WO2016032227A1 - Method for preparing in situ nanomaterial having functional material coating, and nanomaterial prepared by means of same - Google Patents

Method for preparing in situ nanomaterial having functional material coating, and nanomaterial prepared by means of same Download PDF

Info

Publication number
WO2016032227A1
WO2016032227A1 PCT/KR2015/008923 KR2015008923W WO2016032227A1 WO 2016032227 A1 WO2016032227 A1 WO 2016032227A1 KR 2015008923 W KR2015008923 W KR 2015008923W WO 2016032227 A1 WO2016032227 A1 WO 2016032227A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanomaterial
organic
gas
coating
transition metal
Prior art date
Application number
PCT/KR2015/008923
Other languages
French (fr)
Korean (ko)
Inventor
김성인
최선용
신명선
이규항
김중길
이순직
Original Assignee
재단법인 철원플라즈마 산업기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 철원플라즈마 산업기술연구원 filed Critical 재단법인 철원플라즈마 산업기술연구원
Publication of WO2016032227A1 publication Critical patent/WO2016032227A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Definitions

  • the present invention relates to a method of manufacturing a nanomaterial in situ and simultaneously coating a surface with a functional material. More specifically, an organic material or a transition that provides functionality while simultaneously preparing a nanomaterial in situ using a thermal plasma.
  • the present invention relates to a method for producing a desired functional nanomaterial by coating a surface of a nanomaterial with a metal or the like, and a functional organic-coated nanomaterial prepared thereby.
  • Nanomaterials which represent a significant portion of advanced materials, exceeded $ 1.7 billion in global market size in 2010, with an average annual growth rate of 10.4% over five years (nanotech global market of $ 16 billion).
  • North America has a 38% market and about 25% growth
  • Europe has a 37% market and about 22% growth
  • Asia has a 25% market and about 32% growth.
  • Markets in Asia are expected to grow rapidly, accounting for the largest portion of the global market.
  • the nanomaterials market is expected to grow 23 percent annually to $ 5.8 billion by 2016, led by the health and energy storage industry.
  • Nanomaterials can be said to use materials size dependence in the nanometer-sized region (1-100 nanometers), which is much smaller than the micron-submicron (sub-micron) -sized structures of conventional materials.
  • the peculiarity is that the material properties of the material change continuously in proportion to (or inversely) the size of the material until the material's tissue becomes small to submicron, but when it decreases to the nanometer size area, it shows a sudden change or a completely new property. It is indicated.
  • Nanomaterials can be said to utilize materials that change discontinuously or newly appearing properties in the nanometer range.
  • metal nanoparticles have attracted attention as materials used for wiring and electrode formation due to miniaturization and high functionality of electronic devices.
  • the particle size of the metal particles is about 100 nm, the sintering temperature thereof is lowered to 200 or less, and the metal particles can form bonds between the metal particles even at a relatively low temperature.
  • the metal particles can be used as wiring materials having low resistance regardless of the substrate material.
  • These metal nanoparticles are particularly important because they can be applied to a flexible substrate.
  • metal nanoparticles there are various methods for making metal nanoparticles, such as spray manufacturing, sol-gel method, and electroexplosive method, etc.
  • the manufacturing process is difficult, and it is difficult to obtain high quality powder due to the deterioration of characteristics due to the oxide film formed during manufacturing. It is known.
  • the raw materials are evaporated or made into nano-sized microparticles using plasma, and then the particles are collected using cold traps, sieves, cyclone, etc. Agglomeration occurs in the collection process even when not in contact with the outside, and there has been a problem that the surface is oxidized in contact with air while being transported for other uses.
  • the present inventors while making efforts to find a method for preventing aggregation, improving dispersibility, and solving surface oxidation in manufacturing nanomaterials including metals, metal oxides, ceramic carbon nanocomposites, and the like, By coating organic materials or transition metals with in situ, it was confirmed that the production of nanomaterials and coating of functional materials at the same time was completed.
  • Another object of the present invention is to provide various uses of the organic material or transition metal coated nanomaterial prepared by the above method.
  • the present invention provides an in situ method of manufacturing an organic material or a transition metal-coated nanomaterial, which includes, in one embodiment:
  • step (a)
  • Argon gas is preferably used as the gas used in thermal plasma generation, and the nanomaterial may be a metal or metal oxide present as a solid at room temperature; Magnetic nanomaterials; Alternatively, a nanometal-graphene fusion having a structure in which nanometals are crystallized in a carbon-based material may be used.
  • the metal or metal oxide may be B, C, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Nb, Mo, Ag, In, Sn, Sb, Ta, W and one or more materials selected from the group consisting of a combination thereof, the magnetic nanomaterial may be used Sr-ferrite or Br-ferrite.
  • Ni and SrFe 12 O 19 was used.
  • the nanomaterial is characterized in that the nucleus growth while passing through the plasma by the step (a).
  • quenching may be accomplished by injection of a quenching gas, preferably using argon gas.
  • a quenching gas preferably using argon gas.
  • the size of the nano material can be controlled by the rapid cooling in the range of 10 ⁇ 150nm.
  • the organic material is benzene, aniline, dopamine, phenol, phenol, benzylamine, phenethylamine, pyrocatechol, 2-hydroxypyridine. (hydroxypyridine), 3-hydroxypyridine, 4-hydroxypyridine, anthracene, naphthalene, naphthalene, 2-naphthol, 9-anthracenol, 2-anthra
  • One or more compounds selected from the group consisting of cesenol (anthracenol) and 1-anthracenol can be used, preferably benzene, aniline, or dopamine. In one embodiment of the present invention was used aniline.
  • the thickness of the organic material or the transition metal coating layer is formed to 10 to 50 nm, preferably 20 to 40 nm.
  • the organic material coated nanomaterial prepared by the method is 20 to 40 nm
  • the nanomaterial is Ni or SrFe 12 O 19
  • the organic substance is aniline Nanomaterials can be provided.
  • the present invention manufactures a nanomaterial in situ using a thermal plasma, and simultaneously coats the surface of the nanomaterial with an organic material or a transition metal that imparts functionality, thereby producing a desired functional nanomaterial.
  • a thermal plasma By functionalizing the surface to increase its properties, it is possible to provide a nanomaterial that solves the problems of anti-aggregation, improved dispersibility and surface oxidation, and furthermore, it may be usefully used for various purposes.
  • FIG. 1 is a conceptual diagram of a thermal plasma apparatus that can be used in the in situ manufacturing method of the nanomaterial of the present invention.
  • Figure 2 is a schematic diagram of the temperature profile in the in situ manufacturing method of the nanomaterial of the present invention can determine the introduction of the coating material.
  • FIG. 3 is a FE-SEM photograph of a nanomaterial prepared by coating a nickel (Ni) nanomaterial with aniline.
  • Figure 4 is a graph of the FT-IR results for nanomaterials prepared by coating nickel (Ni) nanomaterials with aniline.
  • FIG. 5 is an FE-SEM photograph of a nanomaterial prepared by coating a SrFe 12 O 19 nanomaterial with aniline.
  • FIG. 6 is a schematic configuration diagram of a plasma processing apparatus according to the present invention.
  • the present invention relates to a method for coating a surface with a functional material while preparing a nanomaterial in situ using a plasma method, preferably a thermal plasma method, and in another aspect, coating a functional material (organic material, transition metal, etc.)-Coating. It may be represented by the prepared nanomaterial manufacturing method.
  • nanomaterial refers to a material using the size dependence of physical properties in the nanometer size region (1 ⁇ 100 nanometers), the present invention includes all the various fields such as metal, ceramic, polymer. Preferably, nanomaterials such as metals, metal oxides and ceramics are included. The application of such nanomaterials is possible in various forms such as powder form, tube form or whisker form, thin film form and bulk form.
  • coating or “surface treatment” refers to a process in which functional materials such as organic materials and transition metals, which are coating materials, are laminated on the surface of the nanomaterial, or a process in which the surface of the nanomaterial is recombined with a gaseous environment and plasma discharge.
  • the method of growing or coating a thin film at the same time as synthesizing a material having various chemical components and crystal structure in a vaporized state can be largely classified into chemical vapor deposition and physical vapor deposition.
  • One of the techniques for coating a thin film in such a gas state is a plasma spray coating method.
  • the method of the present invention is characterized by using a thermal plasma process.
  • Thermal plasma is a gas composed mainly of electrons, ions, and neutral particles generated by arc discharge, and forms a high-speed jet flame having 1,000 to 20,000 and 100 to 2,000 m / s.
  • thermal plasma By using the characteristics of thermal plasma having high temperature, high heat capacity, high speed, and a large amount of active particles, it is used as various and efficient high temperature heat sources or physicochemical reactors which cannot be produced by conventional technology, and is used in various industrial fields.
  • a plasma apparatus for generating a direct current or an alternating arc (Arc) discharge and a high frequency plasma using a radio frequency magnetic field are mainly used.
  • a high frequency plasma is used.
  • the high frequency induction discharge is electrodeless, and there is usually a discharge portion in the quartz tube wound around the outer side.
  • a high frequency current flows through a coil, an induction current flows to a discharge part together with an induction magnetic field that changes at the same cycle, thereby generating heat of resistance and maintaining a thermal plasma state normally.
  • Such high frequency thermal plasma is called inductively coupled plasma, and since the prototype of the quartz tube torch generating high frequency induced plasma has been released in the early 1960s, its structure has not changed fundamentally but various developments have been made. Torch is developed and marketed.
  • Thermal plasma apparatus acts as a heat source that melts and vaporizes a target material at high temperature and high temperature to cause physical phase change, or acts as a chemical reactor to promote chemical reaction by radicals such as ions, excited atoms, and molecules generated.
  • the material process technology related to the present invention has high functional surface modification, new material creation, new material production and processing using heat plasma.
  • Plasma spray coating, plasma synthesis, thermal plasma chemical vapor deposition (TPCVD), metallurgy, material densification, physical property analysis, cutting welding, and surface strengthening, which are used in the present invention, are examples.
  • the present invention provides a technique for creating a new material by using a thermal plasma and creating a new material coated with a heterogeneous material (organic material, transition metal) on the surface of the generated new nano material.
  • the present invention provides a method for producing a nanomaterial coated with a functional material, characterized in that the coating of the desired functional material at the same time to produce a nanomaterial using the thermal plasma method (Fig. 1).
  • the method of the present invention is carried out in-situ.
  • the in-situ method of the present invention is a functional material, for example, an organic material or a transition metal, during the production of the nanomaterial, for example, a metal or a metal oxide, during the step of producing the nanomaterial using a thermal plasma.
  • a functional material for example, an organic material or a transition metal
  • the surface of the nanomaterial is functionalized to improve its properties, or to produce functional nanomaterials for preventing aggregation, improving dispersibility and solving surface oxidation.
  • In-situ method has the following advantages compared to the method of coating the organic material separately after manufacturing the nano-material.
  • Nanomaterial synthesis and nanomaterial coating are carried out in-situ in a thermal plasma device, resulting in lower process manufacturing costs, shorter process times, and simplified process steps.
  • Conventional coating process has a disadvantage in that the process manufacturing cost is high, the process time is long, and the process step is very complicated because the separate coating process to build a nanomaterial synthesis equipment, nanomaterial coating equipment separately.
  • the simultaneously coated surface is very uniform and free of defects since the synthesis and coating of the nanomaterials takes place in a short time.
  • the present invention may provide a method for preparing an in situ of an organic material or a transition metal-coated nanomaterial, comprising the following steps:
  • Nanomaterial raw material (nanomaterial) injection step Nanomaterial raw material (nanomaterial) injection step
  • the desired coating material is put in the temperature range that can be vaporized or activated
  • the desired coating material is vaporized or activated
  • the gases used may be classified into sheath gas, central gas, carrier gas, and the like according to their function, and include such gases as inert gas such as argon, hydrogen and nitrogen. Or a gas mixed with these may be used. Preferably argon gas is used.
  • the sheath gas is injected to prevent the vaporized particles from adhering to the inner surface of the wall and also to protect the wall from the ultra-high temperature plasma, and may use an argon gas of 30 to 150 lpm (liters per minute). Is a gas injected to generate a high temperature thermal plasma, argon gas of 30 ⁇ 120 lpm can be used, the carrier gas is a gas for supplying the mixed powder into the plasma reactor, argon gas of 3 ⁇ 20 lpm Can be used.
  • the gas supplier 1 supplies various auxiliary gases such as hydrogen and oxygen gas other than argon gas supplied to the plasma discharge and the plasma torch electrode unit and the cooling unit in the plasma reaction unit and the cooling unit 7, Through the central gas supply line 4b, the sheath gas supply line 4c, and the carrier gas supply line 4a, respectively, through the injection nozzles of the plasma generating electrode part 6, the plasma reaction part, and the cooling part 7, respectively. Supply.
  • auxiliary gases such as hydrogen and oxygen gas other than argon gas supplied to the plasma discharge and the plasma torch electrode unit and the cooling unit in the plasma reaction unit and the cooling unit 7, Through the central gas supply line 4b, the sheath gas supply line 4c, and the carrier gas supply line 4a, respectively, through the injection nozzles of the plasma generating electrode part 6, the plasma reaction part, and the cooling part 7, respectively.
  • the nanomaterial is a material in the range of 1 to 100 billion minutes, in the present invention, a metal or metal oxide present as a solid at room temperature; Or a carbon-based or ceramic-based material, and more preferably selected from any of alkali metals, alkaline earth metals, lanthanum groups, actinium groups, transition metals, post-transition metals, and metalloids on the periodic table of the elements.
  • B, C, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Nb, Mo, Ag, In, Sn, Sb , Ta, W, or a combination thereof may be used.
  • the raw material feeder 3 is a quantitative powder feeder, and supplies the nanomaterial to the plasma reaction part and the cooling part 7 together with the auxiliary gas. At this time, the raw material feeder 3 is preferably configured to apply the rotation and vibration of a constant speed so that the nanomaterial can be smoothly supplied.
  • the following nanomaterial can be used.
  • Si is a lithium secondary battery anode material, can minimize the reduction of capacity due to surface oxidation when manufacturing nano-Si to achieve the maximum theoretical capacity of 4,200 mA /, by coating the nanomaterial individual particles through the surface coating to maximize the dispersion,
  • a lithium secondary battery anode material it is possible to minimize damage to the battery due to expansion during charging and discharging caused by agglomeration of nano silicon in one place.
  • the magnetic polymer particles in which iron oxide nanoparticles are dispersed therein include, for example, ferrite nanomaterials (SrFe 12 O 19 , BaFe x O x, etc.) such as Sr-ferrite and Br-ferrite.
  • ferrite nanomaterials SrFe 12 O 19 , BaFe x O x, etc.
  • the magnetic polymer particles may be prepared by various methods.
  • the simplest method is to encapsulate iron oxide nanoparticles having superparamagnetism into a polymer. Emulsifying and polymerizing the monomer in the presence of stabilized iron oxide nanoparticles such as ferrofluid can obtain magnetic polymer particles in which the iron oxide nanoparticles are encapsulated.
  • Hydrothermal, glicinenitrate, citric acid, sol-gel, etc. may be used for nano-sized ferrite preparation, which may be referred to known techniques [M. Serkol, Y. Koseoglu, A. Batkal, H. Kavas, and A. C. Basaran, J. Magn. Magn. Mater. 321, 157 (2009); S. Hajarpour, A. H.
  • the nano-magnetic material may be improved dispersibility and orientation properties by coating the organic material, such as aniline, dopamine.
  • the organic material such as aniline, dopamine.
  • inverted spheres at the grain boundary due to nuclear growth are easily generated at the joint surface of the magnetic material, and the coercive force is lowered to about 20% of the theoretical value. Because there is.
  • other types of ferrites having a large saturation magnetization value, or core-shell structured hexaferrite nanoparticles having a metal such as Co, Ni, Mn, Ti, or nitrogen doped with nitrogen Metal hexaferrite nanoparticles may be prepared to improve magnetic properties.
  • the nanomaterial of the present invention may use a nanometal-graphene fusion form in which a nanometal is crystallized in a carbon-based material (eg, graphene, graphite, etc.).
  • a nanometal-graphene fusion form in which a nanometal is crystallized in a carbon-based material (eg, graphene, graphite, etc.).
  • a carbon-based material eg, graphene, graphite, etc.
  • a low melting metal (Sn, Ag, Al, etc.) of the transition metal By coating a low melting metal (Sn, Ag, Al, etc.) of the transition metal to the nanometal can be given a special functionality.
  • the injected nanomaterials are vaporized using thermal plasma (3).
  • the thermal plasma is an ionization gas composed of electrons, ions, atoms, and molecules generated by a plasma torch using a direct current arc or a high frequency inductively coupled discharge, and is a high-temperature jet having a high temperature and high activity ranging from thousands to tens of thousands of K. .
  • the power supply of the plasma apparatus supplies power of 10 to 70 kW, and an arc is formed by electric energy and about 10,000 K is generated by argon gas used as a thermal plasma generating gas. Ultra high temperature plasma is generated.
  • the ultra high temperature thermal plasma generated by argon gas as the generating gas while maintaining the power of 10 to 70 kW has an effect that is generated at a higher temperature than the thermal plasma generated by the heat treatment method or the combustion method.
  • the raw material vaporized by the ultra-high temperature thermal plasma forms a nucleus in the intrinsic nucleation temperature range of each material as it passes through the plasma region, and particles are grown from the nucleus formed into seeds to crystallize into nanomaterials (4).
  • Coating materials such as organic materials and transition metals, which are injected into the plasma high temperature region, are rapidly vaporized and adsorbed onto the surface of the moving nanomaterial with a flow to form a coating, which forms a core-shell structure. do.
  • the growth of the nanomaterial is suppressed by condensation or quenching by the quenching gas, and is determined as a nanomaterial having a predetermined size in the range of 10 to 150 nm. That is, the nanomaterial grown to a predetermined size is transferred by the vacuum pump 70 or the compressor, and the temperature is lowered while passing through the cyclone unit 30 connected to the plasma reaction unit and the cooling unit 7, and the cooling gas ( As the quenching gas), argon gas of 0 to 200 lpm may be injected through graphite nozzles of 2 to 4 different positions (heights), respectively.
  • the coating material that can be used can be appropriately selected by those skilled in the art according to the desired function, preferably transition metals (Co, Ni, Mn, Ti, etc.), organic matter (ammonia, dopamine, aniline, benzene, etc.) ) And the like can be used.
  • the selected coating material is added in the temperature range that can be vaporized or activated. That is, the introduction of the coating material may be determined by checking the temperature profile of the entire thermal plasma system (FIG. 2).
  • benzene, aniline, dopamine, phenol, benzylamine, phenethylamine, pyrocatechol, 2-hydroxypyridine hydroxypyridine, 3-hydroxypyridine, 4-hydroxypyridine, anthracene, naphthalene, naphthalene, 2-naphthol, 9-anthracenol, 2-anthracenol (anthracenol), and one or more compounds selected from the group consisting of 1-anthracenol can be used.
  • “Aniline” (aniline) used in one embodiment of the present invention is C 6 H 5 NH 2 , the melting point is -6.3 by maintaining the liquid state at room temperature has the advantage of easy supply to the gaseous state.
  • Aniline can be obtained by commercially hydrogenating nitrobenzene under a catalyst, by reacting chlorobenzene and ammonia, or by reducing nitrobenzene with an iron catalyst in an aqueous acid solution.
  • Aniline a primary aromatic amine, is a weak base and reacts with inorganic acids to form salts.
  • the aniline was used as a starting material.
  • dopamine may be used as a coating instead of aniline.
  • the dopamine is a monomolecular substance having a molecular weight of 153 (Da) having a catechol and an amine functional group (C 8 H 11 NO 2 ).
  • catecholamine precursor materials described above may be appropriately selected and used.
  • pyrocatechol with hydroxyl functional group (-OH) attached to the benzene ring and benzylamine with one and two methylene bridges and one amine group attached to the benzene ring, respectively.
  • Coatings such as naphthylmethylamine can also be used.
  • the coating film may be synthesized by inducing a hydroxylation reaction or an amination reaction by controlling plasma chemistry on benzene, cyclohexane and the base unit, respectively.
  • a coating layer may be formed on the surface of the nanomaterial described above. That is, the nanomaterial of the present invention is prepared by coating an organic material (metals having a low melting point, if necessary) on the nanomaterial.
  • the nano-materialization and coating process reaction for 1/100 sec to 1 / 1,000 sec at 100 MHz to 500 Torr pressure, high frequency RF (Radio Frequench) of 2MHz, 20kW ⁇ 60kW power conditions Do this.
  • the thickness of the organic coating layer can be appropriately adjusted by those skilled in the art according to the type of nanomaterial, but the coating is preferably performed in a thickness of 10 to 50 nm. In an embodiment of the present invention, the surface of the nanomaterial was coated with about 30 nm.
  • the functional material of the desired organic material or transition metal is coated on the surface of the nanomaterial (9), and finally, the functional material-coated nanomaterial is recovered (10).
  • the nanomaterial generated in the metal filter 55 made of stainless material is adsorbed, and various fluorine gas generated in the plasma process is transferred through an external tube through the vacuum pump 70. Final discharge.
  • the discharged gas may be purified and stored under pressure in the gas tank using a booster to be reused.
  • the nanomaterial collecting unit 60 provided at the lower end of the collector 50 by desorbing the nanomaterial using a blowback gas inside the filter. ).
  • the nanomaterial may be recovered in the glove box in order to avoid a reaction by contact with air.
  • the present invention encompasses various uses of nanomaterials coated with functional materials of organics or transition metals obtained by the process of the invention described above.
  • Electronic components that can be manufactured by, for example, printing methods such as printable displays, RFID, photovoltaic cells, computer memories, etc .; Heat dissipation materials for extending the life of electronic devices such as displays, lighting equipment such as LEDs, and computer parts; It is expected to be used in various fields including electrochemical devices such as next-generation electronic devices, solar cells and fuel cells.
  • the "electrochemical device” includes an energy storage device, an energy conversion device, a sensor, and other devices for converting electrical energy into chemical energy or converting chemical energy into electrical energy.
  • energy storage device as used herein includes a battery and a super capacitor.
  • Ultracapacitors and organic solar cells that use polymer materials are highly useful as clean energy storage and conversion media based on their flexibility and structure control, and organic light-emitting devices can be bent, folded and expanded in the future.
  • the company's progress is expected to cover a wide range of applications, from clothing to buildings to new types of display and lighting industries.
  • the present invention may be useful in various fields of the nanomaterial coated with a functional material of an organic material or a transition metal having excellent properties.
  • Plasma gas Ar central gas 30 lpm, sheath gas 50 lpm
  • Figure 3 shows the FE-SEM image measurement results of the aniline-coated nickel (Ni) nanomaterial (nano composite) prepared in Example 1-1.
  • Plasma gas Ar central gas 30 lpm, sheath gas 120 lpm
  • “About” means 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4 for reference quantities, levels, values, numbers, frequencies, percentages, dimensions, sizes, quantities, weights, or lengths. , Amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length, varying by about 3, 2 or 1%.

Abstract

The present invention relates to a method for preparing and coating in situ nanomaterial and, more particularly, to: a method for coating, by using thermal plasma, the surface of nanomaterial with organic material that provides functionality and simultaneously producing desired nanomaterial or functional nanomaterial; and nanomaterial, coated with organic material, prepared by means of thermal plasma.

Description

기능성 물질 코팅이 수반되는 IN SITU 나노소재 제조방법 이에 따라 제조된 나노소재IN SITU nanomaterial manufacturing method with coating of functional material Nanomaterial manufactured according to this
본 발명은 in situ로 나노소재를 제조하면서 동시에 표면을 기능성 물질로 코팅하는 방법에 관한 것으로, 보다 구체적으로는 열 플라즈마를 이용하여 나노소재를 in situ로 제조하는 동시에, 기능성을 부여하는 유기물이나 전이금속 등으로 나노물질 표면을 코팅하여, 목적하는 기능성 나노소재를 생산하는 방법 및 이에 의해 제조된 기능성의 유기물-코팅된 나노소재에 관한 것이다.The present invention relates to a method of manufacturing a nanomaterial in situ and simultaneously coating a surface with a functional material. More specifically, an organic material or a transition that provides functionality while simultaneously preparing a nanomaterial in situ using a thermal plasma. The present invention relates to a method for producing a desired functional nanomaterial by coating a surface of a nanomaterial with a metal or the like, and a functional organic-coated nanomaterial prepared thereby.
첨단소재의 상당한 부분을 차지하는 나노소재는 세계 시장 규모가 2010년 17억 달러를 넘어섰으며 5년 동안 연평균 10.4%의 시장 성장률을 보였다(나노기술 세계 시장은 160억 달러). 그 중 북미 지역은 38%의 시장과 약 25%의 성장률, 유럽 지역은 37%의 시장과 약 22%의 성장률, 아시아 지역은 25%의 시장과 약 32%의 성장률을 보이고 있다. 아시아 지역의 시장은 빠르게 성장하여 세계 시장의 가장 큰 부분을 차지할 것으로 전망된다. 나노소재 시장은 2016년까지 연평균 23% 성장하여 58억 달러에 이를 것이며 보건 및 에너지저장 산업이 주도할 것으로 예상된다.Nanomaterials, which represent a significant portion of advanced materials, exceeded $ 1.7 billion in global market size in 2010, with an average annual growth rate of 10.4% over five years (nanotech global market of $ 16 billion). Among them, North America has a 38% market and about 25% growth, Europe has a 37% market and about 22% growth, and Asia has a 25% market and about 32% growth. Markets in Asia are expected to grow rapidly, accounting for the largest portion of the global market. The nanomaterials market is expected to grow 23 percent annually to $ 5.8 billion by 2016, led by the health and energy storage industry.
소재의 물성은 성분(조성)에 따라 완전히 고정되는 것이 아니라 소재를 구성하는 조직의 크기에 따라 달라지는 크기 의존성을 갖는다. 나노소재는 기존 소재들이 갖고 있는 미크론 내지 서브미크론(미크론 이하) 크기의 구조보다 훨씬 작은 나노미터 크기 영역(1~100 나노미터)에서 물성의 크기의존성을 이용하는 소재라고 할 수 있다. 특이한 점은 소재의 조직이 서브미크론으로 작아질 때까지는 조직의 크기에 비례(혹은 반비례)하여 소재의 물성이 연속적으로 변하지만 나노미터 크기 영역으로 작아지면 연속성을 벗어나 급격한 변화를 나타내거나 완전히 새로운 성질을 나타낸다는 것이다. 나노소재는 나노미터 영역에서 불연속으로 변하는 물성 혹은 새롭게 나타나는 물성을 활용하는 소재라고 할 수 있다.The physical properties of the material are not completely fixed according to the composition (composition) but have a size dependency that depends on the size of the tissue constituting the material. Nanomaterials can be said to use materials size dependence in the nanometer-sized region (1-100 nanometers), which is much smaller than the micron-submicron (sub-micron) -sized structures of conventional materials. The peculiarity is that the material properties of the material change continuously in proportion to (or inversely) the size of the material until the material's tissue becomes small to submicron, but when it decreases to the nanometer size area, it shows a sudden change or a completely new property. It is indicated. Nanomaterials can be said to utilize materials that change discontinuously or newly appearing properties in the nanometer range.
최근 전자, 정보통신 및 생명공학의 급속한 발전으로 인해 이러한 나노기술에 대한 관심이 높아지고 있으며, 나노분말은 입자 크기가 극미세화됨에 따라 일반분말에서는 발현되지 않았던 특이한 새로운 물성이 관찰됨으로써 전기, 전자 분야는 물론 고강도 기계부품, 촉매, 의약 및 생명공학 등의 각종 산업분야에 걸쳐 나노분말의 응용에 대한 기대가 한층 높아지고 있다.Recently, due to the rapid development of electronics, telecommunications, and biotechnology, interest in such nanotechnology is increasing. As the nanoparticles have become extremely fine in particle size, unusual new properties that are not expressed in general powders are observed. There is, of course, higher expectations for the application of nanopowders in various industries such as high-strength machine parts, catalysts, medicine and biotechnology.
특히, 전자기기의 소형화, 고기능화에 따라서 배선이나 전극형성에 사용되는 재료로서 금속 나노입자가 주목받게 되었다. 금속 입자는 그 입경이 100nm 정도가 되면 그 소결온도가 200 이하로 낮아지고 비교적 저온에서도 금속입자끼리의 결합을 형성할 수 있어 기판 재료에 관계없이 저항이 낮은 배선 재료로 사용될 수 있다. 이러한 금속나노입자는 특히 플렉서블 기판에 응용될 수 있기 때문에 중요성이 부각되고 있다.In particular, metal nanoparticles have attracted attention as materials used for wiring and electrode formation due to miniaturization and high functionality of electronic devices. When the particle size of the metal particles is about 100 nm, the sintering temperature thereof is lowered to 200 or less, and the metal particles can form bonds between the metal particles even at a relatively low temperature. Thus, the metal particles can be used as wiring materials having low resistance regardless of the substrate material. These metal nanoparticles are particularly important because they can be applied to a flexible substrate.
금속 나노입자를 만드는 방법에는 분무제조법, 졸젤법, 전기폭발법 등 여러 방법이 있는데, 금속 나노입자에 대해서는 제조공정이 어렵고, 제조시 형성되는 산화막에 의한 특성저하로 인하여 고품질의 분말을 얻기가 어려운 것으로 알려져 있다. 예를 들어, 금속나노입자를 제조하는 경우, 원료를 증발시키거나 플라즈마를 이용하여 나노크기의 미세입자로 만든 후에 cold trap 이나 sieve, cyclone 등을 이용하여 입자를 포집하는데, 이 경우 입자는 공정중에 외부와 접촉되지 않더라도 포집과정에서 응집이 발생하며, 다른 용도로 이용하기 위해 운반되는 동안 공기와 접촉하여 표면이 산화되는 문제점이 있어왔다.There are various methods for making metal nanoparticles, such as spray manufacturing, sol-gel method, and electroexplosive method, etc. For metal nanoparticles, the manufacturing process is difficult, and it is difficult to obtain high quality powder due to the deterioration of characteristics due to the oxide film formed during manufacturing. It is known. For example, in the manufacture of metal nanoparticles, the raw materials are evaporated or made into nano-sized microparticles using plasma, and then the particles are collected using cold traps, sieves, cyclone, etc. Agglomeration occurs in the collection process even when not in contact with the outside, and there has been a problem that the surface is oxidized in contact with air while being transported for other uses.
이에, 본 발명자들은 금속, 금속산화물, 세라믹 탄소 나노복합체 등을 포함하는 나노소재 제조에 있어서, 응집방지, 분산성 개선 및 표면 산화의 해결을 위한 방법을 찾기 위해 예의 노력하던 중, RF 열플라즈마를 이용하여 in situ로 유기물이나 전이금속 등을 코팅함으로써 나노소재 생산과 동시에 기능성 물질을 코팅할 수 있음을 확인하고 본 발명을 완성하였다. Accordingly, the present inventors, while making efforts to find a method for preventing aggregation, improving dispersibility, and solving surface oxidation in manufacturing nanomaterials including metals, metal oxides, ceramic carbon nanocomposites, and the like, By coating organic materials or transition metals with in situ, it was confirmed that the production of nanomaterials and coating of functional materials at the same time was completed.
본 발명의 목적은 유기물 또는 전이금속 코팅된 나노소재의 in situ 제조방법을 제공하는 데 있다.It is an object of the present invention to provide a method for preparing in situ of nanomaterials coated with organic materials or transition metals.
본 발명의 다른 목적은 상기 방법에 의해 제조된 유기물 또는 전이금속 코팅된 나노소재의 다양한 용도를 제공하는 데 있다.Another object of the present invention is to provide various uses of the organic material or transition metal coated nanomaterial prepared by the above method.
상기 과제를 해결하기 위해, 본 발명은 일 구체예로서, 다음을 포함하는, 유기물 또는 전이금속 코팅된 나노소재의 in situ 제조방법을 제공한다:In order to solve the above problems, the present invention provides an in situ method of manufacturing an organic material or a transition metal-coated nanomaterial, which includes, in one embodiment:
(a) 열 플라즈마에 의해 나노물질을 기화시키는 단계, (b) 가스 주입에 의해 급냉각시키는 단계, (c) 유기물 또는 전이금속의 코팅물질을 투입하여 기화 또는 활성화시키는 단계, (d) 나노물질 표면에 유기물 또는 전이금속 코팅층이 형성되는 단계, 및 (e) 유기물 또는 전이금속 코팅된 나노소재를 수득하는 단계. (a) vaporizing the nanomaterial by thermal plasma, (b) quenching by gas injection, (c) adding or evaporating or activating a coating material of an organic material or transition metal, and (d) Forming an organic or transition metal coating layer on the surface, and (e) obtaining an organic or transition metal coated nanomaterial.
이 때, (a)단계에서, At this time, in step (a),
열 플라즈마 발생시 사용하는 가스는 아르곤 가스를 사용하는 것이 바람직하고, 상기 나노물질은 상온에서 고체로 존재하는 금속 또는 금속 산화물; 자성 나노물질; 또는 탄소계 물질에 나노금속이 결정화되어 있는 구조의 나노금속-그래핀 융합체를 사용할 수 있다. Argon gas is preferably used as the gas used in thermal plasma generation, and the nanomaterial may be a metal or metal oxide present as a solid at room temperature; Magnetic nanomaterials; Alternatively, a nanometal-graphene fusion having a structure in which nanometals are crystallized in a carbon-based material may be used.
예를 들어, 상기 금속 또는 금속 산화물은 B, C, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Nb, Mo, Ag, In, Sn, Sb, Ta, W 및 이들의 조합으로부터 구성된 군에서 선택되는 1종 이상의 물질일 수 있고, 상기 자성 나노물질은 Sr-페라이트 또는 Br-페라이트를 사용할 수 있다. 본 발명의 일 실시예에서는 Ni 및 SrFe12O19 를 사용하였다.For example, the metal or metal oxide may be B, C, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Nb, Mo, Ag, In, Sn, Sb, Ta, W and one or more materials selected from the group consisting of a combination thereof, the magnetic nanomaterial may be used Sr-ferrite or Br-ferrite. In one embodiment of the present invention Ni and SrFe 12 O 19 Was used.
그리고, 상기 (a)단계에 의해 나노물질이 플라즈마를 통과하면서 핵 성장을 하는 것을 특징으로 한다.In addition, the nanomaterial is characterized in that the nucleus growth while passing through the plasma by the step (a).
또한, (b)단계에서, 급냉각은 퀜칭(quenching) 가스의 주입에 의해 이루어질 수 있는데, 바람직하게는 아르곤 가스를 이용한다. 특히, 이러한 급냉각에 의해 나노물질의 크기가 10~150nm의 범위로 제어될 수 있다. Further, in step (b), quenching may be accomplished by injection of a quenching gas, preferably using argon gas. In particular, the size of the nano material can be controlled by the rapid cooling in the range of 10 ~ 150nm.
또한, 상기 유기물은 벤젠(benzene), 아닐린(aniline), 도파민(dopamine), 페놀(phenol), 벤질아민(benzylamine), 펜에틸아민(phenethylamine), 피로카테콜(pyrocatechol), 2-하이드록시피리딘(hydroxypyridine), 3-하이드록시피리딘(hydroxypyridine), 4-하이드록시피리딘(hydroxypyridine), 안트라센(anthracene), 나프탈렌(naphthalene), 2-나프톨(naphthol), 9-안트라세놀(anthracenol), 2-안트라세놀(anthracenol), 및 1-안트라세놀(anthracenol)로 구성된 군에서 선택되는 1이상의 화합물을 사용할 수 있는데, 바람직하게는 벤젠(benzene), 아닐린(aniline), 또는 도파민(dopamine)을 사용한다. 본 발명의 일실시예에서는 아닐린을 이용하였다.In addition, the organic material is benzene, aniline, dopamine, phenol, phenol, benzylamine, phenethylamine, pyrocatechol, 2-hydroxypyridine. (hydroxypyridine), 3-hydroxypyridine, 4-hydroxypyridine, anthracene, naphthalene, naphthalene, 2-naphthol, 9-anthracenol, 2-anthra One or more compounds selected from the group consisting of cesenol (anthracenol) and 1-anthracenol can be used, preferably benzene, aniline, or dopamine. In one embodiment of the present invention was used aniline.
특히, (d)단계에서 상기 유기물 또는 전이금속 코팅층 두께는 10 ~ 50 nm으로 형성되며, 바람직하게는 20~40 nm로 형성된다.In particular, in step (d), the thickness of the organic material or the transition metal coating layer is formed to 10 to 50 nm, preferably 20 to 40 nm.
본 발명의 바람직한 구체예로서, 상기 방법에 의해 제조된, 유기물 코팅된 나노소재로서, 유기물 또는 전이금속 코팅층 두께는 20 ~ 40 nm이고, 상기 나노물질은 Ni 또는 SrFe12O19 이고, 유기물은 아닐린인 것을 특징으로 하는 나노소재를 제공할 수 있다.In a preferred embodiment of the present invention, the organic material coated nanomaterial prepared by the method, the organic or transition metal coating layer thickness is 20 to 40 nm, the nanomaterial is Ni or SrFe 12 O 19 And the organic substance is aniline Nanomaterials can be provided.
이와 같이, 본 발명은 열 플라즈마를 이용하여 나노소재를 in situ로 제조하는 동시에, 기능성을 부여하는 유기물이나 전이금속 등으로 나노물질 표면을 코팅하여, 목적하는 기능성 나노소재를 생산함으로써, 나노소재의 표면을 기능화하여 그 특성을 높이고, 응집방지, 분산성 개선 및 표면 산화의 문제를 해결한 나노소재를 제공할 수 있고, 나아가 이를 다양한 용도로 유용하게 사용할 수 있을 것이다.As described above, the present invention manufactures a nanomaterial in situ using a thermal plasma, and simultaneously coats the surface of the nanomaterial with an organic material or a transition metal that imparts functionality, thereby producing a desired functional nanomaterial. By functionalizing the surface to increase its properties, it is possible to provide a nanomaterial that solves the problems of anti-aggregation, improved dispersibility and surface oxidation, and furthermore, it may be usefully used for various purposes.
도 1은 본 발명의 나노소재의 in situ 제조방법에 사용될 수 있는 열플라즈마 장치의 개념도이다. 1 is a conceptual diagram of a thermal plasma apparatus that can be used in the in situ manufacturing method of the nanomaterial of the present invention.
도 2는 본 발명의 나노소재의 in situ 제조방법에 있어서, 코팅 물질의 도입부를 결정할 수 있는 온도 프로파일 모식도이다.Figure 2 is a schematic diagram of the temperature profile in the in situ manufacturing method of the nanomaterial of the present invention can determine the introduction of the coating material.
도 3은 니켈(Ni) 나노물질을 아닐린으로 코팅시켜 제조한 나노소재의 FE-SEM 사진이다.3 is a FE-SEM photograph of a nanomaterial prepared by coating a nickel (Ni) nanomaterial with aniline.
도 4는 니켈(Ni) 나노물질을 아닐린으로 코팅시켜 제조한 나노소재에 대한 FT-IR 결과 그래프이다.Figure 4 is a graph of the FT-IR results for nanomaterials prepared by coating nickel (Ni) nanomaterials with aniline.
도 5는 SrFe12O19 나노물질을 아닐린으로 코팅시켜 제조한 나노소재의 FE-SEM 사진이다. 5 is an FE-SEM photograph of a nanomaterial prepared by coating a SrFe 12 O 19 nanomaterial with aniline.
도 6은 본 발명에 의한 플라즈마 처리장치의 개략적인 구성도이다.6 is a schematic configuration diagram of a plasma processing apparatus according to the present invention.
이하, 본 발명에 대하여 구체적으로 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated concretely.
본 발명은 플라즈마 공법, 바람직하게는 열 플라즈마 공법을 이용하여 in situ로 나노소재를 제조하면서 동시에 표면을 기능성 물질로 코팅하는 방법에 관한 것으로, 다른 관점에서는 기능성 물질(유기물, 전이금속 등)-코팅된 나노소재 제조방법으로 표현될 수도 있다. The present invention relates to a method for coating a surface with a functional material while preparing a nanomaterial in situ using a plasma method, preferably a thermal plasma method, and in another aspect, coating a functional material (organic material, transition metal, etc.)-Coating. It may be represented by the prepared nanomaterial manufacturing method.
본 발명에서 "나노소재"는 나노미터 크기 영역(1~100 나노미터)에서 물성의 크기의존성을 이용하는 소재를 의미하는 것으로, 본 발명에서는 금속, 세라믹, 고분자 등의 다양한 분야를 모두 포함한다. 바람직하게는 금속, 금속산화물, 세라믹 등의 나노소재를 포함한다. 이러한 나노 소재의 응용은 분말(powder) 형태, 튜브(tube) 내지는 휘스커(whisker) 형태, 박막(thin film) 형태 그리고 벌크(bulk) 형태 등 다양한 형태로 가능하다.In the present invention, "nanomaterial" refers to a material using the size dependence of physical properties in the nanometer size region (1 ~ 100 nanometers), the present invention includes all the various fields such as metal, ceramic, polymer. Preferably, nanomaterials such as metals, metal oxides and ceramics are included. The application of such nanomaterials is possible in various forms such as powder form, tube form or whisker form, thin film form and bulk form.
그리고 "코팅" 또는 "표면 처리"는 코팅 재료인 유기물, 전이금속 등의 기능성물질이 나노소재의 표면 위에 적층되는 공정 또는 나노소재 표면이 기체상태 환경과 플라즈마 방전과 재결합되는 공정을 뜻한다.The term "coating" or "surface treatment" refers to a process in which functional materials such as organic materials and transition metals, which are coating materials, are laminated on the surface of the nanomaterial, or a process in which the surface of the nanomaterial is recombined with a gaseous environment and plasma discharge.
Heat 플라즈마plasma
다양한 화학적 성분과 결정구조를 갖는 소재를 기화상태에서 합성과 동시에 박막 성장 시키거나 코팅하는 방법은 크게 화학적 기상증착(Chemical Vapour Deposition), 물리적 기상증착(Physical Vapor Deposition)으로 구별할 수 있다. 이러한 기체 상태에서 박막 코팅하는 기술의 하나로써 플라즈마 스프레이(용사) 코팅(Plasma spray coating) 방법이 있다.The method of growing or coating a thin film at the same time as synthesizing a material having various chemical components and crystal structure in a vaporized state can be largely classified into chemical vapor deposition and physical vapor deposition. One of the techniques for coating a thin film in such a gas state is a plasma spray coating method.
본 발명의 방법은 열 플라즈마 공정을 이용하는 것을 특징으로 한다.The method of the present invention is characterized by using a thermal plasma process.
열 플라즈마(Thermal plasma)는 주로 아크 방전에 의해 발생시킨 전자, 이온, 중성입자로 구성된 기체로 구성입자가 1,000~20,000와 100~2,000m/s를 갖는 고속의 제트 불꽃 형태를 이루고 있다. 이렇게 고온, 고열용량, 고속, 다량의 활성입자를 갖는 열 플라즈마의 특성을 이용하여, 재래식 기술에서는 만들 수 없는 다양하고 효율적인 고온 열원이나 물리화학 반응자(reactor)로 사용되어, 여러 산업분야에서 이용 되고 있다Thermal plasma is a gas composed mainly of electrons, ions, and neutral particles generated by arc discharge, and forms a high-speed jet flame having 1,000 to 20,000 and 100 to 2,000 m / s. By using the characteristics of thermal plasma having high temperature, high heat capacity, high speed, and a large amount of active particles, it is used as various and efficient high temperature heat sources or physicochemical reactors which cannot be produced by conventional technology, and is used in various industrial fields. have
열 플라즈마의 대표적인 발생법으로서는 직류 또는 교류 아크(Arc) 방전을 발생하는 플라즈마 장치와 고주파(Radio Frequency)자장에 의한 고주파 플라즈마가 주로 이용되고 있다. As a typical generation method of the thermal plasma, a plasma apparatus for generating a direct current or an alternating arc (Arc) discharge and a high frequency plasma using a radio frequency magnetic field are mainly used.
아크방전을 이용한 극간의 직류 또는 교류 아크방전에 의해 기체를 플라즈마화 하는 방법은, 플라즈마를 노즐상의 전극으로부터 고속 고온의 제트로서 분사시키는 플라즈마 토치 형식이 다양하게 고안되어 실용화되어 있다.As a method of plasma-forming gas by direct current or alternating arc discharge between poles using arc discharge, various types of plasma torch for injecting plasma as a jet of high speed and high temperature from an electrode on a nozzle have been devised and put into practical use.
본 발명에서 더욱 바람직하게는 고주파 플라즈마를 이용한다. 고주파 유도방전은 무전극형이고, 통상 바깥쪽에 코일을 감은 석영관 내에 방전부가 존재한다. 코일에 고주파전류를 흘리면, 같은 주기로 변화하는 유도자계와 함께 유도전류가 방전부에 흘러 저항열이 발생해서 열 플라즈마 상태가 정상적으로 유지된다. 이러한 고주파 열 플라즈마는 유도결합 플라즈마(inductively coupled plasma)라고 하며, 고주파 유도 플라즈마를 발생시키는 석영관 토치의 원형은 1960년대 초기에 발표된 이후로 그 구조에는 기본적인 변화가 없으나 다양하게 개발되어 현재 정평이 있는 토치가 개발, 시판되고 있다. More preferably in the present invention, a high frequency plasma is used. The high frequency induction discharge is electrodeless, and there is usually a discharge portion in the quartz tube wound around the outer side. When a high frequency current flows through a coil, an induction current flows to a discharge part together with an induction magnetic field that changes at the same cycle, thereby generating heat of resistance and maintaining a thermal plasma state normally. Such high frequency thermal plasma is called inductively coupled plasma, and since the prototype of the quartz tube torch generating high frequency induced plasma has been released in the early 1960s, its structure has not changed fundamentally but various developments have been made. Torch is developed and marketed.
본 발명의 방법은 이러한 공지의 고주파 플라즈마 장치를 이용하여 수행될 수 있다. 열 플라즈마 장치는 고온 고열로 대상재료를 용융, 기화시켜 물리적 상변화를 유발하는 열원의 역할을 하거나 생성시킨 이온, 들뜬 원자 및 분자 등과 같은 라디칼에 의해 화학반응을 촉진하는 화학반응로로서 작용하는 경우가 많다The method of the present invention can be performed using this known high frequency plasma apparatus. Thermal plasma apparatus acts as a heat source that melts and vaporizes a target material at high temperature and high temperature to cause physical phase change, or acts as a chemical reactor to promote chemical reaction by radicals such as ions, excited atoms, and molecules generated. There are many
현재 열플라즈마 기술에 대한 관심사는 크게 소재공정과 폐기물처리의 두 갈래로 나뉘어 그 개발이 진행되고 있는데, 본 발명과 관련된 소재공정기술은 열플라즈마를 이용한 고기능성 표면개질, 신물질 창출, 신소재 생산 및 가공 등에 활용되는, 플라즈마 용사코팅, 플라즈마 합성, 열플라즈마 화학증착(TPCVD), 금속야금, 소재 고밀화, 물성분석, 절단용접 및 표면강화 등이 이에 속한다. At present, the interest of thermal plasma technology is divided into two parts: material process and waste treatment. The material process technology related to the present invention has high functional surface modification, new material creation, new material production and processing using heat plasma. Plasma spray coating, plasma synthesis, thermal plasma chemical vapor deposition (TPCVD), metallurgy, material densification, physical property analysis, cutting welding, and surface strengthening, which are used in the present invention, are examples.
특히, 본 발명은 열플라즈마를 이용한 신물질 창출 및 창출된 나노 신소재의 표면을 이종의 물질(유기물, 전이금속)로 코팅시킨 신소재를 창출하는 기술을 제공한다.In particular, the present invention provides a technique for creating a new material by using a thermal plasma and creating a new material coated with a heterogeneous material (organic material, transition metal) on the surface of the generated new nano material.
방법Way
일 관점에서, 본 발명은 열 플라즈마법을 이용하여 나노소재를 생산하는 동시에 목적하는 기능성물질을 코팅하는 것을 특징으로 하는, 기능성 물질이 코팅된 나노소재를 생산하는 방법을 제공한다(도 1). In one aspect, the present invention provides a method for producing a nanomaterial coated with a functional material, characterized in that the coating of the desired functional material at the same time to produce a nanomaterial using the thermal plasma method (Fig. 1).
본 발명의 상기 방법은 in-situ로 수행된다.The method of the present invention is carried out in-situ.
본 발명의 in-situ 방법은 열 플라즈마를 이용하여 나노소재를 생성하는 단계 도중, 예를 들어 금속 또는 금속산화물로 구성되는 나노소재의 제조가 이루어지는 상태에 기능성 물질, 예를 들어, 유기물 또는 전이금속 물질을 코팅 재료 물질로 첨가함으로써, 나노소재의 표면을 기능화하여 그 특성을 높이거나, 응집방지, 분산성 개선 및 표면 산화의 해결을 위한 기능성 나노소재를 생산하는 방법이다.The in-situ method of the present invention is a functional material, for example, an organic material or a transition metal, during the production of the nanomaterial, for example, a metal or a metal oxide, during the step of producing the nanomaterial using a thermal plasma. By adding the material to the coating material material, the surface of the nanomaterial is functionalized to improve its properties, or to produce functional nanomaterials for preventing aggregation, improving dispersibility and solving surface oxidation.
In-situ 방법은 나노소재 제조 후 별도로 유기물을 코팅하는 방법과 비교하여 다음과 같은 장점을 가진다.In-situ method has the following advantages compared to the method of coating the organic material separately after manufacturing the nano-material.
(i) 나노소재 합성과 나노소재 코팅을 열플라즈마 장치에서 In-situ 로 진행하기 때문에 공정 제조비용이 낮고, 공정시간이 단축되며, 공정 단계를 단순화할 수 있다. 종래의, 별도로 코팅하는 공정은 나노소재 합성 장비, 나노소재 코팅 장비를 별도로 구축해야 하므로 공정 제조비용이 높고, 공정시간이 길며, 공정 단계가 매우 복잡한 단점이 있다.(i) Nanomaterial synthesis and nanomaterial coating are carried out in-situ in a thermal plasma device, resulting in lower process manufacturing costs, shorter process times, and simplified process steps. Conventional coating process has a disadvantage in that the process manufacturing cost is high, the process time is long, and the process step is very complicated because the separate coating process to build a nanomaterial synthesis equipment, nanomaterial coating equipment separately.
(ii) 별도로 코팅되는 경우에 비하여 속도가 빠르고 친환경적, 경제적이다.(ii) Faster, more environmentally friendly and economical than when coated separately.
(iii) 열플라즈마 장치 안에서 나노소재 합성과 동시에 코팅이 이루어지므로 대기 중의 노출 없이 산화 방지막이 형성되고, 유기물, 전이금속 등의 코팅막의 형성으로 합성된 나노소재의 특수한 기능성이 부여된다.(iii) Since the coating is performed simultaneously with the nanomaterial synthesis in the thermal plasma apparatus, an anti-oxidation film is formed without exposure to the atmosphere, and the special functionality of the synthesized nanomaterial is given by the formation of a coating film of an organic material or a transition metal.
(iv) 또한, 동시에 코팅된 표면은 빠른 시간 내에 나노소재의 합성 및 코팅이 일어나기 때문에 매우 균일하고 결함이 없다. (iv) In addition, the simultaneously coated surface is very uniform and free of defects since the synthesis and coating of the nanomaterials takes place in a short time.
본 발명은 일 구체예로서 다음의 단계를 포함하는, 유기물 또는 전이금속 코팅된 나노소재의 in situ 제조방법을 제공할 수 있다:In one embodiment, the present invention may provide a method for preparing an in situ of an organic material or a transition metal-coated nanomaterial, comprising the following steps:
(a) 열플라즈마에 의해 나노물질을 기화시키는 단계,  (a) vaporizing the nanomaterial by thermal plasma,
(b) 가스 주입에 의해 급냉각시키는 단계, (b) quenching by gas injection,
(c) 유기물 또는 전이금속의 코팅물질을 투입하여 기화 또는 활성화시키는 단계,  (c) vaporizing or activating a coating material of an organic material or a transition metal,
(d) 나노물질 표면에 유기물 또는 전이금속 코팅층이 형성되는 단계, 및 (d) forming an organic or transition metal coating layer on the surface of the nanomaterial, and
(e) 유기물 또는 전이금속 코팅된 나노소재를 수득하는 단계 (e) obtaining an organic material or a transition metal coated nanomaterial
이하에 상기 방법을 보다 더 구체적인 공정으로 예를 들면서 설명하고자 한다. 이 때, 도 6의 플라즈마 장치를 이용하는 구성을 예를 들어 설명이 부연될 수 있다: The method will be described below by way of example in more specific steps. At this time, the description may be further described by taking the configuration using the plasma apparatus of FIG. 6 as an example:
①열플라즈마를 발생시키는 단계, ① step of generating thermal plasma,
②나노소재 원료물질(나노물질) 주입단계, ② Nanomaterial raw material (nanomaterial) injection step,
③열플라즈마에 의해 나노소재 원료물질(나노물질)이 기화단계, ③ Nanomaterial raw material (nanomaterial) vaporization stage by thermal plasma,
④플라즈마 통과 후, 핵성장을 하는 단계, ④ after passing the plasma, nuclear growth,
⑤일정크기로 제어하기 위한 급냉각 단계(대량가스 주입), ⑤ quenching step (bulk gas injection) to control to constant size,
⑥일정크기의 나노소재로 확정되는 단계, ⑥ the step of determining the nano material of a certain size,
⑦원하는 코팅물질을 기화 또는 활성화 가능한 온도범위에서 투입하는 단계,⑦ The desired coating material is put in the temperature range that can be vaporized or activated,
⑧원하는 코팅물질이 기화 또는 활성화되는 단계, ⑧ the desired coating material is vaporized or activated,
⑨나노소재 표면에 코팅이 되는 단계, 및⑨ coating the surface of nano material, and
⑩코팅된 물질을 회수하는 단계,회수 recovering the coated material,
우선, 열 플라즈마를 발생시킨다(①)First, heat plasma is generated (①)
열 플라즈마 발생시, 사용하는 가스는 그 기능에 따라, 시스(sheath) 가스, 센트럴(Central) 가스, 캐리어(carrier) 가스 등으로 분류될 수 있는데, 이러한 가스에는, 아르곤과 같은 불활성 기체, 수소, 질소 또는 이들을 혼합한 기체가 사용될 수 있다. 바람직하게는 아르곤 가스를 사용한다.When thermal plasma is generated, the gases used may be classified into sheath gas, central gas, carrier gas, and the like according to their function, and include such gases as inert gas such as argon, hydrogen and nitrogen. Or a gas mixed with these may be used. Preferably argon gas is used.
시스 가스는 벽체의 내부 표면에 기화된 입자가 부착되는 것을 방지하고 또한 벽면을 초고온의 플라즈마로부터 보호하기 위해 주입되는 것으로서, 30 ~ 150 lpm(liters per minute)의 아르곤 가스를 사용할 수 있고, 센트럴 가스는 고온의 열플라즈마를 생성하기 위하여 주입되는 가스로써, 30 ~ 120 lpm의 아르곤 가스를 사용할 수 있으며, 캐리어 가스는 혼합 분말을 플라즈마 반응기 내부로 공급하는 역할의 가스로써, 3 ~ 20 lpm의 아르곤 가스를 사용할 수 있다. The sheath gas is injected to prevent the vaporized particles from adhering to the inner surface of the wall and also to protect the wall from the ultra-high temperature plasma, and may use an argon gas of 30 to 150 lpm (liters per minute). Is a gas injected to generate a high temperature thermal plasma, argon gas of 30 ~ 120 lpm can be used, the carrier gas is a gas for supplying the mixed powder into the plasma reactor, argon gas of 3 ~ 20 lpm Can be used.
도 6에서 가스 공급기(1)는 플라즈마 반응부 및 냉각부(7)에서의 플라즈마 방전 및 플라즈마 토치 전극부, 냉각부에 공급되는 아르곤 가스 이외의 수소, 산소 가스 등의 각종 보조 가스를 공급하며, 각각 센트럴 가스 공급라인(4b)과 시스 가스 공급라인(4c) 및 캐리어 가스 공급라인(4a)을 통하여 플라즈마 발생 전극부(6)와 플라즈마 반응부 및 냉각부(7)의 분사노즐을 통해 내부로 공급한다. In FIG. 6, the gas supplier 1 supplies various auxiliary gases such as hydrogen and oxygen gas other than argon gas supplied to the plasma discharge and the plasma torch electrode unit and the cooling unit in the plasma reaction unit and the cooling unit 7, Through the central gas supply line 4b, the sheath gas supply line 4c, and the carrier gas supply line 4a, respectively, through the injection nozzles of the plasma generating electrode part 6, the plasma reaction part, and the cooling part 7, respectively. Supply.
열 플라즈마 발생 장치에 목적하는 나노소재 원료물질인 나노물질을 주입한다(②)Inject a nanomaterial, a nanomaterial of a desired material, into a thermal plasma generator (②)
상기 나노물질은 1-1000억 분의 1미터 범위인 물질로서, 본 발명에서는 상온에서 고체로 존재하는 금속 또는 금속 산화물; 또는 탄소계, 세라믹계 물질인 것이 바람직하며, 더욱 바람직하게는 원소주기율표상의 알칼리 금속, 알칼리 토금속, 란타넘족, 악티늄족, 전이금속, 전이후금속, 준금속류 중의 어느 하나로부터 선택하여 사용할 수 있다. 가장 바람직하게는, B, C, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Nb, Mo, Ag, In, Sn, Sb, Ta, W 또는 이들의 조합 등을 사용할 수 있다. The nanomaterial is a material in the range of 1 to 100 billion minutes, in the present invention, a metal or metal oxide present as a solid at room temperature; Or a carbon-based or ceramic-based material, and more preferably selected from any of alkali metals, alkaline earth metals, lanthanum groups, actinium groups, transition metals, post-transition metals, and metalloids on the periodic table of the elements. Most preferably, B, C, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Nb, Mo, Ag, In, Sn, Sb , Ta, W, or a combination thereof may be used.
이러한 나노물질은 사용하고자 하는 원료의 양만큼의 정량원료공급장치를 이용하여 제공할 수 있다. 도 6에서 원료 공급기(3)는 정량분체 공급기로서, 나노 물질을 보조 가스와 함께 플라즈마 반응부 및 냉각부(7)에 공급한다. 이때 원료 공급기(3)는 일정한 속도의 회전과 진동을 가하여 나노물질이 원활하게 공급될 수 있도록 구성하는 것이 바람직하다.Such nanomaterials can be provided by using a quantitative raw material supply device as much as the amount of raw materials to be used. In FIG. 6, the raw material feeder 3 is a quantitative powder feeder, and supplies the nanomaterial to the plasma reaction part and the cooling part 7 together with the auxiliary gas. At this time, the raw material feeder 3 is preferably configured to apply the rotation and vibration of a constant speed so that the nanomaterial can be smoothly supplied.
바람직한 구체예로서, 하기와 같은 나노물질을 이용할 수 있다. As a preferred embodiment, the following nanomaterial can be used.
Si는 리튬이차전지 음극소재로써, 나노 Si 제조시 표면산화에 의한 용량감소를 최소화하여 이론용량인 4,200 mA/을 최대한 구현할 수 있는데, 표면 코팅을 통하여 나노소재 개별입자가 코팅되어 분산이 최대화됨으로써, 리튬 이차전지 음극소재 제조시 나노 실리콘이 한곳에 뭉쳐서 발생하는 충·방전시의 팽창에 의한 배터리의 손상을 최소화할 수 있다. 또한, 전기전자 전극용 전도성 잉크 재료인 나노 Cu, Sn, Ag 등의 표면 산화억제를 통해 전기전도도 향상 및 분산성 개선을 가져올 수 있는데 이때, 전도성 잉크에 사용되는 분산 용매와 동일한 성분으로 코팅하는 것이 좋다.Si is a lithium secondary battery anode material, can minimize the reduction of capacity due to surface oxidation when manufacturing nano-Si to achieve the maximum theoretical capacity of 4,200 mA /, by coating the nanomaterial individual particles through the surface coating to maximize the dispersion, When manufacturing a lithium secondary battery anode material, it is possible to minimize damage to the battery due to expansion during charging and discharging caused by agglomeration of nano silicon in one place. In addition, it is possible to bring about improved electrical conductivity and dispersibility through surface oxidation inhibition of nano Cu, Sn, Ag, and the like, which are conductive ink materials for electric and electronic electrodes. In this case, coating with the same component as the dispersion solvent used in the conductive ink good.
또한, 본 발명의 나노소재 제조에 자성 나노소재용 물질을 이용할 수도 있다. In addition, it is also possible to use a material for magnetic nanomaterial in the production of the nanomaterial of the present invention.
내부에 산화철 나노입자가 분산되어 있는 자성 고분자 입자는, 예를 들어, Sr-페라이트, Br-페라이트 등의 페라이트 나노소재(SrFe12O19, BaFexOx 등)를 포함한다. The magnetic polymer particles in which iron oxide nanoparticles are dispersed therein include, for example, ferrite nanomaterials (SrFe 12 O 19 , BaFe x O x, etc.) such as Sr-ferrite and Br-ferrite.
상기 자성 고분자 입자는 다양한 방법으로 제조될 수 있는데 가장 간단한 방법은 초상자성을 갖는 산화철 나노입자를 고분자로 캡슐화 하는것이다. Ferrofluid와 같이 안정화된 산화철 나노입자의 존재 하에 단량체를 유화중합시키면 산화철 나노입자가 캡슐화된 자성 고분자 입자를 얻을 수 있다. 나노 크기의 ferrite 제조법에는 hydrothermal, glicinenitrate, citric acid, sol-gel법 등을 이용할 수 있고, 이는 공지 기술을 참조할 수 있다[M. Serkol, Y. Koseoglu, A. Batkal, H. Kavas, and A. C. Basa- ran, J. Magn. Magn. Mater. 321, 157 (2009); S. Hajarpour, A. H. Raouf, and Kh. Gheisari, J. Magn. Magn. Mater. 363, 21 (2014); A. Thakur, R. R. Singh, and P. R. Barman, J. Magn. Magn. Mater. 326, 35 (2013); H. Anwar and A. Masqsood, J. Magn. Magn. Mater. 333, 46(2013)].The magnetic polymer particles may be prepared by various methods. The simplest method is to encapsulate iron oxide nanoparticles having superparamagnetism into a polymer. Emulsifying and polymerizing the monomer in the presence of stabilized iron oxide nanoparticles such as ferrofluid can obtain magnetic polymer particles in which the iron oxide nanoparticles are encapsulated. Hydrothermal, glicinenitrate, citric acid, sol-gel, etc. may be used for nano-sized ferrite preparation, which may be referred to known techniques [M. Serkol, Y. Koseoglu, A. Batkal, H. Kavas, and A. C. Basaran, J. Magn. Magn. Mater. 321, 157 (2009); S. Hajarpour, A. H. Raouf, and Kh. Gheisari, J. Magn. Magn. Mater. 363, 21 (2014); A. Thakur, R. R. Singh, and P. R. Barman, J. Magn. Magn. Mater. 326, 35 (2013); H. Anwar and A. Masqsood, J. Magn. Magn. Mater. 333, 46 (2013)].
상기 나노 자성물질(Sr-페라이트, Br-페라이트)은 아닐린, 도파민 등의 유기물 코팅에 의해 분산성 개선 및 배향 특성이 향상될 수 있다. 자석을 만드는 과정 중 소성과정에서 자성소재의 접합면에서 핵성장에 의한 grain boundary 에서의 역자구가 쉽게 생성되어 보자력이 이론값의 20% 정도로 낮아지는데, 표면에 이러한 유기물을 도핑함으로써 이를 방지할 수 있기 때문이다. 또한, 자성체의 포화 자화의 개선을 위해 포화 자화값이 큰 다른 종류의 페라이트나, Co, Ni, Mn, Ti 등의 금속을 코팅한 Core-Shell 구조의 다종 금속 헥사페라이트 나노입자 또는 질소가 도핑된 금속 헥사페라이트 나노입자를 제조하여 자성의 특성을 향상시킬 수도 있다.The nano-magnetic material (Sr-ferrite, Br-ferrite) may be improved dispersibility and orientation properties by coating the organic material, such as aniline, dopamine. In the process of making the magnet, in the process of firing, inverted spheres at the grain boundary due to nuclear growth are easily generated at the joint surface of the magnetic material, and the coercive force is lowered to about 20% of the theoretical value. Because there is. In addition, in order to improve the saturation magnetization of the magnetic material, other types of ferrites having a large saturation magnetization value, or core-shell structured hexaferrite nanoparticles having a metal such as Co, Ni, Mn, Ti, or nitrogen doped with nitrogen Metal hexaferrite nanoparticles may be prepared to improve magnetic properties.
또한, 본 발명의 나노소재는, 탄소계 물질(예를 들어 그래핀, 흑연 등)에 나노금속이 결정화되어 있는 구조의 나노금속-그래핀 융합체 형태를 이용할 수도 있다. 이러한 나노금속-그래핀 융합체에 관한 구체적인 내용은 한국특허 10-1330227를 참조할 수 있다. In addition, the nanomaterial of the present invention may use a nanometal-graphene fusion form in which a nanometal is crystallized in a carbon-based material (eg, graphene, graphite, etc.). For details regarding such a nanometal-graphene fusion, reference may be made to Korean Patent 10-1330227.
상기 나노금속에 전이금속 중 저융점 금속(Sn, Ag, Al 등)을 코팅시킴으로써 특수 기능성을 부여할 수 있다.By coating a low melting metal (Sn, Ag, Al, etc.) of the transition metal to the nanometal can be given a special functionality.
다음으로, 열 플라즈마를 이용하여 상기 주입된 나노물질을 기화시킨다(③). Next, the injected nanomaterials are vaporized using thermal plasma (③).
상기 열플라즈마(thermal plasma)는 직류 아크나 고주파 유도결합 방전을 이용하는 플라즈마 토치에서 발생시킨 전자, 이온, 원자와 분자로 구성된 이온화 기체로, 수천에서 수만 K에 이르는 초고온과 높은 활성을 가진 고속 제트이다. The thermal plasma is an ionization gas composed of electrons, ions, atoms, and molecules generated by a plasma torch using a direct current arc or a high frequency inductively coupled discharge, and is a high-temperature jet having a high temperature and high activity ranging from thousands to tens of thousands of K. .
따라서 고온의 플라즈마를 원활히 발생시키기 위하여, 상기 플라즈마 장치의 전원공급장치로 10 내지 70 kW의 전력을 공급하며 전기에너지에 의해 아크가 형성되고 열플라즈마 발생기체로 사용된 아르곤 가스에 의하여 약 10,000K의 초고온 플라즈마가 생성된다. Therefore, in order to smoothly generate a high temperature plasma, the power supply of the plasma apparatus supplies power of 10 to 70 kW, and an arc is formed by electric energy and about 10,000 K is generated by argon gas used as a thermal plasma generating gas. Ultra high temperature plasma is generated.
상기와 같이 10 내지 70 kW의 전력을 유지한 상태로 아르곤 가스를 발생가스로 하여 발생된 초고온의 열플라즈마는 열처리방식이나 연소방식에 의해 발생된 열플라즈마보다 높은 온도에서 발생되는 효과가 있다As described above, the ultra high temperature thermal plasma generated by argon gas as the generating gas while maintaining the power of 10 to 70 kW has an effect that is generated at a higher temperature than the thermal plasma generated by the heat treatment method or the combustion method.
이러한 초고온의 열플라즈마에 의해 기화된 원료는 플라즈마 영역을 지나면서 각 물질의 고유 핵 형성 온도 범위에서 핵을 형성하게 되고 형성된 핵을 시드로 입자가 성장하여 나노소재로 결정화된다(④). The raw material vaporized by the ultra-high temperature thermal plasma forms a nucleus in the intrinsic nucleation temperature range of each material as it passes through the plasma region, and particles are grown from the nucleus formed into seeds to crystallize into nanomaterials (④).
플라즈마 고온영역에 투입되는 유기물, 전이금속 등의 코팅 물질은 순식간에 기화 상태가 되고, 흐름(flow)을 가지고 움직이는 나노소재 표면에 흡착되어 코팅이 이루어지게 되는데, 이때, 코어-쉘 구조를 형성하게 된다.Coating materials such as organic materials and transition metals, which are injected into the plasma high temperature region, are rapidly vaporized and adsorbed onto the surface of the moving nanomaterial with a flow to form a coating, which forms a core-shell structure. do.
그리고 급냉각시킴으로써 성장하는 나노물질에 대한 크기를 제어한다(⑤ 및 ⑥).And by quenching to control the size of the growing nanomaterials (⑤ and ⑥).
목적하는 크기의 나노소재가 형성되면, 퀜칭 가스에 의해 응축 또는 급냉시킴으로써 나노소재의 성장을 억제 시키고, 10 ~ 150nm의 범위로 일정 크기의 나노소재로 확정한다. 즉, 일정 크기로 성장한 나노소재는 진공 펌프(70)나 컴프레서에 의해 이송되고, 플라즈마 반응부 및 냉각부(7)와 연결되어 있는 사이클론부(30)를 지나면서 온도가 하강되고, 냉각가스(퀜칭 가스)로는 2 내지 4개의 다른 위치(높이)의 그라파이트 노즐을 통해 각각 0 ~ 200 lpm 의 아르곤 가스가 주입될 수 있다. When the nanomaterial of the desired size is formed, the growth of the nanomaterial is suppressed by condensation or quenching by the quenching gas, and is determined as a nanomaterial having a predetermined size in the range of 10 to 150 nm. That is, the nanomaterial grown to a predetermined size is transferred by the vacuum pump 70 or the compressor, and the temperature is lowered while passing through the cyclone unit 30 connected to the plasma reaction unit and the cooling unit 7, and the cooling gas ( As the quenching gas), argon gas of 0 to 200 lpm may be injected through graphite nozzles of 2 to 4 different positions (heights), respectively.
그리고, 상기 나노소재의 표면을 기능화하기 위한 코팅물질 투입하여 기화 또는 활성화시킨다(⑦ 및 ⑧)Then, by coating the coating material for functionalizing the surface of the nanomaterial to be vaporized or activated (⑦ and ⑧)
이때, 사용될 수 있는 코팅물질은 목적하는 기능에 따라 당업자가 적절하게 선택할 수 있음을 자명하고, 바람직하게는 전이금속(Co, Ni, Mn, Ti 등), 유기물 (ammonia, dopamine, aniline, benzene 등) 등을 이용할 수 있다. 이때, 선택된 코팅물질이 기화 또는 활성화 가능한 온도 범위에서 투입된다. 즉, 열 플라즈마 전체 시스템의 온도 프로파일을 확인하여 코팅물질의 도입부를 결정할 수 있다(도 2)At this time, it is apparent that the coating material that can be used can be appropriately selected by those skilled in the art according to the desired function, preferably transition metals (Co, Ni, Mn, Ti, etc.), organic matter (ammonia, dopamine, aniline, benzene, etc.) ) And the like can be used. At this time, the selected coating material is added in the temperature range that can be vaporized or activated. That is, the introduction of the coating material may be determined by checking the temperature profile of the entire thermal plasma system (FIG. 2).
바람직한 예로서, 벤젠(benzene), 아닐린(aniline), 도파민(dopamine), 페놀(phenol), 벤질아민(benzylamine), 펜에틸아민(phenethylamine), 피로카테콜(pyrocatechol), 2-하이드록시피리딘(hydroxypyridine), 3-하이드록시피리딘(hydroxypyridine), 4-하이드록시피리딘(hydroxypyridine), 안트라센(anthracene), 나프탈렌(naphthalene), 2-나프톨(naphthol), 9-안트라세놀(anthracenol), 2-안트라세놀(anthracenol), 및 1-안트라세놀(anthracenol)로 구성된 군에서 선택되는 1이상의 화합물을 이용할 수 있다.As a preferred example, benzene, aniline, dopamine, phenol, benzylamine, phenethylamine, pyrocatechol, 2-hydroxypyridine hydroxypyridine, 3-hydroxypyridine, 4-hydroxypyridine, anthracene, naphthalene, naphthalene, 2-naphthol, 9-anthracenol, 2-anthracenol (anthracenol), and one or more compounds selected from the group consisting of 1-anthracenol can be used.
본 발명의 일 실시예에서 사용한 "아닐린(aniline)"은 C6H5NH2로, 녹는점이 -6.3 인 상온에서 액상상태를 유지하여 기상상태로 공급이 용이한 장점이 있다."Aniline" (aniline) used in one embodiment of the present invention is C 6 H 5 NH 2 , the melting point is -6.3 by maintaining the liquid state at room temperature has the advantage of easy supply to the gaseous state.
[아닐린] [aniline]
Figure PCTKR2015008923-appb-I000001
Figure PCTKR2015008923-appb-I000002
Figure PCTKR2015008923-appb-I000001
Figure PCTKR2015008923-appb-I000002
아닐린은 상업적으로 니트로벤젠을 촉매하에서 수소화 반응시키거나 클로로벤젠과 암모니아를 반응시켜서, 또는 산 수용액에서 철을 촉매로 하여 니트로벤젠을 환원하여 얻을 수 있다. 1차 방향족 아민인 아닐린은 약염기이며, 무기산과 반응하여 염을 형성한다. 본 발명의 일 실시예에서는 상기 아닐린을 출발 물질로 사용하였다.Aniline can be obtained by commercially hydrogenating nitrobenzene under a catalyst, by reacting chlorobenzene and ammonia, or by reducing nitrobenzene with an iron catalyst in an aqueous acid solution. Aniline, a primary aromatic amine, is a weak base and reacts with inorganic acids to form salts. In one embodiment of the present invention, the aniline was used as a starting material.
또한, 아닐린 대신 도파민(dopamine)을 코팅물질로 사용할 수 있다.In addition, dopamine may be used as a coating instead of aniline.
[도파민] [Dopamine]
Figure PCTKR2015008923-appb-I000003
Figure PCTKR2015008923-appb-I000003
상기 도파민은 카테콜과 아민 작용기를 가지는 분자량 153(Da)의 단분자 물질인데(C8H11NO2)이다.The dopamine is a monomolecular substance having a molecular weight of 153 (Da) having a catechol and an amine functional group (C 8 H 11 NO 2 ).
이 외에도 상기 설명한 다른 카테콜아민 전구체 물질들을 적절하게 선택하여 사용할 수 있다. 예를 들어, 벤젠링에 하이드록실 작용기(-OH)가 붙어있는 피로카테콜(pyrocatechol), 벤젠링에 각각 1개와 2개의 메틸렌 브릿지(methylene bridge)와 1개의 아민기가 붙어있는 벤질아민(benzylamine), 펜에틸아민(phenethylamine), 2개의 하이드록실 작용기가 승화성이 있는 나프탈렌에 붙어있는 구조인 2,3-디하이드록시나프탈렌(dihydroxynaphthalene), 나프탈렌에 아민작용기가 붙어있는 1-나프틸메틸아민(naphthylmethylamine)과 같은 코팅물질을 사용할 수도 있다. 또한, 벤젠, 사이클로헥산과 기본유닛에 플라즈마 화학을 조절하여 각각 수산화(hydroxylation)반응이나 아민화(amination) 반응 등을 유도하여 코팅막을 합성할 수 있다. In addition, other catecholamine precursor materials described above may be appropriately selected and used. For example, pyrocatechol with hydroxyl functional group (-OH) attached to the benzene ring, and benzylamine with one and two methylene bridges and one amine group attached to the benzene ring, respectively. , Phenethylamine, 2,3-dihydroxynaphthalene, a structure in which two hydroxyl functional groups are attached to a sublimable naphthalene, and 1-naphthylmethylamine, in which an amine functional group is attached to naphthalene ( Coatings such as naphthylmethylamine can also be used. In addition, the coating film may be synthesized by inducing a hydroxylation reaction or an amination reaction by controlling plasma chemistry on benzene, cyclohexane and the base unit, respectively.
이러한 코팅물질의 기화 또는 활성화에 의해 앞서 설명한 나노소재의 표면에 코팅층을 형성시킬 수 있다. 즉, 유기물(필요에 따라 저융점의 금속류)을 나노소재에 코팅시킴으로써 본 발명의 나노소재를 제조한다.By coating or evaporating the coating material, a coating layer may be formed on the surface of the nanomaterial described above. That is, the nanomaterial of the present invention is prepared by coating an organic material (metals having a low melting point, if necessary) on the nanomaterial.
이때, 본 발명의 바람직한 일 구체예로서, 2MHz의 고주파 RF(Radio Frequench), 20kW ~ 60kW 파워 조건의, 100 ~ 500 Torr 압력하에서 1/100 sec ~ 1/1,000 sec 동안 나노소재화 및 코팅 공정반응을 수행한다. At this time, as a preferred embodiment of the present invention, the nano-materialization and coating process reaction for 1/100 sec to 1 / 1,000 sec at 100 MHz to 500 Torr pressure, high frequency RF (Radio Frequench) of 2MHz, 20kW ~ 60kW power conditions Do this.
상기 유기물 코팅층 두께는 나노소재의 종류에 따라 당업자가 적절하게 조절할 수 있음은 자명하지만, 바람직하게는 10 ~ 50 nm 두께로 코팅한다. 본 발명의 일 실시예에서는 나노소재의 표면에 약 30 nm로 코팅하였다.It is apparent that the thickness of the organic coating layer can be appropriately adjusted by those skilled in the art according to the type of nanomaterial, but the coating is preferably performed in a thickness of 10 to 50 nm. In an embodiment of the present invention, the surface of the nanomaterial was coated with about 30 nm.
이상 설명한 바와 같은 공정에 의해 나노소재 표면에 목적하는 유기물 또는 전이금속의 기능성 물질이 코팅되고(⑨), 마지막으로 이렇게 기능성 물질-코팅된 나노소재를 회수한다(⑩)By the process described above, the functional material of the desired organic material or transition metal is coated on the surface of the nanomaterial (⑨), and finally, the functional material-coated nanomaterial is recovered (⑩).
도 6의 콜렉터(50)에서는 그 내부에 설치된 스테인레스 재질의 금속필터(55)에 생성된 나노소재가 흡착되고, 플라즈마 과정에서 생성된 각종 불산물 가스들은 진공 펌프(70)를 통해 외부 관을 통해 최종 배출된다. 이때 배출되는 가스는 정제하여, 부스터를 이용하여 가스탱크에 가압저장되어 재사용될 수 있다. 일정량의 나노소재가 콜렉터(50) 내부의 필터(55)에 흡착되면 필터 내부에서 블로우 백(blow back) 가스를 이용하여 나노소재를 탈착시켜 콜렉터(50)의 하단에 마련된 나노소재 수거부(60)로 회수한다. 이때, 나노소재는 공기와의 접촉에 의한 반응을 피하기 위하여 글로브 박스 내에서 회수할 수 있다.In the collector 50 of FIG. 6, the nanomaterial generated in the metal filter 55 made of stainless material is adsorbed, and various fluorine gas generated in the plasma process is transferred through an external tube through the vacuum pump 70. Final discharge. In this case, the discharged gas may be purified and stored under pressure in the gas tank using a booster to be reused. When a certain amount of nanomaterial is adsorbed to the filter 55 inside the collector 50, the nanomaterial collecting unit 60 provided at the lower end of the collector 50 by desorbing the nanomaterial using a blowback gas inside the filter. ). In this case, the nanomaterial may be recovered in the glove box in order to avoid a reaction by contact with air.
나노소재의 용도Use of Nano Material
본 발명은 또 다른 관점에서, 상기 설명한 본 발명의 방법에 의해 수득한 유기물 또는 전이금속의 기능성 물질이 코팅된 나노소재의 다양한 용도를 포함한다.In another aspect, the present invention encompasses various uses of nanomaterials coated with functional materials of organics or transition metals obtained by the process of the invention described above.
골프클럽에서 가전의 대표격인 디스플레이에 이르기까지 나노소재를 적용하는 제품시장은 매우 다양하다. 현재 전자제품, 자동차, 가정/건물세정 분야의 시장의 성장이 가장 두드러지고 있으며, 식료품과 개인미용용품 분야의 시장이 점차 확대될 것으로 전망되고 있다. 가전제품이나 생필품 분야에서 새로운 기능에 대한 수요증대로 인해 일반소비재에 적용되는 나노소재 시장은 2010년 17억불 규모에서 2015년까지 53억불 규모로 성장할 것으로 기대되고 있다.The market for products that apply nanomaterials from golf clubs to displays representing consumer electronics is very diverse. Currently, the market for electronics, automobiles, home / building cleaning is the most prominent, and the market for foodstuffs and personal care products is expected to expand gradually. The demand for new functions in the home appliance and daily necessities sectors is expected to grow from $ 1.7 billion in 2010 to $ 5.3 billion by 2015.
다양한 전자 및 마이크로전자 응용분야에서 사용될 수 있다. 예를 들어, 인쇄가능 디스플레이, RFID, 광전지, 컴퓨터 메모리 등 기타 인쇄법에 의해 제조될 수 있는 전자부품; 디스플레이, LED 등의 조명기기, 컴퓨터 부품 등의 전자기기의 수명연장을 위한 방열소재; 차세대 전자소자, 태양전지, 연료전지 등 전기화학 장치를 포함하는 다양한 분야에서 사용이 기대된다. 상기 "전기화학 장치"는 에너지 저장 장치, 에너지 변환 장치, 센서 및 전기 에너지를 화학 에너지로 변환하거나, 화학 에너지를 전기 에너지로 변환하는 그 밖의 다른 장치를 포함한다. 본 명세서에서 사용된 용어 "에너지 저장 장치"는 배터리 및 수퍼 커패시터(Super capacitor)를 포함한다. It can be used in a variety of electronic and microelectronic applications. Electronic components that can be manufactured by, for example, printing methods such as printable displays, RFID, photovoltaic cells, computer memories, etc .; Heat dissipation materials for extending the life of electronic devices such as displays, lighting equipment such as LEDs, and computer parts; It is expected to be used in various fields including electrochemical devices such as next-generation electronic devices, solar cells and fuel cells. The "electrochemical device" includes an energy storage device, an energy conversion device, a sensor, and other devices for converting electrical energy into chemical energy or converting chemical energy into electrical energy. The term "energy storage device" as used herein includes a battery and a super capacitor.
고분자 소재를 도입한 초고용량 커패시터와 유기 태양전지는 고분자 재료 특유의 유연성과 구조 제어 용이성을 바탕으로 청정 에너지 저장 및 변환 매체로서 활용 가치가 우수하며, 유기 발광 소자는 향후 구부리고 접고 늘릴 수 있는 단계로의 진전을 통해 새로운 유형의 디스플레이 및 조명산업 외에도 의류, 건물 등에 이르기까지 폭넓게 적용될 것으로 예상된다.Ultracapacitors and organic solar cells that use polymer materials are highly useful as clean energy storage and conversion media based on their flexibility and structure control, and organic light-emitting devices can be bent, folded and expanded in the future. The company's progress is expected to cover a wide range of applications, from clothing to buildings to new types of display and lighting industries.
이처럼, 본 발명은 우수한 특성을 가지는 유기물 또는 전이금속의 기능성 물질이 코팅된 나노소재는 다양한 분야에서 유용하게 사용될 수 있다.As such, the present invention may be useful in various fields of the nanomaterial coated with a functional material of an organic material or a transition metal having excellent properties.
실시예Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
실시예 1: 아닐린-코팅된 니켈(Ni) 나노소재Example 1: Aniline-Coated Nickel (Ni) Nanomaterials
1-1. 제조1-1. Produce
니켈(Ni)을 원료 분말로, 아닐린을 코팅 물질로 준비하고, 본 발명에 따른 제조공정이 처리되기 위한 고주파 열플라즈마 장치에는 센트럴 가스와 시스 가스로서 각각 30 lpm 및 50 lpm의 아르곤 가스를 주입하고, 퀜칭 가스는 주입하지 않고 실험을 실시하였다. Ni (Ni) as a raw material powder, aniline is prepared as a coating material, and a high frequency thermal plasma apparatus for processing the manufacturing process according to the present invention is injected with argon gas of 30 lpm and 50 lpm as a central gas and a cis gas, respectively. , The experiment was conducted without injecting quenching gas.
이 때, 제조 공정 조건은 다음과 같이 설계하였다:At this time, the manufacturing process conditions were designed as follows:
- RF 열플라즈마 파워 25kW, RF thermal plasma power 25kW,
- 플라즈마 가스(Ar central gas 30 lpm, sheath gas 50 lpm)Plasma gas (Ar central gas 30 lpm, sheath gas 50 lpm)
- 공정압력 350 Torr-Process pressure 350 Torr
1-2. FE-SEM 이미지 측정 1-2. FE-SEM image measurement
도 3은 상기 실시예 1-1에 의해 제조된 아닐린-코팅된 니켈(Ni) 나노소재(나노 복합체)의 FE-SEM 이미지 측정 결과를 도시한 것이다. Figure 3 shows the FE-SEM image measurement results of the aniline-coated nickel (Ni) nanomaterial (nano composite) prepared in Example 1-1.
FE-SEM 이미지 측정 결과, 니켈의 표면에 아닐린이 잘 코팅되어 있음을 알 수 있었으며, 코팅층의 두께가 22.6nm을 형성하고 있음을 확인하였다.As a result of FE-SEM image measurement, it was found that aniline was well coated on the surface of nickel, and it was confirmed that the thickness of the coating layer formed 22.6 nm.
1-3. FT-IR1-3. FT-IR
적외선 분광광도계를 이용하여 측정한 값을 도 4에 도시하였다.The values measured using an infrared spectrophotometer are shown in FIG. 4.
실시예 2: 아닐린-코팅된 SrFe12O19 나노소재Example 2: Aniline-Coated SrFe 12 O 19 Nano material
2-1. 제조2-1. Produce
상기 실시예 1-1과 유사한 방법으로 아닐린-코팅된 SrFe12O19 나노소재를 제조하였다.Aniline-coated SrFe 12 O 19 in a similar manner to Example 1-1 above Nano material was prepared.
이 때, 제조 공정 조건은 다음과 같이 설계하였다:At this time, the manufacturing process conditions were designed as follows:
- RF 열플라즈마 파워 60kW, RF thermal plasma power 60 kW,
- 플라즈마 가스(Ar central gas 30 lpm, sheath gas 120 lpm)Plasma gas (Ar central gas 30 lpm, sheath gas 120 lpm)
- 퀜칭가스 (Ar 150 lpm) Quenching gas (Ar 150 lpm)
- 공정압력은 500 Torr -Process pressure is 500 Torr
2-2. FE-SEM 이미지 측정 2-2. FE-SEM image measurement
도 5는 상기 실시예 2-1에 의해 제조된 아닐린-코팅된 SrFe12O19 나노소재의 FE-SEM 이미지 측정 결과를 도시한 것이다. 5 is aniline-coated SrFe 12 O 19 prepared by Example 2-1 FE-SEM image measurement results of nanomaterials are shown.
FE-SEM 이미지 측정 결과, 자성 소재 SrFe12O19 의 표면에 아닐린이 잘 코팅되어 있음을 알 수 있었으며, 코팅층의 두께가 30.6nm를 형성하고 있음을 확인하였다. FE-SEM image measurement results, magnetic material SrFe 12 O 19 It was found that the surface of the aniline was well coated, it was confirmed that the thickness of the coating layer to form 30.6nm.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 이는 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 아래에 기재된 특허청구범위에 의해서만 파악되어야 하고, 이의 균등 또는 등가적 변형 모두는 본 발명 사상의 범주에 속한다고 할 것이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited to the above embodiments, which can be modified by those skilled in the art to which the present invention pertains. And variations are possible. Therefore, the spirit of the present invention should be grasped only by the claims set out below, and all equivalent or equivalent modifications thereof will belong to the scope of the present invention.
"약"이라는 것은 참조 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이에 대해 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4, 3, 2 또는 1% 정도로 변하는 양, 수준, 값, 수, 빈도, 퍼센트, 치수, 크기, 양, 중량 또는 길이를 의미한다."About" means 30, 25, 20, 25, 10, 9, 8, 7, 6, 5, 4 for reference quantities, levels, values, numbers, frequencies, percentages, dimensions, sizes, quantities, weights, or lengths. , Amount, level, value, number, frequency, percentage, dimension, size, amount, weight or length, varying by about 3, 2 or 1%.
본 명세서를 통해, 문맥에서 달리 필요하지 않으면, "포함하다" 및 "포함하는"이란 말은 제시된 단계 또는 원소, 또는 단계 또는 원소들의 군을 포함하나, 임의의 다른 단계 또는 원소, 또는 단계 또는 원소들의 군이 배제되지는 않음을 내포하는 것으로 이해하여야 한다.Throughout this specification, the terms “comprises” and “comprising”, unless otherwise indicated in the context, include a given step or element, or group of steps or elements, but any other step or element, or step or element It should be understood that this group is not excluded.

Claims (15)

  1. 다음을 포함하는, 유기물 또는 전이금속 코팅된 나노소재의 in situ 제조방법:In situ manufacturing method of organic material or transition metal coated nanomaterial, comprising:
    (a) 열 플라즈마에 의해 나노물질을 기화시키는 단계, (a) vaporizing the nanomaterial by thermal plasma,
    (b) 가스 주입에 의해 급냉각시키는 단계,(b) quenching by gas injection,
    (c) 유기물 또는 전이금속의 코팅물질을 투입하여 기화 또는 활성화시키는 단계, (c) vaporizing or activating a coating material of an organic material or a transition metal,
    (d) 나노물질 표면에 유기물 또는 전이금속 코팅층이 형성되는 단계, 및(d) forming an organic or transition metal coating layer on the surface of the nanomaterial, and
    (e) 유기물 또는 전이금속 코팅된 나노소재를 수득하는 단계.(e) obtaining an organic material or a transition metal coated nanomaterial.
  2. 제1항에 있어서, (a)단계에서, The method of claim 1, wherein in step (a),
    열 플라즈마 발생시 사용하는 가스는 아르곤 가스인 것을 특징으로 하는 방법.The gas used in the generation of thermal plasma is an argon gas.
  3. 제1항에 있어서, (a)단계에서, The method of claim 1, wherein in step (a),
    상기 나노물질은 상온에서 고체로 존재하는 금속 또는 금속 산화물; 자성 나노물질; 또는 탄소계 물질에 나노금속이 결정화되어 있는 구조의 나노금속-그래핀 융합체인 것을 특징으로 하는 방법.The nanomaterial is a metal or metal oxide present as a solid at room temperature; Magnetic nanomaterials; Or nanometal-graphene fusion having a structure in which nanometal is crystallized in a carbon-based material.
  4. 제3항에 있어서, 상기 금속 또는 금속 산화물은 B, C, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Nb, Mo, Ag, In, Sn, Sb, Ta, W 및 이들의 조합으로부터 구성된 군에서 선택되는 1종 이상의 물질인 것을 특징으로 하는 방법.The method of claim 3, wherein the metal or metal oxide is B, C, Mg, Al, Si, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, Y, Zr, Nb, Mo, At least one material selected from the group consisting of Ag, In, Sn, Sb, Ta, W and combinations thereof.
  5. 제3항에 있어서, 상기 자성 나노물질은 Sr-페라이트 또는 Br-페라이트인 것을 특징으로 하는 방법.The method of claim 3, wherein the magnetic nanomaterial is Sr-ferrite or Br-ferrite.
  6. 제1항에 있어서, 상기 (a)단계에 의해 나노물질이 핵 성장을 하는 것을 특징으로 하는 방법.The method of claim 1, wherein the nanomaterial is nuclear grown by the step (a).
  7. 제1항에 있어서, (b)단계에서, The method of claim 1, wherein in step (b),
    급냉각은 퀜칭(quenching) 가스의 주입에 의해 이루어지는 것을 특징으로 하는 방법.Quenching is accomplished by injection of a quenching gas.
  8. 제7항에 있어서, 상기 퀜칭 가스는 아르곤 가스인 것을 특징으로 하는 방법.8. The method of claim 7, wherein the quenching gas is an argon gas.
  9. 제1항에 있어서, (b)단계에서, The method of claim 1, wherein in step (b),
    상기 급냉각에 의해 나노물질의 크기가 10~150nm의 범위로 제어되는 것을 특징으로 하는 방법.The size of the nano-material is controlled by the rapid cooling in the range of 10 ~ 150nm.
  10. 제1항에 있어서, 상기 유기물은 벤젠(benzene), 아닐린(aniline), 도파민(dopamine), 페놀(phenol), 벤질아민(benzylamine), 펜에틸아민(phenethylamine), 피로카테콜(pyrocatechol), 2-하이드록시피리딘(hydroxypyridine), 3-하이드록시피리딘(hydroxypyridine), 4-하이드록시피리딘(hydroxypyridine), 안트라센(anthracene), 나프탈렌(naphthalene), 2-나프톨(naphthol), 9-안트라세놀(anthracenol), 2-안트라세놀(anthracenol), 및 1-안트라세놀(anthracenol)로 구성된 군에서 선택되는 1 이상의 화합물인 것을 특징으로 하는 방법.The method of claim 1, wherein the organic material is benzene, aniline, dopamine, phenol, benzylamine, phenethylamine, pyrocatechol, 2 -Hydroxypyridine, 3-hydroxypyridine, 4-hydroxypyridine, anthracene, naphthalene, 2-naphthol, 9-anthracenol At least one compound selected from the group consisting of 2-anthracenol, and 1-anthracenol.
  11. 제10항에 있어서, 상기 유기물은 벤젠(benzene), 아닐린(aniline), 또는 도파민(dopamine)인 것을 특징으로 하는 방법.The method of claim 10, wherein the organic material is benzene, aniline, or dopamine.
  12. 제11항에 있어서, 상기 유기물은 아닐린(aniline)인 것을 특징으로 하는 방법.The method of claim 11, wherein the organic material is aniline.
  13. 제1항에 있어서, (d)단계에서, The method of claim 1, wherein in step (d),
    유기물 또는 전이금속 코팅층 두께는 10 ~ 50 nm인 것을 특징으로 하는 방법.Organic or transition metal coating layer thickness is 10 to 50 nm method.
  14. 제13항에 있어서, 유기물 또는 전이금속 코팅층 두께는 20 ~ 40 nm인 것을 특징으로 하는 방법.The method of claim 13, wherein the organic or transition metal coating layer has a thickness of 20 to 40 nm.
  15. 제2항의 방법에 의해 제조된, 유기물 코팅된 나노소재로서, As the organic-coated nanomaterial prepared by the method of claim 2,
    유기물 또는 전이금속 코팅층 두께는 20 ~ 40 nm이고, Organic or transition metal coating layer thickness is 20-40 nm,
    상기 나노소재는 Ni 또는 SrFe12O19 이며, 유기물은 아닐린인 것을 특징으로 하는 나노소재.The nanomaterial is Ni or SrFe 12 O 19 And the organic substance is aniline Nano material.
PCT/KR2015/008923 2014-08-27 2015-08-26 Method for preparing in situ nanomaterial having functional material coating, and nanomaterial prepared by means of same WO2016032227A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140112289 2014-08-27
KR10-2014-0112289 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016032227A1 true WO2016032227A1 (en) 2016-03-03

Family

ID=55400045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008923 WO2016032227A1 (en) 2014-08-27 2015-08-26 Method for preparing in situ nanomaterial having functional material coating, and nanomaterial prepared by means of same

Country Status (2)

Country Link
KR (1) KR101716042B1 (en)
WO (1) WO2016032227A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102600019B1 (en) * 2016-05-19 2023-11-08 주식회사 아모그린텍 Method of preparing graphene-graphene fused material and method of preparing graphene-substrate composite using the same
KR102318114B1 (en) * 2017-04-20 2021-10-27 주식회사 아모그린텍 Manufacturing method of graphite composites
KR20190099837A (en) 2018-02-20 2019-08-28 강원대학교산학협력단 Carbon-nano metal composite with 3D structure and it preparation method
KR20190100084A (en) 2019-08-02 2019-08-28 강원대학교산학협력단 Carbon-nano metal composite with 3D structure and it preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060112546A (en) * 2005-04-27 2006-11-01 한국기계연구원 A production process of fe nano powder with silica coating by chemical vapor condensation
KR20090047300A (en) * 2007-11-07 2009-05-12 한국과학기술연구원 Dye-sensitived solar cell and fabrication method thereof
KR20100036777A (en) * 2008-09-30 2010-04-08 한국전력공사 Method of producting copper nanopowders by transferred arc plasma
CN102969082A (en) * 2012-11-09 2013-03-13 沈阳工业大学 Method for preparing Ag-coating-Ni composite nano powder conductive slurries

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100663780B1 (en) 2005-03-17 2007-01-02 한국원자력연구소 Method for coating of surface of nanoscale metal powder, composition for coating used therein and coated nanoscale metal powder prepared by the same
KR20080011259A (en) 2006-07-29 2008-02-01 주식회사 이넥트론 Plating method using plasma pretreating
KR100906619B1 (en) 2008-11-14 2009-07-10 한국에너지기술연구원 Heating device of metallic interconnect for solid oxide fuel cell and coating method of the interconnect using the same
KR101635835B1 (en) 2009-08-11 2016-07-05 한국세라믹기술원 Coating method with colloidal graphine oxides
KR101616908B1 (en) 2009-12-24 2016-05-02 재단법인 포항산업과학연구원 Dry process metal coating method with plasma technique
KR20110104200A (en) 2010-03-16 2011-09-22 한국에너지기술연구원 Manufacturing method of lcc ceramic interconnect for sofc using thermal plasma spray coating and the interconnect made by the same
KR101301967B1 (en) 2011-05-20 2013-08-30 한국에너지기술연구원 Plasma Nano-powder Synthesizing and Coating Device and Method of the same
KR101338550B1 (en) * 2011-12-27 2013-12-06 서울대학교산학협력단 Fabrication method of highly conductive silica/polyaniline core/shell nanoparticle thin films
KR101330230B1 (en) * 2013-02-05 2013-11-18 재단법인 철원플라즈마 산업기술연구원 A graphene-nano particle composite which nano particles are highy densified thereon
KR101413837B1 (en) * 2013-03-07 2014-07-01 한국과학기술원 Method for preparing 3 dimensional graphene using droplet and 3 dimensional graphene prepared by the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060112546A (en) * 2005-04-27 2006-11-01 한국기계연구원 A production process of fe nano powder with silica coating by chemical vapor condensation
KR20090047300A (en) * 2007-11-07 2009-05-12 한국과학기술연구원 Dye-sensitived solar cell and fabrication method thereof
KR20100036777A (en) * 2008-09-30 2010-04-08 한국전력공사 Method of producting copper nanopowders by transferred arc plasma
CN102969082A (en) * 2012-11-09 2013-03-13 沈阳工业大学 Method for preparing Ag-coating-Ni composite nano powder conductive slurries

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUAN, C. L. ET AL.: "Microwave adsorption of core-shell structure polyaniline/SrFe12O19 composites", JOURNAL OF MATERIALS SCIENCE, vol. 45, no. 13, 2010, pages 3470 - 3476 *

Also Published As

Publication number Publication date
KR101716042B1 (en) 2017-03-15
KR20160026735A (en) 2016-03-09

Similar Documents

Publication Publication Date Title
WO2016032227A1 (en) Method for preparing in situ nanomaterial having functional material coating, and nanomaterial prepared by means of same
Zhang et al. Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties
EP1991498B1 (en) Method for separating high aspect ratio molecular structures
KR100733331B1 (en) Method of making nano MPP powder using RF plasma combustion
US20060162495A1 (en) Nanostructured metal powder and method of fabricating the same
WO2015008988A1 (en) Supported catalyst, method for producing same, and secondary structure of carbon nanostructure manufactured using same
JP2010132543A (en) Method for producing and purifying carbon nanotube, carbon nanotube and carbon nanotube element
WO2007043520A1 (en) Composite structure
WO2012157834A1 (en) Method for manufacturing an alloy catalyst for a fuel cell using silica coating
JP3822806B2 (en) Mass production method of carbon nanocoils
Tartaj et al. From hollow to dense spheres: control of dipolar interactions by tailoring the architecture in colloidal aggregates of superparamagnetic iron oxide nanocrystals
Jin et al. Preparation of spherical silica powder by oxygen–acetylene flame spheroidization process
CN111687425B (en) Core-shell structure nano material and preparation method thereof
WO2019093660A2 (en) Method for manufacture of maghemite
KR101296112B1 (en) Synthetic apparatus for nanopowder
Zhao et al. Structural and photoluminescence properties of europium-doped titania nanofibers prepared by electrospinning method
CN1724466A (en) Process for synthesizing based si-based one-dimensional nano material
WO2020141649A1 (en) Method for mass synthesis of carbon nanotubes and carbon nanotubes synthesized thereby
KR101537216B1 (en) A making process of silicon powder Using Plasma Arc Discharge
Das et al. Catalyst free growth of MgO nanoribbons
JP5946179B2 (en) Ceramic film forming apparatus and method
Guo Induction plasma synthesis of nanomaterials
JP5431257B2 (en) Method for producing solid electrolyte thin film
Huo et al. Field emission and optical properties of ZnO nanowires grown directly on conducting brass substrates
de Souza et al. Plasma technology for nanostructures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834857

Country of ref document: EP

Kind code of ref document: A1