WO2016058491A1 - 锂离子电池电极活性材料的碳包覆方法 - Google Patents

锂离子电池电极活性材料的碳包覆方法 Download PDF

Info

Publication number
WO2016058491A1
WO2016058491A1 PCT/CN2015/091425 CN2015091425W WO2016058491A1 WO 2016058491 A1 WO2016058491 A1 WO 2016058491A1 CN 2015091425 W CN2015091425 W CN 2015091425W WO 2016058491 A1 WO2016058491 A1 WO 2016058491A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode active
solvent
carbon
ion battery
Prior art date
Application number
PCT/CN2015/091425
Other languages
English (en)
French (fr)
Inventor
刘少军
王莉
李建军
何向明
罗晶
徐程浩
尚玉明
高剑
王要武
Original Assignee
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Publication of WO2016058491A1 publication Critical patent/WO2016058491A1/zh
Priority to US15/482,446 priority Critical patent/US20170214039A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium ion batteries, and in particular to a carbon coating method for an electrode active material of a lithium ion battery.
  • common positive active materials such as Conductive conductance exists in layered LiCoO 2 and LiNiO 2 , spinel-type LiMn 2 O 4 , olivine-type LiFePO 4 and their modified materials, as well as common negative active materials such as Li 4 Ti 5 O 12
  • common negative active materials such as Li 4 Ti 5 O 12
  • the electrode active materials prepared by liquid phase reaction methods such as hydrothermal method, solvothermal method, precipitation method, supercritical hydrothermal method and microwave synthesis method are generally nanometer-sized, and have special morphology and excellent electrochemical performance.
  • the nano-electrode active material is carbon-coated by a conventional carbon coating method, a method of mixing a dry powder-like nanoelectrode active material with a carbon source and then sintering is generally employed.
  • the powdered nanoelectrode active material is mixed with a carbon source by ball milling or grinding, not only the destruction of the electrode active material morphology but also the agglomeration of the nanoparticles is caused, so that the nanometer
  • the advantages of the size of the electrode active material are not apparent; if the dry powdery electrode active material is dispersed in a carbon source solution, the dry powdery nanoelectrode active material particles have a large The surface energy and the nano-electrode active material are easily agglomerated, so the dispersion effect in the carbon source solution is not good, the dispersion process is complicated, and the production cost is high.
  • a carbon coating method for an electrode active material of a lithium ion battery comprising:
  • the electrode active material precursor is subjected to a liquid phase reaction in the first solvent, and after the liquid phase reaction is completed, a first mixed liquid is obtained, the first mixed liquid includes The first solvent and electrode active material particles dispersed in the first solvent;
  • the electrode active material particles having a carbon source coating layer are sintered to obtain a carbon-coated lithium ion battery electrode active material.
  • the carbon coating method for the electrode active material of the lithium ion battery provided by the present invention directly dissolves the carbon source into the first mixed liquid in which the electrode active material particles are dispersed after the liquid phase reaction is completed, so that the carbon source and the carbon source are
  • the electrode active material particles are mixed to avoid the problem of easy agglomeration when the dry powdery electrode active material particles are mixed with the carbon source, and the carbon-coated lithium ion with good dispersibility, good uniformity and consistency can be prepared.
  • the battery electrode active material, so that the carbon-coated lithium ion battery electrode active material has good electrical conductivity and electrochemical performance.
  • FIG. 1 is a flow chart showing the preparation of a carbon coating method for an electrode active material of a lithium ion battery according to the present invention.
  • Example 2 is a SEM photograph of a carbon-coated LiFePO 4 positive electrode active material of Example 1 of the present invention.
  • Example 3 is a graph showing charge and discharge curves of a carbon-coated LiFePO 4 positive electrode active material in Example 1 and Comparative Example 1 of the present invention.
  • a carbon coating method for an electrode active material of a lithium ion battery comprising:
  • the electrode active material may be a positive electrode active material or a negative electrode active material.
  • the positive active material may be an undoped or doped spinel structure of lithium manganate, layered lithium manganate, lithium nickelate, lithium cobaltate, lithium iron phosphate, lithium nickel manganese oxide, and lithium nickel cobalt.
  • One or more of manganese oxides may be used.
  • the spinel structure lithium manganate may be represented by a chemical formula of Li m Mn 2-n L n O 4 , which may be represented by a chemical formula of Li m Ni 1-n L n O 2
  • the lithium cobaltate The chemical formula may be represented by Li m Co 1-n L n O 2
  • the chemical formula of the layered lithium manganate may be Li m Mn 1-n L n O 2
  • the chemical formula of the lithium iron phosphate may be Li m Fe 1- n L n PO 4 indicates that the chemical formula of the lithium nickel manganese oxide can be represented by Li m Ni 0.5+za Mn 1.5-zb L a R b O 4
  • the chemical formula of the lithium nickel cobalt manganese oxide can be obtained by Li m Ni c Co d Mn e L f O 2 represents, where 0.1 ⁇ m ⁇ 1.1, 0 ⁇ n ⁇ 1, 0 ⁇ z ⁇ 1.5, 0 ⁇ az ⁇
  • L and R are selected from one or more of an alkali metal element, an alkaline earth metal element, a Group 13 element, a Group 14 element, a transition group element, and a rare earth element.
  • L and R are selected from the group consisting of Mn, Ni, Cr. At least one of Co, V, Ti, Al, Fe, Ga, Nd, and Mg.
  • the negative active material may be one or more of lithium titanate, titanium oxide, and cobalt trioxide.
  • the lithium titanate is undoped lithium titanate or doped lithium titanate, and the undoped lithium titanate or doped lithium titanate has a spinel structure.
  • the undoped lithium titanate has a chemical formula of Li 4 Ti 5 O 12 ;
  • the doped lithium titanate has the chemical formula Li (4-g) A g Ti 5 O 12 or Li 4 A h Ti (5 -h) O 12 represents 0, wherein 0 ⁇ g ⁇ 0.33, and 0 ⁇ h ⁇ 0.5, and A is selected from the group consisting of an alkali metal element, an alkaline earth metal element, a group 13 element, a group 14 element, a transition group element, and a rare earth element.
  • One or more kinds are preferably at least one of Mn, Ni, Cr, Co, V, Al, Fe, Ga, Nd, Nb, and Mg.
  • the electrode active material precursor is a reactant which is necessary for preparing the electrode active material particles by the liquid phase reaction.
  • the electrode active material precursor can be selected according to the electrode active material to be prepared and a specific liquid phase reaction method for preparing the electrode active material. For example, when a lithium iron phosphate positive active material is prepared by a solvothermal method, the electrode active material precursor includes a lithium source, a divalent iron source, and a phosphate source.
  • the first solvent is a reaction medium for performing the liquid phase reaction, and may be selected according to actual needs.
  • the first solvent is water, ethanol, ethylene glycol, glycerol, diethylene glycol, triethylene glycol, tetraethylene glycol, butyl triol, n-butanol, isobutanol, polyethylene glycol and One or several of dimethylformamide.
  • the liquid phase reaction method includes a method of preparing the electrode active material in a liquid phase environment, such as hydrothermal method, solvothermal method, precipitation method, supercritical hydrothermal method, and microwave synthesis method.
  • the liquid phase reaction is more advantageous for generating the nano-sized electrode active material particles, and the nano-sized electrode active material particles are directly formed in the first solvent due to the nano-sized electrode active material particles. It has good dispersibility and unity in the first mixed liquid.
  • the first mixed liquid is a suspension.
  • the embodiment of the present invention may further include a step of performing impurity removal on the first mixed liquid, and specifically includes:
  • the wet powdery filter material includes the electrode active material particles, the first solvent, and the impurity ions.
  • the first solvent and the impurity ions are adsorbed on the surface of the electrode active material particles.
  • the wet powdery electrode active material particles include the electrode active material particles and a second solvent, and the second solvent is adsorbed on the surface of the electrode active material particles.
  • the wet powdered filter material can be washed and filtered multiple times using the second solvent.
  • the impurity ions are removed by the second solvent.
  • the second solvent may dissolve the impurity ions so as to carry away the impurity ions during the washing and filtering.
  • the first solvent and the second solvent are mutually soluble so as to facilitate the removal of the impurity ions and the dispersion of the subsequent step S12.
  • the second solvent may be water, ethanol, ethylene glycol, glycerol, diethylene glycol, triethylene glycol, tetraethylene glycol, butyl triol, n-butanol, isobutanol, polyethylene glycol and dimethyl One or several of the carbenamides. More preferably, the second solvent is the same as the first solvent.
  • step S12 since the surface of the electrode active material particles is adsorbed with the second solvent, the surface energy of the wet powdery electrode active material particles is much lower than the surface energy of the dry powdery electrode active material particles, thereby The wet powdery electrode active material particles are less likely to agglomerate and easily disperse during dispersion.
  • the wet powdery filter material and the wet powdery electrode active material particles have a solid content of less than 50%, so that the surface energy of the electrode active material particles is always in a lower state, thereby further making the wet powder After the dispersion of the electrode active material particles in the first solvent, a first mixed liquid having good dispersibility and unitiness after the impurity removal can be obtained. More preferably, the wet powdery filter material and the wet powdery electrode active material particles each have a solid content of less than 40%.
  • the carbon source may be dissolved in the first solvent.
  • the carbon source may be one or more of sucrose, glucose, fructose, lactose, starch, PVC, PVA, PVB, PVP, PAN, phenolic resin, and high molecular polymer.
  • the carbon source is uniformly distributed around each of the electrode active material particles in the first solvent.
  • the amount of the carbon source added can be determined according to the desired thickness of the carbon coating.
  • the carbon source is added in an amount of 10% to 300% by mass of the solid electrode active material in the lithium ion battery electrode active material reaction liquid.
  • the carbon source is added in an amount of from 20% to 200% by mass of the electrode active material.
  • a carbon source distributed around each electrode active material particle forms a carbon source coating layer on the surface of the electrode active material particle during drying. Since the carbon source coating layer has a steric hindrance effect, the agglomeration between the electrode active material particles can be prevented, so that the electrode active material particles having the carbon source coating layer have good dispersibility and unity. The advantage of monodisperse and uniformity of nanomaterials is maintained.
  • the method of drying is not limited. The drying can be naturally air dried, oven dried, vacuum dried, microwave dried or spray dried.
  • the drying temperature is 100 to 150 ° C, and the drying temperature is too low, and the solvent cannot be quickly volatilized, which is disadvantageous for forming a uniform electrode active material particle having a carbon source coating layer.
  • the drying temperature is too high, so that the carbon source does not decompose during the drying process.
  • the sintering is carried out in an inert atmosphere.
  • the sintering temperature may be such that the carbon source is decomposed to form a carbon simple substance.
  • the sintering temperature is from 400 ° C to 1000 ° C.
  • the sintering temperature is from 600 ° C to 750 ° C.
  • the sintering time is from 2 hours to 10 hours.
  • the carbon source coated on the surface of the electrode active material particles is cracked to form a carbon element, thereby converting the carbon source coating layer into a continuous uniform carbon coating layer.
  • the surface of each electrode active material particle is coated with a continuous uniform carbon coating layer, and the carbon coated electrode active material particles have good dispersibility and unity, which not only remain.
  • the nano-sized electrode active material has an advantage, and further improves the conductivity of the nano-sized electrode active material.
  • sucrose Adding sucrose to the first mixture and mechanically stirring for 0.5 to 2 hours to dissolve the sucrose, the sucrose mass being 20% of the mass of the LiFePO 4 positive electrode active material, to obtain a second mixed liquid; the second mixed liquid is at 120 Vacuum drying at °C to obtain a sucrose-coated LiFePO 4 positive electrode active material; the sucrose-coated LiFePO 4 positive electrode active material is calcined at 600-750 ° C for 2 to 10 hours under nitrogen protection to obtain a carbon-coated LiFePO 4 positive electrode active agent. material.
  • This comparative example is basically the same as that of Example 1, except that after the first mixed liquid is obtained, the first mixed liquid is centrifuged with pure water and absolute ethanol for several times, and then dried at 80 ° C in vacuum. To obtain dry powdered LiFePO 4 nanoparticles.
  • FIG. 2 is a SEM photograph of a carbon-coated LiFePO 4 positive electrode active material according to Example 1 of the present invention. As can be seen from FIG. 2, the carbon-coated LiFePO 4 positive electrode active material has good dispersibility and unity.
  • 3 is a graph showing charge and discharge curves of LiFePO 4 positive electrode active materials of Example 1 and Comparative Example 1 at a rate of 0.2 C. As can be seen from FIG. 3, the carbon-coated LiFePO 4 positive electrode active material prepared in Example 1 has a higher specific capacity and a higher median voltage than the carbon-coated LiFePO 4 positive electrode active material prepared in Comparative Example 1. , higher specific energy, better cycle performance and less polarization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种锂离子电池电极活性材料的碳包覆方法,包括:提供电极活性材料前驱体和第一溶剂,使该电极活性材料前驱体在所述第一溶剂中进行液相反应,所述液相反应完毕后得到一第一混合液,该第一混合液包括所述第一溶剂和分散在该第一溶剂中的电极活性材料颗粒;提供碳源,将所述碳源加入所述第一混合液中,并使该碳源在所述第一溶剂中溶解,得到一第二混合液;干燥所述第二混合液,得到具有碳源包覆层的电极活性材料颗粒,在所述具有碳源包覆层的电极活性材料颗粒中,所述碳源包覆在所述电极活性材料颗粒的表面;以及烧结该具有碳源包覆层的电极活性材料颗粒,得到碳包覆锂离子电池电极活性材料。

Description

锂离子电池电极活性材料的碳包覆方法 技术领域
本发明涉及锂离子电池领域,具体涉及一种锂离子电池电极活性材料的碳包覆方法。
背景技术
正极活性材料和负极活性材料的性能在很大程度上影响着锂离子电池的性能,所以研究和开发高性能的电极活性材料已成为锂离子电池发展的关键所在,目前常见的正极活性材料(如层状的LiCoO2和LiNiO2、尖晶石型的LiMn2O4、橄榄石型的LiFePO4以及它们的改性材料)以及常见的负极活性材料(如Li4Ti5O12)都存在电导率低的问题,制备纳米电极活性材料、细化电极活性材料晶粒以及对电极活性材料进行表面碳包覆是目前常用的提高电极活性材料导电性的两种方法。
其中,利用水热法、溶剂热法、沉淀法、超临界水热法、微波合成法等液相反应方法制备的电极活性材料一般为纳米尺寸,且形貌较为特殊,具有优良的电化学性能,但采用传统碳包覆方法对该纳米电极活性材料进行碳包覆时,通常采用将干粉状的纳米电极活性材料与碳源进行混合然后再进行烧结的方法。在该方法中,如果采用球磨或研磨的方法使所述粉末状的纳米电极活性材料与碳源进行混合,不但会造成电极活性材料形貌的破坏,而且还会造成纳米颗粒的团聚,使得纳米尺寸的电极活性材料所具有的优势都不能显现出来;如果采用将干粉状的电极活性材料分散在碳源溶液中的方法进行混合,由于该干粉状的纳米电极活性材料颗粒具有很大的表面能,纳米电极活性材料之间极易进行团聚,故在碳源溶液中的分散效果不好,且分散工序复杂,生产成本较高。
发明内容
有鉴于此,确有必要提供一种能够保持纳米尺寸的电极活性材料本来具有的单分散和均一性,又能进一步提高纳米尺寸电极活性材料导电性能的碳包覆方法。
一种锂离子电池电极活性材料的碳包覆方法,包括:
提供电极活性材料前驱体和第一溶剂,使该电极活性材料前驱体在所述第一溶剂中进行液相反应,所述液相反应完毕后得到一第一混合液,该第一混合液包括所述第一溶剂和分散在该第一溶剂中的电极活性材料颗粒;
提供碳源,将所述碳源加入所述第一混合液中,并使该碳源在所述第一溶剂中溶解,得到一第二混合液;
干燥所述第二混合液,得到具有碳源包覆层的电极活性材料颗粒,在所述具有碳源包覆层的电极活性材料颗粒中,所述碳源包覆在所述电极活性材料颗粒的表面;以及
烧结该具有碳源包覆层的电极活性材料颗粒,得到碳包覆锂离子电池电极活性材料。
本发明提供的锂离子电池电极活性材料的碳包覆方法,直接将碳源溶解到液相反应完毕后未经处理的分散有电极活性材料颗粒的第一混合液中,使碳源与所述电极活性材料颗粒混合,避免了将干粉状的电极活性材料颗粒与碳源混合时所存在的易团聚的问题,可制备出分散性好、均一性好及一致性好的碳包覆锂离子电池电极活性材料,从而使所述碳包覆锂离子电池电极活性材料具有良好的导电性能和电化学性能。
附图说明
图1为本发明锂离子电池电极活性材料的碳包覆方法的制备流程图。
图2为本发明实施例1碳包覆LiFePO4正极活性材料的SEM照片。
图3为本发明实施例1及对比例1中碳包覆LiFePO4正极活性材料的充放电曲线图。
具体实施方式
请参阅图1,一种锂离子电池电极活性材料的碳包覆方法,包括:
S1,提供电极活性材料前驱体和第一溶剂,使该电极活性材料前驱体在所述第一溶剂中进行液相反应,所述液相反应完毕后得到一第一混合液,该第一混合液包括所述第一溶剂和分散在该第一溶剂中的电极活性材料颗粒;
S2,提供碳源,将所述碳源加入所述第一混合液中,并使该碳源在所述第一溶剂中溶解,得到一第二混合液;
S3,干燥所述第二混合液,得到具有碳源包覆层的电极活性材料颗粒,在所述具有碳源包覆层的电极活性材料颗粒中,所述碳源包覆在所述电极活性材料颗粒的表面;以及
S4,烧结该具有碳源包覆层的电极活性材料颗粒,得到碳包覆锂离子电池电极活性材料。
在步骤S1中,所述电极活性材料可以是正极活性材料,也可以是负极活性材料。所述正极活性材料可以为未掺杂或掺杂的尖晶石结构的锰酸锂、层状锰酸锂、镍酸锂、钴酸锂、磷酸铁锂、锂镍锰氧化物和锂镍钴锰氧化物中的一种或几种。具体地,该尖晶石结构的锰酸锂可以由化学式LimMn2-nLnO4表示,该镍酸锂可以由化学式LimNi1-nLnO2表示,该钴酸锂的化学式可以由LimCo1-nLnO2表示,该层状锰酸锂的化学式可以由LimMn1-nLnO2,该磷酸铁锂的化学式可以由LimFe1-nLnPO4表示,该锂镍锰氧化物的化学式可以由LimNi0.5+z-aMn1.5-z-bLaRbO4表示,该锂镍钴锰氧化物的化学式可以由LimNicCodMneLfO2表示,其中0.1≤m≤1.1,0≤n<1,0≤z<1.5,0≤a-z<0.5,0≤b+z<1.5,0<c<1,0<d<1,0<e<1,0≤f≤0.2,c+d+e+f=1。L和R选自碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡族元素及稀土元素中的一种或多种,优选地,L和R选自Mn、Ni、Cr、Co、V、Ti、Al、Fe、Ga、Nd及Mg中的至少一种。
所述负极活性材料可以为钛酸锂、二氧化钛和四氧化三钴中的一种或几种。该钛酸锂为非掺杂的钛酸锂或掺杂的钛酸锂,该非掺杂的钛酸锂或掺杂的钛酸锂具有尖晶石结构。具体地,该非掺杂的钛酸锂的化学式为Li4Ti5O12;该掺杂的钛酸锂的化学式Li(4-g)AgTi5O12或Li4AhTi(5-h)O12表示,其中0<g≤0.33,且0<h≤0.5,A选自碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡族元素及稀土元素中的一种或多种,优选为Mn、Ni、Cr、Co、V、Al、Fe、Ga、Nd、Nb及Mg中的至少一种。
所述电极活性材料前驱体为利用所述液相反应制备所述电极活性材料颗粒时所必需使用的反应物。所述电极活性材料前驱体可根据所要制备的电极活性材料和制备该电极活性材料的具体液相反应方法进行选择。例如当使用溶剂热法制备磷酸铁锂正极活性材料时,所述电极活性材料前驱体包括锂源、二价铁源及磷酸根源。
所述第一溶剂为进行所述液相反应的反应介质,具体可根据实际需要进行选择。优选地,所述第一溶剂为水、乙醇、乙二醇、丙三醇、二甘醇、三甘醇、四甘醇、丁三醇、正丁醇、异丁醇、聚乙二醇及二甲基甲酰胺中的一种或者几种。
所述液相反应方法包括水热法、溶剂热法、沉淀法、超临界水热法及微波合成法等在液相环境中制备所述电极活性材料的方法。所述液相反应更有利于生成纳米尺寸的所述电极活性材料颗粒,由于所述纳米尺寸的所述电极活性材料颗粒直接生成在所述第一溶剂中,因此该纳米尺寸的电极活性材料颗粒在所述第一混合液中具有良好的分散性和单一性。所述第一混合液为一悬浊液。
在所述第一混合液中,除了所述第一溶剂和所述电极活性材料颗粒之外,可能还含有未反应完全的杂质离子,为了避免将所述杂质离子引入所述碳包覆锂离子电池电极活性材料中,本发明实施例还可进一步包括一对所述第一混合液进行除杂的步骤,具体包括:
S11,将所述第一混合液进行分离得到未经干燥处理的湿粉状滤料,使用第二溶剂对所述湿粉状滤料进行洗涤及过滤,得到未经干燥处理的湿粉状电极活性材料颗粒。
S12,将所述湿粉状电极活性材料颗粒分散在所述第一溶剂中,得到除杂后的第一混合液。
在步骤S11中,所述湿粉状滤料包括所述电极活性材料颗粒、所述第一溶剂及所述杂质离子。所述第一溶剂和所述杂质离子吸附在所述电极活性材料颗粒表面。所述湿粉状电极活性材料颗粒包括所述电极活性材料颗粒及第二溶剂,该第二溶剂吸附在所述电极活性材料颗粒表面。
可使用所述第二溶剂对所述湿粉状滤料进行多次洗涤及过滤。在对该湿粉状滤料进行洗涤及过滤的过程中,所述杂质离子被该第二溶剂带走而除去。所述第二溶剂只要能使所述杂质离子溶解即可,以便在所述洗涤及过滤过程中带走所述杂质离子。优选地,所述第一溶剂和第二溶剂互溶,以便更利于带走所述杂质离子以及后续步骤S12的分散。所述第二溶剂可为水、乙醇、乙二醇、丙三醇、二甘醇、三甘醇、四甘醇、丁三醇、正丁醇、异丁醇、聚乙二醇及二甲基甲酰胺中的一种或者几种。更为优选地,所述第二溶剂与所述第一溶剂相同。
在步骤S12中,由于该电极活性材料颗粒的表面吸附有第二溶剂,该湿粉状的电极活性材料颗粒的表面能远低于所述干粉状的电极活性材料颗粒的表面能,从而使该湿粉状的电极活性材料颗粒在分散的过程中不易团聚、容易分散。优选地,所述湿粉状滤料及所述湿粉状电极活性材料颗粒的固含量均小于50%,以使所述电极活性材料颗粒的表面能一直处于较低的状态,进而使该湿粉状电极活性材料颗粒在所述第一溶剂中的分散后能得到具有良好的分散性和单一性所述除杂后的第一混合液。更为优选地,所述湿粉状滤料及所述湿粉状电极活性材料颗粒的固含量均小于40%。
在步骤S2中,所述碳源只要能溶解在所述第一溶剂中即可。所述碳源可为蔗糖、葡萄糖、果糖、乳糖、淀粉、PVC、PVA、PVB、PVP、PAN、酚醛树脂及高分子聚合物中的一种或者多种。当将所述碳源溶解在所述第一溶剂中后,该碳源均匀地分布在所述第一溶剂中每一电极活性材料颗粒周围。所述碳源的加入量可根据所需的碳包覆层厚度进行确定。在本实施例中,所述碳源的加入量为所述锂离子电池电极活性材料反应液中固体的电极活性材料质量的10%至300%。优选地,所述碳源的加入量为所述电极活性材料质量的20%至200%。
在步骤S3中,在干燥的过程中,分布在每一电极活性材料颗粒周围的碳源在该电极活性材料颗粒表面形成所述碳源包覆层。由于该碳源包覆层具有空间位阻作用,可阻止所述电极活性材料颗粒之间的团聚,故所述具有碳源包覆层的电极活性材料颗粒具有较好的分散性和单一性,保持了纳米材料单分散、均一性的优势。所述干燥的方法不限。所述干燥可以是自然风干、用烤箱烘干、真空干燥、微波干燥或喷雾干燥。优选地,所述干燥的温度为100~150℃,所述干燥温度过低,所述溶剂不能很快地挥发走,不利于形成均一的所述具有碳源包覆层的电极活性材料颗粒,所述干燥温度过高,会使所述碳源不会在该干燥过程中发生分解。
在步骤S4中,所述烧结在惰性气氛中进行。所述烧结的温度只要能使所述碳源发生分解生成碳单质即可。在本发明实施例中,所述烧结温度为400℃至1000℃。优选地,所述烧结温度为600℃至750℃。所述烧结时间为2小时至10小时。
在所述烧结过程中,包覆在所述电极活性材料颗粒表面的碳源发生裂解形成碳单质,从而使该碳源包覆层转换为连续均匀的碳包覆层。在所述烧结完毕后,每一电极活性材料颗粒的表面均包覆上了连续均匀的碳包覆层,且该碳包覆电极活性材料颗粒之间具有良好的分散性和单一性,不仅保持了纳米尺寸的所述电极活性材料所具有的优势,而且进一步提高了该纳米尺寸的电极活性材料的导电性。
实施例1
量取80mL乙二醇和4.19g一水合氢氧化锂,机械搅拌60分钟,然后加入1.63mL的磷酸,形成均匀的白色溶液A。量取100mL乙二醇和8.34g七水合硫酸铁,机械搅拌60分钟,形成均匀的混合溶液B。将溶液B逐滴滴加到溶液A中搅拌反应30分钟,密封至具有聚四氟乙烯内衬的高温反应釜中,恒温180℃,反应10小时,反应完毕得到第一混合液;
将蔗糖加入所述第一混合液中机械搅拌0.5~2小时使蔗糖溶解,蔗糖质量为所述LiFePO4正极活性材料质量的20%,得到一第二混合液;将该第二混合液在120℃下进行真空干燥,得到蔗糖包覆的LiFePO4正极活性材料;将该蔗糖包覆的LiFePO4正极活性材料在氮气保护下600~750℃煅烧2~10小时,得到碳包覆LiFePO4正极活性材料。
对比例1
本对比例与实施例1基本相同,其不同之处在于,得到所述第一混合液后,对所述第一混合液用纯水和无水乙醇离心、洗涤数次后,80℃真空干燥,得到干粉状的LiFePO4纳米颗粒。
将蔗糖溶于乙醇水溶液中得到溶液C,所述乙醇水溶液中乙醇与水的质量比为4:1,蔗糖质量为所述LiFePO4纳米颗粒质量的20%;将干粉状的LiFePO4纳米颗粒在溶液C中进行分散得到第二混合液,干燥后得到蔗糖包覆的LiFePO4正极活性材料;将该蔗糖包覆的LiFePO4正极活性材料在氮气保护下600~750℃煅烧2~10小时,得到碳包覆LiFePO4正极活性材料。
图2为本发明实施例1碳包覆LiFePO4正极活性材料的SEM照片,从图2可以看出,所述碳包覆LiFePO4正极活性材料具有良好的分散性和单一性。图3为实施例1和对比例1的LiFePO4正极活性材料在0.2C倍率下充放电曲线图。从图3可以看出,与对比例1制备的碳包覆LiFePO4正极活性材料相比,实施例1制备的碳包覆LiFePO4正极活性材料具有更高的比容量,且中值电压更高,比能量更高,且循环性能好、极化较小。

Claims (10)

  1. 一种锂离子电池电极活性材料的碳包覆方法,包括:
    提供电极活性材料前驱体和第一溶剂,使该电极活性材料前驱体在所述第一溶剂中进行液相反应,所述液相反应完毕后得到一第一混合液,该第一混合液包括所述第一溶剂和分散在该第一溶剂中的电极活性材料颗粒;
    提供碳源,将所述碳源加入所述第一混合液中,并使该碳源在所述第一溶剂中溶解,得到一第二混合液;
    干燥所述第二混合液,得到具有碳源包覆层的电极活性材料颗粒,在所述具有碳源包覆层的电极活性材料颗粒中,所述碳源包覆在所述电极活性材料颗粒的表面;以及
    烧结该具有碳源包覆层的电极活性材料颗粒,得到碳包覆锂离子电池电极活性材料。
  2. 如权利要求1所述的锂离子电池电极活性材料的碳包覆方法,其特征在于,得到所述第一混合液后进一步包括一对所述第一混合液进行除杂的步骤,以除去所述第一混合液中的杂质离子,具体包括:
    将所述第一混合液进行分离得到未经干燥处理的湿粉状滤料,使用第二溶剂对所述湿粉状滤料进行洗涤及过滤,得到未经干燥处理的湿粉状电极活性材料;
    将所述湿粉状电极活性材料颗粒分散在所述第一溶剂中,得到除杂后的第一混合液。
  3. 如权利要求1所述的锂离子电池电极活性材料的碳包覆方法,其特征在于,所述湿粉状滤料包括所述电极活性材料颗粒、所述第一溶剂及所述杂质离子,所述第一溶剂和所述杂质离子吸附在所述电极活性材料颗粒表面;所述湿粉状电极活性材料包括所述电极活性材料颗粒及第二溶剂,该第二溶剂吸附在所述电极活性材料颗粒表面。
  4. 如权利要求2所述的锂离子电池电极活性材料的碳包覆方法,其特征在于,所述第二溶剂与所述第一溶剂互溶。
  5. 如权利要求2所述的锂离子电池电极活性材料的碳包覆方法,其特征在于,所述湿粉状滤料及所述湿粉状电极活性材料颗粒的固含量均小于50%。
  6. 如权利要求2所述的锂离子电池电极活性材料的碳包覆方法,其特征在于,所述第二溶剂为水、乙醇、乙二醇、丙三醇、二甘醇、三甘醇、四甘醇、丁三醇、正丁醇、异丁醇、聚乙二醇及二甲基甲酰胺中的一种或者几种。
  7. 如权利要求1所述的锂离子电池电极活性材料的碳包覆方法,其特征在于,所述第一溶剂为水、乙醇、乙二醇、丙三醇、二甘醇、三甘醇、四甘醇、丁三醇、正丁醇、异丁醇、聚乙二醇及二甲基甲酰胺中的一种或者几种。
  8. 如权利要求1所述的锂离子电池电极活性材料的碳包覆方法,其特征在于,所述液相反应方法包括水热法、溶剂热法、沉淀法、超临界水热法及微波合成法。
  9. 如权利要求1所述的锂离子电池电极活性材料的碳包覆方法,其特征在于,所述碳源为蔗糖、葡萄糖、果糖、乳糖、淀粉、PVC、PVA、PVB、PVP、PAN、酚醛树脂及高分子聚合物中的一种或者多种。
  10. 如权利要求1所述的锂离子电池电极活性材料的碳包覆方法,其特征在于,所述烧结温度为600℃至750℃,所述烧结时间为2小时至10小时。
PCT/CN2015/091425 2014-10-14 2015-10-06 锂离子电池电极活性材料的碳包覆方法 WO2016058491A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/482,446 US20170214039A1 (en) 2014-10-14 2017-04-07 Method for carbon coating on electrode active material of lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410538896.9A CN104282887A (zh) 2014-10-14 2014-10-14 锂离子电池电极活性材料的碳包覆方法
CN201410538896.9 2014-10-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/482,446 Continuation US20170214039A1 (en) 2014-10-14 2017-04-07 Method for carbon coating on electrode active material of lithium ion battery

Publications (1)

Publication Number Publication Date
WO2016058491A1 true WO2016058491A1 (zh) 2016-04-21

Family

ID=52257558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/091425 WO2016058491A1 (zh) 2014-10-14 2015-10-06 锂离子电池电极活性材料的碳包覆方法

Country Status (3)

Country Link
US (1) US20170214039A1 (zh)
CN (1) CN104282887A (zh)
WO (1) WO2016058491A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3608998A1 (en) 2018-08-08 2020-02-12 Robert Bosch GmbH Method for fabricating a cathodic electrode for a solid-state battery

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282887A (zh) * 2014-10-14 2015-01-14 江苏华东锂电技术研究院有限公司 锂离子电池电极活性材料的碳包覆方法
CN108448079B (zh) * 2018-02-11 2020-06-19 江苏合志新能源材料技术有限公司 正极复合材料及其制备方法
CN115064675A (zh) * 2022-06-30 2022-09-16 合肥国轩高科动力能源有限公司 磷酸铁锂复合材料及其制备方法、正极、锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468485A (zh) * 2010-11-04 2012-05-23 海洋王照明科技股份有限公司 一种钛酸锂复合材料、其制备方法和应用
CN103000874A (zh) * 2012-11-07 2013-03-27 彩虹集团公司 一种碳包覆三元正极材料的制备方法
CN103247778A (zh) * 2013-04-26 2013-08-14 北大先行科技产业有限公司 一种高功率型磷酸铁锂正极材料及其制备方法
CN104282887A (zh) * 2014-10-14 2015-01-14 江苏华东锂电技术研究院有限公司 锂离子电池电极活性材料的碳包覆方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101420034A (zh) * 2008-06-02 2009-04-29 李庆余 碳包覆粒度可控球形磷酸铁锂复合正极材料及其制备方法
CN101693532B (zh) * 2009-10-16 2011-06-29 清华大学 一种磷酸亚铁锂的制备方法
CN102013475A (zh) * 2010-10-22 2011-04-13 秦波 一种多孔球形Li1-xMxFe1-yNy(PO4)[3+(α-1)x+(β-2) y]/3/C材料的制备方法
CN102275887A (zh) * 2011-01-17 2011-12-14 横店集团东磁股份有限公司 一种高容量高压实密度磷酸铁锂材料的制备方法及其产品
CN102306761A (zh) * 2011-09-18 2012-01-04 河南捷和新能源材料有限公司 一种锂离子电池正极材料的制备方法
CN103035905B (zh) * 2012-12-21 2015-12-23 深圳市天骄科技开发有限公司 一种锂离子电池多元正极材料球形前驱体的制备方法
CN103359701B (zh) * 2013-06-28 2015-10-21 清华大学 磷酸铁锂的制备方法
CN103515578A (zh) * 2013-07-15 2014-01-15 江苏华东锂电技术研究院有限公司 锂离子电池正极材料的制备方法
CN103794780A (zh) * 2014-02-27 2014-05-14 北京国能电池科技有限公司 一种富锂锰基材料、其制备方法及锂离子电池
CN103964499A (zh) * 2014-05-05 2014-08-06 湖南大学 一种碳包覆二氧化钛纳米电极材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468485A (zh) * 2010-11-04 2012-05-23 海洋王照明科技股份有限公司 一种钛酸锂复合材料、其制备方法和应用
CN103000874A (zh) * 2012-11-07 2013-03-27 彩虹集团公司 一种碳包覆三元正极材料的制备方法
CN103247778A (zh) * 2013-04-26 2013-08-14 北大先行科技产业有限公司 一种高功率型磷酸铁锂正极材料及其制备方法
CN104282887A (zh) * 2014-10-14 2015-01-14 江苏华东锂电技术研究院有限公司 锂离子电池电极活性材料的碳包覆方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEN RENHONGQUAN ET AL.: "Preparation and Electrochemical Performance of a Secondary Mesoporous LiFeP04/C Microsphere", JOURNAL OF MATERIALS SCIENCE AND ENGINEERING, vol. 31, no. 2, 30 April 2013 (2013-04-30), ISSN: 1673-2812 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3608998A1 (en) 2018-08-08 2020-02-12 Robert Bosch GmbH Method for fabricating a cathodic electrode for a solid-state battery
WO2020030447A1 (en) 2018-08-08 2020-02-13 Robert Bosch Gmbh Method for fabricating a positive electrode for a solid-state battery

Also Published As

Publication number Publication date
US20170214039A1 (en) 2017-07-27
CN104282887A (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
WO2016058492A1 (zh) 锂离子电池电极活性材料的碳包覆方法
KR102382277B1 (ko) 리튬 이온 이차 전지용 정극, 그래핀-정극 활물질 복합체 입자 및 이들의 제조 방법, 및 리튬 이온 이차 전지용 정극 페이스트
JP6256337B2 (ja) 正極活物質―グラフェン複合体粒子およびリチウムイオン電池用正極材料ならびに正極活物質―グラフェン複合体粒子の製造方法
KR101316413B1 (ko) 희생 나노입자를 포함하는 전기 전도성 나노복합체 물질 및 이에 의해 생산된 개방 다공성 나노복합체
WO2015003568A1 (zh) 锂离子电池正极活性材料的制备方法
WO2021238152A1 (zh) 一种锂离子电池用复合正极材料、其制备方法及用途
CN113363483A (zh) 橄榄石结构正极材料及其制备方法与应用、锂离子电池
WO2015007169A1 (zh) 锂离子电池正极材料的制备方法
TW201335067A (zh) 電極材料、電極板、鋰離子電池、電極材料之製造方法及電極板之製造方法
WO2016058491A1 (zh) 锂离子电池电极活性材料的碳包覆方法
JP6724361B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
JP5804422B2 (ja) 二次電池正極活物質の製造方法
JP5728515B2 (ja) 二次電池用正極材料の製造方法
JP2022174097A (ja) 非水系電解質二次電池用正極活物質の製造方法、及び、成形体
JP2022174094A (ja) 非水系電解質二次電池用正極活物質の製造方法、及び、成形体
JP5927449B2 (ja) 二次電池用正極及びそれを用いた二次電池
JP5928648B1 (ja) リチウムイオン二次電池用電極材料
CN105810911B (zh) 一种高倍率磷酸铁锂/石墨烯复合正极材料的制备方法
JP4360143B2 (ja) リチウム二次電池用活物質の製造方法
CN115863654B (zh) 一种钠离子电池及其制备方法
CN110945692B (zh) 非水系二次电池用电极活性物质及其制造方法
KR101520025B1 (ko) 나노결정의 양극 활물질, 그 제조방법 및 이를 구비한 리튬 이차 전지
KR102273771B1 (ko) 리튬이차전지용 양극 활물질 및 그것을 포함하는 리튬이차전지
JP4222093B2 (ja) 複合酸化物粒子、その製造方法並びに二次電池用活物質および二次電池
JP2012197214A (ja) オリビン型リチウム遷移金属酸化物およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15850508

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15850508

Country of ref document: EP

Kind code of ref document: A1