WO2016056226A1 - 自律走行型掃除機 - Google Patents

自律走行型掃除機 Download PDF

Info

Publication number
WO2016056226A1
WO2016056226A1 PCT/JP2015/005070 JP2015005070W WO2016056226A1 WO 2016056226 A1 WO2016056226 A1 WO 2016056226A1 JP 2015005070 W JP2015005070 W JP 2015005070W WO 2016056226 A1 WO2016056226 A1 WO 2016056226A1
Authority
WO
WIPO (PCT)
Prior art keywords
corner
control unit
unit
vacuum cleaner
cleaner
Prior art date
Application number
PCT/JP2015/005070
Other languages
English (en)
French (fr)
Inventor
元暢 重藤
渡部 健二
秀治 小川原
松村 新一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015051342A external-priority patent/JP2017213009A/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201580027641.9A priority Critical patent/CN106413500B/zh
Priority to US15/329,448 priority patent/US10271705B2/en
Priority to EP15848938.5A priority patent/EP3205250B1/en
Publication of WO2016056226A1 publication Critical patent/WO2016056226A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/009Carrying-vehicles; Arrangements of trollies or wheels; Means for avoiding mechanical obstacles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2805Parameters or conditions being sensed
    • A47L9/2826Parameters or conditions being sensed the condition of the floor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • A47L9/2836Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
    • A47L9/2852Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles

Definitions

  • the present invention relates to an autonomously traveling vacuum cleaner.
  • an autonomous traveling type vacuum cleaner including a body on which various components are mounted, a drive unit that moves the body, a main brush, and a suction unit has been disclosed (see, for example, Patent Document 1 and Patent Document 2).
  • the main brush is disposed at a suction port formed in the body, and collects dust present on the cleaning surface.
  • the suction unit sucks dust from the suction port of the body.
  • the autonomously traveling vacuum cleaner disclosed in many documents such as Patent Document 1 and Patent Document 2 has a roughly circular body.
  • the shape of the body gives high turning performance to the autonomously traveling vacuum cleaner.
  • an autonomous traveling type vacuum cleaner further including one or a plurality of side brushes arranged on the bottom surface of the body is disclosed (for example, see Patent Document 3 to Patent Document 6).
  • the side brush includes a bristle bundle that protrudes outward from the outline of the body.
  • the bristle bundle collects garbage existing outside the outline of the body at the suction port of the body.
  • the autonomously traveling vacuum cleaners of Patent Literature 3 to Patent Literature 6 mainly have a side brush that has the ability to suck in dust existing in the corners of the target area (hereinafter sometimes simply referred to as “corner cleaning ability”). It is thought that it is decided by. On the other hand, the length of the bristle bundle is set under various constraints. Therefore, the corner cleaning ability obtained based on the side brush is also affected by the restriction. That is, the autonomously traveling vacuum cleaners of Patent Document 3 to Patent Document 6 have room for improvement with respect to corner cleaning ability.
  • the autonomously traveling vacuum cleaner of Patent Document 7 includes a body having an approximately D shape, a suction port formed on the bottom surface of the body, and a pair of side brushes attached to corners of the bottom surface of the body.
  • the side brush shaft and the body suction port are at the top of the corner at the corner position of the target region as compared with the autonomous traveling cleaners of Patent Document 3 to Patent Document 6, for example. approach. Therefore, it becomes easier to suck more garbage into the body.
  • the autonomous traveling type vacuum cleaner of Patent Document 7 when positioned at the corner of the target region, the front surface and one side surface of the body come into contact with the wall forming the corner or approach the wall to the extent equal to the contact. Therefore, the autonomously traveling vacuum cleaner may not be able to rotate at that location.
  • JP 2008-296007 A Special table 2014-504534 gazette JP 2011-212444 A JP 2014-073192 A JP 2014-094233 A Special table 2014-512247 gazette JP 2014-061375 A
  • the present invention provides an autonomously traveling vacuum cleaner that performs efficient cleaning until there is no dust present in the corner of the target area.
  • the autonomous traveling vacuum cleaner includes a body having a suction port on the bottom surface, a suction unit mounted on the body, an angle detection unit that detects a corner of the target area, and the body reciprocates. And a control unit for controlling the drive unit. When the angle is detected by the angle detector, the control unit controls the drive unit so that the body reciprocates.
  • FIG. 1 is a front view of the autonomous traveling cleaner of the first embodiment.
  • FIG. 2 is a bottom view of the autonomously traveling cleaner of FIG.
  • FIG. 3 is a functional block diagram showing the configuration of the electrical system in the autonomous traveling cleaner of FIG.
  • FIG. 4 is an operation diagram illustrating a state in which a conventional autonomous traveling type cleaner has reached a corner.
  • FIG. 5 is an operation diagram illustrating a state in which the autonomous traveling vacuum cleaner of FIG. 1 approaches a corner.
  • FIG. 6 is an operation diagram illustrating a state in which the autonomous traveling vacuum cleaner of FIG. 5 has reached the corner.
  • FIG. 7 is an operation diagram illustrating a state in which the autonomous traveling vacuum cleaner of FIG. 6 is rotated.
  • FIG. 8 is a front view of the autonomously traveling cleaner according to the second embodiment.
  • FIG. 8 is a front view of the autonomously traveling cleaner according to the second embodiment.
  • FIG. 9 is a bottom view of the autonomous traveling cleaner of FIG.
  • FIG. 10 is a perspective view of the autonomously traveling cleaner according to the third embodiment.
  • FIG. 11 is a front view of the autonomously traveling vacuum cleaner of FIG.
  • FIG. 12 is a front view of the autonomous traveling vacuum cleaner of FIG. 10 with the lid open.
  • FIG. 13 is a bottom view of the autonomously traveling cleaner of FIG. 14 is a side view of the autonomously traveling cleaner of FIG.
  • FIG. 15 is a perspective view illustrating a front side state in which some of the elements of FIG. 10 are separated.
  • FIG. 16 is a perspective view showing a state of the bottom surface side where a part of the elements of FIG. 10 is separated.
  • 17 is a cross-sectional view taken along line 17-17 in FIG.
  • FIG. 18 is a cross-sectional view showing a state in which some of the elements of FIG. 17 are separated.
  • 19 is a cross-sectional view taken along line 19-19 in FIG. 20 is a perspective view of the lower unit of FIG.
  • FIG. 21 is a perspective view of the lower unit of FIG.
  • FIG. 22 is a perspective view of the lower unit of FIG. 23 is a perspective view of the lower unit of FIG.
  • FIG. 24 is a perspective view of the upper unit of FIG.
  • FIG. 25 is a bottom view of the upper unit of FIG.
  • FIG. 26 is a functional block diagram showing a configuration of an electric system in the autonomous mobile vacuum cleaner of FIG.
  • FIG. 27 is a flowchart relating to the first corner cleaning control of the fourth embodiment.
  • FIG. 28 is a flowchart relating to the second corner cleaning control of the fifth embodiment.
  • FIG. 29 is a flowchart relating to the third corner cleaning control of the sixth embodiment.
  • FIG. 30 is a flowchart relating to the fourth corner cleaning control of the seventh embodiment.
  • FIG. 31 is a flowchart relating to the first escape control according to the eighth embodiment.
  • FIG. 32 is a flowchart relating to the second escape control according to the ninth embodiment.
  • FIG. 33 is a flowchart regarding the level difference control according to the tenth embodiment.
  • FIG. 34 is a flowchart relating to designated area cleaning control according to the eleventh embodiment.
  • FIG. 35 is a flowchart regarding reciprocal cleaning control according to the twelfth embodiment.
  • FIG. 36 is a front view of an autonomously traveling vacuum cleaner according to a modification.
  • FIG. 37 is a front view of an autonomously traveling vacuum cleaner according to a modification.
  • FIG. 38 is a front view of an autonomously traveling
  • Embodiment 1 Below, the basic structure of the autonomous traveling type vacuum cleaner in this Embodiment 1 is demonstrated, referring FIG. 1 and FIG.
  • FIG. 1 is a front view of the autonomously traveling cleaner 10 according to the first embodiment.
  • FIG. 2 is a bottom view of the autonomously traveling cleaner of FIG.
  • the autonomously traveling cleaner 10 autonomously travels on the cleaning surface of the target area and sucks dust existing on the cleaning surface.
  • An example of the target area is a room
  • an example of the cleaning surface is the floor of the room.
  • the autonomously traveling vacuum cleaner 10 of the present embodiment includes a body 20 on which various components are mounted, a pair of drive units 30, a cleaning unit 40, a suction unit 50, a trash box unit 60, a control unit 70, a power supply unit 80, and casters. 90 functional blocks.
  • the pair of drive units 30 move the body 20 so as to be able to reciprocate such as front and rear, left and right.
  • the cleaning unit 40 collects garbage present in the target area.
  • the suction unit 50 sucks the dust collected by the cleaning unit 40 into the body 20.
  • the trash box unit 60 stores the trash sucked by the suction unit 50.
  • the control unit 70 controls the drive unit 30, the cleaning unit 40, the suction unit 50, and the like.
  • the power supply unit 80 supplies power to the drive unit 30, the cleaning unit 40, the suction unit 50, and the like.
  • the caster 90 rotates following the rotation of the drive unit 30.
  • the pair of drive units 30 includes a right drive unit 30 disposed on the right side with respect to the center in the width direction of the body 20, and a left drive unit 30 disposed on the left side with respect to the center in the width direction of the body 20. Consists of. Note that either the right or left drive unit 30 constitutes a first drive unit, and the left or right drive unit 30 constitutes a second drive unit.
  • the left-right direction which is the width direction of the autonomous traveling cleaner 10, is defined based on the forward direction of the autonomous traveling cleaner 10.
  • the body 20 is configured by combining a lower unit 100 (see FIG. 2) that forms the lower outer shape of the body 20 and an upper unit 200 (see FIG. 1) that forms the upper outer shape of the body 20.
  • the upper unit 200 includes a cover 210, a lid 220, a bumper 230, and the like.
  • the cover 210 forms a main part of the outline of the upper unit 200.
  • the lid 220 is provided so as to open and close with respect to the cover 210.
  • the bumper 230 is displaced with respect to the cover 210 to relieve an impact or the like.
  • the planar shape of the body 20 is, for example, a Rouleau triangle, a polygon having approximately the same shape as the Rouleau triangle, or a shape in which R is formed at the top of these triangles or polygons. This shape contributes to making the body 20 have the same or similar properties as the geometric properties of the Reuleaux triangle.
  • the body 20 has, for example, a planar shape that is substantially the same as, for example, a Rouleau triangle.
  • the body 20 includes a plurality of outer peripheral surfaces and a plurality of tops.
  • An example of the plurality of outer peripheral surfaces is a front surface 21, a right side surface 22, and a left side surface 22.
  • the front surface 21 exists on the forward side of the autonomously traveling cleaner 10.
  • the right side surface 22 exists on the right rear side with respect to the front surface 21.
  • the left side surface 22 exists on the left rear side with respect to the front surface 21.
  • the front surface 21 is a curved surface curved outward and is mainly formed on the bumper 230.
  • Each of the side surfaces 22 has a curved shape that curves outward, and is formed on the side of the bumper 230 and the side of the cover 210.
  • An example of the plurality of tops is a front top 23 on the right side, a front top 23 on the left side, and a rear top 24.
  • the right front top 23 is defined by the front face 21 and the right side face 22.
  • the left front apex 23 is defined by the front face 21 and the left side face 22.
  • the rear top 24 is defined by the right side surface 22 and the left side surface 22.
  • the front surface 21 and the side surface 22 are formed such that the angle formed by the tangent line L1 of the front surface 21 and the tangent line L2 of the side surface 22 is an acute angle, as shown in FIG.
  • the right front top 23 and the left front top 23 define the maximum width of the body 20.
  • the maximum width of the body 20 corresponds to the distance between the apex of the right front apex 23 and the apex of the left front apex 23, that is, the distance between the two apexes of the Rouleau triangle. .
  • the body 20 further includes a suction port 101 for sucking dust into the body 20 as shown in FIG.
  • the suction port 101 is formed on the bottom surface of the lower unit 100 that is the bottom surface of the body 20.
  • the suction port 101 is formed in a rectangular shape, for example.
  • the longitudinal direction of the suction port 101 is substantially the same as the width direction of the body 20, and the short direction is substantially the same as the front-rear direction of the body 20.
  • the suction port 101 is formed at a portion from the front surface 21 on the bottom surface of the body 20.
  • the positional relationship of the suction port 101 is defined by one or both of the following two types of relationships related to each element, for example.
  • the first relationship is that the center line of the suction port 101 along the longitudinal direction of the suction port 101 (hereinafter, “the center line in the longitudinal direction of the suction port 101”) is more forward of the body 20 than the center of the body 20 in the front-rear direction. Is to exist on the side.
  • the second relationship is that the suction port 101 is formed on the front side of the body 20 with respect to the pair of drive units 30.
  • the width of the suction port 101 which is a dimension in the longitudinal direction of the suction port 101, is wider than the inner space between the right drive unit 30 and the left drive unit 30. Thereby, the width
  • the drive unit 30 is disposed on the bottom side of the lower unit 100 and includes a plurality of elements.
  • the drive unit 30 includes, for example, a wheel 33 that travels on the cleaning surface, a travel motor 31 that applies torque to the wheel 33, and a housing 32 that houses the travel motor 31.
  • the wheel 33 is accommodated in a recess formed in the lower unit 100.
  • the wheel 33 is supported by the lower unit 100 so as to be rotatable with respect to the lower unit 100.
  • the wheel 33 is disposed outside the traveling motor 31 in the width direction of the body 20. This arrangement makes it possible to widen the distance between the right wheel 33 and the left wheel 33 as compared with the case where the wheel 33 is arranged inside the traveling motor 31 in the width direction. This contributes to the improvement of the stability of the body 20.
  • the drive system of the autonomous traveling type vacuum cleaner 10 is an opposed two-wheel type. Therefore, the right drive unit 30 and the left drive unit 30 are disposed to face each other in the width direction of the body 20. That is, as shown in FIG. 2, the rotation axis H of the right wheel 33 and the rotation axis H of the left wheel 33 are substantially coaxial.
  • the distance between the rotational axis H of the wheel and the center of gravity G of the autonomous traveling cleaner 10 is set with the intention of giving the autonomous traveling cleaner 10 a predetermined turning performance, for example.
  • the predetermined turning performance is a performance that allows the body 20 to form a trajectory similar to or similar to a quadrangular trajectory formed by the outline of the rouleau triangle.
  • the position of the rotation axis H is set to the rear side of the body 20 with respect to the center of gravity G of the autonomous traveling cleaner 10, and the distance between the rotation axis H and the center of gravity G is set to a predetermined distance.
  • the square and similar trajectories can be formed using the contact between the body 20 and surrounding objects.
  • the cleaning unit 40 is disposed inside and outside the body 20, and includes a plurality of elements.
  • the cleaning unit 40 includes, for example, a brush drive motor 41, a gear box 42, and a main brush 43.
  • the brush drive motor 41 and the gear box 42 are disposed inside the body 20.
  • the main brush 43 has approximately the same length as the longitudinal dimension of the suction port 101, and is disposed in the suction port 101 of the body 20.
  • the brush drive motor 41 and the gear box 42 are attached to the lower unit 100.
  • the gear box 42 is connected to the output shaft of the brush drive motor 41 and the main brush 43, and transmits the torque of the brush drive motor 41 to the main brush 43.
  • the main brush 43 is supported by a bearing portion (not shown) so that it can rotate with respect to the lower unit 100.
  • the bearing portion is formed in one or both of the gear box 42 and the lower unit 100, for example.
  • the rotation direction of the main brush 43 is set in a direction from the front to the rear of the body 20 on the cleaning surface side, for example, as indicated by an arrow AM in FIG.
  • the suction unit 50 is disposed inside the body 20 and includes a plurality of elements.
  • the suction unit 50 is disposed, for example, on the rear side of the trash box unit 60 and on the front side of the power supply unit 80 described later.
  • the suction unit 50 includes, for example, a fan case 52 attached to the lower unit 100 (see FIG. 2) and an electric fan 51 disposed inside the fan case 52.
  • the electric fan 51 sucks air inside the trash box unit 60 and discharges the air outward in the circumferential direction of the electric fan 51.
  • the air discharged from the electric fan 51 passes through the space inside the fan case 52 and the space around the fan case 52 inside the body 20 and is exhausted outside the body 20.
  • the trash box unit 60 is disposed between the pair of drive units 30 on the rear side of the main brush 43 and the front side of the suction unit 50 inside the body 20.
  • the body 20 and the trash box unit 60 have a detachable structure that allows the user to arbitrarily select the state in which the trash box unit 60 is attached to the body 20 and the state in which the trash box unit 60 is removed from the body 20.
  • control unit 70 is disposed behind the suction unit 50 inside the body 20.
  • the autonomous traveling cleaner 10 of the present embodiment further includes a plurality of sensors.
  • the plurality of sensors are, for example, an obstacle detection sensor 71, a pair of distance measurement sensors 72, a collision detection sensor 73, and a plurality of floor surface detection sensors 74.
  • the obstacle detection sensor 71 detects an obstacle present in front of the body 20.
  • the pair of distance measuring sensors 72 detects the distance between an object existing around the body 20 and the body 20.
  • the collision detection sensor 73 detects that the body 20 has collided with a surrounding object.
  • the floor surface detection sensor 74 detects a cleaning surface present on the bottom surface of the body 20. Detection signals from the obstacle detection sensor 71, the distance measurement sensor 72, the collision detection sensor 73, and the floor detection sensor 74 are input to the control unit 70, and the autonomous traveling cleaner 10 is controlled based on the detection signals.
  • the obstacle detection sensor 71 is composed of, for example, an ultrasonic sensor and includes a transmission unit and a reception unit.
  • the distance measurement sensor 72 and the floor surface detection sensor 74 are configured by, for example, an infrared sensor, and include a light emitting unit and a light receiving unit.
  • the collision detection sensor 73 is composed of, for example, a contact displacement sensor.
  • the collision detection sensor 73 includes a switch that is turned on when the bumper 230 comes into contact with an object and is pushed into the cover 210.
  • the pair of distance measuring sensors 72 includes a right distance measuring sensor 72 and a left distance measuring sensor 72.
  • the right distance measuring sensor 72 is disposed on the right side with respect to the center of the body 20 in the width direction.
  • the left distance measuring sensor 72 is arranged on the left side with respect to the center of the body 20 in the width direction.
  • the right distance measuring sensor 72 is disposed in the vicinity of the right front apex 23 and outputs light (for example, infrared rays) toward the right front side of the body 20.
  • the left distance measuring sensor 72 is disposed in the vicinity of the left front apex 23 and outputs light (for example, infrared rays) toward the left front side of the body 20.
  • the plurality of floor surface detection sensors 74 are arranged on the front side of the body 20 relative to the drive unit 30, for example, and the rear side of the body 20 relative to the drive unit 30. It is comprised by the floor surface detection sensor 74 of the back side arrange
  • the autonomously traveling vacuum cleaner 10 further includes a power supply unit 80.
  • the power supply unit 80 supplies power to the drive unit 30, the cleaning unit 40, the suction unit 50, the obstacle detection sensor 71, the distance measurement sensor 72, the collision detection sensor 73, the floor surface detection sensor 74, and the like.
  • the power supply unit 80 is arranged on the rear side of the body 20 with respect to the front-rear direction center of the body 20 and on the rear side of the body 20 with respect to the suction unit 50.
  • the power supply unit 80 includes, for example, a battery case 81, a storage battery 82, a main switch 83, and the like.
  • the battery case 81 is attached to the lower unit 100.
  • the storage battery 82 is composed of, for example, a secondary battery and is housed in the battery case 81.
  • the main switch 83 switches between supply and stop of power from the power supply unit 80 to each element.
  • the autonomous traveling type vacuum cleaner 10 of the present embodiment is configured.
  • FIG. 3 is a functional block diagram showing the configuration of the electric system in the autonomous traveling cleaner of FIG.
  • control unit 70 is disposed on the power supply unit 80 inside the body 20 and is electrically connected to the power supply unit 80.
  • the control unit 70 further includes the obstacle detection sensor 71, the distance measurement sensor 72, the collision detection sensor 73, the floor detection sensor 74, the dust detection sensor 300, the pair of travel motors 31, the brush drive motor 41, and the electric fan. 51 etc. are electrically connected.
  • the control unit 70 is configured by a semiconductor integrated circuit such as a CPU (Central Processing Unit), and controls each circuit. Furthermore, the control unit 70 includes a storage unit (not shown) that stores various programs executed by the control unit 70, parameters, and the like.
  • the storage unit is configured by a nonvolatile semiconductor storage element such as a flash memory.
  • the control unit 70 based on the detection signal input from the obstacle detection sensor 71, the control unit 70 has an object that can hinder the traveling of the autonomous traveling cleaner 10 within a predetermined range in front of the body 20. It is determined whether or not.
  • the control unit 70 calculates the distance between the object existing around the front top 23 of the body 20 and the contour of the body 20 based on the detection signal input from the distance measuring sensor 72.
  • control unit 70 determines whether or not the body 20 has collided with a surrounding object based on the detection signal input from the collision detection sensor 73. Based on the detection signal input from the floor surface detection sensor 74, the control unit 70 determines whether or not the cleaning surface of the target region exists below the body 20.
  • control unit 70 controls the pair of travel motors 31, the brush drive motor 41, and the electric fan 51 using one or more of the determination and calculation results. Thereby, the control unit 70 controls the operation
  • the autonomously traveling cleaner 10 further includes a dust detection sensor 300 that is electrically connected to the control unit 70.
  • the dust detection sensor 300 detects at least one of dust and house dust sucked from the suction port 101 shown in FIG.
  • the dust detection sensor 300 is disposed, for example, on a passage from the suction port 101 to the garbage box unit 60, and detects the amount of dust passing through the passage.
  • the dust detection sensor 300 is supplied with power from the power supply unit 80.
  • the dust detection sensor 300 is composed of, for example, an infrared sensor having a light emitting element and a light receiving element.
  • the dust detection sensor 300 detects information related to the amount of light emitted from the light emitting element by the light receiving element.
  • the dust detection sensor 300 then outputs a detection signal related to the detected information to the control unit 70.
  • the control unit 70 determines the amount of dust based on the detection signal input from the dust detection sensor 300. Specifically, the control unit 70 determines that the amount of dust is large when the amount of light is small, and determines that the amount of dust is small when the amount of light is large.
  • the detection signal is a signal output from an operational amplifier or the like that is an amplifying element connected to the light receiving element.
  • the electric system of the autonomous traveling type vacuum cleaner 10 of the present embodiment is configured.
  • FIG. 4 is an operation diagram showing a state in which a conventional autonomously traveling cleaner has reached the corner.
  • FIG. 5 is an operation diagram illustrating a state in which the autonomous traveling vacuum cleaner of FIG. 1 approaches a corner.
  • FIG. 6 is an operation diagram illustrating a state in which the autonomous traveling vacuum cleaner of FIG. 5 has reached the corner.
  • FIG. 7 is an operation diagram illustrating a state in which the autonomous traveling vacuum cleaner of FIG. 6 is rotated.
  • the room RX that is the target region includes, for example, an angle R3 formed by the first wall R1 and the second wall R2.
  • the angle R3 is approximately a right angle (including a right angle) will be described as an example.
  • the conventional autonomous traveling cleaner 900 cannot cover the tip R4 of the corner R3 with the outer shape when it reaches the corner R3. Therefore, a relatively large space is formed between the suction port 910 and the tip portion R4 of the autonomous traveling cleaner 900.
  • the conventional autonomous traveling cleaner 900 by installing the side brush, it is possible to collect the dust present in the tip portion R4 at the suction port 910 with the side brush.
  • the conventional autonomously traveling cleaner 900 sucks dust at a position where the suction port 910 is separated from the distal end portion R4 regardless of the presence or absence of the side brush.
  • control unit 70 causes the autonomously traveling cleaner 10 to travel as shown below, for example, and cleans the corner R3 of the room RX.
  • the control unit 70 causes the front surface 21 of the body 20 to face the first wall R1 of the room RX that is the target region, for example. Then, the control unit 70 advances the autonomous traveling type vacuum cleaner 10 along the second wall R2 toward the first wall R1. At this time, the autonomously traveling vacuum cleaner 10 travels while maintaining the state in which one (right side) front top 23 is in contact with the second wall R2 or close to the second wall R2 to the same extent. To do.
  • the autonomous traveling cleaner 10 when the front surface 21 of the body 20 comes into contact with the first wall R1, or when the control unit 70 approaches the first wall R1 to the same extent as shown in FIG.
  • the operation of the autonomous traveling cleaner 10 is temporarily stopped.
  • a part of the front top 23 on the right side of the body 20 covers a part of the tip R4 of the corner R3. That is, as compared with the case where the conventional autonomous traveling cleaner 900 shown in FIG. 4 approaches the limit to the corner R3, the autonomous traveling cleaner 10 of the present embodiment has the suction port 101 of the body 20 at the corner R3. It approaches the tip portion R4 more closely.
  • the control unit 70 performs an operation of turning so that the front surface 21 of the body 20 is in contact with the first wall R1, and an operation of turning so that the right side surface 22 is in contact with the second wall R2.
  • the autonomous traveling type vacuum cleaner 10 is repeatedly executed. At this time, the autonomously traveling cleaner 10 has a reaction force acting on the body 20 due to contact between the front surface 21 and the first wall R1, and a reaction force acting on the body 20 due to contact between the right side surface 22 and the second wall R2. Receive power. Thereby, the autonomously traveling vacuum cleaner 10 turns to the left while changing the position of the center of gravity G. This turning movement simulates a part of the movement when the Rouleau triangle forms a square locus.
  • the right front apex 23 is at or near the apex of the corner R3. Suitable for. As a result, the right front apex 23 is closest to the apex of the corner R3.
  • the body 20 covers a relatively wide range of the tip portion R4 of the corner R3.
  • the distance between the suction port 101 of the body 20 and the tip end portion R4 of the corner R3 is the same as that of the suction port 910 and the tip of the corner R3 when the conventional autonomous traveling cleaner 900 shown in FIG. 4 approaches the limit to the corner R3. It becomes shorter than the distance with the part R4.
  • the arrangement of the suction port 101 contributes to enhancing the corner cleaning ability of the autonomous traveling cleaner 10 as compared to the conventional autonomous traveling cleaner 900.
  • the angle formed by the tangent L1 of the front surface 21 of the body 20 and the tangent L2 of the side surface 22 is an acute angle. Therefore, the autonomously traveling vacuum cleaner 10 can turn on the spot when located at the corner R3 of the target area. Thereby, the autonomous running type vacuum cleaner 10 can take various attitude
  • the posture is such that the front top 23 of the body 20 faces the apex of the corner R3 of the target region or the vicinity thereof.
  • the contour of the body 20 has an angle R3 as compared to the case where the autonomous traveling cleaner 900 having a conventional circular body approaches the limit of the corner R3 of the target region. Closer to the top.
  • the suction port 101 of the body 20 is further brought closer to the apex of the corner R3. Therefore, the body 20 can easily suck in dust that exists on the cleaning surface at the corner R ⁇ b> 3 from the suction port 101. That is, the autonomously traveling cleaner 10 can easily suck in dust that is present at the corner R3 of the target region, as compared to the autonomously traveling cleaner 900 having a conventional circular body.
  • the autonomous traveling type vacuum cleaner 10 when the autonomous traveling type vacuum cleaner 10 takes a posture in which the front top 23 of the body 20 faces the apex of the corner R3 or the vicinity thereof, the autonomous traveling vacuum cleaner 10 can rotate and change its direction on the spot. Therefore, when moving from the corner R3 of the target area to another place, the restrictions imposed on the autonomous traveling type vacuum cleaner provided with the conventional D-type body are low (relaxed). That is, the autonomously traveling cleaner 10 can quickly move from the corner R3 to another place as compared with the autonomously traveling cleaner having a conventional D-type body.
  • the autonomous traveling type vacuum cleaner 10 in the present embodiment operates.
  • the width of the suction port 101 may be narrower than the inner space between the pair of drive units 30.
  • the width of the suction port 101 is wider than the inner interval between the pair of drive units 30. That is, according to the configuration of the present embodiment, the suction port 101 is wider than the other embodiment. Therefore, the suction unit 50 can suck more garbage.
  • the suction port 101 may be formed between the pair of drive units 30.
  • the suction port 101 is formed on the front side of the body 20 rather than the pair of drive units 30. That is, according to the configuration of the present embodiment, the suction port 101 can be made closer to the wall (corner R3) as compared with the other embodiment. Therefore, the suction unit 50 can suck more garbage.
  • the maximum width of the body 20 is defined by the right and left front tops 23. Thereby, the width of the rear part of the body 20 becomes narrower than the width of the front part of the body 20. Therefore, when the autonomous mobile vacuum cleaner 10 turns in a place where an object is present in the surrounding area, the possibility that the rear portion of the body 20 contacts the surrounding object is reduced. Thereby, the mobility of the autonomous traveling type vacuum cleaner 10 can be improved.
  • the autonomous traveling type vacuum cleaner 10 may be configured to have a steering type driving system.
  • an opposed two-wheel drive system configured by a pair of drive units 30 is more preferable. That is, according to the configuration of the present embodiment, the structure can be simplified as compared with the other embodiment. Thereby, it is small and lightweight, and cost reduction can be achieved.
  • the relationship between the rotation axis H of each drive unit 30 and the center of gravity G of the autonomous traveling cleaner 10 constitutes one of the main factors that determine the rotation locus formed by the body 20. Therefore, in the autonomous traveling cleaner 10 of the present embodiment, the rotation axis H of the pair of drive units 30 is present behind the center of gravity G with respect to the center of gravity G. In this case, the autonomously traveling vacuum cleaner 10 is easy to form an action of turning while changing the position of its own center of gravity G using contact with surrounding objects. Thereby, the autonomously traveling vacuum cleaner 10 can appropriately form (clean) at least a part of the square locus by the turning operation of the body 20 made of a Rouleau triangle. As a result, the corner cleaning ability of the autonomous traveling cleaner 10 can be further enhanced.
  • FIG. 8 is a front view of the autonomously traveling vacuum cleaner according to the second embodiment.
  • FIG. 9 is a bottom view of the autonomous traveling cleaner of FIG.
  • the cleaning unit 40 further includes a pair of side brushes 44, a brush drive motor 41, and a pair of second gear boxes 42. This is different from the autonomously traveling vacuum cleaner of the first embodiment.
  • the pair of side brushes 44 of the cleaning unit 40 are disposed on the bottom surface of the lower unit 100 that is the bottom surface of the body 20.
  • One (for example, the left side) second gear box 42 of the pair of second gear boxes 42 is connected to the output shaft of the brush drive motor 41, the main brush 43, and one (for example, the left side) side brush 44. Is done. Then, the torque of the brush drive motor 41 is transmitted to the main brush 43 and one (for example, the left) side brush 44.
  • the other (for example, the right side) second gear box 42 is connected to the main brush 43 and the other (for example, the right side) side brush 44, and the torque of the main brush 43 is set to the other (for example, the right side) side brush 44. To communicate.
  • the side brush 44 includes a brush shaft 44A and a plurality of bristle bundles 44B.
  • the brush shaft 44 ⁇ / b> A is attached to the front top 23 of the body 20.
  • the bristle bundle 44B is attached to the brush shaft 44A.
  • the side brush 44 is provided at a position where a rotating track that can collect dust at the suction port 101 is formed with respect to the body 20.
  • the bristle bundle 44B is composed of, for example, three bundles as shown in FIG. Each bristle bundle 44B is attached to the brush shaft 44A at a constant angular interval (for example, 120 °).
  • the brush shaft 44 ⁇ / b> A has a rotation shaft that extends in the same direction as the height direction of the body 20, or approximately the same direction.
  • the brush shaft 44 ⁇ / b> A is supported by the body 20 so as to be rotatable with respect to the body 20. Further, the brush shaft 44 ⁇ / b> A is arranged on the front side of the body 20 with respect to the longitudinal center line of the suction port 101.
  • Each bristle bundle 44B is composed of a plurality of bristle.
  • Each bristle bundle 44B is fixed to the brush shaft 44A so as to extend in the same direction as the radial direction of the brush shaft 44A or approximately the same direction.
  • the length of the bristle bundle 44 ⁇ / b> B is set, for example, to such a length that the tip of the bristle bundle 44 ⁇ / b> B protrudes outward from at least the outline of the body 20.
  • the rotation direction of the pair of side brushes 44 is set in a direction in which the rotation trajectory is directed from the front to the rear of the body 20 on the center side in the width direction of the body 20 as indicated by an arrow AS in FIG. That is, the pair of side brushes 44 rotate in directions opposite to each other. That is, of the rotation trajectory of each side brush 44, the body 20 rotates from the front to the rear in a portion that is close to the rotation trajectory of the other side brush 44.
  • the autonomous traveling type vacuum cleaner 10 of the present embodiment is configured.
  • the autonomous traveling cleaner 10 of the present embodiment in addition to the effects (1) to (5) obtained by the autonomous traveling cleaner 10 of the first embodiment, the following effects are further obtained. It is done.
  • the autonomously traveling vacuum cleaner 10 of this embodiment includes a side brush 44. According to this configuration, the dust present at the corner R ⁇ b> 3 of the target region can be collected at the suction port 101 of the body 20 by the side brush 44. For this reason, the corner cleaning capability of the autonomous traveling type vacuum cleaner 10 is further enhanced.
  • the side brush 44 is attached to the bottom surface of the front top 23. According to this configuration, the brush shaft 44A of the side brush 44 comes closer to the apex of the corner R3 than when the conventional autonomous traveling cleaner 900 is positioned at the corner R3. For this reason, the corner cleaning capability of the autonomous traveling type vacuum cleaner 10 is further enhanced.
  • the side brushes 44 rotate in opposite directions. That is, of the rotation trajectory of each side brush 44, the body 20 rotates from the front to the rear in a portion that is close to the rotation trajectory of the other side brush 44. According to this configuration, dust is collected from the front side of the body 20 to the suction port 101 by the side brush 44. Therefore, for example, compared with the case where garbage is collected in the suction port 101 from the side vicinity of the suction port 101, the dust is easily sucked into the suction port 101. Thereby, the dust which exists on the cleaning surface of corner
  • the autonomous traveling type vacuum cleaner provided with a general side brush
  • the autonomously traveling vacuum cleaner 10 of the present embodiment can bring the suction port 101 of the body 20 closer to the tip portion R4 of the corner R3. Therefore, the corner cleaning ability does not strongly depend on the length of the bristle bundle 44B.
  • the length of the bristle bundle 44B is allowed to be relatively short. As a result, the possibility that the bristle bundle 44B is caught by surrounding objects can be reduced.
  • the autonomous traveling cleaner 10 of the present embodiment is allowed to set the length of the bristles bundle 44B to be relatively short. Therefore, if the length of the bristle bundle 44B is set short, the amount of bending of the bristle bundle 44B is reduced. This makes it easy to collect the dust present at the corner R3 at the suction port 101 by the bristle bundle 44B.
  • FIG. 10 shows a perspective view of the autonomous traveling cleaner 10 of the third embodiment.
  • the autonomously traveling vacuum cleaner 10 of the present embodiment further includes the following configuration not explicitly described in the second embodiment.
  • each element of the autonomous traveling cleaner 10 shown in FIG. 10 is an example of a specific form that can be taken by each element of the autonomous traveling cleaner 10 of the second embodiment schematically shown in FIGS. 8 and 9. It is.
  • the upper unit 200 includes a plurality of exhaust ports 211, a light receiving unit 212, a lid button 213, and the like.
  • the plurality of exhaust ports 211 are formed, for example, along the edge of the lid 220 so as to face the left and right side surfaces 22 of the body 20, and communicate the space inside the body 20 with the outside.
  • the light receiving unit 212 is formed on the front side of the lid 220.
  • the lid button 213 is provided for opening and closing the lid 220 when the waste stored in the trash box unit 60 is discarded.
  • the light receiving unit 212 receives a signal output from a charging stand (not shown) for charging the autonomous traveling cleaner 10 or a signal output from a remote controller (not shown) for operating the autonomous traveling cleaner 10. Receive light. When receiving the signal, the light receiving unit 212 outputs a light reception signal corresponding to the signal to the control unit 70 (see, for example, FIG. 15).
  • FIG. 11 shows a front view of the autonomously traveling cleaner 10 of FIG.
  • the autonomously traveling cleaner 10 has a substantially line-symmetric shape with respect to its own center line extending in the front-rear direction (see line 17-17 in the figure).
  • the bumper 230 includes a pair of curved convex portions 231 protruding from the left and right front top portions 23.
  • the curved convex portion 231 is curved so as to follow the R shape of the front surface 21 and the side surface 22 and forms a part of the contour of the body 20.
  • FIG. 12 shows a front view of the autonomous traveling vacuum cleaner of FIG. 10 with the lid 220 opened.
  • the upper unit 200 includes a cover 210, a lid 220, a bumper 230, an interface unit 240, a trash can receptacle 250, and the like.
  • the interface unit 240 elements operated by the user are arranged.
  • the trash box receptacle 250 supports the trash box unit 60.
  • the lid 220 includes a pair of arms 221 that constitute the hinge structure of the lid 220.
  • the upper unit 200 includes a pair of arm accommodating portions 260 (see FIG. 25) for accommodating the arms 221.
  • the interface unit 240 constitutes a part of the cover 210.
  • the interface unit 240 is closed when the lid 220 is closed (see, for example, FIG. 11), and is opened when the lid 220 is opened.
  • the interface unit 240 includes a panel 241 including a main switch 83, operation buttons 242, a display unit 243, and the like.
  • the operation button 242 turns on and off the operation of the autonomous traveling cleaner 10.
  • the panel 241 displays information on the autonomous mobile vacuum cleaner 10 on the display unit 243.
  • the panel 241 further includes operation buttons (not shown) for inputting various settings relating to the operation of the autonomous traveling cleaner 10.
  • the main switch 83 is disposed in the interface unit 240.
  • FIG. 24 shows a perspective view of the bottom side of the upper unit 200 of FIG.
  • the trash can receptacle 250 is formed of a box-like object that opens to the upper surface side of the upper unit 200.
  • the trash can receptacle 250 includes a bottom opening 251 that opens to the bottom side of the body 20 and a rear opening 252 that opens to the rear side of the body 20.
  • a trash box unit 60 shown in FIG. 12 is inserted into the trash box receptacle 250.
  • FIG. 13 shows a bottom view of the autonomously traveling cleaner 10 of FIG.
  • the lower unit 100 includes a base 110, a support shaft 91, and the like.
  • the base 110 forms a skeleton of the lower unit 100.
  • the support shaft 91 is disposed in parallel with the longitudinal direction of the suction port 101 and supports the caster 90.
  • the base 110 includes a power supply port 102 having a shape corresponding to the power supply unit 80 opened at the bottom and a pair of charging terminals 103 connected to a charging stand (not shown).
  • the power supply port 102 is formed on the rear side of the body 20 with respect to the center in the front-rear direction of the body 20, and a part of the power supply port 102 is formed between the pair of drive units 30.
  • Charging terminal 103 is formed on the front side of body 20 with respect to suction port 101.
  • the charging terminal 103 is formed, for example, in a portion closer to the front surface 21 in the bottom surface of the base 110.
  • the base 110 further includes a pair of bottom bearings 111 for supporting the support shaft 91.
  • the bottom bearing 111 is formed on the rear side of the body 20 with respect to the drive unit 30.
  • the bottom bearing 111 is disposed, for example, at the position of the bottom surface on the rear top portion 24 side behind the body 20 from the power supply port 102 on the bottom surface of the base 110.
  • the support shaft 91 is inserted into the caster 90 so that it can rotate with respect to the caster 90.
  • the end portions of the support shaft 91 are press-fitted into the bottom bearing 111, respectively.
  • the caster 90 is coupled so as to be rotatable with respect to the base 110.
  • FIG. 14 shows a side view of the autonomously traveling cleaner 10 of FIG.
  • the main brush 43 rotates in the direction of the arrow AM.
  • the interval between the rotation axis of the wheel 33 of the drive unit 30 and the rotation axis of the caster 90 is arranged to be wider than the interval between the rotation axis of the wheel 33 and the rotation axis of the main brush 43. This positional relationship contributes to the stability of the posture of the body 20 of the autonomous traveling cleaner 10.
  • FIG. 15 shows a perspective view of the upper surface side of the lower unit 100 in which a part of the elements of FIG. 10 is disassembled.
  • a pair of second gear box 42, suction unit 50, fan case 52, trash box unit 60 (see FIG. 12), control unit 70, and the like are attached to the upper surface side of lower unit 100.
  • the brush drive motor 41 is accommodated in one second gear box 42.
  • the lower unit 100 further includes a brush housing 170 attached to the upper surface side of the base 110 in addition to the base 110.
  • the brush housing 170 includes a duct 171 connected to the trash box unit 60 and forms a space for accommodating the main brush 43.
  • the fan case 52 includes, for example, a front side case element 52A and a rear side case element 52B.
  • the front case element 52 ⁇ / b> A is disposed on the front side of the electric fan 51.
  • the rear side case element 52 ⁇ / b> B is disposed on the rear side of the electric fan 51.
  • the fan case 52 is configured by combining the front case element 52A and the rear case element 52B.
  • the front case element 52A of the fan case 52 further includes a suction port 52C, a discharge port 52D (see FIG. 19), a louver 52E, and the like.
  • the suction port 52C is disposed to face the outlet 61B (see FIG. 17) of the trash box 61.
  • the discharge port 52D is disposed so as to open to the drive unit 30 side.
  • Louver 52E is provided to cover suction port 52C.
  • FIG. 16 shows a perspective view of the bottom side of the lower unit 100 in which a part of the elements of FIG. 10 is disassembled.
  • a pair of drive units 30, a main brush 43, a pair of side brushes 44, casters 90, and a power supply unit 80 are attached to the bottom side of the lower unit 100.
  • the lower unit 100 further includes a brush cover 180 attached to the bottom surface side of the brush housing 170 and a holding frame 190 attached to the power supply port 102.
  • the holding frame 190 is fixed to the power supply port 102. Thereby, the holding frame 190 holds the power supply unit 80 in cooperation with the base 110.
  • the base 110 and the brush cover 180 include a detachable structure that allows the user to arbitrarily select a state in which the brush cover 180 is attached to the base 110 and a state in which the brush cover 180 is removed from the base 110.
  • the base 110 and the holding frame 190 include a detachable structure that allows the user to arbitrarily select a state in which the holding frame 190 is attached to the base 110 and a state in which the holding frame 190 is detached from the base 110.
  • FIG. 20 shows a perspective view of an enlarged structure when the lower unit 100 of FIG. 15 is viewed from the front side.
  • FIG. 21 is a perspective view of an enlarged structure of the lower unit 100 of FIG. 15 viewed from the left side.
  • the base 110 is provided with a plurality of functional regions each supporting or accommodating a corresponding element.
  • the functional areas are, for example, the drive part 120, the cleaning part 130, the trash can part 140, the suction part 150, the power supply part 160, and the like.
  • the drive part 120 is a functional area that houses the drive unit 30 and includes a plurality of functional parts.
  • Functional parts of the drive part 120 are, for example, a wheel house 121 and a spring hook 122.
  • the wheel house 121 opens on the bottom side of the base 110 and houses the drive unit 30.
  • the spring hook 122 is hung by a suspension spring 36 (see FIG. 21) constituting a suspension mechanism described later.
  • the wheel house 121 protrudes upward from the upper surface of the base 110 and is formed in a portion of the base 110 from the side surface 22 (see FIG. 19).
  • the spring hook 122 is formed at a front portion of the wheel house 121 and is provided so as to protrude from the wheel house 121 approximately upward (including above).
  • a wheel removal detection switch 75 is attached to the upper portion of the wheel house 121.
  • the escape wheel detection switch 75 is pushed by the spring hook 32B. Thereby, derailment of autonomous running type vacuum cleaner 10 is detected.
  • the 20 is a functional region that supports the cleaning unit 40, and includes a plurality of functional parts.
  • Functional parts of the cleaning part 130 are, for example, a pair of shaft insertion portions 131, a coupling portion 132, a brush housing 170, a brush cover 180, and the like.
  • the pair of shaft insertion portions 131 support the brush shaft 44 ⁇ / b> A (see FIG. 22) of the side brush 44.
  • the coupling portion 132 includes a pair of shaft insertion portions 131 and a pair of second gear boxes 42 (see FIG. 22).
  • both end portions of the main brush 43 protrude from the brush housing 170 to the coupling portion 132 (see FIG. 20).
  • the brush shaft 44A of the side brush 44 shown in FIG. 15 is inserted into a hole formed in the shaft insertion portion 131 (see FIG. 20).
  • one second gear box 42 shown in FIG. 15 is disposed on one of the coupling portions 132 (see FIG. 20), and is connected to the end portion of the main brush 43 and one brush shaft 44A.
  • the other second gear box 42 is disposed on the other side of the coupling portion 132 (see FIG. 20), and is connected to the end portion of the main brush 43 and the other brush shaft 44A.
  • the trash box part 140 forms a space in which the trash box receptacle 250 (see FIG. 18) is disposed.
  • the suction part 150 is a functional region that supports the suction unit 50 and is formed approximately at or near the center of the base 110.
  • a pair of wheel houses 121 are formed on both sides of the suction part 150.
  • the power supply part 160 is a functional region that supports the power supply unit 80, and has a recessed portion that is recessed on the upper surface side when viewed from the bottom surface of the base 110.
  • the control unit 70 is mounted on the power supply part 160.
  • the brush cover 180 is attached to the base 110 so as to protrude downward from the bottom surface of the base 110 as shown in FIGS. 15 and 17.
  • the brush cover 180 includes a suction port 101 that exposes the main brush 43 to the outside of the body 20, and a slope 181 that is formed in the front portion.
  • the slope 181 is formed by a surface provided such that the distance from the bottom surface of the lower unit 100 increases from the front to the rear of the body 20. Thereby, the inclined surface 181 is brought into contact with the step existing on the cleaning surface of the target region, and contributes to floating the front of the body 20.
  • the duct 171 of the brush housing 170 has a shape extending approximately in the vertical direction of the body 20.
  • the duct 171 includes an inlet 172 that houses the upper portion of the main brush 43 and an outlet 173 that is connected to the space inside the trash box unit 60.
  • the outlet 173 is inserted into the bottom opening 251 of the trash can receptacle 250.
  • the passage area of the outlet 173 is formed narrower than the passage area of the inlet 172. That is, as shown in FIG. 15, the passage in the duct 171 is formed slightly inclined toward the rear side of the body 20 from the inlet 172 toward the outlet 173.
  • the shape of the passage contributes to guiding the dust sucked into the body 20 through the suction port 101 to the filter 62 side described later.
  • the trash box unit 60 includes a trash box 61 having a space for collecting trash, and a filter 62 attached to the trash box 61.
  • the trash box 61 includes an inlet 61A connected to the outlet 173 of the duct 171, an outlet 61B where the filter 62 is disposed, and a bottom 61C whose size is set smaller than the upper part.
  • the filter 62 is disposed in the rear opening 252 of the trash box receptacle 250 so as to face the suction unit 50 over the entire width direction of the trash box 61.
  • the bottom 61C of the trash box 61 is disposed between the rear side of the duct 171 and the front side of the fan case 52 as shown in FIG. This arrangement contributes to setting the position of the bottom 61C in the height direction of the body 20 to a lower position and lowering the center of gravity of the trash box 61.
  • the suction unit 50 is disposed to be inclined with respect to the base 110 as shown in FIG. That is, the suction unit 50 with respect to the base 110 is disposed in an inclined posture in which the bottom of the suction unit 50 is relatively positioned on the front side of the body 20 and the top of the suction unit 50 is relatively positioned on the rear side of the body 20.
  • the This arrangement contributes to setting the height of the body 20 low.
  • the fan case 52 has one side closed and a discharge port 52D on the other side (for example, the left side). This configuration contributes to stabilizing the flow of air discharged from the electric fan 51.
  • FIG. 21, FIG. 22 and FIG. 23 show perspective views for explaining the internal structure of the lower unit 100 viewed from the left side, the front side and the right side.
  • the lower unit 100 includes a pair of second gear boxes 42, a main brush 43, a pair of side brushes 44, a suction unit 50, a control unit 70, and a power supply unit 80. It is attached. And the body 20 shown in FIG. 10 is comprised by attaching to the upper unit 200 shown to FIG. 24 and FIG. 25, and the lower unit 100.
  • FIG. 10 is comprised by attaching to the upper unit 200 shown to FIG. 24 and FIG. 25, and the lower unit 100.
  • FIG. 16 is an exploded perspective view of the drive unit 30 separated from the lower unit 100.
  • the drive unit 30 is a functional block that moves the autonomous traveling cleaner 10 forward, backward, and turns, and includes a plurality of elements. As shown in FIG. 16, the drive unit 30 includes a tire 34 in addition to the above-described driving motor 31, housing 32, and wheel 33. The tire 34 is attached around the wheel 33 and has a block-shaped tread pattern.
  • the drive unit 30 further includes a support shaft 35 and a suspension mechanism.
  • the support shaft 35 has a rotating shaft of the housing 32.
  • the suspension mechanism is composed of, for example, a suspension spring 36 (see FIG. 21) and absorbs an impact applied to the wheel 33.
  • the housing 32 includes a motor housing portion 32A, a spring hook portion 32B, and a bearing portion 32C.
  • the motor accommodating portion 32A accommodates the traveling motor 31.
  • One end of the suspension spring 36 is hooked on the spring hook 32B.
  • the support shaft 35 is press-fitted into the bearing portion 32C.
  • the wheel 33 is supported by the housing 32 so as to be rotatable with respect to the housing 32.
  • One end portion of the support shaft 35 is press-fitted into the bearing portion 32 ⁇ / b> C, and the other end portion is inserted into the bearing portion formed in the drive part 120.
  • the other end of the suspension spring 36 is hung on a spring hook 122 of the drive part 120 as shown in FIG.
  • the suspension spring 36 applies a reaction force acting on the housing 32 in a direction in which the tire 34 (see FIG. 16) is pressed against the cleaning surface of the target area. Thereby, the state where the tire 34 is in contact with the cleaning surface is maintained.
  • the housing 32 compresses the suspension spring 36 (see FIG. 21) around the center line of the support shaft 35 from the cleaning surface side. It rotates to the body 20 side. Thereby, the force acting on the tire 34 according to the condition of the surface to be cleaned is absorbed by the suspension spring 36.
  • the housing 32 is rotated with respect to the drive part 120 by the reaction force of the suspension spring 36.
  • the spring hook 32B pushes in the wheel removal detection switch 75.
  • the control unit 70 stops traveling of the autonomous traveling cleaner 10 based on the output signal. As a result, an unnatural operation such as an idling operation of the autonomously traveling cleaner 10 can be prevented.
  • the autonomously traveling cleaner 10 includes the above-described plurality of floor surface detection sensors 74, obstacle detection sensors 71, distance measurement sensors 72, collision detection sensors 73, and the like.
  • the floor surface detection sensor 74 is, for example, three floor surface detection sensors 74 disposed on the front side of the body 20 with respect to the pair of drive units 30, and 2 disposed on the rear side of the body 20 with respect to the pair of drive units 30.
  • the front-side floor surface detection sensor 74 is attached to, for example, three locations such as the center in front of the base 110, the front top 23 on the right side of the base 110, and the front top 23 on the left side of the base 110. As shown in FIG. 19, the rear side floor surface detection sensor 74 is attached at two locations near the right side surface 22 of the base 110 and near the left side surface 22 of the base 110.
  • the base 110 includes a plurality of sensor windows 112 corresponding to the plurality of floor surface detection sensors 74.
  • the sensor window 112 includes three sensor windows 112 corresponding to the front center, front right side, and front left floor surface detection sensors 74. Further, the sensor window 112 includes two sensor windows 112 corresponding to the floor detection sensors 74 on the rear right side and the rear left side.
  • the obstacle detection sensor 71 includes a transmitter 71A that outputs ultrasonic waves and a receiver 71B that receives reflected ultrasonic waves.
  • the transmitter 71A and the receiver 71B are attached to the back surface (the inner surface of the body 20) of the bumper 230, respectively.
  • the upper unit 200 includes a plurality of windows in addition to the cover 210, the lid 220, and the bumper 230.
  • the plurality of windows include, for example, a transmission window 232, a reception window 233, a pair of distance measurement windows 234, and the like illustrated in FIG.
  • the transmission window 232 is formed in the bumper 230 corresponding to the transmission part 71A of the obstacle detection sensor 71, as shown in FIG. Thereby, the ultrasonic wave output from the transmitting unit 71A is guided to the outside by the transmitting window 232 and radiated to the outside.
  • the reception window 233 is formed in the bumper 230 corresponding to the reception unit 71B of the obstacle detection sensor 71. Thereby, the ultrasonic wave output from the transmitter 71A and reflected from the surrounding object is guided to the receiver 71B by the reception window 233. As a result, surrounding objects are detected.
  • the distance measuring window 234 is formed in the bumper 230 corresponding to each distance measuring sensor 72.
  • the light output from the distance measurement sensor 72 passes through the distance measurement window 234 and is emitted obliquely forward of the body 20 as indicated by the broken line arrow in FIG.
  • the autonomous traveling type vacuum cleaner 10 of the present embodiment is configured.
  • FIG. 26 is a functional block diagram showing the configuration of the electric system in the autonomously traveling cleaner of FIG.
  • the control unit 70 is electrically connected to an obstacle detection sensor 71, a distance measurement sensor 72, a collision detection sensor 73, a floor surface detection sensor 74, a wheel removal detection switch 75, a dust detection sensor 300, and the like. Is done. Further, the control unit 70 is electrically connected to the light receiving unit 212, the operation button 242, the pair of travel motors 31, the brush drive motor 41, the electric fan 51, and the like. In addition, the dust detection sensor 300 is arrange
  • the control unit 70 starts the operation of the traveling motor 31, the brush drive motor 41, and the electric fan 51 based on the power ON signal.
  • the air inside the trash box 61 shown in FIG. 17 is sucked into the electric fan 51 by driving the electric fan 51. At the same time, the air inside the electric fan 51 is discharged around the electric fan 51. Thereby, the air on the bottom side of the base 110 is sucked into the trash box 61 via the suction port 101 and the duct 171. Then, the air inside the fan case 52 is exhausted to the outside of the body 20 through a plurality of exhaust ports 211 shown in FIG. That is, the air at the bottom of the base 110 shown in FIG. 17 is the suction port 101, the duct 171, the trash box 61, the filter 62, the electric fan 51, the fan case 52, the space around the fan case 52 in the body 20, and the exhaust port 211. It flows in the order of and is discharged outside.
  • control unit 70 sets a travel route of the autonomous traveling cleaner 10 based on detection signals input from the obstacle detection sensor 71, the distance measurement sensor 72, the collision detection sensor 73, and the floor surface detection sensor 74. To do.
  • control unit 70 causes the autonomous traveling cleaner 10 to travel according to the set traveling route.
  • the control unit 70 operates as follows in the same manner as the autonomous traveling cleaner 10 of the first embodiment to perform cleaning. That is, as described with reference to FIGS. 5 to 7, the control unit 70 cleans the corner R ⁇ b> 3 by running and turning the autonomous traveling cleaner 10. Thereby, the dust which exists in corner
  • the autonomously traveling cleaner 10 of the present embodiment in addition to the effects (1) to (10) obtained by the autonomously traveling cleaner 10 of the second embodiment, for example, the following effects are further achieved. Is obtained.
  • the autonomously traveling vacuum cleaner 10 includes an R-shaped right front top 23, a left front top 23, and a rear top 24. According to this configuration, when the body 20 turns in contact with a surrounding object, the object can be softly contacted with the object. Thereby, the generation
  • FIG. 27 shows a flowchart relating to the first corner cleaning control of the autonomous traveling cleaner of the fourth embodiment.
  • control unit 70 executes the first corner cleaning control as follows.
  • the control unit 70 drives the dust detection sensor 300 (step S1).
  • the dust detection sensor 300 is driven when, for example, the autonomous mobile vacuum cleaner 10 starts cleaning or moving.
  • control unit 70 determines whether or not a corner is detected in the target area by the corner detection unit (step S2).
  • the corner corresponds to, for example, the corner R3 shown in FIGS.
  • step S2 when it is determined that the corner is not detected (NO in step S2), the process of step S2 is repeatedly executed. If it is determined that no corner has been detected, the first corner cleaning control may be terminated.
  • step S2 when it is determined that a corner is detected (YES in step S2), the process proceeds to step S3, and cleaning of the corner is started.
  • the above determination is performed using an angle detection unit such as the obstacle detection sensor 71 and the distance measurement sensor 72, for example.
  • the control unit 70 detects the presence or absence of a front wall with the obstacle detection sensor 71.
  • the presence or absence of a wall is detected by the distance measuring sensor 72 on the right side or the distance measuring sensor 72 on the left side.
  • the control unit 70 determines with the autonomous running type vacuum cleaner 10 approaching the corner.
  • the obstacle detection sensor 71 radiates ultrasonic waves from the transmission window 232 around the front.
  • ultrasonic waves reflected from the object enter the reception window 233.
  • the ultrasonic wave incident on the reception window 233 is received by the reception unit 71B of the obstacle detection sensor 71.
  • the control unit 70 determines whether there is a wall which is an example of an obstacle ahead based on the received result.
  • the distance measuring sensor 72 radiates light such as infrared rays to the outside through the distance measuring window 234. At this time, if there is an object such as a wall around, the light is reflected by the wall. The reflected light is received by the distance measuring sensor 72. As a result, the control unit 70 determines whether or not the wall is close by the right distance measuring sensor 72 or the left distance measuring sensor 72.
  • control unit 70 determines whether or not a corner is detected based on the detection result of the corner detection unit.
  • control unit 70 starts corner cleaning by the autonomous traveling cleaner 10 (step S3).
  • step S3 for example, in a state where the autonomously traveling cleaner 10 is stopped without moving forward or backward, an operation of swinging the body 20 left and right is performed so that the body 20 reciprocates. This cleans the corners.
  • control unit 70 controls, for example, the right traveling motor 31 and the left traveling motor 31. Specifically, the right tire 34 is advanced and the left tire 34 is retracted. Subsequently, the left tire 34 is advanced and the right tire 34 is retracted. Then, the above operation is repeated. Thereby, the operation
  • step S3 it is first necessary to detect whether or not there is dust at the corner. Therefore, for example, the motion of swinging the body 20 to the left and right may be one reciprocation or a few reciprocations.
  • the expression of one reciprocation means a series of operations until the body 20 hits one wall from a stationary state, then hits the other wall and returns to the stationary state. In addition, it is good also as one reciprocation until it hits one wall from the other wall and hits one wall. In any case, the return of the body 20 from the predetermined position to the predetermined position is one round trip. Therefore, it is only necessary to realize the above-described state, and it is needless to say that the operation is not limited to the above definition.
  • control unit 70 determines whether or not dust is detected by the dust detection sensor 300 (step S4). At this time, when it is determined that no dust is detected (YES in step S4), the process proceeds to step S6.
  • step S4 when it is determined that dust is detected (NO in step S4), the process proceeds to step S5. It is assumed that the control unit 70 executes step S4 as described above to determine the presence / absence of dust when executing step S3.
  • control unit 70 continues to clean the corner in step S3 (step S5), and returns the process to step S4.
  • control unit 70 stops the cleaning of the corner when the garbage is exhausted (step S6). As a result, the control unit 70 ends the first corner cleaning control of the autonomous traveling cleaner 10.
  • step S6 the process may be returned to step S2, and the process of detecting the next corner may be executed until the cleaning is completed.
  • FIG. 28 shows a flowchart regarding the second corner cleaning control executed by the autonomous traveling cleaner 10 of the fifth embodiment.
  • control unit 70 executes the second corner cleaning control as follows instead of the first corner cleaning control described in the fourth embodiment.
  • control unit 70 drives the dust detection sensor 300 (step S10).
  • the dust detection sensor 300 is driven when, for example, the autonomous mobile vacuum cleaner 10 starts cleaning or moving.
  • control unit 70 determines whether or not a corner is detected in the target area by the corner detection unit (step S11). At this time, if it is determined that no corner is detected (NO in step S11), the process in step S11 is repeatedly executed. If it is determined that no corner is detected, the second corner cleaning control may be terminated.
  • step S11 when it is determined that a corner is detected (YES in step S11), the process proceeds to step S12.
  • step S11 the control unit 70 executes substantially the same process as in step S2 shown in FIG.
  • control unit 70 sets the number of cleanings, which is the number of reciprocations for swinging the body 20 to the left and right, to 5 for example, and stores the set information in a storage unit (not shown) of the control unit 70 ( Step S12).
  • the number of cleanings is not limited to five, but may be set freely by the designer or user.
  • the number of cleanings corresponds to one reciprocating operation on the left and right.
  • step S13 the control unit 70 starts corner cleaning by the autonomously traveling cleaner 10 (step S13).
  • step S13 the control unit 70 executes substantially the same process as in step S3 shown in FIG.
  • control unit 70 performs corner cleaning, which is an operation of swinging the body 20 left and right, once (step S14).
  • control unit 70 subtracts one cleaning number stored in the storage unit in step S12 (step S15).
  • control unit 70 determines whether or not dust is detected by the dust detection sensor 300 (step S16). At this time, when it is determined that no dust is detected (YES in step S16), the process proceeds to step S18.
  • step S16 when it is determined that dust is detected (NO in step S16), the process proceeds to step S17.
  • control unit 70 determines whether the frequency
  • step S17 when the number of cleanings is 0 (YES in step S17), the process proceeds to step S18.
  • control unit 70 stops the cleaning of the corners started in step S13 when there is no or no garbage and when the predetermined number of cleanings is completed (step S18). Thereby, the control unit 70 complete
  • step S18 the process may be returned to step S11, and the process of detecting the next corner may be executed until the cleaning is completed.
  • the control unit 70 determines that a corner is detected, the body 20 is swung left and right for a predetermined number of times for cleaning.
  • the corner cleaning is finished even before the body 20 is shaken left and right a predetermined number of times (corresponding to YES in step S16).
  • the dust detection sensor 300 detects dust, the cleaning of the corner is finished when the operation of shaking the body 20 left and right is completed a predetermined number of times (corresponding to YES in step S17).
  • FIG. 29 shows a flowchart regarding the third corner cleaning control executed by the autonomous traveling cleaner 10 of the sixth embodiment.
  • control unit 70 replaces the first corner cleaning control described in the fourth embodiment and the second corner cleaning control described in the fifth embodiment with a third as follows.
  • the corner cleaning control is executed.
  • control unit 70 drives the dust detection sensor 300 (step S20).
  • the dust detection sensor 300 is driven when, for example, the autonomous mobile vacuum cleaner 10 starts cleaning or moving.
  • control unit 70 determines whether or not a corner is detected in the target area by the corner detection unit (step S21). At this time, when it is determined that a corner is not detected (NO in step S21), the process in step S21 is repeatedly executed. If it is determined that no corner has been detected, the third corner cleaning control may be terminated.
  • step S21 when it is determined that a corner is detected (YES in step S21), the process proceeds to step S22.
  • step S21 the control unit 70 executes substantially the same process as in step S2 shown in FIG.
  • step S22 the control unit 70 starts corner cleaning by the autonomous traveling cleaner 10 (step S22). At this time, for example, in a state where the autonomously traveling cleaner 10 is stopped without moving forward or backward, an operation of swinging the body 20 left and right is performed so that the body 20 reciprocates. This cleans the corners.
  • step S22 the control unit 70 executes substantially the same process as step S3 shown in FIG.
  • control unit 70 determines whether or not dust is detected by the dust detection sensor 300 (step S23). At this time, when it is determined that no dust is detected (YES in step S23), the process proceeds to step S32.
  • step S23 when it is determined that dust is detected (NO in step S23), the process proceeds to step S24.
  • step S24 determines whether or not the amount of dust detected by the dust detection sensor 300 is large. At this time, if the amount of garbage is large (YES in step S24), the process proceeds to step S25. On the other hand, when the amount of garbage is not large (NO in step S24), the process proceeds to step S26.
  • the large, medium, and small determination criteria are set in advance according to, for example, the amount of dust detected by the dust detection sensor 300 per unit time. Absent. For example, the designer or the user may appropriately change the amount of garbage corresponding to large, medium, and small.
  • control unit 70 sets the number of cleanings, which is the number of reciprocations for swinging the body 20 left and right, to, for example, 8 times, and the set information is stored in the storage unit of the control unit 70. (Not shown) (step S25).
  • the number of cleanings is not limited to eight, and the designer or user may freely set the number of cleanings.
  • step S26 determines whether or not the amount of garbage detected by the dust detection sensor 300 is medium. At this time, if the amount of waste is medium (YES in step S26), the process proceeds to step S27. On the other hand, when the amount of garbage is not medium (NO in step S26), the process proceeds to step S28. When the amount of garbage is not medium, it is determined that the amount of garbage is small.
  • control unit 70 sets the number of cleanings to, for example, 5 times, and stores the set information in the storage unit of the control unit 70 (step S27).
  • the number of cleanings is not limited to five, but may be set freely by the designer or user.
  • control unit 70 sets the number of cleanings to, for example, twice, and stores the set information in the storage unit of the control unit 70 (step S28).
  • the number of cleanings is not limited to two, and the designer or user may freely set the number of cleanings.
  • control unit 70 sets the number of times of cleaning according to the amount of dust, large, medium, and small, and proceeds to step S29.
  • control unit 70 performs corner cleaning, which is an operation of swinging the body 20 left and right (step S29), and proceeds to step S30. Then, the control unit 70 subtracts one cleaning number stored in the storage unit in step S25, step S27, or step S28 (step S30), and proceeds to step S31.
  • control unit 70 determines whether or not the number of cleanings stored in the storage unit in step S25, step S27, or step S28 is 0 (step S31). At this time, if the number of cleanings is not 0 (NO in step S31), the process returns to step S29.
  • step S31 when the number of cleanings is 0 (YES in step S31), the process proceeds to step S32.
  • control unit 70 stops the cleaning of the corner started from step S22 when the detection of the dust is not detected or the cleaning frequency set according to the amount of the dust is finished (step S32). As a result, the control unit 70 ends the third corner cleaning control of the autonomous traveling cleaner 10.
  • step S32 the process may be returned to step S21, and the process of detecting the next corner may be executed until the cleaning is completed.
  • the number of times the body 20 is swung left and right is set according to the amount of dust detected by the dust detection sensor 300.
  • control is performed to clean the corners by shaking the body 20 left and right for the set number of times.
  • FIG. 30 shows a flowchart relating to the fourth corner cleaning control executed by the autonomous traveling cleaner 10 according to the seventh embodiment.
  • control unit 70 executes the fourth corner cleaning control as follows instead of the first to third corner cleaning controls shown in the fourth to sixth embodiments.
  • control unit 70 starts cleaning in the target area (step S40).
  • the control unit 70 determines whether or not a predetermined condition is satisfied (step S41).
  • the predetermined condition is, for example, a case where a state where the value detected by the distance measuring sensor 72 is equal to or less than a predetermined value continues for a predetermined time or longer.
  • the second condition is a case where an obstacle is detected by the obstacle detection sensor 71.
  • step S41 when it is determined that the predetermined condition is not satisfied (NO in step S41), the process of step S41 is repeatedly executed.
  • step S41 when it is determined that the predetermined condition is satisfied (YES in step S41), the process proceeds to step S42.
  • the establishment of the predetermined condition suggests that the body 20 has moved to the corner of the target area.
  • control unit 70 determines whether or not an obstacle has been detected by the obstacle detection sensor 71 (step S42).
  • step S42 if it is determined that an obstacle has been detected (YES in step S42), the process proceeds to step S43.
  • step S42 when it is determined that no obstacle is detected (NO in step S42), the process proceeds to step S44.
  • the case where an obstacle is not detected in step S42 may be, for example, a case where the detected obstacle is removed after the obstacle is detected in step S41.
  • the control unit 70 causes the body 20 to start the first travel (step S43).
  • the first traveling is an operation in which, for example, one tire 34 and the other tire 34 rotate in directions opposite to each other. This corresponds to traveling that turns the body 20. In this case, it becomes easy to clean the corner by turning the body 20 at the corner.
  • the collision detection sensor 73 detects a collision between the body 20 and an object, the first traveling operation of the body 20 is continuously performed.
  • the control unit 70 causes the body 20 to start the second travel (step S44).
  • the second traveling is an operation of rotating, for example, one tire 34 and the other tire 34 in the same direction. This corresponds to traveling in which the body 20 moves forward or backward.
  • control unit 70 stops the cleaning in the target area when the predetermined traveling operation of the body 20 is completed (step S45). Thereby, the control unit 70 ends the fourth corner cleaning control of the autonomous traveling cleaner 10. Note that the fourth corner cleaning control may be repeatedly executed until the cleaning in the target region is completed.
  • the corner detection unit including the obstacle detection sensor 71 and the distance measurement sensor 72 causes the corner to be moved before the body 20 and the obstacle come into contact with each other. Detected. Therefore, when the body 20 is turned to clean the corner, the body 20 and the obstacle are difficult to contact.
  • the autonomous traveling type vacuum cleaner 10 of the present embodiment for example, when an obstacle is removed after the obstacle detection sensor 71 detects the obstacle, the obstacle is arranged.
  • the body 20 is moved forward or backward without circumventing the area. Therefore, it is possible to clean the area where the obstacle is arranged.
  • the body 20 when the body 20 is turning, the body 20 continues to turn even if the body 20 and the object collide. Therefore, compared with the case where cleaning is stopped when the body 20 and the object come into contact with each other, the corners can be sufficiently cleaned.
  • FIG. 31 shows a flowchart relating to the first escape control executed by the autonomous traveling cleaner 10 of the eighth embodiment.
  • control unit 70 performs the first escape control as follows.
  • control unit 70 starts cleaning in the target area (step S50).
  • control unit 70 determines whether or not the first condition is satisfied (step S51).
  • the first condition is substantially the same as the predetermined condition in step S41 described with reference to FIG. 30 in the seventh embodiment.
  • step S51 when it is determined that the first condition is not satisfied (NO in step S51), the process of step S51 is repeatedly executed.
  • step S51 when it is determined that the first condition is satisfied (YES in step S51), the process proceeds to step S52.
  • the establishment of the first condition suggests that the body 20 has moved to the corner of the target area.
  • control unit 70 makes body 20 start the 1st run (Step S52).
  • the first travel is substantially the same travel as the first travel in step S43 described with reference to FIG. 30 in the seventh embodiment. In this case, it becomes easy to clean the corner by turning the body 20 at the corner.
  • control unit 70 determines whether or not the second condition is satisfied (step S53).
  • the second condition is, for example, a case where no collision is detected by the obstacle detection sensor 71 and no collision between the body 20 and the object is detected by the collision detection sensor 73. Then, based on the determination result of the second condition, the control unit 70 executes the subsequent control.
  • step S53 if it is determined that the second condition is not satisfied (NO in step S53), the process proceeds to step S54. Note that the failure of the second condition suggests that the body 20 has been fitted into the corner, for example.
  • step S53 when it is determined that the second condition is satisfied (YES in step S53), the process proceeds to step S55.
  • the control unit 70 causes the body 20 to start a repetitive operation (step S54).
  • a repetitive operation first, for example, one tire 34 near the contact portion between the body 20 and the object is stopped, and the other tire 34 is moved backward.
  • the body 20 further collides with another part of the object or another object as the other tire 34 moves backward, the other tire 34 is stopped and the one tire 34 is advanced.
  • the operation is such that one tire 34 is stopped and the other tire 34 is moved backward. That is, by repeating the above operation, the body 20 is caused to perform a repetitive operation.
  • the control unit 70 starts the operation of stopping one tire 34 and moving the other tire 34 backward during the repetitive operation of the body 20 in step S54, and when a predetermined time (for example, 2 seconds) has elapsed. Then, the process of step S53 is executed. The body 20 in step S54 continues to repeat the operation until the second condition is satisfied in step S53.
  • a predetermined time for example, 2 seconds
  • the control unit 70 causes the body 20 to start the second travel (step S55).
  • the second travel is substantially the same travel as the second travel in step S44 described with reference to FIG. 30 in the seventh embodiment. Specifically, the second traveling is traveling that moves the body 20 forward. As a result, the body 20 fitted in the corner is allowed to escape from the corner.
  • the control unit 70 stops cleaning in the target area (step S56). Thereby, the control unit 70 complete
  • the first escape control may be repeatedly executed until the cleaning in the target area is completed.
  • the first escape control is executed.
  • the angle (relative position) of the body 20 with respect to the corner gradually changes. Therefore, even if the body 20 fits in the corner, the direction of the body 20 can be changed to easily escape from the corner.
  • the configuration of the autonomous traveling cleaner 10 of the ninth embodiment includes substantially the same configuration as the autonomous traveling cleaner 10 of the third embodiment. Therefore, elements denoted by the same reference numerals as in the third embodiment in the description of the ninth embodiment have the same or similar functions as the corresponding elements in the third embodiment.
  • FIG. 32 shows a flowchart relating to the second escape control executed by the autonomous mobile cleaner 10 of the ninth embodiment.
  • control unit 70 executes the second escape control as follows instead of the first escape control shown in the eighth embodiment.
  • control unit 70 starts cleaning in the target area (step S60).
  • control unit 70 determines whether or not the movement range of the body 20 in a predetermined time is less than a predetermined value (step S61).
  • the range of movement of the body 20 is detected by, for example, the number of rotations of the wheel 33 detected by a rotation sensor (not shown) attached to the wheel 33 and the body 20 detected by a gyro sensor (not shown) arranged inside the body 20. It is calculated according to the traveling direction.
  • step S61 when it is determined that the movement range of the body 20 is not less than the predetermined value (NO in step S61), the process of step S61 is repeatedly executed.
  • step S61 when it is determined that the movement range of the body 20 is less than the predetermined value (YES in step S61), the process proceeds to step S62.
  • the movement range of the body 20 in a predetermined time is less than a predetermined value, it indicates that the body 20 has moved to the corner of the target area.
  • control unit 70 makes body 20 start the 1st run (Step S62).
  • the first travel is substantially the same travel as the first travel in step S43 described with reference to FIG. 30 in the seventh embodiment. In this case, it becomes easy to clean the corner by turning the body 20 at the corner.
  • control unit 70 determines whether or not a predetermined condition is satisfied (step S63).
  • the predetermined condition is substantially the same as the predetermined condition in step S41 described with reference to FIG. 30 in the seventh embodiment.
  • step S63 when it is determined that the predetermined condition is not satisfied (NO in step S63), the process of step S63 is repeatedly executed.
  • step S63 when it is determined that the predetermined condition is satisfied (YES in step S63), the process proceeds to step S64.
  • a predetermined condition when a predetermined condition is satisfied, the body 20 is in a state in which the body 20 faces a direction in which the body 20 can escape.
  • the control unit 70 causes the body 20 to start the second travel in a state in which it faces the corner so that it can escape (step S64).
  • the second travel is substantially the same travel as the second travel in step S44 described with reference to FIG. 30 in the seventh embodiment. This corresponds to traveling that moves the body 20 forward. As a result, the body 20 fitted in the corner is allowed to escape from the corner.
  • step S65 the control unit 70 stops cleaning in the target area.
  • the second escape control may be repeatedly executed until the cleaning in the target area is completed.
  • the autonomous traveling cleaner 10 of the present embodiment it is detected that the body 20 has been fitted into a corner or the like from the movement range of the body 20 in a predetermined time. For example, when the body 20 is fitted in a corner, the obstacle detection sensor 71 and the distance measurement sensor 72 cause the body 20 to travel in a direction in which it can escape from the corner. This makes it difficult for the body 20 and the object to come into contact with each other during the escape process.
  • the autonomous traveling type vacuum cleaner 10 of Embodiment 10 is further provided with the 1st rotation sensor and the 2nd rotation sensor which are not shown in figure.
  • the first rotation sensor is attached to the wheel 33 and detects the number of rotations of the wheel 33.
  • the second rotation sensor is attached to the caster 90 and detects the number of rotations of the caster 90.
  • FIG. 33 shows a flowchart relating to the step control executed by the autonomous traveling cleaner 10 of the tenth embodiment.
  • control unit 70 performs the step control as follows.
  • control unit 70 starts cleaning in the target area (step S70).
  • control unit 70 determines whether or not the rotation speed of the wheel 33 detected by the first rotation sensor matches the rotation speed of the caster 90 detected by the second rotation sensor (step S71). .
  • step S71 if it is determined that the rotation speed of the wheel 33 and the rotation speed of the caster 90 match (YES in step S71), the process proceeds to step S75.
  • step S71 when it is determined that the rotation speed of the wheel 33 and the rotation speed of the caster 90 do not match (NO in step S71), the process proceeds to step S72.
  • the rotation speed of the wheel 33 and the rotation speed of the caster 90 do not match, it is suggested that the wheel 33 or the caster 90 slips due to a step or the like.
  • the control unit 70 changes the traveling direction of the body 20 (step S72). Specifically, the traveling direction of the body 20 is changed so as to skew with respect to the traveling direction of the body 20 in step S71. Thereby, for example, the body 20 can be made to enter obliquely with respect to a step or the like where slip is likely to occur. As a result, the body 20 can easily get over the step.
  • step S73 the control unit 70 determines whether or not the rotation speed of the wheel 33 detected by the first rotation sensor matches the rotation speed of the caster 90 detected by the second rotation sensor.
  • step S73 the process of step S73 is substantially the same as the process of step S71.
  • step S73 when it is determined that the rotation speed of the wheel 33 and the rotation speed of the caster 90 match (YES in step S73), the process proceeds to step S75.
  • step S73 when it is determined that the rotation speed of the wheel 33 and the rotation speed of the caster 90 do not match (NO in step S73), the process proceeds to step S74.
  • the control unit 70 further changes the traveling direction of the body 20 when the rotational speeds do not match (step S74). Specifically, the traveling direction of the body 20 is changed to a direction that is different, for example, opposite to the traveling direction of the body 20 in step S71 or step S72. As a result, for example, it becomes easier to get over a step or the like where slipping easily occurs.
  • control unit 70 stops cleaning in the target area (step S75). Thereby, the control unit 70 complete
  • the slip of the wheel 33 or the caster 90 is detected by using the first rotation sensor and the second rotation sensor, for example, when getting over a step or the like. And when a slip is detected, the advancing direction is changed and the body 20 is approached from diagonally with respect to a level
  • the body 20 is opposite to the step. Proceed in the direction. Thereby, a level
  • FIG. 34 shows a flowchart relating to the designated area cleaning control executed by the autonomous traveling cleaner 10 of the eleventh embodiment.
  • control unit 70 executes designated area cleaning control as follows.
  • control unit 70 registers one or a plurality of target points on the travel route of the body 20 (step S80).
  • the control unit 70 registers, for example, a plurality of target points on the moving route of the body 20 in a storage unit or the like.
  • control unit 70 stores the distance and angle with respect to the reference position for each target point in the movement path of the body 20 based on a signal output from the remote controller.
  • the reference position is the position of the charging stand that is the starting point or the previous target point.
  • control unit 70 can memorize
  • control unit 70 receives information on the movement command from the remote controller at the light receiving unit 212 (step S81). Thereby, the control unit 70 moves the body 20 along a plurality of registered target points. At this time, as described below, for example, when the obstacle detection sensor 71 detects an obstacle on the movement path, the control unit 70 moves the body 20 so as to be out of the movement path. Then, the control unit 70 controls the body 20 to return to the movement path after avoiding the obstacle.
  • control unit 70 determines whether or not an obstacle is detected at the target point by the obstacle detection sensor 71 (step S82). At this time, when it is determined that an obstacle is detected at the target point (YES in step S82), the process proceeds to step S83.
  • step S83 the control unit 70 determines whether or not the target point existing at the position overlapping with the position of the obstacle detected in step S82 is the last target point (step S83).
  • the last target point is a target point that indicates the end point of the movement path of the body 20. At this time, when it is determined that it is the last target point (YES in step S83), the process proceeds to step S85.
  • step S83 when it is determined that it is not the last target point (NO in step S83), the process proceeds to step S84.
  • control unit 70 moves the body 20 toward the next target point without passing through the target point where the obstacle exists (step S84). Thereafter, the control unit 70 moves the body 20 to the next target point, and then returns the process to step S82.
  • control unit 70 cleans the arrival point that is actually reached (step S85).
  • step S82 when it is determined that no obstacle is detected at the target point (NO in step S82), the process proceeds to step S86. Then, the control unit 70 cleans the target point (step S86).
  • control unit 70 determines whether or not the target point cleaned in the process of step S86 is the last target point (step S87). At this time, if it is determined that it is not the last target point (NO in step S87), the process returns to step S82 and the same process is executed.
  • step S87 when it is determined that it is the last target point (YES in step S87), the process proceeds to step S88.
  • control unit 70 causes the body 20 to clean the last target point (step S88). Thereby, a some target point can be cleaned in order.
  • control unit 70 causes the body 20 to run backward so as to go back along the movement route to the target point (step S89).
  • step S90 determines whether or not the light receiving unit 212 has received a signal output from the charging stand. At this time, when it is determined that the light receiving unit 212 is not receiving a signal (NO in step S90), the process of step S90 is repeatedly executed.
  • step S90 when it is determined that the light receiving unit 212 has received the signal (YES in step S90), the process proceeds to step S91.
  • control unit 70 removes the body 20 from the moving path that runs backward. And based on the signal output from a charging stand, the autonomous running type vacuum cleaner 10 is returned to a charging stand (step S91). Thereby, a control unit complete
  • the target point to be cleaned is stored in advance. Thereby, the arbitrary area
  • the body 20 is moved toward the next target point without passing through the target point. Move. Therefore, it is easy to clean an arbitrary area of the target area as compared with the control operation configuration in which the cleaning is terminated when it cannot pass through one target point.
  • FIG. 35 shows a flowchart relating to the reciprocating cleaning control executed by the autonomous traveling cleaner 10 of the twelfth embodiment.
  • control unit 70 executes reciprocating cleaning control as follows.
  • control unit 70 sets a reference point or a reference line in the target area (step S100).
  • control unit 70 sets a reference point in the target area.
  • control unit 70 causes the body 20 to start reciprocating travel (step S101). At this time, the control unit 70 causes the body 20 to reciprocate within the range from the reference point set in step S100 to the outline of the target area. Then, the control unit 70 causes the body 20 to reciprocate and starts cleaning.
  • control unit 70 turns the body 20 when an obstacle is detected by the obstacle detection sensor 71. Then, the body 20 is caused to reciprocate the distance between the reference point and the point where the obstacle is detected.
  • the control unit 70 determines whether or not a predetermined condition is satisfied (step S102).
  • the predetermined condition is, for example, a case where the traveling distance in one direction in the reciprocating traveling is less than a predetermined value. Then, the control unit 70 determines that a predetermined condition is satisfied when the travel distance is less than a predetermined value.
  • the travel distance is detected by, for example, a rotation sensor (not shown) attached to the wheel 33.
  • step S104 if it is determined that the predetermined condition is satisfied (YES in step S102), the process proceeds to step S104.
  • step S102 when it is determined that the predetermined condition is not satisfied (NO in step S102), the process proceeds to step S103.
  • a predetermined condition it is suggested that the resistance for traveling the body 20 varies depending on the traveling direction in the target region.
  • control unit 70 determines whether or not the cleaning of the target area has been completed (step S103). At this time, when it is determined that the cleaning of the target area is not completed (NO in step S103), the process returns to step S102, and the same process is executed.
  • step S103 when it is determined that the cleaning of the target area is completed (YES in step S103), the process proceeds to step S105.
  • control unit 70 adds the travel distance in the other direction in the reciprocating travel of the body 20 (step S104). Thereby, during reciprocating travel, the difference between the distance traveled in one direction by the body 20 and the distance traveled in the other direction is reduced. Thereby, when the reference point of the target region is shifted, the reference point can be corrected.
  • control unit 70 stops cleaning in the target area (step S105). Thereby, the control unit 70 complete
  • the reciprocating cleaning control may be repeatedly executed until the cleaning in the target area is completed.
  • the autonomous traveling type vacuum cleaner 10 of the present embodiment when the resistance applied to the body 20 differs depending on the traveling direction, for example, when cleaning a carpet or the like, the position due to the difference in traveling resistance by the reciprocating cleaning control The deviation can be corrected. Therefore, the target area can be more accurately cleaned as compared with a configuration in which the positional deviation is not corrected.
  • the autonomously traveling vacuum cleaner of the present embodiment can take, for example, the following modifications other than the above embodiments.
  • the body 20 according to the modification may have a different contour from the body 20 exemplified in each embodiment.
  • FIG. 36 shows an example of a modification regarding the contour of the body 20.
  • the dashed-two dotted line in a figure shows the outline of the body 20 of Embodiment 1.
  • FIG. 36 shows an example of a modification regarding the contour of the body 20.
  • the dashed-two dotted line in a figure shows the outline of the body 20 of Embodiment 1.
  • FIG. 36 shows an example of a modification regarding the contour of the body 20.
  • the dashed-two dotted line in a figure shows the outline of the body 20 of Embodiment 1.
  • the left and right side surfaces 22 of the body 20 according to the modification are configured by a front side surface 22a and a rear side surface 22b having different shapes.
  • the front side surface 22a is a curved surface
  • the rear side surface 22b is a flat surface.
  • FIG. 37 shows another example of a modification regarding the contour of the body 20.
  • the dashed-two dotted line in a figure shows the outline of the body 20 of Embodiment 1.
  • FIG. 37 shows another example of a modification regarding the contour of the body 20.
  • the dashed-two dotted line in a figure shows the outline of the body 20 of Embodiment 1.
  • FIG. 37 shows another example of a modification regarding the contour of the body 20.
  • the dashed-two dotted line in a figure shows the outline of the body 20 of Embodiment 1.
  • a part of the rear portion of the body 20 including the rear apex 24 is omitted, and a rear surface 25 is newly formed.
  • An example of the rear surface 25 is a curved surface curved so as to expand outward.
  • the rear surface 25 may be a flat surface.
  • FIG. 38 shows another example of a modification regarding the contour of the body 20.
  • the dashed-two dotted line in a figure shows the outline of the body 20 of Embodiment 3.
  • FIG. 38 shows another example of a modification regarding the contour of the body 20.
  • the dashed-two dotted line in a figure shows the outline of the body 20 of Embodiment 3.
  • FIG. 38 shows another example of a modification regarding the contour of the body 20.
  • the dashed-two dotted line in a figure shows the outline of the body 20 of Embodiment 3.
  • a predetermined portion including the rear top 24 of the body 20 of the third embodiment is omitted, and a rear surface 25 is newly formed.
  • An example of the rear surface 25 is a plane.
  • the rear surface 25 may be a curved surface that is curved so as to expand outward.
  • the body 20 according to these modified examples can obtain the same effects as the bodies of the above embodiments.
  • the electric fan 51 is configured to increase the suction force of the electric fan 51. May be controlled. Furthermore, the control unit 70 may control the brush drive motor 41 so as to increase the rotation speed of the brush drive motor 41 when it is determined that the angle is detected by the angle detection unit. In this case, the rotation speeds of the main brush 43 and the side brush 44 are increased.
  • the suction force of the electric fan 51 is made lower than that of the corner in places other than the corner where dust does not collect easily.
  • the rotational speed of the brush drive motor is made lower than the corner. As a result, it is possible to reduce the power consumption of the autonomously traveling cleaner.
  • the configuration in which the dust detection sensor 300 detects the amount of dust when the body 20 reciprocates once or a plurality of times has been described as an example.
  • the present invention is not limited to this.
  • the amount of dust at the corner is determined based on the amount of dust detected by the dust detection sensor 300 from the state in which the body 20 is stopped until it is closest to the wall of one side. It is good also as a structure.
  • the amount of dust detected by the dust detection sensor 300 from the state in which the body 20 is stopped to the closest to one wall and then to the other wall It is good also as a structure which determines the quantity of the garbage in a corner.
  • the configuration is such that when the body 20 is swung from one wall to the other wall, the amount of dust detected by the dust detection sensor 300 is used to determine the amount of dust at the corner. It is good. Thereby, the same effect as the above-described embodiments can be obtained.
  • the second escape control of the ninth embodiment according to the modification may be determined by whether or not another predetermined condition is satisfied instead of the predetermined condition in step S63.
  • Another predetermined condition is, for example, whether or not the body 20 and the object collide with the collision detection sensor 73.
  • the control unit 70 determines that another predetermined condition is satisfied and performs control.
  • the collision detection sensor 73 detects the presence or absence of the collision between the body 20 and the object.
  • the control unit 70 repeats the first travel and the second travel. Thereby, it can escape from between the objects in which the body 20 was fitted. As a result, the body 20 can be quickly escaped compared to the case where the body 20 and the object are repeatedly contacted to escape.
  • the autonomously traveling cleaner 10 may be configured to attach the rotation sensor to the caster 90 instead of or in addition to the wheel 33.
  • the autonomous traveling type vacuum cleaner 10 of the ninth embodiment according to the modification may omit the gyro sensor.
  • the traveling direction of the body 20 is calculated by the ratio of the rotational speeds detected by the rotation sensors attached to the right wheel 33 and the left wheel 33. Thereby, cost can be reduced with a simple configuration.
  • the side brush 44 according to the modified example is configured to rotate from the rear of the body 20 toward the front in a portion of the rotation trajectory of each side brush 44 that is close to the rotation trajectory of the other side brush 44. It is good.
  • the dust is moved forward by the side brush 44 on the center side in the width direction of the body 20. Therefore, when the autonomous traveling cleaner 10 is moving forward, the dust collected by the side brush 44 tends to approach the suction port 101. As a result, it is difficult for dust to be left behind on the rear side of the suction port 101.
  • the autonomously traveling vacuum cleaner 10 may include a brush drive motor that applies torque to the main brush 43 and one side brush 44, and a brush drive motor that applies torque to the other side brush 44. .
  • a brush drive motor that applies torque to the main brush 43 and one side brush 44
  • a brush drive motor that applies torque to the other side brush 44.
  • the autonomously traveling vacuum cleaner 10 may be configured to include a brush drive motor in each of the main brush 43, the right side brush 44, and the left side brush 44.
  • each brush drive motor can individually give torque to the corresponding brush.
  • an appropriate driving force can be applied according to the condition of the surface to be cleaned and the condition of garbage, and cleaning can be performed effectively.
  • the control unit 70 when the light-receiving part 212 receives the signal output from a charging stand, the control unit 70 is when detecting an obstacle with the obstacle detection sensor 71.
  • the distance between the body 20 and the obstacle may be larger than the distance when the light receiving unit 212 is not receiving a signal.
  • the obstacle detecting sensor 71 can easily detect the charging stand that is one of the obstacles. Therefore, the body 20 and the charging stand can be made difficult to contact during cleaning.
  • the control unit 70 is from the transmission part 71A to the receiving part 71B without the drive time and the obstacle of the obstacle detection sensor 71 which is an ultrasonic sensor.
  • the distance between the body 20 and the obstacle when the obstacle detection sensor 71 detects the obstacle may be changed based on at least one of the magnitudes of the ultrasonic signals that arrive.
  • the distance between the body 20 and the obstacle when the obstacle detection sensor 71 detects the obstacle is changed.
  • the ultrasonic signal reaching the receiving unit 71B is large, it is easier to detect an obstacle than when the ultrasonic signal is small.
  • the distance between the body 20 and the obstacle when the obstacle detection sensor 71 detects the obstacle is changed as described above. Thereby, the accuracy of the obstacle detection sensor 71 can be improved.
  • control unit 70 is predetermined to the trash box unit 60, when the dust detection sensor 300 detects the garbage more than predetermined amount with the drive of the electric fan 51.
  • FIG. It may be configured to determine that there is more than the amount of garbage. In this case, it is preferable to notify by light or sound, for example.
  • the dust detection sensor 300 detects a predetermined amount or more of dust, it is suggested that the dust collected in the waste bin unit 60 is full. Thereby, it can be easily confirmed that the trash stored in the trash box unit 60 is full with a simple configuration.
  • the autonomously traveling vacuum cleaner 10 according to the modification may be provided with an obstacle detection sensor 71 of a type different from the ultrasonic sensor, such as an infrared sensor.
  • the autonomously traveling vacuum cleaner 10 may include, as the distance measuring sensor 72, a type different from the infrared sensor, for example, an ultrasonic sensor.
  • the autonomously traveling vacuum cleaner 10 may include, as the collision detection sensor 73, a type different from the contact type displacement sensor, for example, an impact sensor.
  • the autonomously traveling vacuum cleaner 10 may include, as the floor detection sensor 74, a type different from the infrared sensor, for example, an ultrasonic sensor.
  • the autonomously traveling vacuum cleaner 10 may be configured to include a plurality of casters 90 on the rear side of the body 20 relative to the drive unit 30. Thereby, stability of autonomous running type vacuum cleaner 10 improves further.
  • the autonomously traveling cleaner 10 may be configured to include at least one caster on the front side of the body 20 relative to the pair of drive units 30. Thereby, stability of autonomous running type vacuum cleaner 10 improves further.
  • the autonomously traveling vacuum cleaner includes a body having a suction port on the bottom surface, a suction unit mounted on the body, a corner detection unit that detects a corner of the target area, and a body that reciprocates.
  • a drive unit that drives to move and a control unit that controls the drive unit are provided.
  • the control unit may control the drive unit so that the body reciprocates when the angle is detected by the angle detection unit.
  • the autonomously traveling vacuum cleaner performs a reciprocating motion when it comes to the corner. As a result, it becomes possible to efficiently remove a large amount of dust collected in the corners.
  • the autonomously traveling vacuum cleaner of the present invention may be an operation in which the reciprocating motion swings the body left and right.
  • the autonomously traveling vacuum cleaner swings the body left and right when it comes to the corner. This makes it possible to remove a large amount of garbage collected in the corner.
  • the drive unit includes a right traveling motor for driving the right wheel and a left traveling motor for driving the left wheel.
  • the control unit controls the body to move forward by moving the right wheel forward and the left wheel backward, and then repeatedly moving the left wheel forward and the right wheel backward. You may control to swing left and right.
  • the autonomously traveling vacuum cleaner controls the two wheels, the right wheel and the left wheel, separately when it comes to the corner.
  • the body can be swung left and right.
  • the autonomous traveling type vacuum cleaner of the present invention includes a front surface and a plurality of side surfaces, which are curved surfaces that expand outward, and a front top portion that is a top portion defined by the front surface and the side surfaces, and a tangent to the front surface.
  • the angle formed by the tangent to the side surface may be an acute angle.
  • the body has substantially the same planar shape as the Rouleau triangle, and reciprocates in the Rouleau triangle shape. As a result, it is possible to remove the garbage collected in the corner.
  • the autonomous traveling type vacuum cleaner of the present invention includes an electric fan for sucking air by the suction unit, and the control unit may control to increase the suction force of the electric fan when the corner is detected by the corner detection unit. Good.
  • the autonomously traveling vacuum cleaner increases the suction force of the electric fan when it comes to the corner. This makes it possible to effectively remove a large amount of garbage collected at the corner.
  • the suction force of the electric fan is made lower than that of the corner in places other than the corner where dust is difficult to collect. Thereby, it becomes possible to suppress the power consumption of the autonomously traveling vacuum cleaner.
  • the autonomously traveling cleaner of the present invention further includes a side brush disposed on the bottom surface side of the body and a brush drive motor that drives the side brush.
  • the control unit may perform control so as to increase the number of rotations of the brush drive motor when the angle is detected by the angle detection unit.
  • the autonomously traveling vacuum cleaner increases the rotation speed of the side brush when it reaches the corner. As a result, it becomes possible to efficiently remove a large amount of dust collected in the corners. On the other hand, in places other than the corner where dust does not collect easily, the rotational speed of the brush drive motor is made lower than the corner. Thereby, it becomes possible to suppress the power consumption of the autonomously traveling vacuum cleaner.
  • the autonomously traveling vacuum cleaner of the present invention further includes a main brush disposed at the suction port and a brush drive motor that drives the main brush.
  • the control unit may perform control so as to increase the number of rotations of the brush drive motor when the angle is detected by the angle detection unit.
  • the autonomously traveling vacuum cleaner increases the rotation speed of the main brush when it reaches the corner. As a result, it becomes possible to efficiently remove a large amount of dust collected in the corners. On the other hand, in places other than the corner where dust does not collect easily, the rotational speed of the brush drive motor is made lower than the corner. Thereby, it becomes possible to suppress the power consumption of the autonomously traveling vacuum cleaner.
  • Appendix (A1) An autonomously traveling vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, the obstacle detection sensor for detecting the presence or absence of an obstacle in a direction perpendicular to the rotation axis of the wheel, A distance measuring sensor for detecting a distance between an object in a direction parallel to the rotation axis of the wheel and the body; and a control unit, wherein the control unit has a value detected by the distance measuring sensor as a predetermined value.
  • An autonomously traveling vacuum cleaner that rotates one wheel and the other wheel in opposite directions when the following state continues for a predetermined time or more and an obstacle is detected by the obstacle detection sensor .
  • the corner is detected by the obstacle detection sensor and the distance measurement sensor before the body and the obstacle come into contact with each other. For this reason, when turning a body and cleaning a corner
  • Appendix (A2) An autonomously traveling vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, the obstacle detection sensor for detecting the presence or absence of an obstacle in a direction perpendicular to the rotation axis of the wheel, A distance measuring sensor for detecting a distance between an object in a direction parallel to the rotation axis of the wheel and the body; and a control unit, wherein the control unit has a value detected by the distance measuring sensor as a predetermined value.
  • the pair of wheels are moved in the same direction. Autonomous vacuum cleaner that rotates.
  • the body moves forward without bypassing the area where the obstacle is located. Or retreat. For this reason, the area
  • Appendix (A3) An autonomously traveling vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, the obstacle detection sensor for detecting the presence or absence of an obstacle in a direction perpendicular to the rotation axis of the wheel, A distance measuring sensor for detecting a distance between the object in a direction parallel to the rotation axis of the wheel and the body; a collision detection sensor for detecting that the body has collided with an object around the object; and a control unit.
  • the control unit is configured such that when the state in which the value detected by the distance measurement sensor is equal to or less than a predetermined value continues for a predetermined time and an obstacle is detected by the obstacle detection sensor, one of the wheels And the other wheel are rotated in opposite directions and the one wheel and the other wheel are rotated in opposite directions. Autonomous vacuum cleaners also to continue the operation of the wheel as a collision between the body and the object is detected by the serial collision detection sensor.
  • Appendix (A4) An autonomously traveling vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, the obstacle detection sensor for detecting the presence or absence of an obstacle in a direction perpendicular to the rotation axis of the wheel, A distance measuring sensor for detecting a distance between the object in a direction parallel to the rotation axis of the wheel and the body; a collision detection sensor for detecting that the body has collided with an object around the object; and a control unit.
  • the control unit is configured such that when the state in which the value detected by the distance measurement sensor is equal to or less than a predetermined value continues for a predetermined time or more and an obstacle is detected by the obstacle detection sensor, When a collision between the body and an object is detected by the collision detection sensor after rotating the wheel and the other wheel in opposite directions The one wheel on the side close to the contact portion between the body and the object is stopped, the other wheel is retracted, and the body is further moved to another part of the object or another object as the other wheel is retracted.
  • the other wheel In the event of a collision, the other wheel is stopped, the one wheel is advanced, and when the body further collides with another part of the object or another object as the one wheel advances, the one wheel An autonomous traveling type cleaner that performs a repetitive operation of stopping the other wheel and retreating the other wheel, and moves the pair of wheels forward when no obstacle is detected by the obstacle detection sensor.
  • the above control is executed when the body is fitted into the corner when the corner is cleaned.
  • the angle of the body with respect to the corner gradually changes. Therefore, even if the body fits into the corner, it can escape from the corner by changing direction.
  • Appendix (B1) An autonomously traveling vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, the obstacle detection sensor for detecting the presence or absence of an obstacle in a direction perpendicular to the rotation axis of the wheel, A distance measuring sensor for detecting a distance between an object in a direction parallel to the rotation axis of the wheel and the body, and a control unit; the control unit calculates a movement range of the body in a predetermined time; When the moving range at a predetermined time is less than a predetermined value, the pair of wheels is moved in a direction in which a value detected by the distance measuring sensor is equal to or less than a predetermined value and an obstacle is not detected by the obstacle detecting sensor. Autonomous vacuum cleaner that rotates.
  • this autonomously traveling vacuum cleaner it is possible to detect that it has been fitted into a corner or the like from the range of movement of the body in a predetermined time. Therefore, for example, when the body is fitted in a corner, the vehicle is caused to travel in a direction in which it can escape from the corner by the obstacle detection sensor and the distance measurement sensor. This makes it difficult for the body and the object to come into contact with each other during the escape process.
  • Appendix (B2) An autonomously traveling vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, the obstacle detection sensor for detecting the presence or absence of an obstacle in a direction perpendicular to the rotation axis of the wheel, A distance measuring sensor for detecting a distance between the object in a direction parallel to the rotation axis of the wheel and the body; a collision detection sensor for detecting that the body has collided with an object around the object; and a control unit.
  • the control unit calculates a movement range of the body at a predetermined time, and when the movement range at the predetermined time falls below a predetermined value, based on a detection result of the collision detection sensor, the body and the object An autonomously traveling vacuum cleaner that rotates the pair of wheels in a direction that is detected when there is no collision.
  • the detection result of the collision between the body and the object by the collision detection sensor, the turning of the body, and the rotation of the wheel You can escape by repeating. Therefore, compared with the case where it escapes by repeating a contact with a body and an object, a body can be quickly escaped.
  • Appendix (C1) An autonomous traveling type vacuum cleaner comprising a body, a pair of wheels, a caster, a suction port, and an electric fan, wherein a first rotation sensor that detects a rotation speed of the wheel, and a rotation speed of the caster A second rotation sensor for detecting, and the control unit detects that the number of rotations of the wheel and the number of rotations of the caster do not match from the detection results of the first rotation sensor and the second rotation sensor.
  • An autonomous traveling type vacuum cleaner that changes the traveling direction of the body so as to be inclined with respect to the traveling direction of the body at that time when it is determined.
  • Appendix (C2) An autonomous traveling type vacuum cleaner comprising a body, a pair of wheels, a caster, a suction port, and an electric fan, wherein a first rotation sensor that detects a rotation speed of the wheel, and a rotation speed of the caster A second rotation sensor for detecting, and the control unit detects that the number of rotations of the wheel and the number of rotations of the caster do not match from the detection results of the first rotation sensor and the second rotation sensor.
  • the step is avoided by advancing in the opposite direction to the step when the slipped state is continued. . Therefore, it becomes difficult for the body to fit into the step.
  • Appendix (D1) An autonomously traveling vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, the obstacle detection sensor for detecting the presence or absence of an obstacle in a direction perpendicular to the rotation axis of the wheel, A light receiving unit that receives a signal output from a charging stand that charges the autonomously traveling cleaner, and a control unit, and the control unit receives a signal that is output from the charging stand.
  • the autonomous traveling type vacuum cleaner wherein a distance between the body and the obstacle when the obstacle is detected by the obstacle detection sensor is larger than the distance when the light receiving unit is not receiving a signal.
  • Appendix (E1) An autonomous traveling type vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, and a light receiving unit that receives a signal output from a remote controller that operates the autonomous traveling type vacuum cleaner, and a control A control unit that stores a distance and an angle with respect to a reference position for each of one or a plurality of target points in the movement path of the body based on a signal output from the remote controller, and An autonomous traveling type cleaner in which the body moves the body along the target point by receiving information on a movement command from the remote controller.
  • this autonomously traveling vacuum cleaner it is possible to clean any area of the target area by storing the target point to be cleaned in advance. Therefore, efficient cleaning can be performed by the autonomous traveling type vacuum cleaner.
  • Appendix (E2) An autonomous traveling type vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, a signal output from a remote controller that operates the autonomous traveling type cleaner, and the autonomous traveling type cleaning
  • a light receiving unit for receiving a signal output from a charging base for charging the machine, and a control unit, wherein the control unit sets a distance and an angle relative to a reference position based on a signal output from the remote controller.
  • Autonomous vacuum cleaners for moving the body towards the charger off.
  • Appendix (E3) An autonomously traveling vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, the obstacle detection sensor for detecting the presence or absence of an obstacle in a direction perpendicular to the rotation axis of the wheel, A light receiving unit that receives a signal output from a remote controller that operates the autonomous traveling cleaner, and a control unit, the control unit is based on a signal output from the remote controller, the distance to the reference position And the angle for each target point or a plurality of target points in the movement path of the body, and the light receiving unit moves the body along the target point by receiving information on a movement command from the remote controller.
  • One target point overlaps with the position of an obstacle detected by the obstacle detection sensor In case the autonomous mobile type cleaner for moving the body towards the next of the target point.
  • Appendix (E4) An autonomous traveling type vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, and a light receiving unit that receives a signal output from a remote controller that operates the autonomous traveling type vacuum cleaner, and a control A control unit that stores a distance and an angle with respect to a reference position for each of one or a plurality of target points in the movement path of the body based on a signal output from the remote controller, and When the unit moves the body along the target point by receiving information on the movement command from the remote controller, and when there is an obstacle at the last target point, Autonomous vacuum cleaner that drives a fan.
  • Appendix (E5) An autonomous traveling type vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, an obstacle detection sensor for detecting presence or absence of an obstacle in a direction orthogonal to the rotation axis of the wheel, and control A control unit, wherein the control unit detects a travel distance by a rotation sensor attached to the wheel when the body travels so as to clean a predetermined target region, and sets the target region within the target region.
  • the body is turned to move the reference point or the reference point or the reference line or the outline of the target region.
  • the predetermined distance is added.
  • Autonomous type vacuum cleaner which to travel.
  • Appendix (F1) An autonomous traveling type vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, and connecting a trash box unit for collecting trash sucked from the suction port, and the suction port and the trash box unit And a dust detection sensor that is disposed in the duct passage and detects dust sucked from the suction port, and the control unit is configured to perform predetermined control by the dust detection sensor as the electric fan is driven.
  • An autonomously traveling vacuum cleaner that determines that a predetermined amount or more of garbage is present in the garbage box unit when more than a certain amount of garbage is detected.
  • An autonomous traveling vacuum cleaner comprising a body, a pair of wheels, a suction port, and an electric fan, and is an ultrasonic sensor that detects the presence or absence of an obstacle in a direction perpendicular to the rotation axis of the wheel
  • the obstacle detection sensor further includes a transmission unit that outputs ultrasonic waves and a reception unit that receives reflected ultrasonic waves
  • the control unit includes the obstacle detection sensor.
  • An obstacle is detected by the obstacle detection sensor based on at least one of a driving time that is a driving time and a magnitude of an ultrasonic wave that reaches the receiving unit from the transmitting unit without passing through the obstacle.
  • An autonomously traveling vacuum cleaner that changes the distance between the body and the obstacle at the time.
  • the body and the obstacle when the obstacle is detected by the obstacle detection sensor so that the obstacle can be detected more easily than when the ultrasonic wave reaching the receiving unit without passing through the obstacle is large. Change the distance. That is, according to the autonomous traveling type vacuum cleaner, the distance between the body and the obstacle when the obstacle is detected by the obstacle detection sensor is changed as described above. Thereby, the precision of an obstacle detection sensor is easy to improve.
  • the present invention can be applied to autonomously traveling vacuum cleaners used in various environments including home or business autonomously traveling vacuum cleaners that require high corner cleaning ability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Nozzles For Electric Vacuum Cleaners (AREA)

Abstract

制御ユニットは、ステップS2で角を検出したと判定すると、ステップS3でボディを往復運動させて、角の掃除を開始させる。そして、ステップS4でごみ検出センサーがごみを検出しないと判定すると、ステップS6で角の掃除を終了させる。一方、ステップS4でごみ検出センサーがごみを検出していると判定すると、ステップS5でボディを往復運動させて角の掃除を継続して実行する。つまり、ボディの往復運動により、角に溜まった多くのごみを取ることが可能な自律走行型掃除機を実現する。

Description

自律走行型掃除機
 本発明は、自律走行型掃除機に関する。
 従来から、各種の構成要素を搭載するボディ、ボディを移動させる駆動ユニット、メインブラシ、吸引ユニットを備える自律走行型掃除機が開示されている(例えば、特許文献1および特許文献2参照)。メインブラシは、ボディに形成される吸込口に配置され、清掃面上に存在するごみを集める。吸引ユニットは、ボディの吸込口からごみを吸引する。
 特許文献1および特許文献2など多数の文献に開示される自律走行型掃除機は、おおよそ円形状のボディを有する。このボディの形状は、自律走行型掃除機に高い旋回性を付与する。
 一方、円形状のボディを有する従来の自律走行型掃除機は、対象領域の角に限界まで接近しても、ボディの吸込口と角の先端部分との間に比較的大きな間隔が形成される。そのため、対象領域の角に存在するごみを、吸引ユニットにより十分に吸引できないことがある。
 上記問題を解消するために、ボディの底面に配置される1つまたは複数のサイドブラシを、さらに備える自律走行型掃除機が開示されている(例えば、特許文献3から特許文献6参照)。サイドブラシは、ボディの輪郭よりも外側に飛び出るブリッスル束を備える。ブリッスル束は、ボディの輪郭よりも外側に存在するごみをボディの吸込口に集める。これにより、特許文献3から特許文献6の自律走行型掃除機は、対象領域の角に存在するごみを、より多く吸引できる。
 しかしながら、特許文献3から特許文献6の自律走行型掃除機は、対象領域の角に存在するごみを吸引する能力(以下、単に「角清掃能力」と記述する場合がある)が、主としてサイドブラシにより決められると考えられる。一方、ブリッスル束の長さは、種々の制約のもとで設定される。そのため、サイドブラシに基づいて得られる角清掃能力も、その制約の影響を受ける。つまり、特許文献3から特許文献6の自律走行型掃除機は、角清掃能力に関して改善の余地がある。
 そこで、上記角清掃能力をさらに改善した自律走行型掃除機の一例が開示されている(例えば、特許文献7参照)。
 特許文献7の自律走行型掃除機は、おおよそD型の形状を有するボディ、ボディの底面に形成される吸込口、および、ボディの底面の角に取り付けられる一対のサイドブラシを備える。
 上記自律走行型掃除機は、対象領域の角の位置において、例えば特許文献3から特許文献6の自律走行型掃除機と比較して、サイドブラシの軸およびボディの吸込口が角の頂点に一層接近する。そのため、より多くのごみを、ボディに吸引しやすくなる。
 しかしながら、特許文献7の自律走行型掃除機の場合、対象領域の角に位置すると、ボディの前面および一方の側面が、角を形成する壁と接触、または接触に等しい程度まで壁に接近する。そのため、上記自律走行型掃除機は、その場所で回転できなくなる場合がある。
 つまり、特許文献7の自律走行型掃除機は、対象領域の角の清掃が完了した後に、清掃した角から別の場所に移動するときの動作軌道に比較的大きな制約が課せられる。
特開2008-296007号公報 特表2014-504534号公報 特開2011-212444号公報 特開2014-073192号公報 特開2014-094233号公報 特表2014-512247号公報 特開2014-061375号公報
 本発明は、対象領域の角に存在するごみがなくなるまで効率的に掃除を行う自律走行型掃除機を提供する。
 つまり、本発明の一形態に従う自律走行型掃除機は、底面に吸込口を備えるボディと、ボディに搭載される吸引ユニットと、対象領域の角を検出する角検出部と、ボディが往復運動するように駆動する駆動ユニットと、駆動ユニットを制御する制御ユニットとを備える。制御ユニットは、角検出部で角を検出すると、ボディが往復運動するように駆動ユニットを制御する。
 これにより、対象領域の角に存在するごみがなくなるまで効率的に掃除を行う自律走行型掃除機を実現できる。
図1は、本実施の形態1の自律走行型掃除機の正面図である。 図2は、図1の自律走行型掃除機の底面図である。 図3は、図1の自律走行型掃除機における電気系の構成を示す機能ブロック図である。 図4は、従来の自律走行型掃除機が角に到達した状態を示す動作図である。 図5は、図1の自律走行型掃除機が角に接近する状態を示す動作図である。 図6は、図5の自律走行型掃除機が角に到達した状態を示す動作図である。 図7は、図6の自律走行型掃除機が回転した状態を示す動作図である。 図8は、本実施の形態2の自律走行型掃除機の正面図である。 図9は、図8の自律走行型掃除機の底面図である。 図10は、本実施の形態3の自律走行型掃除機の斜視図である。 図11は、図10の自律走行型掃除機の正面図である。 図12は、図10の自律走行型掃除機の蓋を開けた状態の正面図である。 図13は、図10の自律走行型掃除機の底面図である。 図14は、図10の自律走行型掃除機の側面図である。 図15は、図10の要素の一部を分離した正面側の状態を示す斜視図である。 図16は、図10の要素の一部を分離した底面側の状態を示す斜視図である。 図17は、図11の17-17線断面図である。 図18は、図17の要素の一部を分離した状態を示す断面図である。 図19は、図14の19-19線断面図である。 図20は、図15のロアーユニットの斜視図である。 図21は、図15のロアーユニットの斜視図である。 図22は、図15のロアーユニットの斜視図である。 図23は、図15のロアーユニットの斜視図である。 図24は、図10のアッパーユニットの斜視図である。 図25は、図24のアッパーユニットの底面図である。 図26は、図10の自律走行型掃除機における電気系の構成を示す機能ブロック図である。 図27は、本実施の形態4の第1の角掃除制御に関するフローチャートである。 図28は、本実施の形態5の第2の角掃除制御に関するフローチャートである。 図29は、本実施の形態6の第3の角掃除制御に関するフローチャートである。 図30は、本実施の形態7の第4の角掃除制御に関するフローチャートである。 図31は、本実施の形態8の第1の脱出制御に関するフローチャートである。 図32は、本実施の形態9の第2の脱出制御に関するフローチャートである。 図33は、本実施の形態10の段差制御に関するフローチャートである。 図34は、本実施の形態11の指定領域掃除制御に関するフローチャートである。 図35は、本実施の形態12の往復掃除制御に関するフローチャートである。 図36は、変形例に係る自律走行型掃除機の正面図である。 図37は、変形例に係る自律走行型掃除機の正面図である。 図38は、変形例に係る自律走行型掃除機の正面図である。
 以下、本実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。
 (実施の形態1)
 以下に、本実施の形態1における自律走行型掃除機の基本的な構成について、図1および図2を参照しながら説明する。
 図1は、本実施の形態1の自律走行型掃除機10の正面図である。図2は、図1の自律走行型掃除機の底面図である。
 図1および図2に示すように、本実施の形態の自律走行型掃除機10は、対象領域の清掃面上を自律的に走行し、清掃面上に存在するごみを吸引するロボット型の掃除機である。なお、対象領域の一例は部屋であり、清掃面の一例は部屋の床面である。
 本実施の形態の自律走行型掃除機10は、各種の構成要素を搭載するボディ20、一対の駆動ユニット30、清掃ユニット40、吸引ユニット50、ごみ箱ユニット60、制御ユニット70、電源ユニット80およびキャスター90などの機能ブロックを備える。一対の駆動ユニット30は、ボディ20を前後、左右など往復可能に移動させる。清掃ユニット40は、対象領域に存在するごみを集める。吸引ユニット50は、清掃ユニット40で集めたごみをボディ20の内部に吸引する。ごみ箱ユニット60は、吸引ユニット50により吸引されたごみを溜める。制御ユニット70は、駆動ユニット30、清掃ユニット40、吸引ユニット50などを制御する。電源ユニット80は、駆動ユニット30、清掃ユニット40、吸引ユニット50などに電力を供給する。キャスター90は、駆動ユニット30の回転に追従して回転する。
 一対の駆動ユニット30は、ボディ20の幅方向の中心に対して右側に配置される右側の駆動ユニット30と、ボディ20の幅方向の中心に対して左側に配置される左側の駆動ユニット30とで構成される。なお、右側または左側のいずれか一方の駆動ユニット30が第1の駆動ユニットを、左側または右側のいずれか他方の駆動ユニット30が第2の駆動ユニットを構成する。ここで、自律走行型掃除機10の幅方向である左右方向は、自律走行型掃除機10の前進方向を基準に規定される。
 ボディ20は、ボディ20の下側の外形を形成するロアーユニット100(図2参照)と、ボディ20の上側の外形を形成するアッパーユニット200(図1参照)を組み合わせることにより、構成される。
 アッパーユニット200は、図1に示すように、カバー210、蓋220およびバンパー230などを備える。カバー210は、アッパーユニット200の外郭の主要な部分を形成する。蓋220は、カバー210に対して開閉動作するように設けられる。バンパー230は、カバー210に対して変位し、衝撃などを緩和する。
 ボディ20の平面形状は、例えばルーローの三角形、ルーローの三角形とおおよそ同じ形状を有する多角形、またはこれらの三角形あるいは多角形の頂部にRが形成された形状を有する。この形状は、ルーローの三角形が有する幾何学的な性質と同一または類似する性質をボディ20に持たせることに寄与する。なお、本実施の形態では、図1に示すように、ボディ20は、例えば実質的にルーローの三角形と同一の平面形状を有する。
 また、ボディ20は、複数の外周面および複数の頂部を備える。複数の外周面の一例は、前面21、右側の側面22および左側の側面22である。前面21は、自律走行型掃除機10の前進側に存在する。右側の側面22は、前面21に対して右後方側に存在する。左側の側面22は、前面21に対して左後方側に存在する。そして、前面21は、外側に向けて湾曲した曲面で、主としてバンパー230に形成される。それぞれの側面22は、外側に向けて湾曲した曲面形状で、バンパー230の側部およびカバー210の側部に形成される。
 複数の頂部の一例は、右側の前方頂部23、左側の前方頂部23および後方頂部24である。右側の前方頂部23は、前面21と右側の側面22とにより規定される。左側の前方頂部23は、前面21と左側の側面22とにより規定される。後方頂部24は、右側の側面22と左側の側面22とにより規定される。
 そして、前面21と側面22は、図1に示すように、前面21の接線L1と側面22の接線L2とのなす角が鋭角となるように形成される。
 さらに、右側の前方頂部23および左側の前方頂部23は、ボディ20の最大の幅を規定する。図1に示す例によれば、ボディ20の最大の幅は、右側の前方頂部23の頂点と左側の前方頂部23の頂点との距離、すなわちルーローの三角形が有する2つの頂点の距離に相当する。
 ボディ20は、図2に示すように、ごみをボディ20の内部に吸引するための吸込口101を、さらに備える。吸込口101は、ボディ20の底面であるロアーユニット100の底面に形成される。吸込口101は、例えば長方形の形状で形成される。なお、吸込口101の長手方向はボディ20の幅方向と実質的に同一で、短手方向はボディ20の前後方向と実質的に同一である。
 吸込口101は、ボディ20の底面における前面21よりの部分に形成される。吸込口101の位置関係は、例えば各要素に関する、つぎの2種類の関係の一方または両方により規定される。1つ目の関係は、吸込口101の長手方向に沿う吸込口101の中心線(以下では「吸込口101の長手方向の中心線」)がボディ20の前後方向の中心よりもボディ20の前方側に存在することである。2つ目の関係は、吸込口101が一対の駆動ユニット30よりもボディ20の前方側に形成されることである。
 吸込口101の長手方向の寸法である吸込口101の幅は、右側の駆動ユニット30と左側の駆動ユニット30との内側の間隔よりも広い。これにより、より広い吸込口101の幅を確保する。その結果、吸引ユニット50により吸引されるごみの量を、増加させることに寄与する。
 また、駆動ユニット30は、図2に示すように、ロアーユニット100の底面側に配置され、複数の要素を備える。駆動ユニット30は、例えば清掃面上を走行するホイール33、ホイール33にトルクを与える走行用モーター31および走行用モーター31を収容するハウジング32を備える。ホイール33は、ロアーユニット100に形成される凹部に収容される。そして、ホイール33は、ロアーユニット100に対して回転できるようにロアーユニット100により支持される。
 ホイール33は、走行用モーター31よりもボディ20の幅方向の外側に配置される。この配置により、ホイール33を走行用モーター31よりも幅方向の内側に配置する場合と比較して、右側のホイール33と左側のホイール33との間隔を広くできる。これにより、ボディ20の安定性の向上に寄与する。
 なお、自律走行型掃除機10の駆動方式は、対向2輪型である。そのため、右側の駆動ユニット30と左側の駆動ユニット30とは、ボディ20の幅方向において対向して配置される。つまり、図2に示すように、右側のホイール33の回転軸Hおよび左側のホイール33の回転軸Hは、実質的に同軸上に存在する。
 このとき、ホイールの回転軸Hと自律走行型掃除機10の重心Gとの距離は、例えば自律走行型掃除機10に所定の旋回性能を持たせることを意図して設定される。所定の旋回性能とは、ルーローの三角形の輪郭により形成される四角形の軌跡と同様または類似の軌跡をボディ20に形成させることができる性能である。具体的には、例えば回転軸Hの位置を自律走行型掃除機10の重心Gよりもボディ20の後方側に設定し、回転軸Hと重心Gとの距離を所定の距離に設定する。この設定により、ボディ20と周囲の物体との接触を利用して、上記四角形および類似の軌跡を形成することができる。
 また、清掃ユニット40は、図2に示すように、ボディ20の内部および外部に配置され、複数の要素を備える。清掃ユニット40は、例えばブラシ駆動モーター41、ギアボックス42およびメインブラシ43を備える。ブラシ駆動モーター41およびギアボックス42は、ボディ20の内部に配置される。メインブラシ43は、吸込口101の長手方向の寸法とおおよそ同じ長さを有し、ボディ20の吸込口101に配置される。
 ブラシ駆動モーター41およびギアボックス42は、ロアーユニット100に取り付けられる。ギアボックス42はブラシ駆動モーター41の出力軸およびメインブラシ43に接続され、ブラシ駆動モーター41のトルクをメインブラシ43に伝達する。
 メインブラシ43は、ロアーユニット100に対して回転できるように、軸受部(図示せず)により支持される。軸受部は、例えばギアボックス42およびロアーユニット100の一方または両方に形成される。メインブラシ43の回転方向は、例えば図14の矢印AMに示すように、回転軌道が清掃面側においてボディ20の前方から後方に向かう方向に設定される。
 吸引ユニット50は、図1に示すように、ボディ20の内部に配置され、複数の要素を備える。吸引ユニット50は、例えばごみ箱ユニット60の後方側、かつ後述する電源ユニット80の前方側に配置される。
 吸引ユニット50は、例えばロアーユニット100(図2参照)に取り付けられるファンケース52およびファンケース52の内部に配置される電動ファン51を備える。電動ファン51は、ごみ箱ユニット60の内部の空気を吸引し、電動ファン51の周方向の外方に空気を吐出する。電動ファン51から吐出された空気は、ファンケース52の内部の空間、および、ボディ20の内部におけるファンケース52の周囲の空間を通過し、ボディ20の外部に排気される。
 ごみ箱ユニット60は、図2に示すように、ボディ20の内部において、メインブラシ43の後方側かつ吸引ユニット50の前方側で、一対の駆動ユニット30の間に配置される。ボディ20およびごみ箱ユニット60は、ごみ箱ユニット60がボディ20に取り付けられた状態、および、ごみ箱ユニット60がボディ20から取り外された状態をユーザーが任意に選択できる着脱構造を備える。
 制御ユニット70は、図1に示すように、ボディ20の内部において、吸引ユニット50の後方側に配置される。
 また、図1および図2に示すように、本実施の形態の自律走行型掃除機10は、さらに複数のセンサーを備える。複数のセンサーは、例えば障害物検出センサー71、一対の距離測定センサー72、衝突検出センサー73および複数の床面検出センサー74などである。障害物検出センサー71は、ボディ20の前方に存在する障害物を検出する。一対の距離測定センサー72は、ボディ20の周囲に存在する物体とボディ20との距離を検出する。衝突検出センサー73は、ボディ20が周囲の物体と衝突したことを検出する。床面検出センサー74は、ボディ20の底面に存在する清掃面を検出する。障害物検出センサー71、距離測定センサー72、衝突検出センサー73および床面検出センサー74の検出信号は、制御ユニット70に入力され、それに基づいて自律走行型掃除機10を制御される。
 なお、障害物検出センサー71は、例えば超音波センサーで構成され、発信部および受信部を備える。距離測定センサー72および床面検出センサー74は、例えば赤外線センサーで構成され、発光部および受光部を備える。衝突検出センサー73は、例えば接触式変位センサーで構成される。そして、衝突検出センサー73は、バンパー230が物体に接触し、カバー210に対して押し込まれることによりオンするスイッチで構成される。
 一対の距離測定センサー72は、図1に示すように、右側の距離測定センサー72および左側の距離測定センサー72で構成される。右側の距離測定センサー72は、ボディ20の幅方向の中心に対して右側に配置される。左側の距離測定センサー72は、ボディ20の幅方向の中心に対して左側に配置される。さらに、右側の距離測定センサー72は右側の前方頂部23近傍に配置され、ボディ20の右斜め前方に向けて光(例えば、赤外線)を出力する。左側の距離測定センサー72は左側の前方頂部23近傍に配置され、ボディ20の左斜め前方に向けて光(例えば、赤外線)を出力する。この配置により、自律走行型掃除機10が左右のどちらに旋回しても、ボディ20の輪郭と最も接近した周囲の物体とボディ20との距離を検出できる。
 複数の床面検出センサー74は、図2に示すように、例えば駆動ユニット30よりもボディ20の前方側に配置される前方側の床面検出センサー74、および駆動ユニット30よりもボディ20の後方側に配置される後方側の床面検出センサー74などで構成される。
 本実施の形態の自律走行型掃除機10は、さらに、電源ユニット80を備える。電源ユニット80は、上述したように、駆動ユニット30、清掃ユニット40、吸引ユニット50および障害物検出センサー71、距離測定センサー72、衝突検出センサー73、床面検出センサー74などに電力を供給する。電源ユニット80は、ボディ20の前後方向の中心よりもボディ20の後方側で、吸引ユニット50よりもボディ20の後方側に配置される。電源ユニット80は、例えば電池ケース81、蓄電池82およびメインスイッチ83などを備える。電池ケース81は、ロアーユニット100に取り付けられる。蓄電池82は、例えば2次電池などで構成され、電池ケース81内に収容される。メインスイッチ83は、電源ユニット80から各要素への電力の供給および停止を切り替える。
 以上のように、本実施の形態の自律走行型掃除機10が構成されている。
 以下に、本実施の形態における自律走行型掃除機10の電気系の構成について、図3を参照しながら説明する。
 図3は、図1の自律走行型掃除機における電気系の構成を示す機能ブロック図である。
 制御ユニット70は、図1に示すように、ボディ20の内部において電源ユニット80上に配置され、電源ユニット80と電気的に接続される。制御ユニット70は、さらに、上述した障害物検出センサー71、距離測定センサー72、衝突検出センサー73、床面検出センサー74、ごみ検出センサー300、一対の走行用モーター31、ブラシ駆動モーター41および電動ファン51などと電気的に接続される。
 制御ユニット70は、例えばCPU(Central Processing Unit)のような半導体集積回路により構成され、各回路を制御する。さらに、制御ユニット70は、制御ユニット70が実行する各種のプログラムやパラメーターなどを格納する記憶部(図示せず)を有する。記憶部は、例えばフラッシュメモリのような不揮発性の半導体記憶素子により構成される。
 具体的には、制御ユニット70は、障害物検出センサー71から入力される検出信号に基づいて、ボディ20よりも前方側の所定範囲内に自律走行型掃除機10の走行を妨げ得る物体が存在しているか否かを判定する。制御ユニット70は、距離測定センサー72から入力される検出信号に基づいて、ボディ20の前方頂部23の周囲に存在する物体とボディ20の輪郭との距離を算出する。
 また、制御ユニット70は、衝突検出センサー73から入力される検出信号に基づいて、ボディ20が周囲の物体に衝突したか否かを判定する。制御ユニット70は、床面検出センサー74から入力される検出信号に基づいて、ボディ20の下方に対象領域の清掃面が存在するか否かを判定する。
 そして、制御ユニット70は、上記判定および演算の結果の1つまたは複数を用いて、一対の走行用モーター31、ブラシ駆動モーター41、および、電動ファン51を制御する。これにより、制御ユニット70は、対象領域の清掃面を清掃するように自律走行型掃除機10の動作などを制御する。
 また、自律走行型掃除機10は、図1に示すように、さらに制御ユニット70と電気的に接続されるごみ検出センサー300を備える。ごみ検出センサー300は、図2に示す吸込口101から吸引されるごみおよびハウスダストの少なくとも一方を検出する。ごみ検出センサー300は、例えば吸込口101からごみ箱ユニット60までの通路上に配置され、通路を通過するごみの量などを検出する。ごみ検出センサー300は、電源ユニット80から電力が供給される。
 ごみ検出センサー300は、例えば発光素子と受光素子を有する赤外線センサーで構成される。ごみ検出センサー300は、受光素子が発光素子から放出された光の量に関する情報を検出する。そして、ごみ検出センサー300は、検出した情報に関する検出信号を制御ユニット70へ出力する。制御ユニット70は、ごみ検出センサー300から入力された検出信号に基づいて、ごみの量を判断する。具体的には、制御ユニット70は、光の量が少ない場合、ごみの量が多いと判定し、光の量が多い場合ごみの量が少ないと判定する。なお、検出信号は、受光素子と接続された増幅素子であるオペアンプなどから出力される信号である。
 以上のように、本実施の形態の自律走行型掃除機10の電気系が構成されている。
 以下に、本実施の形態における自律走行型掃除機10の動作について、図4に示す従来の自律走行型掃除機900の動作と比較しながら、図5から図7を用いて説明する。
 図4は、従来の自律走行型掃除機が角に到達した状態を示す動作図である。図5は、図1の自律走行型掃除機が角に接近する状態を示す動作図である。図6は、図5の自律走行型掃除機が角に到達した状態を示す動作図である。図7は、図6の自律走行型掃除機が回転した状態を示す動作図である。
 図4から図7に示すように、対象領域である部屋RXは、例えば第1の壁R1および第2の壁R2により形成される角R3を備える。ここでは、角R3が、例えばおおよそ直角(直角を含む)の場合を例に説明する。
 まず、従来の自律走行型掃除機900は、図4に示すように、角R3に到達したときに、外形で角R3の先端部分R4を覆うことができない。そのため、自律走行型掃除機900の吸込口910と先端部分R4との間に、比較的大きな間隔が形成される。
 このとき、従来の自律走行型掃除機900においても、サイドブラシを搭載することにより、先端部分R4に存在するごみをサイドブラシで吸込口910に集めることはできる。しかし、従来の自律走行型掃除機900は、サイドブラシの有無に関わらず、吸込口910が先端部分R4から離れた位置で、ごみを吸引することになる。
 一方、本実施の形態では、制御ユニット70は、自律走行型掃除機10を、例えば以下で示すように走行させて、部屋RXの角R3を清掃する。
 まず、図5に示すように、制御ユニット70は、例えば対象領域である部屋RXの第1の壁R1に、ボディ20の前面21が正対する姿勢を取らせる。そして、制御ユニット70は、自律走行型掃除機10を第2の壁R2に沿って第1の壁R1に向けて前進させる。このとき、自律走行型掃除機10は、一方(右側)の前方頂部23が第2の壁R2と接触した状態、または、それに等しい程度まで第2の壁R2に接近した状態を維持しながら走行する。
 つぎに、制御ユニット70は、図6に示すように、ボディ20の前面21が第1の壁R1と接触したとき、または、それに等しい程度まで第1の壁R1に接近したとき、その場で自律走行型掃除機10の動作を一時的に停止させる。このとき、ボディ20の右側の前方頂部23の一部が、角R3の先端部分R4の一部を覆う。つまり、図4に示す従来の自律走行型掃除機900が角R3に限界まで接近した場合と比較して、本実施の形態の自律走行型掃除機10はボディ20の吸込口101が角R3の先端部分R4に、より接近する。
 つぎに、制御ユニット70は、ボディ20の前面21が第1の壁R1に接触するように旋回する動作、および、右側の側面22が第2の壁R2に接触するように旋回する動作を、自律走行型掃除機10に繰り返し実行させる。このとき、自律走行型掃除機10は、前面21と第1の壁R1との接触によりボディ20に働く反力、および右側の側面22と第2の壁R2との接触によりボディ20に働く反力を受ける。これにより、自律走行型掃除機10は、重心Gの位置を変化させながら左方向に旋回する。この旋回動作は、ルーローの三角形が四角形の軌跡を形成するときの動作の一部を模擬している。
 さらに、自律走行型掃除機10の前面21が第1の壁R1に正対した状態から一定の角度にわたって旋回すると、図7に示すように、右側の前方頂部23が角R3の頂点またはその付近に向く。これにより、右側の前方頂部23が角R3の頂点に最も接近した状態となる。このとき、ボディ20は、角R3の先端部分R4の比較的広い範囲を覆う。また、ボディ20の吸込口101と角R3の先端部分R4との距離は、図4に示す従来の自律走行型掃除機900が限界まで角R3に接近した場合の吸込口910と角R3の先端部分R4との距離よりも、短くなる。この吸込口101の配置は、自律走行型掃除機10の角清掃能力を、従来の自律走行型掃除機900よりも高めることに寄与する。
 なお、自律走行型掃除機10の角清掃能力に関する上記事項は、さらに次のように記述できる。
 つまり、本実施の形態の自律走行型掃除機10によれば、図1に示すように、ボディ20の前面21の接線L1と側面22の接線L2とのなす角が鋭角である。そのため、自律走行型掃除機10は、対象領域の角R3に位置すると、その場で旋回できる。これにより、自律走行型掃除機10は、角R3に対して多様な姿勢を取ることができる。例えば、ボディ20の前方頂部23が、対象領域の角R3の頂点またはその付近を向く姿勢などである。
 自律走行型掃除機10が上記姿勢を取る場合、従来の円形のボディを備える自律走行型掃除機900が対象領域の角R3に限界まで接近した場合と比較して、ボディ20の輪郭が角R3の頂点に一層接近する。これにより、ボディ20の吸込口101も、角R3の頂点に一層接近する。そのため、ボディ20は、吸込口101から、角R3の清掃面上に存在するごみを吸い込みやすくなる。すなわち、自律走行型掃除機10は、従来の円形のボディを備える自律走行型掃除機900と比較して、対象領域の角R3に存在するごみを吸い込みやすい。
 また、自律走行型掃除機10は、ボディ20の前方頂部23が角R3の頂点またはその付近を向く姿勢を取る場合、その場で回転して方向転換することができる。そのため、対象領域の角R3から別の場所に移動する場合、従来のD型のボディを備える自律走行型掃除機に課せられる制約が低く(緩和)なる。すなわち、自律走行型掃除機10は、従来のD型のボディを備える自律走行型掃除機と比較して、角R3から別の場所に速やかに移動することが可能となる。
 以上のように、本実施の形態における自律走行型掃除機10は、動作する。
 以下に、本実施の形態の自律走行型掃除機10の効果について、説明する。
 (1)自律走行型掃除機10の別の形態によれば、吸込口101の幅が一対の駆動ユニット30の内側の間隔よりも狭くてもよい。しかし、本実施の形態の自律走行型掃除機10に示すように、吸込口101の幅が一対の駆動ユニット30の内側の間隔よりも広いほうが、より好ましい。つまり、本実施の形態の構成によれば、上記別の形態と比較して、吸込口101の幅が広い。そのため、吸引ユニット50は、より多くのごみを吸引することができる。
 (2)自律走行型掃除機10の別の形態によれば、吸込口101を一対の駆動ユニット30の間に形成してもよい。しかし、本実施の形態の自律走行型掃除機10に示すように、吸込口101を一対の駆動ユニット30よりもボディ20の前方側に形成することが、より好ましい。つまり、本実施の形態の構成によれば、上記別の形態と比較して、吸込口101を壁(角R3)に一層接近させることができる。そのため、吸引ユニット50は、より多くのごみを吸引することができる。
 (3)自律走行型掃除機10は、ボディ20の最大の幅が、右側および左側の前方頂部23により規定される。これにより、ボディ20の後部の幅がボディ20の前部の幅よりも狭くなる。そのため、周囲に物体が存在する場所で、自律走行型掃除機10が旋回する場合、ボディ20の後部が、周囲の物体に接触する虞が低くなる。これにより、自律走行型掃除機10の機動性を高めることができる。
 (4)自律走行型掃除機10の別の形態によれば、ステアリング型の駆動方式を備える構成としてもよい。しかし、本実施の形態の自律走行型掃除機10に示すように、一対の駆動ユニット30で構成する対向2輪型の駆動方式が、より好ましい。つまり、本実施の形態の構成によれば、上記別の形態と比較して、構造を簡素化できる。これにより、小型、軽量で、低コスト化が図れる。
 (5)一般的に、それぞれの駆動ユニット30の回転軸Hと自律走行型掃除機10の重心Gとの関係が、ボディ20が形成する回転軌跡を決める主要な要因の1つを構成する。そこで、本実施の形態の自律走行型掃除機10は、一対の駆動ユニット30の回転軸Hを重心Gよりもボディ20の後方側に存在させる。この場合、自律走行型掃除機10は、周囲の物体との接触を利用して、自身の重心Gの位置を変化させながら旋回する動作を形成しやすい。これにより、自律走行型掃除機10は、四角形の軌跡の少なくとも一部を、ルーローの三角形からなるボディ20の旋回動作により、適切に形成(清掃)できる。その結果、自律走行型掃除機10の角清掃能力を、より高めることができる。
 (実施の形態2)
 以下に、本実施の形態2における自律走行型掃除機について、図8および図9を用いて説明する。なお、実施の形態2の説明において実施の形態1と同じ符号が付された要素は、実施の形態1の対応する要素と同様または類似の機能を備える。
 図8は、本実施の形態2の自律走行型掃除機の正面図である。図9は、図8の自律走行型掃除機の底面図である。
 図8および図9に示すように、本実施の形態の自律走行型掃除機10は、清掃ユニット40が一対のサイドブラシ44、ブラシ駆動モーター41および一対の第2のギアボックス42を、さらに備える点で、実施の形態1の自律走行型掃除機とは異なる。
 清掃ユニット40の一対のサイドブラシ44は、ボディ20の底面であるロアーユニット100の底面に配置される。一対の第2のギアボックス42の、一方(例えば、左側)の第2のギアボックス42は、ブラシ駆動モーター41の出力軸、メインブラシ43、および一方(例えば、左側)のサイドブラシ44と接続される。そして、ブラシ駆動モーター41のトルクをメインブラシ43、および一方(例えば、左側)のサイドブラシ44に伝達する。他方(例えば、右側)の第2のギアボックス42は、メインブラシ43、および他方(例えば、右側)のサイドブラシ44と接続され、メインブラシ43のトルクを他方(例えば、右側)のサイドブラシ44に伝達する。
 サイドブラシ44は、ブラシ軸44Aおよび複数のブリッスル束44Bなどを備える。ブラシ軸44Aは、ボディ20の前方頂部23に取り付けられる。ブリッスル束44Bは、ブラシ軸44Aに取り付けられる。
 サイドブラシ44は、ボディ20に対して、吸込口101にごみを集めることができる回転軌道が形成される位置に設けられる。ブリッスル束44Bは、図8に示すように、例えば3つの束で構成される。それぞれのブリッスル束44Bは、一定の角度間隔(例えば、120°)でブラシ軸44Aに取り付けられる。
 ブラシ軸44Aは、ボディ20の高さ方向と同じ方向、またはおおよそ同じ方向に延長する回転軸を有する。ブラシ軸44Aは、ボディ20に対して回転可能にボディ20により支持される。さらに、ブラシ軸44Aは、吸込口101の長手方向の中心線よりもボディ20の前方側に配置される。
 それぞれのブリッスル束44Bは、複数のブリッスルにより構成される。そして、それぞれのブリッスル束44Bは、ブラシ軸44Aの径方向と同じ方向、またはおおよそ同じ方向に延長するようにブラシ軸44Aに固定される。このとき、ブリッスル束44Bの長さは、例えばブリッスル束44Bの先端が、少なくともボディ20の輪郭よりも外側に飛び出る長さに設定される。
 一対のサイドブラシ44の回転方向は、図8の矢印ASで示すように、回転軌道がボディ20の幅方向の中心側においてボディ20の前方から後方に向かう方向に設定される。すなわち、一対のサイドブラシ44は、互いに反対の方向に回転する。つまり、それぞれのサイドブラシ44の回転軌道のうち、他方のサイドブラシ44の回転軌道と接近している部分において、ボディ20の前方から後方に向けて回転する。
 以上のように、本実施の形態の自律走行型掃除機10が構成されている。
 つまり、本実施の形態の自律走行型掃除機10によれば、実施の形態1の自律走行型掃除機10により得られる(1)~(5)の効果に加えて、さらに以下の効果が得られる。
 (6)本実施の形態の自律走行型掃除機10は、サイドブラシ44を備える。この構成によれば、サイドブラシ44により対象領域の角R3に存在するごみがボディ20の吸込口101に集めることができる。このため、自律走行型掃除機10の角清掃能力が一層高められる。
 (7)サイドブラシ44は、前方頂部23の底面に取り付けられる。この構成によれば、従来の自律走行型掃除機900が角R3に位置する場合と比較して、サイドブラシ44のブラシ軸44Aが角R3の頂点に一層接近する。このため、自律走行型掃除機10の角清掃能力が一層高められる。
 (8)本実施の形態の自律走行型掃除機10によれば、それぞれのサイドブラシ44が互いに反対の方向に回転する。つまり、それぞれのサイドブラシ44の回転軌道のうち、他方のサイドブラシ44の回転軌道と接近している部分において、ボディ20の前方から後方に向けて回転する。この構成によれば、サイドブラシ44によりボディ20の前方側から吸込口101にごみが集められる。そのため、例えば吸込口101の側方近傍から吸込口101にごみが集められる場合と比較して、吸込口101にごみが吸い込まれやすい。これにより、角R3の清掃面上に存在するごみを効率的に除去できることがある。
 (9)一般的なサイドブラシを備える自律走行型掃除機によれば、ブリッスル束の長さが長すぎる場合、自律走行型掃除機が走行するときにブリッスル束が周囲の物体に引っ掛かる虞が高くなる。しかし、本実施の形態の自律走行型掃除機10は、ボディ20の吸込口101を角R3の先端部分R4に一層接近させることができる。そのため、角清掃能力は、ブリッスル束44Bの長さに強く依存しない。これにより、ブリッスル束44Bの長さは、比較的短くすることが許容される。その結果、ブリッスル束44Bが周囲の物体に引っ掛かる虞を低減できる。
 (10)同様に、サイドブラシを備える自律走行型掃除機によれば、ブリッスル束の長さが長くなるにつれて、ブリッスル束がごみを移動させるときにブリッスル束が撓みやすくなる。ブリッスル束が大きく撓む場合、ブリッスル束がボディの吸込口までごみを適切に移動できない虞がある。しかし、本実施の形態の自律走行型掃除機10は、上述したように、ブリッスル束44Bの長さを比較的短く設定することが許容される。そのため、ブリッスル束44Bの長さを短く設定すると、ブリッスル束44Bの撓む量が小さくなる。これにより、角R3に存在するごみをブリッスル束44Bにより吸込口101に集めやすくなる。
 (実施の形態3)
 以下に、本実施の形態3における自律走行型掃除機について、図10から図26の各図面を適宜参照しながら説明する。なお、実施の形態3の説明において実施の形態2と同じ符号が付された要素は、実施の形態2の対応する要素と同様または類似の機能を備える。
 まず、図10は、本実施の形態3の自律走行型掃除機10の斜視図を示す。
 本実施の形態の自律走行型掃除機10は、実施の形態2に明示されていない以下の構成を、さらに備える。
 ここで、図10に示す自律走行型掃除機10の各要素は、図8および図9に模式的に示す実施の形態2の自律走行型掃除機10の各要素が取り得る具体的形態の一例である。
 つまり、図10に示すように、本実施の形態の自律走行型掃除機10は、ボディ20の右側の前方頂部23、左側の前方頂部23および後方頂部24は、それぞれR形状を有する。アッパーユニット200は、複数の排気口211、受光部212および蓋ボタン213などを備える。複数の排気口211は、ボディ20の左右の側面22に向かうように、例えば蓋220の縁に沿って並べて形成され、ボディ20の内部の空間と外部とを連通する。受光部212は、蓋220の前方側に形成される。蓋ボタン213は、ごみ箱ユニット60に溜められるごみを廃棄する場合などに、蓋220の開閉のために設けられる。
 受光部212は、自律走行型掃除機10を充電する充電台(図示せず)から出力される信号、または自律走行型掃除機10を操作するリモートコントローラー(図示せず)から出力される信号を受光する。受光部212は、信号を受光すると、信号に対応する受光信号を制御ユニット70(例えば、図15参照)に出力する。
 つぎに、図11は、図10の自律走行型掃除機10の正面図を示す。
 図11に示すように、自律走行型掃除機10は、前後方向に延長する自身の中心線(図中、17-17線参照)に対して実質的に線対称の形状を有する。バンパー230は、左右の前方頂部23から突出する一対の湾曲凸部231を備える。湾曲凸部231は、前面21および側面22のR形状に倣うように湾曲し、ボディ20の輪郭の一部を形成する。
 つぎに、図12は、図10の自律走行型掃除機の蓋220が開いた状態の正面図を示す。
 図12に示すように、アッパーユニット200は、カバー210、蓋220、バンパー230、インターフェース部240、ごみ箱受け250などを備える。インターフェース部240は、ユーザーにより操作される要素が配置される。ごみ箱受け250は、ごみ箱ユニット60を支持する。蓋220は、蓋220のヒンジ構造を構成する一対のアーム221を備える。さらに、アッパーユニット200は、アーム221を収容する一対のアーム収容部260(図25参照)を備える。
 インターフェース部240は、カバー210の一部を構成する。そして、インターフェース部240は、蓋220を閉じると閉鎖され(例えば、図11参照)、蓋220を開くと開放される。インターフェース部240は、メインスイッチ83、操作ボタン242および表示部243などを含むパネル241などを備える。操作ボタン242は、自律走行型掃除機10の動作をオンおよびオフする。パネル241は、自律走行型掃除機10に関する情報を表示部243に表示する。パネル241は、さらに、自律走行型掃除機10の動作に関する各種の設定を入力するための操作ボタン(図示せず)を備える。メインスイッチ83は、インターフェース部240に配置される。
 つぎに、図24は、図10のアッパーユニット200の底面側の斜視図を示す。
 図24に示すように、ごみ箱受け250は、アッパーユニット200の上面側に開口する箱状の物体で構成される。ごみ箱受け250は、ボディ20の底部側に開口する底部開口251およびボディ20の後方側に開口する後方開口252を備える。そして、ごみ箱受け250には、図12に示すごみ箱ユニット60が挿入される。
 つぎに、図13は、図11の自律走行型掃除機10の底面図を示す。
 図13に示すように、ロアーユニット100は、ベース110および支持軸91などを備える。ベース110は、ロアーユニット100の骨格を形成する。支持軸91は、吸込口101の長手方向と平行に配置され、キャスター90を支持する。
 ベース110は、底面に開口し電源ユニット80に対応する形状を有する電源口102および充電台(図示せず)と接続される一対の充電端子103などを備える。電源口102は、ボディ20の前後方向の中心よりもボディ20の後方側に形成され、電源口102の一部は一対の駆動ユニット30の間に形成される。充電端子103は、吸込口101よりもボディ20の前方側に形成される。充電端子103は、例えばベース110の底面のうちの、より前面21側の部分に形成される。
 ベース110は、支持軸91を支持するための一対の底部軸受111を、さらに備える。底部軸受111は、駆動ユニット30よりも、ボディ20の後方側に形成される。底部軸受111は、例えばベース110の底面のうちの、電源口102よりも、ボディ20の後方で、後方頂部24側の底面の位置に配置される。
 支持軸91は、キャスター90に対して回転できるように、キャスター90に挿入される。支持軸91の端部は、それぞれ底部軸受111に圧入される。これにより、キャスター90が、ベース110に対して回転できるように結合される。
 つぎに、図14は、図10の自律走行型掃除機10の側面図を示す。
 図14に示すように、メインブラシ43は、矢印AMの方向に回転する。駆動ユニット30のホイール33の回転軸とキャスター90の回転軸との間隔は、ホイール33の回転軸とメインブラシ43の回転軸との間隔よりも広くなるように配置される。この位置関係は、自律走行型掃除機10のボディ20の姿勢の安定に寄与する。
 つぎに、図15は、図10の要素の一部を分解したロアーユニット100の上面側の斜視図を示す。
 図15に示すように、ロアーユニット100の上面側には、一対の第2のギアボックス42、吸引ユニット50、ファンケース52、ごみ箱ユニット60(図12参照)および制御ユニット70などが取り付けられる。ブラシ駆動モーター41は、一方の第2のギアボックス42に収容される。
 ロアーユニット100は、ベース110に加えて、ベース110の上面側に取り付けられるブラシハウジング170を、さらに備える。ブラシハウジング170は、ごみ箱ユニット60に接続されるダクト171を備え、メインブラシ43を収容する空間を形成する。
 ファンケース52は、例えば前方側ケース要素52Aと、後方側ケース要素52Bなどを備える。前方側ケース要素52Aは、電動ファン51の前方側に配置される。後方側ケース要素52Bは、電動ファン51の後方側に配置される。そして、前方側ケース要素52Aと後方側ケース要素52Bを互いに組み合わせることにより、ファンケース52が構成される。
 ファンケース52の前方側ケース要素52Aは、さらに、吸込口52C、吐出口52D(図19参照)およびルーバー52Eなどを備える。吸込口52Cは、ごみ箱61の出口61B(図17参照)に面して配置される。吐出口52Dは、駆動ユニット30側に開口するように配置される。ルーバー52Eは、吸込口52Cを覆うように設けられる。
 つぎに、図16は、図10の要素の一部を分解したロアーユニット100の底面側の斜視図を示す。
 図16に示すように、ロアーユニット100の底面側には、一対の駆動ユニット30、メインブラシ43、一対のサイドブラシ44、キャスター90および電源ユニット80が取り付けられる。ロアーユニット100は、さらに、ブラシハウジング170の底面側に取り付けられるブラシカバー180および電源口102に取り付けられる保持フレーム190を備える。保持フレーム190は、電源口102に固定される。これにより、保持フレーム190は、ベース110と協働して電源ユニット80を保持する。
 また、ベース110およびブラシカバー180は、ブラシカバー180がベース110に取り付けられた状態、およびブラシカバー180がベース110から取り外された状態をユーザーが任意に選択できる着脱構造を備える。同様に、ベース110および保持フレーム190は、保持フレーム190がベース110に取り付けられた状態、および保持フレーム190がベース110から取り外された状態をユーザーが任意に選択できる着脱構造を備える。
 つぎに、図20は、図15のロアーユニット100を前方側から見た拡大構造の斜視図を示す。図21は、図15のロアーユニット100を左方側から見た拡大構造の斜視図を示す。
 まず、図20に示すように、ベース110は、それぞれ対応する要素を支持または収容する複数の機能的領域を備える。機能的領域は、例えば駆動用パート120、清掃用パート130、ごみ箱用パート140、吸引用パート150および電源用パート160などである。
 駆動用パート120は、駆動ユニット30を収容する機能的領域で、複数の機能的な部分を備える。駆動用パート120の機能的な部分は、例えばホイールハウス121およびばね掛け部122などである。ホイールハウス121は、ベース110の底面側に開口し、駆動ユニット30を収容する。ばね掛け部122は、後述するサスペンション機構を構成するサスペンションばね36(図21参照)が掛けられる。
 ホイールハウス121は、ベース110の上面から上方に突出し、ベース110のうちの、側面22(図19参照)よりの部分に形成される。ばね掛け部122は、ホイールハウス121の前方の部分に形成され、ホイールハウス121からおおよそ上方(上方を含む)に向けて突出して設けられる。
 また、図21に示すように、ホイールハウス121の上部には、脱輪検出スイッチ75が取り付けられる。脱輪検出スイッチ75は、駆動ユニット30(図15参照)が対象領域の清掃面から脱輪すると、それに伴いばね掛け部32Bにより押し込まれる。これにより、自律走行型掃除機10の脱輪が検知される。
 図20に示す清掃用パート130は、清掃ユニット40を支持する機能的領域で、複数の機能的な部分を備える。清掃用パート130の機能的な部分は、例えば一対の軸挿入部131、結合部132、ブラシハウジング170およびブラシカバー180などである。一対の軸挿入部131は、サイドブラシ44のブラシ軸44A(図22参照)を支持する。結合部132は、一対の軸挿入部131、および一対の第2のギアボックス42(図22参照)が配置される。
 そして、図17に示すように、メインブラシ43がブラシハウジング170の内部に配置されると、メインブラシ43の両端部分がブラシハウジング170から結合部132(図20参照)に突出する。
 また、図15に示すサイドブラシ44のブラシ軸44Aは、軸挿入部131(図20参照)に形成される穴に挿入される。
 さらに、図15に示す一方の第2のギアボックス42は、結合部132(図20参照)の一方に配置され、メインブラシ43の端部および一方のブラシ軸44Aのそれぞれに接続される。他方の第2のギアボックス42は、結合部132(図20参照)の他方に配置され、メインブラシ43の端部および他方のブラシ軸44Aのそれぞれに接続される。
 図20に示すごみ箱用パート140は、ボディ20の前後方向において、清掃用パート130と吸引用パート150との間に形成される機能的領域である。ごみ箱用パート140は、ごみ箱受け250(図18参照)が配置される空間を形成する。
 吸引用パート150は、吸引ユニット50を支持する機能的領域で、ベース110のおおよそ中心またはその付近に形成される。吸引用パート150の両側部には、一対のホイールハウス121が形成される。
 電源用パート160は、電源ユニット80を支持する機能的領域で、ベース110の底面から見て上面側に窪んだ凹部を有する。制御ユニット70は、電源用パート160の上部に搭載される。
 ブラシカバー180は、図15および図17に示すように、ベース110の底面よりも下方に突出してベース110に取り付けられる。ブラシカバー180は、メインブラシ43をボディ20の外部に露出させる吸込口101、および前方部分に形成される斜面181を備える。斜面181は、ボディ20の前方から後方に向かうにつれてロアーユニット100の底面からの距離が増加するように設けられる面で形成される。これにより、斜面181は、対象領域の清掃面上に存在する段差と接触してボディ20の前方を浮き上がらせることに寄与する。
 ブラシハウジング170のダクト171は、おおよそボディ20の上下方向に延長する形状を有する。ダクト171は、メインブラシ43の上部を収容する入口172、およびごみ箱ユニット60の内部の空間と繋がる出口173を備える。出口173は、ごみ箱受け250の底部開口251に挿入される。出口173の通路面積は、入口172の通路面積よりも狭く形成される。つまり、図15に示すように、入口172から出口173に向かうにつれてダクト171内の通路がボディ20の後方側に若干傾斜して形成される。この通路の形状は、吸込口101を介してボディ20の内部に吸引されたごみを、後述するフィルター62側に案内することに寄与する。
 ごみ箱ユニット60は、図18に示すように、ごみを溜める空間を有するごみ箱61、およびごみ箱61に取り付けられるフィルター62を備える。ごみ箱61は、ダクト171の出口173と接続される入口61A、フィルター62が配置される出口61B、および上部よりも寸法が小さく設定された底部61Cを備える。
 フィルター62は、図19に示すように、ごみ箱受け250の後方開口252に、ごみ箱61の幅方向のおおよそ全体にわたって、吸引ユニット50に面して配置される。
 ごみ箱61の底部61Cは、図17に示すように、ダクト171の後方側とファンケース52の前方側との間に配置される。この配置は、ボディ20の高さ方向における底部61Cの位置をより低い位置に設定し、ごみ箱61の重心を低くすることに寄与する。
 吸引ユニット50は、図18に示すように、ベース110に対して傾斜して配置される。つまり、ベース110に対する吸引ユニット50は、吸引ユニット50の底部が相対的にボディ20の前方側に位置し、吸引ユニット50の頂部が相対的にボディ20の後方側に位置する傾斜姿勢で配置される。この配置は、ボディ20の高さを低く設定することに寄与する。
 ファンケース52は、図19に示すように、一方の側部を閉鎖し、他方の側部(例えば、左側)に吐出口52Dを有する。この構成は、電動ファン51から吐出された空気の流れを安定させることに寄与する。
 つぎに、図21、図22および図23は、ロアーユニット100を左方側、前方側および右方側から見た内部構造を説明する斜視図を示す。
 図21、図22および図23に示すように、ロアーユニット100は、一対の第2のギアボックス42、メインブラシ43、一対のサイドブラシ44、吸引ユニット50、制御ユニット70、および電源ユニット80が取り付けられる。そして、図24および図25に示すアッパーユニット200と、ロアーユニット100に取り付けることにより、図10に示すボディ20が構成される。
 また、図16は、ロアーユニット100から分離された駆動ユニット30の分解斜視図を示す。
 駆動ユニット30は、自律走行型掃除機10を前進、後進および旋回させる機能ブロックで、複数の要素を備える。駆動ユニット30は、図16に示すように、上述した、例えば走行用モーター31、ハウジング32およびホイール33に加えて、タイヤ34を備える。タイヤ34は、ホイール33の周囲に取り付けられ、ブロック状のトレッドパターンを有する。
 駆動ユニット30は、さらに、支持軸35およびサスペンション機構を備える。
 支持軸35は、ハウジング32の回転軸を有する。サスペンション機構は、例えばサスペンションばね36(図21参照)などで構成され、ホイール33に加えられる衝撃を吸収する。
 ハウジング32は、モーター収容部32A、ばね掛け部32Bおよび軸受部32Cを備える。モーター収容部32Aは、走行用モーター31を収容する。ばね掛け部32Bは、サスペンションばね36の一方の端部が掛けられる。軸受部32Cは、支持軸35が圧入される。ホイール33は、ハウジング32に対して回転できるようにハウジング32により支持される。
 支持軸35の一方の端部は、軸受部32Cに圧入され、他方の端部は駆動用パート120に形成される軸受部に挿入される。これらの要素の結合により、ハウジング32および支持軸35が、支持軸35の回転軸まわりで駆動用パート120に対して回転できる。
 サスペンションばね36の他方の端部は、図21に示すように、駆動用パート120のばね掛け部122に掛けられる。サスペンションばね36は、タイヤ34(図16参照)を対象領域の清掃面に押し付ける方向に作用する反力をハウジング32に与える。これにより、タイヤ34が清掃面に接地した状態を維持する。
 一方、図16に示すタイヤ34に、ボディ20側に押し上げる力が清掃面から加わると、ハウジング32が支持軸35の中心線まわりでサスペンションばね36(図21参照)を圧縮しながら清掃面側からボディ20側に回転する。これにより、被清掃面の状況に応じてタイヤ34に働く力が、サスペンションばね36により吸収される。
 また、ホイール33が脱輪した場合、サスペンションばね36の反力によりハウジング32が駆動用パート120に対して回転する。ハウジング32の回転に伴って、ばね掛け部32Bが脱輪検出スイッチ75を押し込む。これにより、図21に示す脱輪検出スイッチ75がオンして、制御ユニット70に信号を出力する。制御ユニット70は、出力された信号に基づいて、自律走行型掃除機10の走行を停止する。その結果、自律走行型掃除機10の空回り動作などの不自然な動作を防止できる。
 また、自律走行型掃除機10は、図21から図24に示すように、上述した複数の、床面検出センサー74、障害物検出センサー71、距離測定センサー72および衝突検出センサー73などを備える。床面検出センサー74は、例えば一対の駆動ユニット30よりもボディ20の前方側に配置される3つの床面検出センサー74、および一対の駆動ユニット30よりもボディ20の後方側に配置される2つの床面検出センサー74などで構成される。
 前方側の床面検出センサー74は、例えばベース110の前方の中央、ベース110の右側の前方頂部23およびベース110の左側の前方頂部23などの3箇所に取り付けられる。後方側の床面検出センサー74は、図19に示すように、ベース110の右側の側面22近傍、およびベース110の左側の側面22近傍の2箇所に取り付けられる。
 ベース110は、図13に示すように、上記複数の床面検出センサー74に対応して、複数のセンサー窓112を備える。センサー窓112は、上記前方中央、前方右側および前方左側の床面検出センサー74に対応する3つのセンサー窓112を含む。さらに、センサー窓112は、後方右側および後方左側の床面検出センサー74に対応する2つのセンサー窓112を含む。
 障害物検出センサー71は、超音波を出力する発信部71Aおよび反射された超音波を受信する受信部71Bを備える。発信部71Aおよび受信部71Bは、それぞれバンパー230の裏面(ボディ20内面側)に取り付けられる。
 アッパーユニット200は、カバー210、蓋220およびバンパー230に加えて、複数の窓を備える。複数の窓は、例えば図10に示す発信用窓232、受信用窓233および一対の距離測定用窓234などを含む。
 発信用窓232は、図19に示すように、障害物検出センサー71の発信部71Aに対応してバンパー230に形成される。これにより、発信部71Aから出力される超音波は、発信用窓232により外部に案内され、外部に放射される。
 受信用窓233は、障害物検出センサー71の受信部71Bに対応してバンパー230に形成される。これにより、発信部71Aから出力され、周囲の物体から反射された超音波が、受信用窓233により受信部71Bに案内される。その結果、周囲の物体が検知される。
 距離測定用窓234は、それぞれの距離測定センサー72に対応してバンパー230に形成される。距離測定センサー72から出力される光は、図19の破線矢印で示すように、距離測定用窓234を通過してボディ20の斜め前方に放射される。
 以上のように、本実施の形態の自律走行型掃除機10が構成されている。
 以下に、本実施の形態における自律走行型掃除機の電気系の構成について、図26を参照しながら説明する。
 図26は、図10の自律走行型掃除機における電気系の構成を示す機能ブロック図である。
 制御ユニット70は、図26に示すように、障害物検出センサー71、距離測定センサー72、衝突検出センサー73、床面検出センサー74、脱輪検出スイッチ75およびごみ検出センサー300などと電気的に接続される。さらに、制御ユニット70は、受光部212、操作ボタン242、一対の走行用モーター31、ブラシ駆動モーター41および電動ファン51などと電気的に接続される。なお、ごみ検出センサー300は、図17に示すように、ダクト171の通路内に配置される。
 つぎに、本実施の形態の自律走行型掃除機10の動作について、具体的に、説明する。
 まず、使用者が操作ボタン242を操作して、自律走行型掃除機10の電源をオンする。制御ユニット70は、電源のオン信号に基づいて、走行用モーター31、ブラシ駆動モーター41および電動ファン51の動作を開始させる。
 電動ファン51の駆動により、図17に示すごみ箱61の内部の空気が電動ファン51に吸い込まれる。同時に、電動ファン51の内部の空気が電動ファン51の周囲に吐出される。これにより、ベース110の底面側の空気が、吸込口101およびダクト171を介して、ごみ箱61の内部に吸い込まれる。そして、ファンケース52の内部の空気が、図10に示す複数の排気口211を介して、ボディ20の外部に排気される。つまり、図17に示すベース110の底部の空気は、吸込口101、ダクト171、ごみ箱61、フィルター62、電動ファン51、ファンケース52、ボディ20内のファンケース52の周囲の空間および排気口211の順に流れて、外部に排出される。
 つぎに、制御ユニット70は、障害物検出センサー71、距離測定センサー72、衝突検出センサー73、床面検出センサー74から入力される検出信号に基づいて、自律走行型掃除機10の走行ルートを設定する。
 つぎに、制御ユニット70は、設定された走行ルートに従って、自律走行型掃除機10を走行させる。
 つぎに、制御ユニット70は、走行ルートに対象領域の角R3が含まれるとき、実施の形態1の自律走行型掃除機10と同様に、以下のように動作して、掃除を実行する。つまり、図5から図7を用いて説明したように、制御ユニット70は、自律走行型掃除機10を走行および旋回させて、角R3を清掃する。これにより、対象領域の角R3に存在するごみを、効率的に、より確実に吸引して掃除できる。
 つまり、本実施の形態の自律走行型掃除機10によれば、実施の形態2の自律走行型掃除機10により得られる(1)~(10)の効果に加えて、例えば、さらに以下の効果が得られる。
 (11)本実施の形態の自律走行型掃除機10は、R形状の右側の前方頂部23、左側の前方頂部23および後方頂部24を備える。この構成によれば、ボディ20が周囲の物体に接触して旋回するとき、その物体に対してソフトに接触することができる。これにより、周囲の物体の傷つきや、自律走行型掃除機10の破損などの発生を未然に防止できる。
 (実施の形態4)
 以下に、本実施の形態4における自律走行型掃除機の制御動作について、図27を参照しながら説明する。なお、実施の形態4の自律走行型掃除機10の構成は、実施の形態3の自律走行型掃除機10と実質的に同じ構成を備える。そのため、実施の形態4の説明において実施の形態3と同じ符号が付された要素は、実施の形態3の対応する要素と同様または類似の機能を備える。
 図27は、本実施の形態4の自律走行型掃除機の第1の角掃除制御に関するフローチャートを示す。
 図27に示すように、制御ユニット70は、つぎのように第1の角掃除制御を実行する。
 まず、制御ユニット70は、ごみ検出センサー300を駆動する(ステップS1)。なお、ごみ検出センサー300の駆動は、例えば自律走行型掃除機10が掃除または移動を開始した時点で開始される。
 つぎに、制御ユニット70は、角検出部により対象領域に角が検出されたか否かを判定する(ステップS2)。なお、角は、例えば図5から図7に示す角R3に相当する。
 このとき、角が検出されていないと判定された場合(ステップS2のNO)、ステップS2の処理を繰り返し実行する。なお、角が検出されていないと判定された場合、第1の角掃除制御を終了してもよい。
 一方、角が検出されたと判定された場合(ステップS2のYES)、ステップS3に移行し、角の掃除を開始する。
 上記判定は、例えば障害物検出センサー71および距離測定センサー72などの角検出部を用いて実行される。具体的には、制御ユニット70は、障害物検出センサー71で前方の壁の存在の有無を検出する。同時に、右側の距離測定センサー72または左側の距離測定センサー72で壁の存在の有無を検出する。そして、壁の存在が検出された場合、制御ユニット70は、自律走行型掃除機10が角に近づいたと判定する。
 より具体的には、障害物検出センサー71は、発信用窓232から超音波を前方の周囲に放射する。前方の周囲に物体が存在すると、物体から反射された超音波が受信用窓233に入る。受信用窓233に入射した超音波は、障害物検出センサー71の受信部71Bで受信される。これにより、制御ユニット70は、受信した結果に基づいて、前方に障害物の一例である壁があるか否かを判定する。
 同時に、距離測定センサー72は、例えば赤外線などの光を、距離測定用窓234を通して外部に放射する。このとき、周囲に、壁などの物体が存在すると、光は壁で反射される。反射された光は、距離測定センサー72で受光される。これにより、制御ユニット70は、右側の距離測定センサー72または左側の距離測定センサー72により、壁が近くに存在するか否かを判定する。
 以上により、制御ユニット70は、角検出部の検知結果に基づいて、角を検出したか否かを判定する。
 つぎに、制御ユニット70は、自律走行型掃除機10により角の掃除を開始する(ステップS3)。このとき、例えば自律走行型掃除機10が前方または後方に移動せずに停止した状態で、ボディ20が往復運動するようにボディ20を左右に振らせる動作を実行させる。これにより、角が掃除される。
 つまり、制御ユニット70は、例えば右側の走行用モーター31と左側の走行用モーター31を制御する。具体的には、右側のタイヤ34を前進させると共に、左側のタイヤ34を後退させる。続いて、左側のタイヤ34を前進させると共に右側のタイヤ34を後退させる。そして、以上の動作を繰り返す。これにより、自律走行型掃除機10のボディ20を左右に振らせるような動作を実現して、角を掃除する。
 このとき、ステップS3において、最初に、角にごみがあるか否かを検出する必要がある。そのため、例えばボディ20を左右に揺らす動作を1往復または2、3往復までとしてもよい。上記の1往復の表現は、ボディ20が静止した状態から一方の壁に当たり、続いて他方の壁に当たり、ボディ20が静止した状態に戻るまでの一連の動作を意味している。なお、一方の壁から他方の壁に当たり、また一方の壁に当たるまでを1往復としてもよい。いずれにしても、ボディ20が所定の位置から所定の位置まで戻ることを1往復としている。そのため、上記の状態を実現する動作であればよく、上述の定義に限定されないことはいうまでもない。
 つぎに、制御ユニット70は、ごみ検出センサー300により、ごみの検出が無いか否かを判定する(ステップS4)。このとき、ごみの検出が無いと判定された場合(ステップS4のYES)、ステップS6に移行する。
 一方、ごみの検出があると判定された場合(ステップS4のNO)、ステップS5に移行する。なお、制御ユニット70は、ステップS3の実行時に、上述したようにステップS4を実行して、ごみ有無を判断しているものとする。
 そして、制御ユニット70は、ステップS3での角の掃除を継続して行い(ステップS5)、ステップS4へ処理を戻す。
 つぎに、制御ユニット70は、ごみがなくなると、角の掃除を停止する(ステップS6)。これにより、制御ユニット70は、自律走行型掃除機10の第1の角掃除制御を終了する。
 このとき、ステップS6の終了後に、ステップS2へ処理を戻し、掃除が終了するまで、つぎの角を検出する処理を実行してもよい。
 つまり、実施の形態4の第1の角掃除制御では、ごみ検出センサー300がごみを検出しなくなるまで、すなわち角にごみがなくなるまで、自律走行型掃除機10のボディ20を左右に振りながら掃除を行う。これにより、角に溜まったごみが綺麗になるまで、自動的に掃除を行うことができる。
 (実施の形態5)
 以下に、本実施の形態5における自律走行型掃除機の制御動作について、図28を参照しながら説明する。なお、実施の形態5の自律走行型掃除機10の構成は、実施の形態3の自律走行型掃除機10と実質的に同じ構成を備える。そのため、実施の形態5の説明において実施の形態3と同じ符号が付された要素は、実施の形態3の対応する要素と同様または類似の機能を備える。
 図28は、本実施の形態5の自律走行型掃除機10により実行される第2の角掃除制御に関するフローチャートを示す。
 図28に示すように、制御ユニット70は、実施の形態4で説明した第1の角掃除制御に代えて、つぎのように第2の角掃除制御を実行する。
 まず、制御ユニット70は、ごみ検出センサー300を駆動する(ステップS10)。なお、ごみ検出センサー300の駆動は、例えば自律走行型掃除機10が掃除または移動を開始した時点で開始される。
 つぎに、制御ユニット70は、角検出部により対象領域に角が検出されたか否かを判定する(ステップS11)。このとき、角が検出されていないと判定された場合(ステップS11のNO)、ステップS11の処理を繰り返し実行する。なお、角が検出されていないと判定された場合、第2の角掃除制御を終了してもよい。
 一方、角が検出されたと判定された場合(ステップS11のYES)、ステップS12に移行する。なお、ステップS11において、制御ユニット70は、図27に示すステップS2と実質的に同じ処理を実行する。
 つぎに、制御ユニット70は、ボディ20を左右に振らせる往復の回数である掃除回数を、例えば5回に設定し、設定した情報を制御ユニット70の記憶部(図示せず)に格納する(ステップS12)。なお、掃除回数は5回に限らず、設計者またはユーザーが自由に設定してもよい。掃除回数とは、左右の1往復動作が1回に相当する。
 つぎに、制御ユニット70は、自律走行型掃除機10により角の掃除を開始する(ステップS13)。このとき、例えば自律走行型掃除機10が前方または後方に移動せずに停止した状態で、ボディ20が往復運動するようにボディ20を左右に振らせる動作を実行させる。これにより、角が掃除される。なお、ステップS13において、制御ユニット70は、図27に示すステップS3と実質的に同じ処理を実行する。
 つぎに、制御ユニット70は、ボディ20を左右に振らせる動作である角の掃除を1回実行する(ステップS14)。
 そして、制御ユニット70は、ステップS12で記憶部に格納した掃除回数を1つ減算する(ステップS15)。
 つぎに、制御ユニット70は、ごみ検出センサー300により、ごみの検出が無いか否かを判定する(ステップS16)。このとき、ごみの検出が無いと判定された場合(ステップS16のYES)、ステップS18に移行する。
 一方、ごみの検出があると判定された場合(ステップS16のNO)、ステップS17に移行する。
 そして、制御ユニット70は、記憶部に格納した掃除回数が0であるか否かを判定する(ステップS17)。このとき、掃除回数が0でない場合(ステップS17のNO)、ステップS14の処理へ戻り、ステップS14以降の処理を、同様に実行する。
 一方、掃除回数が0である場合(ステップS17のYES)、ステップS18に移行する。
 そして、制御ユニット70は、ごみが無いか無くなった場合、および所定の掃除回数が終了すると、ステップS13で開始した角の掃除を停止する(ステップS18)。これにより、制御ユニット70は、自律走行型掃除機10の第2の角掃除制御を終了する。
 このとき、ステップS18の終了後に、ステップS11に処理を戻し、掃除が終了するまで、つぎの角を検出する処理を実行してもよい。
 つまり、実施の形態5の第2の角掃除制御では、制御ユニット70が角を検出したと判定した場合、所定回数、ボディ20を左右に振らせて掃除を行う。
 そして、ごみ検出センサー300がごみを検出しなくなると、所定回数、ボディ20を左右に振る前でも角の掃除を終了する(ステップS16のYESに相当)。
 一方、ごみ検出センサー300がごみを検出している場合でも、所定回数、ボディ20を左右に振る動作が終了すれば、角の掃除を終了する(ステップS17のYESに相当)。
 これにより、角にあるごみが少ない場合、ごみがなくなると即座に角の掃除を停止する。一方、角にあるごみが多い場合、ごみ検出センサー300がごみを検出していても、所定回数、ボディ20を左右に振れば角の掃除を終了する。
 つまり、実施の形態5の第2の角掃除制御は、角にあるごみの量が多い場合、徹底的に掃除を行わず、ある程度掃除を行えば、つぎの場所の掃除を実行する。そのため、使用者が徹底的に角を掃除するよりも、掃除にかかる時間を優先する場合の制御動作として有効である。
 (実施の形態6)
 以下に、本実施の形態6における自律走行型掃除機の制御動作について、図29を参照しながら説明する。なお、実施の形態6の自律走行型掃除機10の構成は、実施の形態3の自律走行型掃除機10と実質的に同じ構成を備える。そのため、実施の形態6の説明において実施の形態3と同じ符号が付された要素は、実施の形態3の対応する要素と同様または類似の機能を備える。
 図29は、本実施の形態6の自律走行型掃除機10により実行される第3の角掃除制御に関するフローチャートを示す。
 図29に示すように、制御ユニット70は、実施の形態4で説明した第1の角掃除制御、および実施の形態5で説明した第2の角掃除制御に代えて、つぎのように第3の角掃除制御を実行する。
 まず、制御ユニット70は、ごみ検出センサー300を駆動する(ステップS20)。なお、ごみ検出センサー300の駆動は、例えば自律走行型掃除機10が掃除または移動を開始した時点で開始される。
 つぎに、制御ユニット70は、角検出部により対象領域に角が検出されたか否かを判定する(ステップS21)。このとき、角が検出されていないと判定された場合(ステップS21のNO)、ステップS21の処理を繰り返し実行する。なお、角が検出されていないと判定された場合、第3の角掃除制御を終了してもよい。
 一方、角が検出されたと判定された場合(ステップS21のYES)、ステップS22に移行する。なお、ステップS21において、制御ユニット70は、図27に示すステップS2と実質的に同じ処理を実行する。
 つぎに、制御ユニット70は、自律走行型掃除機10により角の掃除を開始する(ステップS22)。このとき、例えば自律走行型掃除機10が前方または後方に移動せずに停止した状態で、ボディ20が往復運動するようにボディ20を左右に振らせる動作を実行させる。これにより、角が掃除される。なお、ステップS22において、制御ユニット70は、図27に示すステップS3と実質的に同じ処理を実行する。
 つぎに、制御ユニット70は、ごみ検出センサー300により、ごみの検出が無いか否かを判定する(ステップS23)。このとき、ごみの検出が無いと判定された場合(ステップS23のYES)、ステップS32に移行する。
 一方、ごみの検出があると判定された場合(ステップS23のNO)、ステップS24に移行する。
 そして、制御ユニット70は、ごみ検出センサー300で検出したごみの量が大であるか否かを判定する(ステップS24)。このとき、ごみの量が大である場合(ステップS24のYES)、ステップS25に移行する。一方、ごみの量が大でない場合(ステップS24のNO)、ステップS26に移行する。
 なお、第3の角掃除制御では、ごみ検出センサー300により、例えば単位時間あたりに検出するごみの量に応じて、大、中、小の判定基準を予め設定しているが、これに限られない。例えば、大、中、小に対応するごみの量を、設計者または使用者が適宜変更してもよい。
 つぎに、制御ユニット70は、ごみの量が大である場合、ボディ20を左右に振らせる往復の回数である掃除回数を、例えば8回に設定し、設定した情報を制御ユニット70の記憶部(図示せず)に格納する(ステップS25)。なお、掃除回数は8回に限らず、設計者またはユーザーが自由に設定してもよい。
 一方、制御ユニット70は、ごみの量が大でない場合、ごみ検出センサー300で検出したごみの量が中であるか否かを判定する(ステップS26)。このとき、ごみの量が中である場合(ステップS26のYES)、ステップS27に移行する。一方、ごみの量が中でない場合(ステップS26のNO)、ステップS28に移行する。なお、ごみの量が中でない場合は、ごみの量が小であると判定する。
 つぎに、制御ユニット70は、ごみの量が中である場合、掃除回数を、例えば5回に設定し、設定した情報を制御ユニット70の記憶部に格納する(ステップS27)。なお、掃除回数は5回に限らず、設計者またはユーザーが自由に設定してもよい。
 つぎに、制御ユニット70は、ごみの量が中でない場合、掃除回数を、例えば2回に設定し、設定した情報を制御ユニット70の記憶部に格納する(ステップS28)。なお、掃除回数は2回に限らず、設計者またはユーザーが自由に設定してもよい。
 上記ステップにより、制御ユニット70は、ごみの量の大、中、小に応じて、掃除回数を設定して、ステップS29に移行する。
 つぎに、制御ユニット70は、ボディ20を左右に振らせる動作である角の掃除を1回実行し(ステップS29)、ステップS30に移行する。そして、制御ユニット70は、ステップS25、ステップS27、またはステップS28で記憶部に格納した掃除回数を1つ減算し(ステップS30)、ステップS31に移行する。
 つぎに、制御ユニット70は、ステップS25、ステップS27、またはステップS28で記憶部に格納した掃除回数が0であるか否かを判定する(ステップS31)。このとき、掃除回数が0でない場合(ステップS31のNO)、ステップS29へ処理を戻す。
 一方、掃除回数が0である場合(ステップS31のYES)、ステップS32に移行する。
 そして、制御ユニット70は、ごみの検出が無いか、ごみの量に応じて設定した掃除回数が終了すると、ステップS22から開始した角の掃除を停止する(ステップS32)。これにより、制御ユニット70は、自律走行型掃除機10の第3の角掃除制御を終了する。
 このとき、ステップS32の終了後に、ステップS21に処理を戻し、掃除が終了するまで、つぎの角を検出する処理を実行してもよい。
 つまり、実施の形態6の第3の角掃除制御では、角を掃除する際に、ごみ検出センサー300により検出されたごみの量に応じて、ボディ20を左右に振る回数を設定する。
 そして、設定した回数だけボディ20を左右に振って角を掃除するように制御する。
 これにより、ごみの量が多ければ角を念入りに掃除し、少なければ簡単に掃除する動作を実現できる。
 (実施の形態7)
 以下に、本実施の形態7における自律走行型掃除機の制御動作について、図30を参照しながら説明する。なお、実施の形態7の自律走行型掃除機10の構成は、実施の形態3の自律走行型掃除機10と実質的に同じ構成を備える。そのため、実施の形態7の説明において実施の形態3と同じ符号が付された要素は、実施の形態3の対応する要素と同様または類似の機能を備える。
 図30は、本実施の形態7の自律走行型掃除機10により実行される第4の角掃除制御に関するフローチャートを示す。
 図30に示すように、制御ユニット70は、実施の形態4から実施の形態6に示す第1から第3の角掃除制御に代えて、つぎのように第4の角掃除制御を実行する。
 まず、制御ユニット70は、対象領域における掃除を開始する(ステップS40)。
 つぎに、制御ユニット70は、所定の条件が成立したか否かを判定する(ステップS41)。所定の条件とは、第1の条件としては、例えば距離測定センサー72により検出された値が所定の値以下である状態が所定時間以上継続する場合である。第2の条件としては、障害物検出センサー71により障害物が検出された場合である。そして、第1の条件と第2の条件が成立した場合、制御ユニット70は所定の条件が成立したと判定して、以降の制御を実行する。
 つまり、所定の条件が成立していないと判定された場合(ステップS41のNO)、ステップS41の処理を繰り返し実行する。
 一方、所定の条件が成立したと判定された場合(ステップS41のYES)、ステップS42に移行する。なお、所定の条件の成立は、ボディ20が対象領域の角に移動したことを示唆する。
 つぎに、制御ユニット70は、障害物検出センサー71により障害物が検出されたか否かを判定する(ステップS42)。
 このとき、障害物が検出されたと判定された場合(ステップS42のYES)、ステップS43に移行する。
 一方、障害物を検出していないと判定された場合(ステップS42のNO)、ステップS44に移行する。なお、ステップS42において、障害物が検出されない場合とは、例えばステップS41において障害物が検出された後に、検出した障害物が取り除かれた場合などが考えられる。
 つぎに、制御ユニット70は、障害物を検出した場合、ボディ20に第1の走行を開始させる(ステップS43)。第1の走行とは、例えば一方のタイヤ34と他方のタイヤ34とが互いに反対の方向に回転する動作である。これは、ボディ20を旋回させる走行に相当する。この場合、ボディ20が角で旋回することにより、角を掃除しやすくなる。なお、ステップS43では、衝突検出センサー73がボディ20と物体との衝突を検出しても、ボディ20の第1の走行動作は継続して実行される。
 つぎに、制御ユニット70は、障害物を検出しない場合、ボディ20に第2の走行を開始させる(ステップS44)。第2の走行とは、例えば一方のタイヤ34と他方のタイヤ34を、同じ方向に回転する動作である。これは、ボディ20を前進または後退させる走行に相当する。
 そして、制御ユニット70は、ボディ20の所定の走行動作が終了すると、対象領域における掃除を停止する(ステップS45)。これにより、制御ユニット70は、自律走行型掃除機10の第4の角掃除制御を終了する。なお、対象領域における掃除が完了するまで、第4の角掃除制御を繰り返し実行してもよい。
 つまり、実施の形態7の自律走行型掃除機10の制御動作によれば、実施の形態3の自律走行型掃除機10により得られる(1)~(11)の効果に加えて、例えば以下の効果が得られる。
 (12)本実施の形態の自律走行型掃除機10によれば、障害物検出センサー71および距離測定センサー72などからなる角検出部により、ボディ20と障害物とが接触する前に、角が検出される。そのため、ボディ20を旋回させて角を掃除する場合、ボディ20と障害物とが接触しにくい。
 (13)本実施の形態の自律走行型掃除機10によれば、障害物検出センサー71により、例えば障害物が検出された後に、障害物が取り除かれた場合、その障害物が配置されていた領域を迂回せずにボディ20を前進または後退させる。そのため、障害物が配置されていた領域も掃除できる。
 (14)本実施の形態の自律走行型掃除機10によれば、ボディ20を旋回している場合、ボディ20と物体とが衝突してもボディ20の旋回を継続する。そのため、ボディ20と物体とが接触すると掃除を中止する場合と比較して、角を十分に掃除できる。
 (実施の形態8)
 以下に、本実施の形態8における自律走行型掃除機の制御動作について、図31を参照しながら説明する。なお、実施の形態8の自律走行型掃除機10の構成は、実施の形態3の自律走行型掃除機10と実質的に同じ構成を備える。そのため、実施の形態8の説明において実施の形態3と同じ符号が付された要素は、実施の形態3の対応する要素と同様または類似の機能を備える。
 図31は、本実施の形態8の自律走行型掃除機10により実行される第1の脱出制御に関するフローチャートを示す。
 図31に示すように、制御ユニット70は、つぎのように第1の脱出制御を実行する。
 まず、制御ユニット70は、対象領域における掃除を開始する(ステップS50)。
 つぎに、制御ユニット70は、第1の条件が成立したか否かを判定する(ステップS51)。第1の条件は、実施の形態7で図30を用いて説明したステップS41の所定の条件と、実質的に同じ条件である。
 このとき、第1の条件が成立していないと判定された場合(ステップS51のNO)、ステップS51の処理を繰り返し実行する。
 一方、第1の条件が成立したと判定された場合(ステップS51のYES)、ステップS52に移行する。なお、第1の条件の成立は、ボディ20が対象領域の角に移動したことを示唆する。
 そして、制御ユニット70は、ボディ20に第1の走行を開始させる(ステップS52)。第1の走行とは、実施の形態7で図30を用いて説明したステップS43の第1の走行と、実質的に同じ走行である。この場合、ボディ20が角で旋回することにより、角を掃除しやすくなる。
 つぎに、制御ユニット70は、第2の条件が成立したか否かを判定する(ステップS53)。第2の条件とは、例えば障害物検出センサー71により障害物が検出されない状態で、衝突検出センサー73によりボディ20と物体との衝突が検出されない場合である。そして、第2の条件の判定結果に基づいて、制御ユニット70は以降の制御を実行する。
 このとき、第2の条件が成立していないと判定された場合(ステップS53のNO)、ステップS54に移行する。なお、第2の条件の不成立は、例えばボディ20が角に嵌まり込んだことを示唆する。
 一方、第2の条件が成立したと判定された場合(ステップS53のYES)、ステップS55に移行する。
 そして、制御ユニット70は、第2の条件が成立していない場合、ボディ20に反復動作を開始させる(ステップS54)。反復動作とは、まず、例えばボディ20と物体との接触部分に近い側の一方のタイヤ34を停止し、他方のタイヤ34を後退させる。そして、他方のタイヤ34の後退にともないボディ20が物体の別の部分または別の物体とさらに衝突した場合、他方のタイヤ34を停止させ、一方のタイヤ34を前進させる。さらに、一方のタイヤ34の前進にともないボディ20が物体の別の部分または別の物体とさらに衝突した場合、一方のタイヤ34を停止させ、他方のタイヤ34を後退させる動作である。つまり、上記動作を繰り返すことにより、ボディ20に反復動作を実行させる。
 なお、制御ユニット70は、ステップS54におけるボディ20の反復動作の途中、例えば一方のタイヤ34を停止し、他方のタイヤ34を後退させる動作をスタートさせて所定時間(例えば2秒)が経過した時に、ステップS53の処理を実行する。そして、ステップS53で第2の条件が成立するまで、ステップS54におけるボディ20は反復動作を継続し続ける。
 つぎに、制御ユニット70は、第2の条件が成立した場合、ボディ20に第2の走行を開始させる(ステップS55)。第2の走行とは、実施の形態7で図30を用いて説明したステップS44の第2の走行と、実質的に同じ走行である。具体的には、第2の走行は、ボディ20を前進させる走行である。これにより、角に嵌まり込んだボディ20を角から脱出させる。
 そして、制御ユニット70は、ボディ20が角から脱出すると、対象領域における掃除を停止する(ステップS56)。これにより、制御ユニット70は、自律走行型掃除機10の第1の脱出制御を終了する。なお、対象領域における掃除が完了するまで、第1の脱出制御を繰り返し実行してもよい。
 つまり、実施の形態8の自律走行型掃除機10の制御動作によれば、実施の形態3の自律走行型掃除機10により得られる(1)~(11)の効果に加えて、例えば以下の効果が得られる。
 (15)本実施の形態の自律走行型掃除機10によれば、角を掃除するときにボディ20が角に嵌まり込んだ場合、第1の脱出制御を実行する。このとき、ボディ20の反復動作の実行により、角に対するボディ20の角度(相対的な位置)が徐々に変化する。そのため、ボディ20が角に嵌まり込んでも、ボディ20を方向転換させて、容易に角から脱出することができる。
 (実施の形態9)
 以下に、本実施の形態9における自律走行型掃除機の制御動作について、図32を参照しながら説明する。なお、実施の形態9の自律走行型掃除機10の構成は、実施の形態3の自律走行型掃除機10と実質的に同じ構成を備える。そのため、実施の形態9の説明において実施の形態3と同じ符号が付された要素は、実施の形態3の対応する要素と同様または類似の機能を備える。
 図32は、本実施の形態9の自律走行型掃除機10により実行される第2の脱出制御に関するフローチャートを示す。
 図32に示すように、制御ユニット70は実施の形態8に示す第1の脱出制御に代えて、つぎのように第2の脱出制御を実行する。
 まず、制御ユニット70は、対象領域における掃除を開始する(ステップS60)。
 つぎに、制御ユニット70は、所定時間におけるボディ20の移動範囲が、所定の値を下回ったか否かを判定する(ステップS61)。ボディ20の移動範囲は、例えばホイール33に取り付けられる回転センサー(図示せず)で検出するホイール33の回転数と、ボディ20の内部に配置されるジャイロセンサー(図示せず)で検出するボディ20の走行方向により演算される。
 このとき、ボディ20の移動範囲が所定の値を下回っていないと判定された場合(ステップS61のNO)、ステップS61の処理を繰り返し実行する。
 一方、ボディ20の移動範囲が所定の値を下回っていると判定された場合(ステップS61のYES)、ステップS62に移行する。なお、所定時間におけるボディ20の移動範囲が所定の値を下回った場合、ボディ20が対象領域の角に移動したことを示唆する。
 そして、制御ユニット70は、ボディ20に第1の走行を開始させる(ステップS62)。第1の走行とは、実施の形態7で図30を用いて説明したステップS43の第1の走行と、実質的に同じ走行である。この場合、ボディ20が角で旋回することにより、角を掃除しやすくなる。
 つぎに、制御ユニット70は、所定の条件が成立したか否かを判定する(ステップS63)。所定の条件は、実施の形態7で図30を用いて説明したステップS41の所定の条件と、実質的に同じ条件である。
 このとき、所定の条件が成立していないと判定された場合(ステップS63のNO)、ステップS63の処理を繰り返し実行する。
 一方、所定の条件が成立したと判定された場合(ステップS63のYES)、ステップS64に移行する。なお、所定の条件が成立した場合、ボディ20は、角に対して脱出可能な方向を向いた状態になる。
 そして、制御ユニット70は、所定の条件が成立した場合、角に対して脱出可能な方向を向いた状態で、ボディ20に第2の走行を開始させる(ステップS64)。第2の走行とは、実施の形態7で図30を用いて説明したステップS44の第2の走行と、実質的に同じ走行である。これは、ボディ20を前進させる走行に相当する。これにより、角に嵌まり込んだボディ20を角から脱出させる。
 つぎに、制御ユニット70は、ボディ20が角から脱出すると、対象領域における掃除を停止する(ステップS65)。これにより、制御ユニット70は、自律走行型掃除機10の第2の脱出制御を終了する。なお、対象領域における掃除が完了するまで、第2の脱出制御を繰り返し実行してもよい。
 つまり、実施の形態9の自律走行型掃除機10の制御動作によれば、実施の形態3の自律走行型掃除機10により得られる(1)~(11)の効果に加えて、例えば以下の効果が得られる。
 (16)本実施の形態の自律走行型掃除機10によれば、所定時間におけるボディ20の移動範囲から、角などに嵌まり込んだことを検出する。そして、例えばボディ20が角に嵌まり込んだ場合、障害物検出センサー71および距離測定センサー72により、角から脱出可能な方向にボディ20を走行させる。これにより、脱出の過程において、ボディ20と物体とが接触しにくい。
 (実施の形態10)
 以下に、本実施の形態10における自律走行型掃除機の制御動作について、図33を参照しながら説明する。なお、実施の形態10の自律走行型掃除機10の構成は、実施の形態3の自律走行型掃除機10と実質的に同じ構成を備える。そのため、実施の形態10の説明において実施の形態3と同じ符号が付された要素は、実施の形態3の対応する要素と同様または類似の機能を備える。
 なお、実施の形態10の自律走行型掃除機10は、図示しない第1の回転センサーと第2の回転センサーを、さらに備える。第1の回転センサーは、ホイール33に取り付けられ、ホイール33の回転数を検出する。第2の回転センサーは、キャスター90に取り付けられ、キャスター90の回転数を検出する。
 図33は、本実施の形態10の自律走行型掃除機10により実行される段差制御に関するフローチャートを示す。
 図33に示すように、制御ユニット70は、つぎのように段差制御を実行する。
 まず、制御ユニット70は、対象領域における掃除を開始する(ステップS70)。
 つぎに、制御ユニット70は、第1の回転センサーで検出するホイール33の回転数と、第2の回転センサーで検出するキャスター90の回転数とが一致するか否かを判定する(ステップS71)。
 このとき、ホイール33の回転数と、キャスター90の回転数が一致すると判定された場合(ステップS71のYES)、ステップS75に移行する。
 一方、ホイール33の回転数と、キャスター90の回転数が一致しないと判定された場合(ステップS71のNO)、ステップS72に移行する。なお、ホイール33の回転数と、キャスター90の回転数とが一致しない場合は、ホイール33またはキャスター90が段差などによりスリップした状態が示唆される。
 そこで、制御ユニット70は、ボディ20の進行方向を変更する(ステップS72)。具体的には、ステップS71におけるボディ20の進行方向に対して、斜行するようにボディ20の進行方向を変更する。これにより、例えばスリップが生じやすい段差などに対して、ボディ20を斜めから進入させることができる。その結果、ボディ20が段差を乗り越えやすくなる。
 つぎに、制御ユニット70は、第1の回転センサーで検出するホイール33の回転数と、第2の回転センサーで検出するキャスター90の回転数とが一致するか否かを判定する(ステップS73)。なお、ステップS73の処理は、ステップS71の処理と実質的に同じ処理である。
 このとき、ホイール33の回転数と、キャスター90の回転数が一致すると判定された場合(ステップS73のYES)、ステップS75に移行する。
 一方、ホイール33の回転数と、キャスター90の回転数が一致しないと判定された場合(ステップS73のNO)、ステップS74に移行する。
 そして、制御ユニット70は、回転数が一致しない場合、ボディ20の進行方向を、さらに変更する(ステップS74)。具体的には、ステップS71またはステップS72におけるボディ20の進行方向に対して、異なる、例えば反対の方向にボディ20の進行方向を変更する。これにより、例えばスリップが生じやすい段差などを、さらに乗り越えやすくなる。
 つぎに、制御ユニット70は、対象領域における掃除を停止する(ステップS75)。これにより、制御ユニット70は、自律走行型掃除機10の段差制御を終了する。なお、対象領域における掃除が完了するまで、段差制御を繰り返し実行してもよい。
 つまり、実施の形態10の自律走行型掃除機10の制御動作によれば、実施の形態3の自律走行型掃除機10により得られる(1)~(11)の効果に加えて、例えば以下の効果が得られる。
 (17)本実施の形態の自律走行型掃除機10によれば、第1の回転センサーおよび第2の回転センサーにより、例えば段差などを乗り越える際に、ホイール33またはキャスター90のスリップを検出する。そして、スリップが検出された場合、進行方向を変更して、段差に対してボディ20を、例えば斜めから進入させる。これにより、段差に対して直進する場合と比較して、段差を乗り越えやすくなる。
 (18)本実施の形態の自律走行型掃除機10によれば、例えば段差に対してボディ20を斜めから進入させてもスリップした状態が継続される場合、ボディ20を段差に対して反対の方向に進行させる。これにより、段差を回避できる。その結果、さらに、ボディ20を段差に嵌まり込みにくくできる。
 (実施の形態11)
 以下に、本実施の形態11における自律走行型掃除機の制御動作について、図34を参照しながら説明する。なお、実施の形態11の自律走行型掃除機10の構成は、実施の形態3の自律走行型掃除機10と実質的に同じ構成を備える。そのため、実施の形態11の説明において実施の形態3と同じ符号が付された要素は、実施の形態3の対応する要素と同様または類似の機能を備える。
 図34は、本実施の形態11の自律走行型掃除機10により実行される指定領域掃除制御に関するフローチャートを示す。
 図34に示すように、制御ユニット70は、つぎのように指定領域掃除制御を実行する。
 まず、制御ユニット70は、ボディ20の移動経路における1つまたは複数の目標地点を登録する(ステップS80)。本実施の形態では、制御ユニット70は、例えばボディ20の移動経路における複数の目標地点を、記憶部などに登録する。
 具体的には、制御ユニット70は、リモートコントローラーから出力される信号に基づいて、基準位置に対する距離および角度をボディ20の移動経路における目標地点ごとに記憶する。上記基準位置は、スタート地点である充電台の位置、または1つ前の目標地点である。これにより、制御ユニット70は、ユーザーが指定する掃除領域を記憶できる。
 つぎに、制御ユニット70は、受光部212でリモートコントローラーからの移動命令に関する情報を受光する(ステップS81)。これにより、制御ユニット70は、登録した複数の目標地点に沿ってボディ20を移動させる。このとき、以下で説明するように、例えば障害物検出センサー71で移動経路上に障害物を検出した場合、制御ユニット70は移動経路から外れるようにボディ20を移動させる。そして、制御ユニット70は、障害物を回避した後、ボディ20を移動経路上に戻すように制御する。
 つまり、制御ユニット70は、障害物検出センサー71により目標地点に障害物が検出されたか否かを判定する(ステップS82)。このとき、目標地点に障害物が検出されたと判定された場合(ステップS82のYES)、ステップS83に移行する。
 そして、制御ユニット70は、ステップS82の処理で検出した障害物の位置と重複する位置に存在する目標地点が、最後の目標地点であるか否かを判定する(ステップS83)。なお、最後の目標地点は、ボディ20の移動経路における終点を示す目標地点である。このとき、最後の目標地点であると判定された場合(ステップS83のYES)、ステップS85に移行する。
 一方、最後の目標地点でないと判定された場合(ステップS83のNO)、ステップS84に移行する。
 そして、制御ユニット70は、障害物が存在する目標地点を通過せずに、つぎの目標地点に向かってボディ20を移動させる(ステップS84)。その後、制御ユニット70は、ボディ20を、つぎの目標地点に移動させた後、ステップS82に処理を戻す。
 つぎに、制御ユニット70は、障害物検出センサー71により障害物が最後の目標地点に存在することが検出された場合、実際に到達している地点である到達地点を掃除させる(ステップS85)。
 一方、目標地点に障害物が検出されないと判定された場合(ステップS82のNO)、ステップS86に移行する。そして、制御ユニット70は、目標地点を掃除させる(ステップS86)。
 つぎに、制御ユニット70は、ステップS86の処理で掃除された目標地点が最後の目標地点であるか否かを判定する(ステップS87)。このとき、最後の目標地点でないと判定された場合(ステップS87のNO)、ステップS82の処理に戻って、同様の処理を実行する。
 一方、最後の目標地点であると判定された場合(ステップS87のYES)、ステップS88に移行する。
 そして、制御ユニット70は、ボディ20に最後の目標地点を掃除させる(ステップS88)。これにより、複数の目標地点を順番に掃除することができる。
 つぎに、制御ユニット70は、最後の目標地点を掃除した後、ボディ20を、目標地点までの移動経路を遡るように逆走させる(ステップS89)。
 そして、制御ユニット70は、受光部212が充電台から出力される信号を受光したか否かを判定する(ステップS90)。このとき、受光部212が信号を受光していないと判定された場合(ステップS90のNO)、ステップS90の処理を繰り返し実行する。
 一方、受光部212が信号を受光したと判定された場合(ステップS90のYES)、ステップS91に移行する。
 この場合、制御ユニット70は、ボディ20を、逆走する移動経路から外す。そして、充電台から出力される信号に基づいて、自律走行型掃除機10を充電台に帰還させる(ステップS91)。これにより、制御ユニットは、自律走行型掃除機10の指定領域掃除制御を終了する。
 つまり、実施の形態11の自律走行型掃除機10の制御動作によれば、実施の形態3の自律走行型掃除機10により得られる(1)~(11)の効果に加えて、例えば以下の効果が得られる。
 (19)本実施の形態の自律走行型掃除機10によれば、予め掃除させる目標地点を記憶させる。これにより、対象領域のうち、使用者などが設定する任意の領域を掃除させることができる。そのため、自律走行型掃除機10により、効率の良い掃除を実行できる。
 (20)本実施の形態の自律走行型掃除機10によれば、1つの目標地点上に障害物が存在する場合、その目標地点を通過せずに、つぎの目標地点に向かってボディ20を移動させる。そのため、1つの目標地点を通過できない場合に掃除を終了する制御動作構成と比較して、対象領域のうちの任意の領域を掃除しやすい。
 (21)本実施の形態の自律走行型掃除機10によれば、例えば障害物などにより最後の目標地点に到達できなかった場合、実際に到達した地点を掃除する。そのため、最後の目標地点に到達できない場合に掃除を終了する場合と比較して、より広い領域を掃除できる。
 (22)本実施の形態の自律走行型掃除機10によれば、最後の目標地点に到達した後に充電台に帰還する場合、充電台から出力される信号を受光するまで移動経路を逆走させる。そのため、充電台に向かって適切な経路で帰還できる。
 (実施の形態12)
 以下に、本実施の形態12における自律走行型掃除機の制御動作について、図35を参照しながら説明する。なお、実施の形態12の自律走行型掃除機10の構成は、実施の形態3の自律走行型掃除機10と実質的に同じ構成を備える。そのため、実施の形態12の説明において実施の形態3と同じ符号が付された要素は、実施の形態3の対応する要素と同様または類似の機能を備える。
 図35は、本実施の形態12の自律走行型掃除機10により実行される往復掃除制御に関するフローチャートを示す。
 図35に示すように、制御ユニット70は、つぎのように往復掃除制御を実行する。
 まず、制御ユニット70は、対象領域内に基準点または基準線を設定する(ステップS100)。本実施の形態では、例えば制御ユニット70は対象領域内に基準点を設定する。
 つぎに、制御ユニット70は、ボディ20に往復走行を開始させる(ステップS101)。このとき、制御ユニット70は、ステップS100で設定した基準点から対象領域の外郭までの範囲を、ボディ20に往復走行をさせる。そして、制御ユニット70は、ボディ20に往復走行をさせるとともに、掃除を開始する。
 具体的には、制御ユニット70は、障害物検出センサー71により障害物が検出された場合、ボディ20を旋回させる。そして、基準点と障害物が検出された地点との距離を、ボディ20に往復走行させる。
 つぎに、制御ユニット70は、所定の条件が成立したか否かを判定する(ステップS102)。所定の条件とは、例えば往復走行における一方向の走行距離が所定の値を下回った場合などである。そして、制御ユニット70は、走行距離が所定の値を下回った場合、所定の条件が成立したと判定する。なお、走行距離は、例えばホイール33に取り付けられた回転センサー(図示せず)などにより検出される。
 このとき、所定の条件が成立したと判定された場合(ステップS102のYES)、ステップS104に移行する。
 一方、所定の条件が成立していないと判定された場合(ステップS102のNO)、ステップS103に移行する。なお、所定の条件が成立する場合、対象領域内において、ボディ20を走行させる抵抗が、走行させる方向によって異なることを示唆する。
 そして、制御ユニット70は、対象領域の掃除が終了したか否かを判定する(ステップS103)。このとき、対象領域の掃除が終了していないと判定された場合(ステップS103のNO)、ステップS102に処理に戻り、同様の処理を実行する。
 一方、対象領域の掃除が終了したと判定された場合(ステップS103のYES)、ステップS105に移行する。
 また、制御ユニット70は、所定の条件が成立した場合、ボディ20の往復走行における他方向の走行距離を追加する(ステップS104)。これにより、往復走行時において、ボディ20が一方向に進む距離と、他方向に進む距離との差が小さくなる。これにより、対象領域の基準点がずれていた場合、基準点を補正することができる。
 そして、制御ユニット70は、対象領域における掃除を停止する(ステップS105)。これにより、制御ユニット70は、自律走行型掃除機10の往復掃除制御を終了する。なお、対象領域における掃除が完了するまで、往復掃除制御を繰り返し実行してもよい。
 つまり、実施の形態12の自律走行型掃除機10の制御動作によれば、実施の形態3の自律走行型掃除機10により得られる(1)~(11)の効果に加えて、例えば以下の効果が得られる。
 (23)本実施の形態の自律走行型掃除機10によれば、例えば絨毯などを掃除する際に、走行させる方向によってボディ20に加わる抵抗が異なる場合、往復掃除制御により走行抵抗の違いによる位置ずれを修正できる。そのため、位置ずれを修正しない構成と比較して、対象領域を、より正確に掃除できる。
 (変形例)
 なお、上記各実施の形態では、自律走行型掃除機が取り得る形態の一例について説明したが、上記実施の形態に限られない。
 つまり、本実施の形態の自律走行型掃除機は、上記各実施の形態以外に、例えば以下に示す変形例を取り得る。
 例えば、変形例に係るボディ20は、図36から図38に示すように、各実施の形態に例示されるボディ20とは異なる輪郭を有してもよい。
 まず、図36に示す変形例に係るボディ20について説明する。
 図36は、ボディ20の輪郭に関する変形例の一例を示す。なお、図中の2点鎖線は、実施の形態1のボディ20の輪郭を示す。
 図36に示すように、変形例に係るボディ20の左右の側面22は、相互に形状が異なる前方側の側面22aと、後方側の側面22bとにより構成される。具体的には、前方側の側面22aは曲面で、後方側の側面22bは平面で構成される。
 つぎに、図37に示す変形例に係るボディ20について説明する。
 図37は、ボディ20の輪郭に関する変形例の別の一例を示す。なお、図中の2点鎖線は、実施の形態1のボディ20の輪郭を示す。
 図37に示すように、変形例に係るボディ20は、後方頂部24を含むボディ20の後部の一部を省略して、新たに後面25が形成される。後面25の一例は、外側に脹らむように湾曲した曲面である。なお、後面25は、平面などでもよい。
 さらに、図38に示す変形例に係るボディ20について説明する。
 図38は、ボディ20の輪郭に関する変形例の別の一例を示す。なお、図中の2点鎖線は、実施の形態3のボディ20の輪郭を示す。
 図38に示すように、変形例に係るボディ20は、実施の形態3のボディ20の後方頂部24を含む所定部分が省略され、新たに後面25が形成される。後面25の一例は、平面である。なお、後面25は、外側に脹らむように湾曲した曲面などでもよい。
 これらの変形例にかかるボディ20は、上記各実施の形態のボディと同様の効果を得ることができる。
 また、変形例に係る実施の形態4~6の角掃除制御よれば、制御ユニット70は、角検出部により角が検出されたと判定した場合、電動ファン51の吸引力を上げるように電動ファン51を制御してもよい。さらに、制御ユニット70は、角検出部により角が検出されたと判定した場合、ブラシ駆動モーター41の回転数を上げるようにブラシ駆動モーター41を制御してもよい。この場合、メインブラシ43およびサイドブラシ44の回転数が上がる。
 これらにより、角が検出された場合、電動ファン51の吸引力を上げる制御、およびブラシ駆動モーター41の回転数を上げる制御の少なくとも一方が実行される。その結果、角に溜まった取りにくいごみを、素早く取ることが可能になる。
 一方、ごみが溜まりにくい角以外の場所では、電動ファン51の吸引力を、角に比べて低くする。同様に、ブラシ駆動モーターの回転数を、角に比べて低くする。これらにより、自律走行型掃除機の消費電力を抑えることが可能となる。
 また、実施の形態4~6の角掃除制御では、ボディ20が1往復または複数回往復した際にごみ検出センサー300でごみの量を検出する構成を例に説明したが、これに限られない。例えば、角掃除制御に係る変形例として、ボディ20が止まった状態から、1辺の壁に最も近づくまでに、ごみ検出センサー300が検出したごみの量で、角にあるごみの量を判定する構成としてもよい。また、角掃除制御に係る別の変形例として、ボディ20が止まった状態から、一方の壁に最も近づき、続いて他方の壁に近づくまでに、ごみ検出センサー300が検出したごみの量で、角にあるごみの量を判定する構成としてもよい。角掃除制御に係るさらに別の変形例として、一方の壁から他方の壁にボディ20を振った際に、ごみ検出センサー300が検出したごみの量で、角にあるごみの量を判定する構成としてもよい。これにより、上記各実施の形態と同様の効果が得られる。
 また、変形例に係る実施の形態9の第2の脱出制御は、ステップS63における所定の条件に代えて、別の所定の条件が成立したか否かで判定してもよい。なお、別の所定の条件とは、例えば衝突検出センサー73で、ボディ20と物体とが衝突するか否かである。そして、制御ユニット70は、衝突検出センサー73によりボディ20と物体との衝突が検出されない場合、別の所定の条件が成立したと判定して制御する。
 この変形例によれば、ボディ20が、例えば物体と物体との間に嵌まり込んだ場合、衝突検出センサー73により、ボディ20と物体との衝突の有無を検出する。衝突しないとの検出結果の場合、制御ユニット70は、第1の走行および第2の走行を繰り返す。これにより、ボディ20を嵌まり込んだ物体間から脱出させることができる。その結果、ボディ20と物体との接触を繰り返して脱出させる場合と比較して、早くボディ20を脱出させることができる。
 また、変形例に係る実施の形態9の自律走行型掃除機10は、回転センサーを、ホイール33に代えて、または加えて、キャスター90に取り付ける構成としてもよい。
 また、変形例に係る実施の形態9の自律走行型掃除機10は、ジャイロセンサーを省略してもよい。この場合、ボディ20の走行方向は、右側のホイール33および左側のホイール33に取り付けられた回転センサーにより検出される回転数の比率により演算される。これにより、簡易的な構成で、低コスト化が図れる。
 また、変形例に係るサイドブラシ44は、それぞれのサイドブラシ44の回転軌道のうち、他方のサイドブラシ44の回転軌道と接近している部分において、ボディ20の後方から前方に向けて回転する構成としてもよい。
 この構成によれば、サイドブラシ44により、ごみが、ボディ20の幅方向の中心側において前方に向けて移動する。そのため、自律走行型掃除機10が前進しているときに、サイドブラシ44により集められるごみが吸込口101に接近しやすい。これにより、吸込口101の後方側において、ごみの吸い残しが生じにくくなる。
 また、変形例に係る自律走行型掃除機10は、メインブラシ43および一方のサイドブラシ44にトルクを与えるブラシ駆動モーター、ならびに他方のサイドブラシ44にトルクを与えるブラシ駆動モーターを備える構成としてもよい。これにより、小型、軽量で、低コスト化が図れる。
 また、変形例に係る自律走行型掃除機10は、メインブラシ43、右側のサイドブラシ44および左側のサイドブラシ44のそれぞれに、ブラシ駆動モーターを備える構成としてもよい。これにより、それぞれのブラシ駆動モーターは、対応するブラシに個別にトルクを与えることができる。その結果、被清掃面の状況や、ごみの状況に応じて、適切な駆動力を付与して、効果的に掃除をすることができる。
 また、変形例に係る自律走行型掃除機10によれば、制御ユニット70は、受光部212が充電台から出力される信号を受光した場合、障害物検出センサー71で障害物を検出するときのボディ20と障害物との距離を、受光部212が信号を受光していないときの距離よりも大きくしてもよい。
 これにより、ボディ20と充電台との距離が近い場合、障害物検出センサー71で障害物の1つである充電台を検出しやすくなる。そのため、掃除中において、ボディ20と充電台とが接触しにくくできる。
 また、変形例に係る自律走行型掃除機10によれば、制御ユニット70は、超音波センサーである障害物検出センサー71の、駆動時間および障害物を介さずに発信部71Aから受信部71Bへ到達する超音波信号の大きさの少なくとも一方に基づいて、障害物検出センサー71で障害物を検出するときの、ボディ20と障害物との距離を変更してもよい。
 この変形例によれば、障害物検出センサー71で障害物を検出するときのボディ20と障害物との距離を変更する。これにより、例えば障害物検出センサー71の駆動時間の前半部分で、後半部分よりも障害物を検出しやすくなる。同様に、受信部71Bへ到達する超音波信号が大きい場合は、小さい場合よりも障害物を検出しやすくなる。
 つまり、障害物検出センサー71で障害物を検出するときのボディ20と障害物との距離を、上記のように変更する。これにより、障害物検出センサー71の精度を向上させることができる。
 また、変形例に係る自律走行型掃除機10によれば、制御ユニット70は、電動ファン51の駆動にともない、ごみ検出センサー300が所定の量以上のごみを検出する場合、ごみ箱ユニット60に所定の量以上のごみが存在すると判定する構成としてもよい。この場合、例えば光または音などにより報知することが好ましい。
 この変形例によれば、ごみ検出センサー300が所定の量以上のごみを検出する場合、ごみ箱ユニット60に溜められたごみが満杯であることが示唆される。これにより、簡易な構成で、ごみ箱ユニット60に溜められたごみが満杯であることを、容易に確認できる。
 また、変形例に係る自律走行型掃除機10は、障害物検出センサー71として、超音波センサーとは異なる種類の、例えば赤外線センサーなどを備えてもよい。
 また、変形例に係る自律走行型掃除機10は、距離測定センサー72として、赤外線センサーとは異なる種類の、例えば超音波センサーなどを備えてもよい。
 また、変形例に係る自律走行型掃除機10は、衝突検出センサー73として、接触式変位センサーとは異なる種類の、例えば衝撃センサーなどを備えてもよい。
 また、変形例に係る自律走行型掃除機10は、床面検出センサー74として、赤外線センサーとは異なる種類の、例えば超音波センサーなどを備えてもよい。これらの変形例により、上記各実施の形態と同様の効果が得られる。
 また、変形例に係る自律走行型掃除機10は、駆動ユニット30よりもボディ20の後方側に複数のキャスター90を備える構成としてもよい。これにより、自律走行型掃除機10の安定性が、さらに向上する。
 また、変形例に係る自律走行型掃除機10は、一対の駆動ユニット30よりもボディ20の前方側に少なくとも1つのキャスターを備える構成としてもよい。これにより、自律走行型掃除機10の安定性が、さらに向上する。
 なお、上記詳細な説明は、例証的であり制限的でないことを意図する。例えば、上述した各実施の形態、または1つあるいは複数の変形例は、必要に応じて互いに組み合わせてもよい。
 また、本実施の形態で開示する技術的特徴または主題は、特定の実施の形態の全ての特徴よりも少ない特徴に存在することがあり得る。そのため、請求の範囲は、発明の詳細な説明に組み込まれ、各請求項は個別の実施の形態として自分自身を主張できることは、いうまでもない。
 さらに、本実施の形態で開示する範囲は、請求の範囲に与えられる権利、および、その均等物の全ての範囲の双方に基づいて確定されることは、いうまでもない。
 以上で説明したように、本発明の自律走行型掃除機は、底面に吸込口を備えるボディと、ボディに搭載される吸引ユニットと、対象領域の角を検出する角検出部と、ボディが往復運動するように駆動する駆動ユニットと、駆動ユニットを制御する制御ユニットとを備える。制御ユニットは、角検出部で角を検出すると、ボディが往復運動するように駆動ユニットを制御してもよい。
 この構成によれば、自律走行型掃除機は、角に来ると、往復運動を行う。これにより、角に溜まった多くのごみを、効率よく取ることが可能になる。
 また、本発明の自律走行型掃除機は、往復運動がボディを左右に振らせる動作でもよい。
 この構成によれば、自律走行型掃除機は、角に来ると、ボディを左右に振らせる。これにより、角に溜まった多くのごみを取ることが可能になる。
 また、本発明の自律走行型掃除機は、駆動ユニットに、右側のホイールを駆動する右側の走行用モーターと左側のホイールを駆動する左側の走行用モーターを備える。制御ユニットは、右側のホイールを前進させると共に左側のホイールを後退させるように制御し、続いて、左側のホイールを前進させると共に右側のホイールを後退させるように制御する動作を繰り返し行うことにより、ボディを左右に振るように制御してもよい。
 この構成によれば、自律走行型掃除機は、角に来ると、右側のホイールと左側のホイールの2つのホイールを別々に制御する。これにより、ボディを左右に振らせることが可能となる。その結果、角に溜まった多くのごみを取ることが可能になる。
 また、本発明の自律走行型掃除機は、ボディが、外側に脹らむ曲面である前面および複数の側面と、前面と側面とにより規定される頂部である前方頂部と、を備え、前面の接線と側面の接線とのなす角が鋭角であればよい。
 この構成によれば、ボディは、実質的にルーローの三角形と同一の平面形状を有し、ルーローの三角形の形状で往復運動を行う。これにより、角にたまったごみまで除去することが可能である。
 また、本発明の自律走行型掃除機は、吸引ユニットが空気を吸引する電動ファンを備え、制御ユニットは、角検出部で角を検出すると、電動ファンの吸引力を上げるように制御してもよい。
 この構成によれば、自律走行型掃除機は、角に来ると、電動ファンの吸引力を上げる。これにより、角に溜まった多くのごみを、効果的に取ることが可能になる。一方、ごみが溜まりにくい角以外の場所では、電動ファンの吸引力を、角に比べて低くする。これにより、自律走行型掃除機の消費電力を抑えることが可能となる。
 また、本発明の自律走行型掃除機は、ボディの底面側に配置されるサイドブラシと、サイドブラシを駆動するブラシ駆動モーターを、さらに備える。制御ユニットは、角検出部で角を検出すると、ブラシ駆動モーターの回転数を上げるように制御してもよい。
 この構成によれば、自律走行型掃除機は、角に来ると、サイドブラシの回転数を上げる。これにより、角に溜まった多くのごみを、効率よく取ることが可能になる。一方、ごみが溜まりにくい角以外の場所では、ブラシ駆動モーターの回転数を、角に比べて低くする。これにより、自律走行型掃除機の消費電力を抑えることが可能となる。
 また、本発明の自律走行型掃除機は、吸込口に配置されるメインブラシと、メインブラシを駆動するブラシ駆動モーターを、さらに備える。制御ユニットは、角検出部で角を検出すると、ブラシ駆動モーターの回転数を上げるように制御してもよい。
 この構成によれば、自律走行型掃除機は、角に来ると、メインブラシの回転数を上げる。これにより、角に溜まった多くのごみを、効率よく取ることが可能になる。一方、ごみが溜まりにくい角以外の場所では、ブラシ駆動モーターの回転数を、角に比べて低くする。これにより、自律走行型掃除機の消費電力を抑えることが可能となる。
 (課題を解決するための手段に関する付記)
 付記(A1)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記ホイールの回転軸と直交する方向の障害物の有無を検出する障害物検出センサーと、前記ホイールの回転軸と平行である方向の物体と前記ボディとの距離を検出する距離測定センサーと、制御ユニットとをさらに備え、前記制御ユニットは、前記距離測定センサーにより検出された値が所定の値以下である状態が所定時間以上継続し、かつ、前記障害物検出センサーにより障害物が検出された場合、一方の前記ホイールと他方の前記ホイールとを互いに反対の方向に回転させる自律走行型掃除機。
 この自律走行型掃除機によれば、障害物検出センサーおよび距離測定センサーによりボディと障害物とが接触する前に角が検出される。このため、ボディを旋回させて角を掃除する場合にボディと障害物とが接触しにくい。
 付記(A2)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記ホイールの回転軸と直交する方向の障害物の有無を検出する障害物検出センサーと、前記ホイールの回転軸と平行である方向の物体と前記ボディとの距離を検出する距離測定センサーと、制御ユニットとをさらに備え、前記制御ユニットは、前記距離測定センサーにより検出された値が所定の値以下である状態が所定時間以上継続し、かつ、前記障害物検出センサーにより障害物が検出された後に、前記障害物検出センサーにより障害物が検出されなくなった場合、前記一対のホイールを同じ方向に回転させる自律走行型掃除機。
 この自律走行型掃除機によれば、障害物検出センサーにより例えば障害物が検出された後にその障害物が取り除かれた場合において、その障害物が配置されていた領域を迂回せずにボディを前進または後退させる。このため、障害物が配置されていた領域も掃除できる。
 付記(A3)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記ホイールの回転軸と直交する方向の障害物の有無を検出する障害物検出センサーと、前記ホイールの回転軸と平行である方向の物体と前記ボディとの距離を検出する距離測定センサーと、前記ボディがその周囲の物体に衝突したことを検出する衝突検出センサーと、制御ユニットとをさらに備え、前記制御ユニットは、前記距離測定センサーにより検出された値が所定の値以下である状態が所定時間以上継続し、かつ、前記障害物検出センサーにより障害物が検出された場合、一方の前記ホイールと他方の前記ホイールとを互いに反対の方向に回転させ、前記一方のホイールと前記他方のホイールとを互いに反対の方向に回転させている間は、前記衝突検出センサーにより前記ボディと物体との衝突が検出されたとしても前記ホイールの動作を継続させる自律走行型掃除機。
 この自律走行型掃除機によれば、ボディを旋回している場合において、ボディと物体とが衝突したとしてもボディの旋回が継続される。そのため、ボディと物体との接触にともない掃除を中止する場合と比較して、角を十分に掃除できる。
 付記(A4)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記ホイールの回転軸と直交する方向の障害物の有無を検出する障害物検出センサーと、前記ホイールの回転軸と平行である方向の物体と前記ボディとの距離を検出する距離測定センサーと、前記ボディがその周囲の物体に衝突したことを検出する衝突検出センサーと、制御ユニットとをさらに備え、前記制御ユニットは、前記距離測定センサーにより検出された値が所定の値以下である状態が所定時間以上継続し、かつ、前記障害物検出センサーにより障害物が検出された場合において、一方の前記ホイールと他方の前記ホイールとを互いに反対の方向に回転させた後に、前記衝突検出センサーにより前記ボディと物体との衝突が検出された場合、前記ボディと物体との接触部分に近い側の一方の前記ホイールを停止し、他方の前記ホイールを後退させ、前記他方のホイールの後退にともない前記ボディが物体における別の部分または別の物体とさらに衝突した場合、前記他方のホイールを停止させ、前記一方のホイールを前進させ、前記一方のホイールの前進にともない前記ボディが物体における別の部分または別の物体とさらに衝突した場合、前記一方のホイールを停止させ、前記他方のホイールを後退させる反復動作を実行し、前記障害物検出センサーにより障害物が検出されない場合に前記一対のホイールを前進させる自律走行型掃除機。
 この自律走行型掃除機によれば、角を掃除するときにボディが角に嵌まり込んだ場合において上記制御が実行される。この場合、角に対するボディの角度が徐々に変化する。そのため、ボディが角に嵌まり込んだとしても、方向転換することにより、角から脱出することができる。
 付記(B1)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記ホイールの回転軸と直交する方向の障害物の有無を検出する障害物検出センサーと、前記ホイールの回転軸と平行である方向の物体と前記ボディとの距離を検出する距離測定センサーと、制御ユニットとをさらに備え、前記制御ユニットは、所定時間における前記ボディの移動範囲を演算し、前記所定時間における前記移動範囲が所定の値を下回った場合、前記距離測定センサーにより検出された値が所定の値以下、かつ、前記障害物検出センサーにより障害物が検出されない方向に前記一対のホイールを回転させる自律走行型掃除機。
 この自律走行型掃除機によれば、所定時間におけるボディの移動範囲から角などに嵌まり込んだことを検出できる。そのため、例えばボディが角に嵌まり込んだ場合において、障害物検出センサーおよび距離測定センサーにより角から脱出可能な方向に走行させる。これにより、脱出の過程において、ボディと物体とが接触しにくい。
 付記(B2)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記ホイールの回転軸と直交する方向の障害物の有無を検出する障害物検出センサーと、前記ホイールの回転軸と平行である方向の物体と前記ボディとの距離を検出する距離測定センサーと、前記ボディがその周囲の物体に衝突したことを検出する衝突検出センサーと、制御ユニットとをさらに備え、前記制御ユニットは、所定時間における前記ボディの移動範囲を演算し、前記所定時間における前記移動範囲が所定の値を下回った場合、前記衝突検出センサーの検出結果に基づいて、前記ボディと物体とが衝突しないと検出される方向に前記一対のホイールを回転させる自律走行型掃除機。
 この自律走行型掃除機によれば、例えばボディが物体と物体との間に嵌まり込んだ場合において、衝突検出センサーによるボディと物体との衝突の検出結果、ボディの旋回、および、ホイールの回転を繰り返すことにより脱出できる。そのため、ボディと物体との接触を繰り返すことにより脱出させる場合と比較して、素早くボディを脱出させることができる。
 付記(C1)
 ボディと、一対のホイールと、キャスターと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記ホイールの回転数を検出する第1の回転センサーと、前記キャスターの回転数を検出する第2の回転センサーとをさらに備え、前記制御ユニットは、前記第1の回転センサーおよび前記第2の回転センサーの検出結果から前記ホイールの回転数と前記キャスターの回転数とが一致しないと判定した場合において、そのときの前記ボディの進行方向に対して傾斜するように前記ボディの進行方向を変更する自律走行型掃除機。
 この自律走行型掃除機によれば、第1の回転センサーおよび第2の回転センサーにより、例えば段差などにおけるホイールまたはキャスターのスリップが検出された場合、段差に対してボディを斜めから進入させる。そのため、段差に対して直進する場合と比較して、段差を乗り越えやすい。
 付記(C2)
 ボディと、一対のホイールと、キャスターと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記ホイールの回転数を検出する第1の回転センサーと、前記キャスターの回転数を検出する第2の回転センサーとをさらに備え、前記制御ユニットは、前記第1の回転センサーおよび前記第2の回転センサーの検出結果から前記ホイールの回転数と前記キャスターの回転数とが一致しないと判定した場合において、そのときの前記ボディの進行方向に対して傾斜するように前記ボディの進行方向を変更し、その後においても前記ホイールの回転数と前記キャスターの回転数とが一致しない場合、前記ボディの進行方向に対して反対の方向に前記ボディの進行方向を変更する自律走行型掃除機。
 この自律走行型掃除機によれば、例えば段差に対してボディを斜めから進入させたとしてもスリップした状態が継続される場合において、段差に対して反対の方向に進行させることにより段差を回避させる。そのため、ボディが段差に嵌まり込みにくくなる。
 付記(D1)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記ホイールの回転軸と直交する方向の障害物の有無を検出する障害物検出センサーと、前記自律走行型掃除機を充電する充電台から出力される信号を受光する受光部と、制御ユニットとをさらに備え、前記制御ユニットは、前記受光部が前記充電台から出力される信号を受光した場合において、前記障害物検出センサーにより障害物が検出されるときの前記ボディと障害物との距離が、前記受光部が信号を受光していないときの前記距離よりも大きくする自律走行型掃除機。
 この自律走行型掃除機によれば、ボディと充電台との距離が近い場合において、障害物検出センサーにより障害物の1つである充電台が検出されやすい。そのため、掃除中においてボディと充電台とが接触しにくい。
 付記(E1)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記自律走行型掃除機を操作するリモートコントローラーから出力される信号を受光する受光部と、制御ユニットとをさらに備え、前記制御ユニットは、前記リモートコントローラーから出力される信号に基づいて、基準位置に対する距離および角度を前記ボディの移動経路における1つまたは複数の目標地点毎に記憶し、前記受光部が前記リモートコントローラーから移動命令に関する情報を受光することにより前記目標地点に沿って前記ボディを移動させる自律走行型掃除機。
 この自律走行型掃除機によれば、予め掃除させる目標地点を記憶させることにより、対象領域のうちの任意の領域を掃除させることができる。そのため、自律走行型掃除機により効率の良い掃除ができる。
 付記(E2)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記自律走行型掃除機を操作するリモートコントローラーから出力される信号、および、前記自律走行型掃除機を充電する充電台から出力される信号を受光する受光部と、制御ユニットとをさらに備え、前記制御ユニットは、前記リモートコントローラーから出力される信号に基づいて、基準位置に対する距離および角度を前記ボディの移動経路における1つまたは複数の目標地点毎に記憶し、前記1つまたは複数の目標地点に沿って前記ボディを移動させることにより前記ボディが最後の前記目標地点に到達した後、前記目標地点を遡って前記移動経路を逆走し、前記受光部が前記充電台から出力される信号を受光することにより前記移動経路から外れて前記充電台に向かって前記ボディを移動させる自律走行型掃除機。
 この自律走行型掃除機によれば、最後の目標地点に到達した後において充電台に帰還する場合、充電台から出力される信号を受光するまで移動経路を逆走させる。そのため、充電台に向かって適切な経路で帰還できる。
 付記(E3)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記ホイールの回転軸と直交する方向の障害物の有無を検出する障害物検出センサーと、前記自律走行型掃除機を操作するリモートコントローラーから出力される信号を受光する受光部と、制御ユニットとをさらに備え、前記制御ユニットは、前記リモートコントローラーから出力される信号に基づいて、基準位置に対する距離および角度を前記ボディの移動経路における1つまたは複数の目標地点毎に記憶し、前記受光部が前記リモートコントローラーから移動命令に関する情報を受光することにより前記目標地点に沿って前記ボディを移動させるとともに、1つの前記目標地点と前記障害物検出センサーにより検出された障害物の位置とが重複した場合において、前記ボディを次の前記目標地点に向かって移動させる自律走行型掃除機。
 この自律走行型掃除機によれば、1つの目標地点上に障害物が存在する場合において、その目標地点を通過せずに次の目標地点に向かって移動する。そのため、1つの目標地点を通過できない場合に掃除を終了する構成と比較して、対象領域のうちの任意の領域が掃除されやすい。
 付記(E4)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記自律走行型掃除機を操作するリモートコントローラーから出力される信号を受光する受光部と、制御ユニットとをさらに備え、前記制御ユニットは、前記リモートコントローラーから出力される信号に基づいて、基準位置に対する距離および角度を前記ボディの移動経路における1つまたは複数の目標地点毎に記憶し、前記受光部が前記リモートコントローラーから移動命令に関する情報を受光することにより前記目標地点に沿って前記ボディを移動させるとともに、最後の前記目標地点に障害物が存在する場合において、実際に到達した地点で前記電動ファンを駆動する自律走行型掃除機。
 この自律走行型掃除機によれば、例えば障害物などにより最後の目標地点に到達できなかった場合においても実際に到達した地点で掃除する。そのため、最後の目標地点に到達できない場合に掃除を終了する場合と比較して、より広い領域を掃除できる。
 付記(E5)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記ホイールの回転軸と直交する方向の障害物の有無を検出する障害物検出センサーと、制御ユニットとをさらに備え、前記制御ユニットは、予め定められた対象領域を掃除するように前記ボディを走行させる場合において前記ホイールに取り付けられた回転センサーにより走行距離を検出させ、前記対象領域内に設定された基準点または基準線から前記対象領域の外郭まで前記ボディを往復走行させ、前記往復走行中において前記障害物検出センサーにより障害物が検出された場合、前記ボディを旋回させて前記基準点または前記基準線と障害物が検出された地点との距離を走行させ、走行させる距離が所定の値を下回った場合、所定の距離を追加して走行させる自律走行型掃除機。
 この自律走行型掃除機によれば、例えばボディを走行させるときの抵抗が走行させる方向によって異なる絨毯などの上を掃除する場合においても、走行抵抗の違いによる位置ずれが修正される。このため、絨毯などの上を掃除する場合に位置ずれを修正しない構成と比較して、対象領域が掃除されやすい。
 付記(F1)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記吸込口から吸引されたごみを溜めるごみ箱ユニットと、前記吸込口と前記ごみ箱ユニットとを接続するダクトと、前記ダクトの通路内に配置され、前記吸込口から吸引されたごみを検出するごみ検出センサーとをさらに備え、前記制御ユニットは、前記電動ファンの駆動にともない前記ごみ検出センサーにより所定の量以上のごみが検出される場合において、前記ごみ箱ユニットに所定の量以上のごみが存在すると判定する自律走行型掃除機。
 この自律走行型掃除機によれば、ごみ検出センサーにより所定の量以上のごみが検出される場合、ごみ箱ユニットに溜められたごみが満杯であることが示唆される。そのため、簡易な構成でごみ箱ユニットに溜められたごみが満杯であることを確認できる。
 付記(G1)
 ボディと、一対のホイールと、吸込口と、電動ファンとを備える自律走行型掃除機であって、前記ホイールの回転軸と直交する方向の障害物の有無を検出する超音波センサーである障害物検出センサーと、制御ユニットとをさらに備え、前記障害物検出センサーは、超音波を出力する発信部および反射された超音波を受信する受信部を備え、前記制御ユニットは、前記障害物検出センサーを駆動させる時間である駆動時間、および、前記発信部から障害物を介さずに前記受信部へ到達する超音波の大きさの少なくとも一方に基づいて、前記障害物検出センサーにより障害物が検出されるときの前記ボディと障害物との距離を変更する自律走行型掃除機。
 この自律走行型掃除機によれば、例えば障害物検出センサーの駆動時間における前半部分が後半部分よりも障害物が検出されやすくなるように障害物検出センサーにより障害物が検出されるときのボディと障害物との距離を変更する。また、障害物を介さずに受信部へ到達する超音波が大きい場合は小さい場合よりも障害物が検出されやすくなるように障害物検出センサーにより障害物が検出されるときのボディと障害物との距離を変更する。つまり、上記自律走行型掃除機によれば、障害物検出センサーにより障害物が検出されるときのボディと障害物との距離を上記のように変更する。これにより、障害物検出センサーの精度が向上しやすい。
 本発明は、高い角清掃能力が要望される家庭用または業務用の自律走行型掃除機をはじめとして、各種の環境において使用される自律走行型掃除機に適用可能である。
 10,900  自律走行型掃除機
 20  ボディ
 21  前面
 22,22a,22b  側面
 23  前方頂部
 24  後方頂部
 25  後面
 30  駆動ユニット
 31  走行用モーター
 32  ハウジング
 32A  モーター収容部
 32B  ばね掛け部
 32C  軸受部
 33  ホイール
 34  タイヤ
 35  支持軸
 36  サスペンションばね
 40  清掃ユニット
 41  ブラシ駆動モーター
 42  ギアボックス(第2のギアボックス)
 43  メインブラシ
 44  サイドブラシ
 44A  ブラシ軸
 44B  ブリッスル束
 50  吸引ユニット
 51  電動ファン
 52  ファンケース
 52A  前方側ケース要素
 52B  後方側ケース要素
 52C,910  吸込口
 52D  吐出口
 52E  ルーバー
 60  ごみ箱ユニット
 61  ごみ箱
 61A  入口
 61B  出口
 61C  底部
 62  フィルター
 70  制御ユニット(制御部)
 71  障害物検出センサー
 71A  発信部
 71B  受信部
 72  距離測定センサー
 73  衝突検出センサー
 74  床面検出センサー
 75  脱輪検出スイッチ
 80  電源ユニット
 81  電池ケース
 82  蓄電池
 83  メインスイッチ
 90  キャスター
 91  支持軸
 100  ロアーユニット
 101  吸込口
 102  電源口
 103  充電端子
 110  ベース
 111  底部軸受
 112  センサー窓
 120  駆動用パート
 121  ホイールハウス
 122  ばね掛け部
 130  清掃用パート
 131  軸挿入部
 132  結合部
 140  ごみ箱用パート
 150  吸引用パート
 160  電源用パート
 170  ブラシハウジング
 171  ダクト
 172  入口
 173  出口
 180  ブラシカバー
 181  斜面
 190  保持フレーム
 200  アッパーユニット
 210  カバー
 211  排気口
 212  受光部
 213  蓋ボタン
 220  蓋
 221  アーム
 230  バンパー
 231  湾曲凸部
 232  発信用窓
 233  受信用窓
 234  距離測定用窓
 240  インターフェース部
 241  パネル
 242  操作ボタン
 243  表示部
 250  ごみ箱受け
 251  底部開口
 252  後方開口
 260  アーム収容部
 300  ごみ検出センサー
 G  重心
 H  回転軸
 RX  部屋
 R1  第1の壁
 R2  第2の壁
 R3  角
 R4  先端部分
 L1  接線
 L2  接線

Claims (7)

  1. 底面に吸込口を備えるボディと、
    前記ボディに搭載される吸引ユニットと、
    対象領域の角を検出する角検出部と、
    前記ボディが往復運動するように駆動する駆動ユニットと、
    前記駆動ユニットを制御する制御ユニットと、を備え、
    前記制御ユニットは、前記角検出部で前記角を検出すると、前記ボディが前記往復運動するように前記駆動ユニットを制御する自律走行型掃除機。
  2. 前記往復運動は、前記ボディを左右に振らせる動作である請求項1に記載の自律走行型掃除機。
  3. 前記駆動ユニットは、右側のホイールを駆動する右側の走行用モーターと、左側の前記ホイールを駆動する左側の前記走行用モーターと、を備え、
    前記制御ユニットは、前記右側のホイールを前進させると共に前記左側のホイールを後退させるように制御し、続いて、前記左側のホイールを前進させると共に前記右側のホイールを後退させるように制御する動作を繰り返し行うことにより、前記ボディを左右に振るように制御する請求項1に記載の自律走行型掃除機。
  4. 前記ボディは、外側に脹らむ曲面である前面および複数の側面と、前記前面と前記側面とにより規定される頂部である前方頂部と、を備え、
    前記前面の接線と前記側面の接線とのなす角が鋭角である請求項1に記載の自律走行型掃除機。
  5. 前記吸引ユニットは、空気を吸引する電動ファンを備え、
    前記制御ユニットは、前記角検出部で前記角を検出すると、前記電動ファンの吸引力を上げるように制御する請求項1に記載の自律走行型掃除機。
  6. 前記ボディの底面側に配置されるサイドブラシと、前記サイドブラシを駆動するブラシ駆動モーターとを、さらに備え、
    前記制御ユニットは、前記角検出部で前記角を検出すると、前記ブラシ駆動モーターの回転数を上げるように制御する請求項1に記載の自律走行型掃除機。
  7. 前記吸込口に配置されるメインブラシと、前記メインブラシを駆動するブラシ駆動モーターとを、さらに備え、
    前記制御ユニットは、前記角検出部で前記角を検出すると、前記ブラシ駆動モーターの回転数を上げるように制御する請求項1に記載の自律走行型掃除機。
PCT/JP2015/005070 2014-10-10 2015-10-06 自律走行型掃除機 WO2016056226A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580027641.9A CN106413500B (zh) 2014-10-10 2015-10-06 自主行走型吸尘器
US15/329,448 US10271705B2 (en) 2014-10-10 2015-10-06 Autonomous travel-type cleaner
EP15848938.5A EP3205250B1 (en) 2014-10-10 2015-10-06 Autonomous travel-type cleaner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014208654 2014-10-10
JP2014-208654 2014-10-10
JP2015-051342 2015-03-13
JP2015051342A JP2017213009A (ja) 2014-10-10 2015-03-13 自律走行型掃除機

Publications (1)

Publication Number Publication Date
WO2016056226A1 true WO2016056226A1 (ja) 2016-04-14

Family

ID=55652862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005070 WO2016056226A1 (ja) 2014-10-10 2015-10-06 自律走行型掃除機

Country Status (3)

Country Link
EP (1) EP3205250B1 (ja)
CN (1) CN106413500B (ja)
WO (1) WO2016056226A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107296569A (zh) * 2016-04-15 2017-10-27 日立空调·家用电器株式会社 自主行走型清扫机
JP2018061530A (ja) * 2016-10-11 2018-04-19 日立アプライアンス株式会社 自走式電気掃除機
CN108371519A (zh) * 2017-02-01 2018-08-07 德国福维克控股公司 可自动行进的地面处理设备
CN108406803A (zh) * 2018-04-25 2018-08-17 苏州三体智能科技有限公司 多用户与服务机器人的交互***与交互方法
JP2019084095A (ja) * 2017-11-08 2019-06-06 日立アプライアンス株式会社 自律走行型電気掃除機

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107550399B (zh) 2017-08-17 2021-05-18 北京小米移动软件有限公司 定时清扫方法及装置
CN107647827A (zh) * 2017-09-24 2018-02-02 苏州安飞荣工业科技有限公司 一种智能扫地机器人
CN107802212A (zh) * 2017-09-24 2018-03-16 苏州安飞荣工业科技有限公司 一种家用智能扫地拖地机器人
JP7037249B2 (ja) * 2018-05-22 2022-03-16 日立グローバルライフソリューションズ株式会社 自律走行型掃除機
CN112426104A (zh) * 2020-11-19 2021-03-02 温州复弘机械设备有限公司 一种智能联网扫地机器人辅助除尘机构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529752A (ja) * 2005-02-18 2008-08-07 アイロボット コーポレーション 湿式および乾式清掃用の自律的表面清掃ロボット
JP2010526594A (ja) * 2007-05-09 2010-08-05 アイロボット コーポレイション 小型自律カバレッジロボット
JP2014188001A (ja) * 2013-03-26 2014-10-06 Hitachi Appliances Inc 自律走行型掃除機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5048663B2 (ja) * 2005-07-08 2012-10-17 アクティエボラゲット エレクトロラックス ロボット清掃装置
CN105101857B (zh) * 2013-03-28 2018-06-22 悠进机器人股份公司 具有扩大的清扫区域的清洁机器人
DE202014003375U1 (de) * 2013-11-02 2014-05-22 Andreas Ostwald Fensterputzroboter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529752A (ja) * 2005-02-18 2008-08-07 アイロボット コーポレーション 湿式および乾式清掃用の自律的表面清掃ロボット
JP2010526594A (ja) * 2007-05-09 2010-08-05 アイロボット コーポレイション 小型自律カバレッジロボット
JP2014188001A (ja) * 2013-03-26 2014-10-06 Hitachi Appliances Inc 自律走行型掃除機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3205250A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107296569A (zh) * 2016-04-15 2017-10-27 日立空调·家用电器株式会社 自主行走型清扫机
JP2018061530A (ja) * 2016-10-11 2018-04-19 日立アプライアンス株式会社 自走式電気掃除機
JP7028549B2 (ja) 2016-10-11 2022-03-02 日立グローバルライフソリューションズ株式会社 自走式電気掃除機
CN108371519A (zh) * 2017-02-01 2018-08-07 德国福维克控股公司 可自动行进的地面处理设备
CN108371519B (zh) * 2017-02-01 2021-08-10 德国福维克控股公司 可自动行进的地面处理设备
JP2019084095A (ja) * 2017-11-08 2019-06-06 日立アプライアンス株式会社 自律走行型電気掃除機
CN108406803A (zh) * 2018-04-25 2018-08-17 苏州三体智能科技有限公司 多用户与服务机器人的交互***与交互方法
CN108406803B (zh) * 2018-04-25 2020-05-19 上海泽甘生物科技有限公司 多用户与服务机器人的交互***与交互方法

Also Published As

Publication number Publication date
EP3205250B1 (en) 2019-07-31
EP3205250A4 (en) 2018-02-21
CN106413500A (zh) 2017-02-15
EP3205250A1 (en) 2017-08-16
CN106413500B (zh) 2019-06-28

Similar Documents

Publication Publication Date Title
WO2016056226A1 (ja) 自律走行型掃除機
JP6706770B2 (ja) 自律走行型掃除機
JP2017213009A (ja) 自律走行型掃除機
JP6345973B2 (ja) 自律走行体
AU2013203861B2 (en) Method of controlling automatic cleaner
US9931012B2 (en) Vacuum cleaner
JP6472605B2 (ja) 電気掃除機
US10542858B2 (en) Self-propelled electronic device and travel method for self-propelled electronic device
CN109982624B (zh) 自主行走型吸尘器
JP6757575B2 (ja) 自走式掃除機
JP6935943B2 (ja) 自走式掃除機
JP2014071691A (ja) 自律移動型掃除装置
JP2016077855A (ja) 自律走行型掃除機
JP6340594B2 (ja) 自律走行型掃除機
JP2018122136A (ja) 自律走行型掃除機
JP2014176508A (ja) 電気掃除機
JP2018089498A (ja) 自律走行型掃除機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848938

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015848938

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015848938

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15329448

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP