WO2016037361A1 - 试剂盒及其在核酸测序中的用途 - Google Patents

试剂盒及其在核酸测序中的用途 Download PDF

Info

Publication number
WO2016037361A1
WO2016037361A1 PCT/CN2014/086421 CN2014086421W WO2016037361A1 WO 2016037361 A1 WO2016037361 A1 WO 2016037361A1 CN 2014086421 W CN2014086421 W CN 2014086421W WO 2016037361 A1 WO2016037361 A1 WO 2016037361A1
Authority
WO
WIPO (PCT)
Prior art keywords
strand
primer
double
stranded dna
product
Prior art date
Application number
PCT/CN2014/086421
Other languages
English (en)
French (fr)
Inventor
耿春雨
于竞
祝珍珍
贺玲瑜
李计广
龚梅花
章文蔚
蒋慧
Original Assignee
深圳华大基因科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大基因科技有限公司 filed Critical 深圳华大基因科技有限公司
Priority to PCT/CN2014/086421 priority Critical patent/WO2016037361A1/zh
Priority to CN201480081856.4A priority patent/CN106715713B/zh
Priority to PCT/CN2014/092294 priority patent/WO2016037418A1/zh
Priority to CN201480081853.0A priority patent/CN108138364B/zh
Priority to EP14901602.4A priority patent/EP3192901B1/en
Priority to US15/510,882 priority patent/US10351848B2/en
Publication of WO2016037361A1 publication Critical patent/WO2016037361A1/zh
Priority to HK18110100.6A priority patent/HK1250758A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1093General methods of preparing gene libraries, not provided for in other subgroups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • C12Q1/6855Ligating adaptors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1089Design, preparation, screening or analysis of libraries using computer algorithms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/66General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/191Modifications characterised by incorporating an adaptor

Definitions

  • the present invention relates to the field of biotechnology, and in particular, the present invention relates to a kit and its use in nucleic acid sequencing, and more particularly, the present invention relates to a kit, a method for preparing circular double-stranded DNA based on double-stranded DNA a method for preparing a double-stranded nucleic acid fusion molecule, a method for constructing a sequencing library based on a double-stranded DNA fragment, a nucleic acid sequencing method, a device for preparing circular double-stranded DNA based on double-stranded DNA, and a A device for constructing a sequencing library of a stranded DNA fragment, and a nucleic acid sequencing system.
  • the present invention is directed to solving at least some of the above technical problems or at least providing a useful commercial choice.
  • the object of the present invention is to propose a means that can be effectively used to construct a sequencing library.
  • the invention proposes a kit.
  • the kit comprises: a first isolated oligonucleotide; a second isolated oligonucleotide; a first primer; and a second primer, wherein the first and second separated
  • the oligonucleotides respectively include: a first strand, the 5' terminal nucleotide of the first strand has a phosphate group, and the 3' terminal nucleotide of the first strand is a dideoxynucleotide; a double strand, the 5' terminal nucleotide of the second strand does not have a phosphate group, and the 3' terminal nucleotide of the second strand is a dideoxynucleotide, wherein the length of the first strand Greater than the length of the second strand, and forming a double stranded structure between the first strand and the second strand, the first primer specifically identifying the first strand
  • the kit comprises two oligonucleotides, since both ends of the first and second strands of the first and second oligonucleotides, ie the 3' end Is a dideoxynucleotide, therefore, Neither the first nor the second oligonucleotide will self-ligate.
  • the kit can be applied to construct a sequencing library, especially for cPAL technology, such as a CG sequencing platform, which can effectively improve the efficiency of adding a linker at the end of a DNA fragment, thereby improving the efficiency of constructing a sequencing library.
  • the invention provides a method for preparing circular double-stranded DNA based on double-stranded DNA, the double-stranded DNA fragment having two blunt ends, and four of the double-stranded DNA fragments
  • the terminal nucleotides each have no phosphate group
  • the method comprises: connecting the double-stranded DNA to the first isolated oligonucleotide to obtain a first ligation product;
  • the product is subjected to a first heat denaturation treatment to obtain a first single-stranded DNA molecule;
  • a strand extension reaction is performed by complementary pairing of the first primer with the first single-stranded DNA molecule to obtain a chain extension reaction product, wherein the strand extension
  • the reaction product contains a uracil;
  • the chain extension reaction product is linked to a second isolated oligonucleotide to obtain a second ligation product; and
  • the second ligation product is used to cause primer-mediated nick translation using the second primer And a terminal ligation reaction to
  • the inventors have found that circular double-stranded DNA can be efficiently produced by this method, and the circular double-stranded DNA can be used to construct a sequencing library suitable for cPAL technology, such as a CG sequencing platform.
  • a sequencing library suitable for cPAL technology such as a CG sequencing platform.
  • the invention provides a method of making a double stranded nucleic acid fusion molecule.
  • the method comprises: providing a first double-stranded DNA fragment having two blunt ends, and the four terminal nucleotides of the double-stranded DNA fragment have no phosphoric acid a group, the first double stranded DNA fragment is ligated to an oligonucleotide to obtain a first ligation product; the first ligation product is subjected to a first heat denaturation treatment to obtain a first single stranded DNA molecule; Performing a chain extension reaction using a primer paired with the first single-stranded DNA molecule to obtain a first strand extension reaction product, wherein the first strand extension reaction product constitutes the double-stranded nucleic acid fusion molecule, wherein
  • the oligonucleotide includes: a first strand, a 5' terminal nucleotide of the first strand has a
  • the method can efficiently prepare a double-stranded nucleic acid fusion molecule, and because of the special structure of the oligonucleotide and the structural properties of the double-stranded DNA fragment, the probability of occurrence of an undesired ligation reaction is effectively reduced, thereby constructing The efficiency of the double-stranded nucleic acid fusion molecule can be effectively improved.
  • the double-stranded nucleic acid fusion molecule can be effectively applied to construct a sequencing library suitable for cPAL technology, such as a CG sequencing platform.
  • the advantages and technical features described above for the kit are still applicable to the method, and are not described herein again.
  • the present invention provides a method for constructing a sequencing library based on a double-stranded DNA fragment having two blunt ends and four terminal nucleosides of the double-stranded DNA fragment The acid does not have a phosphate group.
  • the method comprises: preparing a double-stranded circular DNA based on the double-stranded DNA according to the method described above, wherein a first linker is included in the double-stranded circular DNA, the first a linker includes a type III endonuclease recognition site and a base deletion, wherein the first linker is formed based on the first isolated oligonucleotide and the second isolated oligonucleotide, optionally The base deletion is 1 nt in length; the double-stranded circular DNA is digested with a type III endonuclease to obtain a second cleavage product; the second cleavage product is end-filled and dephosphorylated.
  • Processing to obtain a blunt-ended double-stranded DNA fragment ligating the blunt-ended double-stranded DNA fragment to a third isolated oligonucleotide to obtain a fourth ligation product; performing a nick translation reaction on the fourth ligation product and at 3 'The terminal forms a base A to obtain a fourth ligation product having a 3' base A; the fourth ligation product having the 3' base A is linked to the fourth isolated oligonucleotide to obtain a fifth Linking the product; using the third primer and the fourth Performing a primer-mediated nick translation and ligation reaction on the fifth ligation product to form a sixth ligation product; and amplifying the sixth ligation product using the fifth primer and the sixth primer to obtain an amplification product, wherein Biotin is carried on one strand of the amplification product; a single-stranded DNA fragment is isolated from the amplification product; and the single-stranded DNA fragment is circularized to obtain a single-stranded DNA
  • a sequencing library having a double linker suitable for cPAL technology such as a CG sequencing platform, can be efficiently prepared.
  • a double linker suitable for cPAL technology such as a CG sequencing platform
  • the invention proposes a nucleic acid sequencing method.
  • the method comprises: constructing a sequencing library according to the method described above; and sequencing the sequencing library.
  • the method of constructing a sequencing library according to the present invention can effectively improve the efficiency of constructing a sequencing library.
  • the nucleic acid sequencing method can effectively improve the efficiency of sequencing.
  • the present invention also proposes an apparatus which can implement the above method.
  • the apparatus comprises: a first linking unit for linking the double stranded DNA to the first isolated oligonucleotide, To obtain a first ligation product; a first heat denaturation unit, wherein the first heat denaturation unit is configured to perform a first heat denaturation treatment on the first ligation product to obtain a first single stranded DNA molecule; a chain extension unit; The chain extension unit is configured to perform a chain extension reaction by using a first primer complementary pairing with the first single-stranded DNA molecule to obtain a first strand extension reaction product, wherein the first strand extension reaction product contains a uracil; a second linking unit, the second
  • an apparatus for constructing a sequencing library based on a double-stranded DNA fragment, the double-stranded DNA fragment having two blunt ends, and the four terminal nucleotides of the double-stranded DNA fragment are Without a phosphate group the method comprises: the aforementioned device for preparing circular double-stranded DNA based on double-stranded DNA, for preparing double-stranded circular DNA based on the double-stranded DNA, wherein the double-stranded circular DNA Included in the first linker, the first linker includes a type III endonuclease recognition site and a base deletion, wherein the first linker is based on the first isolated oligonucleotide and the second isolate Forming an oligonucleotide, optionally wherein the base is deleted by a length of 1 nt; a digestion device that cleaves the double-stranded circular DNA with a type III endonuclease to obtain a a
  • a nucleic acid sequencing system comprising: the double-stranded DNA according to the foregoing A device for constructing a sequencing library; and a sequencing device for sequencing the sequencing library.
  • the sequencing device is a CG sequencing platform.
  • the technical features and advantages described above for the kit, the method for preparing double-stranded circular DNA based on double-stranded DNA, and the method or apparatus for constructing a sequencing library based on double-stranded DNA fragments are still applicable, and will not be described herein. .
  • 1 is a flow chart showing the construction of a whole exon library in one embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the structure of a library and a sequencing direction in an embodiment of the present invention
  • Figure 3 is a schematic illustration of the directional addition of the 5' end arm (arm) of linker A to one end of a fragment of interest in an embodiment of the invention, 5' PO4 and 3'OH representing normally extendable DNA
  • the fragment, 5' OH & 3' ddN, represents a 5' dephosphorylation and a 3' terminal dideoxy, a DNA fragment that is not normally extended;
  • Figure 4 is a schematic illustration of the directional addition of the 3' end arm (arm) of linker A to one end of a fragment of interest in an embodiment of the invention, 5'PO4&3'OH representing a DNA fragment that is normally extendable, 5'OH&3'ddN represents a 5' dephosphorylation and a 3' terminal dideoxy, a DNA fragment that is not normally extended;
  • Figure 5 is a schematic illustration of the first cyclization to form a double-stranded circular DNA molecule in one embodiment of the invention
  • Figure 6 is a schematic illustration of the enzymatic cleavage reaction in one embodiment of the present invention.
  • Figure 7 is a schematic view showing the step of directional joining of the joint B in one embodiment of the present invention.
  • Figure 8 is a graph showing the result of DNA electrophoresis after the sample of the magnetic beads is selected twice in one embodiment of the present invention.
  • Figure 9 is a schematic diagram showing the results of 6%PAGE gel electrophoresis detection of a single-stranded loop exon capture library based on a double linker in one embodiment of the present invention, using a marker ladder as a low range DNA ladder (massruler);
  • Figure 10 is a single base depth profile of a double-stranded single-stranded loop exon capture library of one embodiment of the present invention.
  • Figure 11 is a flow chart showing the steps of preparing circular double-stranded DNA based on double-stranded DNA in one embodiment of the present invention.
  • Figure 12 is a flow chart showing the steps of preparing a double-stranded nucleic acid fusion molecule in one embodiment of the present invention.
  • Figure 13 is a schematic diagram showing the steps of constructing a sequencing library based on double-stranded DNA fragments in one embodiment of the present invention.
  • Figure 14 is a schematic view showing the steps of obtaining a double-stranded DNA fragment in one embodiment of the present invention.
  • Figure 15 is a schematic view showing the structure of an apparatus for preparing circular double-stranded DNA based on double-stranded DNA in one embodiment of the present invention
  • Figure 16 is a schematic diagram showing the structure of an apparatus for constructing a sequencing library based on double-stranded DNA fragments in one embodiment of the present invention
  • Figure 17 is a schematic view showing the structure of a DNA acquisition device in an embodiment of the present invention.
  • Figure 18 is a schematic view showing the structure of a DNA acquisition device in an embodiment of the present invention.
  • Figure 19 is a schematic view showing the structure of a single-stranded DNA fragment separation device in one embodiment of the present invention.
  • the invention provides a kit.
  • the kit comprises: a first isolated oligonucleotide; a second isolated oligonucleotide; a first primer; and a second primer, wherein the first and second separated
  • the oligonucleotides respectively include: a first strand, the 5' terminal nucleotide of the first strand has a phosphate group, and the 3' terminal nucleotide of the first strand is a dideoxynucleotide; a double strand, the 5' terminal nucleotide of the second strand does not have a phosphate group, and the 3' terminal nucleotide of the second strand is a dideoxynucleotide, wherein the length of the first strand Greater than the length of the second strand, and forming a double stranded structure between the first strand and the second strand, the first primer specifically identifying the first strand of the first isolated
  • the kit comprises two oligonucleotides, since both ends of the first and second strands of the first and second oligonucleotides, ie the 3' end It is a dideoxynucleotide, and therefore, neither the first nor the second oligonucleotide will self-ligate.
  • the kit can be applied to construct a sequencing library, especially for cPAL technology, such as a CG sequencing platform, which can effectively improve the efficiency of adding a linker at the end of a DNA fragment, thereby improving the efficiency of constructing a sequencing library.
  • the first and second isolated oligonucleotides each comprise a recognition site for a type III endonuclease, preferably the type III endonuclease is EcoP15I. Therefore, the cleavage by the type III endonuclease can be carried out later, and other linkers can be added during the construction of the sequencing library, thereby further improving the efficiency of adding the linker at the end of the DNA fragment, and further improving the construction of the sequencing library. effectiveness.
  • At least one of the first and second isolated oligonucleotides comprises: a first overhang, the first overhang being located at a 3' end of the first strand; And an optional second protruding end, the second protruding end being located at the 3' end of the second chain.
  • the length of the first protruding end is greater than the length of the second protruding end.
  • the first protruding end has a length of about 6 to 12 nt.
  • the second protruding end has a length of about 0 to 4 nt.
  • the accuracy of the connection between the DNA fragment and the oligonucleotide when constructing the sequencing library can be further improved, thereby further improving the efficiency of adding the linker at the end of the DNA fragment, and further improving the efficiency of constructing the sequencing library.
  • the first isolated oligonucleotide, the second isolated oligonucleotide, the first primer, and the second primer are all DNA.
  • the first strand has a length of about 20 to 50 nt, alternatively 45 nt.
  • the second strand in each of the first isolated oligonucleotide and the second isolated oligonucleotide, has a length of about 10-15 nt, The ground selection is 11nt.
  • the present invention further comprising: an isolated third oligonucleotide, an isolated fourth oligonucleotide, a third primer, and a fourth primer, wherein the third isolated oligonucleoside
  • the acid includes: a first strand having a phosphate group at a 5' terminal nucleotide of the first strand, and a 3' terminal nucleotide of the first strand is a dideoxynucleotide; and a second strand
  • the 5' terminal nucleotide of the second strand does not have a phosphate group, and the 3' terminal nucleotide of the second strand is a dideoxynucleotide, and the length of the first strand is greater than the second strand a length, and a double-stranded structure is formed between the first strand and the second strand
  • the fourth isolated oligonucleotide comprising: a first strand, a 5' terminal nucleotide of the first
  • the sequence of the first strand of the first oligonucleotide is: 5'ACTGCTGACGTACTG(N)mAGCACGAGACGTTCTCGACA3', wherein N represents A, T, G or C, and m is about 0.
  • the sequence of the single stranded nucleic acid molecule is 5'TCGAGCTTGTCTTCCTAAGACCGC3'.
  • the invention provides a method for preparing circular double-stranded DNA based on double-stranded DNA, the double-stranded DNA fragment having two blunt ends, and four of the double-stranded DNA fragments None of the terminal nucleotides have a phosphate group, as shown in Figure 11, the method comprising: linking the double-stranded DNA to a first isolated oligonucleotide to obtain a first ligation product; The ligation product is subjected to a first heat denaturation treatment to obtain a first single-stranded DNA molecule; a strand extension reaction is performed by complementary pairing of the first primer with the first single-stranded DNA molecule to obtain a chain extension reaction product, wherein the chain The extension reaction product contains a uracil; the chain extension reaction product is linked to a second isolated oligonucleotide to obtain a second ligation product; and the second ligation product is used to cause a primer-mediated gap in the second ligation product
  • the inventors have found that circular double-stranded DNA can be efficiently produced by this method, and the circular double-stranded DNA can be used to construct a sequencing library suitable for cPAL technology, such as a CG sequencing platform.
  • a sequencing library suitable for cPAL technology such as a CG sequencing platform.
  • the invention provides a method of making a double stranded nucleic acid fusion molecule.
  • the method comprises: providing a first double-stranded DNA fragment having two blunt ends, and four terminal nuclei of the double-stranded DNA fragment Each of the glycosidic acids does not have a phosphate group, and the first double-stranded DNA fragment is linked to the oligonucleotide to obtain a first ligation product; the first ligation product is subjected to a first heat denaturation treatment to obtain the first a single-stranded DNA molecule; and a strand extension reaction using a primer paired with the first single-stranded DNA molecule to obtain a first strand extension reaction product, wherein the first strand extension reaction product constitutes the double-stranded nucleic acid fusion a molecule, wherein the oligonucleotide comprises: a first strand, a nucleot
  • the method can efficiently prepare a double-stranded nucleic acid fusion molecule, and because of the special structure of the oligonucleotide and the structural properties of the double-stranded DNA fragment, the probability of occurrence of an undesired ligation reaction is effectively reduced, thereby constructing The efficiency of the double-stranded nucleic acid fusion molecule can be effectively improved.
  • the double-stranded nucleic acid fusion molecule can be effectively applied to construct a sequencing library suitable for cPAL technology, such as a CG sequencing platform.
  • the advantages and technical features described above for the kit are still applicable to the method, and are not described herein again.
  • the present invention provides a method for constructing a sequencing library based on a double-stranded DNA fragment having two blunt ends and four terminal nucleosides of the double-stranded DNA fragment The acid does not have a phosphate group. According to an embodiment of the present invention, as shown in FIG.
  • the method comprises: preparing a double-stranded circular DNA based on the double-stranded DNA according to the method described above, wherein the double-stranded circular DNA is included in the a linker comprising a type III endonuclease recognition site and a base deletion, wherein the first linker is based on the first isolated oligonucleotide and the second isolated oligonucleoside Acid-formed, optionally, the base deletion is 1 nt in length; the double-stranded circular DNA is digested with a type III endonuclease to obtain a second cleavage product; and the second cleavage product is subjected to End-blending and dephosphorylation to obtain a blunt-ended double-stranded DNA fragment; ligating the blunt-ended double-stranded DNA fragment to a third isolated oligonucleotide to obtain a fourth ligation product; Gap translation reaction and formation of base A at the 3' end to obtain a fourth ligation product having
  • a sequencing library having a double linker suitable for cPAL technology such as a CG sequencing platform, can be efficiently prepared.
  • a double linker suitable for cPAL technology such as a CG sequencing platform
  • the above method may also have the following additional technical features:
  • the double-stranded DNA fragment is obtained by fragmenting a DNA sample to obtain a fragmented product; dephosphorating the fragmented product a treatment to obtain a dephosphorylated fragmented product; and subjecting the dephosphorylated fragmented product to a terminal repair treatment to obtain the double-stranded DNA fragment.
  • the DNA sample is at least a portion of genomic DNA or a reverse transcription product of RNA.
  • the fragmented product is previously magnetically purified prior to the dephosphorylation treatment. Thereby, the efficiency of obtaining the double-stranded DNA fragment can be further improved, thereby further improving the efficiency of constructing the sequencing library.
  • separating the single-stranded DNA fragment from the amplification product is carried out by contacting the amplification product with a magnetic bead to form a magnetic bead-DNA complex, wherein Linking streptavidin to the magnetic bead; contacting the magnetic bead-DNA complex with a solution having a pH higher than 7 to obtain the single-stranded DNA fragment, and optionally further comprising: utilizing a hybrid oligo Glycosidic acid captures single-stranded DNA that does not contain biotin.
  • the efficiency of isolating the single-stranded DNA fragment can be further improved, thereby further improving the efficiency of constructing the sequencing library.
  • the solution having a pH above 7 is a sodium hydroxide solution.
  • the concentration of the sodium hydroxide solution is about 2M or less.
  • the concentration of the sodium hydroxide solution is about 0.1M.
  • the single-stranded DNA fragment is circularized by employing a single-stranded nucleic acid molecule, wherein the single-stranded nucleic acid molecule defines a first segment and a second segment, and The first segment is capable of matching one of the sequences comprising the 5' terminal nucleotide and the 3' terminal nucleotide of the single stranded DNA fragment, the second segment being capable of 5 with the single stranded DNA fragment 'The other sequence of the terminal nucleotide and the 3' terminal nucleotide match.
  • the efficiency of cyclization of the single-stranded DNA fragment can be further improved, thereby further improving the efficiency of constructing the sequencing library.
  • the first section and the second section are contiguously connected.
  • the efficiency of cyclization of the single-stranded DNA fragment can be further improved, thereby further improving the efficiency of constructing the sequencing library.
  • the single stranded nucleic acid molecule has a sequence of 5'TCGAGCTTGTCTTCCTAAGACCGC3', the first strand of the third isolated oligonucleotide having the sequence of 5'GCTTCGACTGGAGA3'; the second strand of the third isolated oligonucleotide having the sequence of 5'GTCTCCAGTCGAAGCCCGACG3' a first strand of the fourth isolated oligonucleotide having a sequence of 5'AGTCGGAGGCCAAGCGGTCGT3'; a second strand of the fourth isolated oligonucleotide having a sequence of 5'TTGGCCTCCGACT3'; the third primer a sequence having 5'TCCTAAGACCGCTTGGCCTCCGACT3'; and the fourth primer has a sequence of 5'AGACAAGCTCGAGCTCGAGCGATCGGGCTTCGACTGGAGAC3'.
  • a method for constructing a sequencing library based on a double-stranded DNA fragment of this aspect of the invention can be used to construct a whole genome, a whole exon, a Gene panel (gene panel, a targeted gene or region), an inverted cDNA library, and the like.
  • the whole exon library construction process is shown in FIG. 1
  • the finally formed single-stranded circular library, the structural composition of the library and the sequencing direction are shown in FIG. 2 .
  • the method of this aspect of the invention provides a single-stranded circular library preparation technique that is completely different from the linear library construction methods currently available on the market, and the library constructed by this technique can be subjected to ultra-high throughput nucleic acid sequencing. Huge data production, reduced sequencing costs, and good data quality and information analysis results. Many of the methods used in the intermediate steps of this method are well-designed and well-conceived. In addition to laying the foundation for the preparation of high-quality libraries, they are also instructive and instructive for other types of library construction optimization and application.
  • the main advantage of this method of the invention is that the method of selecting the two-step magnetic bead segment can not only avoid the cumbersome cutting of the glue for segment selection, but also saves the cost, and can also be automated, saving time and labor and high throughput; directionality
  • the design of the joint and the stepwise directional connection of the joint can not only introduce the joint sequence ingeniously and flexibly, but also avoid the self-ligation of the joint and the self-ligation of the target fragment.
  • the designed uracil-containing primer ensures double-stranded DNA.
  • the cleavage end of the molecule produces a sticky end, which efficiently mediates the subsequent double-stranded DNA cyclization; the Ecop15I digestion method obtains the insert when sequencing; the single-stranded nucleic acid molecule cyclizes, and the single-stranded nucleic acid cyclization can be efficiently performed.
  • Rolling circle amplification provides a high quality template. After the genomic DNA is interrupted, the two-step magnetic bead fragment selection method can be used to screen the target fragments simply and efficiently.
  • the target nucleic acid fragment is subjected to dephosphorylation end-blocking treatment and end-filling, and becomes a blunt-end fragment which is closed at the 5' end of both ends, completely avoiding the occurrence of inter-fragment interaction. , the utilization of the pre-join segment is guaranteed to be extremely high.
  • the ingenious design of the directional joint is the flexible end closure closure modification, which ensures that each arm (Arm, first and / or second isolated oligonucleotide) of each link is connected to the target fragment. The strands are connected and the complete double link head junction is completed by primer extension or gap translation/ligation reaction.
  • the experimental steps involved in the embodiments provided by the present invention are all explored under the optimal conditions, different samples are tested and repeated experiments are performed, and the final library preparation results are compared with other sequencing results of the same sample, and stability is performed. And repeatability verification.
  • the data results of the present invention are highly correlated with the data of other database sequencing technologies, and the repeatability is good, which confirms the effect and true reliability of the present invention.
  • the method of this aspect of the invention can be applied to all types of DNA, including cDNA obtained by reverse transcription of RNA, which can be used for whole genome, whole exon, gene panel and cDNA sequencing, etc., and can be used for single-stranded circular library.
  • Sequencing gene sequencing platforms such as the Complete Genomcis sequencing platform, have good results and high throughput; the methods and ideas are equally applicable to other methods, devices or systems that require the preparation of single-stranded circular DNA molecules.
  • the invention proposes a nucleic acid sequencing method.
  • the method comprises: constructing a sequencing library according to the method described above; and sequencing the sequencing library.
  • the method of constructing a sequencing library according to the present invention can effectively improve the efficiency of constructing a sequencing library.
  • the nucleic acid sequencing method can effectively improve the efficiency of sequencing.
  • the sequencing library is sequenced using a CG sequencing platform.
  • the efficiency of sequencing can be further improved.
  • a device for preparing circular double-stranded DNA based on double-stranded DNA, the double-stranded DNA fragment having two blunt ends, and the four terminal nuclei of the double-stranded DNA fragment Each of the glycosides does not have a phosphate group, and according to an embodiment of the present invention, as shown in FIG.
  • the apparatus includes: a first linking unit for separating the double-stranded DNA from the first Oligonucleotides are linked to obtain a first ligation product; a first thermal denaturation unit for performing a first heat denaturation treatment on the first ligation product to obtain a first single stranded DNA molecule a chain extension unit for performing a strand extension reaction by complementary pairing of the first primer with the first single-stranded DNA molecule to obtain a first strand extension reaction product, wherein the first strand extension reaction The product contains a uracil; a second linking unit for linking the first strand extension reaction product to a second isolated oligonucleotide to obtain a second linkage product; a third linkage unit , said The triplet unit utilizes a second primer to cause a primer-mediated nick translation and a ligation reaction of the second single-stranded DNA molecule to obtain a third ligation product, wherein the third ligation reaction product contains two uracils; a first cutting unit for
  • the first and second isolated oligonucleotides respectively comprise a recognition site for a type III endonuclease, and the type III endonuclease is EcoP15I.
  • the foregoing technical features and advantages described for the kit and the method for preparing double-stranded circular DNA based on double-stranded DNA are still applicable to the device, and will not be described herein.
  • the apparatus includes: the foregoing apparatus for preparing circular double-stranded DNA based on double-stranded DNA, for preparing double-stranded circular DNA based on the double-stranded DNA, wherein Included in the double-stranded circular DNA is a first linker comprising a type III endonuclease recognition site and a base deletion, wherein the first linker is based on the first isolated oligonucleoside Forming the acid and the second isolated oligonucleotide, optionally the base deletion is 1 nt in length; a digestion device for performing the double-stranded circular DNA using a type III endonuclease Digesting to obtain a second cleavage product; a first end treatment device for end-filling and dephosphorylating the second cleavage product to obtain a blunt-ended double-stranded DNA fragment; a device for making the flat a double-stranded DNA fragment is ligated to a third isolated oligonucleotide to obtain
  • the apparatus of the present invention further comprises a double-stranded DNA fragment acquisition device, as shown in FIG. 17, the double-stranded DNA fragment acquisition device comprising: a fragmentation unit for using a DNA sample Fragmentation to obtain a fragmented product; a dephosphorylation unit for dephosphorylation of the fragmented product to obtain a dephosphorylated fragmented product; end repair unit The end repair unit is configured to perform end repair on the dephosphorylated fragmented product to obtain the double-stranded DNA fragment.
  • the double-stranded DNA fragment acquisition device further includes: a genomic DNA extraction unit for extracting genomic DNA from the biological sample; and/or a reverse transcription unit,
  • the reverse transcription unit is for performing a reverse transcription reaction on an RNA sample to obtain a reverse transcription product, wherein at least a portion of the genomic DNA and/or a reverse transcription product of RNA constitutes the DNA sample.
  • the apparatus of the invention further comprises a purification device for magnetically purifying the fragmented product in advance prior to performing the phosphorylation treatment.
  • the single-stranded DNA fragment separation device further includes: a magnetic bead trap unit for contacting the amplification product with the magnetic beads to form a magnetic bead-DNA complex, wherein the magnetic beads are linked with streptavidin; an alkaline lysis unit, wherein the alkaline lysis unit is provided with a solution having a pH higher than 7, for using the magnetic beads a DNA complex is contacted with a solution having a pH higher than 7 to obtain the single-stranded DNA fragment; and an optional hybridization unit in which a hybridization oligonucleotide is provided to utilize the hybrid oligonucleotide Capture of single-stranded DNA that does not contain biotin.
  • a magnetic bead trap unit for contacting the amplification product with the magnetic beads to form a magnetic bead-DNA complex, wherein the magnetic beads are linked with streptavidin
  • an alkaline lysis unit wherein the alkaline lysis unit is provided with a solution having a pH higher than 7, for using the magnetic
  • the solution having a pH above 7 is a sodium hydroxide solution.
  • the concentration of the sodium hydroxide solution is 2 M or less. In one embodiment of the present invention, the concentration of the sodium hydroxide solution is about 0.1 M. Thereby, the separation efficiency of single-stranded DNA can be further improved.
  • the cyclization apparatus is provided with a single-stranded DNA fragment for cyclizing the single-stranded DNA fragment by using a single-stranded nucleic acid molecule, wherein the single-stranded nucleic acid molecule is defined a first segment and a second segment, and wherein the first segment is capable of matching one of a sequence comprising a 5' terminal nucleotide and a 3' terminal nucleotide of the single stranded DNA fragment, the second The segment is capable of binding to the 5' terminal nucleotide and the 3' end of the single-stranded DNA fragment Another sequence of terminal nucleotides matches.
  • the first section and the second section are connected adjacently.
  • the single-stranded nucleic acid molecule has the sequence of TCGAGCTTGTCTTCCTAAGACCGC, the first strand of the third isolated oligonucleotide has a sequence of 5'GCTTCGACTGGAGA3'; the third isolated oligonucleotide The second strand has the sequence of 5'GTCTCCAGTCGAAGCCCGACG3'; the first strand of the fourth isolated oligonucleotide has the sequence of 5'AGTCGGAGGCCAAGCGGTCGT3'; the second strand of the fourth isolated oligonucleotide has 5 a sequence of 'TTGGCCTCCGACT3'; the third primer has a sequence of 5'TCCTAAGACCGCTTGGCCTCCGACT3'; and the fourth primer has a sequence of 5'AGACAAGCTCGAGCTCGAGCGATCGGGCTTCGACTGGAGAC3'.
  • kits the method for preparing double-stranded circular DNA based on double-stranded DNA, and the method or apparatus for constructing a sequencing library based on double-stranded DNA fragments are still applicable to the device, and will not be described herein. .
  • a nucleic acid sequencing system comprising: an apparatus for constructing a sequencing library for a double-stranded DNA fragment according to the foregoing; and a sequencing apparatus for sequencing the sequencing library .
  • the sequencing device is a CG sequencing platform.
  • the technical features and advantages described above for the kit, the method for preparing double-stranded circular DNA based on double-stranded DNA, and the method or apparatus for constructing a sequencing library based on double-stranded DNA fragments are still applicable, and will not be described herein. .
  • isolated oligonucleotide and “oligonucleotide” in the present invention contain at least two nucleotides, and the upper limit of the length is not limited.
  • reagents and instruments referred to in the following examples are conventionally commercially available products, such as from CG Corporation (Complete Genomics).
  • Example 1 Construction and sequencing of a single exon single-stranded circular library
  • genomic nucleic acid strand is broken into fragments
  • Genomic DNA disruption There are many ways to interrupt genomic DNA. Whether it is physical ultrasound or enzymatic reaction, there are very mature solutions on the market. This embodiment employs a physical ultrasonic breaking method.
  • the 1XTE buffer solution is formulated as follows:
  • Interrupted fragment selection magnetic bead purification or gel recovery can be used. This embodiment employs a magnetic bead purification method.
  • Interrupted sample quality control PAGE gel electrophoresis quality control test: the DNA fragment after fragment selection is required to be concentrated between 200-400 bp, 1.5 ul sample plus 4 ul TE, and then 2 ul 6X bromophenol blue mixed for 6% PAGE gel detection, voltage 200V, electrophoresis for 25min, loading 1.5ul 20bp Marker (Fermentas), the electrophoresis results are shown in Figure 8.
  • Concentration test There are many mature concentration detection methods on the market. In this example, Qubit is used for nucleic acid quantification. The specific steps refer to the corresponding quantitative type of instructions of Qubit, and are not described here. Based on the concentration test results, 500-750 ng was sampled for the following library construction reaction, using 1xTE to make the total volume no more than 45 ul.
  • Dephosphorylation is used to block the 5' end of the fragment of interest to prevent self-ligation of the fragment of interest;
  • Dephosphorylation reaction Take the steps to recover the product, and prepare the system according to the following table:
  • the system was mixed and added to the product of the previous step, mixed and incubated at 12 ° C for 20 min.
  • the magnetic beads were dissolved in the buffer, mixed and placed for 10 min, placed in a magnetic stand and allowed to stand for 5 min to be clarified by the liquid, and the supernatant product was recovered.
  • the purification of the reaction product can be carried out in various ways, such as a magnetic bead method, a column purification method, a gel recovery method, etc., and can be used for replacement. This embodiment is purified by a magnetic bead method unless otherwise specified.
  • Steps 3 and 4 are not required in order.
  • the 5' end Arm of the linker A consists of a normal long chain and a short chain closed at both ends, which can effectively prevent the self-ligation reaction between Arms.
  • the long chain of the 5' end of the linker A is single-stranded to the 3' end of the target fragment, and after denaturation, a DNA sequence with one end added to the 5'-end Arm long chain of the linker is formed. chain.
  • primer extension was carried out to synthesize the two strands, and the complete link A5' end Arm was added to one end of the target fragment, as shown in Fig. 3.
  • the 3' end Arm of the linker A is composed of a long chain closed at the 3' end and a short chain closed at both ends to prevent the self-ligation reaction.
  • the same principle is that under the action of ligase, the long-chain 5' end of the 3' end Arm of the adaptor A is single-stranded to the 3' end of the target fragment, and uracil-containing is added.
  • Primer 2 through the nick translation and ligation reaction under the action of polymerase and ligase to complete the complete junction A3' end Arm connection, schematic diagram shown in Figure 4;
  • Linker A 5' end Arm linkage The linker sequence is as follows (the sequence is from 5' to 3' end from left to right, the terminal modification group in "//”, “phos” shows phosphorylation, and “dd” shows dideoxy "bio” indicates biotin, and the bold italicized area indicates the barcode area).
  • 3x HB buffer The formula of 3x HB buffer is as follows: hereinafter referred to as 3X HB
  • Primer 1 sequence (sequence from left to right is 5' to 3', "/" is a terminal modification group, “phos” is phosphorylated, “dd” is dideoxy, "bio” is biotin, “ideoxy” means deoxygenated, bold italicized area means barcode area): GTCGAGAACG/ideoxyU/CTCGTGCT (SEQ ID NO: 3)
  • the 2x PfuCx buffer formulation is as follows:
  • Linker A 3'-end Arm linkage The sequence of the linker used in this protocol is as follows (the sequence is from 5' to 3' end from left to right, the terminal modification group is in "//”, and "phos” is phosphorylated,” Dd” shows dideoxy, "bio” shows biotin.).
  • Primer 2 (sequence from left to right is 5' to 3', "/" is a terminal modification group, “phos” is phosphorylated, “dd” is dideoxy, “bio” is biotin, “ Ideoxy” means deoxygenation, bold italicized area indicates the barcode area): ACGTTCTCGAC/ideoxyU/CAGCAGA (SEQ ID NO: 6)
  • Quantification was performed using Qubit, and the starting amount of the sample used in the next enzyme reaction was adjusted according to the concentration measured by Qubit, adjusted to 60 ng, and the total volume was made up to 80 ul using 1XTE.
  • linker A ligation product was amplified and the following PCR reaction mixture was prepared:
  • the 2 tubes of PCR reaction products were combined into 1 tube, added with 288ul Ampure XP for purification, mixed and placed for 10min, placed in a magnetic stand for 5min, then the supernatant was removed, and the magnetic beads were washed twice with 1000ul 75% ethanol, the last time. After removing ethanol, dry it, add 62ul ddH 2 O to dissolve the magnetic beads, mix and let it stand for 10min, put it into the magnetic frame and let it stand for 5min. After the liquid is clarified, about 60ul of the supernatant product is recovered.
  • the PCR product of linker A was quantified using Qubit.
  • Hybrid capture of a single sample can be performed, or a tag sequence can be introduced in linker A, and post-Pocolation hybridization can be performed on 8 samples to achieve flux increase and cost reduction.
  • the 750 ng of the PCR product of Linker A was transferred to a new PCR tube and the product was concentrated to dryness by vacuum concentration.
  • a sample library system for enrichment of the fragment of interest was prepared in the previous PCR tube according to the following table.
  • Block #3 sequence (sequence from left to right is 5' to 3' end, “//” is the terminal modification group, “phos” shows phosphorylation, “dd” shows dideoxy, “bio” shows biotin The bold italicized area indicates the barcode area). :ACTGCTGACGTACTGTGTCATAAATAGCACGAGACGTTCTCGAC (SEQ ID NO: 7)
  • Block #4 sequence (sequence from left to right is 5' to 3' end, "//” is the terminal modification group, “phos” shows phosphorylation, “dd” shows dideoxy, “bio” shows biotin The bold italicized area indicates the barcode area). :TCTGCTGAGTCGAGAACGT (SEQ ID NO: 8)
  • Step Temperature Time Step 1 95 ° C 5min Step 2 65 ° C Holding
  • the hybrid Buffer reaction system was prepared in a new 1.5 ml centrifuge tube according to the following table:
  • the Oligo Library Mix was placed in a PCR machine at 65 ° C for 2 min; the reaction system was kept at 65 ° C, the tube cover of the sample library tube and the hybrid Buffer tube were uncovered, and 13 ⁇ l of the hybrid Buffer was quickly transferred to the sample library tube; The reaction system was opened at 65 ° C, the Oligo Library Mix tube cover was uncovered, and all the reaction systems in the sample library tube were quickly transferred to the Oligo Library Mix tube, pipetted and mixed, and the tube cover was covered. The mixture was about 27-29 ⁇ l.
  • the PCR tube was maintained to hybridize for 24 h at 65 ° C (thermal cycler hot lid set to 105 ° C).
  • step d) to step e) 2 times;
  • the centrifuge tube containing the hybridization mixture and the magnetic beads is symmetrically fixed on a Nutator or the like and rotated 360 degrees, and incubated at room temperature for 30 minutes;
  • step n) to step o) 2 times;
  • the reaction mixture was mixed with the 70 ul DNA sample obtained in the previous step, and the mixed mixture was dispensed into 2 new PCR tubes, each tube being about 120 ul.
  • the reaction was carried out as follows:
  • Poing product after exon capture Here, a single tube product of 1.5-2 ug can be used to continue the library construction process of a single sample, and different sample products can also be subjected to Pooling. If you need to do Pooling, you need to connect connector A with different barcodes between different samples. Up to 8 tubes of different sample products can be pooled, and the total amount of 1.5-2 ug after the Pooling is continued for subsequent database construction steps. Use 1XTE to make up the total volume does not exceed 60ul.
  • the USER enzyme reaction mixture is prepared as follows:
  • the PCR amplification product or the Pooling product was mixed with the reaction mixture, and reacted under the following conditions: 37 ° C for 1 hour; 4 ° C forever.
  • the uracil in the A3' and 5' Arms was digested by USER, and the double-stranded DNA containing the entire linker A was captured, and a gap was formed at both ends of the amplified DNA product, and the cyclization reaction was carried out under the action of ligase to form the first
  • the double-stranded circular molecule also combines the 3' end and the 5' end Arm of the linker A to form a complete linker A.
  • the restriction end of the linker A is designed to contain a restriction endonuclease EcoP15I recognition site for subsequent restriction enzyme digestion.
  • the design of the uracil site introduces a 1 nt base deletion (Gap) in one strand of the formed double-stranded loop, as shown in Figure 5;
  • the first double-stranded DNA is cyclized, and the reaction mixture is prepared and prepared as follows:
  • the 110ul User enzyme reaction product obtained in the previous step was centrifuged instantaneously, transferred into a 2.0 ml centrifuge tube, and 1700 ul of the above mixture was added to the mixture, centrifuged, and dispensed into four 1.5 ml centrifuge tubes, each tube was about 450 ul; Warm bath in the pot: 60 ° C for 30 min; after the reaction is completed, put it into a normal temperature water bath, and let it cool for 20 min.
  • the formulation of the cyclization buffer is as follows:
  • This step is optional. Digest the uncircularized DNA and prepare the Plasmid Safe enzymatic reaction mixture.
  • the preparation system is as follows:
  • the formulation of the Plasmid-safe reaction buffer is as follows:
  • Plasmid Safe enzyme reaction mixture to the 60 ul DNA sample plate after one step of purification, mix well, and then centrifuge on a PCR machine.
  • the reaction conditions are as follows: 37 ° C for 1 hour; 4 ° C forever.
  • the restriction endonuclease EcoP15I digests the restriction site on the linker A, and cuts a fragment of 25-27 bp at both ends of the linker A, as shown in Fig. 6.
  • the EcoP15I digestion reaction mixture was prepared, and the preparation system was as follows:
  • the EcoP15I digestion reaction buffer formulation is as follows:
  • the DNA sample purified in the previous step was transferred to a new 1.5 ml centrifuge tube, and 323 ul EcoP15I was added to digest the reaction mixture, mixed and centrifuged, and then incubated at 37 ° C for 16 h in an incubator.
  • the product was purified by PEG32 magnetic beads. After the reaction was completed, 270 ul of PEG32 magnetic beads were added, mixed and placed for 10 min, placed in a magnetic stand for 5 min, then the supernatant was discarded, and the magnetic beads were washed twice with 1000 ul of 75% ethanol. After removing ethanol, dry it, add 46ul 1XTE dissolved magnetic beads, mix and let it stand for 10min, put it into the magnetic frame and let it stand for 5min. After the liquid is clarified, the supernatant product is recovered.
  • the PEG32 magnetic bead formulation is: AmpureXP magnetic beads containing 32% (mass by volume) PEG 3350.
  • T4ploymerase end-filling reaction mixture 8.6 ul of T4ploymerase end-filling reaction mixture was added to the upward reaction, and the mixture was immediately centrifuged.
  • the PCR tube containing 54.6 ul of the reaction mixture was placed in a PCR machine for reaction conditions: 12 ° C for 20 min; 4 ° C forever (the PCR instrument required a hot lid).
  • a single-stranded linkage is made in the 3' end Arm of the linker B.
  • the 3' end of the linker B is composed of a long chain closed at the 3' end and a short chain closed at both ends to prevent the self-ligation reaction.
  • the long-chain 5' end of the linker B 3' end Arm and the target fragment under the action of ligase
  • the 3' end is single-stranded. Since the target fragment contains a 1nt gap introduced by cyclization of the linker A, the target fragment of the gap is nick translated in the 5' to 3' direction under the action of the polymerase, and at the 3' end under the action of the Klenow Exo enzyme.
  • a prominent adenine (A base) is added to form a double-stranded DNA molecule with a long chain in the Arm at the 3' end of the linker B and a prominent A base at the other end.
  • a base is added to form a double-stranded DNA molecule with a long chain in the Arm at the 3' end of the linker B and a prominent A base at the other end.
  • a single-stranded linkage is made in the 5' end Arm of the linker B.
  • the 5' end of the linker B is composed of a long chain closed at the 3' end and a short chain closed at both ends to prevent the self-ligation reaction, wherein the 3' end of the short chain contains a prominent dideoxythymine (ddT) to Prominent A base pairing in the target fragment.
  • ddT dideoxythymine
  • the 3' end Arm sequence of linker B is as follows: (the sequence is from 5' to 3' end from left to right, the terminal modification group in "//”, “phos” shows phosphorylation, and “dd” shows dideoxy, " Bio” indicates biotin, and the bold italicized area indicates the barcode area).
  • the end-fill/add A buffer formulation is as follows:
  • the reaction mixture is prepared as follows:
  • the 5' end Arm sequence of linker B is as follows: (the sequence is from 5' to 3' end from left to right, the terminal modification group in "//”, “phos” shows phosphorylation, and “dd” shows dideoxy, " Bio” indicates biotin, and the bold italicized area indicates the barcode area).
  • Primer 3 sequence (sequence from left to right is 5' to 3', "/” is a terminal modification group, “phos” is phosphorylated, “dd” is dideoxy, "bio” is biotin, The bold italicized area indicates the barcode area): /5bio/TCCTAAGACCGCTTGGCCTCCGACT (SEQ ID NO: 13)
  • Primer 4 sequence (sequence from left to right is 5' to 3', "/” is a terminal modification group, “phos” is phosphorylated, “dd” is dideoxy, “bio” is biotin, The bold italicized area indicates the barcode area): /5phos/AGACAAGCTCGAGCTCGAGCGATCGGGCTTCGACTGGAGAC (SEQ ID NO: 14)
  • the PCR tube was taken out for centrifugation, and 8.0 ul of nick translation was added to each well, and the reaction mixture was mixed and mixed, and then centrifuged instantaneously.
  • a PCR tube containing 80 ul of the reaction mixture was placed in a PCR machine for reaction at 37 ° C for 20 min; 4 ° C forever.
  • the PCR reaction mixture was prepared as follows:
  • PCR reaction conditions (requires hot lid):
  • Quantification was performed using Qubit. The initial amount of the sample used in the next reaction did not exceed 627 ng, and it was taken to a new centrifuge tube, and the total volume was made up to 60 ul with 1XTE.
  • biotin-labeled nucleic acid single strand is isolated by biotin labeling on one strand of the nucleic acid duplex.
  • Streptavidin Beads (LIFE TECHNOLOGIES, 35002D) Preparation: Remove the Streptavidin Beads to be used in a new centrifuge tube, place on a magnetic stand and clarify and remove the supernatant. Add 5 volumes of 1X magnetic bead binding buffer, mix and place on a magnetic stand, clarify and discard the supernatant, repeat the above operation once, add 1 volume of 1X magnetic bead to the buffer suspension, then add 1/100 The volume was 0.5% Tween20, and it was allowed to stand at room temperature after mixing.
  • the 1X magnetic bead binding buffer formulation is as follows:
  • Streptavidin Beads 1X Magnetic Bead Wash Buffer and 0.1M NaOH are ready for use.
  • the 4X magnetic bead binding buffer formulation is as follows:
  • the 1X magnetic bead wash buffer formulation is as follows:
  • the biotin-labeled probe (hybrid oligo) was designed to hybridize with the target fragment according to the sequence in the linker A, and the resulting non-normal double-stranded cleavage product was filtered out; the streptavidin-coated magnetic beads were used to recover the correct capture. product.
  • Hybrid oligo sequence (sequence from left to right is 5' to 3' end, "/" is a terminal modification group, “phos” shows phosphorylation, “dd” shows dideoxy, “bio” shows biotin, The bold italicized area indicates the barcode area): /5Bio/TCTGCTGAGTCGAGAACGTCTCGTGCT (SEQ ID NO: 15)
  • the 10x hybridization reaction buffer formulation is as follows:
  • the 130 ul reaction product of the above-mentioned hybridization reaction was placed in a centrifuge and centrifuged at 2000 rpm for 1 min, 43.3 ul of 4X magnetic bead binding buffer was added, and the mixture was centrifuged, and 90 ul of the washed Streptavidin Beads was added. After mixing for 10 min, the magnetic stand was allowed to stand for 5 min. After the liquid was clarified, the supernatant was aspirated, washed twice with 1000 ul of 1X hybrid capture washing solution, washed once with 100 ul of the 1X hybrid capture washing liquid at 56 ° C, and dissolved by 78 ul of 0.1 M NaOH.
  • the 1X hybrid capture wash solution formulation is as follows:
  • the single-chain cyclization of the nucleic acid is carried out under the action of the auxiliary cyclized oligo; and the remaining uncircularized single strand is removed by treatment with an exonuclease or the like. .
  • the single-stranded circular nucleic acid product is purified and recovered, which is a single-stranded circular library finally prepared;
  • Auxiliary cyclized oligo (sequences from left to right from 5' to 3', "//” as terminal modification group, “phos” for phosphorylation, “dd” for dideoxy, "bio” for biotin , bold italicized area indicates the barcode area): TCGAGCTTGTCTTCCTAAGACCGC (SEQ ID NO: 16)
  • the digestion reaction mixture is prepared as follows:
  • nucleic acid nanospheres are formed to perform nucleic acid sequence information reading.
  • the results of the sequencing analysis are shown in Tables 1, 2 and 10.
  • "uniq_depth” in Table 1 is the sequencing depth calculated using the read of the unique reference sequence
  • "uniq_coverage” is the sequencing coverage calculated using the read of the unique reference sequence
  • "duplicate rate” Represents the proportion of repeated reads. From the experimental results, the concentration and total amount of each product satisfies the subsequent sequencing requirements, and the electrophoresis results also show that the fragments are concentrated, which is a very high quality library. The indicators in the analysis are all good, which proves that the program is completely successful.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

提供了一种试剂盒、一种基于双链DNA制备环状双链DNA的方法、一种制备双链核酸融合分子的方法、一种基于双链DNA片段构建测序文库的方法、一种核酸测序方法、一种基于双链DNA制备环状双链DNA的装置、一种基于双链DNA片段构建测序文库的设备以及一种核酸测序***。

Description

试剂盒及其在核酸测序中的用途 技术领域
本发明涉及生物技术领域,具体的,本发明涉及试剂盒及其在核酸测序中的用途,更具体的,本发明涉及一种试剂盒、一种基于双链DNA制备环状双链DNA的方法、一种制备双链核酸融合分子的方法、一种基于双链DNA片段构建测序文库的方法、一种核酸测序方法、一种基于双链DNA制备环状双链DNA的装置、一种基于双链DNA片段构建测序文库的设备、以及一种核酸测序***。
背景技术
目前市场上第二代DNA测序技术的主要生产商主要有Illumina和Life Technologies。这些二代测序技术均是形成构建线性DNA(或cDNA)文库进行文库构建。这些线性文库,不能通过滚环复制形成DNA纳米球(DNA nanoball,DNB),从而不能用于联合探针锚定连接测序技术(combinatorial probe-anchor ligation,cPAL)进行测序,已知cPAL的准确度是目前最高的。与桥式PCR扩增(Illumina)和乳液PCR扩增(Life Technologies)相比,滚环复制的优势在于扩增引入的错误率更低,并且形成的DNA纳米球直径小,可更有效地利用测序芯片表面积,从而得到更大的数据产出量。
因而,目前构建测序文库的手段仍有待改进。
发明内容
本发明旨在至少在一定程度上解决上述技术问题之一或至少提供一种有用的商业选择。为此,本发明的目的在于提出能够有效地用于构建测序文库的手段。
为此,根据本发明的第一方面,本发明提出了一种试剂盒。根据本发明的实施例,该试剂盒包括:第一分离的寡核苷酸;第二分离的寡核苷酸;第一引物;以及第二引物,其中,所述第一和第二分离的寡核苷酸分别包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,其中,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第一引物特异性识别所述第一分离的寡核苷酸的第一链,并且所述第一引物中含有尿嘧啶,以及所述第二引物特异性识别所述第二分离的寡核苷酸的第一链,并且所述第二引物中含有尿嘧啶。根据本发明的实施例,该试剂盒中包含有两个寡核苷酸,由于第一和第二寡核苷酸中各自的第一链和第二链的两个末端,即3’末端都为双脱氧核苷酸,因此, 第一和第二寡核苷酸都不会发生自身连接。由此,可以将该试剂盒应用于构建测序文库,尤其是应用于cPAL技术,例如CG测序平台,能够有效地提高提高在DNA片段的末端添加接头的效率,从而提高构建测序文库的效率。
在本发明的第二方面,本发明提出了一种基于双链DNA制备环状双链DNA的方法,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团,其特征在于,所述方法包括:使所述双链DNA与第一分离的寡核苷酸相连,以便获得第一连接产物;对所述第一连接产物进行第一热变性处理,以便获得第一单链DNA分子;利用第一引物与所述第一单链DNA分子互补配对发生链延伸反应,以便获得链延伸反应产物,其中,所述链延伸反应产物含有一个尿嘧啶;使所述链延伸反应产物与第二分离的寡核苷酸相连,以便获得第二连接产物;利用第二引物使所述第二连接产物发生引物介导的缺口平移和末端连接反应,以便获得第三连接产物,其中,所述第三连接反应产物含有两个尿嘧啶;利用USER酶(Uracil-Specific Excision Reagent)对所述第三连接产物进行切割,以便获得第一切割产物,所述第一切割产物含有两个缺口;以及使所述第一切割产物发生环化反应,以便获得所述环状双链DNA,其中一条链有碱基缺失,任选地所述碱基缺失的长度为1nt,其中,所述第一和第二分离的寡核苷酸分别包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,其中,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第一引物特异性识别所述第一分离的寡核苷酸的第一链,并且所述第一引物中含有尿嘧啶,所述第二引物特异性识别所述第二分离的寡核苷酸的第一链,并且所述第二引物中含有尿嘧啶。发明人发现,通过该方法能够有效地制备环状双链DNA,该环状双链DNA可以用于构建适合cPAL技术的测序文库,例如CG测序平台。另外,前面针对试剂盒所描述的优点和技术特征,仍适用于本方法,在此不再赘述。
在本发明的第三方面,本发明提出了一种制备双链核酸融合分子的方法。根据本发明的实施例,该方法包括:提供第一双链DNA片段,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团,将所述第一双链DNA片段与寡核苷酸相连,以便获得第一连接产物;对所述第一连接产物进行第一热变性处理,以便获得第一单链DNA分子;以及利用引物与所述第一单链DNA分子互补配对发生链延伸反应,以便获得第一链延伸反应产物,其中,所述第一链延伸反应产物构成所述双链核酸融合分子,其中,所述寡核苷酸包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,其中,所述第 一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述引物特异性识别所述寡核苷酸的第一链。发明人惊奇地发现,该方法能够有效地制备双链核酸融合分子,并且由于寡核苷酸的特殊结构以及双链DNA片段的结构性质,有效减少了不期望连接反应的发生几率,因此,构建双链核酸融合分子的效率能够有效地得到提高。另外,该双链核酸融合分子能够有效地应用于构建适合cPAL技术的测序文库,例如CG测序平台。另外,前面针对试剂盒所描述的优点和技术特征,仍适用于本方法,在此不再赘述。
在本发明第四方面,本发明提出了一种基于双链DNA片段构建测序文库的方法,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团。根据本发明的实施例,该方法包括:根据前面所描述的方法,基于所述双链DNA制备双链环状DNA,其中,在所述双链环状DNA中包括第一接头,所述第一接头中包括III型内切酶识别位点以及碱基缺失,其中,所述第一接头是基于所述第一分离的寡核苷酸和第二分离的寡核苷酸形成的,任选地所述碱基缺失的长度为1nt;利用III型内切酶对所述双链环状DNA进行酶切,以便获得第二切割产物;对所述第二切割产物进行末端补平和去磷酸化处理,以便获得平端双链DNA片段;使所述平端双链DNA片段与第三分离的寡核苷酸相连,以便获得第四连接产物;对所述第四连接产物进行缺口平移反应并且在3’末端形成碱基A,以便获得具有3’碱基A的第四连接产物;使所述具有3’碱基A的第四连接产物与第四分离的寡核苷酸相连,以便获得第五连接产物;利用第三引物和第四引物对所述第五连接产物进行引物介导的缺口平移和连接反应,形成第六连接产物;利用第五引物和第六引物对第六连接产物进行扩增,以便获得扩增产物,其中所述扩增产物的一条链上携带生物素;从所述扩增产物分离单链DNA片段;以及将所述单链DNA片段进行环化,以便获得单链DNA环,所述单链DNA环构成所述测序文库,其中,所述第三分离的寡核苷酸包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第四分离的寡核苷酸包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端为突出的为双脱氧胸腺嘧啶,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第三引物具有与所述第三分离的寡核苷酸的第一链匹配的序列,所述第四引物具有与所述第四分离的寡核苷酸的第一链匹配的序列,所述第五引物具有与所述第三引物相同的序列,所述第六引物具有与所述第四引物相同的序列, 并且具有一个额外的生物素,所述单链DNA环中包括第二接头,所述第二接头是基于所述第三分离的寡核苷酸和第四分离的寡核苷酸形成的。由此,根据本发明的实施例,能够有效地制备适合cPAL技术的具有双接头的测序文库,例如CG测序平台。另外,前面针对试剂盒以及基于双链DNA制备双链环状DNA的方法所描述的技术特征和优点,仍然适用该方法,在此不再赘述。
在本发明的第五方面,本发明提出了一种核酸测序方法。根据本发明的实施例,该方法包括:根据前面所述的方法,构建测序文库;以及对所述测序文库进行测序。如前所述,根据本发明的构建测序文库的方法,能够有效地提高构建测序文库的效率。从而该核酸测序方法能够有效地提高测序的效率。
另外,根据本发明的实施例,本发明还提出了可以实施上述方法的装置。由此,
在本发明的第六方面,提出了一种基于双链DNA制备环状双链DNA的装置,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团,根据本发明的实施例,该装置包括:第一连接单元,所述第一连接单元用于使所述双链DNA与第一分离的寡核苷酸相连,以便获得第一连接产物;第一热变性单元,所述第一热变性单元用于对所述第一连接产物进行第一热变性处理,以便获得第一单链DNA分子;链延伸单元,所述链延伸单元用于利用第一引物与所述第一单链DNA分子互补配对发生链延伸反应,以便获得第一链延伸反应产物,其中,所述第一链延伸反应产物含有一个尿嘧啶;第二连接单元,所述第二连接单元用于使所述第一链延伸反应产物与第二分离的寡核苷酸相连,以便获得第二连接产物;第三连接单元,所述第三连接单元利用第二引物使所述第二单链DNA分子发生引物介导的缺口平移和末端连接反应,以便获得第三连接产物,其中,所述第三连接反应产物含有两个尿嘧啶;第一切割单元,所述切割单元用于利用USER酶(Uracil-Specific Excision Reagent)对所述第三连接产物进行切割,以便获得第一切割产物,所述第一切割产物含有两个缺口;以及第一环化单元,所述第一环化单元用于使所述含有两个缺口的切割产物发生环化反应,以便获得所述环状双链DNA,任选地所述环状双链DNA中具有碱基缺失,任选地所述碱基缺失的长度为1nt;其中,所述第一和第二分离的寡核苷酸分别包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,其中,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第一引物特异性识别所述第一和第二分离的寡核苷酸之一的第一链,并且所述第一引物中含有尿嘧啶,所述第二引物特异性识别所述第一和第二分离的寡核苷酸另一个的第一链,并且所述第二引物中含有尿嘧啶。
在本发明的第七方面,提出一种基于双链DNA片段构建测序文库的设备,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团,该方法包括:前述的基于双链DNA制备环状双链DNA的装置,用于基于所述双链DNA制备双链环状DNA,其中,在所述双链环状DNA中包括第一接头,所述第一接头中包括III型内切酶识别位点以及碱基缺失,其中,所述第一接头是基于所述第一分离的寡核苷酸和第二分离的寡核苷酸形成的,任选地所述碱基缺失的长度为1nt;酶切装置,所述酶切装置利用III型内切酶对所述双链环状DNA进行酶切,以便获得第二切割产物;第一末端处理装置,所述末端处理装置用于对所述第二切割产物进行末端补平和去磷酸化处理,以便获得平端双链DNA片段;第一连接装置,所述连接装置用于使所述平端双链DNA片段与第三分离的寡核苷酸相连,以便获得第四连接产物;第二末端处理装置,所述第二末端处理装置用于对所述第四连接产物进行缺口平移反应并且在3’末端形成碱基A,以便获得具有3’碱基A的第四连接产物;第二连接装置,所述连接装置用于使所述具有3’碱基A的第四连接产物与第四分离的寡核苷酸相连,以便获得第五连接产物;第三连接装置,所述第三连接装置用于利用第三引物和第四引物对所述第五连接产物进行引物依赖的缺口平移和连接反应,形成第六连接产物,扩增装置,所述扩增装置用于利用第五引物和第六引物对所述第六连接产物进行扩增,其中所述扩增产物的一条链上携带生物素;单链DNA片段分离装置,所述单链DNA片段分离装置用于从所述扩增产物分离单链DNA片段;以及环化装置,所述环化装置用于将所述单链DNA片段进行环化,以便获得单链DNA环,所述单链DNA环构成所述测序文库,其中,所述第三分离的寡核苷酸包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第四分离的寡核苷酸包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端为突出的为双脱氧胸腺嘧啶,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第三引物具有与所述第三分离的寡核苷酸的第一链匹配的序列,所述第四引物具有与所述第四分离的寡核苷酸的第一链匹配的序列,所述第五引物具有与所述第三引物相同的序列,所述第六引物具有与所述第四引物相同的序列并且具有一个额外的生物素,所述单链DNA环中包括第二接头,所述第二接头是基于所述第三分离的寡核苷酸和第四分离的寡核苷酸形成的。
本发明的第八方面,提供了一种核酸测序***,该***包括:根据前述的针对双链DNA 片段构建测序文库的设备;以及测序设备,所述测序设备用于对所述测序文库进行测序。
根据本发明的实施例,所述测序设备为CG测序平台。另外,前面针对试剂盒、基于双链DNA制备双链环状DNA的方法以及基于双链DNA片段构建测序文库的方法或装置所描述的技术特征和优点,仍然适用该***,在此不再赘述。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本发明的一个实施例中的全外显子文库构建流程图;
图2是本发明的一个实施例中的文库结构组成以及测序方向示意图;
图3是本发明的一个实施例中的方向性的加入接头A的5’端臂(arm,片段)到目的片段的一端的步骤的示意图,5’PO4和3’OH表示可正常延伸的DNA片段,5’OH&3’ddN表示5’端去磷酸化及3’端双脱氧,不可正常延伸的DNA片段;
图4是本发明的一个实施例中的方向性的加入接头A的3’端臂(arm,片段)到目的片段的一端的步骤的示意图,5’PO4&3’OH表示可正常延伸的DNA片段,5’OH&3’ddN表示5’端去磷酸化及3’端双脱氧,不可正常延伸的DNA片段;
图5是本发明的一个实施例中的第一次环化形成双链环状DNA分子示意图;
图6是本发明的一个实施例中的酶切反应示意图;
图7是本发明的一个实施例中的方向性加入接头B步骤示意图;
图8是本发明的一个实施例中的样本经过两次磁珠片段选择后的DNA电泳结果图;
图9是本发明的一个实施例中的基于双接头的单链环状外显子捕获文库6%PAGE胶电泳检测结果示意图,使用的marker ladder为low range DNA ladder(massruler);
图10是本发明的一个实施例的基于双接头的单链环状外显子捕获文库的单碱基深度分布图;
图11是本发明的一个实施例中的基于双链DNA制备环状双链DNA的步骤的流程图;
图12是本发明的一个实施例中的制备双链核酸融合分子的步骤流程图;
图13是本发明的一个实施例中的基于双链DNA片段构建测序文库的步骤示意图;
图14是本发明的一个实施例中获得双链DNA片段的步骤示意图;
图15是本发明的一个实施例中的基于双链DNA制备环状双链DNA的装置的结构示意图;
图16是本发明的一个实施例中的基于双链DNA片段构建测序文库的设备的结构示意图;
图17是本发明的一个实施例中的DNA获取装置的结构示意图;
图18是本发明的一个实施例中的DNA获取装置的结构示意图;
图19是本发明的一个实施例中的单链DNA片段分离装置的结构示意图。
具体实施方式
根据本发明的第一方面,本发明提供了一种试剂盒。根据本发明的实施例,该试剂盒包括:第一分离的寡核苷酸;第二分离的寡核苷酸;第一引物;以及第二引物,其中,所述第一和第二分离的寡核苷酸分别包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,其中,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第一引物特异性识别所述第一分离的寡核苷酸的第一链,并且所述第一引物中含有尿嘧啶,以及所述第二引物特异性识别所述第二分离的寡核苷酸的第一链,并且所述第二引物中含有尿嘧啶。根据本发明的实施例,该试剂盒中包含有两个寡核苷酸,由于第一和第二寡核苷酸中各自的第一链和第二链的两个末端,即3’末端都为双脱氧核苷酸,因此,第一和第二寡核苷酸都不会发生自身连接。由此,可以将该试剂盒应用于构建测序文库,尤其是应用于cPAL技术,例如CG测序平台,能够有效地提高提高在DNA片段的末端添加接头的效率,从而提高构建测序文库的效率。
在本发明的一个实施例中,所述第一和第二分离的寡核苷酸分别包括一个III型内切酶的识别位点,优选地所述III型内切酶为EcoP15I。由此,可以后续通过采用III型内切酶进行切割,便于在测序文库的构建过程中,再添加其他的接头,从而可以进一步提高在DNA片段的末端添加接头的效率,进一步提高构建测序文库的效率。
在本发明的一个实施例中,所述第一和第二分离的寡核苷酸的至少之一包括:第一突出端,所述第一突出端位于所述第一链的3’端;以及任选的第二突出端,所述第二突出端位于所述第二链的3’端。在本发明的一个实施例中,所述第一突出端的长度大于所述第二突出端的长度。在本发明的一个实施例中,所述第一突出端的长度为大约6~12nt。在本发明的一个实施例中,所述第二突出端的长度为大约0~4nt。由此,可以进一步提高在构建测序文库时,DNA片段与寡核苷酸之间的连接准确性,从而可以进一步提高在DNA片段的末端添加接头的效率,进一步提高构建测序文库的效率。
在本发明的一个实施例中,所述第一分离的寡核苷酸、第二分离的寡核苷酸、第一引物以及第二引物均为DNA。由此,可以有效地提高试剂盒的使用效率。
在本发明的一个实施例中,在所述第一分离的寡核苷酸和所述第二分离的寡核苷酸的 每一个中,所述第一链的长度为大约20~50nt,可选地为45nt。在本发明的一个实施例中,在所述第一分离的寡核苷酸和所述第二分离的寡核苷酸的每一个中,所述第二链的长度为大约10~15nt,可选地为11nt。由此,可以进一步提高在构建测序文库时,DNA片段与寡核苷酸之间的连接准确性,从而可以进一步提高在DNA片段的末端添加接头的效率,进一步提高构建测序文库的效率。
在本发明的一个实施例中,进一步包括:分离的第三寡核苷酸,分离的第四寡核苷酸,第三引物,以及第四引物,其中,所述第三分离的寡核苷酸包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第四分离的寡核苷酸包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端为突出的为双脱氧胸腺嘧啶,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第三引物具有与所述第三分离的寡核苷酸的第一链匹配的序列,以及所述第四引物具有与所述第四分离的寡核苷酸的第一链匹配的序列。根据本发明的实施例,能够有效地引入另外的接头。从而可以进一步提高在DNA片段的末端添加接头的效率,进一步提高构建测序文库的效率。
在本发明的一个实施例中,所述第一寡核苷酸的第一链的序列为:5’ACTGCTGACGTACTG(N)mAGCACGAGACGTTCTCGACA3’,其中,N代表A、T、G或C,m为大约0~15的整数,所述第一寡核苷酸的第二链的序列为5’TACGTCAGCAG3’,所述第二寡核苷酸的第一链的序列为5’TCTGCTGAGTCGAGAACGT3’,所述第二寡核苷酸的第二链的序列为5’CGACTCAGCAG3’,第一引物的序列为5’GTCGAGAACGUCTCGTGCT3’,第二引物的序列为5’ACGTTCTCGACUCAGCAGA3’,所述第三分离的寡核苷酸的第一链的序列为5’GCTTCGACTGGAGA3’,所述第三分离的寡核苷酸的第二链的序列为5’GTCTCCAGTCGAAGCCCGACG3’,所述第四分离的寡核苷酸的第一链的序列为5’AGTCGGAGGCCAAGCGGTCGT3’,所述第四分离的寡核苷酸的第二链的序列为5’TTGGCCTCCGACT3’,所述第三引物的序列为5’TCCTAAGAC CGCTTGGCCTCCGACT3’;以及所述第四引物的序列为5’AGACAAGCTCGAGCTCGAGCGATCGGGCTTCGACTGGAGAC3’。在本发明的一个实施例中,m为10。从而可以进一步提高在DNA片段的末端添加接头的效率,进一步提高构建测序文库的效率。
在本发明的一个实施例中,进一步包括单链核酸分子,所述单链核酸分子的序列为5’TCGAGCTTGTCTTCCTAAGACCGC3’。由此,利用该单链核酸分子能够有效地辅助形成单链环状DNA,从而可以进一步提高构建测序文库的效率。
在本发明的第二方面,本发明提出了一种基于双链DNA制备环状双链DNA的方法,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团,如图11所示,该方法包括:使所述双链DNA与第一分离的寡核苷酸相连,以便获得第一连接产物;对所述第一连接产物进行第一热变性处理,以便获得第一单链DNA分子;利用第一引物与所述第一单链DNA分子互补配对发生链延伸反应,以便获得链延伸反应产物,其中,所述链延伸反应产物含有一个尿嘧啶;使所述链延伸反应产物与第二分离的寡核苷酸相连,以便获得第二连接产物;利用第二引物使所述第二连接产物发生引物介导的缺口平移和末端连接反应,以便获得第三连接产物,其中,所述第三连接反应产物含有两个尿嘧啶;利用USER酶(Uracil-Specific Excision Reagent)对所述第三连接产物进行切割,以便获得第一切割产物,所述第一切割产物含有两个缺口;以及使所述第一切割产物发生环化反应,以便获得所述环状双链DNA,其中一条链有碱基缺失,任选地所述碱基缺失的长度为1nt,其中,所述第一和第二分离的寡核苷酸分别包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,其中,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第一引物特异性识别所述第一分离的寡核苷酸的第一链,并且所述第一引物中含有尿嘧啶,所述第二引物特异性识别所述第二分离的寡核苷酸的第一链,并且所述第二引物中含有尿嘧啶。发明人发现,通过该方法能够有效地制备环状双链DNA,该环状双链DNA可以用于构建适合cPAL技术的测序文库,例如CG测序平台。另外,前面针对试剂盒所描述的优点和技术特征,仍适用于本方法,在此不再赘述。
在本发明的第三方面,本发明提出了一种制备双链核酸融合分子的方法。根据本发明的实施例,如图12所示,该方法包括:提供第一双链DNA片段,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团,将所述第一双链DNA片段与寡核苷酸相连,以便获得第一连接产物;对所述第一连接产物进行第一热变性处理,以便获得第一单链DNA分子;以及利用引物与所述第一单链DNA分子互补配对发生链延伸反应,以便获得第一链延伸反应产物,其中,所述第一链延伸反应产物构成所述双链核酸融合分子,其中,所述寡核苷酸包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸, 其中,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述引物特异性识别所述寡核苷酸的第一链。发明人惊奇地发现,该方法能够有效地制备双链核酸融合分子,并且由于寡核苷酸的特殊结构以及双链DNA片段的结构性质,有效减少了不期望连接反应的发生几率,因此,构建双链核酸融合分子的效率能够有效地得到提高。另外,该双链核酸融合分子能够有效地应用于构建适合cPAL技术的测序文库,例如CG测序平台。另外,前面针对试剂盒所描述的优点和技术特征,仍适用于本方法,在此不再赘述。
在本发明第四方面,本发明提出了一种基于双链DNA片段构建测序文库的方法,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团。根据本发明的实施例,如图13所示,该方法包括:根据前面所描述的方法,基于所述双链DNA制备双链环状DNA,其中,在所述双链环状DNA中包括第一接头,所述第一接头中包括III型内切酶识别位点以及碱基缺失,其中,所述第一接头是基于所述第一分离的寡核苷酸和第二分离的寡核苷酸形成的,任选地所述碱基缺失的长度为1nt;利用III型内切酶对所述双链环状DNA进行酶切,以便获得第二切割产物;对所述第二切割产物进行末端补平和去磷酸化处理,以便获得平端双链DNA片段;使所述平端双链DNA片段与第三分离的寡核苷酸相连,以便获得第四连接产物;对所述第四连接产物进行缺口平移反应并且在3’末端形成碱基A,以便获得具有3’碱基A的第四连接产物;使所述具有3’碱基A的第四连接产物与第四分离的寡核苷酸相连,以便获得第五连接产物;利用第三引物和第四引物对所述第五连接产物进行引物介导的缺口平移和连接反应,形成第六连接产物;利用第五引物和第六引物对第六连接产物进行扩增,以便获得扩增产物,其中所述扩增产物的一条链上携带生物素;从所述扩增产物分离单链DNA片段;以及将所述单链DNA片段进行环化,以便获得单链DNA环,所述单链DNA环构成所述测序文库,其中,所述第三分离的寡核苷酸包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第四分离的寡核苷酸包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端为突出的为双脱氧胸腺嘧啶,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第三引物具有与所述第三分离的寡核苷酸的第一链匹配的序列,所述第四引物具有与所述第四分离的寡核苷酸的第一链匹配的序列,所述第五引物具有与所述第三引物相同的序列,所述第六引物具有与所述第四引 物相同的序列,并且具有一个额外的生物素,所述单链DNA环中包括第二接头,所述第二接头是基于所述第三分离的寡核苷酸和第四分离的寡核苷酸形成的。由此,根据本发明的实施例,能够有效地制备适合cPAL技术的具有双接头的测序文库,例如CG测序平台。另外,前面针对试剂盒以及基于双链DNA制备双链环状DNA的方法所描述的技术特征和优点,仍然适用该方法,在此不再赘述。
根据本发明的实施例,上述方法还可以具有下列附加技术特征:
在本发明的一个实施例中,如图14所示,所述双链DNA片段是通过下列步骤获得的:对DNA样本进行片段化,以便获得片段化产物;对所述片段化产物进行去磷酸化处理,以便获得去磷酸化处理的片段化产物;以及对所述经过去磷酸化处理的片段化产物进行末端修复处理,以便获得所述双链DNA片段。在本发明的一个实施例中,所述DNA样本为基因组DNA的至少一部分或者RNA的反转录产物。在本发明的一个实施例中,在进行所述去磷酸化处理之前,预先对所述片段化产物进行磁珠纯化。由此,可以进一步提高获得双链DNA片段的效率,从而进一步提高构建测序文库的效率。
在本发明的一个实施例中,从所述扩增产物分离单链DNA片段是通过下列步骤进行的:使所述扩增产物与磁珠接触,以便形成磁珠-DNA复合物,其中,所述磁珠上连接有链霉亲和素;将所述磁珠-DNA复合物与pH高于7的溶液接触,以便获得所述单链DNA片段,以及任选地进一步包括:利用杂交寡核苷酸对不含有生物素的单链DNA进行捕获。由此,可以进一步提高分离单链DNA片段的效率,从而进一步提高构建测序文库的效率。
在本发明的一个实施例中,所述pH高于7的溶液为氢氧化钠溶液。由此,可以进一步提高分离单链DNA片段的效率,从而进一步提高构建测序文库的效率。
在本发明的一个实施例中,所述氢氧化钠溶液的浓度为大约2M以下。由此,可以进一步提高分离单链DNA片段的效率,从而进一步提高构建测序文库的效率。
在本发明的一个实施例中,所述氢氧化钠溶液的浓度为大约0.1M。由此,可以进一步提高分离单链DNA片段的效率,从而进一步提高构建测序文库的效率。
在本发明的一个实施例中,通过采用单链核酸分子将所述单链DNA片段进行环化,其中,所述单链核酸分子上限定出第一区段和第二区段,并且所述第一区段能够与包含所述单链DNA片段的5’末端核苷酸和3’末端核苷酸的序列之一匹配,所述第二区段能够与包含所述单链DNA片段的5’末端核苷酸和3’末端核苷酸的另一序列匹配。由此,可以进一步提高单链DNA片段环化的效率,从而进一步提高构建测序文库的效率。
在本发明的一个实施例中,所述第一区段和所述第二区段是毗邻连接的。由此,可以进一步提高单链DNA片段环化的效率,从而进一步提高构建测序文库的效率。
在本发明的一个实施例中,所述单链核酸分子具有 5’TCGAGCTTGTCTTCCTAAGACCGC3’的序列,所述第三分离的寡核苷酸的第一链具有5’GCTTCGACTGGAGA3’的序列;所述第三分离的寡核苷酸的第二链具有5’GTCTCCAGTCGAAGCCCGACG3’的序列;所述第四分离的寡核苷酸的第一链具有5’AGTCGGAGGCCAAGCGGTCGT3’的序列;所述第四分离的寡核苷酸的第二链具有5’TTGGCCTCCGACT3’的序列;所述第三引物具有5’TCCTAAGACCGCTTGGCCTCCGACT3’的序列;以及所述第四引物具有5’AGACAAGCTCGAGCTCGAGCGATCGGGCTTCGACTGGAGAC3’的序列。由此,可以进一步提高构建测序文库的方法。
本发明的这一方面的基于双链DNA片段构建测序文库的方法,可用于构建全基因组、全外显子、Gene panel(基因面板,靶定的基因或区域)以及反转的cDNA文库等。在本发明的一个实施例中,全外显子文库构建过程如图1所示,最终形成的单链环状文库,文库的结构组成以及测序方向如图2所示。
本发明这一方面的方法提供了一种与现在市面上通用的线性文库构建方法完全不同的单链环状文库制备技术,用这种技术构建的文库可进行超高通量的核酸测序,获得巨大的数据产量,降低测序成本,数据质量与信息分析结果均良好。此方法中间步骤采用的许多方法设计巧妙,构思精良,除了可以为制备高质量文库奠定基础外,对其它类型的文库构建优化及应用也具有启发和指导意义。本发明的这一方法的主要优点有:两步磁珠片段选择的方法不仅可以避免繁琐的切胶进行片段选择,更节约了成本,还可进行自动化操作,省时省力高通量;方向性接头的设计和接头的分步定向连接,不仅可以巧妙灵活的进行接头序列引入,更有效的避免了接头自连以及目的片段自身的自连;设计的含有尿嘧啶的引物,保证了双链DNA分子酶切时产生粘性末端,高效介导了后续的双链DNA环化;Ecop15I酶切的方法获得测序时***片段;单链核酸分子环化,可高效的进行单链核酸环化,为后续滚环扩增提供了高质量的模板。在基因组DNA进行打断后,两步磁珠片段选择法可简单高效的进行目的片段筛选。接下来进行的目的片段去磷酸化步骤,目的核酸片段经过去磷酸化的末端封闭处理和末端补平后,成为了两端5’端封闭的平末端片段,完全避免了片段间相互作用的发生,使连接前片段的利用率得到了极高的保证。方向性接头设计的巧妙之处在于灵活的进行末端封闭封闭修饰,保证了每个接头每个臂(Arm,第一和/或第二分离的寡核苷酸)的连接均为与目的片段单链连接,再通过引物延伸或缺口平移/连接反应完成完整的双链接头连接。解决了文库构建或接头连接反应中让实验人员深为困扰的接头自连问题。通过设计含有尿嘧啶的引物形成粘性末端,引导双链环化,保证了双链环化的效率。设计的接头中含有Ecop15I酶切位点,通过Ecop15I酶切,获得测序所需的两段25-27bp序列***片段,这种***片段的引入方式与目前通用的文库构建流程中片段引入方式均不 相同。单链环制备的方法可为高通量测序中使用的DNB(DNA nanoballs)的制备提供基础。本发明提供的实施例涉及的各实验步骤均经过最佳条件的摸索,试验了不同样品并进行多次重复实验,最终文库制备结果与相同样本的其他测序所得结果进行比较,并且进行了稳定性和可重复性验证。本发明的数据结果与其他建库测序技术的数据相关性非常高,重复性很好,均证实了本发明的效果和真实可靠性。
本发明这一方面的方法可用于所有类型DNA,包括RNA反转录得到的cDNA,可用于进行全基因组、全外显子、gene panel及cDNA测序等,能用于利用单链环状文库进行测序的基因测序平台,如Complete Genomcis测序平台,效果好,通量高;其中的方法和思路同样也可应用于其它需要制备单链环状DNA分子的方法、装置或***。
在本发明的第五方面,本发明提出了一种核酸测序方法。根据本发明的实施例,该方法包括:根据前面所述的方法,构建测序文库;以及对所述测序文库进行测序。如前所述,根据本发明的构建测序文库的方法,能够有效地提高构建测序文库的效率。从而该核酸测序方法能够有效地提高测序的效率。
根据本发明的实施例,采用CG测序平台,对所述测序文库进行测序。从而能够进一步提高测序的效率。
在本发明的第六方面,提出了一种基于双链DNA制备环状双链DNA的装置,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团,根据本发明的实施例,如图15所示,该装置包括:第一连接单元,所述第一连接单元用于使所述双链DNA与第一分离的寡核苷酸相连,以便获得第一连接产物;第一热变性单元,所述第一热变性单元用于对所述第一连接产物进行第一热变性处理,以便获得第一单链DNA分子;链延伸单元,所述链延伸单元用于利用第一引物与所述第一单链DNA分子互补配对发生链延伸反应,以便获得第一链延伸反应产物,其中,所述第一链延伸反应产物含有一个尿嘧啶;第二连接单元,所述第二连接单元用于使所述第一链延伸反应产物与第二分离的寡核苷酸相连,以便获得第二连接产物;第三连接单元,所述第三连接单元利用第二引物使所述第二单链DNA分子发生引物介导的缺口平移和末端连接反应,以便获得第三连接产物,其中,所述第三连接反应产物含有两个尿嘧啶;第一切割单元,所述切割单元用于利用USER酶(Uracil-Specific Excision Reagent)对所述第三连接产物进行切割,以便获得第一切割产物,所述第一切割产物含有两个缺口;以及第一环化单元,所述第一环化单元用于使所述含有两个缺口的切割产物发生环化反应,以便获得所述环状双链DNA,任选地所述环状双链DNA中具有碱基缺失,任选地所述碱基缺失的长度为1nt;其中,所述第一和第二分离的寡核苷酸分别包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的 5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,其中,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第一引物特异性识别所述第一和第二分离的寡核苷酸之一的第一链,并且所述第一引物中含有尿嘧啶,所述第二引物特异性识别所述第一和第二分离的寡核苷酸另一个的第一链,并且所述第二引物中含有尿嘧啶。
根据本发明的实施例,所述第一和第二分离的寡核苷酸分别包括一个III型内切酶的识别位点,所述III型内切酶为EcoP15I。另外,前面针对试剂盒以及基于双链DNA制备双链环状DNA的方法所描述的技术特征和优点,仍然适用该装置,在此不再赘述。
根据本发明的第七方面,提出一种基于双链DNA片段构建测序文库的设备,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团,如图16所示,该装置包括:前述的基于双链DNA制备环状双链DNA的装置,用于基于所述双链DNA制备双链环状DNA,其中,在所述双链环状DNA中包括第一接头,所述第一接头中包括III型内切酶识别位点以及碱基缺失,其中,所述第一接头是基于所述第一分离的寡核苷酸和第二分离的寡核苷酸形成的,任选地所述碱基缺失的长度为1nt;酶切装置,所述酶切装置利用III型内切酶对所述双链环状DNA进行酶切,以便获得第二切割产物;第一末端处理装置,所述末端处理装置用于对所述第二切割产物进行末端补平和去磷酸化处理,以便获得平端双链DNA片段;第一连接装置,所述连接装置用于使所述平端双链DNA片段与第三分离的寡核苷酸相连,以便获得第四连接产物;第二末端处理装置,所述第二末端处理装置用于对所述第四连接产物进行缺口平移反应并且在3’末端形成碱基A,以便获得具有3’碱基A的第四连接产物;第二连接装置,所述连接装置用于使所述具有3’碱基A的第四连接产物与第四分离的寡核苷酸相连,以便获得第五连接产物;第三连接装置,所述第三连接装置用于利用第三引物和第四引物对所述第五连接产物进行引物依赖的缺口平移和连接反应,形成第六连接产物,扩增装置,所述扩增装置用于利用第五引物和第六引物对所述第六连接产物进行扩增,其中所述扩增产物的一条链上携带生物素;单链DNA片段分离装置,所述单链DNA片段分离装置用于从所述扩增产物分离单链DNA片段;以及环化装置,所述环化装置用于将所述单链DNA片段进行环化,以便获得单链DNA环,所述单链DNA环构成所述测序文库,其中,所述第三分离的寡核苷酸包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第四分离的寡核苷酸包括:第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及第 二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端为突出的为双脱氧胸腺嘧啶,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,所述第三引物具有与所述第三分离的寡核苷酸的第一链匹配的序列,所述第四引物具有与所述第四分离的寡核苷酸的第一链匹配的序列,所述第五引物具有与所述第三引物相同的序列,所述第六引物具有与所述第四引物相同的序列并且具有一个额外的生物素,所述单链DNA环中包括第二接头,所述第二接头是基于所述第三分离的寡核苷酸和第四分离的寡核苷酸形成的。
根据本发明的实施例,本发明的设备进一步包括双链DNA片段获取装置,如图17所示,所述双链DNA片段获取装置包括:片段化单元,所述片断化单元用于对DNA样本进行片段化,以便获得片段化产物;去磷酸化单元,所述去磷酸化单元用于对所述片段化产物进行去磷酸化处理,以便获得经过去磷酸化处理的片段化产物;末端修复单元,所述末端修复单元用于对所述经过去磷酸化处理的片段化产物进行末端修复,以便获得所述双链DNA片段。
根据本发明的实施例,如图18所示,双链DNA片段获取装置进一步包括:基因组DNA提取单元,所述基因组DNA提取单元用于从生物样本提取基因组DNA;和/或反转录单元,所述反转录单元用于对RNA样本进行反转录反应,以便获得反转录产物,其中,所述基因组DNA的至少一部分和/或RNA的反转录产物构成所述DNA样本。
根据本发明的实施例,本发明的设备进一步包括纯化装置,用于在进行所述磷酸化处理之前,预先对所述片段化产物进行磁珠纯化。
根据本发明的实施例,如图19所示,所述单链DNA片段分离装置进一步包括:磁珠捕获单元,所述磁珠捕获单元用于使所述扩增产物与磁珠接触,以便形成磁珠-DNA复合物,其中,所述磁珠上连接有链霉亲和素;碱性裂解单元,所述碱性裂解单元中设置有pH高于7的溶液,用于将所述磁珠-DNA复合物与pH高于7的溶液接触,以便获得所述单链DNA片段;以及任选的杂交单元,所述杂交单元中设置有杂交寡核苷酸以便利用所述杂交寡核苷酸对不含有生物素的单链DNA进行捕获。
根据本发明的实施例,所述pH高于7的溶液为氢氧化钠溶液。所述氢氧化钠溶液的浓度为2M以下,在本发明的一个实施例中,氢氧化钠溶液的浓度为大约0.1M。由此,可以进一步的提高单链DNA的分离效率。
根据本发明的实施例,所述环化装置中设置有单链DNA片段,用于通过采用单链核酸分子将所述单链DNA片段进行环化,其中,所述单链核酸分子上限定出第一区段和第二区段,并且所述第一区段能够与包含所述单链DNA片段的5’末端核苷酸和3’末端核苷酸的序列之一匹配,所述第二区段能够与包含所述单链DNA片段的5’末端核苷酸和3’末 端核苷酸的另一序列匹配。根据本发明的实施例,所述第一区段和所述第二区段是毗邻连接的。
根据本发明的实施例,所述单链核酸分子具有TCGAGCTTGTCTTCCTAAGACCGC的序列,所述第三分离的寡核苷酸的第一链具有5’GCTTCGACTGGAGA3’的序列;所述第三分离的寡核苷酸的第二链具有5’GTCTCCAGTCGAAGCCCGACG3’的序列;所述第四分离的寡核苷酸的第一链具有5’AGTCGGAGGCCAAGCGGTCGT3’的序列;所述第四分离的寡核苷酸的第二链具有5’TTGGCCTCCGACT3’的序列;所述第三引物具有5’TCCTAAGACCGCTTGGCCTCCGACT3’的序列;以及所述第四引物具有5’AGACAAGCTCGAGCTCGAGCGATCGGGCTTCGACTGGAGAC3’的序列。另外,前面针对试剂盒、基于双链DNA制备双链环状DNA的方法以及基于双链DNA片段构建测序文库的方法或装置所描述的技术特征和优点,仍然适用该设备,在此不再赘述。
本发明的第八方面,提供了一种核酸测序***,该***包括:根据前述的针对双链DNA片段构建测序文库的设备;以及测序设备,所述测序设备用于对所述测序文库进行测序。
根据本发明的实施例,所述测序设备为CG测序平台。另外,前面针对试剂盒、基于双链DNA制备双链环状DNA的方法以及基于双链DNA片段构建测序文库的方法或装置所描述的技术特征和优点,仍然适用该***,在此不再赘述。
本发明中的“分离的寡核苷酸”、“寡核苷酸”至少包含2个核苷酸,长度上限无限制。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。需要说明的是在本文中所使用的术语“第一”、“第二”、“第三”、“第四”、“第五”或者“第六等仅用于方便描述目的,而不能理解为指示或暗示相对重要性,也不能理解为之间有先后顺序关系。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
除另有交待,以下实施例中涉及的试剂及仪器,都是常规市售产品,比如购自CG公司(Complete Genomics)等。
实施例一:全外显子单链环状文库构建、测序
实验目的:构建全外显子单链环状文库,并用于需要单链环状文库的测序平台测序
实验样本来源:人的YH(炎黄)标准品DNA
全外显子文库构建过程如图1所示,最终形成的单链环状文库,该文库结构组成以及测序方向如图2所示。以下详述全外显子文库具体构建步骤:
1、基因组核酸链被打断成片段
基因组DNA打断:基因组DNA打断有多种方式,无论是物理超声法还是酶反应法,市场上有非常成熟的方案。本实施例采用的是物理超声打断法。
在PCR管中加入一根聚四氟乙烯线,加入基因组DNA 1ug,加入1XTE缓冲溶液或无酶水补齐至80ul。至于E220超声打断仪上超声打断。打断条件设置:
填充系数 21
压力(PIP) 500
脉冲系数 500
打断时间 20s*27
1XTE缓冲溶液配方如下:
Tris-HCl,pH8.0 10mM
EDTA 0.1mM
2、两步磁珠选择法进行目的片段筛选
打断片段选择:可以采用磁珠纯化法或凝胶回收法。本实施例采用磁珠纯化法。
取打断后的DNA,每个样本中加入72ul AmpureXP磁珠,混匀后放置10min;置入磁力架静置5min后收集上清,在上清中加入36ul AmpureXP磁珠,混匀后放置10min;置入磁力架静置5min后吸弃上清,用500ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入50ul 1XTE缓冲溶液或无酶水溶解磁珠,混匀后放置10min,置入磁力架静置5min后,回收上清产物。
打断样本质控:PAGE胶电泳质控检测:要求片段选择后的DNA片段集中在200-400bp之间,取1.5ul样本加4ul TE,再加入2ul 6X溴酚蓝混匀后用于6%PAGE胶检测,电压200V,电泳25min,上样1.5ul 20bp Marker(Fermentas),电泳结果如图8所示。
浓度测试:市场上成熟的浓度检测方法有很多,本实施例采用Qubit进行核酸定量,具体步骤参照Qubit相应的定量类型的说明书,此处不作赘述。根据浓度测试结果,取样500-750ng进行下面文库构建反应,使用1xTE补齐使总体积不超过45ul。
3、对目的片段进行去磷酸化
去磷酸化用于封闭目的片段5’端,防止目的片段自连;
去磷酸化反应:取上步骤回收产物,按下表配制体系:
Figure PCTCN2014086421-appb-000001
Figure PCTCN2014086421-appb-000002
将10.8ul反应液加入前一步的回收产物中,混匀,按下表条件进行反应。反应产物直接用于下一步骤。
Figure PCTCN2014086421-appb-000003
4、片段末端修复
补平片段两端,使两端均为平末端,按下表配制体系:
Water 11ul
10x NEBuffer2 1.62ul
100mM ATP 0.72ul
25mM dNTP 0.72ul
BSA(10mg/ml) 0.36ul
T4DNA polymerase(3U/ul) 1.8ul
Total 16.2ul
将体系混匀后加入上一步骤产物中,混匀后置于12℃孵育20min。
加入86.4ul Ampure XP进行纯化,混匀后放置10min,置入磁力架静置5min后吸弃上清,用320ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入35ul 1XTE缓冲液溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物。(反应产物的纯化有多种方式,有磁珠法、柱纯化法、凝胶回收法等等。均可用于替换。本实施例如不做特殊说明,均采用磁珠法纯化。
第3和第4步骤无顺序要求。
5、在目的片段两端方向性的分别加入接头A的3’端Arm和5’端Arm
接头A的5’端Arm由一条正常的长链和一条两端封闭的短链组成,这样可以有效的防止Arm之间的自连反应。首先在连接酶的作用下,由于目的片段去磷酸化,接头A的5’端Arm长链与目的片段的3’端单链连接,变性后形成一端加入接头5’端Arm长链的DNA单链。通过加入的已知序列,在含有尿嘧啶的引物1及聚合酶的作用下,进行引物延伸合成二链,完成在目的片段一端加入完整的接头A5’端Arm,示意图如图3。接头A的3’端Arm由一条3’端封闭的长链和一条两端封闭的短链组成以防止自连反应。同样的原理在连接酶的作用下接头A 3’端Arm的长链5’端与目的片段的3’端单链连接,加入含有尿嘧啶的 引物2,在聚合酶和连接酶作用下通过缺口平移和连接反应完成完整的接头A3’端Arm连接,示意图如图4;
接头A 5’端Arm连接:接头序列如下(序列从左到右为5’端至3’端,“//”中为末端修饰基团,“phos”示磷酸化,“dd”示双脱氧,“bio”示生物素,加粗斜体区域表示barcode区域)。
长链:/Phos/ACTGCTGACGTACTGTGTCATAAATAGCACGAGACGTTCTCGACA(SEQ ID NO:1)
短链:TACGTCAGCAG/ddT/(SEQ ID NO:2)
配制以下体系:
Figure PCTCN2014086421-appb-000004
3x HB缓冲液配方如下:以下简称为3X HB
Tris-HCl,pH 7.8 150mM
PEG8000 15%
MgCl2 30mM
ATP 3mM
将以上体系与之前的产物混匀,按下表进行反应:
14℃ 1hour
4℃ 保持
反应完成后加入86.5ul Ampure XP磁珠进行纯化,混匀后放置10min,320ul 75%乙醇洗涤2次,37ul TE缓冲溶液溶解回收产物。引物延伸,配制以下反应体系:
Figure PCTCN2014086421-appb-000005
引物1序列(序列从左到右为5’端至3’端,“//”中为末端修饰基团,“phos”示磷酸化,“dd”示双脱氧,“bio”示生物素,“ideoxy”表示脱氧,加粗斜体区域表示barcode区域):GTCGAGAACG/ideoxyU/CTCGTGCT(SEQ ID NO:3)
2x PfuCx缓冲液配方如下:
Figure PCTCN2014086421-appb-000006
将以上体系与之前的产物混匀,按下表进行反应:
Figure PCTCN2014086421-appb-000007
反应完成后加入86.4ul Ampure XP进行纯化,混匀后放置10min,置入磁力架静置5min后吸弃上清,用320ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入32ul 1XTE缓冲液溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物约34.7ul。
接头A 3’端Arm连接:本方案中使用的接头序列如下(序列从左到右为5’端至3’端,“//”中为末端修饰基团,“phos”示磷酸化,“dd”示双脱氧,“bio”示生物素。)。
长链:/5phos/TCTGCTGAGTCGAGAACGT/3ddC/(SEQ ID NO:4)
短链:CGACTCAGCAG/ddT/(SEQ ID NO:5)
配制以下体系:
Figure PCTCN2014086421-appb-000008
将以上体系与之前的产物混匀,按下表进行反应:
14℃ 1hour
4℃ 保持
反应完成后加入86.5ul Ampure XP磁珠进行纯化,混匀后放置10min,320ul 75%乙醇洗涤2次,37ul TE缓冲溶液溶解回收产物。
缺口平移,配制以下反应体系:
Water 19.7ul
10x Taq buffer(LK) 7.2ul
100mM ATP(LK) 0.72ul
25mM dNTP(LK1) 0.288ul
引物2 0.9ul
Total 28.8ul
引物2(序列从左到右为5’端至3’端,“//”中为末端修饰基团,“phos”示磷酸化,“dd”示双脱氧,“bio”示生物素,“ideoxy”表示脱氧,加粗斜体区域表示barcode区域):ACGTTCTCGAC/ideoxyU/CAGCAGA(SEQ ID NO:6)
将以上体系与之前的产物混匀,按下表进行反应:
60℃ 5min
梯度降温到37℃ 每0.1℃/sec
配制以下酶反应混合液:
Figure PCTCN2014086421-appb-000009
将该酶反应混合液与上步反应产物混匀,按下表进行反应:
37℃ 20min
4℃ 保持
反应完成后加入86.4ul Ampure XP进行纯化,混匀后放置10min,置入磁力架静置5min后吸弃上清,用320ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入42ul 1XTE缓冲液溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物。
6、用引物1和引物2进行接头A连接产物的扩增,之后纯化及定量
接头A连接产物PCR前定量
用Qubit进行定量,按照Qubit测定的浓度调整下一步酶反应使用的样本起始量,调整为60ng,使用1XTE将总体积补为80ul。
接头A连接产物扩增,配制以下PCR反应混合液:
Water 27.5ul
2X PfuCx缓冲液 125ul
PfuCx polymerase(2.5U/ul) 5ul
引物1(20uM) 6.25ul
引物2(20uM) 6.25ul
Total 170ul
向已经定量至60ng,并将体积调整至80ul的接头A连接产物中加入170ul PCR反应混合物混匀,离心。将混好的mix分装入2个新的PCR管中,每个管约120ul。在PCR仪中按下表进行反应:
Figure PCTCN2014086421-appb-000010
将2管PCR反应产物合并成1管,加入288ul Ampure XP进行纯化,混匀后放置10min,置入磁力架静置5min后吸弃上清,用1000ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入62ul ddH2O溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物约60ul。用Qubit对接头A的PCR产物进行定量。
7、对接头A连接产物进行外显子杂交捕获
可进行单个样本的杂交捕获,或在接头A中引入标签序列,可对8个样本进行Pooling后杂交,实现通量的提高和成本降低。
取750ng接头A的PCR产物转入一个新的PCR管中,使用真空浓缩将产物浓缩蒸干。
在上步PCR管中按照下表配制用于富集目的片段的样品文库体系,外显子捕获有几种方法,此处采用市场上广泛使用的Aglient SureSelect外显子捕获杂交试剂盒。
试剂 体积(μl)
Pre-PCR library(上述750ng接头A的PCR产物) 750ng
Nuclease-free Water 补水至3.4μl
SureSelect Block#1 2.5
SureSelect Block#2 2.5
Block#3(1000μM) 0.3
Block#4(1000μM) 0.3
Total volume 9
Block#3序列(序列从左到右为5’端至3’端,“//”中为末端修饰基团,“phos”示磷酸化,“dd”示双脱氧,“bio”示生物素,加粗斜体区域表示barcode区域)。:ACTGCTGACGTACTGTGTCATAAATAGCACGAGACGTTCTCGAC(SEQ ID NO:7)
Block#4序列(序列从左到右为5’端至3’端,“//”中为末端修饰基团,“phos”示磷酸化,“dd”示双脱氧,“bio”示生物素,加粗斜体区域表示barcode区域)。:TCTGCTGAGTCGAGAACGT(SEQ ID NO:8)
按照如下反应条件进行预杂交:
Step Temperature Time
Step 1 95℃ 5min
Step 2 65℃ Holding
在一个新的1.5ml离心管中按照下表配制杂交Buffer反应体系:
试剂 体积(μl)单管 体积(μl)N管
Hyb#1 25 25×(20N/49)
Hyb#2 1 1×(20N/49)
Hyb#3 10 10×(20N/49)
Hyb#4 13 13×(20N/49)
Total volume 49 49×(20N/49)
按每个反应13μl的量分别加入到新PCR管中,放入PCR仪中65℃孵育至少5min。
在一个新的PCR管中按照下表配制Oligo Library Mix(冰上进行):
试剂 体积(μl)
Nuclease-free water 1
RNase Block 1
Oligo Capture Library 5
Total volume 7
将Oligo Library Mix放入PCR仪中65℃孵育2min;保持各反应体系于65℃,揭开样品文库管和杂交Buffer管的管盖,迅速把13μl的杂交Buffer转移到样品文库管中;保持各反应体系于65℃,揭开Oligo Library Mix管盖,迅速将样品文库管中的所有反应体系全部转移到Oligo Library Mix管中,用移液器吹打混匀,盖好管盖,此时的杂交混合液约27-29μl。保持PCR管于65℃(热循环仪热盖设为105℃)杂交24h。
1)杂交产物洗脱
a.提前2h将水浴锅调至65℃,待水温稳定后为每个杂交反应准备1.8ml Wash Buffer#2置于水浴锅中预热;
b.用漩涡混合仪剧烈振荡重悬DynabeadsM-280Streptavidin Beads(INVITROGEN,配有磁珠结合缓冲液(binding buffer)、磁珠洗涤缓冲液(washing buffer)#1和#2)至混匀;
c.每一个杂交反应取50μl DynabeadsM-280Streptavidin Beads于一新的2.0ml离心管;
d.将200μl Binding buffer加入磁珠中,用漩涡混合仪剧烈振荡5秒钟重悬磁珠;
e.将离心管置于磁力架上2min,待液体完全澄清;小心吸取并弃去上清;
f.重复步骤d)到步骤e)2次;
g.加入200μl Binding buffer重悬磁珠;
h.将经24h孵育后,继续保持杂交混合液于PCR仪上的杂交反应液全部转移到准备好的磁珠中,上下颠倒离心管3到5次直到混匀;
i.将装有杂交混合液和磁珠的离心管对称的固定于Nutator或类似的装置上360度旋转混匀,室温下孵育30min;
j.将样品从混匀装置取下,瞬时离心5s确保管盖上没有液体残留;
k.将2.0ml离心管转移放置在磁力架上,静置3-5min待液体完全澄清,小心吸取并弃去上清;
l.用500μl Wash Buffer#1重悬磁珠,并于漩涡混合仪上振荡5秒混匀样品,室温下孵育样品15min;
m.将离心管瞬时离心3s,然后放置在磁力架上,静置3-5min待液体完全澄清,小心吸取并弃去上清;
n.用500μl Wash Buffer#2重悬磁珠,并于漩涡混合仪上振荡5秒以混匀样品,将其置于Thermomixer中65℃孵育10min;
o.颠倒离心管以混匀样品,瞬时离心3s,然后将其放置在磁力架上,静置3-5min待液体完全澄清,小心吸取并弃去上清;
p.重复步骤n)到步骤o)2次;
q.用70ul ddH2O重悬磁珠。
2)杂交产物PCR
配制以下反应体系:
Water 27.5ul
2X PfuCx缓冲液 125ul
PfuCx polymerase(2.5U/ul) 5ul
引物1(20uM) 6.25ul
引物2(20uM) 6.25ul
Total 170ul
将反应混合液与上步得到的70ul DNA样品混匀,将混好的mix分装入2个新的PCR管中,每个管约120ul。按以下条件进行反应:
Figure PCTCN2014086421-appb-000011
PCR完成后将2管产物合并为1管并转移至一新的离心管中,加入288ul Ampure XP进行纯化,混匀后放置10min,置入磁力架静置5min后吸弃上清,用1000ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入32ul 1XTE溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物约30ul。用Qubit进行定量。
3)外显子捕获后产物Pooling:此处可取单管产物1.5-2ug继续进行单个样本的文库构建流程,也可把不同样本产物进行Pooling。若需进行Pooling,不同样本间需连接带有不同barcode的接头A。最多可进行8管不同样本产物的Pooling,Pooling后总量为1.5-2ug继续进行后续建库步骤。用1XTE补齐使总体积不超过60ul。
8、USER酶反应和第一次双链DNA环化
USER酶反应混合液配制如下:
Figure PCTCN2014086421-appb-000012
取1.5ug上步外显子捕获后PCR扩增产物或Pooling后产物与反应混合液混匀,按以下条件反应:37℃1hour;4℃forever。
通过USER酶切接头A3’和5’端Arm中的尿嘧啶,在含有完整接头A的双链DNA捕获后扩增DNA产物两端产生缺口,在连接酶作用下进行环化反应,形成第一个双链环状分子,也使得接头A的3’端和5’端Arm合并在一起形成完整的接头A。接头A两端设计含有限制性内切酶EcoP15I识别位点,以便后续的限制性内切酶酶切反应。另外通过接头A 中尿嘧啶位点的设计,在形成的双链环的一条链中引入1nt的碱基缺失(Gap),示意图如图5;
第一次双链DNA环化,准备反应混合液,配制如下:
Figure PCTCN2014086421-appb-000013
将上一步得到的110ul User酶反应产物瞬时离心,转入2.0ml离心管中,加入1700ul上述混合液混匀,离心,分装到4个1.5ml离心管中,每管约450ul;放入水浴锅中温浴:60℃30min;反应完成后,置入常温水浴中,放置冷却20min。
准备环化酶反应混合液,配制如下:
Figure PCTCN2014086421-appb-000014
环化反应缓冲液配方如下:
10X TA Buffer 20%
ATP 20mM
将上述酶反应混合液分别加入上步处理后的4个反应中,每孔加入50ul,混匀,离心;
把4个有反应液的离心管放置在桌面上室温反应1h。
9、通过两步磁珠结合法进行目的环状分子筛选
向上步4管环化后的样品(每管500ul体积)中,分别加入330ul Ampure XP进行纯化,混匀后放置10min,置入磁力架静置5min,待液体澄清后分别回收830ul上清到新的离心管中,向回收的上清中再次分别加入170ul磁珠,混匀后放置10min,置入磁力架静置5min后吸弃上清,用1000ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入64ul 1XTE逐管溶解磁珠(即先将TE加入一管磁珠中,混匀后全部转入下一管磁珠中,以此类推直到4管磁珠全部溶解),混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物约60ul。
10、对未成环的DNA分子进行消化
该步骤是可选的,消化未环化DNA,准备Plasmid Safe酶反应混合液,配制体系如下:
Figure PCTCN2014086421-appb-000015
Figure PCTCN2014086421-appb-000016
Plasmid-safe反应缓冲液配方如下:
10X TA Buffer 90%
ATP 9mM
向上一步纯化后的60ul DNA样本板中加入20ul Plasmid Safe酶反应混合液,混匀,瞬时离心后置于PCR仪上孵育,反应条件如下:37℃1hour;4℃forever。
向上步反应中加入80ul Ampure XP进行纯化,混匀后放置10min,置入磁力架静置5min后吸弃上清,用320ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入40ul 1XTE溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物。
10、EcoP15I酶切
限制性内切酶EcoP15I酶切识别接头A上的酶切位点,在接头A两端切出25-27bp大小的片段,示意图如图6。
准备EcoP15I酶切反应混合物,配制体系如下:
Figure PCTCN2014086421-appb-000017
EcoP15I酶切反应缓冲液配方如下:
Figure PCTCN2014086421-appb-000018
将上一步纯化后的DNA样本转到新1.5ml离心管中,加入323ul EcoP15I酶切反应混合物,混匀瞬时离心后置于孵育箱中37℃孵育16h。
用PEG32磁珠进行产物纯化,上步反应完成后加入270ul PEG32磁珠,混匀后放置10min,置入磁力架静置5min后吸弃上清,用1000ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入46ul 1XTE溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物。
PEG32磁珠配方为:含32%(质量体积比)PEG 3350的AmpureXP磁珠。
11、进行第二轮目的片段末端补平及去磷酸化反应
1)第二次T4ploymerase末端补平,准备T4ploymerase末端补平反应混合液:
10x NEBuffer2 5.4ul
25mM dNTP 0.8ul
10mg/ml BSA 0.4ul
T4DNA polymerase(3U/ul) 2ul
Total 8.6ul
向上步反应中加入8.6ul T4ploymerase末端补平反应混合液,混匀后瞬时离心。将装有54.6ul反应混合液的PCR管放入PCR仪中反应,反应条件:12℃20min;4℃forever(PCR仪需要热盖)。
加入71ul PEG32磁珠,混匀后放置10min,置入磁力架静置5min后吸弃上清,用320ul75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入46ul 1XTE溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物。
2)去磷酸化反应(FastAP)
准备FastAP反应混合液,配制如下:
Figure PCTCN2014086421-appb-000019
向上一步纯化得到的约46ul产物中加入11.5ul FastAP反应混合液,混匀后瞬时离心。将装有57.5ul反应混合液的PCR管放入PCR仪中反应,反应条件:37℃45min;4℃forever(PCR仪需要热盖)。
上步样本中加入75ul PEG32磁珠,混匀后放置10min,置入磁力架静置5min后吸弃上清,用320ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入40ul 1XTE溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物。
12、连接接头B
首先进行接头B 3’端Arm中单链连接。接头B 3’端Arm由一条3’端封闭的长链和一条两端封闭的短链组成以防止自连反应,在连接酶作用下接头B 3’端Arm的长链5’端与目的片段的3’端单链连接。由于目的片段中含有由接头A环化连接时引入的1nt gap,在聚合酶作用下该gap处目的片段按5’到3’方向进行缺口平移,并在Klenow Exo酶的作用下在3’末端加入一突出的腺嘌呤(A碱基),形成一端连有接头B 3’端Arm中长链,另一端含有一突出A碱基的双链DNA分子。接下来进行接头B 5’端Arm中单链连接。接头B 5’端Arm由一条3’端封闭的长链和一条两端封闭的短链组成以防止自连反应,其中短链的3’端含有一个突出的双脱氧胸腺嘧啶(ddT)以和目的片段中突出的A碱基配对。在连接酶的作用 下目的片段中含有突出A碱基的目的片段单链与接头B 5’端Arm的长链连接完成目的片段与接头B 5’端Arm的单链连接。加入5’端生物素标记的引物3和5’端磷酸化的引物4,引物3和接头B 5’端Arm的长链配对,引物4和接头B 3’端Arm的长链配对,在聚合酶和连接酶作用下进行缺口平移和连接反应完成完整的接头B 5’端和3’端Arm连接,示意图如图7。
1)接头B 3’端Arm平末端连接
准备接头B 3’端Arm连接反应混合液,配制如下:
Figure PCTCN2014086421-appb-000020
向已经纯化的上步反应产物中加入接头B 3’端Arm 5.6ul,移液器上下混匀3次;在上述混合物中每孔加入28.5ul接头B 3’端Arm连接反应混合液,混匀后瞬时离心。将装有74.1ul反应混合液的PCR管放入PCR仪中反应,反应条件:14℃2hour;4℃forever。
接头B 3’端Arm序列如下:(序列从左到右为5’端至3’端,“//”中为末端修饰基团,“phos”示磷酸化,“dd”示双脱氧,“bio”示生物素,加粗斜体区域表示barcode区域)。
短链:GCTTCGACTGGAGA/3ddC/(SEQ ID NO:9)
长链:/5Phos/GTCTCCAGTCGAAGCCCGACG/3ddC/(SEQ ID NO:10)
上步反应中加入63ul PEG32磁珠,混匀后放置10min,置入磁力架静置5min后吸弃上清,用320ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入40ul 1XTE溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物。
2)末端补平/加A
准备末端补平反应混合液,配制如下:
Water 1.5ul
末端补平/加A缓冲液 10.7ul
5U/ul Klenow exo- 1.1ul
Total 13.3ul
末端补平/加A缓冲液配方如下:
NEBuffer 2,10X 50%
dNTP 1.25mM
dATP 5mM
向上一步纯化得到的约40ul/孔的样本板中加入13.3ul末端补平反应混合液,混匀后瞬时离心。将装有53.3ul反应混合液的PCR管放入PCR仪中反应,反应条件:37℃60min;4℃forever(PCR仪需要热盖)。
上步样本中加入69ul PEG32磁珠,混匀后放置10min,置入磁力架静置5min后吸弃上清,用320ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入40ul 1XTE溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物。
3)接头B 5’端Arm连接
连接反应混合液配制如下:
Figure PCTCN2014086421-appb-000021
向已经纯化的上步末端修复产物中加入接头B 5’端Arm 5.6ul,移液器上下混匀3次。在上述混合物中加入28.5ul接头B 5’端Arm连接反应混合液,混匀后瞬时离心。将装有74.1ul反应混合液的PCR管放入PCR仪中反应,反应条件:13℃2hour;4℃forever。
接头B 5’端Arm序列如下:(序列从左到右为5’端至3’端,“//”中为末端修饰基团,“phos”示磷酸化,“dd”示双脱氧,“bio”示生物素,加粗斜体区域表示barcode区域)。
短链:TTGGCCTCCGACT/3ddT/(SEQ ID NO:11)
长链:/5phos/AGTCGGAGGCCAAGCGGTCGT/ddC/(SEQ ID NO:12)
上步样本中加入63ul PEG32磁珠,混匀后放置10min,置入磁力架静置5min后吸弃上清,用320ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入40ul 1XTE溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物。
4)缺口平移及连接反应
准备缺口平移及连接反应缓冲液混合液,配制如下:
Water 20.9ul
10x Taq buffer 8ul
100mM ATP 0.8ul
25mM dNTP 0.32ul
20uM引物3 1ul
20uM引物4 1ul
Total 32.0ul
引物3序列(序列从左到右为5’端至3’端,“//”中为末端修饰基团,“phos”示磷酸化,“dd”示双脱氧,“bio”示生物素,加粗斜体区域表示barcode区域):/5bio/TCCTAAGACCGCTTGGCCTCCGACT(SEQ ID NO:13)
引物4序列(序列从左到右为5’端至3’端,“//”中为末端修饰基团,“phos”示磷酸化,“dd”示双脱氧,“bio”示生物素,加粗斜体区域表示barcode区域):/5phos/AGACAAGCTCGAGCTCGAGCGATCGGGCTTCGACTGGAGAC(SEQ ID NO:14)
准备缺口平移及连接反应酶反应混合液,配制如下:
Figure PCTCN2014086421-appb-000022
向已经纯化的上步接头连接产物板中加入32.0ul缺口平移及连接反应缓冲液混合液,混匀,离心。将装有72ul反应混合液的PCR管放入PCR仪中反应,反应条件:60℃5min;梯度降温到37℃,0.1℃/sec。
将PCR管取出瞬时离心,每孔再加入8.0ul缺口平移及连接反应酶反应混合液混匀后,瞬时离心。将装有80ul反应混合液的PCR管放入PCR仪中反应,反应条件:37℃20min;4℃forever。
上步样本中加入80ul PEG32磁珠,混匀后放置10min,置入磁力架静置5min后吸弃上清,用320ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入40ul 1XTE溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物。
13、用引物3和引物4进行接头B连接产物的扩增,之后进行纯化及定量
1)接头B连接产物PCR前定量:用Qubit进行定量,样本起始量不超过59.8ng,用1XTE将总体积补为80ul。
2)接头B连接产物扩增
PCR反应混合物配制如下:
Water 27.5ul
2X PfuCx缓冲液 125ul
PfuCx polymerase(2.5U/ul) 5ul
引物3(20uM) 6.25ul
引物4(20uM) 6.25ul
Total 170ul
向已经取好样的装有80ul DNA的离心管中加入170ul PCR反应混合物,混匀后瞬时离心。将250ul样本分装到2个PCR管中,每管约120ul。
将PCR管放入PCR仪中反应,PCR反应条件(需要热盖):
Figure PCTCN2014086421-appb-000023
将2管PCR产物合并,加入240ul PEG32磁珠,混匀后放置10min,置入磁力架静置5min后吸弃上清,用1000ul 75%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入80ul 1XTE溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物。
用Qubit进行定量,下一步反应使用的样本起始量不超过627ng,取至新的离心管中,用1XTE将总体积补为60ul。
14、单链分离
通过核酸双链中一条链上的生物素标记,分离获得另一条无生物素标记的核酸单链。
Streptavidin Beads(LIFE TECHNOLOGIES,35002D)准备:取出需要使用的Streptavidin Beads加入一新的离心管中,置于磁力架上澄清后去掉上清。加入5倍体积的1X磁珠结合缓冲液,混匀后置于磁力架上,澄清后弃上清液,重复上述操作一次,加入1倍体积1X磁珠结合缓冲液悬浮,再加入1/100体积0.5%Tween20,混匀后室温静置。
1X磁珠结合缓冲液配方如下:
Tris-HCl,ph7.5 20mM
NaCl 500mM
向上步已准备好的60ul样品中加入20ul 4X磁珠结合缓冲液,混匀后离心。向样本中加入30ul Streptavidin Beads。混匀后放置10min,磁力架上放置5min,待液体澄清后吸弃上清,1000ul 1X磁珠洗涤缓冲液洗涤2次,75ul 0.1M NaOH溶解磁珠,回收上清。向产物中加入37.5ul 0.3M 3-(N-吗啉基)丙磺酸(MOPS acid)(MOPS free acid,SIGMA ALDRICH,M3183-100G),离心后可于-20℃保存。
注:其中Streptavidin Beads、1X磁珠洗涤缓冲液和0.1M NaOH需现用现配。
4X磁珠结合缓冲液配方如下:
Tris-HCl,ph7.5 80mM
NaCl 2M
1X磁珠洗涤缓冲液配方如下:
Tris-HCl,ph7.5 20mM
NaCl 150mM
Tween20 0.005%
15、单链环杂交捕获
根据接头A中的序列设计生物素标记的探针(杂交oligo)与目的片段进行杂交反应,过滤掉产生的非正常双链酶切产物;使用链霉亲和素包裹磁珠回收被捕获的正确产物。
准备杂交反应混合液,配制如下:
10x杂交反应缓冲液 13ul
杂交oligo 4.5ul
Total 17.5ul
杂交oligo序列(序列从左到右为5’端至3’端,“//”中为末端修饰基团,“phos”示磷酸化,“dd”示双脱氧,“bio”示生物素,加粗斜体区域表示barcode区域):/5Bio/TCTGCTGAGTCGAGAACGTCTCGTGCT(SEQ ID NO:15)
10x杂交反应缓冲液配方如下:
Tris-HCl,ph7.5 200mM
NaCl 500mM
向上步样本中加入17.5ul杂交反应混合液,轻轻吹打混匀,将反应混合液转移到一个新的PCR管中,放入PCR仪中反应,反应条件:95℃2min;0.1℃/sec降温至25℃forever。
将上步已完成杂交反应的130ul反应产物置入离心机中2000rpm离心1min,加入43.3ul4X磁珠结合缓冲液,混匀离心,加入90ul已经洗好的Streptavidin Beads。混匀后放置10min,磁力架上静置5min,待液体澄清后吸弃上清,1000ul 1X杂交捕获洗涤液洗涤2次,56℃1X杂交捕获洗涤液100ul洗涤1次,78ul 0.1M NaOH溶解磁珠,回收产物75ul中加入37.5ul 0.3M 3-(N-吗啉基)丙磺酸(MOPS acid)(MOPS free acid,SIGMA ALDRICH,M3183-100G),离心后可于-20℃保存。
注:1X杂交捕获洗涤液、0.1M NaOH,Streptavidin Beads需现配现用。
1X杂交捕获洗涤液配方如下:
Tris-HCl,ph7.5 20mM
NaCl 50mM
Tween20 0.005%
16、环化
利用获得的单链核酸分子5’末端的磷酸基团,在辅助环化oligo的作用下,进行该核酸单链环化;并通过外切酶等方法的处理,去掉剩余的未环化单链。对单链环状核酸产物进行纯化回收,即为最终制备得到的单链环状文库;
1)准备引物反应混合液,配制如下:
Water 43ul
20uM辅助环化oligo 20ul
Total 63ul
辅助环化oligo(序列从左到右为5’端至3’端,“//”中为末端修饰基团,“phos”示磷酸化,“dd”示双脱氧,“bio”示生物素,加粗斜体区域表示barcode区域):TCGAGCTTGTCTTCCTAAGACCGC(SEQ ID NO:16)
混匀离心后,向上一步得到的112ul样品中加入63ul的引物反应混合液。
准备连接酶反应混合液,配制如下:
Figure PCTCN2014086421-appb-000024
混匀离心后,向上步已经加入引物反应混合液的反应管中加入连接酶反应混合液175ul,混匀,离心。37℃孵育1.5h。
2)酶切消化(Exo I and III)
该步骤为可选步骤。酶切反应混合液配制如下:
Figure PCTCN2014086421-appb-000025
混匀离心后加入上步反应中。混匀离心,37℃孵育30min后,加入15.4ul 500mM EDTA终止酶反应。
向上步样本中加入500ul PEG32磁珠,混匀后放置10min,置入磁力架静置5min后吸弃上清,用1000ul 70%乙醇洗磁珠2次,最后一次除尽乙醇,晾干后加入82ul 1XTE溶解磁珠,混匀后放置10min,置入磁力架静置5min待液体澄清后,回收上清产物约80ul。
用Qubit进行单链环DNA定量。本实施例最终文库胶图检测结果见图9。
17、测序
环化后的单链环状核酸产物进入后续的测序步骤,经过滚环复制后形成核酸纳米球(DNB)进行核酸序列信息读取。测序分析结果见附表1、表2和图10。表1中的“uniq_depth”为利用唯一比对上参考序列的读段计算得的测序深度,“uniq_coverage”为为利用唯一比对上参考序列的读段计算得的测序覆盖度,“duplicate rate”表示重复的读段所占得比例。从实验结果来看,各产物浓度与总量满足了后续测序要求,电泳结果也显示片段集中,是质量非常高的文库。分析结果中各指标均较好,都证明本方案是完全成功的。
表1 2个基于双接头的单链环状外显子捕获文库的测序结果基本指标
Figure PCTCN2014086421-appb-000026
表2 2个基于双接头的单链环状外显子捕获文库的测序结果SNP分析指标
Figure PCTCN2014086421-appb-000027

Claims (65)

  1. 一种试剂盒,其特征在于,包括:
    第一分离的寡核苷酸;
    第二分离的寡核苷酸;
    第一引物;以及
    第二引物,
    其中,
    所述第一和第二分离的寡核苷酸分别包括:
    第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及
    第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,
    其中,
    所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,
    所述第一引物特异性识别所述第一分离的寡核苷酸的第一链,并且所述第一引物中含有尿嘧啶,以及
    所述第二引物特异性识别所述第二分离的寡核苷酸的第一链,并且所述第二引物中含有尿嘧啶。
  2. 根据权利要求1所述的试剂盒,其特征在于,所述第一和第二分离的寡核苷酸分别包括一个III型内切酶的识别位点。
  3. 根据权利要求1所述的试剂盒,其特征在于,所述III型内切酶为EcoP15I。
  4. 根据权利要求1所述的试剂盒,其特征在于,所述第一和第二分离的寡核苷酸的至少之一包括:
    第一突出端,所述第一突出端位于所述第一链的3’端;以及
    任选的第二突出端,所述第二突出端位于所述第二链的3’端。
  5. 根据权利要求4所述的试剂盒,其特征在于,所述第一突出端的长度大于所述第二突出端的长度。
  6. 根据权利要求5所述的试剂盒,其特征在于,所述第一突出端的长度为大约6~12nt。
  7. 根据权利要求5所述的试剂盒,其特征在于,所述第二突出端的长度为大约0~4nt。
  8. 根据权利要求1所述的试剂盒,其特征在于,所述第一分离的寡核苷酸、第二分离 的寡核苷酸、第一引物以及第二引物均为DNA。
  9. 根据权利要求1所述的试剂盒,其特征在于,在所述第一分离的寡核苷酸和所述第二分离的寡核苷酸的每一个中,所述第一链的长度为大约20~50nt,可选地为45nt。
  10. 根据权利要求1所述的试剂盒,其特征在于,在所述第一分离的寡核苷酸和所述第二分离的寡核苷酸的每一个中,所述第二链的长度为大约10~15nt,可选地为11nt。
  11. 根据权利要求1所述的试剂盒,其特征在于,进一步包括:
    分离的第三寡核苷酸,
    分离的第四寡核苷酸,
    第三引物,以及
    第四引物,
    其中,
    所述第三分离的寡核苷酸包括:
    第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及
    第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,
    所述第四分离的寡核苷酸包括:
    第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及
    第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端为突出的为双脱氧胸腺嘧啶,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,
    所述第三引物具有与所述第三分离的寡核苷酸的第一链匹配的序列,以及
    所述第四引物具有与所述第四分离的寡核苷酸的第一链匹配的序列。
  12. 根据权利要求11所述的试剂盒,其特征在于,
    所述第一寡核苷酸的第一链的序列为:5’ACTGCTGACGTACTG(N)mAGCACGAGACGTTCTCGACA3’,其中,N代表A、T、G或C,m为大约0~15的整数,
    所述第一寡核苷酸的第二链的序列为5’TACGTCAGCAG3’,
    所述第二寡核苷酸的第一链的序列为5’TCTGCTGAGTCGAGAACGT3’,
    所述第二寡核苷酸的第二链的序列为5’CGACTCAGCAG3’,
    第一引物的序列为5’GTCGAGAACGUCTCGTGCT3’,
    第二引物的序列为5’ACGTTCTCGACUCAGCAGA3’,
    所述第三分离的寡核苷酸的第一链的序列为5’GCTTCGACTGGAGA3’,
    所述第三分离的寡核苷酸的第二链的序列为5’GTCTCCAGTCGAAGCCCGACG3’,
    所述第四分离的寡核苷酸的第一链的序列为5’AGTCGGAGGCCAAGCGGTCGT3’,
    所述第四分离的寡核苷酸的第二链的序列为5’TTGGCCTCCGACT3’,
    所述第三引物的序列为5’TCCTAAGAC CGCTTGGCCTCCGACT 3’;以及
    所述第四引物的序列为5’
    AGACAAGCTCGAGCTCGAGCGATCGGGCTTCGACTGGAGAC3’。
  13. 根据权利要求12所述的试剂盒,其特征在于,m为10。
  14. 根据权利要求12所述的试剂盒,其特征在于,进一步包括单链核酸分子,所述单链核酸分子的序列为5’TCGAGCTTGTCTTCCTAAGACCGC3’。
  15. 一种基于双链DNA制备环状双链DNA的方法,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团,其特征在于,所述方法包括:
    使所述双链DNA与第一分离的寡核苷酸相连,以便获得第一连接产物;
    对所述第一连接产物进行第一热变性处理,以便获得第一单链DNA分子;
    利用第一引物与所述第一单链DNA分子互补配对发生链延伸反应,以便获得链延伸反应产物,其中,所述链延伸反应产物含有一个尿嘧啶;
    使所述链延伸反应产物与第二分离的寡核苷酸相连,以便获得第二连接产物;
    利用第二引物使所述第二连接产物发生引物介导的缺口平移和末端连接反应,以便获得第三连接产物,其中,所述第三连接反应产物含有两个尿嘧啶;
    利用USER酶(Uracil-Specific Excision Reagent)对所述第三连接产物进行切割,以便获得第一切割产物,所述第一切割产物含有两个缺口;以及
    使所述第一切割产物发生环化反应,以便获得所述环状双链DNA,其中一条链有碱基缺失,任选地所述碱基缺失的长度为1nt,其中,
    所述第一和第二分离的寡核苷酸分别包括:
    第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及
    第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,
    其中,
    所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,
    所述第一引物特异性识别所述第一分离的寡核苷酸的第一链,并且所述第一引物中含有尿嘧啶,
    所述第二引物特异性识别所述第二分离的寡核苷酸的第一链,并且所述第二引物中含有尿嘧啶。
  16. 根据权利要求15所述的方法,其特征在于,所述第一和第二分离的寡核苷酸分别包括一个III型内切酶的识别位点。
  17. 根据权利要求15所述的方法,其特征在于,所述III型内切酶为EcoP15I。
  18. 根据权利要求15所述的方法,其特征在于,所述第一和第二分离的寡核苷酸的至少之一包括:
    第一突出端,所述第一突出端位于所述第一链的3’端;以及
    任选的第二突出端,所述第二突出端位于所述第二链的3’端。
  19. 根据权利要求18所述的方法,其特征在于,所述第一突出端的长度大于所述第二突出端的长度。
  20. 根据权利要求19所述的方法,其特征在于,所述第一突出端的长度为大约10~35nt。
  21. 根据权利要求19所述的方法,其特征在于,所述第二突出端的长度为大约0~10nt。
  22. 根据权利要求15所述的方法,其特征在于,所述第一分离的寡核苷酸、第二分离的寡核苷酸、第一引物以及第二引物均为DNA。
  23. 根据权利要求15所述的方法,其特征在于,所述第一链的长度为大约20~50nt。
  24. 根据权利要求15所述的方法,其特征在于,所述第二链的长度为大约10~15nt。
  25. 根据权利要求15所述的方法,其特征在于,所述第一寡核苷酸的第一链的序列为:5’ACTGCTGACGTACTG(N)mAGCACGAGACGTTCTCGACA3’,其中,N代表A、T、G或C,m为大约0~15的整数,
    所述第一寡核苷酸的第二链的序列为5’TACGTCAGCAG3’,
    所述第二寡核苷酸的第一链的序列为5’TCTGCTGAGTCGAGAACGT3’,
    所述第二寡核苷酸的第二链的序列为5’CGACTCAGCAG3’,
    第一引物的序列为5’GTCGAGAACGUCTCGTGCT3’,以及
    第二引物的序列为5’ACGTTCTCGACUCAGCAGA3’。
  26. 根据权利要求25所述的方法,其特征在于,m为10。
  27. 一种制备双链核酸融合分子的方法,其特征在于,包括:
    提供第一双链DNA片段,所述双链DNA片段具有两个平端末端,并且所述双链DNA 片段的四个末端核苷酸均不具有磷酸基团,
    将所述第一双链DNA片段与寡核苷酸相连,以便获得第一连接产物;
    对所述第一连接产物进行第一热变性处理,以便获得第一单链DNA分子;以及
    利用引物与所述第一单链DNA分子互补配对发生链延伸反应,以便获得第一链延伸反应产物,其中,所述第一链延伸反应产物构成所述双链核酸融合分子,
    其中,所述寡核苷酸包括:
    第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及
    第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,
    其中,
    所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,
    所述引物特异性识别所述寡核苷酸的第一链。
  28. 一种基于双链DNA片段构建测序文库的方法,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团,其特征在于,所述方法包括:
    根据权利要求15~26任一项所述的方法,基于所述双链DNA制备双链环状DNA,其中,在所述双链环状DNA中包括第一接头,所述第一接头中包括III型内切酶识别位点以及碱基缺失,其中,所述第一接头是基于所述第一分离的寡核苷酸和第二分离的寡核苷酸形成的,任选地所述碱基缺失的长度为1nt;
    利用III型内切酶对所述双链环状DNA进行酶切,以便获得第二切割产物;
    对所述第二切割产物进行末端补平和去磷酸化处理,以便获得平端双链DNA片段;
    使所述平端双链DNA片段与第三分离的寡核苷酸相连,以便获得第四连接产物;
    对所述第四连接产物进行缺口平移反应并且在3’末端形成碱基A,以便获得具有3’碱基A的第四连接产物;
    使所述具有3’碱基A的第四连接产物与第四分离的寡核苷酸相连,以便获得第五连接产物;
    利用第三引物和第四引物对所述第五连接产物进行引物介导的缺口平移和连接反应,形成第六连接产物;
    利用第五引物和第六引物对第六连接产物进行扩增,以便获得扩增产物,其中所述扩增产物的一条链上携带生物素;
    从所述扩增产物分离单链DNA片段;以及
    将所述单链DNA片段进行环化,以便获得单链DNA环,所述单链DNA环构成所述测序文库,
    其中,所述第三分离的寡核苷酸包括:
    第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及
    第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,
    所述第四分离的寡核苷酸包括:
    第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及
    第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端为突出的为双脱氧胸腺嘧啶,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,
    所述第三引物具有与所述第三分离的寡核苷酸的第一链匹配的序列,
    所述第四引物具有与所述第四分离的寡核苷酸的第一链匹配的序列,
    所述第五引物具有与所述第三引物相同的序列,
    所述第六引物具有与所述第四引物相同的序列,并且具有一个额外的生物素,
    所述单链DNA环中包括第二接头,所述第二接头是基于所述第三分离的寡核苷酸和第四分离的寡核苷酸形成的。
  29. 根据权利要求28所述的方法,其特征在于,所述双链DNA片段是通过下列步骤获得的:
    对DNA样本进行片段化,以便获得片段化产物;
    对所述片段化产物进行去磷酸化处理,以便获得去磷酸化处理的片段化产物;以及
    对所述经过去磷酸化处理的片段化产物进行末端修复处理,以便获得所述双链DNA片段。
  30. 根据权利要求29所述的方法,其特征在于,所述DNA样本为基因组DNA的至少一部分或者RNA的反转录产物。
  31. 根据权利要求29所述的方法,其特征在于,在进行所述去磷酸化处理之前,预先对所述片段化产物进行磁珠纯化。
  32. 根据权利要求28所述的方法,其特征在于,从所述扩增产物分离单链DNA片段 是通过下列步骤进行的:
    使所述扩增产物与磁珠接触,以便形成磁珠-DNA复合物,其中,所述磁珠上连接有链霉亲和素;
    将所述磁珠-DNA复合物与pH高于7的溶液接触,以便获得所述单链DNA片段,
    以及任选地进一步包括:
    利用杂交寡核苷酸对不含有生物素的单链DNA进行捕获。
  33. 根据权利要求32所述的方法,其特征在于,所述pH高于7的溶液为氢氧化钠溶液。
  34. 根据权利要求33所述的方法,其特征在于,所述氢氧化钠溶液的浓度为大约2M以下。
  35. 根据权利要求34所述的方法,其特征在于,所述氢氧化钠溶液的浓度为大约0.1M。
  36. 根据权利要求28所述的方法,其特征在于,通过采用单链核酸分子将所述单链DNA片段进行环化,
    其中,
    所述单链核酸分子上限定出第一区段和第二区段,并且所述第一区段能够与包含所述单链DNA片段的5’末端核苷酸和3’末端核苷酸的序列之一匹配,所述第二区段能够与包含所述单链DNA片段的5’末端核苷酸和3’末端核苷酸的另一序列匹配。
  37. 根据权利要求36所述的方法,其特征在于,所述第一区段和所述第二区段是毗邻连接的。
  38. 根据权利要求36所述的方法,其特征在于,所述单链核酸分子具有5’TCGAGCTTGTCTTCCTAAGACCGC3’的序列,
    所述第三分离的寡核苷酸的第一链具有5’GCTTCGACTGGAGA3’的序列;
    所述第三分离的寡核苷酸的第二链具有5’GTCTCCAGTCGAAGCCCGACG3’的序列;
    所述第四分离的寡核苷酸的第一链具有5’AGTCGGAGGCCAAGCGGTCGT3’的序列;
    所述第四分离的寡核苷酸的第二链具有5’TTGGCCTCCGACT3’的序列;
    所述第三引物具有5’TCCTAAGACCGCTTGGCCTCCGACT 3’的序列;以及
    所述第四引物具有5’
    AGACAAGCTCGAGCTCGAGCGATCGGGCTTCGACTGGAGAC3’的序列。
  39. 一种核酸测序方法,其特征在于,包括:
    根据权利要求28~38任一项所述的方法,构建测序文库;以及
    对所述测序文库进行测序。
  40. 根据权利要求39所述的测序方法,其特征在于,采用CG测序平台,对所述测序 文库进行测序。
  41. 一种基于双链DNA制备环状双链DNA的装置,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团,其特征在于,所述装置包括:
    第一连接单元,所述第一连接单元用于使所述双链DNA与第一分离的寡核苷酸相连,以便获得第一连接产物;
    第一热变性单元,所述第一热变性单元用于对所述第一连接产物进行第一热变性处理,以便获得第一单链DNA分子;
    链延伸单元,所述链延伸单元用于利用第一引物与所述第一单链DNA分子互补配对发生链延伸反应,以便获得第一链延伸反应产物,其中,所述第一链延伸反应产物含有一个尿嘧啶;
    第二连接单元,所述第二连接单元用于使所述第一链延伸反应产物与第二分离的寡核苷酸相连,以便获得第二连接产物;
    第三连接单元,所述第三连接单元利用第二引物使所述第二单链DNA分子发生引物介导的缺口平移和末端连接反应,以便获得第三连接产物,其中,所述第三连接反应产物含有两个尿嘧啶;
    第一切割单元,所述切割单元用于利用USER酶(Uracil-Specific Excision Reagent)对所述第三连接产物进行切割,以便获得第一切割产物,所述第一切割产物含有两个缺口;以及
    第一环化单元,所述第一环化单元用于使所述含有两个缺口的切割产物发生环化反应,以便获得所述环状双链DNA,任选地所述环状双链DNA中具有碱基缺失,任选地所述碱基缺失的长度为1nt;
    其中,
    所述第一和第二分离的寡核苷酸分别包括:
    第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及
    第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,
    其中,
    所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,
    所述第一引物特异性识别所述第一和第二分离的寡核苷酸之一的第一链,并且所述第 一引物中含有尿嘧啶,
    所述第二引物特异性识别所述第一和第二分离的寡核苷酸另一个的第一链,并且所述第二引物中含有尿嘧啶。
  42. 根据权利要求41所述的装置,其特征在于,所述第一和第二分离的寡核苷酸分别包括一个III型内切酶的识别位点。
  43. 根据权利要求41所述的装置,其特征在于,所述III型内切酶为EcoP15I。
  44. 根据权利要求41所述的装置,其特征在于,所述第一和第二分离的寡核苷酸的至少之一包括:
    第一突出端,所述第一突出端位于所述第一链的3’端;以及
    任选的第二突出端,所述第二突出端位于所述第二链的3’端。
  45. 根据权利要求44所述的装置,其特征在于,所述第一突出端的长度大于所述第二突出端的长度。
  46. 根据权利要求45所述的装置,其特征在于,所述第一突出端的长度为大约10~35nt。
  47. 根据权利要求45所述的装置,其特征在于,所述第二突出端的长度为大约0~10nt。
  48. 根据权利要求41所述的装置,其特征在于,所述第一分离的寡核苷酸、第二分离的寡核苷酸、第一引物以及第二引物均为DNA。
  49. 根据权利要求41所述的装置,其特征在于,所述第一链的长度为大约20~50nt。
  50. 根据权利要求41所述的装置,其特征在于,所述第二链的长度为大约10~15nt。
  51. 根据权利要求41所述的装置,其特征在于,
    所述第一寡核苷酸的第一链的序列为:5’ACTGCTGACGTACTG(N)mAGCACGAGACGTTCTCGACA3’,其中,N代表A、T、G或C,m为大约0~15的整数,
    所述第一寡核苷酸的第二链的序列为5’TACGTCAGCAG3’,
    所述第二寡核苷酸的第一链的序列为5’TCTGCTGAGTCGAGAACGT3’,
    所述第二寡核苷酸的第二链的序列为5’CGACTCAGCAG3’,
    第一引物的序列为5’GTCGAGAACGUCTCGTGCT3’,以及
    第二引物的序列为5’ACGTTCTCGACUCAGCAGA3’。
  52. 根据权利要求51所述的装置,其特征在于,m为10。
  53. 一种基于双链DNA片段构建测序文库的设备,所述双链DNA片段具有两个平端末端,并且所述双链DNA片段的四个末端核苷酸均不具有磷酸基团,其特征在于,所述设备包括:
    权利要求41~52任一项所述的基于双链DNA制备环状双链DNA的装置,用于基于所 述双链DNA制备双链环状DNA,其中,在所述双链环状DNA中包括第一接头,所述第一接头中包括III型内切酶识别位点以及碱基缺失,其中,所述第一接头是基于所述第一分离的寡核苷酸和第二分离的寡核苷酸形成的,任选地所述碱基缺失的长度为1nt;
    酶切装置,所述酶切装置利用III型内切酶对所述双链环状DNA进行酶切,以便获得第二切割产物;
    第一末端处理装置,所述末端处理装置用于对所述第二切割产物进行末端补平和去磷酸化处理,以便获得平端双链DNA片段;
    第一连接装置,所述连接装置用于使所述平端双链DNA片段与第三分离的寡核苷酸相连,以便获得第四连接产物;
    第二末端处理装置,所述第二末端处理装置用于对所述第四连接产物进行缺口平移反应并且在3’末端形成碱基A,以便获得具有3’碱基A的第四连接产物;
    第二连接装置,所述连接装置用于使所述具有3’碱基A的第四连接产物与第四分离的寡核苷酸相连,以便获得第五连接产物;
    第三连接装置,所述第三连接装置用于利用第三引物和第四引物对所述第五连接产物进行引物依赖的缺口平移和连接反应,形成第六连接产物,
    扩增装置,所述扩增装置用于利用第五引物和第六引物对所述第六连接产物进行扩增,其中所述扩增产物的一条链上携带生物素;
    单链DNA片段分离装置,所述单链DNA片段分离装置用于从所述扩增产物分离单链DNA片段;以及
    环化装置,所述环化装置用于将所述单链DNA片段进行环化,以便获得单链DNA环,所述单链DNA环构成所述测序文库,
    其中,所述第三分离的寡核苷酸包括:
    第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及
    第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端核苷酸为双脱氧核苷酸,所述第一链的长度大于所述第二链的长度,并且所述第一链和所述第二链之间形成双链结构,
    所述第四分离的寡核苷酸包括:
    第一链,所述第一链的5’末端核苷酸具有磷酸基团,并且所述第一链的3’末端核苷酸为双脱氧核苷酸;以及
    第二链,所述第二链的5’末端核苷酸不具有磷酸基团,并且所述第二链的3’末端为突出的为双脱氧胸腺嘧啶,所述第一链的长度大于所述第二链的长度,并且所述第一链和所 述第二链之间形成双链结构,
    所述第三引物具有与所述第三分离的寡核苷酸的第一链匹配的序列,
    所述第四引物具有与所述第四分离的寡核苷酸的第一链匹配的序列,
    所述第五引物具有与所述第三引物相同的序列,
    所述第六引物具有与所述第四引物相同的序列并且具有一个额外的生物素,
    所述单链DNA环中包括第二接头,所述第二接头是基于所述第三分离的寡核苷酸和第四分离的寡核苷酸形成的。
  54. 根据权利要求53所述的设备,其特征在于,进一步包括双链DNA片段获取装置,所述DNA片段获取装置包括:
    片段化单元,所述片断化单元用于对DNA样本进行片段化,以便获得片段化产物;
    去磷酸化单元,所述去磷酸化单元用于对所述片段化产物进行去磷酸化处理,以便获得经过去磷酸化处理的片段化产物;
    末端修复单元,所述末端修复单元用于对所述经过去磷酸化处理的片段化产物进行末端修复,以便获得所述双链DNA片段。
  55. 根据权利要求54所述的设备,其特征在于,双链DNA片段获取装置进一步包括:
    基因组DNA提取单元,所述基因组DNA提取单元用于从生物样本提取基因组DNA;和/或
    反转录单元,所述反转录单元用于对RNA样本进行反转录反应,以便获得反转录产物,
    其中,所述基因组DNA的至少一部分和/或RNA的反转录产物构成所述DNA样本。
  56. 根据权利要求55所述的设备,其特征在于,进一步包括纯化装置,用于在进行所述磷酸化处理之前,预先对所述片段化产物进行磁珠纯化。
  57. 根据权利要求54所述的设备,其特征在于,所述单链DNA片段分离装置进一步包括:
    磁珠捕获单元,所述磁珠捕获单元用于使所述扩增产物与磁珠接触,以便形成磁珠-DNA复合物,其中,所述磁珠上连接有链霉亲和素;
    碱性裂解单元,所述碱性裂解单元中设置有pH高于7的溶液,用于将所述磁珠-DNA复合物与pH高于7的溶液接触,以便获得所述单链DNA片段;以及
    任选的杂交单元,所述杂交单元中设置有杂交寡核苷酸以便利用所述杂交寡核苷酸对不含有生物素的单链DNA进行捕获。
  58. 根据权利要求57所述的设备,其特征在于,所述pH高于7的溶液为氢氧化钠溶液。
  59. 根据权利要求57所述的设备,其特征在于,所述氢氧化钠溶液的浓度为大约2M 以下。
  60. 根据权利要求59所述的设备,其特征在于,所述氢氧化钠溶液的浓度为大约0.1M。
  61. 根据权利要求57所述的设备,其特征在于,所述环化装置中设置有单链DNA片段,用于通过采用单链核酸分子将所述单链DNA片段进行环化,
    其中,
    所述单链核酸分子上限定出第一区段和第二区段,并且所述第一区段能够与包含所述单链DNA片段的5’末端核苷酸和3’末端核苷酸的序列之一匹配,所述第二区段能够与包含所述单链DNA片段的5’末端核苷酸和3’末端核苷酸的另一序列匹配。
  62. 根据权利要求61所述的设备,其特征在于,所述第一区段和所述第二区段是毗邻连接的。
  63. 根据权利要求61所述的设备,其特征在于,所述单链核酸分子具有TCGAGCTTGTCTTCCTAAGACCGC的序列,
    所述第三分离的寡核苷酸的第一链具有5’GCTTCGACTGGAGA3’的序列;
    所述第三分离的寡核苷酸的第二链具有5’GTCTCCAGTCGAAGCCCGACG3’的序列;
    所述第四分离的寡核苷酸的第一链具有5’AGTCGGAGGCCAAGCGGTCGT3’的序列;
    所述第四分离的寡核苷酸的第二链具有5’TTGGCCTCCGACT3’的序列;
    所述第三引物具有5’TCCTAAGACCGCTTGGCCTCCGACT 3’的序列;以及
    所述第四引物具有5’
    AGACAAGCTCGAGCTCGAGCGATCGGGCTTCGACTGGAGAC3’的序列。
  64. 一种核酸测序***,其特征在于,包括:
    根据权利要求53~63任一项所述的针对双链DNA片段构建测序文库的设备;以及
    测序设备,所述测序设备用于对所述测序文库进行测序。
  65. 根据权利要求64所述的核酸测序***,其特征在于,所述测序设备为CG测序平台。
PCT/CN2014/086421 2014-09-12 2014-09-12 试剂盒及其在核酸测序中的用途 WO2016037361A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2014/086421 WO2016037361A1 (zh) 2014-09-12 2014-09-12 试剂盒及其在核酸测序中的用途
CN201480081856.4A CN106715713B (zh) 2014-09-12 2014-09-12 试剂盒及其在核酸测序中的用途
PCT/CN2014/092294 WO2016037418A1 (zh) 2014-09-12 2014-11-26 一种核酸单链环状文库的构建方法和试剂
CN201480081853.0A CN108138364B (zh) 2014-09-12 2014-11-26 一种核酸单链环状文库的构建方法和试剂
EP14901602.4A EP3192901B1 (en) 2014-09-12 2014-11-26 Method for constructing nucleic acid single-stranded cyclic library and reagents thereof
US15/510,882 US10351848B2 (en) 2014-09-12 2014-11-26 Method for constructing nucleic acid single-stranded cyclic library and reagents thereof
HK18110100.6A HK1250758A1 (zh) 2014-09-12 2018-08-06 一種核酸單鏈環狀文庫的構建方法和試劑

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/086421 WO2016037361A1 (zh) 2014-09-12 2014-09-12 试剂盒及其在核酸测序中的用途

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/510,882 Continuation-In-Part US10351848B2 (en) 2014-09-12 2014-11-26 Method for constructing nucleic acid single-stranded cyclic library and reagents thereof

Publications (1)

Publication Number Publication Date
WO2016037361A1 true WO2016037361A1 (zh) 2016-03-17

Family

ID=55458280

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2014/086421 WO2016037361A1 (zh) 2014-09-12 2014-09-12 试剂盒及其在核酸测序中的用途
PCT/CN2014/092294 WO2016037418A1 (zh) 2014-09-12 2014-11-26 一种核酸单链环状文库的构建方法和试剂

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092294 WO2016037418A1 (zh) 2014-09-12 2014-11-26 一种核酸单链环状文库的构建方法和试剂

Country Status (5)

Country Link
US (1) US10351848B2 (zh)
EP (1) EP3192901B1 (zh)
CN (2) CN106715713B (zh)
HK (1) HK1250758A1 (zh)
WO (2) WO2016037361A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557450A (zh) * 2017-10-09 2018-01-09 湖南大地同年生物科技有限公司 一种快速构建高通量测序文库的试剂及方法及其应用
CN112226821A (zh) * 2020-10-16 2021-01-15 鲲羽生物科技(江门)有限公司 一种基于双链环化的mgi测序平台测序文库的构建方法
CN112680794A (zh) * 2020-12-28 2021-04-20 深圳海普洛斯医学检验实验室 一种应用于ngs平台的超微量核酸样本建库方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106554957B (zh) 2015-09-30 2020-04-21 中国农业科学院深圳农业基因组研究所 测序文库及其制备和应用
CN112639094A (zh) 2018-05-08 2021-04-09 深圳华大智造科技股份有限公司 用于准确且经济高效的测序、单体型分型和组装的基于单管珠粒的dna共条形码化
CN110734967B (zh) * 2018-07-19 2023-02-17 深圳华大智造科技股份有限公司 一种接头组合物及其应用
CN110791813B (zh) * 2018-08-01 2023-06-16 广州华大基因医学检验所有限公司 对单链dna进行处理的方法及应用
CN112739829A (zh) * 2018-09-27 2021-04-30 深圳华大生命科学研究院 测序文库的构建方法和得到的测序文库及测序方法
CN111197072B (zh) * 2018-11-19 2023-09-19 深圳华大生命科学研究院 一种dna的快速提取方法及其在检测低频嵌合基因中的应用
KR20210141915A (ko) * 2018-11-21 2021-11-23 아비다 바이오메드 인코포레이티드 표적화된 핵산 라이브러리 형성을 위한 방법
CN111379031B (zh) * 2018-12-28 2024-03-19 深圳华大智造科技股份有限公司 核酸文库构建方法、得到的核酸文库及其用途
SG11202102918WA (en) * 2019-01-11 2021-04-29 Illumina Cambridge Ltd Complex surface-bound transposome complexes
EP3918088B1 (en) 2019-01-29 2024-03-13 MGI Tech Co., Ltd. High coverage stlfr
WO2021051378A1 (zh) * 2019-09-20 2021-03-25 武汉华大医学检验所有限公司 测序文库的构建方法、测序方法及试剂盒和应用
CN112795620A (zh) * 2019-11-13 2021-05-14 深圳华大基因股份有限公司 双链核酸环化方法、甲基化测序文库构建方法和试剂盒
CN113736850A (zh) * 2021-08-13 2021-12-03 纳昂达(南京)生物科技有限公司 基于双链环化的文库构建方法及其在测序中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038574A1 (en) * 1999-11-26 2001-05-31 Bioneer Corporation Dna sequencing method which employs various dna polymerases and kit used for the same
WO2001038573A1 (en) * 1999-11-26 2001-05-31 Bioneer Corporation Dna sequencing method which employs various nucleotide mixtures and kit used for the same
CN1940088A (zh) * 2006-10-10 2007-04-04 东南大学 基于引物延伸的dna测序方法
CN102102130A (zh) * 2009-12-18 2011-06-22 霍夫曼-拉罗奇有限公司 检测rna分子的方法、试剂盒及其相关用途
CN102286632A (zh) * 2011-09-14 2011-12-21 中山大学 一种检测基因组目的区域结构变异的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159285B1 (en) * 2003-01-29 2012-09-26 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
JP2009529876A (ja) * 2006-03-14 2009-08-27 ゲニゾン バイオサイエンシス インコーポレイテッド 核酸を配列決定するための方法および手段
WO2009076238A2 (en) * 2007-12-05 2009-06-18 Complete Genomics, Inc. Efficient base determination in sequencing reactions
JP2011509095A (ja) * 2008-01-09 2011-03-24 ライフ テクノロジーズ コーポレーション 核酸配列決定のための対をなすタグのライブラリーを製造する方法
BRPI0909212A2 (pt) * 2008-03-28 2015-08-18 Pacific Biosciences California Composições e método para sequeciamento de ácido nucléico
EP3272879B1 (en) * 2008-10-24 2019-08-07 Epicentre Technologies Corporation Transposon end compositions and methods for modifying nucleic acids
US9080211B2 (en) * 2008-10-24 2015-07-14 Epicentre Technologies Corporation Transposon end compositions and methods for modifying nucleic acids
EP2545183B1 (en) * 2010-03-10 2017-04-19 Ibis Biosciences, Inc. Production of single-stranded circular nucleic acid
DK3037536T3 (da) * 2011-01-28 2020-01-13 Illumina Inc Oligonukleotiderstatning for di-taggede og retnings biblioteker
EP2670894B1 (en) * 2011-02-02 2017-11-29 University Of Washington Through Its Center For Commercialization Massively parallel continguity mapping
CN102181943B (zh) * 2011-03-02 2013-06-05 中山大学 一种配对双末端文库构建方法及用该文库进行基因组测序的方法
CN102296065B (zh) * 2011-08-04 2013-05-15 盛司潼 用于构建测序文库的***与方法
US9644199B2 (en) * 2012-10-01 2017-05-09 Agilent Technologies, Inc. Immobilized transposase complexes for DNA fragmentation and tagging
AU2014406026B2 (en) * 2014-09-12 2018-08-23 Mgi Tech Co., Ltd. Isolated oligonucleotide and use thereof in nucleic acid sequencing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038574A1 (en) * 1999-11-26 2001-05-31 Bioneer Corporation Dna sequencing method which employs various dna polymerases and kit used for the same
WO2001038573A1 (en) * 1999-11-26 2001-05-31 Bioneer Corporation Dna sequencing method which employs various nucleotide mixtures and kit used for the same
CN1940088A (zh) * 2006-10-10 2007-04-04 东南大学 基于引物延伸的dna测序方法
CN102102130A (zh) * 2009-12-18 2011-06-22 霍夫曼-拉罗奇有限公司 检测rna分子的方法、试剂盒及其相关用途
CN102286632A (zh) * 2011-09-14 2011-12-21 中山大学 一种检测基因组目的区域结构变异的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TIMOTHY D. HARRIS ET AL.: "Single-Molecule DNA Sequencing of a Viral Genome", SCIENCE, vol. 320, 4 April 2008 (2008-04-04), pages 106 - 109, XP055072779, ISSN: 1095-9203, DOI: doi:10.1126/science.1150427 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107557450A (zh) * 2017-10-09 2018-01-09 湖南大地同年生物科技有限公司 一种快速构建高通量测序文库的试剂及方法及其应用
CN112226821A (zh) * 2020-10-16 2021-01-15 鲲羽生物科技(江门)有限公司 一种基于双链环化的mgi测序平台测序文库的构建方法
CN112226821B (zh) * 2020-10-16 2024-02-06 鲲羽生物科技(江门)有限公司 一种基于双链环化的mgi测序平台测序文库的构建方法
CN112680794A (zh) * 2020-12-28 2021-04-20 深圳海普洛斯医学检验实验室 一种应用于ngs平台的超微量核酸样本建库方法

Also Published As

Publication number Publication date
CN106715713A (zh) 2017-05-24
CN106715713B (zh) 2020-11-03
US20180291371A1 (en) 2018-10-11
EP3192901A4 (en) 2017-11-29
WO2016037418A1 (zh) 2016-03-17
EP3192901B1 (en) 2019-08-07
EP3192901A1 (en) 2017-07-19
US10351848B2 (en) 2019-07-16
HK1250758A1 (zh) 2019-01-11
CN108138364A (zh) 2018-06-08
CN108138364B (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
WO2016037361A1 (zh) 试剂盒及其在核酸测序中的用途
US11697843B2 (en) Methods for creating directional bisulfite-converted nucleic acid libraries for next generation sequencing
JP6571895B1 (ja) 核酸プローブ及びゲノム断片検出方法
US9745614B2 (en) Reduced representation bisulfite sequencing with diversity adaptors
US10400279B2 (en) Method for constructing a sequencing library based on a single-stranded DNA molecule and application thereof
WO2016037358A1 (zh) 分离的寡核苷酸及其在核酸测序中的用途
EP3208336B1 (en) Linker element and method of using same to construct sequencing library
EP3098324A1 (en) Compositions and methods for preparing sequencing libraries
WO2019192489A1 (en) Compositions and methods for preparing nucleic acid libraries
WO2016058134A1 (zh) 一种接头元件和使用其构建测序文库的方法
WO2021051665A1 (zh) 基因目标区域的富集方法及体系
WO2018081666A1 (en) Methods of single dna/rna molecule counting
WO2023141829A1 (zh) 同时进行全基因组dna测序和全基因组dna甲基化或/和羟甲基化测序的方法
CN113774113B (zh) 一种富集突变基因序列的方法和应用
CN108486101B (zh) 一种快速捕获建库的方法
CN117822130A (zh) 文库的制备方法及其应用和接头及试剂盒
CN117625739A (zh) 同时进行基因组和甲基化组测序的测序接头组合物、建库方法和测序方法
CN110952148A (zh) 一种中小长度rna高通量测序建库方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901599

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901599

Country of ref document: EP

Kind code of ref document: A1