WO2016056171A1 - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
WO2016056171A1
WO2016056171A1 PCT/JP2015/004598 JP2015004598W WO2016056171A1 WO 2016056171 A1 WO2016056171 A1 WO 2016056171A1 JP 2015004598 W JP2015004598 W JP 2015004598W WO 2016056171 A1 WO2016056171 A1 WO 2016056171A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor light
active layer
light emitting
quantum well
Prior art date
Application number
PCT/JP2015/004598
Other languages
English (en)
French (fr)
Inventor
健滋 酒井
池田 淳
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to DE112015003919.8T priority Critical patent/DE112015003919T5/de
Priority to KR1020177008368A priority patent/KR20170066365A/ko
Priority to CN201580050792.6A priority patent/CN107078189A/zh
Publication of WO2016056171A1 publication Critical patent/WO2016056171A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the present invention relates to a semiconductor light emitting device using a compound semiconductor material.
  • AlGaInP-based materials have the largest direct transition type band gap among III-V compound semiconductor mixed crystals excluding nitrides, and are used as light emitting device materials in the 500 to 600 nm band.
  • a light-emitting element having a light-emitting portion made of AlGaInP lattice-matched with a GaAs substrate can emit light with higher luminance than a conventional device using an indirect transition material such as GaP or GaAsP.
  • Factors that decrease the light emission efficiency in the short wavelength region are: (1) the energy gap difference between the active layer and the cladding layer is small, so that carrier confinement is insufficient; (2) the Al composition of the active layer is high. Therefore, it is conceivable that the number of non-radiative centers in the active layer increases, and (3) the energy band structure becomes close to the indirect transition type from the direct transition type.
  • the active layer has a quantum well structure of 80 to 200 layers, and the Al composition in the barrier layer is made larger than 0.5 (that is, the composition formula is (Al x Ga). 1-x ) 1-y In y P (using a compound semiconductor of 0.5 ⁇ x ⁇ 1) is used to suppress carrier overflow and to obtain a high light emission efficiency.
  • a quantum well structure in which lattice strain is introduced into an active layer that is, a quantum well structure including a well layer having tensile strain or compression strain and a strain relaxation barrier layer having strain opposite to the well layer
  • a method for reducing the Al composition in the active layer and obtaining high luminous efficiency is disclosed.
  • Patent Document 1 and Patent Document 2 have been proposed in order to suppress a decrease in light emission efficiency in a short wavelength region.
  • the method disclosed in Patent Document 1 can suppress the overflow of carriers, there is a problem in that the luminous efficiency decreases because the Al composition in the active layer becomes high.
  • the method disclosed in Patent Document 2 has a problem in that even if a strain relaxation layer is used, lattice defects in the crystal due to strain are increased, so that high luminous efficiency cannot always be obtained. .
  • the present invention has been made in view of the above problems, and provides a semiconductor light emitting device capable of obtaining high light emission efficiency in a short wavelength region (yellow light emission) while using an active layer having a quantum well structure.
  • the purpose is to do.
  • the present invention provides a semiconductor light emitting device having a quantum well active layer composed of a well layer and a barrier layer, wherein the emission wavelength of the semiconductor light emitting device is 585 nm or more and 605 nm or less,
  • the well layer is made of a compound semiconductor having the composition formula (Al x Ga 1-x ) y In 1-y P (0 ⁇ x ⁇ 0.06, 0 ⁇ y ⁇ 1), and the barrier layer is composed of the composition formula (Al to provide a semiconductor light emitting device characterized m Ga 1-m) n in 1-n P (0 ⁇ m ⁇ 1,0 ⁇ be made of a compound semiconductor of n ⁇ 1).
  • the Al composition of the well layer made of the AlGaInP-based compound semiconductor constituting the quantum well active layer is 0.06 or less, the average Al composition of the quantum well active layer can be reduced, Thereby, the non-light emission center in the quantum well active layer can be reduced, and high light emission efficiency in a short wavelength region (yellow light emission) can be obtained.
  • the total film thickness of the quantum well active layer is preferably 200 nm or more and 300 nm or less.
  • the total film thickness of the quantum well active layer is 200 nm or more, it is possible to suppress a decrease in light emission efficiency due to carrier overflow.
  • the total film thickness of the quantum well active layer is 300 nm or less, it is possible to prevent an increase in manufacturing cost due to an increase in manufacturing time and material costs.
  • the semiconductor light emitting device of the present invention high light emission efficiency in a short wavelength region (yellow light emission) can be obtained while using an active layer having a quantum well structure.
  • the present inventors have made extensive studies on a semiconductor light emitting device capable of obtaining high light emission efficiency in a short wavelength region (yellow light emission) while using an active layer having a quantum well structure.
  • the Al composition of the well layer made of the AlGaInP-based compound semiconductor constituting the quantum well active layer is 0.06 or less, the average Al composition of the quantum well active layer can be reduced, As a result, it has been found that non-luminescent centers in the quantum well active layer can be reduced, and that high luminous efficiency in a short wavelength region (yellow light emission) can be obtained, and the present invention has been made.
  • the semiconductor light emitting device 10 of the present invention shown in FIG. 1 has a light emitting portion 19 having a quantum well active layer 14.
  • the quantum well active layer 14 is formed by alternately stacking well layers 16 and barrier layers 15.
  • the well layer 16 is made of i-AlGaInP having the composition formula (Al x Ga 1-x ) y In 1-y P (0 ⁇ x ⁇ 0.06, 0 ⁇ y ⁇ 1)
  • the barrier layer 15 is composed of the composition formula (Al m Ga 1-m ) n In 1-n P (0 ⁇ m ⁇ 1, 0 ⁇ n ⁇ 1) i-AlGaInP.
  • the emission wavelength of the semiconductor light emitting device 10 is not less than 585 nm and not more than 605 nm. For example, by changing the film thickness of the well layer 16 of the quantum well active layer 14, a desired wavelength within the above range can be obtained.
  • the light emitting unit 19 is, for example, a semiconductor layer including a first conductivity type current diffusion layer 12, a first conductivity type cladding layer 13, a quantum well active layer 14, a second conductivity type cladding layer 17, and a second conductivity type current diffusion layer 18. It is.
  • Each of the first conductivity type current diffusion layer 12, the first conductivity type cladding layer 13, the second conductivity type cladding layer 17, and the second conductivity type current diffusion layer 18 is, for example, a composition formula (Al x Ga 1-x ) y In 1-y P (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) p-AlGaInP layer, composition formula (Al x Ga 1-x ) y In 1-y P (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) p-AlGaInP layer, composition formula (Al x Ga 1-x ) y In 1-y P (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) n-AlGaInP layer, n-GaP layer.
  • the semiconductor light emitting element 10 further includes, for example, a conductive support substrate 24, a bonding metal layer 23 provided on the conductive support substrate 24, a reflective metal layer 22 provided on the bonding metal layer 23, and a reflection metal layer 22.
  • a transparent oxide film layer 21 provided on the transparent oxide film layer 21, and an n-type second ohmic wire electrode 20 provided in the transparent oxide film layer 21.
  • a conductive ohmic electrode 25 is provided on the lower surface of the conductive support substrate 24.
  • the above-described light emitting unit 19 is provided on the transparent oxide film layer 21, the above-described light emitting unit 19 is provided.
  • the first ohmic thin wire electrode 11 and the second ohmic thin wire electrode 20 are disposed, for example, at positions where they do not overlap each other when viewed from above.
  • the total film thickness of the quantum well active layer 14 is preferably 200 nm or more and 300 nm or less. This is because, as shown in FIG. 3, the light emission efficiency of the semiconductor light emitting device 10 when the emission wavelength is 585 nm peaks in the range where the total film thickness of the quantum well active layer 14 is 200 nm or more and 300 nm or less. .
  • the light emission efficiency in FIG. 3 is expressed as a ratio when the light emission efficiency when the total film thickness of the quantum well active layer 14 is 250 nm is “1”.
  • the total film thickness of the quantum well active layer 14 is less than 200 nm, the light emission efficiency decreases due to the overflow of carriers, and the total film thickness of the quantum well active layer 14 is 300 nm. If it is thicker, carrier overflow can be suppressed, but self-absorption by the well layer 16 increases, and improvement in luminous efficiency cannot be seen. If the total film thickness of the quantum well active layer 14 is 200 nm or more, a decrease in light emission efficiency due to carrier overflow can be suppressed. If the total film thickness of the quantum well active layer 14 is 300 nm or less, the manufacturing time or It can prevent that material cost increases and manufacturing cost becomes high.
  • the thickness of the well layer 16 is set so that the emission wavelength of the semiconductor light emitting element 10 becomes a desired value, and the total thickness becomes a desired value within the above range.
  • the number of pairs can be adjusted (the number of pairs in the case of the well layer n (n is a positive integer) layer and the barrier layer n + 1 layer is n).
  • the total film thickness of the quantum well active layer 14 can be about 250 nm, for example.
  • the Al composition of the well layer 16 made of an AlGaInP-based compound semiconductor constituting the quantum well active layer 14 is 0.06 or less.
  • the average Al composition of the well active layer 14 can be reduced, whereby non-luminescent centers in the quantum well active layer 14 can be reduced, and high luminous efficiency in a short wavelength region (yellow light emission) can be obtained. Can do.
  • FIG. 2A a semiconductor stacked structure of a plurality of AlGaInP-based materials is formed on a GaAs substrate 26.
  • the quantum well active layer 14, the n-Al 0.5 In 0.5 P n-type cladding layer 17, and the n-GaP n-type current diffusion layer 18 are sequentially deposited by the MOVPE method (metal organic vapor phase epitaxy).
  • the raw materials used in the MOVPE method are organometallic compounds such as trimethylgallium (TMGa), triethylgallium (TEGa), trimethylaluminum (TMAl), trimethylindium (TMIn), arsine (AsH 3 ), phosphine (PH 3 ), etc. Hydride gas can be used.
  • monosilane (SiH 4 ) can be used as the n-type dopant material
  • biscyclopentadienyl magnesium (Cp 2 Mg) can be used as the p-type dopant material
  • hydrogen selenide (H 2 Se) disilane (Si 2 H 6 ), diethyl tellurium (DETe), or dimethyl tellurium (DMTe) can also be used as an n-type dopant material.
  • dimethyl zinc (DMZn) or diethyl zinc (DEZn) can also be used as a raw material of a p-type dopant.
  • a transparent oxide film layer 21 and an n-type second ohmic wire electrode 20 are formed on the surface of the n-type current diffusion layer 18 of the formed semiconductor multilayer structure.
  • an SiO 2 film is formed as the transparent oxide film layer 21 using a plasma CVD (Chemical Vapor Deposition) apparatus, and then an opening is provided using a photolithography method and an etching method. More specifically, an opening is provided by removing the transparent oxide film layer 21 in a region where the resist pattern is not formed using a hydrofluoric acid-based etchant as an etching solution.
  • an AuSi alloy which is a material constituting the n-type second ohmic wire electrode 20, is formed in the opening using a vacuum deposition method.
  • an Al layer as a reflective layer and a barrier layer as a barrier layer are formed on the transparent oxide film layer 21 and the second ohmic wire electrode 20 by using a vacuum deposition method or a sputtering method.
  • a Ti layer and an Au layer as a bonding layer are sequentially formed.
  • the reflective metal layer 22 is formed.
  • a material having a high reflectance with respect to the wavelength of the light is selected according to the wavelength of the light emitted from the quantum well active layer 14.
  • the laminated body 29 is produced as described above.
  • a support substrate 30 in which Au as a bonding layer is formed using a vacuum deposition method is prepared, and this support substrate 30 is bonded to the laminate 29, whereby the support substrate 30 and the laminate 29 are mechanically and electrically connected. Connected joint structure 31 is produced.
  • the pressure inside the bonding apparatus is increased to a predetermined pressure, and then the stacked laminate 29 and the support substrate 30 are heated to a predetermined temperature while applying pressure through a jig.
  • Specific bonding conditions are a pressure of 7000 N / m 2 and a temperature of 350 ° C. for 30 minutes.
  • the n-GaAs substrate 26 is selectively and completely removed from the junction structure 31 using an etchant for GaAs etching, and p-Ga 0.5 In 0. .5 P etching stop layer 27 is exposed.
  • an etchant for GaAs etching for example, a mixed solution of ammonia water and hydrogen peroxide water can be used.
  • the etching stop layer 27 is removed by etching using a predetermined etchant from the bonded structure 31 from which the n-GaAs substrate 26 has been removed (the contact layer 28 is exposed).
  • an etchant containing hydrochloric acid can be used as the predetermined etchant.
  • a p-type ohmic electrode is formed at a predetermined position by using a photolithography method and a vacuum deposition method.
  • the p-type ohmic electrode is formed by a circular electrode (not shown) and a first ohmic wire electrode 11, and is formed by evaporating, for example, Ti, AuBe, and Au in this order.
  • the first ohmic wire electrode 11 is formed at a position that does not overlap the second ohmic wire electrode 20.
  • the contact layer 28 made of p-GaAs is removed by etching.
  • the p-type current diffusion layer 12 can be roughened using the contact layer 28 as a mask. Further, after removing the contact layer 28, the p-type current diffusion layer 12 can be roughened using a predetermined etchant.
  • a conductive ohmic electrode 25 is formed on the substantially entire back surface of the conductive support substrate 24 by a vacuum deposition method.
  • the conductive ohmic electrode 25 on the back surface can be formed, for example, by depositing Ti and Au on the bottom surface of the support substrate 24 in this order.
  • an alloy process which is an alloying process for forming an electrical junction, is applied to each ohmic electrode.
  • heat treatment can be performed at 400 ° C. for 5 minutes in a nitrogen atmosphere as an inert atmosphere. Thereby, the joining structure 32 is produced.
  • the bonded structure 32 is separated into individual elements. Thereby, a plurality of semiconductor light emitting devices 10 as shown in FIG. 1 are manufactured.
  • each layer of the semiconductor light emitting device 10 is as follows.
  • p-type current diffusion layer 12 ... p- (Al 0.4 Ga 0.6 ) 0.5 In 0.5 P p-type cladding layer 13... p-Al 0.5 In 0.5 P Barrier layer 15 ... i- (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P Well layer 16 ... i- (Al 0.06 Ga 0.94 ) 0.5 In 0.5 P n-type cladding layer 17... n-Al 0.5 In 0.5 P, n current diffusion layer 18... n-GaP, GaAs substrate 26 ...
  • the Al composition of the well layer 16 is fixed to 0.06, the film thickness of the well layer 16 is changed, and the total film thickness of the quantum well active layer 14 is about 250 nm.
  • the emission wavelength of the semiconductor light emitting device 10 was changed in the range of 585 to 605 nm.
  • Luminous efficiency was measured for the semiconductor light emitting device fabricated as described above.
  • Table 1 shows the quantum well active layer structure and luminous efficiency at each emission wavelength.
  • the luminous efficiency when the emission wavelength is 615 nm is also shown for reference.
  • FIG. 4 shows the relationship between the emission wavelength and the emission efficiency.
  • a semiconductor light emitting device was fabricated in the same manner as in the example. However, the Al composition and film thickness of the well layer 16 were changed as shown in Table 2, and the emission wavelength was changed in the range of 585 to 605 nm.
  • the semiconductor light emitting device manufactured as described above was measured for luminous efficiency in the same manner as in the example.
  • Table 2 shows the quantum well active layer structure and luminous efficiency at each emission wavelength. In Table 2, the luminous efficiency when the emission wavelength is 615 nm is also shown for reference.
  • FIG. 4 shows the relationship between the emission wavelength and the emission efficiency.
  • the emission efficiency is higher in the example than in the comparative example in the range of the emission wavelength from 585 nm to 605 nm.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 本発明は、井戸層と障壁層とで構成される量子井戸活性層を有する半導体発光素子において、前記半導体発光素子の発光波長が585nm以上、605nm以下であり、前記井戸層が、組成式(AlGa1-xIn1-yP(0<x≦0.06、0<y<1)の化合物半導体からなり、前記障壁層が、組成式(AlGa1-mIn1-nP(0≦m≦1、0<n<1)の化合物半導体からなることを特徴とする半導体発光素子である。これにより、量子井戸構造の活性層を用いながらも、短波長領域(黄色発光)での高い発光効率を得ることができる半導体発光素子が提供される。

Description

半導体発光素子
 本発明は、化合物半導体材料を用いた半導体発光素子に関する。
 AlGaInP系材料は、窒化物を除くIII-V族化合物半導体混晶中で最大の直接遷移型バンドギャップを有し、500~600nm帯の発光素子材料として用いられている。特に、GaAs基板と格子整合するAlGaInPからなる発光部を持つ発光素子は、従来のGaPやGaAsP等の間接遷移型の材料を用いたものに比べ、高輝度な発光が可能である。
 しかしながら、このようなAlGaInPからなる発光部を持つ発光素子であっても、短波長領域(黄色発光)での発光効率は必ずしも十分とは言えなかった。
 短波長領域における発光効率が低下する要因としては、(1)活性層とクラッド層とのエネルギーギャップ差が小さくなるため、キャリアの閉じ込めが不十分になる、(2)活性層のAl組成が高くなるために、活性層中の非発光中心が増加する、(3)エネルギーバンド構造が直接遷移型から間接遷移型に近くなる、等が考えられる。
 これらの問題点を解決するために、特許文献1では、活性層を80~200層の量子井戸構造とし、障壁層におけるAl組成を0.5より大きくする(すなわち、組成式が(AlGa1-x1-yInP(0.5<x≦1)の化合物半導体を用いる)ことでキャリアのオーバーフローを抑制し、高い発光効率を得る方法が開示されている。
 また、特許文献2では、活性層に格子歪を導入した量子井戸構造(すなわち、引張り歪又は圧縮歪を持つ井戸層と、井戸層と反対の歪を持つ歪緩和障壁層とからなる量子井戸構造)とすることで、活性層中のAl組成を減らし高い発光効率を得る方法が開示されている。
特開2008-192790号公報 特開平8-088404号公報
 上述のように短波長領域における発光効率の低下を抑制するために、特許文献1や特許文献2に開示された方法が提案されている。
 しかしながら、特許文献1に開示された方法では、キャリアのオーバーフローは抑制できるが、活性層中のAl組成が高くなるために、発光効率が低下してしまうという問題点があった。
 また、特許文献2に開示された方法では、歪緩和層を用いたとしても歪に起因する結晶中の格子欠陥の増加を招くため、必ずしも高い発光効率を得ることができないという問題点があった。
 本発明は、上記問題点に鑑みてなされたものであって、量子井戸構造の活性層を用いながらも、短波長領域(黄色発光)での高い発光効率を得ることができる半導体発光素子を提供することを目的とする。
 上記目的を達成するために、本発明は、井戸層と障壁層とで構成される量子井戸活性層を有する半導体発光素子において、前記半導体発光素子の発光波長が585nm以上、605nm以下であり、前記井戸層が、組成式(AlGa1-xIn1-yP(0<x≦0.06、0<y<1)の化合物半導体からなり、前記障壁層が、組成式(AlGa1-mIn1-nP(0≦m≦1、0<n<1)の化合物半導体からなることを特徴とする半導体発光素子を提供する。
 このように、量子井戸活性層を構成するAlGaInP系化合物半導体からなる井戸層のAl組成が0.06以下である構成とすることによって、量子井戸活性層の平均Al組成を小さくすることができ、それによって、量子井戸活性層中の非発光中心を減少させることができ、短波長領域(黄色発光)での高い発光効率を得ることができる。
 このとき、前記量子井戸活性層のトータル膜厚が200nm以上、300nm以下であることが好ましい。
 量子井戸活性層のトータル膜厚が200nm以上であれば、キャリアのオーバーフローによる発光効率の低下を抑制することができる。また、量子井戸活性層のトータル膜厚が300nm以下であれば、製造時間や材料費が増加して製造コストが高くなることを防止できる。
 以上のように、本発明の半導体発光素子によれば、量子井戸構造の活性層を用いながらも、短波長領域(黄色発光)での高い発光効率を得ることができる。
本発明の半導体発光素子の実施態様の一例を示す概略断面図である。 本発明の半導体発光素子を製造するのに用いられる製造フローを示す工程断面図である。 量子井戸活性層のトータル膜厚と発光効率との関係を示すグラフである。 実施例及び比較例における発光波長と発光効率との関係を示すグラフである。
 以下、本発明について、実施態様の一例として、図を参照しながら詳細に説明するが、本発明はこれに限定されるものではない。
 前述のように半導体発光素子の短波長領域における発光効率の低下を抑制するために、量子井戸構造の活性層を用いる方法が複数提案されているが、いずれの方法においても、短波長領域(黄色発光)において高い発光効率を得るという点で改善の余地があった。
 そこで、本発明者らは、量子井戸構造の活性層を用いながらも、短波長領域(黄色発光)での高い発光効率を得ることができる半導体発光素子について鋭意検討を重ねた。
 その結果、量子井戸活性層を構成するAlGaInP系の化合物半導体からなる井戸層のAl組成が0.06以下である構成とすることによって、量子井戸活性層の平均Al組成を小さくすることができ、それによって、量子井戸活性層中の非発光中心を減少させることができ、短波長領域(黄色発光)での高い発光効率を得ることができることを見出し、本発明をなすに至った。
 まず、図1を参照しながら、本発明の半導体発光素子の実施態様の一例を説明する。
 図1に示す本発明の半導体発光素子10は、量子井戸活性層14を有する発光部19を有している。量子井戸活性層14は、井戸層16と、障壁層15とが交互に積層されたものである。井戸層16は組成式(AlGa1-xIn1-yP(0<x≦0.06、0<y<1)のi-AlGaInPからなり、障壁層15は組成式(AlGa1-mIn1-nP(0≦m≦1、0<n<1)のi-AlGaInPからなる。半導体発光素子10の発光波長は585nm以上、605nm以下であり、例えば、量子井戸活性層14の井戸層16の膜厚を変更することによって、上記の範囲内の所望の波長とすることができる。
 発光部19は、例えば、第1導電型電流拡散層12、第1導電型クラッド層13、量子井戸活性層14、第2導電型クラッド層17、第2導電型電流拡散層18からなる半導体層である。第1導電型電流拡散層12、第1導電型クラッド層13、第2導電型クラッド層17、第2導電型電流拡散層18はそれぞれ、例えば、組成式(AlGa1-xIn1-yP(0≦x≦1、0<y<1)のp-AlGaInP層、組成式(AlGa1-xIn1-yP(0≦x≦1、0<y<1)のp-AlGaInP層、組成式(AlGa1-xIn1-yP(0≦x≦1、0<y<1)のn-AlGaInP層、n-GaP層である。
 発光部19上には、例えば、p型側の第1オーミック細線電極11及びパッド電極(不図示)が設けられている。
 半導体発光素子10は、例えば、さらに、導電性支持基板24、導電性支持基板24上に設けられた接合金属層23、接合金属層23上に設けられた反射金属層22、反射金属層22上に設けられた透明酸化膜層21、透明酸化膜層21内に設けられたn型側の第2オーミック細線電極20を有し、導電性支持基板24の下面には導電性オーミック電極25が設けられ、透明酸化膜層21上には上述の発光部19が設けられている。また、第1オーミック細線電極11と第2オーミック細線電極20は、例えば、上面から見て互いに重ならない位置に配置されている。
 量子井戸活性層14のトータル膜厚は、200nm以上、300nm以下であることが好ましい。これは、図3に示すように、発光波長が585nmのときの半導体発光素子10の発光効率は、量子井戸活性層14のトータル膜厚が200nm以上、300nm以下の範囲でピークとなるからである。ここで、図3の発光効率は、量子井戸活性層14のトータル膜厚が250nmのときの発光効率を“1”としたときの比率で表わされている。
 なお、図3に示すような特性になるのは、量子井戸活性層14のトータル膜厚が200nmより薄い場合はキャリアのオーバーフローにより発光効率が低下し、量子井戸活性層14のトータル膜厚が300nmより厚い場合はキャリアのオーバーフローを抑制できるが井戸層16による自己吸収が大きくなり発光効率の向上が見られなくなるためである。
 量子井戸活性層14のトータル膜厚が200nm以上であれば、キャリアのオーバーフローによる発光効率の低下を抑制することができ、量子井戸活性層14のトータル膜厚が300nm以下であれば、製造時間や材料費が増加して製造コストが高くなることを防止できる。
 量子井戸活性層14は、例えば、半導体発光素子10の発光波長が所望の値になるように井戸層16の膜厚を設定するとともに、トータル膜厚が上記の範囲内の所望の値となるようにペア数(井戸層n(nは正の整数)層、障壁層n+1層のときのペア数をnとする)の調整を行うことができる。
 量子井戸活性層14のトータル膜厚は、例えば、250nm程度とすることができる。
 図1を用いて上記で説明した本発明の半導体発光素子は、量子井戸活性層14を構成するAlGaInP系の化合物半導体からなる井戸層16のAl組成が0.06以下となっているので、量子井戸活性層14の平均Al組成を小さくすることができ、それによって、量子井戸活性層14中の非発光中心を減少させることができ、短波長領域(黄色発光)での高い発光効率を得ることができる。
 次に、図2を参照しながら、本発明の半導体発光素子を製造する製造方法の一例を説明する。以下、発光波長585nmの半導体発光素子を製造する場合を例にして説明する。
 まず、図2(a)に示すように、GaAs基板26上に複数のAlGaInP系材料の半導体積層構造を形成する。具体的には、n-GaAs基板26上に、例えばp-Ga0.5In0.5Pのエッチングストップ層27とp-GaAsのコンタクト層28、p-(Al0.4Ga0.60.5In0.5Pのp型電流拡散層12、p-Al0.5In0.5Pのp型クラッド層13、アンドープの(Al0.06Ga0.940.5In0.5Pの井戸層16(膜厚2.7nm)とアンドープの(Al0.6Ga0.40.5In0.5Pの障壁層15(膜厚7.7nm)からなる量子井戸活性層14、n-Al0.5In0.5Pのn型クラッド層17、n-GaPのn型電流拡散層18をMOVPE法(有機金属気相成長法)により順次堆積させる。MOVPE法において用いる原料は、トリメチルガリウム(TMGa)、トリエチルガリウム(TEGa)、トリメチルアルミニウム(TMAl)、トリメチルインジウム(TMIn)等の有機金属化合物、及びアルシン(AsH)、フォスフィン(PH)等の水素化物ガスを用いることができる。更に、n型ドーパントの原料は、モノシラン(SiH)、p型ドーパントの原料はビスシクロペンタジエニルマグネシウム(CpMg)を用いることができる。また、n型ドーパントの原料として、セレン化水素(HSe)、ジシラン(Si)、ジエチルテルル(DETe)、又はジメチルテルル(DMTe)を用いることもできる。そして、p型ドーパントの原料としてジメチルジンク(DMZn)又は、ジエチルジンク(DEZn)を用いることもできる。
 次に、図2(b)に示すように、形成した半導体積層構造体のn型電流拡散層18の表面に、透明酸化膜層21、及び、n型側の第2オーミック細線電極20を形成する。具体的には、プラズマCVD(Chemical Vapor Deposition)装置を用いて、透明酸化膜層21としてSiO膜を形成後、フォトリソグラフィー法、及びエッチング法を用いて開口部を設ける。更に詳しくは、エッチング液としてフッ酸系のエッチャントを用いて、レジストパターンが形成されていない領域の透明酸化膜層21を除去することにより開口部を設ける。続いて真空蒸着法を用いて、開口部にn型側の第2オーミック細線電極20を構成する材料であるAuSi合金を形成する。
 次に、図2(c)に示すように、透明酸化膜層21及び第2オーミック細線電極20上に、真空蒸着法又はスパッタ法を用いて、反射層としてのAl層と、バリア層としてのTi層と、接合層としてのAu層とを順次形成する。これにより、反射金属層22が形成される。なお、反射金属層22は、量子井戸活性層14が発する光の波長に応じて、当該光の波長に対する反射率が高い材料を選択する。
 以上のようにして、積層体29が作製される。
 次に、図2(d)に示すように、導電性支持基板(例えば、Si基板)24上に、導電性オーミックの接合金属層23として、コンタクト電極としてのTiと、バリア層としてのNiと、接合層としてのAuとを真空蒸着法を用いて形成した支持基板30を準備し、この支持基板30を積層体29と貼り合せることで、支持基板30と積層体29とが機械的、電気的に接続した接合構造体31が作製される。ウェーハの貼り合せは、貼り合せ装置内を所定圧力にした後、重なりあった積層体29と支持基板30とを冶具を介して圧力を加えると共に、所定の温度まで加熱する。具体的な貼り合せ条件は、圧力7000N/m及び温度350℃で30分間である。
 次に、図2(e)に示すように、GaAsエッチング用のエッチャントを用いて、接合構造体31よりn-GaAs基板26を選択的に完全に除去して、p-Ga0.5In0.5Pからなるエッチングストップ層27を露出させる。GaAsエッチング用のエッチャントとしては、例えば、アンモニア水と過酸化水素水との混合液が挙げられる。次にn-GaAs基板26を除去した接合構造体31より、エッチングストップ層27を所定のエッチャントを用いてエッチングにより除去する(コンタクト層28が露出する。)。エッチングストップ層27がAlGaInP系材料の化合物半導体から形成される場合、所定のエッチャントとしては、塩酸を含むエッチャントを用いることができる。
 次に、図2(f)に示すように、フォトリソグラフィー法及び真空蒸着法を用いて、所定の位置にp型側のオーミック電極を形成する。p型側のオーミック電極は円電極(不図示)と第1オーミック細線電極11で形成され、例えば、Ti、AuBe、Auをこの順に蒸着することにより形成される。この場合、例えば、第1オーミック細線電極11は、第2オーミック細線電極20と重なり合わない位置に形成される。次にp型側のオーミック電極をマスクとして、p-GaAsからなるコンタクト層28をエッチングして除去する。また、コンタクト層28をマスクとしてp型電流拡散層12を粗面化処理することもできる。また、コンタクト層28を除去した後、所定のエッチャントを用いてp型電流拡散層12を粗面化処理することもできる。
 次に、図2(g)に示すように、導電性支持基板24の裏面の略全面に導電性オーミック電極25を真空蒸着法により形成する。裏面の導電性オーミック電極25は、例えば、TiとAuとをこの順に支持基板24の底面に蒸着することにより形成することができる。その後、各オーミック電極に、電気的接合を形成する合金化工程であるアロイ工程を施す。アロイ工程の一例として、不活性雰囲気としての窒素雰囲気下で400℃、5分間の熱処理を施すことができる。これにより接合構造体32が作製される。
 そして、ダイシングブレードを有するダイシング装置を用いて、接合構造体32を各素子に個片化する。これにより、図1に示すような半導体発光素子10が複数作製される。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例)
 図1の半導体発光素子10を、図2で説明した製造方法を用いて作製した。
 ここで、半導体発光素子10の各層は、以下のとおりである。
  p型電流拡散層12…p-(Al0.4Ga0.60.5In0.5
  p型クラッド層13…p-Al0.5In0.5
  障壁層15…i-(Al0.6Ga0.40.5In0.5
  井戸層16…i-(Al0.06Ga0.940.5In0.5
  n型クラッド層17…n-Al0.5In0.5P、
  n電流拡散層18…n-GaP、
  GaAs基板26…n-GaAs
  エッチングストップ層27…p-Ga0.5In0.5P、
  コンタクト層28…p-GaAs
 ただし、表1に示すように、井戸層16のAl組成は0.06に固定して、井戸層16の膜厚を変化させ、さらに、量子井戸活性層14のトータル膜厚が250nm程度となるように井戸層16と障壁層15のペア数を調整することで、半導体発光素子10の発光波長を585~605nmの範囲で変化させた。
 上記のようにして作製した半導体発光素子について、発光効率を測定した。
 各発光波長における量子井戸活性層構造と発光効率を表1に示す。なお、表1には、発光波長が615nmのときの発光効率も参考のために示されている。ここで発光効率は、発光効率(%)=出力(mW)/投入電力(mW)で算出され、発光波長615nmの発光効率を“1”としたときの比率で表している。
 また、発光波長と発光効率との関係を図4に示す。
Figure JPOXMLDOC01-appb-T000001
(比較例)
 実施例と同様にして半導体発光素子を作製した。ただし、井戸層16のAl組成及び膜厚を表2のように変化させて、発光波長を585~605nmの範囲で変化させた。
 上記のようにして作製した半導体発光素子について、実施例と同様にして発光効率を測定した。
 各発光波長における量子井戸活性層構造と発光効率を表2に示す。なお、表2にも、発光波長が615nmのときの発光効率が参考のために示されている。
 また、発光波長と発光効率との関係を図4に示す。
Figure JPOXMLDOC01-appb-T000002
 図4からわかるように、発光波長が585nm以上、605nm以下の範囲において、実施例では、比較例と比べて発光効率が高くなっている。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (2)

  1.  井戸層と障壁層とで構成される量子井戸活性層を有する半導体発光素子において、
     前記半導体発光素子の発光波長が585nm以上、605nm以下であり、
     前記井戸層が、組成式(AlGa1-xIn1-yP(0<x≦0.06、0<y<1)の化合物半導体からなり、
     前記障壁層が、組成式(AlGa1-mIn1-nP(0≦m≦1、0<n<1)の化合物半導体からなることを特徴とする半導体発光素子。
  2.  前記量子井戸活性層のトータル膜厚が200nm以上、300nm以下であることを特徴とする請求項1に記載の半導体発光素子。
PCT/JP2015/004598 2014-10-06 2015-09-10 半導体発光素子 WO2016056171A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015003919.8T DE112015003919T5 (de) 2014-10-06 2015-09-10 Halbleiter-Lichtemissionsbauelement
KR1020177008368A KR20170066365A (ko) 2014-10-06 2015-09-10 반도체 발광 소자
CN201580050792.6A CN107078189A (zh) 2014-10-06 2015-09-10 半导体发光组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-205667 2014-10-06
JP2014205667A JP2016076583A (ja) 2014-10-06 2014-10-06 半導体発光素子

Publications (1)

Publication Number Publication Date
WO2016056171A1 true WO2016056171A1 (ja) 2016-04-14

Family

ID=55652812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004598 WO2016056171A1 (ja) 2014-10-06 2015-09-10 半導体発光素子

Country Status (6)

Country Link
JP (1) JP2016076583A (ja)
KR (1) KR20170066365A (ja)
CN (1) CN107078189A (ja)
DE (1) DE112015003919T5 (ja)
TW (1) TW201614863A (ja)
WO (1) WO2016056171A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497300B (zh) * 2022-01-25 2024-02-27 泉州三安半导体科技有限公司 发光二极管和发光装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153584A (ja) * 2006-12-20 2008-07-03 Toshiba Discrete Technology Kk 半導体発光素子
JP2010267813A (ja) * 2009-05-14 2010-11-25 Toshiba Corp 発光素子及びその製造方法
WO2012137769A1 (ja) * 2011-04-06 2012-10-11 昭和電工株式会社 発光ダイオード、発光ダイオードランプ及び照明装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6066862A (en) * 1998-08-31 2000-05-23 United Epitaxy Company, Ltd. High brightness light emitting diode
JP2002151734A (ja) * 2000-09-04 2002-05-24 Sharp Corp 発光ダイオード
JP2010067903A (ja) * 2008-09-12 2010-03-25 Toshiba Corp 発光素子
CN101540359B (zh) * 2009-04-29 2010-12-29 山东华光光电子有限公司 蓝宝石衬底的AlGaInP发光二极管外延片及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153584A (ja) * 2006-12-20 2008-07-03 Toshiba Discrete Technology Kk 半導体発光素子
JP2010267813A (ja) * 2009-05-14 2010-11-25 Toshiba Corp 発光素子及びその製造方法
WO2012137769A1 (ja) * 2011-04-06 2012-10-11 昭和電工株式会社 発光ダイオード、発光ダイオードランプ及び照明装置

Also Published As

Publication number Publication date
KR20170066365A (ko) 2017-06-14
DE112015003919T5 (de) 2017-05-18
CN107078189A (zh) 2017-08-18
JP2016076583A (ja) 2016-05-12
TW201614863A (en) 2016-04-16

Similar Documents

Publication Publication Date Title
US20170069793A1 (en) Ultraviolet light-emitting device and production method therefor
JP2008288248A (ja) 半導体発光素子
JP5169012B2 (ja) 半導体発光素子
JP2006114886A (ja) n型III族窒化物半導体積層構造体
WO2006126516A1 (ja) 窒化物半導体発光素子
JP2011082233A (ja) 発光素子
JP2008103534A (ja) 半導体発光素子
WO2014167773A1 (ja) 半導体発光素子及びその製造方法
JP4831107B2 (ja) 半導体発光素子
JP2012129357A (ja) 半導体発光素子
JP4140007B2 (ja) 発光素子及び発光素子の製造方法
JP2005085932A (ja) 発光ダイオード及びその製造方法
JP6153351B2 (ja) 半導体発光装置
WO2016056171A1 (ja) 半導体発光素子
JP4341623B2 (ja) 発光素子及びその製造方法
JP5379703B2 (ja) 紫外半導体発光素子
JP2006013463A (ja) Iii族窒化物半導体発光素子
WO2021085340A1 (ja) 発光素子及びその製造方法
TWI672827B (zh) 磊晶晶圓以及發光二極體
JP2011176001A (ja) 発光素子及び発光素子の製造方法
JPWO2008153065A1 (ja) 半導体発光素子及びその製造方法
JP2019117950A (ja) 電子部品
KR20130110748A (ko) 발광 소자 및 그 제조 방법
KR100730755B1 (ko) 수직형 발광소자 제조 방법 및 그 수직형 발광소자
JP4104686B2 (ja) 半導体発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15849789

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015003919

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20177008368

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15849789

Country of ref document: EP

Kind code of ref document: A1