WO2016051532A1 - 靴底用部材、及び、靴 - Google Patents

靴底用部材、及び、靴 Download PDF

Info

Publication number
WO2016051532A1
WO2016051532A1 PCT/JP2014/076168 JP2014076168W WO2016051532A1 WO 2016051532 A1 WO2016051532 A1 WO 2016051532A1 JP 2014076168 W JP2014076168 W JP 2014076168W WO 2016051532 A1 WO2016051532 A1 WO 2016051532A1
Authority
WO
WIPO (PCT)
Prior art keywords
spin
phase
polymer
relaxation time
crosslinked foam
Prior art date
Application number
PCT/JP2014/076168
Other languages
English (en)
French (fr)
Inventor
純一郎 立石
貴士 山出
Original Assignee
株式会社アシックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アシックス filed Critical 株式会社アシックス
Priority to JP2015506013A priority Critical patent/JP5719980B1/ja
Priority to AU2014407795A priority patent/AU2014407795B2/en
Priority to EP14903012.4A priority patent/EP3202276B1/en
Priority to PCT/JP2014/076168 priority patent/WO2016051532A1/ja
Priority to US15/515,076 priority patent/US11382387B2/en
Publication of WO2016051532A1 publication Critical patent/WO2016051532A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/26Elastomers

Definitions

  • the present invention relates to a member for a shoe sole and a shoe, and more specifically, for example, a member for a shoe sole used as an inner sole, a sock liner, a midsole, an outer sole, and such a member for a shoe sole. It relates to the provided shoes.
  • Sports shoes used in various competitions and the like are composed of many members.
  • the shoe in the case of a shoe sole, the shoe is composed of members for a sole such as an inner sole, a sock liner, a midsole, and an outer sole.
  • a material used for such a member for a shoe sole is required to be lightweight, to suppress deformation due to long-time use, and to have characteristics such as mechanical strength and shock buffering properties that can withstand severe use conditions.
  • this type of shoe sole member is made of an ethylene-vinyl acetate copolymer (EVA) or a foam mainly composed of polyethylene.
  • EVA ethylene-vinyl acetate copolymer
  • conventional shoe sole members are made of ethylene-vinyl acetate copolymer (EVA) and / or polyethylene, rubber or ethylene-butene copolymer. It is formed of a foamed product obtained by crosslinking and foaming a blended polymer (EBM), and among them, a product formed by a crosslinked foamed material of ethylene-vinyl acetate copolymer is widely used (see Patent Document 1 below). ).
  • the member for the sole is excellent in rebound resilience while having appropriate rigidity (hardness) and light weight. Furthermore, since the member for a shoe sole may be exposed to a high temperature in a shoemaking process or the like, it is desirable not to cause excessive thermal deformation when exposed to a high temperature, and it is desirable to have heat resistance.
  • the heat resistance of the crosslinked foam tends to decrease. . However, until now, no method has been found to improve both the resilience and heat resistance of the crosslinked foam, making it difficult to satisfy the above requirements.
  • the present invention provides a cross-linked foam that has low specific gravity, excellent heat resistance, and can exhibit mechanical properties suitable for a shoe sole member, thereby providing a shoe sole member suitable for forming a shoe having comfort. It is an object to provide shoes that are provided with comfort and thus have comfort.
  • the present inventor has intensively studied, and the polymer composition that forms the crosslinked foamed body has a spin-spin relaxation time observed in a pulse NMR measurement such as a crystalline phase and an amorphous phase.
  • the above problem can be solved by dividing the phase into three phases, that is, a phase in which the spin-spin relaxation time is observed long and an intermediate phase of these phases, and forming these three phases in a well-balanced crosslinked foam. Found to get. That is, the inventor of the present invention can form the three phases in a well-balanced crosslinked foam, so that the crosslinked foam has low specific gravity, excellent heat resistance, and can exhibit mechanical properties suitable for a shoe sole member. As a result, the present invention was completed.
  • the present invention is a member for a shoe sole, part or all of which is formed of a crosslinked foam
  • the crosslinked foam is formed by crosslinking and foaming a polymer composition, satisfies the following formulas (1) and (2) determined by measuring the spin-spin relaxation time at 23 ° C. by pulse NMR, and A member for a shoe sole that satisfies the following formula (3) obtained by measuring the complex elastic modulus under the conditions of a frequency of 1 Hz, a strain of 0.025%, and a temperature rising rate of 2 ° C./min in dynamic viscoelasticity measurement. .
  • F S / T 2S ⁇ 10 (1) 0.10 ⁇ F M ⁇ T 2M + F L ⁇ T 2L ⁇ 0.30 (2)
  • F S in the above formula (1) represents the content of the S-phase crosslinked foam exhibiting a spin-spin relaxation time of less than 0.02 ms
  • T 2S is the spin-spin of the S phase
  • F M in the above formula (2) represents a content ratio in the M-phase crosslinked foam exhibiting a spin-spin relaxation time of 0.02 ms or more and less than 0.1 ms
  • T 2M represents the spin-spin relaxation time of the M phase.
  • F L in the above formula (2) represents an L-phase crosslinked foaming exhibiting a spin-spin relaxation time of 0.1 ms or more.
  • T 2L represents the spin-spin relaxation time of the L phase, and the unit of F S / T 2S is “1 / ms”, and F M ⁇ T ( The unit of 2M + F L ⁇ T 2L is “ms”.)
  • E * (80 ° C.)” in the above formula (3) represents the complex elastic modulus at 80 ° C.
  • E * (23 ° C.) in the above formula (3) is 23 ° C.
  • the polymer composition contains a styrene thermoplastic elastomer, and the content of the styrene thermoplastic elastomer in the polymer is 20 to 70% by mass.
  • the polymer composition contains a block copolymer of ethylene and ⁇ -olefin, and the content of the block copolymer of ethylene and ⁇ -olefin in the polymer is 20 to 70% by mass. More preferably.
  • the polymer composition contains a polyester thermoplastic elastomer, and the content of the polyester thermoplastic elastomer in the polymer is 20 to 70% by mass.
  • the polymer composition contains a polyamide-based thermoplastic elastomer, and the content ratio of the polyamide-based thermoplastic elastomer in the polymer is 20 to 70% by mass.
  • the present invention is a shoe provided with the above shoe sole member.
  • FIG. 1 The schematic side view showing an embodiment of a shoe including a member for shoe sole.
  • FIG. It shows the F S / T 2S and F M ⁇ T 2M + F L ⁇ T 2L Example ( ⁇ ) and Comparative Example ( ⁇ ).
  • FIG. 1 shows a shoe formed using the shoe sole member of the present embodiment.
  • the shoe 1 includes an upper material 2 and shoe sole members 3 and 4.
  • the shoe 1 includes a midsole 3 and an outer sole 4 as the sole member.
  • the shoe sole member of this embodiment is partially or entirely formed of a crosslinked foam.
  • the polymer composition forming the crosslinked foam has a specific molecular mobility. That is, in order for the crosslinked foam to exhibit the above-described characteristics, the crystalline region in which the molecular motion is strongly restricted by the crystal structure or the quasicrystalline structure, and the molecular motion of the molecular chain relatively freely. It is important that an amorphous region that can be formed is formed in a moderate ratio in the foam film of the crosslinked foam and at the same time, cross-linking or pseudo-crosslinking is formed in an appropriate ratio in the amorphous region.
  • the spin-spin relaxation time can be determined, for example, by performing measurement by the Solid Echo method at a temperature of 23 ° C. using pulse NMR manufactured by Bruker Optics, model name “minispec mq20”.
  • the above formula (1) and the above formula (2) are obtained by pulse NMR measurement at 23 ° C., S phase having a spin-spin relaxation time of less than 0.02 ms, and spin-spin relaxation time of 0.02 ms to 0.1 ms.
  • the polymer composition is obtained by classifying the polymer composition into an M phase of less than L and an L phase with a spin-spin relaxation time of 0.1 ms or more.
  • the unit of F S / T 2S is “1 / ms”
  • the unit of F M ⁇ T 2M + F L ⁇ T 2L is “ms”.
  • the Weibull coefficient of the i component is W i.
  • Such a method for obtaining the relaxation time is disclosed in S. Yamazaki et al Polymer 48 4793 (2007) and the like.
  • the term [F M ⁇ T 2M ] includes the ratio (F M ) of the entire M phase where the spin-spin relaxation time is 0.02 ms or more and less than 0.1 ms, and the relaxation time (T 2M of the M phase). And the ratio of M phase (F M ) is multiplied by the spin-spin relaxation time (T 2M ).
  • the term [F L ⁇ T 2L ] includes the ratio (F L ) of the entire L phase where the spin-spin relaxation time is 0.1 ms or more and the relaxation time (T 2L ) of the L phase. And the ratio of the L phase (F L ) is multiplied by the spin-spin relaxation time (T 2L ).
  • [F L ⁇ T 2L ] and [F M ⁇ T 2M ] preferably satisfy the following conditions. 0.08 ⁇ [F L ⁇ T 2L ] ⁇ 0.30 0.60 ⁇ [F M ⁇ T 2M ] ⁇ 0.90
  • the spin-spin relaxation time (T 2S , T 2M , T 2L ) and the content ratio of each phase (F S , F M , F L ) may vary greatly before and after crosslinking. No. Therefore, if a pulse NMR measurement is performed in a non-crosslinked state to prepare a polymer that satisfies the relationship shown in the above inequality, and the polymer is employed as a polymer in a polymer composition for forming a crosslinked foam, A crosslinked foam satisfying the relationship shown in the above inequality can be obtained with high probability.
  • the spin-spin relaxation time and the content ratio of each phase do not vary greatly depending on whether or not foaming occurs. Therefore, if it is necessary to more reliably predict whether or not a crosslinked foam satisfying the relationship shown in the above inequality can be obtained, a non-foamed crosslinked sample with a polymer is prepared, The prediction may be performed by performing pulse NMR measurement on the sample.
  • the crystalline phase is mainly observed as the S phase in the pulse NMR measurement
  • the amorphous phase is mainly the M phase or Observed as L phase.
  • the hard segment portion is mainly observed as an S phase in pulse NMR measurement
  • the soft segment portion is mainly observed as an M phase or an L phase.
  • spin-spin relaxation is performed according to the ratio of hard segments to soft segments by performing pulsed NMR measurement on several types having different ratios of hard segments and soft segments. You can see how time and rate change.
  • [F S / T 2S] is high and crystallinity polymer crystallinity, exhibits a high value that is contained in more polymer compositions with high block copolymer having the content of the hard segment .
  • [F L ⁇ T 2L + F M ⁇ T 2M ] is obtained by adding more of a crystalline polymer having a low degree of crystallinity and a block copolymer having a high soft segment content to the polymer composition. It shows a high value.
  • the [F M ⁇ T 2M + F L ⁇ T 2L ] With 0.10 or more, it is possible to increase the impact resilience. Further, the rigidity can be increased by setting [F M ⁇ T 2M + F L ⁇ T 2L ] to 0.30 or less and further setting this [F S / T 2S ] to 10 or more.
  • the rebound resilience of the crosslinked foam is preferably 51% or more from the viewpoint of exerting comfort on the shoes. This rebound resilience is a value measured based on ASTM D2632.
  • the specific gravity of the crosslinked foam is preferably 0.05 to 0.30.
  • the specific gravity of the crosslinked foam means a value measured under a temperature condition of 23 ° C. according to JIS K7112 Method A “submersion method”.
  • the Asker C hardness of the crosslinked foam is preferably 70 or less, more preferably 60 or less, 55 It is particularly preferred that However, when the shoe sole member is formed of a crosslinked foam having an excessively low hardness, there is a risk that the comfort of the shoe including the shoe sole member may be reduced. Therefore, the Asker C hardness of the crosslinked foam is preferably 10 or more.
  • the Asker C hardness of the crosslinked foam means an instantaneous value when a spring hardness test according to JIS K7312 type C is performed at 23 ° C.
  • the Asker C hardness is obtained by, for example, preparing a plate-shaped measurement sample having a thickness of 10 mm or more by removing the skin portion from a crosslinked foam formed into a predetermined shape by in-mold foam molding or the like. It can obtain
  • the crosslinked foam is a crosslinked foam that satisfies the condition of the following formula (3).
  • the said crosslinked foam is a crosslinked foam which satisfies the conditions of following formula (4).
  • the above formula (3) and the above formula (4) are the complex elastic modulus of the crosslinked foamed body in the dynamic viscoelasticity measurement (frequency: 1 Hz, strain: 0.025%, temperature rising rate: 2 ° C./min). It is calculated
  • “E * (80 ° C.)” in the above formula (3) represents a complex elastic modulus at 80 ° C.
  • “E * (23 ° C.)” in the above formula (3) and the above formula (4) represents a complex elastic modulus at 23 ° C.
  • “E * ( ⁇ 40 ° C.)” in the above formula (4) represents the complex elastic modulus at ⁇ 40 ° C.
  • the complex elastic modulus means a value measured according to JIS K7244-4: 1999 “Plastics—Testing method of dynamic mechanical properties—Part 4: Tensile vibration—Non-resonance method”.
  • E * (80 ° C.) / E * (23 ° C.) is the ratio of the complex elastic modulus at the standard temperature (23 ° C.) to the complex elastic modulus at the high temperature (80 ° C.).
  • a large E * (80 ° C.) / E * (23 ° C.) indicates that the crosslinked foam is difficult to soften at high temperatures. Therefore, when E * (80 ° C.) / E * (23 ° C.) is 0.1 or more, the crosslinked foam is difficult to soften at high temperatures. As a result, the crosslinked foam is hardly deformed at high temperatures, that is, the crosslinked foam is excellent in heat resistance.
  • E * (80 ° C.) / E * (23 ° C.) is preferably 0.13 or more.
  • E * ( ⁇ 40 ° C.) / E * (23 ° C.) is the ratio of the complex elastic modulus at the standard temperature (23 ° C.) to the complex elastic modulus at the low temperature ( ⁇ 40 ° C.).
  • a small E * ( ⁇ 40 ° C.) / E * (23 ° C.) indicates that the crosslinked foam is difficult to cure at low temperatures. Therefore, when E * ( ⁇ 40 ° C.) / E * (23 ° C.) is 15 or less, the crosslinked foam is difficult to cure at low temperatures.
  • E * ( ⁇ 40 ° C.) / E * (23 ° C.) is preferably 13 or less, more preferably 10 or less.
  • the polymer as the main component of the polymer composition is not particularly limited in the present embodiment, and can be the same as the polymer used for the formation of conventional shoe sole members.
  • polyethylene for example, linear low density polyethylene (LLDPE), high density polyethylene (HDPE)
  • polypropylene for example, linear low density polyethylene (LLDPE), high density polyethylene (HDPE)
  • polypropylene ethylene-propylene copolymer, propylene-1- Hexene copolymer, propylene-4-methyl-1-pentene copolymer, propylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-butene Copolymer (EBM), 1-butene-1-hexene copolymer, 1-butene-4-methyl-pentene, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate Copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer Copolymer, ethylene-
  • the polymer may be a polyurethane polymer such as polyester polyurethane or polyether polyurethane; styrene-ethylene-butylene copolymer (SEB), styrene-butadiene-styrene copolymer.
  • SEB styrene-ethylene-butylene copolymer
  • SBS hydrogenated product of SBS (styrene-ethylene-butylene-styrene copolymer (SEBS)), styrene-isoprene-styrene copolymer (SIS), hydrogenated product of SIS (styrene-ethylene-propylene-styrene) Copolymer (SEPS)), styrene-isobutylene-styrene copolymer (SIBS), styrene-butadiene-styrene-butadiene (SBSB), styrene-butadiene-styrene-butadiene-styrene (SBSBS), polystyrene, acrylonitriles Len resin (AS resin), acrylonitrile butadiene styrene resin (ABS resin) can be employed one or more selected from styrene-based polymers such as styrene-based thermoplastic s
  • polymers that can be used as the polymer in the present embodiment include, for example, fluorine-based polymers such as fluororesin and fluororubber; polyamide-based materials such as polyamide 6, polyamide 11, polyamide 12, polyamide 6, 6, and polyamide 610.
  • Polyamide polymers such as resins and polyamide elastomers; polyester resins such as polyethylene terephthalate and polybutylene terephthalate; polyvinyl chloride resins; acrylic resins such as polymethyl methacrylate; silicone elastomers; butadiene rubber (BR); isoprene rubber (IR); chloroprene (CR); natural rubber (NR); styrene butadiene rubber (SBR); acrylonitrile butadiene rubber (NBR); butyl rubber (IIR).
  • BR butadiene rubber
  • IR isoprene rubber
  • CR chloroprene
  • NR natural rubber
  • SBR styrene butadiene rubber
  • NBR acrylonitrile butadiene rubber
  • IIR butyl rubber
  • the polymer composition includes a styrene thermoplastic elastomer (TPS), a block copolymer of ethylene and ⁇ -olefin, a polyester thermoplastic elastomer, or a polyamide. It is preferable to contain a thermoplastic elastomer, and among them, a styrene thermoplastic elastomer (TPS) is particularly preferable.
  • TPS styrene thermoplastic elastomer
  • the styrenic thermoplastic elastomer (TPS) is preferably contained in an amount of 10% by mass to less than 100% by mass, and 20 to 70% by mass.
  • the polymer when the polymer contains a block copolymer of ethylene and ⁇ -olefin, it preferably contains 10% by mass or more and less than 100% by mass of a block copolymer of ethylene and ⁇ -olefin. It is particularly preferable to contain it by mass%.
  • the polymer when the polymer contains a polyester thermoplastic elastomer, the polymer preferably contains 10% by mass or more and less than 100% by mass, and particularly preferably 20 to 70% by mass. .
  • the polyamide thermoplastic elastomer when the polymer contains a polyamide thermoplastic elastomer, the polyamide thermoplastic elastomer is preferably contained in an amount of 10% by mass or more and less than 100% by mass, particularly preferably 20 to 70% by mass. .
  • the polymer composition preferably contains an ethylene-butene copolymer (EBM) or an ethylene-vinyl acetate copolymer (EVA) from the viewpoint that it is easy to apply a design by heating the crosslinked foam. More preferably, the polymer of the polymer composition contains 20 to 40% by mass of an ethylene-butene copolymer (EBM). More preferably, the polymer of the polymer composition contains 20 to 40% by mass of an ethylene-vinyl acetate copolymer (EVA).
  • the method of crosslinking and foaming such a polymer is not particularly limited, and a crosslinking agent and a foaming agent that are used for forming a general crosslinked foam can also be used in this embodiment.
  • a crosslinking agent and a foaming agent that are used for forming a general crosslinked foam can also be used in this embodiment.
  • the crosslinking agent for example, organic peroxides, maleimide crosslinking agents, sulfur, phenolic crosslinking agents, oximes, polyamines and the like can be adopted, and among them, organic peroxides are preferable.
  • it is also possible to form a crosslinked structure using an electron beam and when carrying out an electron beam crosslinking, an electron beam crosslinking agent can also be used.
  • organic peroxide examples include dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di- (t-butylperoxy) hexane, 2,5-dimethyl-2,5.
  • the organic peroxide is used for forming a crosslinked foam at a ratio of 0.01 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass in total of the polymers contained in the polymer composition of the present embodiment. It is preferable.
  • the said crosslinked foam can adjust a crosslinking density by using together a crosslinking adjuvant with the said crosslinking agent.
  • the crosslinking aid include divinylbenzene, trimethylolpropane trimethacrylate, 1,6-hexanediol methacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, trimellitic acid triallyl ester.
  • the crosslinked foam may be formed by blending inorganic particles having high surface energy such as clay, talc, silica, and carbon black into the polymer composition, and forming pseudo-crosslinking points in the polymer composition by the inorganic particles. Good.
  • the method for foaming the polymer is not particularly limited, and foam molding can be performed by a chemical foaming method using an organic or inorganic chemical foaming agent or a physical foaming method using a physical foaming agent.
  • foaming agent include azodicarbonamide (ADCA), 1,1′-azobis (1-acetoxy-1-phenylethane), dimethyl-2,2′-azobisbutyrate, dimethyl-2,2 ′.
  • foaming agent examples include bicarbonates such as sodium bicarbonate and ammonium bicarbonate, carbonates such as sodium carbonate and ammonium carbonate; nitrites such as ammonium nitrite, and inorganic pyrolytic foaming agents such as hydrogen compounds.
  • bicarbonates such as sodium bicarbonate and ammonium bicarbonate
  • carbonates such as sodium carbonate and ammonium carbonate
  • nitrites such as ammonium nitrite
  • inorganic pyrolytic foaming agents such as hydrogen compounds.
  • the 1 type (s) or 2 or more types selected can be employ
  • organic foaming agents such as various aliphatic hydrocarbons such as methanol, ethanol, propane, butane, pentane and hexane, and inorganic foaming agents such as air, carbon dioxide, nitrogen, argon and water are also used as the crosslinked foam. It can be used as a foaming agent when forming.
  • additives to be contained in the crosslinked foam include dispersants, processing aids, anti-mold agents, flame retardants, pigments, mold release agents, antistatic agents, antibacterial agents, and deodorants.
  • the method for forming such a crosslinked foam is not particularly limited, and a conventionally known method can be employed.
  • the shoe according to the present embodiment includes the member for the sole according to the present embodiment.
  • the member for shoes sole and shoes which concern on this invention are not limited to the said embodiment.
  • the member for shoes sole and shoes which concern on this invention are not limited to an above-described effect.
  • the shoe sole member and the shoe according to the present invention can be variously modified without departing from the gist of the present invention.
  • the shoe sole member of the present invention may be formed only of the above-mentioned crosslinked foam, or other materials such as fabrics and resin sheets are used in combination as long as the effects of the present invention are not impaired. May be formed.
  • TPS-A Styrenic thermoplastic elastomer having a hard segment and a soft segment, and three types of olefin elastomers (hereinafter referred to as “TPO-A”, “TPO-B”, and “TPO-C”) And an ethylene-vinyl acetate copolymer (hereinafter also referred to as “EVA-A”), and spin-spin relaxation time (T 2S , T 2M ) at 25 ° C. using pulsed NMR in a non-crosslinked state.
  • TPS-A Styrenic thermoplastic elastomer having a hard segment and a soft segment, and three types of olefin elastomers (hereinafter referred to as “TPO-A”, “TPO-B”, and “TPO-C”) And an ethylene-vinyl acetate copolymer (hereinafter also referred to as “EVA-A”), and spin-spin relaxation time (T 2S , T 2M )
  • Preliminary study 2 The styrene-based elastomer (TPS-A) of Preliminary Study 1 and the first olefin-based elastomer (TPO-A) are each “80/20” in mass ratio (“TPS-A” / “TPO-A”). , “70/30” and “60/40” were used to produce a crosslinked foamed material with a blended resin.
  • This crosslinked foam was measured by pulse NMR, and the spin-spin relaxation time (T 2S , T 2M , T 2L ) at 25 ° C. and the ratio of each phase (S phase, M phase, L phase) (F S , F M , F L ) were determined.
  • the weighted average value based on the data (No. 1-2, No. 2-2) of the cross-linked foam in Table 1 was calculated. Determined by That is, the value of "T 2L” crosslinked foam "80/20”, the value of "T 2L” in “TPS-A” in Table 1 is “0.245”, a “TPO-A”, " Since the value of “T 2L ” is “0.220”, the formula “(0.245 ⁇ 80 + 0.220 ⁇ 20) / 100” was calculated and predicted to be “0.240”.
  • weighted average values were similarly calculated for other predicted values of the spin-spin relaxation time (T 2S , T 2M ) and the ratio of each phase (F S , F M , F L ).
  • the predicted values based on this weighted average and the values obtained by actually measuring the crosslinked foam are shown in Table 2 below.
  • styrene in which the spin-spin relaxation time (T 2S , T 2M , T 2L ) and the ratio of each phase (F S , F M , F L ) are values shown in Table 3 below in a non-crosslinked state.
  • TPS-B mass ratio
  • TPO-A olefin elastomer
  • This crosslinked foam was measured by pulse NMR, and the spin-spin relaxation time (T 2S , T 2M , T 2L ) at 25 ° C. and the ratio of each phase (F S , F M , F L ) were determined. Further, in order to predict the result of measurement of this crosslinked foamed product by pulse NMR, the data (No. 2-1) in the non-crosslinked state of the olefin elastomer (TPO-A) in Table 1 and Table 3 below. The weighted average value based on the data (No. 6-1) in the non-crosslinked state of the indicated styrene elastomer (TPS-B) was obtained by calculation. The predicted value is shown together with the actual measurement value of the crosslinked foam in Table 3.
  • Examples of polymers include ethylene-butene copolymers (EBM (1), EBM (2)), ethylene-vinyl acetate copolymers (EVA (1), EVA (2)), isoprene rubber, linear low density polyethylene ( LLDPE), high density polyethylene (HDPE), styrenic thermoplastic elastomer (TPS (1), TPS (3), TPS (5)), block copolymer of ethylene and ⁇ -olefin (OBC (1), OBC (2) ), OBC (3)), polyester-based thermoplastic elastomers (TPEE (1), TPEE (2)), and polyamide-based thermoplastic elastomer (TPAE (1)).
  • stearic acid, zinc oxide, chemical foaming agent, cross-linking agent, and cross-linking aid were prepared. And the crosslinked foamed body was produced with the mixing
  • Tables 4 and 5 show the results of measuring the resilience, hardness, specific gravity, and complex modulus of this crosslinked foam. Tables 4 and 5 also show the results of measurement by pulse NMR (23 ° C.) of this crosslinked foam. Since the result of pulse NMR measurement does not change in the room temperature region, the measurement result at, for example, 25 ° C. is the same.
  • FIG. 2 shows the results of pulse NMR measurement of the crosslinked foams of Example 5 and Comparative Example 8. Further, FIG. 3 shows a F S / T 2S and F M ⁇ T 2M + F L ⁇ T 2L Example ( ⁇ ) and Comparative Example ( ⁇ ).
  • the evaluation was performed according to the following criteria. That is, with respect to the resilience, those having a resilience of 51% or more were evaluated as “ ⁇ ”. For the rigidity and lightness, those having a hardness / specific gravity of 200 or more were evaluated as “ ⁇ ”. Furthermore, regarding the heat resistance, the cross-linked foam having E * (80 ° C.) / E * (23 ° C.) of 0.1 or more was evaluated as “ ⁇ ”. Regarding the cross-linked foam, those having E * ( ⁇ 40 ° C.) / E * (23 ° C.) of 15 or less were rated as “ ⁇ ”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

 架橋発泡体によって一部又は全部が形成されている靴底用部材であって、前記架橋発泡体がパルスNMRによる特定の測定結果を示すことを特徴とする靴底用部材などを提供する。

Description

靴底用部材、及び、靴
 本発明は、靴底用部材、及び、靴に関し、より詳しくは、例えば、インナーソール、ソックライナー、ミッドソール、アウターソール等として用いられる靴底用部材、及び、このような靴底用部材を備えた靴に関する。
 各種競技等に使用されるスポーツシューズは、多くの部材から構成されており、例えば、靴底であれば、インナーソール、ソックライナー、ミッドソール、アウターソール等の靴底用部材から構成されている。
 かかる靴底用部材に用いられる素材には、軽量で、長時間の使用による変形を抑え、過酷な使用条件に耐えうる機械的強度、衝撃緩衝性等の特性を有することが求められている。
 従来、この種の靴底用部材は、エチレン-酢酸ビニル共重合体(EVA)やポリエチレンを主成分とした発泡体で形成されている。
 シューズに対して快適性を発揮させるために反発弾性を高めるという観点から、従来の靴底用部材は、エチレン-酢酸ビニル共重合体(EVA)及び/又はポリエチレンに、ゴム又はエチレン-ブテン共重合体(EBM)をブレンドしたものを架橋発泡させた発泡体で形成されており、中でもエチレン-酢酸ビニル共重合体の架橋発泡体によって形成されたものが広く使用されている(下記特許文献1参照)。
 シューズに対して快適性を発揮させるという観点からは、靴底用部材は、適度な剛性(硬度)や軽量性を有しつつ、反発弾性に優れることが望ましい。
 さらに、靴底用部材は、製靴工程等では高温にさらされることがあるので、高温にさらされた際に過度な熱変形を生じないことが望ましく、耐熱性を有することが望ましい。
 一般的に、上記のような靴底用部材に対する要望に関し、特許文献1に開示されているようにEBMにより反発弾性を向上させた場合には、架橋発泡体の耐熱性が低下する傾向にある。
 しかし、これまで、架橋発泡体の反発弾性と耐熱性とを共に優れたものにする手法はこれまで見出されておらず、上記要望を満足させることが困難になっている。
日本国特開平11-206406号公報
 そこで、本発明は、低比重で耐熱性に優れ靴底用部材に適した機械特性を発揮させ得る架橋発泡体を提供することで、快適性を有する靴の形成に適した靴底用部材の提供を図り、ひいては快適性を備えた靴を提供することを課題としている。
 本発明者は、鋭意検討を行い、架橋発泡体を形成するポリマー組成物を結晶相などのようにパルスNMRでの測定においてスピン-スピン緩和時間が短く観察される相と、アモルファス相などのようにスピン-スピン緩和時間が長く観察される相と、これらの中間的な相との3相に区分して考え、これら3相をバランス良く架橋発泡体中に形成させることで上記課題を解決し得ることを見出した。
 即ち、本発明者は、前記3相をバランス良く架橋発泡体中に形成させることで、架橋発泡体が、低比重で耐熱性に優れ靴底用部材に適した機械特性を発揮し得ることを見出して本発明を完成させた。
 即ち、本発明は、架橋発泡体によって一部又は全部が形成されている靴底用部材であって、
 前記架橋発泡体が、ポリマー組成物を架橋発泡させることで形成され、パルスNMRで23℃におけるスピン-スピン緩和時間を測定することにより求められる下記式(1)及び(2)を満足し、且つ、動的粘弾性測定で周波数1Hz、ひずみ0.025%、昇温速度2℃/minの条件で複素弾性率を測定することにより求められる下記式(3)を満足する靴底用部材である。
 
  F/T2S ≧ 10             ・・・(1)
  0.10≦F・T2M+F・T2L≦0.30   ・・・(2)
 
(上記式(1)の「F」は、0.02ms未満のスピン-スピン緩和時間を示すS相の架橋発泡体における含有割合を表し、「T2S」は、該S相のスピン-スピン緩和時間を表している。また、上記式(2)の「F」は、0.02ms以上0.1ms未満のスピン-スピン緩和時間を示すM相の架橋発泡体における含有割合を表し、「T2M」は、該M相のスピン-スピン緩和時間を表している。さらに、上記式(2)の「F」は、0.1ms以上のスピン-スピン緩和時間を示すL相の架橋発泡体における含有割合を表し、「T2L」は、該L相のスピン-スピン緩和時間を表している。また、F/T2Sの単位は、「1/ms」であり、F・T2M+F・T2Lの単位は、「ms」である。)
  E(80℃)/E(23℃)≧0.1     ・・・(3)
 
(上記式(3)の「E(80℃)」は、80℃での複素弾性率を表している。また、上記式(3)の「E(23℃)」は、23℃での複素弾性率を表している。)
 本発明においては、前記ポリマー組成物が、スチレン系熱可塑性エラストマーを含有し、ポリマーに占める前記スチレン系熱可塑性エラストマーの含有割合が、20~70質量%であることがより好ましい。
 また、本発明においては、前記ポリマー組成物が、エチレンとα-オレフィンとのブロックコポリマーを含有し、ポリマーに占める前記エチレンとα-オレフィンとのブロックコポリマーの含有割合が、20~70質量%であることがより好ましい。
 また、本発明においては、前記ポリマー組成物が、ポリエステル系熱可塑性エラストマーを含有し、ポリマーに占める前記ポリエステル系熱可塑性エラストマーの含有割合が、20~70質量%であることがより好ましい。
 また、本発明においては、前記ポリマー組成物が、ポリアミド系熱可塑性エラストマーを含有し、ポリマーに占める前記ポリアミド系熱可塑性エラストマーの含有割合が、20~70質量%であることがより好ましい。
 また、本発明は、上記靴底用部材を備える靴である。
 本発明によれば、快適性を有する靴の形成に適した靴底用部材、及び、快適性を備えた靴を提供することができる。
靴底用部材を備えた靴の一態様を示した該略側面図。 実施例5及び比較例8の架橋発泡体についてパルスNMR測定を行った結果を示す図。 実施例(○)及び比較例(×)のF/T2S及びF・T2M+F・T2Lを示す図。
 本発明の靴底用部材について以下にその実施の形態を例示しつつ説明する。
 図1は、本実施形態の靴底用部材を用いて形成される靴を示したものである。
 該靴1は、アッパー材2と靴底用部材3,4とを有している。
 該靴1は、前記靴底用部材として、ミッドソール3、及び、アウターソール4を有している。
 本実施形態の靴底用部材は、架橋発泡体によって一部又は全部が形成されている。
 本実施形態の架橋発泡体に、前記架橋発泡体を形成するポリマー組成物が特定の分子運動性となっていることが重要である。
 即ち、架橋発泡体に上記のような特性を発揮させるためには、結晶構造又は準結晶構造などによって分子運動が強く規制されている結晶性領域、及び、分子鎖が比較的自由に分子運動ができるアモルファス領域を架橋発泡体の気泡膜中に適度な割合で形成させるとともに該アモルファス領域において適度な割合で架橋又は擬似架橋を形成させることが重要である。
 より具体的には、架橋発泡体をパルスNMRで測定した際に下記式(1)及び下記式(2)の条件を満足する状態にする必要がある。
 なお、スピン-スピン緩和時間は、例えば、ブルカーオプティクス社製のパルスNMR、型名「minispec mq20」を用い、23℃の温度におけるSolid Echo法による測定を実施することなどで求めることができる。
 
  F/T2S ≧ 10             ・・・(1)
  0.10≦F・T2M+F・T2L≦0.30   ・・・(2)
 
 ここで上記式(1)及び上記式(2)は、23℃におけるパルスNMR測定により、スピン-スピン緩和時間が0.02ms未満のS相、スピン-スピン緩和時間が0.02ms以上0.1ms未満のM相、及び、スピン-スピン緩和時間が0.1ms以上のL相に前記ポリマー組成物を区分して求められるものである。また、F/T2Sの単位は、「1/ms」であり、F・T2M+F・T2Lの単位は、「ms」である。
 パルスNMRにおいては、パルス磁場を加えた後の経過時間をt(ms)とし、t=0における磁化をM0、時間tにおける磁化をM(t)とすると、スピン-スピン緩和時間(T)は、下記式に基づいて求められる。
 なお、下記式中の「W」はワイブル係数を表す。
Figure JPOXMLDOC01-appb-M000001
 そして、測定対象をn個の成分に分解した際に、i番目(i<n)の成分に関し、t=0におけるこのi成分の磁化をM0iとし、i成分のワイブル係数をWとするとi成分のスピン-スピン緩和時間(T2i)、及び、i成分の割合Fは、下記式に基づいて求められる。
 例えば、ワイブル係数Wは、W=2、W=1、W=1を用いることができる。
 このような緩和時間の求め方については、S.Yamasaki et al Polymer48 4793 (2007)などに開示されている。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 そして、[F/T2S]の項については、具体的には、パルスNMRでの測定結果におけるスピン-スピン緩和時間が0msよりも大きく0.02ms未満となるS相の全体に占める割合(F)と該S相の緩和時間(T2S[ms])とを求め、前記S相の割合(F)をスピン-スピン緩和時間(T2S)で除して求められる。
 また、[F・T2M]の項は、スピン-スピン緩和時間が0.02ms以上0.1ms未満となるM相の全体に占める割合(F)と該M相の緩和時間(T2M)とを求め、前記M相の割合(F)をスピン-スピン緩和時間(T2M)に乗じて求められる。
 さらに、同様に[F・T2L]の項は、スピン-スピン緩和時間が0.1ms以上となるL相の全体に占める割合(F)と該L相の緩和時間(T2L)とを求め、前記L相の割合(F)をスピン-スピン緩和時間(T2L)に乗じて求められる。
 なお、[F・T2L]、[F・T2M]の項については、下記条件を満足する値となっていることが好ましい。
 
  0.08≦[F・T2L]≦0.30    
 
  0.60≦[F・T2M]≦0.90   
 
 なお、一般的なポリマーであればスピン-スピン緩和時間(T2S、T2M、T2L)や各相の含有割合(F、F、F)が、架橋前後において大きく変動することが無い。
 そのため、非架橋な状態でパルスNMR測定を実施して前記の不等式に示した関係を満足するポリマーを調製し、該ポリマーを架橋発泡体を形成させるためのポリマー組成物のポリマーとして採用すれば、前記の不等式に示した関係を満足する架橋発泡体を高い確率で得ることができる。
 また、一般的なポリマーであれば発泡しているか否かによってスピン-スピン緩和時間や各相の含有割合を大きく異ならせることが無い。
 そのため前記の不等式に示した関係を満足する架橋発泡体が得られるか否かをより確実に予測することが必要な場合であれば、ポリマーによる非発泡な架橋体試料を作製し、該試料に対してパルスNMR測定を実施して前記予測を行えば良い。
 なお、S相、M相、及び、L相の含有割合については、例えば、結晶性ポリマーであれば、主として結晶相がパルスNMR測定においてS相となって観測され、主としてアモルファス相がM相やL相となって観測される。
 また、ハードセグメントとソフトセグメントとを有するブロック共重合体であれば、主としてハードセグメント部分がパルスNMR測定においてS相となって観測され、主としてソフトセグメント部分がM相やL相となって観測される。
 従って、例えば、密度の異なる(結晶化度の異なる)何種類かのポリエチレンについてパルスNMR測定を実施してスピン-スピン緩和時間と各相の含有割合とについてデータを採取しておけば、当該緩和時間や含有割合が結晶化度によってどのような傾向を示すかを把握することができる。
 即ち、架橋発泡体のポリマーをポリエチレンとするような場合には、必ずしも、用いるポリエチレンのパルスNMR測定を予め実施しなくても、他のポリエチレンについて実施したパルスNMR測定の結果から架橋発泡体のスピン-スピン緩和時間や各相の含有割合を予測することができる。
 また、ブロック共重合体に関しても、同様にハードセグメントとソフトセグメントとの割合が異なる何種類かのものに対してパルスNMR測定を実施することでハードセグメントとソフトセグメントとの割合によってスピン-スピン緩和時間と割合とがどのように変化するかを把握することができる。
 さらに、前記ポリマー組成物に複数のポリマーを含有させる場合においては、個々のポリマーについてスピン-スピン緩和時間(T2S、T2M、T2L)と各層の含有割合(F、F、F)とを測定し、ポリマー組成物における配合割合に応じたこれらの加重平均値を算出することにより架橋発泡体のスピン-スピン緩和時間と割合とを予測することができる。
 即ち、[F/T2S]は、結晶化度の高い結晶性ポリマーや、ハードセグメントの含有率の高いブロック共重合体をより多くポリマー組成物に含有させることで高い値を示すようになる。
 また、逆に[F・T2L+F・T2M]は、結晶化度の低い結晶性ポリマーや、ソフトセグメントの含有率の高いブロック共重合体をより多くポリマー組成物に含有させることで高い値を示すようになる。
 本実施形態においては、この〔F・T2M+F・T2L〕を0.10以上とすることで、反発弾性を高くすることができる。
 また、この〔F・T2M+F・T2L〕を0.30以下とし、更に、この[F/T2S]を10以上とすることで、剛性を高くすることができる。
 本実施形態において、シューズに対して快適性を発揮させるという観点から、前記架橋発泡体の反発弾性は、51%以上であることが好ましい。
 この反発弾性は、ASTM D2632に基づいて測定される値である。
 本実施形態において、前記架橋発泡体の比重は、0.05~0.30であることが好ましい。
 なお、架橋発泡体の比重とは、JIS K7112のA法「水中置換法」によって、23℃の温度条件下において測定される値を意味する。
 本実施形態において、靴底用部材を軟質性に優れたものにするという観点から、前記架橋発泡体のアスカーC硬度は、70以下であることが好ましく、60以下であることがより好ましく、55以下であることが特に好ましい。
 ただし、靴底用部材は、過度に低硬度な架橋発泡体で形成されると、当該靴底用部材を備えたシューズの履き心地を低下させるおそれを有する。
 従って、前記架橋発泡体のアスカーC硬度は、10以上であることが好ましい。
 なお、架橋発泡体のアスカーC硬度とは、JIS K7312のタイプCによるスプリング硬さ試験を23℃において実施した際の瞬時値を意味する。
 より具体的には、アスカーC硬度は、例えば、型内発泡成形などによって所定形状とされた架橋発泡体から表皮部分を除去して10mm以上の厚みを有する板状の測定試料を作製し、該測定試料に対してJIS K7312に基づく測定を実施することによって求めることができる。
 本実施形態において、前記架橋発泡体は、下記式(3)の条件を満足する架橋発泡体であることが重要である。
 
  E(80℃)/E(23℃)≧0.1     ・・・(3)
 
 また、前記架橋発泡体は、下記式(4)の条件を満足する架橋発泡体であることが好ましい。
 
  E(-40℃)/E(23℃)≦15     ・・・(4)
 
 ここで、上記式(3)及び上記式(4)は、動的粘弾性測定(周波数:1Hz、ひずみ:0.025%、昇温速度:2℃/min)で架橋発泡体の複素弾性率を測定することにより求められるものである。そして、上記式(3)の「E(80℃)」は、80℃での複素弾性率を表している。また、上記式(3)及び上記式(4)の「E(23℃)」は、23℃での複素弾性率を表している。さらに、上記式(4)の「E(-40℃)」は、-40℃での複素弾性率を表している。
 なお、複素弾性率は、JIS K7244-4:1999「プラスチック-動的機械特性の試験方法-第4部:引張振動-非共振法」に従って測定したものを意味する。
 E(80℃)/E(23℃)は、標準温度(23℃)の複素弾性率と高温(80℃)との複素弾性率との比である。E(80℃)/E(23℃)が大きいと、架橋発泡体が高温下で軟化し難いことを示す。
 従って、E(80℃)/E(23℃)が0.1以上であることにより、架橋発泡体が高温下で軟化し難くなる。その結果、架橋発泡体は、高温下で変形し難くなり、すなわち、架橋発泡体が耐熱性に優れたものとなる。
 E(80℃)/E(23℃)は、好ましくは0.13以上である。
 E(-40℃)/E(23℃)は、標準温度(23℃)の複素弾性率と低温(-40℃)との複素弾性率との比である。E(-40℃)/E(23℃)が小さいと、架橋発泡体が低温下で硬化し難いことを示す。
 従って、E(-40℃)/E(23℃)が15以下であることにより、架橋発泡体が低温下で硬化し難くなる。
 E(-40℃)/E(23℃)は、好ましくは13以下、より好ましくは10以下である。
 該ポリマー組成物の主成分たるポリマーは、本実施形態においては、特に限定が加えられるものではなく、従来の靴底用部材の形成に利用されているポリマーと同様のものとすることができる。
 前記ポリマーとしては、オレフィン系のものであれば、例えば、ポリエチレン(例えば、直鎖状低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE))、ポリプロピレン、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1-ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-ブテン共重合体(EBM)、1-ブテン-1-ヘキセン共重合体、1-ブテン-4-メチル-ペンテン、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体(EVA)、プロピレン-酢酸ビニル共重合体、エチレンとα-オレフィン(炭素数:3~10)との共重合体等から選択される1種又は2種以上を採用することができる。
 また、オレフィン系以外のものであれば、前記ポリマーとしては、ポリエステル系ポリウレタン、ポリエーテル系ポリウレタン等のポリウレタン系ポリマー;スチレン-エチレン-ブチレン共重合体(SEB)、スチレン-ブタジエン-スチレン共重合体(SBS)、SBSの水素添加物(スチレン-エチレン-ブチレン-スチレン共重合体(SEBS))、スチレン-イソプレン-スチレン共重合体(SIS)、SISの水素添加物(スチレン-エチレン-プロピレン-スチレン共重合体(SEPS))、スチレン-イソブチレン-スチレン共重合体(SIBS)、スチレン-ブタジエン-スチレン-ブタジエン(SBSB)、スチレン-ブタジエン-スチレン-ブタジエン-スチレン(SBSBS)、ポリスチレン、アクリロニトリルスチレン樹脂(AS樹脂)、アクリロニトリルブタジエンスチレン樹脂(ABS樹脂)、スチレン系熱可塑性エラストマー(TPS)等のスチレン系ポリマー等から選択される1種又は2種以上を採用することができる。
 また、前記ポリマーとしてその他には、ポリエステル系熱可塑性エラストマー(TPEE)、ポリアミド系熱可塑性エラストマー(TPAE)等も採用することもできる。
 さらに、本実施形態において前記ポリマーとして採用可能なポリマーを挙げると、例えば、フッ素樹脂やフッ素ゴムなどのフッ素系ポリマー;ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド6,6、ポリアミド610などのポリアミド系樹脂やポリアミド系エラストマーといったポリアミド系ポリマー;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂;ポリ塩化ビニル系樹脂;ポリメタクリル酸メチルなどのアクリル系樹脂;シリコーン系エラストマー;ブタジエンゴム(BR);イソプレンゴム(IR);クロロプレン(CR);天然ゴム(NR);スチレンブタジエンゴム(SBR);アクリロニトリルブタジエンゴム(NBR);ブチルゴム(IIR)などが挙げられる。
 また、特に、架橋発泡体の反発弾性を高めるという観点から、前記ポリマー組成物は、スチレン系熱可塑性エラストマー(TPS)、エチレンとα-オレフィンとのブロックコポリマー、ポリエステル系熱可塑性エラストマー、又は、ポリアミド系熱可塑性エラストマーを含有することが好ましく、なかでも、スチレン系熱可塑性エラストマー(TPS)が特に好ましい。
 前記ポリマーは、スチレン系熱可塑性エラストマー(TPS)を含有する場合には、スチレン系熱可塑性エラストマー(TPS)を、10質量%以上100質量%未満含有することが好ましく、20~70質量%含有することが特に好ましい。
 また、前記ポリマーは、エチレンとα-オレフィンとのブロックコポリマーを含有する場合には、エチレンとα-オレフィンとのブロックコポリマーを、10質量%以上100質量%未満含有することが好ましく、20~70質量%含有することが特に好ましい。
 また、前記ポリマーは、ポリエステル系熱可塑性エラストマーを含有する場合には、ポリエステル系熱可塑性エラストマーを、10質量%以上100質量%未満含有することが好ましく、20~70質量%含有することが特に好ましい。
 また、前記ポリマーは、ポリアミド系熱可塑性エラストマーを含有する場合には、ポリアミド系熱可塑性エラストマーを、10質量%以上100質量%未満含有することが好ましく、20~70質量%含有することが特に好ましい。
 エチレン-ブテン共重合体(EBM)やエチレン-酢酸ビニル共重合体(EVA)は、比較的融点が低い。
 よって、前記ポリマー組成物は、架橋発泡体を加熱して意匠を施しやすいという観点から、エチレン-ブテン共重合体(EBM)やエチレン-酢酸ビニル共重合体(EVA)を含有することが好ましい。
 前記ポリマー組成物のポリマーは、エチレン-ブテン共重合体(EBM)を20~40質量%含有することがより好ましい。
 また、前記ポリマー組成物のポリマーは、エチレン-酢酸ビニル共重合体(EVA)を20~40質量%含有することがより好ましい。
 このようなポリマーを架橋発泡させる手法は特に限定されず、一般的な架橋発泡体の形成に利用されている架橋剤、及び、発泡剤を本実施形態においても用いることができる。
 該架橋剤としては、例えば、有機過酸化物、マレイミド系架橋剤、硫黄、フェノール系架橋剤、オキシム類、ポリアミン等を採用することが可能であるが、なかでも有機過酸化物が好ましい。また、電子線を用いて架橋構造を形成させることも可能であり、電子線架橋を実施する場合には、電子線架橋剤を用いることもできる。
 該有機過酸化物としては、例えば、ジクミルペルオキシド、ジ-t-ブチルペルオキシド、2,5-ジメチル-2,5-ジ-(t-ブチルペルオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(t-ブチルペルオキシ)ヘキシン-3、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(t-ブチルペルオキシ)バレレート、ベンゾイルペルオキシド、p-クロロベンゾイルペルオキシド、2,4-ジクロロベンゾイルペルオキシド、t-ブチルペルオキシベンゾエート、t-ブチルペルベンゾエート、t-ブチルペルオキシイソプロピルカーボネート、ジアセチルペルオキシド、ラウロイルペルオキシド、t-ブチルクミルペルオキシド等から選択される1種又は2種以上を採用することができる。
 前記有機過酸化物は、本実施形態のポリマー組成物中に含有されるポリマーの合計100質量部に対して0.01質量部以上10質量部以下となる割合で架橋発泡体の形成に使用されることが好ましい。
 また、前記架橋発泡体は、前記架橋剤とともに架橋助剤を併用して架橋密度を調整させることができる。
 この架橋助剤としては、例えば、ジビニルベンゼン、トリメチロールプロパントリメタクリレート、1,6-ヘキサンジオールメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、トリメリット酸トリアリルエステル、トリアリルイソシアネート、ネオペンチルグリコールジメタクリレート、1,2,4-ベンゼントリカルボン酸トリアリルエステル、トリシクロデカンジメタクリレート、ポリエチレングリコールジアクリレート等から選択される1種又は2種以上を採用することができる。
 また、前記架橋発泡体は、クレー、タルク、シリカ、カーボンブラックといった表面エネルギーの高い無機物粒子をポリマー組成物にブレンドし、当該無機物粒子によってポリマー組成物中に擬似架橋点を形成させるようにしてもよい。
 ポリマーを発泡させる手法は特に限定されず、有機系や無機系の化学発泡剤を用いた化学発泡法や、物理発泡剤を用いた物理発泡法により、発泡成形することができる。
 前記発泡剤としては、例えば、アゾジカルボンアミド(ADCA)、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、ジメチル-2,2’-アゾビスブチレート、ジメチル-2,2’-アゾビスイソブチレート、2,2’-アゾビス(2,4,4-トリメチルペンタン)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチル-プロピオンアミジン]等のアゾ化合物;N,N’-ジニトロソペンタメチレンテトラミン(DPT)等のニトロソ化合物;4,4’-オキシビス(ベンゼンスルホニルヒドラジド)、ジフェニルスルホン-3,3’-ジスルホニルヒドラジド等のヒドラジン誘導体;p-トルエンスルホニルセミカルバジド等のセミカルバジド化合物;トリヒドラジノトリアジンなどの有機系熱分解型発泡剤から選択される1種又は2種以上を採用することができる。
 また、前記発泡剤としては、炭酸水素ナトリウム、炭酸水素アンモニウム等の重炭酸塩、炭酸ナトリウム、炭酸アンモニウム等の炭酸塩;亜硝酸アンモニウム等の亜硝酸塩、水素化合物などの無機系熱分解型発泡剤から選択される1種又は2種以上を採用することができる。
 さらに、メタノール、エタノール、プロパン、ブタン、ペンタン、ヘキサン等の各種脂肪族炭化水素類などの有機系発泡剤、空気、二酸化炭素、窒素、アルゴン、水などの無機系発泡剤も前記架橋発泡体を形成させる際の発泡剤として用いることができる。
 前記架橋発泡体に含有させるその他の添加剤としては、分散剤、加工助剤、耐侯剤、難燃剤、顔料、離型剤、帯電防止剤、抗菌剤、消臭剤等が挙げられる。
 このような架橋発泡体を形成させる方法としては、特に限定されることなく、従来公知の方法を採用することができる。
 本実施形態に係る靴は、本実施形態に係る靴底用部材を備えている。
 なお、本発明に係る靴底用部材及び靴は、上記実施形態に限定されるものではない。また、本発明に係る靴底用部材及び靴は、上記した作用効果に限定されるものでもない。本発明に係る靴底用部材及び靴は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 例えば、本発明の靴底用部材は、上記のような架橋発泡体のみによって形成させてもよく、或いは、本発明の効果が損なわれない範囲内において布帛や樹脂シート等の他の素材を併用して形成させてもよい。
 次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
(予備検討1)
 ハードセグメントとソフトセグメントとを有するスチレン系熱可塑性エラストマー(以下「TPS-A」ともいう)、3種類のオレフィン系エラストマー(以下「TPO-A」、「TPO-B」、「TPO-C」ともいう)、及び、エチレン-酢酸ビニル共重合体(以下「EVA-A」ともいう)を用意し、非架橋な状態でパルスNMRを用いて25℃におけるスピン-スピン緩和時間(T2S、T2M、T2L)と各相(S相、M相、L相)の含有割合(F、F、F)とを測定した。
 また、これらのポリマーを使って作製した架橋発泡体についてもパルスNMRでスピン-スピン緩和時間と各相の含有割合とを測定した。
 結果を、下記表1に示す。
Figure JPOXMLDOC01-appb-T000004
(予備検討2)
 前記予備検討1のスチレン系エラストマー(TPS-A)と1番目のオレフィン系エラストマー(TPO-A)とを質量比(「TPS-A」/「TPO-A」)で、それぞれ「80/20」、「70/30」、「60/40」となる割合でブレンドした混合樹脂で架橋発泡体を作製した。
 そして、この架橋発泡体をパルスNMRで測定し、25℃におけるスピン-スピン緩和時間(T2S、T2M、T2L)及び各相(S相、M相、L相)の割合(F、F、F)を求めた。
 また、この混合樹脂による架橋発泡体をパルスNMRで測定した結果を予測すべく、表1の架橋発泡体のデータ(No.1-2、No.2-2)に基づいた加重平均値を計算により求めた。
 即ち、「80/20」の架橋発泡体の「T2L」の値は、表1における「TPS-A」の「T2L」の値が「0.245」で、「TPO-A」の「T2L」の値が「0.220」であることから、「(0.245×80+0.220×20)/100」の式を計算して「0.240」となるものと予測した。
 また、その他のスピン-スピン緩和時間(T2S、T2M)や各相の割合(F、F、F)の予測値についても同様に加重平均値を計算により求めた。
 この加重平均による予測値と架橋発泡体を実測した値とを下記表2に示す。
Figure JPOXMLDOC01-appb-T000005
 また、非架橋な状態でスピン-スピン緩和時間(T2S、T2M、T2L)、及び、各相の割合(F、F、F)が下記表3に記載の値となるスチレン系エラストマー(以下「TPS-B」ともいう)と、先のオレフィン系エラストマー(TPO-A)とを質量比(「TPS-B」/「TPO-A」)で「80/20」となる割合でブレンドした混合樹脂で架橋発泡体を作製した。
 この架橋発泡体をパルスNMRで測定し、25℃におけるスピン-スピン緩和時間(T2S、T2M、T2L)及び各相の割合(F、F、F)を求めた。
 また、この架橋発泡体をパルスNMRで測定した結果を予測すべく、表1におけるオレフィン系エラストマー(TPO-A)の非架橋な状態でのデータ(No.2-1)と、下記表3に示したスチレン系エラストマー(TPS-B)の非架橋な状態でのデータ(No.6-1)に基づいた加重平均値を計算により求めた。
 この予測値を架橋発泡体の実測値とともに表3に併せて示す。
Figure JPOXMLDOC01-appb-T000006
 上記の表に示された結果からも、架橋前のポリマーなどに対してパルスNMRでスピン-スピン緩和時間や各相の割合を測定することで、当該ポリマーを用いて架橋発泡体を作成した際に、この架橋発泡体のスピン-スピン緩和時間や各相の含有割合がどのような値となるかを予測することが容易になることがわかる。
 即ち、上記表に示された結果から、架橋発泡体が下記不等式を満たすか否かを事前に予測することが容易であることがわかる。
 
  F/T2S ≧ 10             ・・・(1)
  0.10≦F・T2M+F・T2L≦0.30   ・・・(2)
 
(実施例、比較例)
 ポリマーとして、エチレン-ブテン共重合体(EBM(1)、EBM(2))、エチレン-酢酸ビニル共重合体(EVA(1)、EVA(2))、イソプレンゴム、直鎖状低密度ポリエチレン(LLDPE)、高密度ポリエチレン(HDPE)、スチレン系熱可塑性エラストマー(TPS(1)、TPS(3)、TPS(5))、エチレンとα-オレフィンとのブロックコポリマー(OBC(1)、OBC(2)、OBC(3))、ポリエステル系熱可塑性エラストマー(TPEE(1)、TPEE(2))、及び、ポリアミド系熱可塑性エラストマー(TPAE(1))を用意した。また、その他の成分として、ステアリン酸、酸化亜鉛、化学発泡剤、架橋剤、及び、架橋助剤を用意した。
 そして、下記表4、5に示すような配合で架橋発泡体を作製した。
 この架橋発泡体の反発弾性、硬度、比重、及び、複素弾性率を測定した結果を表4、5に示す。
 また、この架橋発泡体のパルスNMRによる測定(23℃)を行った結果も表4、5に示す。なお、パルスNMR測定の結果は、室温領域では変わらないので、例えば25℃での測定結果も同じである。
 なお、図2は、実施例5及び比較例8の架橋発泡体についてパルスNMR測定を行った結果を示す。
 また、図3は、実施例(○)及び比較例(×)のF/T2S及びF・T2M+F・T2Lを示す。
 なお、以下の基準で評価を行った。
 すなわち、反発弾性については、反発弾性が51%以上のものを「○」とした。
 また、剛性及び軽量性については、硬度/比重が200以上のものを「○」とした。
 さらに、耐熱性については、架橋発泡体のE(80℃)/E(23℃)が0.1以上のものを「○」とした。
 また、については、架橋発泡体のE(-40℃)/E(23℃)が15以下のものを「○」とした。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表4、5に示すように、本発明によれば、低比重で耐熱性に優れ靴底用部材に適した機械特性を発揮させ得る架橋発泡体を提供することで、快適性を有する靴の形成に適した靴底用部材、及び、快適性を備えた靴を提供することができることがわかる。
1:靴、3:ミッドソール、4:アウターソール

Claims (6)

  1.  架橋発泡体によって一部又は全部が形成されている靴底用部材であって、
     前記架橋発泡体は、ポリマー組成物を架橋発泡させることで形成され、パルスNMRで23℃におけるスピン-スピン緩和時間を測定することにより求められる下記式(1)及び(2)を満足し、且つ、動的粘弾性測定で周波数1Hz、ひずみ0.025%、昇温速度2℃/minの条件で複素弾性率を測定することにより求められる下記式(3)を満足する靴底用部材。
     
      F/T2S ≧ 10             ・・・(1)
      0.10≦F・T2M+F・T2L≦0.30   ・・・(2)
     
    (上記式(1)の「F」は、0.02ms未満のスピン-スピン緩和時間を示すS相の架橋発泡体における含有割合を表し、「T2S」は、該S相のスピン-スピン緩和時間を表している。また、上記式(2)の「F」は、0.02ms以上0.1ms未満のスピン-スピン緩和時間を示すM相の架橋発泡体における含有割合を表し、「T2M」は、該M相のスピン-スピン緩和時間を表している。さらに、上記式(2)の「F」は、0.1ms以上のスピン-スピン緩和時間を示すL相の架橋発泡体における含有割合を表し、「T2L」は、該L相のスピン-スピン緩和時間を表している。また、F/T2Sの単位は、「1/ms」であり、F・T2M+F・T2Lの単位は、「ms」である。)
      E(80℃)/E(23℃)≧0.1     ・・・(3)
     
    (上記式(3)の「E(80℃)」は、80℃での複素弾性率を表している。また、上記式(3)の「E(23℃)」は、23℃での複素弾性率を表している。)
  2.  前記ポリマー組成物が、スチレン系熱可塑性エラストマーを含有し、
     ポリマーに占める前記スチレン系熱可塑性エラストマーの含有割合が、20~70質量%である請求項1に記載の靴底用部材。
  3.  前記ポリマー組成物が、エチレンとα-オレフィンとのブロックコポリマーを含有し、
     ポリマーに占める前記エチレンとα-オレフィンとのブロックコポリマーの含有割合が、20~70質量%である請求項1に記載の靴底用部材。
  4.  前記ポリマー組成物が、ポリエステル系熱可塑性エラストマーを含有し、
     ポリマーに占める前記ポリエステル系熱可塑性エラストマーの含有割合が、20~70質量%である請求項1に記載の靴底用部材。
  5.  前記ポリマー組成物が、ポリアミド系熱可塑性エラストマーを含有し、
     ポリマーに占める前記ポリアミド系熱可塑性エラストマーの含有割合が、20~70質量%である請求項1に記載の靴底用部材。
  6.  請求項1~5の何れか1項に記載の靴底用部材を備える靴。
PCT/JP2014/076168 2014-09-30 2014-09-30 靴底用部材、及び、靴 WO2016051532A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015506013A JP5719980B1 (ja) 2014-09-30 2014-09-30 靴底用部材、及び、靴
AU2014407795A AU2014407795B2 (en) 2014-09-30 2014-09-30 Shoe sole member and shoe
EP14903012.4A EP3202276B1 (en) 2014-09-30 2014-09-30 Shoe sole member and shoe
PCT/JP2014/076168 WO2016051532A1 (ja) 2014-09-30 2014-09-30 靴底用部材、及び、靴
US15/515,076 US11382387B2 (en) 2014-09-30 2014-09-30 Shoe sole member and shoe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/076168 WO2016051532A1 (ja) 2014-09-30 2014-09-30 靴底用部材、及び、靴

Publications (1)

Publication Number Publication Date
WO2016051532A1 true WO2016051532A1 (ja) 2016-04-07

Family

ID=53277838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076168 WO2016051532A1 (ja) 2014-09-30 2014-09-30 靴底用部材、及び、靴

Country Status (5)

Country Link
US (1) US11382387B2 (ja)
EP (1) EP3202276B1 (ja)
JP (1) JP5719980B1 (ja)
AU (1) AU2014407795B2 (ja)
WO (1) WO2016051532A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105153A (ja) * 2019-12-27 2021-07-26 株式会社アシックス 緩衝体及び靴
JP2021107530A (ja) * 2019-12-27 2021-07-29 株式会社アシックス 緩衝体及び靴
CN113429645A (zh) * 2021-07-02 2021-09-24 晋江市石达塑胶精细有限公司 兼具减震功能的温敏响应形状记忆发泡材料及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10856604B2 (en) * 2015-09-18 2020-12-08 Asics Corporation Shoe sole member and shoe
JP2017086295A (ja) * 2015-11-06 2017-05-25 株式会社イノアックコーポレーション 靴底用部材
WO2017115416A1 (ja) * 2015-12-28 2017-07-06 株式会社アシックス 衝撃緩衝材、靴底用部材、靴、及び、スポーツ用保護具
EP3429385B1 (en) * 2016-03-15 2021-09-08 Nike Innovate C.V. Foam compositions and uses thereof
JP2019515057A (ja) * 2016-03-15 2019-06-06 ナイキ イノヴェイト シーヴィーNike Innovate C.V. 発泡体組成物及びその使用
WO2017160876A1 (en) * 2016-03-15 2017-09-21 Nike Innovate C.V. Foam compositions and uses thereof
US10442909B2 (en) * 2017-11-15 2019-10-15 National Chung Shan Institute Of Science And Technology Constituent for producing shock-absorbing composite material, shock-absorbing composite material, and production method thereof
TWI663040B (zh) * 2018-04-09 2019-06-21 國家中山科學研究院 Shock absorbing gasket and preparation method thereof
CN116138540A (zh) 2018-06-04 2023-05-23 耐克创新有限合伙公司 两部分鞋底结构及其用途
US11523655B2 (en) 2018-12-03 2022-12-13 Nike, Inc. High energy return foam compositions having improved abrasion resistance and uses thereof
CN110713641B (zh) * 2019-10-25 2021-06-15 陕西科技大学 一种柔软缓震、耐撕裂运动鞋垫材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125263A (ja) * 1991-03-27 1993-05-21 Japan Synthetic Rubber Co Ltd 熱可塑性エラストマー組成物
JP2004043606A (ja) * 2002-07-10 2004-02-12 Mitsui Chemicals Inc 組成物およびその用途
WO2006057361A1 (ja) * 2004-11-25 2006-06-01 Mitsui Chemicals, Inc. プロピレン系樹脂組成物およびその用途
JP2007238783A (ja) * 2006-03-09 2007-09-20 Mitsui Chemicals Inc 発泡体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW203079B (ja) 1991-03-27 1993-04-01 Japan Synthetic Rubber Co Ltd
JPH11206406A (ja) 1998-01-27 1999-08-03 Asics Corp 靴底用発泡体
KR101396097B1 (ko) * 2008-12-22 2014-05-15 아사히 가세이 케미칼즈 가부시키가이샤 가교 발포용 조성물, 가교 발포체 및 이것을 이용한 구두용 미드솔
WO2013108378A1 (ja) * 2012-01-18 2013-07-25 株式会社アシックス 発泡ソール、及びシューズ
CN103571033A (zh) * 2013-10-15 2014-02-12 苏州市景荣科技有限公司 一种抗收缩eva发泡鞋材
CN103571034A (zh) * 2013-10-15 2014-02-12 苏州市景荣科技有限公司 一种抗撕裂和抗静电eva发泡鞋材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125263A (ja) * 1991-03-27 1993-05-21 Japan Synthetic Rubber Co Ltd 熱可塑性エラストマー組成物
JP2004043606A (ja) * 2002-07-10 2004-02-12 Mitsui Chemicals Inc 組成物およびその用途
WO2006057361A1 (ja) * 2004-11-25 2006-06-01 Mitsui Chemicals, Inc. プロピレン系樹脂組成物およびその用途
JP2007238783A (ja) * 2006-03-09 2007-09-20 Mitsui Chemicals Inc 発泡体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202276A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105153A (ja) * 2019-12-27 2021-07-26 株式会社アシックス 緩衝体及び靴
JP2021107530A (ja) * 2019-12-27 2021-07-29 株式会社アシックス 緩衝体及び靴
JP7075921B2 (ja) 2019-12-27 2022-05-26 株式会社アシックス 緩衝体及び靴
JP7100107B2 (ja) 2019-12-27 2022-07-12 株式会社アシックス 緩衝体及び靴
US11779076B2 (en) 2019-12-27 2023-10-10 Asics Corporation Cushion and shoe
CN113429645A (zh) * 2021-07-02 2021-09-24 晋江市石达塑胶精细有限公司 兼具减震功能的温敏响应形状记忆发泡材料及其制备方法和应用
CN113429645B (zh) * 2021-07-02 2023-09-01 晋江市石达塑胶精细有限公司 兼具减震功能的温敏响应形状记忆发泡材料及其制备方法和应用

Also Published As

Publication number Publication date
EP3202276B1 (en) 2020-04-22
JP5719980B1 (ja) 2015-05-20
JPWO2016051532A1 (ja) 2017-04-27
EP3202276A4 (en) 2018-05-30
AU2014407795B2 (en) 2020-07-23
US20170215522A1 (en) 2017-08-03
EP3202276A1 (en) 2017-08-09
AU2014407795A1 (en) 2017-04-27
US11382387B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
JP5719980B1 (ja) 靴底用部材、及び、靴
WO2014192910A1 (ja) 靴底用部材、及び、靴
JP6395344B2 (ja) 衝撃緩衝材、靴底用部材、靴、及び、スポーツ用保護具
JP4505469B2 (ja) 靴底用部材
JP5685343B2 (ja) 発泡成形品、発泡ソール、及びシューズ
JP2019514451A (ja) 発泡体組成物及びその使用
US11576461B2 (en) Shoe sole member, method for producing the same, and shoe
AU2013388295A1 (en) Member for shoe sole
JP5690983B1 (ja) 靴底用部材、及び、靴
JP2015193783A (ja) 発泡体用ゴム組成物とそれを用いた靴底用ゴム発泡体と靴底
JP7039651B2 (ja) 靴底用ゴム発泡体
EP3488722A1 (en) Outsoles and shoes
JP2023137884A (ja) エチレン・1-ブテン共重合体組成物およびその用途

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015506013

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14903012

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15515076

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014903012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014903012

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014407795

Country of ref document: AU

Date of ref document: 20140930

Kind code of ref document: A