  3.  レーザチャンバと、
     グレーティングを含み、前記レーザチャンバから出力されたレーザ光を狭帯域化して前記レーザチャンバに戻す狭帯域化モジュールと、
     前記狭帯域化モジュールを3点で支持するとともに、前記グレーティングの分散面に略垂直な方向に、前記狭帯域化モジュールを前記レーザチャンバに対して移動させる狭帯域化モジュール移動装置と、
    を備える狭帯域化レーザ装置。
  4.  レーザチャンバと、
     グレーティングと、前記グレーティングを収容する筐体と、を含み、前記レーザチャンバから出力されたレーザ光を狭帯域化して前記レーザチャンバに戻す狭帯域化モジュールと、
     前記グレーティングの分散面に略垂直な方向に、前記狭帯域化モジュールを前記レーザチャンバに対して移動させる狭帯域化モジュール移動装置と、
     前記グレーティングの分散面に略垂直な方向に、前記グレーティングを前記筐体に対して移動させるグレーティング移動装置と、
    を備える狭帯域化レーザ装置。
  5.  前記狭帯域化モジュールが、前記レーザチャンバと前記グレーティングとの間の前記レーザ光の光路に配置されたビームエキスパンダをさらに含み、
     前記グレーティングの移動方向に沿った前記ビームエキスパンダの長さが、前記グレーティングの移動方向に沿った前記レーザ光のビーム幅の2倍以上であり、
     前記グレーティングの移動方向に沿った前記グレーティングの長さが、前記グレーティングの移動方向に沿った前記レーザ光のビーム幅の4倍以上である、
    請求項4記載の狭帯域化レーザ装置。
  6.  レーザチャンバと、
     グレーティングを含み、前記レーザチャンバから出力されたレーザ光を狭帯域化して前記レーザチャンバに戻す狭帯域化モジュールと、
     前記狭帯域化モジュールを支持し、且つ、前記グレーティングの分散面に略垂直な方向に、前記狭帯域化モジュールを移動可能に構成された狭帯域化モジュール移動装置と、
     前記狭帯域化モジュールを前記レーザチャンバに対して位置決めして保持する保持装置と、
     前記狭帯域化モジュール移動装置を、前記狭帯域化モジュール移動装置による前記狭帯域化モジュールの移動方向と交差する方向に、前記保持装置に対して移動させる第1の移動機構と、
     前記狭帯域化モジュールを支持した前記狭帯域化モジュール移動装置を保持して運搬可能に構成された台車と、
     前記狭帯域化モジュールを支持した前記狭帯域化モジュール移動装置を、前記狭帯域化モジュール移動装置による前記狭帯域化モジュールの移動方向と交差する方向に、前記台車に対して移動させる第2の移動機構と、
    を用いて、前記狭帯域化モジュールを前記レーザチャンバに対して位置決めする方法であって、
     前記台車により、前記狭帯域化モジュールを支持した前記狭帯域化モジュール移動装置を保持して前記保持装置の近傍まで運搬し、
     前記第2の移動機構を前記第1の移動機構に接続し、
     前記第2の移動機構及び前記第1の移動機構により、前記狭帯域化モジュールを支持した前記狭帯域化モジュール移動装置を、前記保持装置まで移動させ、
     前記保持装置により、前記狭帯域化モジュールを前記レーザチャンバに対して位置決めして保持し、
     前記第1の移動機構により、前記狭帯域化モジュール移動装置を、前記狭帯域化モジュール及び前記保持装置から除去する、
    方法。
PCT/JP2014/080171 2014-11-14 2014-11-14 狭帯域化モジュール、狭帯域化レーザ装置、及び、狭帯域化モジュールを位置決めする方法 WO2016075806A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/080171 WO2016075806A1 (ja) 2014-11-14 2014-11-14 狭帯域化モジュール、狭帯域化レーザ装置、及び、狭帯域化モジュールを位置決めする方法
JP2016559045A JPWO2016076279A1 (ja) 2014-11-14 2015-11-09 狭帯域化レーザ装置、及び、狭帯域化モジュールを位置決めする方法
CN201580053761.6A CN107112714A (zh) 2014-11-14 2015-11-09 窄带化激光装置和对窄带化模块进行定位的方法
PCT/JP2015/081525 WO2016076279A1 (ja) 2014-11-14 2015-11-09 狭帯域化レーザ装置、及び、狭帯域化モジュールを位置決めする方法
US15/478,683 US20170205631A1 (en) 2014-11-14 2017-04-04 Narrow band laser apparatus and method for positioning line narrow module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/080171 WO2016075806A1 (ja) 2014-11-14 2014-11-14 狭帯域化モジュール、狭帯域化レーザ装置、及び、狭帯域化モジュールを位置決めする方法

Publications (1)

Publication Number Publication Date
WO2016075806A1 true WO2016075806A1 (ja) 2016-05-19

Family

ID=55953919

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/080171 WO2016075806A1 (ja) 2014-11-14 2014-11-14 狭帯域化モジュール、狭帯域化レーザ装置、及び、狭帯域化モジュールを位置決めする方法
PCT/JP2015/081525 WO2016076279A1 (ja) 2014-11-14 2015-11-09 狭帯域化レーザ装置、及び、狭帯域化モジュールを位置決めする方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081525 WO2016076279A1 (ja) 2014-11-14 2015-11-09 狭帯域化レーザ装置、及び、狭帯域化モジュールを位置決めする方法

Country Status (4)

Country Link
US (1) US20170205631A1 (ja)
JP (1) JPWO2016076279A1 (ja)
CN (1) CN107112714A (ja)
WO (2) WO2016075806A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7100236B2 (ja) * 2017-06-20 2022-07-13 日亜化学工業株式会社 波長ビーム結合装置
WO2021186744A1 (ja) * 2020-03-19 2021-09-23 ギガフォトン株式会社 狭帯域化ガスレーザ装置、及び電子デバイスの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276582A (ja) * 1985-09-27 1987-04-08 Hitachi Koki Co Ltd レ−ザ発振器の光軸調整装置及び調整方法
JPH06120587A (ja) * 1992-10-07 1994-04-28 Komatsu Ltd レーザ装置
JPH0818143A (ja) * 1994-06-27 1996-01-19 Toshiba Corp 光学部品の位置決め装置
JP2000208848A (ja) * 1999-01-19 2000-07-28 Komatsu Ltd 反射型波長選択素子の曲げ機構の固定装置
JP2003174221A (ja) * 2001-12-04 2003-06-20 Gigaphoton Inc グレーティング固定装置及び狭帯域化レーザ装置
JP2006019365A (ja) * 2004-06-30 2006-01-19 Komatsu Ltd 紫外線レーザ装置
JP2008522439A (ja) * 2004-11-30 2008-06-26 サイマー インコーポレイテッド 線狭帯域化モジュール
JP2013168473A (ja) * 2012-02-15 2013-08-29 Gigaphoton Inc エキシマレーザおよびレーザ装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101077550A (zh) * 2006-05-22 2007-11-28 山崎马扎克公司 激光加工机的光束模式自动选择装置
JP5814652B2 (ja) * 2011-06-22 2015-11-17 株式会社東芝 レーザ照射装置及びレーザ照射方法
JP6080481B2 (ja) * 2012-01-26 2017-02-15 ギガフォトン株式会社 極端紫外光生成装置
JP2013165300A (ja) * 2013-05-27 2013-08-22 Gigaphoton Inc 2ステージレーザ装置および2ステージレーザ装置に適用される調整方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6276582A (ja) * 1985-09-27 1987-04-08 Hitachi Koki Co Ltd レ−ザ発振器の光軸調整装置及び調整方法
JPH06120587A (ja) * 1992-10-07 1994-04-28 Komatsu Ltd レーザ装置
JPH0818143A (ja) * 1994-06-27 1996-01-19 Toshiba Corp 光学部品の位置決め装置
JP2000208848A (ja) * 1999-01-19 2000-07-28 Komatsu Ltd 反射型波長選択素子の曲げ機構の固定装置
JP2003174221A (ja) * 2001-12-04 2003-06-20 Gigaphoton Inc グレーティング固定装置及び狭帯域化レーザ装置
JP2006019365A (ja) * 2004-06-30 2006-01-19 Komatsu Ltd 紫外線レーザ装置
JP2008522439A (ja) * 2004-11-30 2008-06-26 サイマー インコーポレイテッド 線狭帯域化モジュール
JP2013168473A (ja) * 2012-02-15 2013-08-29 Gigaphoton Inc エキシマレーザおよびレーザ装置

Also Published As

Publication number Publication date
US20170205631A1 (en) 2017-07-20
CN107112714A (zh) 2017-08-29
WO2016076279A1 (ja) 2016-05-19
JPWO2016076279A1 (ja) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6917890B2 (ja) レーザ装置及び狭帯域化光学系
US10916910B2 (en) Line narrowing module
US8929409B2 (en) External cavity tunable laser with an air gap etalon comprising wedges
WO2016075806A1 (ja) 狭帯域化モジュール、狭帯域化レーザ装置、及び、狭帯域化モジュールを位置決めする方法
US20130064258A1 (en) Master oscillator system and laser apparatus
US11411364B2 (en) Line narrowing module, gas laser apparatus, and electronic device manufacturing method
US10797465B2 (en) Laser apparatus
CN111106519A (zh) 一种激光可调谐装置
WO2018061098A1 (ja) レーザ装置
WO2022054180A1 (ja) 狭帯域化ガスレーザ装置、及び電子デバイスの製造方法
JP6253793B2 (ja) 共振器、光源装置及び周波数フィルタ
JP7231560B2 (ja) 光学素子の移動装置、狭帯域化レーザ装置、及び電子デバイスの製造方法
WO2021186739A1 (ja) 狭帯域化装置、及び電子デバイスの製造方法
WO2017183210A1 (ja) レーザ装置
US20230066377A1 (en) Alignment adjuster and method for manufacturing electronic devices
WO2021186744A1 (ja) 狭帯域化ガスレーザ装置、及び電子デバイスの製造方法
US20220059988A1 (en) Laser system and electronic device manufacturing method
JPH05102559A (ja) 狭帯域レ−ザ装置
CN117355794A (zh) 激光***
JP2002232045A (ja) ガスレーザ装置及びガスレーザ装置の狭帯域化ユニットのアライメント方法
JP2006019365A (ja) 紫外線レーザ装置
JPH08338725A (ja) 測量機の自動傾き補正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14906117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14906117

Country of ref document: EP

Kind code of ref document: A1