WO2016042882A1 - 車両制御装置及び車両制御方法 - Google Patents

車両制御装置及び車両制御方法 Download PDF

Info

Publication number
WO2016042882A1
WO2016042882A1 PCT/JP2015/068938 JP2015068938W WO2016042882A1 WO 2016042882 A1 WO2016042882 A1 WO 2016042882A1 JP 2015068938 W JP2015068938 W JP 2015068938W WO 2016042882 A1 WO2016042882 A1 WO 2016042882A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
kinetic energy
engine
preceding vehicle
idle stop
Prior art date
Application number
PCT/JP2015/068938
Other languages
English (en)
French (fr)
Inventor
智紀 川上
裕人 今西
健男 芝田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP15842044.8A priority Critical patent/EP3196445B1/en
Priority to JP2016548597A priority patent/JP6370388B2/ja
Priority to US15/501,763 priority patent/US10550785B2/en
Priority to CN201580033492.7A priority patent/CN106662021B/zh
Publication of WO2016042882A1 publication Critical patent/WO2016042882A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0833Vehicle conditions
    • F02N11/0837Environmental conditions thereof, e.g. traffic, weather or road conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1516Digital data processing using one central computing unit with means relating to exhaust gas recirculation, e.g. turbo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18066Coasting
    • B60Y2300/18083Coasting without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/192Power-up or power-down of the driveline, e.g. start up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/43Control of engines
    • B60Y2300/436Control of engine ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/50Input parameters for engine control said parameters being related to the vehicle or its components
    • F02D2200/501Vehicle speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/04Parameters used for control of starting apparatus said parameters being related to the starter motor
    • F02N2200/046Energy or power necessary for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/10Parameters used for control of starting apparatus said parameters being related to driver demands or status
    • F02N2200/101Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/10Parameters used for control of starting apparatus said parameters being related to driver demands or status
    • F02N2200/102Brake pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2200/00Parameters used for control of starting apparatus
    • F02N2200/12Parameters used for control of starting apparatus said parameters being related to the vehicle exterior
    • F02N2200/125Information about other vehicles, traffic lights or traffic congestion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N2300/00Control related aspects of engine starting
    • F02N2300/30Control related aspects of engine starting characterised by the use of digital means
    • F02N2300/302Control related aspects of engine starting characterised by the use of digital means using data communication
    • F02N2300/306Control related aspects of engine starting characterised by the use of digital means using data communication with external senders or receivers, e.g. receiving signals from traffic lights, other vehicles or base stations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N5/00Starting apparatus having mechanical power storage
    • F02N5/04Starting apparatus having mechanical power storage of inertia type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • F02P5/1522Digital data processing dependent on pinking with particular means concerning an individual cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Definitions

  • the present invention relates to a vehicle control device and a vehicle that perform idle stop control during traveling that temporarily stops the in-vehicle engine when the driving / running state of the host vehicle satisfies a predetermined condition during traveling following the preceding vehicle. It relates to a control method.
  • traveling idle stop control a control for temporarily stopping the engine and then restarting it during traveling
  • Patent Document 2 when driving, when the driving / running state of the vehicle satisfies a predetermined condition, the engine is temporarily stopped, and when the condition is not satisfied, the kinetic energy of the vehicle is used. Control for restarting the engine is disclosed.
  • the engine is idle while the brake pedal is released. This is because, if the engine is restarted by depressing the accelerator pedal of the driver from the state of idling stop (engine stop) during driving, the acceleration of the host vehicle is delayed by the amount required for engine restart.
  • the engine In order to prevent this, if there is a possibility that the driver will step on the accelerator pedal, the engine must be started in advance, but if the time until the driver steps on the accelerator pedal becomes longer, the idle state Because it continues, it consumes fuel wastefully.
  • the engine can be stopped only when the host vehicle is traveling at a low speed, and the engine is not stopped when traveling at a high speed. This is because the delay time required to start the engine during high-speed driving (the time required to connect to the transmission without being shocked and be able to transmit power) shifts from the driver's brake pedal operation to the accelerator pedal operation. This is because it becomes so large that it cannot be covered by time.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to suppress energy consumption as much as possible without incurring a decrease in drivability during traveling following the preceding vehicle. It is possible to effectively improve the fuel consumption and reduce exhaust gas without causing the driver to feel uncomfortable, especially by detecting the driving characteristics, road surface conditions, weather, etc. of the preceding vehicle and improving the fuel efficiency and reducing the exhaust gas.
  • An object of the present invention is to provide a vehicle control device and a vehicle control method.
  • the vehicle control device of the present invention provides a driving idle stop that temporarily stops the vehicle-mounted engine when the driving / running state of the host vehicle satisfies a predetermined condition during the following vehicle following traveling.
  • Tracking determination means configured to determine whether or not the vehicle can follow the preceding vehicle by inertia traveling based on the speed of the own vehicle, the speed of the preceding vehicle, and the inter-vehicle distance with the preceding vehicle; Whether or not to perform idle stop during running when the driving / running state of the own vehicle satisfies other running idle stop conditions and the follow-up determining means determines that the vehicle can follow the preceding vehicle by inertial running
  • a determination condition update means for updating the determination condition of the idle stop permission determination means according to the conditions such as the preceding vehicle characteristics, the road surface condition, the weather, and the like.
  • whether or not to perform idling stop during traveling is determined according to the preceding vehicle characteristics, that is, the determination condition updated by conditions such as the speed of the preceding vehicle or vehicle type information, road surface conditions, weather, and the like. Therefore, the idling stop during driving is controlled in accordance with the characteristics of the preceding vehicle, the road surface condition, the weather, etc., so that the driver is less likely to feel uncomfortable and low fuel consumption driving is possible.
  • the vehicle control device In the vehicle control device according to the present invention, even when the driver releases the brake pedal during idling stop (engine stop) during traveling, for example, whether or not the idling stop is possible is determined based on the determination condition updated by the preceding vehicle characteristics or the like. If the vehicle can follow the preceding vehicle by coasting, the engine can be stopped. If the vehicle cannot follow coasting while the engine is stopped, the engine should be restarted. Therefore, the engine can be restarted before the driver starts depressing the accelerator pedal. As a result, fuel efficiency and exhaust gas reduction can be effectively achieved without causing the driver to feel uncomfortable. be able to. Problems, configurations, and operational effects other than those described above will be clarified by the following embodiments.
  • FIG. 1 The schematic block diagram which shows one Example of the vehicle control apparatus which concerns on this invention with the vehicle to which it was applied.
  • the functional block diagram which shows the principal part of the vehicle control apparatus shown by FIG.
  • the flowchart which shows an example of the processing content of the idle stop control routine at the time of preceding vehicle follow-up driving
  • working of this invention Example.
  • working of this invention Example.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of a vehicle control device according to the present invention together with a vehicle to which the vehicle control device is applied
  • FIG. 2 is a functional block diagram showing a main part of the vehicle control device shown in FIG. is there.
  • the illustrated vehicle 1 includes, for example, an in-cylinder injection gasoline engine 10 as a driving power source, an automatic transmission 12 that can be connected to and separated from the engine 10, a propeller shaft 13, a differential gear 14, a drive shaft 15, This is a rear-wheel drive vehicle having a general configuration including wheels 16 and a hydraulic brake 18.
  • the vehicle 1 includes a vehicle integrated control unit 20 that constitutes a main part of the vehicle control device 5 according to the present invention that controls integrated control of devices, actuators, and devices mounted on the vehicle 1, and an engine control unit 30 that controls engine control.
  • the vehicle control device 5 performs idling stop during running that temporarily stops the in-vehicle engine when the driving / running state of the own vehicle satisfies a predetermined condition during the preceding vehicle following running.
  • a stereo camera 17 is provided at the front of the vehicle 1.
  • This stereo camera 17 has a control unit part with a built-in microcomputer, and the control unit part is based on the captured image, the relative speed of the preceding vehicle with the own vehicle, the preceding vehicle in front of the own vehicle, The distance between the obstacle, the oncoming vehicle, etc. and the own vehicle (inter-vehicle distance, etc.), the height from the road surface at the lower end of the body of the preceding vehicle, etc. are calculated and supplied to the vehicle integrated control unit 20. Further, the stereo camera 17 supplies the preceding vehicle width, height, vehicle type information and the like to the preceding vehicle information determination means 58 described later, and supplies it to the idling stop determination condition update means 54 described later in the vehicle integrated control unit 20.
  • the vehicle integrated control unit 20 detects four wheel speed sensors 21 that detect the rotational speed of each wheel 16, an accelerator pedal sensor 25 that detects the opening degree (depression amount) of the accelerator pedal 24, and a depression amount of the brake pedal 27. A signal is also supplied from a brake sensor 28 for detecting the vehicle and a gyro sensor 19 for detecting the gradient of the vehicle.
  • the vehicle integrated control unit 20 is supplied with a signal from an operation switch (hereinafter referred to as a wiper SW) 22 of a wiper device and road surface information from a navigation device (hereinafter referred to as a navigation device) 23. Rain information is output from the wiper SW 22 of the wiper device and is supplied to the road surface determination means 59 described later, and the road surface curve and undulation situation are supplied from the navigation device 23 to the road surface determination means 59.
  • Information on the external communication device 60 is supplied to the vehicle integrated control unit 20.
  • the external communication device 60 for example, road information on a highway, weather information such as radio, and various information from road information of a police station and traffic jam information are input.
  • the information from the wiper SW 22 and the information from the navigation device 23 are supplied to the idling stop determination condition update means 54 in the vehicle integrated control unit 20 and are updated to a predetermined gain ⁇ to determine the presence / absence of follow-up kinetic energy. 53. This gain is for correcting the loss kinetic energy of the vehicle calculated by the loss kinetic energy calculation means 52.
  • the illustrated vehicle 1 is an example of a vehicle to which the present invention can be applied, and does not limit the configuration of the vehicle to which the present invention can be applied.
  • a vehicle that employs a continuously variable transmission (CVT) instead of the automatic transmission 12 may be used, and one of a laser radar, a millimeter wave radar, a mono camera, and the like may be used as an external recognition sensor instead of the stereo camera 17.
  • CVT continuously variable transmission
  • the relative speed, the inter-vehicle distance, and the like may be obtained using one or a plurality of combinations.
  • the depression amount of the brake pedal 27 is detected not only by the brake sensor 28 but also by a hydraulic pressure sensor (not shown) for detecting the brake hydraulic pressure in the control system of the brake 18.
  • the engine control unit 30 includes an operation state of the engine 10 (engine The engine control unit 30 will be described later on the basis of these signals.
  • the engine control unit 30 will be described later based on these signals, representing the rotational speed, intake air amount, throttle opening, in-cylinder pressure, etc.).
  • a predetermined control signal is supplied to the fuel injection valve 31, an ignition unit 33 including an ignition coil, an ignition plug, and the like, an electric throttle valve 34, etc., and fuel injection (amount) control, Ignition (timing) control, throttle opening control, etc. are executed.
  • the vehicle 1 of the present embodiment is provided with a reaction force actuator 26 that applies an operation reaction force to the accelerator pedal 24 in addition to a normal restoring force.
  • a control signal is supplied to the actuator 26 from the vehicle integrated control unit 20.
  • the vehicle control device 5 is characterized in that, in the following vehicle follow-up traveling, based on the kinetic energy of the own vehicle, the speed of the preceding vehicle, and the inter-vehicle distance from the preceding vehicle, The kinetic energy required for the vehicle is predicted, and based on the predicted kinetic energy and the current kinetic energy, the kinetic energy that the vehicle can follow the preceding vehicle by coasting (following kinetic energy) If it is determined that there is sufficient follow-up kinetic energy and the driving / running state of the vehicle satisfies other idle stop conditions during driving, the engine is temporarily stopped.
  • the conditions for determining whether or not it can be followed by inertial driving are determined based on the preceding vehicle speed history, preceding vehicle width, height, vehicle type information, etc.
  • Information is to road information, so as to update the road surface judgment conditions such as rainy weather information.
  • FIG. 3 shows a state where the host vehicle and the preceding vehicle are traveling on a flat road.
  • v 1 current host vehicle speed
  • V 1 current preceding vehicle speed
  • L current inter-vehicle distance
  • v 2 host vehicle speed after T seconds It is.
  • the vehicle speed is calculated based on signals from the four wheel speed sensors 21, and the preceding vehicle speed is based on the vehicle speed and the relative speed obtained from the stereo camera 17. Is calculated.
  • Equation (2) if m is the vehicle weight and A is the predicted deceleration, the following equation (2) can be derived.
  • the own vehicle weight m is calculated as a weight obtained by adding the loading weight at the time of the current driving operation to a fixed value by internal processing, and the predicted deceleration A is based on the rate of change of the own vehicle speed because it is inertial driving. For example, it is expressed as 0.1 [G].
  • the first term on the left side of Equation (2) is the current kinetic energy of the host vehicle
  • the second term on the left side is the minimum when the host vehicle passes the coordinate P (L, 0) that is the current position of the preceding vehicle.
  • Necessary kinetic energy In other words, the second term on the left side is the predicted kinetic energy when the host vehicle is assumed to travel at the preceding vehicle speed. Therefore, the left side represents surplus kinetic energy, which is the difference between the kinetic energy of the host vehicle and the kinetic energy when the host vehicle is assumed to travel at the preceding vehicle speed.
  • the right side of the expression (2) stops the engine until the vehicle 1 reaches the coordinate P (L, 0) that is the current position of the preceding vehicle from the coordinate P (0, 0) that is the current position.
  • is the gain of loss kinetic energy, and is usually 1.
  • the gain ⁇ is updated according to conditions such as the characteristics of the preceding vehicle traveling in front of the own vehicle, the road surface condition, the weather, etc., and the lost kinetic energy of the own vehicle is corrected.
  • Equation (2) shows that the surplus kinetic energy of the own vehicle is larger than the loss kinetic energy. If Equation (2) is satisfied, it can be said that the following kinetic energy is sufficient, and the own vehicle is inertial.
  • the coordinates P (L, 0) can be passed at a speed equal to or higher than V 1 by traveling.
  • equation (1) when the vehicle is traveling uphill, the above equation (1) is a relational equation such as equation (3) when the running resistance and the gradient are taken into account. It can also be expressed.
  • h relative height of the preceding vehicle.
  • the relative height h of the preceding vehicle is calculated based on the gradient of the preceding vehicle and the inter-vehicle distance L.
  • the gradient of the preceding vehicle is, for example, the own vehicle speed and engine torque, the height position of the lower end of the vehicle body of the preceding vehicle obtained from the stereo camera 17, the own vehicle gradient obtained from the gyro sensor 19, etc. Is calculated (estimated) based on
  • the left side of equation (3) is the same as equation (2) and is the kinetic energy of the current vehicle, and the second term on the left side passes through the coordinates P (L, H) where the vehicle is the current position of the preceding vehicle. This is the minimum kinetic energy that is required.
  • the second term on the left side is the predicted kinetic energy when the host vehicle is assumed to travel at the preceding vehicle speed. Therefore, the left side represents surplus kinetic energy, which is the difference between the kinetic energy of the host vehicle and the kinetic energy when the host vehicle is assumed to travel at the preceding vehicle speed.
  • the first term on the right side is the kinetic energy lost by the running resistance when the inertial running is performed with the engine stopped from the coordinate P (0, 0) to the coordinate P (L, H). Equivalent to.
  • the second term on the right side is the relative potential energy of the coordinates P (L, H). That is, the right side of Equation (3) indicates the loss kinetic energy necessary for the vehicle to reach the coordinate P (L, H) from the coordinate P (0, 0).
  • the equation (3) shows a relationship in which the surplus kinetic energy of the own vehicle is larger than the lost kinetic energy. coordinates P (L, H) to be passed at V 1 or more speed travel.
  • the vehicle control device 5 of the present embodiment includes a vehicle integrated control unit 20 as a main part.
  • the vehicle integrated control unit 20 includes surplus kinetic energy calculation means 51, loss kinetic energy calculation means 52, and follow-up kinetic energy presence / absence determination means 53 as follow-up determination means.
  • the surplus kinetic energy calculating means 51 is based on the difference between the kinetic energy of the own vehicle and the predicted kinetic energy of the own vehicle when the own vehicle is assumed to travel at the preceding vehicle speed V based on the own vehicle weight m and the own vehicle speed v. Calculate some surplus kinetic energy.
  • the lost kinetic energy calculation means 52 is based on the own vehicle weight m, the predicted deceleration A or running resistance of the own vehicle, the inter-vehicle distance L with the preceding vehicle, and the relative height h of the preceding vehicle, and the lost kinetic energy of the own vehicle. Is calculated.
  • the idling stop determination condition updating unit 54 updates the gain ⁇ for correcting the loss kinetic energy calculated by the lost kinetic energy calculation unit 52.
  • the idling stop determination condition updating unit 54 includes the stereo camera 17 and the like.
  • the preceding vehicle information such as the preceding vehicle width, height, and vehicle type information obtained, the road surface condition and the preceding vehicle speed / acceleration from the wiper SW 22 and the navigation device 23 are supplied.
  • the acceleration / deceleration frequency of the preceding vehicle is obtained from the history of the speed of the preceding vehicle, and when a predetermined frequency (threshold value) is exceeded within a predetermined time, or the preceding vehicle width, height, vehicle type information
  • a predetermined frequency threshold value
  • the gain ⁇ of the loss kinetic energy in the equations (2) and (3) is updated from a preset value to a predetermined value.
  • the idling stop determination condition update unit 54 updates the determination condition when the vehicle type detected by the stereo camera 17 matches that registered in advance.
  • the follow-up kinetic energy presence / absence judging means 53 is a motion that the own vehicle can follow the preceding car by inertia running based on the surplus kinetic energy, the lost kinetic energy, and the gain ⁇ updated by the idling stop judgment condition updating means 54. It is determined whether there is sufficient or insufficient energy (following kinetic energy). Here, if the surplus kinetic energy is larger than the loss kinetic energy corrected by the gain ⁇ , it is determined that the following kinetic energy is sufficient, and if the surplus kinetic energy is smaller than the loss kinetic energy corrected by the gain ⁇ . It is determined that the following kinetic energy is insufficient.
  • the idle stop propriety judging means 55 (A) When it is determined that the following kinetic energy is sufficient, and the driving / running state of the vehicle satisfies other idle stop conditions (for example, the accelerator pedal 24 is not depressed), An engine stop command is output to the engine control unit 30. (B) When it is determined that the following kinetic energy is insufficient (insufficient) during idle stop (engine stop), an engine restart command is output to the engine control unit 30. (C) When depression of the accelerator pedal 24 is detected while the engine is stopped, an engine restart command is output to the engine control unit 30. (D) While the depression of the brake pedal 27 is detected during low-speed traveling, an engine stop command is output to the engine control unit 30 even if it is determined that the following kinetic energy is insufficient (insufficient).
  • the accelerator pedal reaction force application control means 57 operates the accelerator pedal reaction force application actuator 26 to apply an operation reaction force to the accelerator pedal 24 in addition to the normal restoring force. And when it is determined that the following kinetic energy is insufficient, and when the accelerator pedal 24 is stepped on, or continues to be depressed for a predetermined time or more, even though the operation reaction force is continuously applied. When the control force is applied, the control to release the operation reaction force applied by the reaction force application actuator 26 is performed.
  • the operation of applying an operation reaction force to the accelerator pedal 24 is performed in order to prompt the driver to release the accelerator pedal 24 by applying a reaction force to the accelerator pedal 24 and to travel with inertia. Further, when the accelerator pedal 24 is stepped on or is depressed for a predetermined time or more despite the operation reaction force being continuously applied, the reaction force applying actuator 26 is respected for the driver's intention. Release the reaction reaction force applied by. In the case of a vehicle that cannot apply a reaction force to the accelerator pedal 24, the driver may be informed to release the accelerator pedal by a buzzer, a monitor display, or the like.
  • the engine control unit 30 When the engine control unit 30 receives an engine stop command from the idle stop propriety determination means 55, the engine control unit 30 stops supplying the fuel injection (drive) pulse signal to the fuel injection valve 31 and further supplies the ignition signal to the ignition unit 33. Stop. Then, the control of the electric throttle valve 34 is reset. As a result, the engine stops.
  • the engine control unit 30 resumes the supply of the fuel injection (drive) pulse signal to the fuel injection valve 31 when the engine restart command is received from the idling stop availability determination means 55, and further the ignition signal to the ignition unit 33. Is also resumed, and the electric throttle valve 34 is controlled. This restarts the engine.
  • the idle stop propriety determination unit 55 outputs an engine shut-off command to the transmission control unit 40 and outputs an engine restart command at the same time.
  • an engine connection command is output to the transmission control unit 40.
  • step S71 it is determined based on the signal data from the stereo camera 17 whether or not a preceding vehicle exists ahead of the host vehicle.
  • step S98 it is determined based on the signal data from the stereo camera 17 whether or not a preceding vehicle exists ahead of the host vehicle.
  • the loss kinetic energy gain initialization in S98 is performed and the gain ⁇ in equations (2) and (3) is set to 1. End the routine.
  • the process proceeds to S97, and in S97, the gain ⁇ of the lost kinetic energy in the equations (2) and (3) is updated to a predetermined value.
  • the preceding vehicle width, height, vehicle type information, etc. acquired by the stereo camera 17 are supplied to the preceding vehicle information determination means 58, and the acceleration / deceleration frequency of the preceding vehicle within a predetermined time is obtained from the vehicle speed history of the preceding vehicle.
  • the idling stop determination condition updating means 54 Along with the result of determining whether or not a predetermined frequency has been exceeded within a predetermined time, it is supplied to the idling stop determination condition updating means 54 and from the navigation device 23 to road surface curve and undulation information, from the wiper SW22 of the wiper device
  • the rainy weather condition is supplied to the idling stop determination condition update means 54 via the road surface determination means 59, and information from the external communication device 60 is also supplied to the idling stop determination condition update means 54 to match the preceding vehicle information and road conditions.
  • the gain ⁇ of the lost kinetic energy is updated to a predetermined value.
  • Update ⁇ to be greater than 1.
  • the gain ⁇ is updated to be larger than 1.
  • S72 it is determined whether or not the host vehicle is traveling at a low speed. If the host vehicle is traveling at a low speed, the process proceeds to S73. If the host vehicle is not traveling at a low speed, that is, if the host vehicle is traveling at a high speed, the process proceeds to S76 without passing through S73. In S72, whether or not the vehicle is traveling at a low speed is a first traveling idle stop condition.
  • S73 it is determined whether the driver is stepping on the brake pedal 27 or not.
  • the process proceeds to S75, and an engine stop command is output to the engine control unit 30.
  • the engine 10 is stopped regardless of whether the following kinetic energy is sufficient or insufficient. If the driver has not depressed the brake pedal 27, the process proceeds to S76.
  • whether or not the brake is depressed is the second running idle stop condition.
  • the process proceeds to S76 without passing through S73 for the following reason. That is, during high speed traveling, the engine cannot be stopped on condition that the driver operates the brake pedal. This is because the time required for engine restart in the high speed range may not be compensated for by the transition time from the driver's brake pedal operation to the accelerator pedal operation.
  • the kinetic energy that allows the own vehicle to follow the preceding vehicle by inertial running based on the surplus kinetic energy and the loss kinetic energy corrected by the gain ⁇ Judge whether there is sufficient (following kinetic energy) or not.
  • the surplus kinetic energy is greater than the loss kinetic energy corrected by the gain ⁇
  • the process proceeds to S81, where the surplus kinetic energy is greater than the loss kinetic energy corrected by the gain ⁇ . If it is smaller, it is determined that the following kinetic energy is insufficient, and the process proceeds to S86.
  • whether or not there is sufficient follow-up kinetic energy is the third traveling idle stop condition.
  • the accelerator pedal reaction force applying actuator 26 is operated to apply the operation reaction force to the accelerator pedal 24 in addition to the normal restoring force. As described above, this operation is performed in order to encourage the driver to release the accelerator pedal 24 by applying a reaction force to the accelerator pedal 24 and to travel with inertia.
  • the process proceeds to S93 to determine whether or not the engine is stopped. If the engine is stopped, the process proceeds to S94. Proceed, output an engine restart command and end this routine. If the engine is not stopped, that is, if the engine is running (rotating), this routine is ended without doing anything (engine restart once If the command is issued, there is no need to repeatedly issue the engine restart command).
  • the loss kinetic energy of the own vehicle is calculated based on conditions such as the preceding vehicle characteristics, road surface conditions, and weather.
  • the gain is updated, and the surplus kinetic energy that is the difference between the kinetic energy of the own vehicle and the predicted kinetic energy of the own vehicle when it is assumed that the vehicle travels at the preceding vehicle speed based on the own vehicle weight and the own vehicle speed in S76.
  • the lost kinetic energy of the own vehicle is calculated based on the own vehicle weight, own vehicle speed, predicted deceleration or running resistance of the own vehicle, the distance between the preceding vehicle and the relative height of the preceding vehicle, Based on the updated gain, and based on the surplus kinetic energy and the lost kinetic energy calculated in S78, the following kinetic energy that the vehicle can follow the preceding vehicle by inertial running It is determined whether there is enough.
  • a reaction force is applied to the accelerator pedal in S85, and when the accelerator pedal is not depressed in S87, the engine is stopped in S91 and S92.
  • traveling pattern 1 shown in FIG. 6 the host vehicle travels at a constant speed until time t1, and the preceding vehicle is decelerating, but the following kinetic energy is insufficient.
  • time t1 the following kinetic energy is sufficiently present, and a reaction force is applied to the accelerator pedal 24.
  • the driver follows the reaction force of the accelerator pedal 24 and releases the accelerator pedal 24 at time t2.
  • traveling pattern 2 shown in FIG. 7 the host vehicle travels at a constant speed until time t3 and the preceding vehicle is decelerating, but the following kinetic energy is insufficient. At time t3, the following kinetic energy is sufficiently present, and a reaction force is applied to the accelerator pedal 24. However, the driver steps on the accelerator pedal 24 without following the reaction force of the accelerator pedal 24 in order to pass the preceding vehicle.
  • the driver's intention is prioritized and the engine is not stopped even if there is sufficient kinetic energy for tracking.
  • traveling pattern 2 there is almost no difference in fuel consumption from the conventional traveling idle stop control, but it differs from the conventional traveling idle stop control in that it confirms the driver's intention.
  • the driver since the driver is stepping up without following the reaction force of the accelerator pedal 24, immediately after that, the driver's intention is respected, and the reaction force application by the reaction force application actuator 26 is released. .
  • the preceding vehicle is accelerating until time t5, but the vehicle speed is high, so the vehicle approaches by inertia, and the engine stops because there is enough kinetic energy for tracking. .
  • the engine is restarted because the following kinetic energy is insufficient, and after time t6, the driver starts to step on the accelerator pedal 24 and accelerates to follow the preceding vehicle.
  • the brake pedal 27 is not depressed until the time point t5, which is in the idle state, which deteriorates the fuel consumption.
  • this is improved.
  • the traveling pattern 4 shown in FIG. 9 is that the host vehicle is traveling at a low speed and the preceding vehicle is accelerating until time t8, but is approaching by brake deceleration because the host vehicle speed is high, and the following kinetic energy There is enough to stop the engine.
  • the traveling pattern 5 shown in FIG. 10 is that the host vehicle is traveling at a high speed and the preceding vehicle is accelerating until time t12, but is approaching by brake deceleration because the host vehicle speed is large. There is enough to stop the engine.
  • the own vehicle can only follow the preceding vehicle by inertial traveling. If the following kinetic energy is sufficient, the engine can be stopped.
  • the engine when the kinetic energy for follow-up is insufficient while the engine is stopped, the engine is restarted. Therefore, the engine can be restarted before the driver starts to step on the accelerator pedal 24. The driver can be made not to feel the acceleration delay of the engine start.
  • the engine can be restarted before the driver starts to step on the accelerator pedal 24, so that the delay time required for engine start is shifted from the driver's brake pedal operation to the accelerator pedal operation.
  • the engine can be stopped even during high-speed traveling that cannot be compensated for by time.
  • the reaction force applying actuator 26 is operated to apply an operation reaction force to the accelerator pedal 24, so that the driver can release the accelerator pedal 24 and perform inertia. It is possible to encourage the vehicle to travel by this, thereby suppressing the driver from accelerating excessively.
  • the reaction force application actuator 26 gives priority to the driver's intention. The operation reaction force application is released.
  • the vehicle control device 5 of the present embodiment it is possible to suppress energy consumption as much as possible without incurring a decrease in drivability during the preceding vehicle follow-up running. It is possible to effectively improve fuel consumption and reduce exhaust gas without causing a feeling of strangeness to the user.
  • the determination condition of the tracking determination means for determining whether or not to perform idle stop during traveling is updated according to conditions such as preceding vehicle characteristics, road surface conditions, weather, etc.
  • the present invention is not limited thereto, and the present invention can be similarly applied to a diesel engine vehicle, a hybrid vehicle, and the like.
  • a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Signal Processing (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

 先行車追従走行時において、運転者に違和感を生じさせることなく、燃費向上及び排出ガス削減を効果的に図ることのできる車両制御装置を提供する。先行車追従走行時において、自車の速度、先行車の速度、及び先行車との車間距離に基づいて、自車が先行車に惰性走行で追従し得るか否かを判定する追従判定手段(53)と、追従判定手段で自車が先行車に惰性走行で追従し得ると判定され、自車の運転・走行状態が他の走行時アイドルストップ条件を満たしているとき、走行時アイドルストップを行うか否かを判定するアイドルストップ可否判定手段(55)とを有し、アイドルストップ可否判定手段の判定条件を先行車特性、路面状況、天候等の条件により更新する判定条件更新手段(54)を備え、先行車特性等により更新する判定条件により、惰性走行で追従し得ると判定されたとき、車載エンジンを停止させる制御を行う。

Description

車両制御装置及び車両制御方法
 本発明は、先行車追従走行時において、自車の運転・走行状態が所定の条件を満たすとき、車載エンジンを一時的に停止させる走行時アイドルストップ制御を行うようにされた車両制御装置及び車両制御方法に関する。
 近年、車両制御の分野においては、燃費向上や排出ガス削減を主目的として、例えば特許文献1に見られるように、駐停車や信号待ち等の間にエンジンを一時的に停止させ、その後、アクセルペダルが踏込まれたとき、エンジンを再始動させるアイドルストップ制御を行うことが普及してきている。
 また、走行時において、エンジンを一時的に停止させ、その後再始動させる制御(以下、走行時アイドルストップ制御と称する)も、従来より知られている。
 この従来の走行時アイドルストップ制御は、通常、運転者がブレーキペダルを踏込み、かつ、自車両の速度が所定速度以下(低速)になったとき、エンジンを停止させ、運転者がブレーキペダルを離したとき、エンジンを再始動するようになっている。
 なお、特許文献2には、走行時において、車両の運転・走行状態が所定の条件を満たすとき、エンジンを一時的に停止させ、前記条件を満たさなくなったとき、車両の運動エネルギーを利用してエンジンを再始動させる制御が開示されている。
特開2010-30430号公報 特開2012-127265号公報
 従来の走行時アイドルストップ制御は、自車前方に先行車がいる場合であっても、エンジン停止とエンジン再始動のタイミングは運転者のブレーキペダル操作に依存している。
 運転者のブレーキペダル操作に依存すると、例えば運転者が過剰にアクセルペダルを踏込んだ場合に、自車が必要以上の速度を持ってしまうため、ブレーキペダル操作による速度調整をすることになる。このときのブレーキペダル操作により失われたエネルギー分の加速は無駄であると言える。
 また、ブレーキペダルを解放している間はエンジンがアイドル状態になる。これは、仮に走行時アイドルストップ(エンジン停止)の状態から運転者のアクセルペダル踏込でエンジンを再始動させた場合、自車の加速はエンジンの再始動にかかる分の遅れが生じる。
 これを防ぐためには、運転者がアクセルペダルを踏込む可能性がある場合は、前もってエンジンを始動させておく必要があるが、運転者がアクセルペダルを踏込むまでの時間が長くなるとアイドル状態が続くため、無駄に燃料を消費する。
 さらに、従来の走行時アイドルストップ制御では、自車が低速走行時にのみエンジン停止が可能であり、高速走行時はエンジンを停止しないようになっている。これは、高速走行時にはエンジン始動に要する遅れ時間(ショックを生じることなく変速機に接続して動力伝達可能な状態になるまでの所要時間)が運転者のブレーキペダル操作からアクセルペダル操作への移行時間で補えきれないほど大きくなるためである。
 本発明は、かかる事情に鑑みてなされたもので、その目的とするところは、先行車追従走行時において、運転性の低下を招くことなくエネルギー消費を可及的に抑制することができ、もって、運転者に違和感を生じさせることなく燃費向上及び排出ガス削減等を効果的に図ることができ、特に、先行車の走行特性や路面状況、天候等を検知して、より燃費向上と排ガス削減が可能となる車両制御装置及び車両制御方法を提供することにある。
 前記目的を達成すべく、本発明の車両制御装置は、先行車追従走行時において、自車の運転・走行状態が所定の条件を満たすとき、車載エンジンを一時的に停止させる走行時アイドルストップを行うように構成され、自車の速度、先行車の速度、及び先行車との車間距離に基づいて、自車が先行車に惰性走行で追従し得るか否かを判定する追従判定手段と、自車の運転・走行状態が他の走行時アイドルストップ条件を満たし、前記追従判定手段で自車が先行車に惰性走行で追従し得ると判定されたとき、走行時アイドルストップを行うか否かを判定するアイドルストップ可否判定手段とを有し、アイドルストップ可否判定手段の判定条件を先行車特性、路面状況、天候等の条件により更新する判定条件更新手段を備える。
 前記のごとく構成された本発明の車両制御装置では、先行車特性、すなわち先行車の速度あるいは車種情報、路面状況、天候等の条件によって更新される判定条件により、走行時アイドルストップを行うか否かを判定し、先行車の特性、路面状況、天候等に合わせて走行時アイドルストップを制御するため、運転者に違和感を生じさせることが少なく、低燃費走行が可能となる。
 本発明に係る車両制御装置では、走行時アイドルストップ(エンジン停止)中に例えば運転者がブレーキペダルを解放しても、先行車特性等で更新された判定条件によりアイドルストップの可否を判定しており、自車が先行車に惰性走行で追従し得る場合には、エンジンを停止し続けることができ、また、エンジン停止中に惰性走行で追従し得ない場合には、エンジンを再始動するようにされるので、運転者がアクセルペダルを踏み始める前にエンジンを再始動させておくことができ、その結果、運転者に違和感を生じさせることなく燃費向上及び排出ガス削減等を効果的に図ることができる。上記した以外の、課題、構成、及び作用効果は、以下の実施形態により明らかにされる。
本発明に係る車両制御装置の一実施例を、それが適用された車両と共に示す概略構成図。 図1に示される車両制御装置の主要部を示す機能ブロック図。 先行車追従走行時における自車と先行車の関係の説明等に供される図。 坂道での先行車追従走行時における自車と先行車の関係の説明等に供される図。 車両統合制御ユニットが実行する先行車追従走行時アイドルストップ制御ルーチンの処理内容及びその手順の一例を示すフローチャート。 本発明実施例の先行車追従走行時アイドルストップ制御による走行パターン1の説明に供されるタイムチャート。 本発明実施例の先行車追従走行時アイドルストップ制御による走行パターン2の説明に供されるタイムチャート。 本発明実施例の先行車追従走行時アイドルストップ制御による走行パターン3の説明に供されるタイムチャート。 本発明実施例の先行車追従走行時アイドルストップ制御による走行パターン4の説明に供されるタイムチャート。 本発明実施例の先行車追従走行時アイドルストップ制御による走行パターン5の説明に供されるタイムチャート。
 以下、本発明に係る車両制御装置の実施の形態を図面を参照しながら説明する。
 図1は、本発明に係る車両制御装置の一実施例を、それが適用された車両と共に示す概略構成図、図2は、図1に示される車両制御装置の主要部を示す機能ブロック図である。
 図示例の車両1は、走行用動力源としての、例えば筒内噴射式ガソリンエンジン10、該エンジン10に接離可能な自動変速機12、プロペラシャフト13、ディファレンシャルギア14、ドライブシャフト15、4つの車輪16及び液圧式ブレーキ18を備えた一般的な構成の後輪駆動車である。
 車両1には、これに搭載配備された装置、アクチュエータ、機器類の統合制御を司る、本発明の車両制御装置5の主要部を構成する車両統合制御ユニット20、エンジン制御を司るエンジン制御ユニット30、変速機制御を司る変速機制御ユニット40等の、マイクロコンピュータを内蔵した制御ユニットが所定部位に配置されている。
 各制御ユニット及び後述するセンサ類を含む装置、アクチュエータ、機器類は、車内LAN(CAN)を通じて信号・データの授受を行えるようになっている。本発明の車両制御装置5は、先行車追従走行時において、自車の運転・走行状態が所定の条件を満たすとき、車載エンジンを一時的に停止させる走行時アイドルストップを行うものである。
 車両1の前部には、ステレオカメラ17が配備されている。このステレオカメラ17は、マイクロコンピュータを内蔵した制御ユニット部分を持っており、制御ユニット部分は、撮影された映像に基づいて、先行車の自車との相対速度、自車の前方の先行車、障害物、対向車等と自車との距離(車間距離等)、先行車の車体の下端の路面からの高さなどを算出し、それを車両統合制御ユニット20に供給する。また、ステレオカメラ17は、先行車幅、高さ、車種情報等を後述する先行車情報判定手段58に供給し、車両統合制御ユニット20内の後述するアイドリングストップ判定条件更新手段54に供給する。
 車両統合制御ユニット20には、各車輪16の回転速度を検出する4つの車輪速センサ21、アクセルペダル24の開度(踏込量)を検出するアクセルペダルセンサ25、ブレーキペダル27の踏込量を検出するブレーキセンサ28、自車の勾配を検出するジャイロセンサ19等からの信号も供給される。また、車両統合制御ユニット20には、ワイパー装置の作動スイッチ(以下、ワイパーSWという)22の信号が供給されると共に、ナビゲーション装置(以下、ナビ装置という)23から路面情報が供給される。ワイパー装置のワイパーSW22からは雨天情報が出力され後述する路面判定手段59に供給され、ナビ装置23からは路面のカーブや起伏の状況等が路面判定手段59に供給される。
 車両統合制御ユニット20には、外部通信装置60の情報が供給される。外部通信装置60としては、例えば高速道路上の道路情報、ラジオ等の気象情報の他に、警察署の道路情報、渋滞情報からの各種の情報が入力される。これらの情報、ワイパーSW22からの情報、ナビ装置23からの情報は車両統合制御ユニット20内のアイドリングストップ判定条件更新手段54に供給され、所定のゲインαに更新されて追従用運動エネルギー有無判定手段53に供給される。このゲインは、損失運動エネルギー算出手段52で算出された自車の損失運動エネルギーの補正を行うものである。
 なお、図示の車両1は、本発明を適用可能な車両の一例であり、本発明を適用可能な車両の構成を限定するものではない。例えば、前記自動変速機12に代えて無段変速機(CVT)を採用した車両でもよいし、外界認識センサとして、ステレオカメラ17に代えてレーザーレーダーやミリ波レーダー,モノカメラなどのうちの一つないし複数の組み合わせを用いて前記相対速度、車間距離等を求めるようにしてもよい。
 また、ブレーキペダル27の踏込量は、前記ブレーキセンサ28の他に、ブレーキ18の制御系のブレーキ液圧を検出する液圧センサ(図示せず)によっても検出するようになっている。
 前記エンジン制御ユニット30には、前記車両統合制御ユニット20や変速機制御ユニット40等の制御ユニットからの信号・データの他に、エンジン10に配備されたセンサ類から、エンジン10の運転状態(エンジン回転数、吸入空気量、スロットル開度、筒内圧力等)を表わす、あるいはそれらを求める際の基礎となる様々な信号が供給され、エンジン制御ユニット30は、それらの信号に基づいて、後述する図2に示される如くに、燃料噴射弁31、点火コイルや点火プラグ等からなる点火ユニット33、電制スロットル弁34等に向けて所定の制御信号を供給して、燃料噴射(量)制御、点火(時期)制御、スロットル開度制御等を実行する。
 上記構成に加えて、本実施例の車両1には、アクセルペダル24に通常の復元力に加えて操作反力を付与する反力アクチュエータ26が付設されている。このアクチュエータ26には車両統合制御ユニット20から制御信号が供給される。
 ここで、本発明実施例の車両制御装置5の特徴とするところは、先行車追従走行時において、自車の運動エネルギー、先行車の速度、及び先行車との車間距離に基づいて、将来自車に必要とされる運動エネルギーを予測し、この予測された運動エネルギーと現在の運動エネルギーとに基づいて、自車が先行車に惰性走行で追従し得るだけの運動エネルギー(追従用運動エネルギー)が十分にあるか否かを判定し、追従用運動エネルギーが十分にあると判定され、かつ、自車の運転・走行状態が他の走行時アイドルストップ条件を満たしているとき、前記エンジンを一時的に停止させる走行時アイドルストップを行うようになっており、惰性走行で追従し得るか否かを判定する条件を、先行車の速度履歴、先行車幅、高さ、車種情報等の先行者情報、路面情報、雨天情報等の路面判定条件によって更新するようになっていることである。
 次に、上記追従用運動エネルギーが十分にあるか不足しているかの判定について、図3、図4を用いて説明する。
 図3は、自車及び先行車が平坦路を走行中の状態を示し、図3(A)は、時間t=0のときの自車と先行車の関係を表し、図3(B)は自車が時間t=0、座標P(0,0)から惰性走行で座標P(L,0)に到達するときの予想を表し、そのときの時間がt=T(秒)である。図3(A)、(B)(及び後述の図4)において、v:現在の自車速度V:現在の先行車速度L:現在の車間距離v:T秒後の自車速度である。
 なお、図2に示される如くに、自車速度は4つの車輪速センサ21からの信号等に基づいて算出され、先行車速度は自車速度とステレオカメラ17からから得られる相対速度とに基づいて算出される。
 図3(A)、(B)から、自車が惰性走行で先行車に追従するには、下記の式(1)の関係が成立すればよいことがわかる。
Figure JPOXMLDOC01-appb-M000001
 式(1)からは、mを自車重量、Aを予測減速度とすれば、次式(2)が導き出せる。
 なお、自車重量mは、内部処理により固定値に今回の乗車運転時における積載重量を加算した重量として算出され、予測減速度Aは、惰性走行時であるので自車速度の変化率に基づいて算出でき、例えば、0.1[G]のように表わされる。
Figure JPOXMLDOC01-appb-M000002
 式(2)の左辺第一項は、現在の自車の運動エネルギーであり、左辺第二項は自車が先行車の現在位置である座標P(L,0)を通過する際に最低限必要な運動エネルギーである。言い換えれば、左辺第二項は自車が先行車速度で走行すると仮定した場合の予測運動エネルギーである。したがって、左辺は、自車の運動エネルギーと自車が先行車速度で走行すると仮定した場合の運動エネルギーとの差分である余剰運動エネルギーを表している。
 また、式(2)の右辺は、車両1が現在位置である座標P(0,0)から先行車の現在位置である座標P(L,0)に到達するまでの間、エンジンを停止した惰性走行を行う場合の自車の損失運動エネルギーである。αは損失運動エネルギーのゲインであり、通常は1とする。本実施形態の車両制御装置5では、自車の前を走行する先行車特性、路面状況、天候等の条件によりゲインαは更新され、自車の損失運動エネルギーを補正するものである。
 従って、式(2)は自車の余剰運動エネルギーが損失運動エネルギーより大きい関係を示しており、式(2)が成立すれば、前記追従用運動エネルギーが十分にあると言え、自車は惰性走行で座標P(L,0)をV以上の速度で通過できる。
 一方、図4(A)、(B)に上り坂走行時の様子が示されているように、前記式(1)は走行抵抗と勾配を加味すると、式(3)のような関係式で表すこともできる。
 なお、図4において、h:先行車の相対高さである。先行車の相対高さhは、先行車の勾配と車間距離Lに基づいて算出される。先行車の勾配は、図2に示される如くに、例えば、自車速度とエンジントルク、ステレオカメラ17から得られる先行車両の車体の下端の高さ位置、ジャイロセンサ19から得られる自車勾配等に基づいて算出(推定)される。
 また、式(3)において、a(t):時間tにおける走行抵抗v(t):時間tにおける自車速度g:重力加速度である。
Figure JPOXMLDOC01-appb-M000003
 式(3)の左辺は、式(2)と同じで、現在の自車の運動エネルギーであり、左辺第二項は自車が先行車の現在位置である座標P(L,H)を通過する際に最低限必要な運動エネルギーである。言い換えれば、左辺第二項は自車が先行車速度で走行すると仮定した場合の予測運動エネルギーである。したがって、左辺は、自車の運動エネルギーと自車が先行車速度で走行すると仮定した場合の運動エネルギーとの差分である余剰運動エネルギーを表している。
 また、右辺第一項は座標P(0,0)から座標P(L,H)までエンジンを停止した惰性走行を行う場合の走行抵抗で損失する運動エネルギーであり、式(2)の右辺に相当する。右辺第二項は座標P(L,H)の相対的な位置エネルギーである。つまり、式(3)の右辺は、自車が座標P(0,0)から座標P(L,H)に到達するために必要な損失運動エネルギーを示している。
 従って、式(3)は自車の余剰運動エネルギーが損失運動エネルギーより大きい関係を示しており、式(3)が成立すれば、前記追従用運動エネルギーが十分にあると言え、自車は惰性走行で座標P(L,H)をV以上の速度で通過できる。
 次に、本実施例の車両制御装置5が実行する先行車追従走行時アイドルストップ制御を詳細に説明する。
 本実施例の車両制御装置5は、主要部として車両統合制御ユニット20を備える。車両統合制御ユニット20は、図2に機能ブロック図で示されているように、余剰運動エネルギー算出手段51と、損失運動エネルギー算出手段52と、追従判定手段として追従用運動エネルギー有無判定手段53と、アイドリングストップ判定条件更新手段54と、アイドルストップ可否判定手段55と、アクセルペダル反力付与制御手段57と、を備える。
 余剰運動エネルギー算出手段51は、自車重量m及び自車速度vに基づいて、自車の運動エネルギーと自車が先行車速度Vで走行すると仮定した場合の自車予測運動エネルギーとの差分である余剰運動エネルギーを算出する。
 損失運動エネルギー算出手段52は、自車重量m、自車の予測減速度Aもしくは走行抵抗、先行車との車間距離L、及び先行車の相対高さhに基づいて、自車の損失運動エネルギーを算出する。
 アイドリングストップ判定条件更新手段54は、損失運動エネルギー算出手段52で算出された損失運動エネルギーを補正するためのゲインαを更新するものであり、アイドリングストップ判定条件更新手段54には、ステレオカメラ17から得られる先行車幅、高さ、車種情報等の先行車情報のほかに、ワイパーSW22やナビ装置23からの路面状況、及び先行車速度・加速度が供給される。そして、例えば、先行車の速度の履歴により、先行車の加減速の頻度を求め、所定の時間内に所定の頻度(しきい値)を超えた場合、あるいは先行車幅、高さ、車種情報、天候等の条件により、式(2)、(3)の損失運動エネルギーのゲインαを、予め設定された値から所定の値に更新する。また、アイドリングストップ判定条件更新手段54は、ステレオカメラ17で検出した車種が予め登録されたものと一致するときは判定条件を更新する。
 追従用運動エネルギー有無判定手段53は、前記余剰運動エネルギーと損失運動エネルギーとアイドリングストップ判定条件更新手段54で更新したゲインαに基づいて、自車が先行車に惰性走行で追従し得るだけの運動エネルギー(追従用運動エネルギー)が十分にあるか不足しているかを判定する。ここでは、余剰運動エネルギーがゲインαにより補正した損失運動エネルギーより大であれば、追従用運動エネルギーが十分にあると判定し、余剰運動エネルギーがゲインαにより補正した損失運動エネルギーより小であれば、追従用運動エネルギーが不足していると判定する。
 アイドルストップ可否判定手段55は、
(a)追従用運動エネルギーが十分にあると判定され、かつ、自車の運転・走行状態が他のアイドルストップ条件(例えば、アクセルペダル24が踏込まれていないこと等)を満たしているとき、エンジン停止指令をエンジン制御ユニット30に出力する。
(b)アイドルストップ(エンジン停止)中に、追従用運動エネルギーが不足している(不十分)と判定されたとき、エンジン再始動指令をエンジン制御ユニット30に出力する。
(c)エンジン停止中に、アクセルペダル24の踏込みが検知されたとき、エンジン再始動指令をエンジン制御ユニット30に出力する。
(d)低速走行時においてブレーキペダル27の踏込みが検知されている間は、追従用運動エネルギーが不足している(不十分)と判定された場合でも、エンジン停止指令をエンジン制御ユニット30に出力する。
(e)高速走行時において追従用運動エネルギーが十分にあると判定された場合は、ブレーキペダルの踏込み如何に拘わらず、他のアイドルストップ条件(例えば、アクセルペダル24が踏込まれていないこと等)を満たしている限り、エンジン停止指令をエンジン制御ユニット30に出力する。
 アクセルペダル反力付与制御手段57は、追従用運動エネルギーが十分にあると判定されたとき、アクセルペダル反力付与アクチュエータ26を作動させてアクセルペダル24に通常の復元力に加えて操作反力を付与させ、追従用運動エネルギーが不足していると判定されたとき、及び、前記操作反力を付与し続けたにも拘わらず、アクセルペダル24が踏み増されたとき、もしくは所定時間以上踏み続けられたとき、反力付与アクチュエータ26による操作反力付与を解除させる制御を行う。
 アクセルペダル24に操作反力を付与する操作は、アクセルペダル24に反力を与えることで運転者にアクセルペダル24を解放させて惰性で走行することを促すために行われる。また、前記操作反力を付与し続けたにも拘わらず、アクセルペダル24が踏み増されたとき、もしくは所定時間以上踏み続けられたときは、運転者の意思を尊重して反力付与アクチュエータ26による操作反力付与を解除させる。なお、アクセルペダル24に反力を与えることができない車両の場合は、ブザーやモニター表示等で運転者にアクセルペダルを解放するように通知してもよい。
 エンジン制御ユニット30は、アイドルストップ可否判定手段55からエンジン停止指令が届くと、燃料噴射弁31への燃料噴射(駆動)パルス信号の供給を停止し、さらに点火ユニット33への点火信号の供給も停止する。そして、電制スロットル弁34の制御をリセットする。これにより、エンジンが停止する。
 また、エンジン制御ユニット30は、アイドルストップ可否判定手段55からエンジン再始動指令が届くと、燃料噴射弁31への燃料噴射(駆動)パルス信号の供給を再開し、さらに点火ユニット33への点火信号の供給も再開し、電制スロットル弁34を制御する。これにより、エンジンが再始動する。
 さらに加えて、アイドルストップ可否判定手段55は、エンジン制御ユニット30にエンジン停止指令を出力するときには、それと同時に、変速機制御ユニット40にエンジン遮断指令を出力し、エンジン再始動指令を出力するときには、それと同時に、変速機制御ユニット40にエンジン接続指令を出力する。これにより、エンジン停止時にはエンジン10と変速機12とが機械的に切り離され、エンジンブレーキがかからなくなるので、走行抵抗が減じられる。また、エンジン再始動以後にはエンジン10と変速機12とが接続され、通常の動力伝達が行われる。
 次に、車両統合制御ユニット20が実行する走行時(先行車追従走行時)アイドルストップ制御ルーチンの処理内容及びその手順の一例を、図5のフローチャートを参照しながら説明する。このルーチンは、所定時間(周期)毎に繰り返し実行される。
 まず、ステップS71(以下、「ステップ」は省略)において、ステレオカメラ17からの信号データに基づいて自車の前方に先行車が存在しているか否かを判断する。先行車がいない場合は、走行時(先行車追従走行時)におけるアイドルストップ制御は行わないので、S98の損失運動エネルギーゲイン初期化を行い式(2)、(3)のゲインαを1としてこのルーチンを終了する。
 S71で先行車がいる場合はS97に進み、S97では、式(2)、(3)の損失運動エネルギーのゲインαを所定の値に更新する。S97では、ステレオカメラ17で取得した先行車幅、高さ、車種情報等が先行車情報判定手段58に供給され、先行車の車速履歴から、所定時間内の先行車の加減速の頻度を求め、所定の時間内に所定の頻度を超えたかどうかを判断した結果と共に、アイドリングストップ判定条件更新手段54に供給されると共に、ナビ装置23から路面のカーブや起伏の情報、ワイパー装置のワイパーSW22から雨天状況が路面判定手段59を介して、アイドリングストップ判定条件更新手段54に供給され、外部通信装置60からの情報もアイドリングストップ判定条件更新手段54に供給され、先行車情報や道路状況等に合わせて損失運動エネルギーのゲインαを所定の値に更新する。具体的には、雨天のときや路面のカーブや登り坂で走行抵抗が増える場合には自車の損失運動エネルギーが大きくなり、エンジン停止時間が短時間になってしまうことを防止するため、ゲインαを1より大きくなるように更新する。また、先行車が大型車と判断できる場合、あるいは先行車の加減速の頻度が多い場合には、エンジン停止、エンジン始動の頻度が多くなり、ドライバーに違和感を生じさせて感じさせてしまうことを防止するため、ゲインαを1より大きくなるように更新する。
 S72では、自車が低速走行中か否かを判断する。自車が低速走行中の場合はS73に進み、自車が低速走行中ではない、つまり高速走行中の場合は、S73を通ることなくS76へ進む。S72で、低速走行中か否かが第1の走行時アイドルストップ条件となる。
 S73では、運転者がブレーキペダル27を踏込んでいるか否かを判断する。運転者がブレーキペダル27を踏込んでいる場合はS75へ進み、エンジン停止指令をエンジン制御ユニット30に出力する。このように、運転者がブレーキペダルを踏み込んでいる間は追従運動エネルギーが十分か不十分かにかかわらずエンジン10を停止する。また、運転者がブレーキペダル27を踏込んでいない場合はS76へ進む。S73で、ブレーキを踏みこんでいるか否かが第2の走行時アイドルストップ条件となる。
 上記のように、自車が高速走行中の場合は、S73を通ることなくS76へ進むようにしているのは、次のような理由による。すなわち、高速走行中においては、運転者のブレーキペダル操作を条件にしてはエンジンを停止することができない。これは、高速域においてエンジンの再始動にかかる時間が運転者のブレーキペダル操作からアクセルペダル操作への移行時間で補えない場合があるためである。
 S76では、余剰運動エネルギー算出手段51で説明したように、自車重量m及び自車速度vに基づいて、自車の運動エネルギーと自車が先行車速度Vで走行すると仮定した場合の自車予測運動エネルギーとの差分である余剰運動エネルギーを算出する。
 続くS77では、損失運動エネルギー算出手段52で説明したように、自車重量m、自車の予測減速度Aもしくは走行抵抗、先行車との車間距離L、及び先行車の相対高さhに基づいて、自車の損失運動エネルギーを算出する。この損失運動エネルギーは、S97で更新したゲインαに基づいて補正される。
 次に進むS78では、追従判定手段53で説明したように、前記余剰運動エネルギーとゲインαにより補正した損失運動エネルギーとに基づいて、自車が先行車に惰性走行で追従し得るだけの運動エネルギー(追従用運動エネルギー)が十分にあるか不足しているかを判断する。ここでは、余剰運動エネルギーがゲインαにより補正した損失運動エネルギーより大であれば、追従用運動エネルギーが十分にあると判断してS81に進み、余剰運動エネルギーがゲインαにより補正した損失運動エネルギーより小であれば、追従用運動エネルギーが不足していると判断してS86に進む。S78で、追従用運動エネルギーが十分あるか否かが第3の走行時アイドルストップ条件となる。
 追従用運動エネルギーが十分にあると判断された場合に進むS81では、追従用運動エネルギー十分フラッグFがセット(=1)されているか否かを判断し、F=1ではない場合には、S82でFをセット(←1)してS85に進む。
 S85では、追従用運動エネルギーが十分にあることから、アクセルペダル反力付与アクチュエータ26を作動させてアクセルペダル24に通常の復元力に加えて操作反力を付与させる。この操作は、前述したように、アクセルペダル24に反力を与えることで運転者にアクセルペダル24を解放させて惰性で走行することを促すために行われる。
 一方、S78で追従用運動エネルギーが不足していると判断された場合に進むS86では、追従用運動エネルギー十分フラッグFがリセット(=0)されているか否かを判断し、F=0である場合には、S85(アクセルペダル24に操作反力付与)を経由することなくS87に進む。
 また、S81でF=1であると判断された場合にもS86に進み、ここでF=0でないと判断された場合は、前回から今回までの間に追従用運動エネルギー十分状態から不足状態に変化していることになるので、S88においてFをリセット(←0)してS89に進む。
 S89では、追従用運動エネルギーは不足状態であり、運転者にアクセルペダル24の解放を促す必要はなくなるため、反力付与アクチュエータ26による操作反力付与を解除させ、このルーチンを終了する。また、本ルーチンとは別のルーチンにおいて、前記操作反力を付与し続けたにも拘わらず、アクセルペダル24が踏み増されたとき、もしくは所定時間以上踏み続けられたときは、運転者の意思を尊重して反力付与アクチュエータ26による操作反力付与を解除させる。なお、一旦、操作反力付与を解除すると、反力付与アクチュエータ26は次に作動命令(信号)が来るまで解除状態を維持する。
 一方、S85に続くS87では、アクセルペダル24が踏込まれているか否かを判断し、踏込まれていない場合はS91に進み、F=1であるか否か、すなわち、追従用運動エネルギーが十分あるか不足しているかを判断し、十分ある場合はS92に進んで、エンジン停止指令を出力してこのルーチンを終了する。S87で、アクセルペダルを踏み込んでいるか否かが第4の走行時アイドルストップ条件となる。
 また、S91において追従用運動エネルギーが不足している(F=0)と判断された場合には、S93に進んで、エンジン停止中か否かを判断し、エンジン停止中であれば、S94に進み、エンジン再始動指令を出力してこのルーチンを終了し、エンジン停止中でなければ、すなわち、エンジンが稼働(回転)しておれば、何もせずにこのルーチンを終了する(一旦エンジン再始動指令を出せば、繰り返してエンジン再始動指令を出す必要はない)。
 また、S87において、アクセルペダル24が踏込まれていると判断された場合には、続くS95において、エンジン停止中か否かを判断し、エンジン停止中であれば、S96においてエンジン再始動指令を出力してこのルーチンを終了し、エンジン停止中でなければ、すなわち、エンジンが稼働(回転)しておれば、何もせずにこのルーチンを終了する。
 このように、本実施形態の車両制御装置では、先行車追従走行時において、先行車があるときにはS97で先行車特性、路面状況、天候等の条件により自車の損失運動エネルギーを算出する際のゲインを更新し、S76で自車重量及び自車速度に基づいて、自車の運動エネルギーと自車が先行車速度で走行すると仮定した場合の自車予測運動エネルギーとの差分である余剰運動エネルギーを算出し、S77で自車重量、自車速度、自車の予測減速度もしくは走行抵抗、先行車との車間距離、及び先行車の相対高さに基づいて、自車の損失運動エネルギーを、更新された前記ゲインを基に算出し、S78で算出された余剰運動エネルギーと損失運動エネルギーとに基づいて、自車が先行車に惰性走行で追従し得るだけの追従用運動エネルギーが十分にあるか否かを判定している。そして、追従用運動エネルギーが十分のときは、S85でアクセルペダルに反力付与し、S87でアクセルペダルの踏込がないとき、S91、S92でエンジンを停止する制御を行っている。
 次に、本発明実施例の先行車追従走行時アイドルストップ制御を、具体的な走行パターンを例にとって(図6~図10)説明する。
 図6に示される走行パターン1は、時点t1までは自車が一定速度で走行し、先行車は減速中であるが、追従用運動エネルギーが不足している。時点t1で、追従用運動エネルギーが十分にある状態となり、アクセルペダル24に反力が付与される。運転者はアクセルペダル24の反力に従い、時点t2においてアクセルペダル24を解放する。
 これにより走行時アイドルストップ条件が成立し、燃料噴射等が停止され、エンジンが停止する。このような走行パターンにおいて、従来の走行時アイドルストップ制御では、運転者が過剰に加速していることに気がつきにくいため、時点t1後もアクセルペダル24を踏み続ける可能性が高く、燃費を悪化させる場合があった。また、従来の走行時アイドルストップ制御では、時点t2後のようにアクセルペダル24を解放した状態でも、ブレーキペダル27を踏込むまではアイドル状態を維持するため、燃費が悪くなっていた(ブレーキペダル27を踏込むまでの時間が長いほど燃費は悪くなる)。
 図7に示される走行パターン2は、時点t3までは自車が一定速度で走行し、先行車は減速中であるが、追従用運動エネルギーが不足している。時点t3で、追従用運動エネルギーが十分にある状態となり、アクセルペダル24に反力が付与されるが、運転者は先行車を追い越すべく、アクセルペダル24の反力に従わず踏み増している。
 この場合は、運転者の意図を優先し、追従用運動エネルギーが十分にあってもエンジンを停止しない。このような走行パターン2では、従来の走行時アイドルストップ制御と燃費の差はほとんど生じないが、運転者の意図を確認する点で従来の走行時アイドルストップ制御と異なっている。なお、前述したように、運転者がアクセルペダル24の反力に従わず踏み増しているので、その直後に運転者の意思を尊重して反力付与アクチュエータ26による操作反力付与は解除される。
 図8に示される走行パターン3は、時点t5まで先行車は加速しているが自車速度が大きいため惰性で接近しており、また追従用運動エネルギーが十分にあるためエンジンが停止している。時点t5後、追従用運動エネルギーが不足したためエンジンを再始動し、時点t6後、運転者がアクセルペダル24を踏込み始めて先行車に追従するべく加速している。
 このような走行パターン3において、従来の走行時アイドルストップ制御では、時点t5までブレーキペダル27を踏込んでいないためアイドル状態であり、燃費を悪化させていたが、本発明実施例ではそれが改善される。
 図9に示される走行パターン4は、自車は低速走行中で、時点t8まで先行車は加速しているが、自車速度が大きいためブレーキ減速で接近しており、また、追従用運動エネルギーが十分にあるためエンジンが停止している。
 時点t8以後は、追従用運動エネルギー不足状態となっているが、運転者がブレーキ減速を継続しているため時点t9まではエンジン停止を維持している。時点t9において、運転者がブレーキを解放したためエンジンが再始動され、時点t10において、運転者がアクセルペダル24を踏み始めて先行車に追従するべく加速している。このような走行パターン4では、従来の走行時アイドルストップ制御と同じになるため、従来以上に燃費が悪化することはない。
 図10に示される走行パターン5は、自車が高速走行中で、時点t12まで先行車は加速しているが、自車速度が大きいためブレーキ減速で接近しており、また、追従用運動エネルギーが十分にあるためエンジンが停止している。
 時点t12以後は、追従用運動エネルギーが不足しているためブレーキペダル操作に関係なくエンジンを再始動する(時点t13のブレーキ解放操作は本制御に関係しない)。
時点t14において、運転者がアクセルペダル24を踏み始めて先行車に追従するべく加速している。
 このような走行パターン5では、従来の走行時アイドルストップ制御では、前述したように、時点t12までエンジンを停止することができない。そのため、燃費を悪化させていたが、本発明実施例では、高速走行中でもエンジンを停止できるため、燃費を向上させることができる。
 このように本発明実施例の車両制御装置5においては、走行時アイドルストップ(エンジン停止)中に運転者がブレーキペダル27を解放しても、自車が先行車に惰性走行で追従し得るだけの追従用運動エネルギーが十分にある場合には、エンジンを停止し続けることができる。
 また、エンジン停止中に追従用運動エネルギーが不足した場合には、エンジンを再始動するようにされているので、運転者がアクセルペダル24を踏み始める前にエンジンを再始動させておくことができ、運転者にエンジン始動の加速遅れを感じさせないようにできる。
 さらに、上記のように、運転者がアクセルペダル24を踏み始める前にエンジンを再始動させておくことができので、エンジン始動に要する遅れ時間が運転者のブレーキペダル操作からアクセルペダル操作への移行時間で補えきれないほど大きくなる高速走行時においても、エンジンを停止させることができる。
 加えて、追従用運動エネルギーが十分にあるとき、反力付与アクチュエータ26を作動させてアクセルペダル24に操作反力を付与するようにされているので、運転者にアクセルペダル24を解放して惰性で走行することを促すことができ、これによって、運転者が過剰に加速操作することを抑えられる。
 また、前記操作反力を付与し続けたにも拘わらず、アクセルペダル24が踏み増されたとき、もしくは所定時間以上踏み続けられたとき、運転者の意思を優先して反力付与アクチュエータ26による操作反力付与を解除させるようにされる。
 したがって、本実施例の車両制御装置5を備えた車両1においては、先行車追従走行時において、運転性の低下を招くことなくエネルギー消費を可及的に抑制することができ、その結果、運転者に違和感を生じさせることなく燃費向上及び排出ガス削減等を効果的に図ることができる。
 このように本実施形態の車両制御装置では、走行時アイドルストップを行うか否かを判定する追従判定手段の判定条件を先行車特性、路面状況、天候等の条件により更新するため、先行車に合わせて走行時アイドルストップの制御ができ、運転者に違和感を生じさせることなく燃費向上及び排出ガス削減等を効果的に図ることができる。
 以上、本発明の実施の形態を図面を用いて記述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における変更があっても、それらは本発明に含まれるものである。
 例えば、上記実施例ではガソリンエンジン車に本発明を適用した場合を説明したが、それに限られることはなく、ディーゼルエンジン車やハイブリッド車等にも本発明を同様に適用できる。
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。さらに、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1  車両(自車)
5  車両制御装置
10 エンジン(車載エンジン)
12 変速機
17 ステレオカメラ
20 車両統合制御ユニット
21 車輪速センサ
22 ワイパーSW
23 ナビゲーション装置
24 アクセルペダル
25 アクセルペダル開度センサ
26 反力付与アクチュエータ
27 ブレーキペダル
28 ブレーキセンサ
30 エンジン制御ユニット
31 燃料噴射弁
33 点火ユニット
34 電制スロットル弁
40 変速機制御ユニット
51 余剰運動エネルギー算出手段
52 損失運動エネルギー算出手段
53 追従用運動エネルギー有無判定手段(追従判定手段)
54 アイドリングストップ判定条件更新手段(判定条件更新手段)
55 アイドルストップ可否判定手段
58 先行車情報判定手段
59 路面判定手段
60 外部通信装置

Claims (11)

  1.  先行車追従走行時において、自車の運転・走行状態が所定の条件を満たすとき、車載エンジンを一時的に停止させる走行時アイドルストップを行うようにされた車両制御装置であって、
     自車の速度、先行車の速度、及び先行車との車間距離に基づいて、自車が先行車に惰性走行で追従し得るか否かを判定する追従判定手段と、
     自車の運転・走行状態が他の走行時アイドルストップ条件を満たし、前記追従判定手段で自車が先行車に惰性走行で追従し得ると判定されたとき、前記走行時アイドルストップを行うか否かを判定するアイドルストップ可否判定手段とを有し、
     前記アイドルストップ可否判定手段の判定条件を先行車特性、路面状況、天候等の条件により更新する判定条件更新手段を備えることを特徴とする車両制御装置。
  2.  前記車両制御装置は、自車重量及び自車速度に基づいて、自車の運動エネルギーと自車が先行車速度で走行すると仮定した場合の自車予測運動エネルギーとの差分である余剰運動エネルギーを算出する手段と、
     自車重量、自車速度、自車の予測減速度もしくは走行抵抗、先行車との車間距離、及び先行車の相対高さに基づいて、自車の損失運動エネルギーを算出する手段とを備え、
     前記追従判定手段は、算出された余剰運動エネルギーと、先行車特性、路面状況、天候等の条件により前記判定条件更新手段で更新されたゲインで補正した損失運動エネルギーとに基づいて、自車が先行車に惰性走行で追従し得るだけの追従用運動エネルギーが十分にあるか否かを判定することを特徴とする請求項1に記載の車両制御装置。
  3.  前記判定条件更新手段は、先行車の速度履歴に基づき、前記先行車の加減速度頻度を検出し、加減速度頻度が所定のしきい値を超えると、前記判定条件を更新する追従用運動エネルギー有無判定手段であることを特徴とする請求項1又は2に記載の車両制御装置。
  4.  前記判定条件更新手段は、先行車の車種を検出し予め登録されたものと一致する場合は、判定条件を更新することを特徴とする請求項1又は2に記載の車両制御装置。
  5.  前記アイドルストップ可否判定手段は、前記車載エンジン停止中に、前記追従判定手段により前記追従用運動エネルギーが不十分であると判定されたとき、前記車載エンジンを再始動させることを特徴とする請求項2から4のいずれかに記載の車両制御装置。
  6.  前記アイドルストップ可否判定手段は、前記車載エンジン停止中に、アクセルペダルの踏込みが検知されたとき、前記車載エンジンを再始動させることを特徴とする請求項1に記載の車両制御装置。
  7.  前記アイドルストップ可否判定手段は、前記車載エンジン停止中に、アクセルペダルの踏込みが検知されたとき、前記車載エンジンを再始動させることを特徴とする請求項2に記載の車両制御装置。
  8.  前記アイドルストップ可否判定手段は、前記追従判定手段により前記追従用運動エネルギーが十分にあると判定されたとき、前記アクセルペダルに通常の復元力に加えて操作反力を付与し、前記追従判定手段により前記追従用運動エネルギーが不足していると判定されたとき、及び、前記操作反力を付与し続けたにも拘わらず、前記アクセルペダルが踏み増されたときもしくは所定時間以上踏み続けられたとき、前記操作反力付与を解除する制御を行うことを特徴とする請求項7に記載の車両制御装置。
  9.  前記アイドルストップ可否判定手段は、低速走行時においてブレーキペダルの踏込みが検知されている間は、前記追従判定手段により前記追従用運動エネルギーの検知が十分あるいは不十分にかかわらず、前記車載エンジンを停止させることを特徴とする請求項2に記載の車両制御装置。
  10.  前記アイドルストップ可否判定手段は、高速走行時において前記追従判定手段により前記追従用運動エネルギーが十分にあると判定された場合は、ブレーキペダル操作に関係なく、他の走行時アイドルストップ条件を満たしている限り、前記車載エンジンを停止させることを特徴とする請求項2に記載の車両制御装置。
  11.  先行車追従走行時において、先行車特性、路面状況、天候の条件により自車の損失運動エネルギーを算出する際のゲインを更新し、自車重量及び自車速度に基づいて、自車の運動エネルギーと自車が先行車速度で走行すると仮定した場合の自車予測運動エネルギーとの差分である余剰運動エネルギーを算出し、自車重量、自車速度、自車の予測減速度もしくは走行抵抗、先行車との車間距離、及び先行車の相対高さに基づいて、自車の損失運動エネルギーを、更新された前記ゲインを基に算出し、前記算出された余剰運動エネルギーと前記損失運動エネルギーとに基づいて、自車が先行車に惰性走行で追従し得るだけの追従用運動エネルギーが十分にあるか否かを判定し、判定された前記追従用運動エネルギーが十分であり、かつ、自車の運転・走行状態が他の走行時アイドルストップ条件を満たしているとき、前記車載エンジンを停止させる制御を行うことを特徴とする車両制御方法。
PCT/JP2015/068938 2014-09-19 2015-07-01 車両制御装置及び車両制御方法 WO2016042882A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15842044.8A EP3196445B1 (en) 2014-09-19 2015-07-01 Vehicle control device
JP2016548597A JP6370388B2 (ja) 2014-09-19 2015-07-01 車両制御装置及び車両制御方法
US15/501,763 US10550785B2 (en) 2014-09-19 2015-07-01 Vehicle control device and vehicle control method
CN201580033492.7A CN106662021B (zh) 2014-09-19 2015-07-01 车辆控制装置和车辆控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-191566 2014-09-19
JP2014191566 2014-09-19

Publications (1)

Publication Number Publication Date
WO2016042882A1 true WO2016042882A1 (ja) 2016-03-24

Family

ID=55532927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068938 WO2016042882A1 (ja) 2014-09-19 2015-07-01 車両制御装置及び車両制御方法

Country Status (6)

Country Link
US (1) US10550785B2 (ja)
EP (1) EP3196445B1 (ja)
JP (1) JP6370388B2 (ja)
CN (1) CN106662021B (ja)
MA (1) MA39687A (ja)
WO (1) WO2016042882A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134925A (ja) * 2017-02-21 2018-08-30 日立オートモティブシステムズ株式会社 自動車の走行制御装置
WO2018166987A1 (de) * 2017-03-15 2018-09-20 Bayerische Motoren Werke Aktiengesellschaft Start-stopp-einrichtung für eine brennkraftmaschine eines fahrzeugs zum veranlassen eines automatischen anschaltvorgangs der zuvor automatisch abgeschalteten brennkraftmaschine
WO2019073583A1 (ja) * 2017-10-12 2019-04-18 日産自動車株式会社 自動運転車両の制御方法および制御装置
CN111587206A (zh) * 2018-01-19 2020-08-25 本田技研工业株式会社 车辆控制装置、具有该车辆控制装置的车辆以及控制方法
US11598279B2 (en) 2017-10-26 2023-03-07 Nissan Motor Co., Ltd. Control method and control device for automated vehicle

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006698B1 (en) * 2013-05-31 2018-08-22 Hitachi Automotive Systems, Ltd. Vehicle control apparatus and vehicle control method
US9766629B1 (en) * 2016-09-12 2017-09-19 Ford Global Technologies, Llc Autonomous pulse and glide system
US10451022B2 (en) 2016-11-02 2019-10-22 Paccar Inc Intermittent restart for automatic engine stop start system
KR102322924B1 (ko) * 2017-06-02 2021-11-08 현대자동차주식회사 차량 및 차량의 제어방법
US10487762B2 (en) * 2017-09-26 2019-11-26 Paccar Inc Systems and methods for predictive and automatic engine stop-start control
JP6760331B2 (ja) * 2017-11-17 2020-09-23 株式会社デンソー 車両制御装置
EP3744597B1 (en) * 2018-01-24 2023-12-27 Nissan Motor Co., Ltd. Method for automatically operating vehicle and automatic control apparatus
JP6630753B2 (ja) * 2018-02-09 2020-01-15 本田技研工業株式会社 走行態様認識装置
JP6978377B2 (ja) * 2018-05-10 2021-12-08 本田技研工業株式会社 車両制御装置、及び車両制御装置を備える車両
JP7151185B2 (ja) * 2018-06-06 2022-10-12 株式会社デンソー 車両制御装置
US11495028B2 (en) * 2018-09-28 2022-11-08 Intel Corporation Obstacle analyzer, vehicle control system, and methods thereof
KR20210014254A (ko) * 2019-07-29 2021-02-09 현대자동차주식회사 차량의 셧오프를 자동 제어하는 차량 시스템 및 그 방법
CN114962029B (zh) * 2021-02-26 2023-06-30 日立安斯泰莫汽车***(苏州)有限公司 供油控制装置及供油控制方法
CN115346385B (zh) * 2022-10-19 2023-01-03 上海伯镭智能科技有限公司 基于复杂路况的无人驾驶矿车自动避障方法
CN115880905B (zh) * 2022-11-29 2024-05-17 吉林大学 一种实时预测车辆通过交通信号灯路口时间的装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030430A (ja) * 2008-07-29 2010-02-12 Nissan Motor Co Ltd ハイブリッド車両のアイドルストップ制御装置
JP2012127265A (ja) * 2010-12-15 2012-07-05 Toyota Motor Corp 走行パターン計画装置
JP2013068178A (ja) * 2011-09-24 2013-04-18 Nissan Motor Co Ltd 車両用制御装置及び車両用制御方法
JP2015143490A (ja) * 2014-01-31 2015-08-06 マツダ株式会社 アクティブクルーズコントロール装置
WO2015118570A1 (ja) * 2014-02-05 2015-08-13 本田技研工業株式会社 車両の制御装置および車両の制御方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1302359B1 (de) 2001-10-13 2006-06-07 Ford Global Technologies, LLC Verfahren zur Steuerung der Brennkraftmaschine eines Kraftfahrzeuges mit Stop/Start-Funktion
JP2006183600A (ja) * 2004-12-28 2006-07-13 Toyota Motor Corp エンジン停止再始動制御装置、その方法及びそれを搭載した車両
JP4677945B2 (ja) * 2006-04-24 2011-04-27 トヨタ自動車株式会社 車両用走行制御装置
JP2010143304A (ja) 2008-12-17 2010-07-01 Masahiro Watanabe 車両走行支援制御方法および装置
JP4793886B2 (ja) * 2009-08-27 2011-10-12 渡邉 雅弘 車両走行制御方法
US8192327B2 (en) * 2010-02-17 2012-06-05 Ford Global Technologies, Llc Methods and systems for assisted direct start control
US9061630B2 (en) 2010-09-21 2015-06-23 Honda Motor Co., Ltd. Vehicle travel control device
US9533669B2 (en) 2011-07-25 2017-01-03 Toyota Jidosha Kabushiki Kaisha Vehicle control device
JP5605381B2 (ja) * 2012-02-13 2014-10-15 株式会社デンソー クルーズ制御装置
SE537447C2 (sv) * 2012-03-27 2015-05-05 Scania Cv Ab Anordning och förfarande för effektivisering av bränsleutnyttjande under framfart hos ett fordon
US9253753B2 (en) * 2012-04-24 2016-02-02 Zetta Research And Development Llc-Forc Series Vehicle-to-vehicle safety transceiver using time slots
DE102012013689A1 (de) 2012-07-07 2014-01-09 Volkswagen Aktiengesellschaft Verfahren für ein Fahrerassistenzsystem eines Fahrzeugs
JP2014068723A (ja) * 2012-09-28 2014-04-21 Daio Paper Corp ロールペーパーの製造方法
JP5900641B2 (ja) * 2012-10-31 2016-04-06 トヨタ自動車株式会社 車両の走行制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010030430A (ja) * 2008-07-29 2010-02-12 Nissan Motor Co Ltd ハイブリッド車両のアイドルストップ制御装置
JP2012127265A (ja) * 2010-12-15 2012-07-05 Toyota Motor Corp 走行パターン計画装置
JP2013068178A (ja) * 2011-09-24 2013-04-18 Nissan Motor Co Ltd 車両用制御装置及び車両用制御方法
JP2015143490A (ja) * 2014-01-31 2015-08-06 マツダ株式会社 アクティブクルーズコントロール装置
WO2015118570A1 (ja) * 2014-02-05 2015-08-13 本田技研工業株式会社 車両の制御装置および車両の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196445A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134925A (ja) * 2017-02-21 2018-08-30 日立オートモティブシステムズ株式会社 自動車の走行制御装置
WO2018166987A1 (de) * 2017-03-15 2018-09-20 Bayerische Motoren Werke Aktiengesellschaft Start-stopp-einrichtung für eine brennkraftmaschine eines fahrzeugs zum veranlassen eines automatischen anschaltvorgangs der zuvor automatisch abgeschalteten brennkraftmaschine
WO2019073583A1 (ja) * 2017-10-12 2019-04-18 日産自動車株式会社 自動運転車両の制御方法および制御装置
JPWO2019073583A1 (ja) * 2017-10-12 2020-11-19 日産自動車株式会社 自動運転車両の制御方法および制御装置
US11535278B2 (en) 2017-10-12 2022-12-27 Nissan Motor Co., Ltd. Control method and control device for autonomous vehicle
US11598279B2 (en) 2017-10-26 2023-03-07 Nissan Motor Co., Ltd. Control method and control device for automated vehicle
CN111587206A (zh) * 2018-01-19 2020-08-25 本田技研工业株式会社 车辆控制装置、具有该车辆控制装置的车辆以及控制方法
CN111587206B (zh) * 2018-01-19 2022-07-12 本田技研工业株式会社 车辆控制装置、具有该车辆控制装置的车辆以及控制方法

Also Published As

Publication number Publication date
US10550785B2 (en) 2020-02-04
EP3196445A1 (en) 2017-07-26
JP6370388B2 (ja) 2018-08-08
US20170226947A1 (en) 2017-08-10
MA39687A (fr) 2016-03-24
JPWO2016042882A1 (ja) 2017-04-27
CN106662021A (zh) 2017-05-10
EP3196445B1 (en) 2024-05-15
CN106662021B (zh) 2019-12-03
EP3196445A4 (en) 2018-07-18

Similar Documents

Publication Publication Date Title
JP6370388B2 (ja) 車両制御装置及び車両制御方法
JP6089103B2 (ja) 車両制御装置及び車両制御方法
CN107310554B (zh) 车辆行驶控制装置
JP5336052B2 (ja) クルーズ制御装置、プログラム、及び目標車速の設定方法
US10583836B2 (en) Control apparatus for vehicle
JP6297688B2 (ja) 車両制御装置及び車両制御方法
JP2019215730A (ja) 車両の運転支援装置
WO2019073583A1 (ja) 自動運転車両の制御方法および制御装置
JP6106758B2 (ja) 車両制御装置
WO2019111309A1 (ja) 車両の制御方法及び制御装置
JP2015068213A (ja) 車両制御装置
US20130151130A1 (en) Idle reduction controller for engine
JP2013056650A (ja) 車両の走行制御装置
JP2018127095A (ja) 走行制御装置、車両および走行制御方法
JP2014000900A (ja) 車両制御装置
JP2015068191A (ja) 車両制御装置
JP6406927B2 (ja) 車両用制御装置
JP2009161057A (ja) 車両用走行制御装置
JP2016070242A (ja) 車両用制御装置
JP2019031153A (ja) 走行制御装置、車両および走行制御方法
US20230234567A1 (en) Deceleration support device, deceleration support method, deceleration support program, and vehicle
Lee et al. Development of Adaptive Powertrain Control Utilizing ADAS and GPS
JP2008267587A (ja) 車両用制駆動力制御装置および車両用制駆動力制御方法
JP2019031189A (ja) 走行制御装置、車両および走行制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842044

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548597

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015842044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015842044

Country of ref document: EP