WO2016027776A1 - 接合構造体の製造方法および接合構造体 - Google Patents

接合構造体の製造方法および接合構造体 Download PDF

Info

Publication number
WO2016027776A1
WO2016027776A1 PCT/JP2015/073041 JP2015073041W WO2016027776A1 WO 2016027776 A1 WO2016027776 A1 WO 2016027776A1 JP 2015073041 W JP2015073041 W JP 2015073041W WO 2016027776 A1 WO2016027776 A1 WO 2016027776A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
perforated
manufacturing
diameter
joined
Prior art date
Application number
PCT/JP2015/073041
Other languages
English (en)
French (fr)
Inventor
和義 西川
彰朗 角谷
聡 廣野
博田 知之
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US15/327,658 priority Critical patent/US10471660B2/en
Priority to CN201580039992.1A priority patent/CN106536169A/zh
Priority to EP15834147.9A priority patent/EP3184283B1/en
Priority to KR1020177001688A priority patent/KR101889346B1/ko
Publication of WO2016027776A1 publication Critical patent/WO2016027776A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1661Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning repeatedly, e.g. quasi-simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0246Cutting or perforating, e.g. burning away by using a laser or using hot air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/1683Laser beams making use of an absorber or impact modifier coated on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • B29C66/73941General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset characterised by the materials of both parts being thermosets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74281Copper or alloys of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals

Definitions

  • the present invention relates to a method for manufacturing a bonded structure and a bonded structure.
  • Patent Document 1 a joining method for joining a first member and a second member made of different materials is known (see, for example, Patent Document 1).
  • Patent Document 1 discloses a bonding method in which a first member that is a resin material and a second member that is a metal material are bonded by a semiconductor laser.
  • the boundary surface of the second member is roughened by sandpaper or the like.
  • the semiconductor laser is absorbed at the boundary surface of the second member by irradiating the boundary surface of the first member and the second member with the semiconductor laser.
  • the first member in the vicinity of the boundary surface is melted, and the first member bites into the unevenness and is solidified.
  • the first member and the second member are joined.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a bonded structure and a bonded structure that can prevent the second member from being thermally deteriorated. Is to provide.
  • a method for manufacturing a joined structure according to the present invention is a method for producing a joined structure in which a first member and a second member are joined, and a perforated part having an opening is formed on the surface of the first member, and a perforated part. Forming a projecting portion projecting inwardly on the inner peripheral surface, a step of adjacently arranging the region where the perforated portion of the first member is formed and the second member, and perforating the first member from the second member side Irradiating the region where the portion is formed with a laser to fill the second member into the perforated portion of the first member and solidify the second member.
  • the irradiated joining laser is easily confined inside the perforated portion by the protruding portion, so that the energy of the joining laser can be efficiently converted into heat.
  • the energy of the laser for joining can be suppressed to the necessary minimum, it is possible to suppress the second member from being thermally deteriorated.
  • the perforated portion has a first diameter-expanded portion whose opening diameter increases from the surface side to the bottom portion in the depth direction, and an opening diameter from the surface side to the bottom portion in the depth direction. It may be formed so as to be continuous with the first reduced diameter portion, and the protruding portion may be disposed on the surface side.
  • the perforated portion has a second reduced diameter portion whose opening diameter decreases from the surface side to the bottom portion in the depth direction, and an opening diameter from the surface side to the bottom portion in the depth direction. It is formed so that the 2nd enlarged diameter part which becomes large, and the 3rd diameter-reduced part where opening diameter becomes small toward the bottom part from the surface side in the depth direction are formed, and it is in the position where the projection part entered the bottom side. It may be arranged.
  • the first member may be a metal, a thermoplastic resin, or a thermosetting resin.
  • the second member may be a resin that transmits laser.
  • the bonded structure according to the present invention is manufactured by any one of the above-described bonded structure manufacturing methods.
  • the irradiated joining laser is easily confined inside the perforated portion by the protruding portion, so that the energy of the joining laser can be efficiently converted into heat.
  • the energy of the laser for joining can be suppressed to the necessary minimum, it is possible to suppress the second member from being thermally deteriorated.
  • the second member can be prevented from being thermally deteriorated.
  • FIG. 1 It is a schematic diagram of the cross section of the joining structure body by 1st Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the joining structure of FIG. 1, Comprising: It is the schematic diagram which showed the state in which the perforated part was formed in the 1st member. It is a figure for demonstrating the manufacturing method of the joining structure of FIG. 1, Comprising: It is the schematic diagram which showed the state with which the laser for joining was irradiated from the 2nd member side. It is a schematic diagram of the cross section of the joining structure body by 2nd Embodiment of this invention. It is a figure for demonstrating the manufacturing method of the joining structure of FIG.
  • the joined structure 100 is obtained by joining a first member 10 and a second member 20 made of different materials.
  • a perforated part 11 having an opening is formed on the surface 13 of the first member 10, and a projecting part 12 projecting inward is formed on the inner peripheral surface of the perforated part 11.
  • the second member 20 is filled in the perforated part 11 of the first member 10 and solidified.
  • FIG. 1 is a diagram schematically showing an enlarged joining interface between the first member 10 and the second member 20, and a plurality of perforated portions 11 are actually provided. In FIG. Only shown.
  • the material of the first member 10 is a metal, a thermoplastic resin, or a thermosetting resin.
  • the material of the second member 20 is a resin that transmits laser, and is a thermoplastic resin or a thermosetting resin.
  • the transmittance of the second member 20 with respect to a laser irradiated at the time of joining described later is preferably 15% or more when the thickness is 3 mm.
  • the metal examples include iron metal, stainless steel metal, copper metal, aluminum metal, magnesium metal, and alloys thereof.
  • a metal molding may be sufficient and zinc die-casting, aluminum die-casting, powder metallurgy, etc. may be sufficient.
  • thermoplastic resin examples include PVC (polyvinyl chloride), PS (polystyrene), AS (acrylonitrile styrene), ABS (acrylonitrile butadiene styrene), PMMA (polymethyl methacrylate), PE (polyethylene), PP (Polypropylene), PC (polycarbonate), m-PPE (modified polyphenylene ether), PA6 (polyamide 6), PA66 (polyamide 66), POM (polyacetal), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PSF ( Polysulfone), PAR (polyarylate), PEI (polyetherimide), PPS (polyphenylene sulfide), PES (polyethersulfone), PEEK (polyetheretherketone), P I (polyamideimide), LCP (liquid crystal polymer), PVDC (polyvinylidene chloride), PTFE (polyteth
  • TPE thermoplastic elastomer
  • examples of TPE include TPO (olefin-based), TPS (styrene-based), TPEE (ester-based), TPU (urethane-based), TPA (nylon-based), And TPVC (vinyl chloride type) is mentioned.
  • thermosetting resin examples include EP (epoxy), PUR (polyurethane), UF (urea formaldehyde), MF (melamine formaldehyde), PF (phenol formaldehyde), UP (unsaturated polyester), and SI (silicone).
  • EP epoxy
  • PUR polyurethane
  • UF urea formaldehyde
  • MF melamine formaldehyde
  • PF phenol formaldehyde
  • UP unsaturated polyester
  • SI silicone
  • FRP fiber reinforced plastic
  • a filler may be added to the above-described thermoplastic resin and thermosetting resin.
  • the filler include inorganic fillers (glass fibers, inorganic salts, etc.), metal fillers, organic fillers, and carbon fibers.
  • the perforated part 11 is a substantially circular non-through hole when seen in a plan view, and a plurality of perforated parts 11 are formed on the surface 13 of the first member 10.
  • the opening diameter R1 of the surface 13 of the perforated part 11 is preferably 30 ⁇ m or more and 100 ⁇ m or less. This is because if the opening diameter R1 is less than 30 ⁇ m, the irradiated bonding laser is not sufficiently confined in the perforated portion 11, and the conversion efficiency for converting the energy of the bonding laser into heat may be reduced. Because. On the other hand, when the opening diameter R1 exceeds 100 ⁇ m, the number of the perforated portions 11 per unit area decreases, and the conversion efficiency for converting the energy of the laser for bonding into heat may decrease. Moreover, it is preferable that the depth of the perforation part 11 is 10 micrometers or more. This is because if the depth is less than 10 ⁇ m, the conversion efficiency for converting the energy of the laser for bonding into heat may decrease.
  • the interval between the perforated parts 11 is preferably 200 ⁇ m or less. This is because when the interval between the perforations 11 exceeds 200 ⁇ m, the number of perforations 11 per unit area decreases, and the conversion efficiency for converting the energy of the laser for bonding into heat may decrease. .
  • interval of the punching part 11 it is the distance which the punching part 11 does not overlap and crush.
  • interval of the perforated part 11 is the same. This is because when the perforated portions 11 are equally spaced, the heat distribution when the bonding laser is irradiated is isotropic.
  • the perforated part 11 of the first embodiment includes an enlarged diameter part 111 whose opening diameter increases from the surface 13 side toward the bottom part 113 in the depth direction (Z direction), and a bottom part from the surface 13 side in the depth direction. It is formed so that the reduced diameter portion 112 whose opening diameter becomes smaller toward 113 is connected.
  • the enlarged diameter portion 111 is formed so as to increase in diameter in a curved shape, and the reduced diameter portion 112 is formed so as to reduce in diameter in a curved shape.
  • the enlarged diameter portion 111 is an example of the “first enlarged diameter portion” in the present invention
  • the reduced diameter portion 112 is an example of the “first reduced diameter portion” in the present invention.
  • the enlarged diameter portion 111 is disposed on the surface 13 side, and the reduced diameter portion 112 is disposed on the bottom 113 side.
  • the opening diameter (inner diameter) R2 of the boundary part between the enlarged diameter part 111 and the reduced diameter part 112 is the largest, and the opening diameter R1 is smaller than the opening diameter R2.
  • the protrusion part 12 is arrange
  • This protrusion 12 is formed over the entire length in the circumferential direction, for example, and is formed in an annular shape.
  • the perforated part 11 is formed, for example, by being irradiated with a processing laser.
  • a processing laser As the type of laser, a fiber laser, a YAG laser, a YVO 4 laser, a semiconductor laser, a carbon dioxide gas laser, and an excimer laser can be selected from the viewpoint of enabling pulse oscillation, and considering the laser wavelength, a fiber laser, a YAG laser, a YAG The second harmonic of the laser, YVO 4 laser, and semiconductor laser are preferred.
  • the laser output is set in consideration of the laser irradiation diameter, the type of material of the first member 10, the shape (for example, thickness) of the first member 10, and the like.
  • the output upper limit of the laser is preferably 40W. This is because when the laser output exceeds 40 W, the energy is large and it is difficult to form the perforated part 11 having the protruding part 12.
  • fiber laser marker MX-Z2000 or MX-Z2050 manufactured by OMRON As an example of an apparatus for forming the perforated part 11, there can be mentioned fiber laser marker MX-Z2000 or MX-Z2050 manufactured by OMRON. With this fiber laser marker, it is possible to irradiate a laser where one pulse is composed of a plurality of subpulses. For this reason, since the energy of a laser is easy to concentrate on the depth direction, it is suitable for forming the perforated part 11. Specifically, when the first member 10 is irradiated with a laser, the first member 10 is locally melted so that the formation of the perforated part 11 proceeds. At this time, since the laser is composed of a plurality of sub-pulses, the melted first member 10 is not easily scattered and easily deposited in the vicinity of the perforated portion 11.
  • the melted first member 10 is deposited inside the perforated part 11, thereby forming the protruding part 12.
  • the laser irradiation direction is, for example, a direction perpendicular to the surface 13, and the axis of the perforated part 11 is perpendicular to the surface 13.
  • one period of the subpulse is 15 ns or less. This is because if one period of the sub-pulse exceeds 15 ns, energy is easily diffused by heat conduction, and it becomes difficult to form the perforated part 11 having the protruding part 12.
  • one cycle of the subpulse is a total time of the irradiation time for one subpulse and the interval from the end of the irradiation of the subpulse to the start of the irradiation of the next subpulse.
  • the number of subpulses of one pulse is preferably 2 or more and 50 or less. This is because if the number of subpulses exceeds 50, the output per unit of subpulses becomes small, and it becomes difficult to form the perforated part 11 having the protruding parts 12.
  • the 2nd member 20 is joined to the surface 13 of the 1st member 10 in which the perforated part 11 was formed.
  • the second member 20 is joined to the first member 10 by laser welding, for example. Thereby, the 2nd member 20 is solidified in the state with which the perforated part 11 was filled.
  • laser for bonding fiber laser, YAG laser, YVO 4 laser, a semiconductor laser, carbon dioxide laser, an excimer laser can be selected.
  • Such a bonded structure 100 is applicable, for example, when a resin cover (not shown) is bonded to a metal case (not shown) of a photoelectric sensor.
  • the metal case corresponds to the first member 10
  • the resin cover corresponds to the second member 20.
  • the perforated part 11 is formed on the surface 13 of the first member 10, and the protruding part 12 is formed on the inner peripheral surface of the perforated part 11.
  • the perforated part 11 and the protruding part 12 are formed by irradiating a laser in which one pulse is composed of a plurality of sub-pulses.
  • it is formed using the fiber laser marker MX-Z2000 or MX-Z2050 described above.
  • the second member 20 is disposed adjacent to the surface 13 of the first member 10. Then, in a state where the first member 10 and the second member 20 are pressurized, the surface 13 of the first member 10 is irradiated with a laser for bonding from the second member 20 side. For this reason, the energy of the laser is converted into heat on the surface 13 of the first member 10, and the temperature of the surface 13 of the first member 10 increases. Thereby, the second member 20 in the vicinity of the surface 13 of the first member 10 is melted, and the second member 20 is filled in the perforated portion 11. Then, the 2nd member 20 is solidified, the 2nd member 20 is joined to the 1st member 10, and the joined structure 100 (refer FIG. 1) is formed.
  • the projecting portion 12 projecting inwardly is formed on the inner peripheral surface of the perforated portion 11, so that the irradiated joining laser is introduced into the perforated portion 11 by the projecting portion 12. Since it is easy to be confined, the energy of the laser for bonding can be efficiently converted into heat. Thereby, since the energy of the laser for joining can be suppressed to the minimum necessary, it is possible to suppress the second member 20 from being thermally deteriorated.
  • the laser absorption layer (illustration omitted) may be provided in the surface 13 of the 1st member 10, or the surface of the 2nd member 20.
  • the laser absorbing layer a pigment-based or dye-based laser absorbing material having an absorptivity with respect to the wavelength of the laser for bonding can be appropriately selected and used. If comprised in this way, the conversion efficiency which converts the energy of the laser for joining into heat
  • the thickness of the laser absorption layer is preferably 10 ⁇ m or less in order to ensure the filling property of the second member 20 into the perforated portion 11. Further, the second member 20 may be blended with a laser absorber as long as the second member 20 satisfies the required laser transmittance.
  • the joined structure 200 is obtained by joining the first member 30 and the second member 20 made of different materials.
  • a perforated part 31 having an opening is formed on the surface 33 of the first member 30, and a projecting part 32 projecting inward is formed on the inner peripheral surface of the perforated part 31.
  • the perforated portion 31 of the first member 30 is filled with the second member 20 and solidified.
  • the perforated part 31 of the second embodiment has a reduced diameter part 311 in which the opening diameter decreases from the surface 33 side toward the bottom part 314 in the depth direction (Z direction), and from the surface 33 side toward the bottom part 314 in the depth direction.
  • the enlarged diameter portion 312 having a larger opening diameter and the reduced diameter portion 313 having a smaller opening diameter from the surface 33 side toward the bottom portion 314 in the depth direction are connected.
  • the reduced diameter portion 311 is formed to linearly reduce the diameter
  • the enlarged diameter portion 312 is formed to increase in a curved shape
  • the reduced diameter portion 313 is formed to reduce in a curved shape. ing.
  • the reduced diameter portion 311 is an example of the “second reduced diameter portion” in the present invention
  • the expanded diameter portion 312 is an example of the “second expanded diameter portion” in the present invention
  • the reduced diameter portion 313 is It is an example of the “third reduced diameter portion” of the present invention.
  • the diameter-reduced part 311, diameter-expanded part 312 and diameter-reduced part 313 are arrange
  • the opening diameter (inner diameter) R4 of the boundary part between the reduced diameter part 311 and the enlarged diameter part 312 is the opening diameter R3 of the surface 33 and the enlarged diameter part 312 and the reduced diameter part 313. It is smaller than the opening diameter R5 of the boundary portion.
  • the protrusion part 32 is arrange
  • the protrusion 32 is formed over the entire length in the circumferential direction, and is formed in an annular shape.
  • the other configuration of the first member 30 is the same as that of the first member 10 described above.
  • the perforated part 31 is formed on the surface 33 of the first member 30, and the protruding part 32 is formed on the inner peripheral surface of the perforated part 31.
  • the perforated part 31 and the protruding part 32 are formed by irradiating a laser in which one pulse is composed of a plurality of sub-pulses.
  • it is formed using the fiber laser marker MX-Z2000 or MX-Z2050 described above.
  • the protruding portion 32 is disposed at a position where it enters the bottom portion 314 side. Such a difference may be caused by, for example, the material of the first member 30 or laser irradiation conditions. Due to such differences.
  • the second member 20 is disposed adjacent to the surface 33 of the first member 30. Then, in a state where the first member 30 and the second member 20 are pressurized, the surface 33 of the first member 30 is irradiated with a laser for bonding from the second member 20 side. For this reason, the energy of the laser is converted into heat on the surface 33 of the first member 30, and the temperature of the surface 33 of the first member 30 increases. Thereby, the second member 20 in the vicinity of the surface 33 of the first member 30 is melted, and the second member 20 is filled in the perforated part 31. Then, the 2nd member 20 is solidified and the 2nd member 20 is joined to the 1st member 30, and joined structure 200 (refer to Drawing 4) is formed.
  • the projecting portion 32 projecting inwardly is formed on the inner peripheral surface of the perforated portion 31, so that the irradiated joining laser is introduced into the perforated portion 31 by the projecting portion 32. Since it is easy to be confined, the energy of the laser for bonding can be efficiently converted into heat. Thereby, since the energy of the laser for joining can be suppressed to the minimum necessary, it is possible to suppress the second member 20 from being thermally deteriorated.
  • the laser absorption layer (illustration omitted) may be provided in the surface 33 of the 1st member 30, or the surface of the 2nd member 20.
  • Example 1 In this Experimental Example 1, a bonded structure 500 (see FIG. 9) according to Example 1 corresponding to the second embodiment and a bonded structure according to Comparative Example 1 were produced, and the bonding strength and the second member of each were manufactured. Appearance was evaluated. The results are shown in Table 1.
  • the first member 501 is formed in a plate shape, has a length of 100 mm, a width of 29 mm, and a thickness of 3 mm.
  • the second member 502 is formed in a plate shape, has a length of 100 mm, a width of 25 mm, and a thickness of 3 mm.
  • the laser is irradiated to a predetermined region R on the surface of the first member 501.
  • the predetermined region R is an area where the bonded structure 500 is bonded, and is 12.5 mm ⁇ 20 mm. Further, this laser irradiation was performed using a fiber laser marker MX-Z2000 manufactured by OMRON. The processing conditions by this laser are as follows.
  • the frequency is a frequency of a pulse constituted by a plurality (20 in this example) of sub-pulses. That is, under this irradiation condition, laser (pulse) is irradiated 10,000 times at intervals of 65 ⁇ m while moving 650 mm per second, and the pulse is composed of 20 sub-pulses. Note that the number of scans is the number of times the laser is repeatedly irradiated to the same location.
  • a perforated portion is formed in the predetermined region R of the first member 501, and the perforated portion protrudes from the surface into the perforated portion. Part is formed. That is, as shown in Table 1, the opening diameter R4 (see FIG. 4) is smaller than the surface opening diameter R3 (see FIG. 4) and the opening diameter R5 (see FIG. 4).
  • the second member 502 is disposed adjacent to the predetermined region R of the first member 501, and the predetermined region R is irradiated with laser from the second member 502 side with a predetermined pressure applied. As a result, the second member 502 is joined to the first member 501.
  • the bonding conditions by this laser are as follows.
  • the same materials as in Example 1 were used as materials for the first member and the second member.
  • the perforated part was formed using the fiber laser without a pulse control function. That is, the perforated portion was formed by irradiating a laser in which one pulse is not composed of a plurality of subpulses. For this reason, a mortar-shaped (conical) perforated portion was formed in the first member of Comparative Example 1. That is, as shown in Table 1, the first member of Comparative Example 1 is not formed with a protruding portion that protrudes inward from the inner peripheral surface, and has a shape corresponding to the opening diameters R4 and R5 of Example 1. Not formed.
  • the joining conditions by a laser were as follows.
  • Laser Semiconductor laser (wavelength 808 nm) Oscillation mode: Continuous oscillation Output: 100W Focal diameter: 4mm Scanning speed: 1mm / sec Contact pressure: 0.6 MPa And about the joining structure 500 of Example 1, and the joining structure of the comparative example 1, the joint strength and the external appearance of the 2nd member were evaluated.
  • joining strength was performed using the electromechanical universal testing machine 5900 made from Instron. Specifically, the test was conducted at a tensile speed of 5 mm / min in both the shearing direction and the peeling direction (vertical direction), and the test was terminated when the second member broke or the joint interface broke. And when the 2nd member fractured
  • the appearance of the second member after joining was evaluated visually. Specifically, if the second member is not burned, discolored or deformed, it is evaluated as pass ( ⁇ ), and if the second member is burned, discolored, or deformed, it is evaluated as rejected (x). did.
  • the bonding strength was acceptable in both the shearing direction and the peeling direction, and the appearance of the second member 502 was also acceptable. This is because when the second member 502 is joined to the first member 501, the irradiated laser is easily confined inside the perforated portion by the protruding portion, so that the energy of the laser can be efficiently converted into heat. This is because the energy of the laser can be minimized. That is, in the joint structure 500 of Example 1, the thermal deterioration of the second member 502 could be suppressed.
  • Example 2 In Experimental Example 2, a bonded structure according to Example 2 corresponding to the second embodiment and a bonded structure according to Comparative Example 2 were produced, and the bonding strength and the appearance of the second member were evaluated for each. The results are shown in Table 2.
  • Experimental Example 2 the material of the first member was changed from Experimental Example 1. Specifically, in the joined structure of Experimental Example 2, PBT (Juranex (registered trademark) 3316 made by Wintech Polymer) was used as the material of the first member. Moreover, the laser processing conditions of Example 2 were changed as follows with the change of the material of the first member.
  • Laser Fiber laser (wavelength 1062nm)
  • Oscillation mode Pulse oscillation (frequency 10kHz)
  • Output 1.1W Scanning speed: 650mm / sec Scanning frequency: 3 times
  • Irradiation interval 65 ⁇ m Number of subpulses: 3
  • the joining conditions of Example 2 were changed as follows.
  • the joint strength was acceptable in both the shearing direction and the peeling direction, and the appearance of the second member was also acceptable. That is, even when PBT, which is a resin, is used as the material of the first member, the laser energy can be efficiently converted into heat by forming the perforated part having the protruding part. Therefore, it is possible to suppress the second member from being thermally deteriorated.
  • the surface 13 may be flat or curved.
  • the enlarged diameter portion 111 and the reduced diameter portion 112 are formed to be continuous.
  • the present invention is not limited to this, and the depth direction is provided between the enlarged diameter portion and the reduced diameter portion.
  • a straight extending portion may be formed. The same applies to the second embodiment.
  • surroundings of the perforation part 11 showed the flat example, it is not restricted to this, Opening of the perforation part 11 like the 1st member 10a by the 1st modification shown in FIG.
  • a bulging portion 14 that bulges upward from the surface 13 may be formed around.
  • the raised portion 14 is formed so as to surround the perforated portion 11 and is formed in a substantially circular shape when seen in a plan view.
  • the raised portion 14 is formed, for example, by depositing the melted first member 10a when a laser in which one pulse is composed of a plurality of sub-pulses is irradiated. The same applies to the second embodiment.
  • the present invention is not limited to this, as in the first member 10b according to the second modification shown in FIG.
  • the shaft center of the perforated part 11 b may be formed so as to be inclined with respect to the surface 13.
  • a protruding portion 12b protruding inward is formed on the inner peripheral surface of the perforated portion 11b.
  • the perforated part 11b is formed, for example, by making the laser irradiation direction oblique to the surface 13 (45 ° or more and less than 90 °). Thereby, even if the obstacle at the time of irradiating a laser exists above the area
  • the example in which the one protrusion part 12 was formed in the perforation part 11 was shown, not only this but perforation like the 1st member 10c by the 3rd modification shown in FIG.
  • a plurality of protruding portions 121c and 122c may be formed on the portion 11c.
  • This perforated part 11c can be formed, for example, by changing the laser output condition and irradiating the same part with the laser. If comprised in this way, since the surface area of the perforated part 11c becomes large, the energy of the laser for joining can be more efficiently converted into heat.
  • FIG. 12 there are two protruding portions 121c and 122c, but three or more protruding portions may be formed. The same applies to the second embodiment.
  • one perforated portion 11d may be formed by multiple times of laser irradiation with different positions. That is, one perforated part 11d may be formed by overlapping a part of the perforated part formed by laser irradiation. A protruding portion 12d protruding inward is formed on the inner peripheral surface of the perforated portion 11d.
  • the first to fourth modifications described above may be combined as appropriate.
  • the present invention is applicable to a method for manufacturing a joined structure in which a first member and a second member made of different materials are joined, and a joined structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Abstract

 接合構造体の製造方法は、第1部材と第2部材とが接合された接合構造体の製造方法であり、第1部材の表面に開口を有する穿孔部を形成するとともに、穿孔部の内周面に内側に突出する突出部を形成する工程と、第1部材の穿孔部が形成された領域と第2部材とを隣接配置する工程と、第2部材側から第1部材の穿孔部が形成された領域にレーザを照射することにより、第1部材の穿孔部に第2部材を充填して固化させる工程とを備える。

Description

接合構造体の製造方法および接合構造体
 本発明は、接合構造体の製造方法および接合構造体に関する。
 従来、異なる材料からなる第1部材および第2部材を接合させる接合方法が知られている(たとえば、特許文献1参照)。
 特許文献1には、樹脂材料である第1部材と、金属材料である第2部材とを半導体レーザにより接合する接合方法が開示されている。第2部材の境界面は、サンドペーパなどにより凹凸状に荒らされている。そして、第1部材および第2部材の境界面に半導体レーザが照射されることにより、第2部材の境界面において半導体レーザが吸収される。これにより、境界面付近の第1部材が溶融され、その第1部材が凹凸に食い込み固化される。その結果、第1部材および第2部材が接合される。
特開2008-162288号公報
 しかしながら、上記した従来の接合方法では、第2部材の境界面に照射された半導体レーザが反射されやすいので、レーザのエネルギを効率的に熱に変換するのが困難である。したがって、従来の接合方法では、レーザのエネルギを高くする必要があるので、樹脂材料が熱劣化(たとえば、焼け、変色、変形など)しやすいという問題点がある。
 本発明は、上記の課題を解決するためになされたものであり、本発明の目的は、第2部材が熱劣化するのを抑制することが可能な接合構造体の製造方法および接合構造体を提供することである。
 本発明による接合構造体の製造方法は、第1部材と第2部材とが接合された接合構造体の製造方法であり、第1部材の表面に開口を有する穿孔部を形成するとともに、穿孔部の内周面に内側に突出する突出部を形成する工程と、第1部材の穿孔部が形成された領域と第2部材とを隣接配置する工程と、第2部材側から第1部材の穿孔部が形成された領域にレーザを照射することにより、第1部材の穿孔部に第2部材を充填して固化させる工程とを備える。
 このように構成することによって、照射された接合用のレーザが突出部により穿孔部の内部に閉じ込められやすいので、接合用のレーザのエネルギを効率的に熱に変換することができる。これにより、接合用のレーザのエネルギを必要最小限に抑えることができるので、第2部材が熱劣化するのを抑制することができる。
 上記接合構造体の製造方法において、穿孔部は、深さ方向において表面側から底部に向けて開口径が大きくなる第1拡径部と、深さ方向において表面側から底部に向けて開口径が小さくなる第1縮径部とが連なるように形成されており、突出部が表面側に配置されるようにしてもよい。
 上記接合構造体の製造方法において、穿孔部は、深さ方向において表面側から底部に向けて開口径が小さくなる第2縮径部と、深さ方向において表面側から底部に向けて開口径が大きくなる第2拡径部と、深さ方向において表面側から底部に向けて開口径が小さくなる第3縮径部とが連なるように形成されており、突出部が底部側に入り込んだ位置に配置されるようにしてもよい。
 上記接合構造体の製造方法において、第1部材は、金属、熱可塑性樹脂、または、熱硬化性樹脂であってもよい。
 上記接合構造体の製造方法において、第2部材は、レーザを透過する樹脂であってもよい。
 本発明による接合構造体は、上記したいずれか1つの接合構造体の製造方法によって製造されている。
 このように構成することによって、照射された接合用のレーザが突出部により穿孔部の内部に閉じ込められやすいので、接合用のレーザのエネルギを効率的に熱に変換することができる。これにより、接合用のレーザのエネルギを必要最小限に抑えることができるので、第2部材が熱劣化するのを抑制することができる。
 本発明の接合構造体の製造方法および接合構造体によれば、第2部材が熱劣化するのを抑制することができる。
本発明の第1実施形態による接合構造体の断面の模式図である。 図1の接合構造体の製造方法を説明するための図であって、第1部材に穿孔部が形成された状態を示した模式図である。 図1の接合構造体の製造方法を説明するための図であって、第2部材側から接合用のレーザが照射された状態を示した模式図である。 本発明の第2実施形態による接合構造体の断面の模式図である。 図4の接合構造体の製造方法を説明するための図であって、第1部材に穿孔部が形成された状態を示した模式図である。 図4の接合構造体の製造方法を説明するための図であって、第2部材側から接合用のレーザが照射された状態を示した模式図である。 実施例の第1部材がレーザにより加工される状態を示した斜視図である。 実施例の第2部材がレーザにより第1部材に接合される状態を示した斜視図である。 実施例の接合構造体を示した斜視図である。 第1実施形態の第1変形例による第1部材を示した模式図である。 第1実施形態の第2変形例による第1部材を示した模式図である。 第1実施形態の第3変形例による第1部材を示した模式図である。 第1実施形態の第4変形例による第1部材を示した模式図である。
 以下、本発明の実施形態について図面を参照して説明する。
 (第1実施形態)
 まず、図1を参照して、本発明の第1実施形態による接合構造体100について説明する。
 接合構造体100は、図1に示すように、異なる材料からなる第1部材10および第2部材20が接合されたものである。第1部材10の表面13には、開口を有する穿孔部11が形成され、その穿孔部11の内周面には、内側に突出する突出部12が形成されている。そして、第1部材10の穿孔部11には、第2部材20が充填されて固化されている。なお、図1は、第1部材10および第2部材20の接合界面を拡大して模式的に示した図であり、実際には穿孔部11が複数設けられているが、図1では1つだけ示した。
 第1部材10の材料は、金属、熱可塑性樹脂、または、熱硬化性樹脂である。第2部材20の材料は、レーザを透過する樹脂であって、熱可塑性樹脂、または、熱硬化性樹脂である。この第2部材20の、後述する接合時に照射されるレーザについての透過率は、厚みが3mmのときに15%以上であることが好ましい。
 上記金属の一例としては、鉄系金属、ステンレス系金属、銅系金属、アルミ系金属、マグネシウム系金属、および、それらの合金が挙げられる。また、金属成型体であってもよく、亜鉛ダイカスト、アルミダイカスト、粉末冶金などであってもよい。
 上記熱可塑性樹脂の一例としては、PVC(ポリ塩化ビニル)、PS(ポリスチレン)、AS(アクリロニトリル・スチレン)、ABS(アクリロニトリル・ブタジエン・スチレン)、PMMA(ポリメチルメタクリレート)、PE(ポリエチレン)、PP(ポリプロピレン)、PC(ポリカーボネート)、m-PPE(変性ポリフェニレンエーテル)、PA6(ポリアミド6)、PA66(ポリアミド66)、POM(ポリアセタール)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PSF(ポリサルホン)、PAR(ポリアリレート)、PEI(ポリエーテルイミド)、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルホン)、PEEK(ポリエーテルエーテルケトン)、PAI(ポリアミドイミド)、LCP(液晶ポリマー)、PVDC(ポリ塩化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、PCTFE(ポリクロロトリフルオロエチレン)、および、PVDF(ポリフッ化ビニリデン)が挙げられる。また、TPE(熱可塑性エラストマ)であってもよく、TPEの一例としては、TPO(オレフィン系)、TPS(スチレン系)、TPEE(エステル系)、TPU(ウレタン系)、TPA(ナイロン系)、および、TPVC(塩化ビニル系)が挙げられる。
 上記熱硬化性樹脂の一例としては、EP(エポキシ)、PUR(ポリウレタン)、UF(ユリアホルムアルデヒド)、MF(メラミンホルムアルデヒド)、PF(フェノールホルムアルデヒド)、UP(不飽和ポリエステル)、および、SI(シリコーン)が挙げられる。また、FRP(繊維強化プラスチック)であってもよい。
 なお、上記した熱可塑性樹脂および熱硬化性樹脂には、充填剤が添加されていてもよい。充填剤の一例としては、無機系充填剤(ガラス繊維、無機塩類など)、金属系充填剤、有機系充填剤、および、炭素繊維などが挙げられる。
 穿孔部11は、平面的に見てほぼ円形の非貫通孔であり、第1部材10の表面13に複数形成されている。穿孔部11の表面13の開口径R1は、30μm以上、100μm以下が好ましい。これは、開口径R1が30μmを下回ると、照射された接合用のレーザが穿孔部11内に十分に閉じ込められず、接合用のレーザのエネルギを熱に変換する変換効率が低下する場合があるためである。一方、開口径R1が100μmを上回ると、単位面積あたりの穿孔部11の数が減少して、接合用のレーザのエネルギを熱に変換する変換効率が低下する場合があるためである。また、穿孔部11の深さは、10μm以上であることが好ましい。これは、深さが10μmを下回ると、接合用のレーザのエネルギを熱に変換する変換効率が低下する場合があるためである。
 また、穿孔部11の間隔(所定の穿孔部11の中心と、所定の穿孔部11と隣接する穿孔部11の中心との距離)は、200μm以下であることが好ましい。これは、穿孔部11の間隔が200μmを上回ると、単位面積あたりの穿孔部11の数が減少して、接合用のレーザのエネルギを熱に変換する変換効率が低下する場合があるためである。なお、穿孔部11の間隔の下限の一例としては、穿孔部11が重畳して潰れない距離である。また、穿孔部11の間隔は同じであることが好ましい。これは、穿孔部11が等間隔であると、接合用のレーザが照射される際の熱の分布が等方的になるためである。
 ここで、第1実施形態の穿孔部11は、深さ方向(Z方向)において表面13側から底部113に向けて開口径が大きくなる拡径部111と、深さ方向において表面13側から底部113に向けて開口径が小さくなる縮径部112とが連なるように形成されている。拡径部111は、曲線状に拡径するように形成され、縮径部112は、曲線状に縮径するように形成されている。なお、拡径部111は、本発明の「第1拡径部」の一例であり、縮径部112は、本発明の「第1縮径部」の一例である。
 そして、拡径部111が表面13側に配置されるとともに、縮径部112が底部113側に配置されている。このため、穿孔部11において、拡径部111と縮径部112との境界部分の開口径(内径)R2が最も大きくなっており、開口径R1が開口径R2よりも小さくなっている。これにより、突出部12が第1部材10の表面13側に配置されている。この突出部12は、たとえば、周方向における全長にわたって形成されており、環状に形成されている。
 この穿孔部11は、たとえば、加工用のレーザが照射されることによって形成される。レーザの種類としては、パルス発振が可能な観点から、ファイバレーザ、YAGレーザ、YVOレーザ、半導体レーザ、炭酸ガスレーザ、エキシマレーザが選択でき、レーザの波長を考慮すると、ファイバレーザ、YAGレーザ、YAGレーザの第2高調波、YVOレーザ、半導体レーザが好ましい。なお、レーザの出力は、レーザの照射径、第1部材10の材料の種類、第1部材10の形状(たとえば厚み)などを考慮して設定される。たとえば、レーザの出力上限は40Wが好ましい。これは、レーザの出力が40Wを超えると、エネルギが大きく、突出部12を有する穿孔部11を形成することが困難であるためである。
 穿孔部11を形成する装置の一例としては、オムロン製のファイバレーザマーカMX-Z2000またはMX-Z2050を挙げることができる。このファイバレーザマーカでは、1パルスが複数のサブパルスで構成されるレーザを照射することが可能である。このため、レーザのエネルギを深さ方向に集中させやすいので、穿孔部11を形成するのに好適である。具体的には、第1部材10にレーザが照射されると、第1部材10が局部的に溶融されることにより穿孔部11の形成が進行する。このとき、レーザが複数のサブパルスで構成されているため、溶融された第1部材10が飛散されにくく、穿孔部11の近傍に堆積されやすい。そして、穿孔部11の形成が進行すると、溶融された第1部材10が穿孔部11の内部に堆積されることにより、突出部12が形成される。なお、レーザの照射方向は、たとえば、表面13に対して垂直方向であり、穿孔部11の軸心が表面13に対して垂直になる。
 なお、上記ファイバレーザマーカによる加工条件としては、サブパルスの1周期が15ns以下であることが好ましい。これは、サブパルスの1周期が15nsを超えると、熱伝導によりエネルギが拡散しやすくなり、突出部12を有する穿孔部11を形成しにくくなるためである。なお、サブパルスの1周期は、サブパルスの1回分の照射時間と、そのサブパルスの照射が終了されてから次回のサブパルスの照射が開始されるまでの間隔との合計時間である。
 また、上記ファイバレーザマーカによる加工条件としては、1パルスのサブパルス数は、2以上50以下であることが好ましい。これは、サブパルス数が50を超えると、サブパルスの単位あたりの出力が小さくなり、突出部12を有する穿孔部11を形成しにくくなるためである。
 そして、第2部材20は、穿孔部11が形成された第1部材10の表面13に接合されている。この第2部材20は、たとえばレーザ溶着によって第1部材10に接合されている。これにより、第2部材20が穿孔部11に充填された状態で固化されている。なお、接合用のレーザの種類としては、ファイバレーザ、YAGレーザ、YVOレーザ、半導体レーザ、炭酸ガスレーザ、エキシマレーザが選択できる。
 このような接合構造体100は、たとえば、光電センサの金属ケース(図示省略)に樹脂カバー(図示省略)を接合させる場合に適用可能である。この場合には、金属ケースが第1部材10に相当し、樹脂カバーが第2部材20に相当する。
 -接合構造体の製造方法-
 次に、図1~図3を参照して、第1実施形態による接合構造体100の製造方法について説明する。
 まず、第1部材10の表面13に穿孔部11を形成するとともに、その穿孔部11の内周面に突出部12を形成する。この穿孔部11および突出部12は、たとえば、図2に示すように、1パルスが複数のサブパルスで構成されたレーザを照射することによって形成される。具体例としては、上記したファイバレーザマーカMX-Z2000またはMX-Z2050を用いて形成する。
 その後、図3に示すように、第1部材10の表面13に第2部材20が隣接配置される。そして、第1部材10および第2部材20が加圧された状態で、第2部材20側から接合用のレーザが第1部材10の表面13に照射される。このため、そのレーザのエネルギが第1部材10の表面13で熱に変換され、第1部材10の表面13の温度が高くなる。これにより、第1部材10の表面13近傍の第2部材20が溶融され、その第2部材20が穿孔部11に充填される。その後、第2部材20が固化されることにより、第2部材20が第1部材10に接合され、接合構造体100(図1参照)が形成される。
 ここで、第1実施形態では、穿孔部11の内周面に内側に突出する突出部12が形成されていることによって、照射された接合用のレーザが突出部12により穿孔部11の内部に閉じ込められやすいので、接合用のレーザのエネルギを効率的に熱に変換することができる。これにより、接合用のレーザのエネルギを必要最小限に抑えることができるので、第2部材20が熱劣化するのを抑制することができる。
 なお、第1部材10および第2部材20が隣接配置されたときに、第1部材10の表面13または第2部材20の表面にレーザ吸収層(図示省略)が設けられていてもよい。このレーザ吸収層としては、接合用のレーザの波長に対して吸収性を有する顔料系または染料系のレーザ吸収材などを適宜選択して用いることができる。このように構成すれば、接合用のレーザのエネルギを熱に変換する変換効率の向上を図ることができる。なお、レーザ吸収層の厚みは、第2部材20の穿孔部11への充填性を確保するために10μm以下が好ましい。また、第2部材20が要求されるレーザの透過性を満たす範囲内において、第2部材20にレーザ吸収材が配合されていてもよい。
 (第2実施形態)
 次に、図4を参照して、本発明の第2実施形態による接合構造体200について説明する。
 接合構造体200は、図4に示すように、異なる材料からなる第1部材30および第2部材20が接合されたものである。第1部材30の表面33には、開口を有する穿孔部31が形成され、その穿孔部31の内周面には、内側に突出する突出部32が形成されている。そして、第1部材30の穿孔部31には、第2部材20が充填されて固化されている。
 第2実施形態の穿孔部31は、深さ方向(Z方向)において表面33側から底部314に向けて開口径が小さくなる縮径部311と、深さ方向において表面33側から底部314に向けて開口径が大きくなる拡径部312と、深さ方向において表面33側から底部314に向けて開口径が小さくなる縮径部313とが連なるように形成されている。縮径部311は、直線状に縮径するように形成され、拡径部312は、曲線状に拡径するように形成され、縮径部313は、曲線状に縮径するように形成されている。なお、縮径部311は、本発明の「第2縮径部」の一例であり、拡径部312は、本発明の「第2拡径部」の一例であり、縮径部313は、本発明の「第3縮径部」の一例である。
 そして、表面33側から底部314側に向けて順に、縮径部311、拡径部312および縮径部313が配置されている。このため、穿孔部31において、縮径部311と拡径部312との境界部分の開口径(内径)R4が、表面33の開口径R3、および、拡径部312と縮径部313との境界部分の開口径R5よりも小さくなっている。これにより、突出部32が底部314側に入り込んだ位置に配置されている。この突出部32は、たとえば、周方向における全長にわたって形成されており、環状に形成されている。
 なお、第1部材30のその他の構成は、上記した第1部材10と同様である。
 -接合構造体の製造方法-
 次に、図4~図6を参照して、第2実施形態による接合構造体200の製造方法について説明する。
 まず、第1部材30の表面33に穿孔部31を形成するとともに、その穿孔部31の内周面に突出部32を形成する。この穿孔部31および突出部32は、たとえば、図5に示すように、1パルスが複数のサブパルスで構成されたレーザを照射することによって形成される。具体例としては、上記したファイバレーザマーカMX-Z2000またはMX-Z2050を用いて形成する。なお、第2実施形態では、第1実施形態と異なり、突出部32が底部314側に入り込んだ位置に配置されるが、このような違いは、たとえば、第1部材30の材料やレーザ照射条件などの違いに起因する。
 その後、図6に示すように、第1部材30の表面33に第2部材20が隣接配置される。そして、第1部材30および第2部材20が加圧された状態で、第2部材20側から接合用のレーザが第1部材30の表面33に照射される。このため、そのレーザのエネルギが第1部材30の表面33で熱に変換され、第1部材30の表面33の温度が高くなる。これにより、第1部材30の表面33近傍の第2部材20が溶融され、その第2部材20が穿孔部31に充填される。その後、第2部材20が固化されることにより、第2部材20が第1部材30に接合され、接合構造体200(図4参照)が形成される。
 ここで、第2実施形態では、穿孔部31の内周面に内側に突出する突出部32が形成されていることによって、照射された接合用のレーザが突出部32により穿孔部31の内部に閉じ込められやすいので、接合用のレーザのエネルギを効率的に熱に変換することができる。これにより、接合用のレーザのエネルギを必要最小限に抑えることができるので、第2部材20が熱劣化するのを抑制することができる。
 なお、第1部材30および第2部材20が隣接配置されたときに、第1部材30の表面33または第2部材20の表面にレーザ吸収層(図示省略)が設けられていてもよい。
 -実験例-
 次に、図7~図9を参照して、上記した第2実施形態の効果を確認するために行った実験例1および2について説明する。
 [実験例1]
 この実験例1では、第2実施形態に対応する実施例1による接合構造体500(図9参照)と、比較例1による接合構造体とを作製し、それぞれについての接合強度および第2部材の外観を評価した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 まず、実施例1による接合構造体500の作製方法について説明する。
 実施例1の接合構造体500では、第1部材501の材料としてSUS304を用いるとともに、第2部材502の材料としてPMMA(三菱レイヨン製のアクリライト(登録商標))を用いた。第1部材501は、板状に形成されており、長さが100mmであり、幅が29mmであり、厚みが3mmである。第2部材502は、板状に形成されており、長さが100mmであり、幅が25mmであり、厚みが3mmである。
 そして、図7に示すように、第1部材501の表面の所定領域Rにレーザを照射する。この所定領域Rは、接合構造体500が接合される面積であり、12.5mm×20mmとした。また、このレーザの照射は、オムロン製のファイバレーザマーカMX-Z2000を用いて行った。このレーザによる加工条件は、以下のとおりである。
 <レーザ加工条件>
 レーザ:ファイバレーザ(波長1062nm)
 発振モード:パルス発振(周波数10kHz)
 出力:3.8W
 走査速度:650mm/sec
 走査回数:20回
 照射間隔:65μm
 サブパルス数:20
 なお、周波数は、複数(この例では20)のサブパルスによって構成されるパルスの周波数である。つまり、この照射条件では、1秒間に650mm移動しながら65μmの間隔で1万回レーザ(パルス)を照射し、そのパルスが20のサブパルスによって構成されている。なお、走査回数は、レーザが同じ箇所に繰り返し照射される回数である。
 このように、1パルスが複数のサブパルスで構成されるレーザを照射することにより、第1部材501の所定領域Rには穿孔部が形成されるとともに、その穿孔部内に表面から入り込んだ位置に突出部が形成される。すなわち、表1に示すように、開口径R4(図4参照)が、表面の開口径R3(図4参照)および開口径R5(図4参照)よりも小さくなっている。
 そして、図8に示すように、第1部材501の所定領域Rに第2部材502を隣接配置し、所定の圧力を与えた状態で第2部材502側からレーザを所定領域Rに照射することにより、第2部材502が第1部材501に接合される。このレーザによる接合条件は、以下のとおりである。
 <レーザ接合条件>
 レーザ:半導体レーザ(波長808nm)
 発振モード:連続発振
 出力:30W
 焦点径:4mm
 走査速度:1mm/sec
 密着圧力:0.6MPa
 このようにして、実施例1の接合構造体500(図9参照)を作製した。
 次に、比較例1による接合構造体の作製方法について説明する。
 比較例1の接合構造体では、第1部材および第2部材の材料として実施例1と同じものを用いた。そして、比較例1の接合構造体では、パルスコントロール機能のないファイバレーザを用いて穿孔部を形成した。すなわち、1パルスが複数のサブパルスで構成されていないレーザを照射することにより穿孔部が形成された。このため、比較例1の第1部材には、すり鉢状(円錐状)の穿孔部が形成された。つまり、表1に示すように、比較例1の第1部材には、内周面から内側に突出する突出部が形成されておらず、実施例1の開口径R4およびR5に対応する形状が形成されていない。また、比較例1では、レーザによる接合条件を以下のようにした。
 <レーザ接合条件>
 レーザ:半導体レーザ(波長808nm)
 発振モード:連続発振
 出力:100W
 焦点径:4mm
 走査速度:1mm/sec
 密着圧力:0.6MPa
 そして、実施例1の接合構造体500および比較例1の接合構造体について、接合強度および第2部材の外観を評価した。
 なお、接合強度の評価は、インストロン製の電気機械式万能試験機5900を用いて行った。具体的には、せん断方向および剥離方向(垂直方向)ともに引張速度5mm/minで試験を行い、第2部材の破断または接合界面の破断で試験を終了した。そして、第2部材が破断した場合に、接合強度が合格(○)であると評価し、接合界面が破断(剥離)した場合に、接合強度が不合格(×)であると評価した。
 また、接合後の第2部材の外観の評価は、目視によって行った。具体的には、第2部材に焼け、変色、変形がない場合に合格(○)であると評価し、第2部材に焼け、変色、変形がある場合に不合格(×)であると評価した。
 上記した表1に示すように、実施例1の接合構造体500では、せん断方向および剥離方向ともに接合強度が合格であり、第2部材502の外観も合格であった。これは、第2部材502を第1部材501に接合する際に、照射されたレーザが突出部により穿孔部の内部に閉じ込められやすいので、レーザのエネルギを効率的に熱に変換することができることから、レーザのエネルギを必要最小限に抑えることができるためである。つまり、実施例1の接合構造体500では、第2部材502の熱劣化を抑制することができた。
 これに対して、比較例1の接合構造体では、せん断方向および剥離方向ともに接合強度が合格であったが、第2部材に焼けが発生しており外観が不合格であった。これは、第2部材を第1部材に接合する際に、レーザのエネルギを効率的に熱に変換するのが困難であることから、レーザのエネルギ(接合用レーザの出力)が実施例1に比べて高く設定されたためである。
 [実験例2]
 この実験例2では、第2実施形態に対応する実施例2による接合構造体と、比較例2による接合構造体とを作製し、それぞれについての接合強度および第2部材の外観を評価した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 この実験例2では、第1部材の材料を実験例1から変更した。具体的には、実験例2の接合構造体では、第1部材の材料としてPBT(ウィンテックポリマー製のジュラネックス(登録商標)3316)を用いた。また、第1部材の材料の変更に伴い、実施例2のレーザ加工条件を以下のように変更した。
 <レーザ加工条件>
 レーザ:ファイバレーザ(波長1062nm)
 発振モード:パルス発振(周波数10kHz)
 出力:1.1W
 走査速度:650mm/sec
 走査回数:3回
 照射間隔:65μm
 サブパルス数:3
 また、実施例2の接合条件を以下のように変更した。
 <レーザ接合条件>
 レーザ:半導体レーザ(波長808nm)
 発振モード:連続発振
 出力:1.0W
 焦点径:4mm
 走査速度:1mm/sec
 密着圧力:0.6MPa
 また、比較例2の接合条件を以下のように変更した。
 <レーザ接合条件>
 レーザ:半導体レーザ(波長808nm)
 発振モード:連続発振
 出力:2.5W
 焦点径:4mm
 走査速度:1mm/sec
 密着圧力:0.6MPa
 このようにして、穿孔部に突出部が形成された実施例2の接合構造体と、穿孔部に突出部が形成されていない比較例2の接合構造体とが作製された。なお、接合強度および外観の評価方法は実験例1と同様である。
 上記した表2に示すように、実施例2の接合構造体では、せん断方向および剥離方向ともに接合強度が合格であり、第2部材の外観も合格であった。すなわち、第1部材の材料として樹脂であるPBTを用いた場合であっても、突出部を有する穿孔部を形成することにより、レーザのエネルギを効率的に熱に変換することができるので、レーザのエネルギを必要最小限に抑えることができることから、第2部材が熱劣化するのを抑制することができた。
 これに対して、比較例2の接合構造体では、せん断方向および剥離方向ともに接合強度が合格であったが、第2部材に焼けが発生しており外観が不合格であった。これは、第2部材を第1部材に接合する際に、レーザのエネルギを効率的に熱に変換するのが困難であることから、レーザのエネルギが実施例2に比べて高く設定されたためである。
 (他の実施形態)
 なお、今回開示した実施形態は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、第1実施形態において、表面13が、平坦であってもよいし、湾曲されていてもよい。なお、第2実施形態についても同様である。
 また、第1実施形態では、拡径部111と縮径部112とが連なるように形成される例を示したが、これに限らず、拡径部と縮径部との間に深さ方向に真っ直ぐ延びる部分が形成されていてもよい。なお、第2実施形態についても同様である。
 また、第1実施形態では、穿孔部11の周囲が平坦である例を示したが、これに限らず、図10に示す第1変形例による第1部材10aのように、穿孔部11の開口の周囲に表面13から上方に***する***部14が形成されていてもよい。***部14は、穿孔部11の周囲を取り囲むように形成されており、平面的に見てほぼ円形に形成されている。この***部14は、たとえば、1パルスが複数のサブパルスで構成されるレーザが照射される際に、溶融された第1部材10aが堆積されることによって形成される。なお、第2実施形態についても同様である。
 また、第1実施形態では、穿孔部11の軸心が表面13に対して垂直である例を示したが、これに限らず、図11に示す第2変形例による第1部材10bのように、穿孔部11bの軸心が表面13に対して傾斜するように形成されていてもよい。穿孔部11bの内周面には内側に突出する突出部12bが形成されている。この穿孔部11bは、たとえば、レーザの照射方向を表面13に対して斜め(45°以上90°未満)にすることにより形成される。これにより、穿孔部11bを形成する領域の上方に、レーザを照射する際の障害物が存在する場合であっても、穿孔部11bを形成することができる。なお、第2実施形態についても同様である。
 また、第1実施形態では、穿孔部11に1つの突出部12が形成される例を示したが、これに限らず、図12に示す第3変形例による第1部材10cのように、穿孔部11cに複数の突出部121cおよび122cが形成されていてもよい。この穿孔部11cは、たとえば、レーザの出力条件を変更して、レーザを同じ箇所に照射することにより形成することが可能である。このように構成すれば、穿孔部11cの表面積が大きくなるため、より効率的に接合用のレーザのエネルギを熱に変換することができる。なお、図12では突出部は121cおよび122cの2箇所であるが、3箇所以上形成されていてもよい。なお、第2実施形態についても同様である。
 また、図13に示す第1実施形態の第4変形例による第1部材10dのように、位置をずらした複数回のレーザ照射により1つの穿孔部11dを形成するようにしてもよい。すなわち、レーザ照射によって形成される穿孔部の一部が重畳されることにより、1つの穿孔部11dが形成されるようにしてもよい。穿孔部11dの内周面には内側に突出する突出部12dが形成されている。なお、第2実施形態についても同様である。また、上記した第1~第4変形例を適宜組み合わせるようにしてもよい。
 本発明は、異なる材料からなる第1部材および第2部材が接合された接合構造体の製造方法および接合構造体に利用可能である。
 10、10a、10b、10c、10d   第1部材
 11、11b、11c、11d       穿孔部
 12、12b、121c、122c、12d 突出部
 13   表面
 20   第2部材
 30   第1部材
 31   穿孔部
 32   突出部
 33   表面
 100  接合構造体
 111  拡径部(第1拡径部)
 112  縮径部(第1縮径部)
 113  底部
 200  接合構造体
 311  縮径部(第2縮径部)
 312  拡径部(第2拡径部)
 313  縮径部(第3縮径部)
 314  底部

Claims (6)

  1.  第1部材と第2部材とが接合された接合構造体の製造方法であって、
     前記第1部材の表面に開口を有する穿孔部を形成するとともに、前記穿孔部の内周面に内側に突出する突出部を形成する工程と、
     前記第1部材の穿孔部が形成された領域と前記第2部材とを隣接配置する工程と、
     前記第2部材側から前記第1部材の穿孔部が形成された領域にレーザを照射することにより、前記第1部材の穿孔部に前記第2部材を充填して固化させる工程とを備えることを特徴とする接合構造体の製造方法。
  2.  請求項1に記載の接合構造体の製造方法において、
     前記穿孔部は、深さ方向において表面側から底部に向けて開口径が大きくなる第1拡径部と、深さ方向において表面側から底部に向けて開口径が小さくなる第1縮径部とが連なるように形成されており、前記突出部が表面側に配置されることを特徴とする接合構造体の製造方法。
  3.  請求項1に記載の接合構造体の製造方法において、
     前記穿孔部は、深さ方向において表面側から底部に向けて開口径が小さくなる第2縮径部と、深さ方向において表面側から底部に向けて開口径が大きくなる第2拡径部と、深さ方向において表面側から底部に向けて開口径が小さくなる第3縮径部とが連なるように形成されており、前記突出部が底部側に入り込んだ位置に配置されることを特徴とする接合構造体の製造方法。
  4.  請求項1~3のいずれか1つに記載の接合構造体の製造方法において、
     前記第1部材は、金属、熱可塑性樹脂、または、熱硬化性樹脂であることを特徴とする接合構造体の製造方法。
  5.  請求項1~4のいずれか1つに記載の接合構造体の製造方法において、
     前記第2部材は、レーザを透過する樹脂であることを特徴とする接合構造体の製造方法。
  6.  請求項1~5のいずれか1つに記載の接合構造体の製造方法によって製造されたことを特徴とする接合構造体。
     
     
PCT/JP2015/073041 2014-08-22 2015-08-17 接合構造体の製造方法および接合構造体 WO2016027776A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/327,658 US10471660B2 (en) 2014-08-22 2015-08-17 Manufacturing method of bonding structure and bonding structure
CN201580039992.1A CN106536169A (zh) 2014-08-22 2015-08-17 接合结构体的制造方法以及接合结构体
EP15834147.9A EP3184283B1 (en) 2014-08-22 2015-08-17 Bonding structure manufacturing method
KR1020177001688A KR101889346B1 (ko) 2014-08-22 2015-08-17 접합 구조체의 제조방법 및 접합 구조체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014169279A JP6417786B2 (ja) 2014-08-22 2014-08-22 接合構造体の製造方法
JP2014-169279 2014-08-22

Publications (1)

Publication Number Publication Date
WO2016027776A1 true WO2016027776A1 (ja) 2016-02-25

Family

ID=55350720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073041 WO2016027776A1 (ja) 2014-08-22 2015-08-17 接合構造体の製造方法および接合構造体

Country Status (7)

Country Link
US (1) US10471660B2 (ja)
EP (1) EP3184283B1 (ja)
JP (1) JP6417786B2 (ja)
KR (1) KR101889346B1 (ja)
CN (1) CN106536169A (ja)
TW (1) TWI704994B (ja)
WO (1) WO2016027776A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109789516A (zh) * 2016-09-30 2019-05-21 株式会社Lg化学 不同材料的接合体及其制造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6750977B2 (ja) * 2016-08-04 2020-09-02 株式会社フジクラ モード変換器及びモード変換器の製造方法
US11534863B2 (en) 2019-01-22 2022-12-27 Raytheon Technologies Corporation Method for adhesive bonding of titanium components using a fiber laser system
WO2020230198A1 (ja) * 2019-05-10 2020-11-19 昭和電工マテリアルズ株式会社 接合用金属部材及び接合体
JP7188572B2 (ja) * 2019-05-10 2022-12-13 昭和電工マテリアルズ株式会社 接合用金属部材及び接合体
US11578604B2 (en) 2020-03-17 2023-02-14 Raytheon Technologies Corporation Adhesive bonded composite-to-metal hybrid vanes and method of manufacture
WO2021230025A1 (ja) * 2020-05-13 2021-11-18 株式会社ヒロテック 熱可塑性樹脂と金属の接合方法
JP7435510B2 (ja) * 2021-03-12 2024-02-21 トヨタ自動車株式会社 燃料電池セルの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212330A (ja) * 1984-04-06 1985-10-24 Toyota Motor Corp 異種合成樹脂材料の接合方法
JPS60212329A (ja) * 1984-04-06 1985-10-24 Toyota Motor Corp 異種合成樹脂材料の接合方法
JPS6264528A (ja) * 1985-09-18 1987-03-23 Toyota Motor Corp 合成樹脂材料と異種材料の接合方法
JP2009056722A (ja) * 2007-08-31 2009-03-19 Canon Inc レーザ溶着ユニット及びレーザ溶着方法
JP2009302209A (ja) * 2008-06-11 2009-12-24 Nec Electronics Corp リードフレーム、半導体装置、リードフレームの製造方法および半導体装置の製造方法
JP2013058739A (ja) * 2011-08-17 2013-03-28 Dainippon Printing Co Ltd 光半導体装置用リードフレーム、樹脂付き光半導体装置用リードフレーム、光半導体装置、および、光半導体装置用リードフレームの製造方法
JP2014159133A (ja) * 2013-02-20 2014-09-04 Asahi Kasei Chemicals Corp 結合方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4786445A (en) * 1985-07-11 1988-11-22 Allergan, Inc. Method of attaching a fixation member to an intraocular lens
JP2008162288A (ja) 2004-06-02 2008-07-17 Nagoya Industrial Science Research Inst レーザを用いた部材の接合方法
US8192815B2 (en) 2007-07-13 2012-06-05 Apple Inc. Methods and systems for forming a dual layer housing
JP5577707B2 (ja) * 2010-01-12 2014-08-27 日本軽金属株式会社 アルミニウム合金板と樹脂部材とのレーザー接合方法
KR101866579B1 (ko) * 2010-05-04 2018-06-11 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 레이저 펄스의 시리즈를 이용하는 드릴링 방법 및 장치
JP5848104B2 (ja) 2011-11-21 2016-01-27 株式会社ダイセル 複合成形体の製造方法
CN103057117A (zh) * 2012-12-28 2013-04-24 江苏大学 一种提高激光透射焊接连接强度的方法
CN103009626B (zh) * 2012-12-28 2015-06-10 江苏大学 一种激光透射焊接连接方法
CN103071923B (zh) * 2012-12-28 2016-05-25 江苏大学 一种激光透射复合连接方法
JP6264528B2 (ja) 2013-05-31 2018-01-24 株式会社三洋物産 遊技機
CN106715108A (zh) * 2014-08-22 2017-05-24 欧姆龙株式会社 接合构造体以及接合构造体的制造方法
JP6455021B2 (ja) * 2014-08-22 2019-01-23 オムロン株式会社 接合構造体の製造方法
JP6414477B2 (ja) * 2015-02-02 2018-10-31 オムロン株式会社 接合構造体の製造方法
JP2016141092A (ja) * 2015-02-04 2016-08-08 オムロン株式会社 接合構造体の製造方法および接合構造体
JP2016165746A (ja) * 2015-03-10 2016-09-15 オムロン株式会社 接合構造体の製造方法、接合構造体、及びレーザ装置
JP6451421B2 (ja) * 2015-03-12 2019-01-16 オムロン株式会社 接合構造体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60212330A (ja) * 1984-04-06 1985-10-24 Toyota Motor Corp 異種合成樹脂材料の接合方法
JPS60212329A (ja) * 1984-04-06 1985-10-24 Toyota Motor Corp 異種合成樹脂材料の接合方法
JPS6264528A (ja) * 1985-09-18 1987-03-23 Toyota Motor Corp 合成樹脂材料と異種材料の接合方法
JP2009056722A (ja) * 2007-08-31 2009-03-19 Canon Inc レーザ溶着ユニット及びレーザ溶着方法
JP2009302209A (ja) * 2008-06-11 2009-12-24 Nec Electronics Corp リードフレーム、半導体装置、リードフレームの製造方法および半導体装置の製造方法
JP2013058739A (ja) * 2011-08-17 2013-03-28 Dainippon Printing Co Ltd 光半導体装置用リードフレーム、樹脂付き光半導体装置用リードフレーム、光半導体装置、および、光半導体装置用リードフレームの製造方法
JP2014159133A (ja) * 2013-02-20 2014-09-04 Asahi Kasei Chemicals Corp 結合方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3184283A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109789516A (zh) * 2016-09-30 2019-05-21 株式会社Lg化学 不同材料的接合体及其制造方法

Also Published As

Publication number Publication date
EP3184283B1 (en) 2020-10-14
KR101889346B1 (ko) 2018-08-17
EP3184283A1 (en) 2017-06-28
JP2016043561A (ja) 2016-04-04
KR20170020495A (ko) 2017-02-22
US20170210058A1 (en) 2017-07-27
TW201609357A (zh) 2016-03-16
JP6417786B2 (ja) 2018-11-07
TWI704994B (zh) 2020-09-21
EP3184283A4 (en) 2018-04-18
US10471660B2 (en) 2019-11-12
CN106536169A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
JP6417786B2 (ja) 接合構造体の製造方法
WO2016027775A1 (ja) 接合構造体および接合構造体の製造方法
JP6455021B2 (ja) 接合構造体の製造方法
JP6414477B2 (ja) 接合構造体の製造方法
WO2016129392A1 (ja) 接合構造体の製造方法および接合構造体
WO2016129391A1 (ja) 接合構造体の製造方法および接合構造体
WO2016125594A1 (ja) 接合構造体の製造方法および接合構造体
JP6459930B2 (ja) 接合構造体の製造方法および接合構造体
WO2016133079A1 (ja) 接合構造体の製造方法および接合構造体
WO2016140097A1 (ja) 接合方法、接合構造体の製造方法および接合構造体
WO2016143586A1 (ja) 接合構造体の製造方法、接合構造体、及びレーザ装置
JP6432364B2 (ja) 接合構造体の製造方法
WO2016117502A1 (ja) 接合構造体及び接合構造体の製造方法
JP2016168598A (ja) 加工方法、接合構造体の製造方法および接合構造体
WO2016133078A1 (ja) 接合構造体の製造方法及び接合構造体
WO2016140052A1 (ja) 金属部材のレーザ加工方法およびその方法を用いて製造される接合構造体
WO2016117501A1 (ja) レーザ溶着方法および接合構造体
JP2016159577A (ja) 接合構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177001688

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015834147

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015834147

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15327658

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE