WO2016026226A1 - 一种热泵***、洗干一体机及干衣机 - Google Patents

一种热泵***、洗干一体机及干衣机 Download PDF

Info

Publication number
WO2016026226A1
WO2016026226A1 PCT/CN2014/091311 CN2014091311W WO2016026226A1 WO 2016026226 A1 WO2016026226 A1 WO 2016026226A1 CN 2014091311 W CN2014091311 W CN 2014091311W WO 2016026226 A1 WO2016026226 A1 WO 2016026226A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pump
air
pump system
branch
condenser
Prior art date
Application number
PCT/CN2014/091311
Other languages
English (en)
French (fr)
Inventor
吕佩师
许升
宋华诚
单世强
Original Assignee
青岛海尔洗衣机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司 filed Critical 青岛海尔洗衣机有限公司
Priority to US15/503,785 priority Critical patent/US20180016726A1/en
Priority to JP2017510307A priority patent/JP6389563B2/ja
Priority to KR1020177007063A priority patent/KR20170044673A/ko
Priority to EP14900320.4A priority patent/EP3184934B1/en
Publication of WO2016026226A1 publication Critical patent/WO2016026226A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/206Heat pump arrangements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F25/00Washing machines with receptacles, e.g. perforated, having a rotary movement, e.g. oscillatory movement, the receptacle serving both for washing and for centrifugally separating water from the laundry and having further drying means, e.g. using hot air 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/26Heat pumps

Definitions

  • the invention relates to the field of heat pump heating and dehumidification, in particular to a heat pump system, a washing and drying machine and a clothes dryer.
  • Prior art dryers include in-line dryers and condensing dryers. Both the in-line dryer and the condensing dryer connect the air inflow passage and the air outflow passage on the drum in the casing.
  • the difference between the inline type and the condensing type dryer is that the air inflow passage of the inline dryer is equipped with a heater for heating the air flowing into the drum; the air of the condensing dryer The inflow passage and the air outflow passage communicate with each other to form an air duct.
  • the air duct is provided with not only a heating device for heating the air flowing into the washing tub but also a fan for feeding the air heated by the heating device into the drum, and also installing the pair of laundry.
  • a condensing device for cooling the high temperature gas flowing out of the cylinder is also the same as the dryer.
  • a heat pump system in a heat pump drying type dryer or a dryer is used for convection.
  • the air in the duct is dehumidified and heated.
  • the heat pump system includes an evaporator, a compressor, a condenser, and a throttling device, and the evaporator, the compressor, the condenser, and the throttling device are sequentially connected through a pipe to form a refrigerant circuit.
  • the evaporator of the heat pump system is disposed at the air inlet of the air duct.
  • the evaporator When the refrigerant in the heat pump system enters the evaporator, the evaporator evaporates the liquid refrigerant into a gaseous refrigerant. In the process, the evaporator absorbs the surrounding heat as A condensing device in the duct for condensing air flowing through the duct.
  • the condenser of the heat pump system is located in the air passage between the fan and the evaporator.
  • the condenser changes the high temperature and high pressure gaseous refrigerant into a low temperature and high pressure gaseous refrigerant.
  • the condenser will release heat to the outside as a heating device in the duct for heating the air flowing through the duct.
  • a drum type washing and drying machine or a clothes dryer using a heat pump drying method is used, and in a low temperature environment, for example, at 0 ° C, since the water temperature of the rinsing laundry is only slightly higher than 0 ° C, drying starts.
  • the temperature of the air blown from the washing/drying cylinder is close to 0 °C.
  • the saturation temperature at the refrigerant saturation pressure in the evaporator of the heat pump system is much lower than 0 ° C, the load of the compressor system is low, and the input power is small.
  • the heat of the dry air comes from the power input of the compressor system, so the temperature rise in the laundry dryer is also extremely slow, which is not conducive to the efficiency of drying clothes.
  • the evaporation temperature is kept at a low temperature environment below 0 °C for a long time, the evaporator is in contact with the humid air blown out in the drum, the surface of the evaporator fin is condensed with a large amount of frost, the effective area of the evaporator is reduced, and the wind of the circulation duct is blocked.
  • the circulation causes the refrigerant of the compressor system not to be completely vaporized in the evaporator, and the refrigerant in the liquid state enters the compressor along the suction pipe of the compressor, causing the compressor to malfunction.
  • the existing solution is as follows: 1. Add an auxiliary heating pipe (wire) behind the condenser, and the air heated by the condenser is further heated by the heating pipe (wire) to obtain a high drying temperature in a low temperature environment, but The energy consumption level will increase; 2.
  • the inverter compressor is used, and the operation frequency is higher when the temperature is low or when the drying time needs to be accelerated, but the increased cost is more; 3.
  • the large-capacity compressor is used, but at normal temperature. Under the use of large displacement compressors, the energy consumption will be higher; 4, the use of multiple exhaust chamber compressors, this program will also increase operating costs.
  • Still another object of the present invention is to provide a washing and drying machine in which the above-described heat pump system is provided, which can improve laundry drying efficiency.
  • a heat pump system includes an evaporator, a compressor, a condenser, and a refrigerant conditioning subsystem, wherein the evaporator, the compressor, the condenser, and the refrigerant conditioning subsystem are sequentially connected through a pipeline to form a refrigerant circulation loop, the refrigeration
  • the agent adjustment subsystem includes a first branch and a second branch connected in parallel in parallel between the evaporator and the condenser;
  • the first branch includes a first throttling device connected to the evaporator inlet port and a liquid storage device between the first throttling device and the condenser;
  • a second throttling device is connected in series on the second branch.
  • the second branch and the first branch are connected to the outlet of the condenser via a reversing valve.
  • a solenoid valve is disposed on the first branch between the condenser and the liquid storage device and the second branch between the second throttle device and the condenser.
  • the first throttling device is a first capillary tube
  • the second throttling device is a second capillary tube, the length of the first capillary tube being smaller than the length of the second capillary tube.
  • the first throttling device and the second throttling device are the same electronic expansion valve, and the opening degree of the electronic expansion valve is adjustable.
  • the first throttling device and the second throttling device are electronic expansion valves, and the opening degrees of all the electronic expansion valves are adjustable.
  • the first branch and the second throttle between the liquid storage device and the first throttle device A check valve is disposed on the second branch between the device and the solenoid valve.
  • a washing and drying machine comprising an outer cylinder, an air duct and an inner cylinder disposed in the outer cylinder, wherein an air inlet and an air outlet of the air duct are respectively connected to a rear portion and a front portion of the outer cylinder, the air duct Forming a closed circuit with the outer cylinder, the air duct is provided with a fan, and the heat pump system of any one of the above, the evaporator of the heat pump system is disposed at the air inlet of the air duct for convection Condensation is carried out through the air of the air duct, the condenser of which is located in the air passage between the fan and the evaporator for heating the air flowing through the duct.
  • a clothes dryer includes a box body, an air duct and a drying cylinder installed in the box body, and the air inlet and the air outlet of the air duct are respectively connected to the rear portion and the front portion of the drying cylinder to form a closed with the drying cylinder
  • the circuit is provided with a fan, and the heat pump system of any one of the above, wherein the evaporator of the heat pump system is disposed at an air inlet of the air duct for performing air flowing through the air duct. Condensation, the condenser of the heat pump system is located in the air passage between the fan and the evaporator for heating air flowing through the duct.
  • an auxiliary electric heating device is disposed in the air passage between the fan and the air outlet of the air duct.
  • the refrigerant regulating subsystem of the heat pump system includes a first branch and a second branch connected in parallel between the evaporator and the condenser; the first branch includes an outlet connected to the inlet of the evaporator a flow device and a liquid storage device between the first throttle device and the condenser; and a second throttle device connected in series with the second branch.
  • the flow direction of the refrigerant is: a compressor, a condenser, a first branch (a liquid storage device, a first throttling device), an evaporator, and a compressor.
  • the flow direction of the refrigerant is: a compressor, a condenser, a second branch (second throttling device), an evaporator, and a compressor. Therefore, when the temperature is high, the liquid storage device increases the space for accommodating the refrigerant, and the pressure The load does not rise quickly. At low temperatures, the refrigerant enters the evaporator from the condenser only through the second throttling device. Since the space for accommodating the refrigerant is reduced, the compressor load rises rapidly, so that the load of the compressor in a low temperature environment can be increased. Rate of rise.
  • the length of the first capillary is smaller than the length of the second capillary, that is, the length of the second capillary is long, and the capillary in the low temperature state is long to match the superheat of the evaporator in this environment, and is not caused by the pressure rise.
  • the refrigerant entering the evaporator is too much and the evaporation is incomplete, and the problem of compressor failure caused by the refrigerant in the liquid state entering the compressor along the suction pipe of the compressor is avoided.
  • FIG. 1 is a schematic structural view of a heat pump system provided by an embodiment of the apparatus of the present invention
  • FIG. 2 is a schematic structural view of a clothes dryer provided by an embodiment of the apparatus of the present invention.
  • 111 a first throttle device; 112, a first check valve; 114, a liquid storage device; 116, a first solenoid valve;
  • FIG. 1 is a schematic structural view of a heat pump system provided by an embodiment of the apparatus of the present invention.
  • the heat pump system includes an evaporator 3, a compressor 4, a condenser 2, and a refrigerant regulation subsystem 1, and the evaporator 3, the compressor 4, the condenser 2, and the refrigerant regulation subsystem 1 pass The pipes are connected in sequence to form a refrigerant circuit.
  • the refrigerant conditioning subsystem 1 includes a first branch 11 and a second branch 12 connected in parallel between the evaporator 3 and the condenser 2.
  • the first branch 11 includes a first throttling device 111 having an outlet connected to the inlet of the evaporator 3 and a liquid storage device 114 for storing a refrigerant, the liquid storage device 114 being located at the first throttling device 111 Between the condenser 2.
  • a second throttle device 121 is connected in series to the second branch 12 .
  • the second branch 12 and the first branch 11 are connected to the outlet of the condenser 2 through a reversing valve.
  • the reversing valve is connected to the controller, and the reversing valve controls the flow of the refrigerant flowing out of the condenser 2 according to the signal sent by the received controller, and controls the flow of the refrigerant through the first branch pipe 11 or the second branch road 12. Therefore, the purpose of the reversing valve is to control the switching of the refrigerant between the two flow directions.
  • a first electromagnetic valve 116 may be disposed on the first branch pipe 11 between the condenser 2 and the liquid storage device 114, in the second section.
  • Flow loading A second solenoid valve 122 is disposed on the second branch 12 between the inlet 121 and the outlet of the condenser 2.
  • the first solenoid valve 116 and the second solenoid valve 122 are both connected to the controller, and the controller controls the flow of the refrigerant flowing out of the condenser 2 by controlling the opening or closing of the first solenoid valve 116 or the second solenoid valve 122.
  • the refrigerant is controlled to flow through the first branch pipe 11 or the second branch pipe 12. Therefore, the purpose of using a solenoid valve is also to control the switching of the refrigerant between the two flow directions.
  • the flow direction of the refrigerant is: the high-temperature high-pressure gaseous refrigerant flowing out from the compressor 4 flows through the condenser 2, and becomes a liquid condensing agent after the condensation of the condenser 2, and the condenser is processed.
  • the liquid condensing agent enters the liquid storage device 114 through the reversing valve, and the liquid storage device 114 temporarily stores the refrigerant, and then the refrigerant enters the evaporator from the liquid storage device 114 through the first throttling device 111.
  • the evaporator 3 evaporates the liquid refrigerant to become a gaseous refrigerant. In this process, the evaporator 3 absorbs the surrounding heat, and the gaseous refrigerant enters the compressor 4 along the pipe.
  • the flow direction of the refrigerant is: the high-temperature high-pressure gaseous refrigerant flowing out from the compressor 4 flows through the condenser 2, and becomes a liquid condensing agent after the condensation of the condenser 2, and the condenser is processed.
  • the liquid condensing agent enters the second branch 12 through the reversing valve, enters the second throttling device 121 along the second branch 12, and then flows to the evaporator 3, which conducts the liquid refrigerant Evaporation becomes a gaseous refrigerant, and in this process, the evaporator 3 absorbs the surrounding heat, and the gaseous refrigerant enters the compressor 4 along the pipe.
  • the compressor 4 is started, and first the reversing valve is closed, so that the refrigerant in the liquid storage device 114 is returned to the refrigeration system by the compressor 4. Thereafter, the reversing valve opens the second branch 12 to circulate the refrigerant in the drying process. The space for the branch to accommodate the refrigerant is reduced, so that the load of the compressor 4 rises faster.
  • the first throttling device 111 is a first capillary tube
  • the second throttling device 121 is a second capillary tube.
  • the length of the first capillary is smaller than the length of the second capillary.
  • the second capillary is set to be long to match the superheat of the evaporator 3 in a low temperature state. There is no excessive evaporation of the refrigerant entering the evaporator 3 due to the pressure rise, and the evaporation is incomplete.
  • the selection of the first throttling device 111 and the second throttling device 121 is not limited thereto, and the first throttling device 111 and the second throttling device 121 may also respectively use an electronic expansion valve, two The electronic expansion valves on the branch road are respectively connected to the controller, and the electronic expansion valve adjusts its opening degree according to the command signal sent by the controller.
  • the degree of opening of the electronic expansion valve on the first branch 11 during normal operation is greater than the degree of opening of the electronic expansion valve on the second branch 12 during normal operation.
  • the first throttle device 111 and the second throttle device 121 can also use the same electronic expansion valve, and the electronic expansion valve is connected to the controller, and the electronic expansion valve adjusts its opening degree according to the command signal sent by the controller.
  • the opening degree of the electronic expansion valve is also different. Generally, the opening degree of the electronic expansion valve when the first branch 11 is working normally is greater than the opening degree of the electronic expansion valve when the second branch 12 is working normally.
  • the first check valve 112 is disposed on the first branch 11 between the liquid storage device 114 and the first throttle device 111.
  • the first check valve 112 functions to prevent the refrigerant from flowing back into the liquid storage device 114 in the low temperature mode of operation.
  • the second between the second throttle device 121 and the second electromagnetic valve 122 may be A second check valve is disposed on the branch 113 to avoid accumulation of refrigerant or lubricating oil in the pipeline under high ambient temperature conditions.
  • the liquid storage device 114 is a liquid storage tank. Of course, it is not limited thereto, and the liquid storage device may be selected.
  • the present application also provides a clothes dryer, as shown in FIG. 2, the clothes dryer includes a box body 6, a air duct 5, and a drying cylinder 7 installed in the box body 6, the air duct 5
  • the air inlet 51 and the air outlet 52 are respectively connected to the rear portion and the front portion of the drying cylinder 7, and the air duct 5 forms a closed circuit with the drying cylinder 7, and the air duct 5 is provided with a fan 54.
  • the clothes dryer further includes the heat pump system described above, and the evaporator 3 of the heat pump system is disposed at the air inlet 51 of the air duct 5 as a condensing device in the air duct 5 for flowing through the air duct
  • the air of 5 is condensed, and the condenser 2 of the heat pump system is located in the air duct 5 between the fan 54 and the evaporator 3 as a heating means in the duct 5 for heating the air flowing through the duct 5.
  • an auxiliary electric heating device 53 is provided in the air duct 5 between the fan 54 and the air outlet 52 of the air duct 5 for performing air flowing through the air duct 5. Further heating.
  • a filter 55 is disposed at the air inlet 51 of the air duct 5, and the filter 55 can filter the air entering the air duct 5 from the drying cylinder 7 to prevent air.
  • the debris such as dander enters the air duct 5 to ensure cleanliness in the air duct 5.
  • the drying process of the dryer is: the fan 54 drives the air to circulate in the air duct 5 and the drying cylinder 7, while the condenser 2 of the heat pump system heats the air flowing therethrough, and the hot air enters the drying cylinder 7,
  • the water vapor in the clothes is evaporated and taken away, and then the air containing the water vapor passes through the evaporator 3 of the heat pump system, and the evaporator 3 absorbs the surrounding heat to cool the surrounding air, so that the water vapor in the hot air is condensed into liquid water. And it is discharged to the outside with the tap water.
  • the dry air from which the moisture is removed is again heated by the condenser 2 of the heat pump system, and again enters the drying cylinder 7 to dry the laundry. This process continues to cycle until the clothes are dried.
  • the application further provides a washing and drying machine, which comprises an outer cylinder, an air duct and an inner cylinder disposed in the outer cylinder, wherein the air inlet and the air outlet of the air duct are respectively connected to the outer cylinder Back and front
  • the air duct and the outer cylinder form a closed loop, and a fan is disposed in the air duct.
  • the washing and drying machine further includes the heat pump system according to any one of the above, wherein the evaporator 3 of the heat pump system is disposed at an air inlet of the air duct as a condensing device in the air passage for flowing through the air duct The air is condensed, and the condenser 2 of the heat pump system is located in the air passage between the fan 54 and the evaporator 3 as a heating means in the duct for heating the air flowing through the duct.
  • an auxiliary electric heating device is provided in the air passage between the fan and the air outlet of the air duct for further heating the air flowing through the air duct.
  • the drying process of the washing and drying machine is similar to the drying process of the dryer, and will not be described here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

提供了一种热泵***、洗干一体机及干衣机。热泵***包括蒸发器(3)、压缩机(4)、冷凝器(2)以及制冷剂调节子***(1),蒸发器(3)、压缩机(4)、冷凝器(2)以及制冷剂调节子***(1)通过管道依次连通形成制冷剂循环回路,制冷剂调节子***(1)包括并联连接在蒸发器(3)和冷凝器(2)之间的第一支路(11)和第二支路(12);第一支路(11)包括出口与蒸发器(3)入管口相连的第一节流装置(111)以及位于所述第一节流装置(111)和冷凝器(2)之间的储液装置(114);第二支路(12)上串联有第二节流装置(121)。在环境温度高时,储液装置(114)使得容纳制冷剂的空间增大,压力负荷不会快速上升;在环境温度低时,容纳制冷剂的空间减小,压缩机(4)负荷上升较快。

Description

一种热泵***、洗干一体机及干衣机 技术领域
本发明涉及热泵加热除湿领域,具体涉及一种热泵***、洗干一体机及干衣机。
背景技术
现有技术中的干衣机包括直排式干衣机和冷凝式干衣机。直排式干衣机和冷凝式干衣机均是在箱体内的滚筒上接通空气流入通路和空气流出通路。直排式和冷凝式的干衣机的不同之处在于,直排式干衣机的空气流入通路内安装有用于给流入洗衣筒内的空气进行加热的加热器;冷凝式干衣机的空气流入通路和空气流出通路连通形成风道,风道内不仅安装有用于给流入洗衣筒内的空气进行加热的加热装置以及将加热装置加热后的空气送入滚筒内的风扇,还安装有对从洗衣筒内流出的高温气体进行降温的冷凝装置。同样,现有洗干一体机的烘干***也和干衣机相同。
现有技术中,许多直排式干衣机或洗干一体机在烘干过程中采用热泵烘干方式,采用热泵烘干方式的洗干一体机或干衣机中的热泵***用于对流经风道的空气进行除湿加热。热泵***包括蒸发器、压缩机、冷凝器以及节流装置,所述蒸发器、压缩机、冷凝器以及节流装置通过管道依次连通形成制冷剂循环回路。热泵***的蒸发器设置于风道的进风口处,热泵***内的制冷剂进入蒸发器内时,蒸发器将液态制冷剂蒸发为气态制冷剂,此过程中,蒸发器吸收周围的热量,作为风道内的冷凝装置,用于对流经风道的空气进行冷凝。热泵***的冷凝器位于所述风机与蒸发器之间的风道内,热泵***内的制冷剂进入冷凝器内时,冷凝器将高温高压的气态制冷剂变为低温高压的气态制冷剂,此时 冷凝器将向外界放出热量,作为风道内的加热装置,用于加热流经风道的空气。
但是,现有技术中采用热泵烘干方式的滚筒式洗干一体机或干衣机,在低温环境下,比如0℃环境下,由于漂洗衣物的水温也仅略高于0℃,烘干开始阶段,从洗衣/干衣筒内吹出的空气温度接近0℃。这种情况下,热泵***的蒸发器内的制冷剂饱和压力下的饱和温度远低于0℃,压缩机***的负荷低,输入功率小。而烘干空气的热量来源于压缩机***的电力输入,所以洗衣干衣内的温度上升也极其缓慢,不利于烘干衣物的效率。并且蒸发温度长时间保持在0℃以下低温环境中,蒸发器与滚筒内吹出的潮湿空气接触,蒸发器翅片表面会大量凝结霜冻,蒸发器有效面积减小,并会阻塞循环风道中风的循环,使压缩机***的制冷剂在蒸发器中不能完全汽化,出现液体状态的制冷剂沿压缩机吸气管进入压缩机,造成压缩机故障。
现有的解决方案为:1、在冷凝器后面增加辅助加热管(丝),经过冷凝器被加热的空气继续被加热管(丝)再加热,在低温环境下获得高的烘干温度,但是能耗水平会提高;2、采用变频压缩机,低温下或者需要加快烘干时间时,使用较高的运转频率进行工作,但增加的成本较多;3、使用大容量压缩机,但在常温下,使用大排量压缩机的能耗会较高;4、采用多排气腔压缩机,该方案同样会增加运行成本。
基于以上描述,亟需要一种新的热泵***,以解决现有技术中存在的衣物烘干效率低,压缩机容易出故障的问题。
发明内容
有鉴于此,本发明的目的在于提供一种热泵***,该***可以提高低温环境下压缩机的负荷上升速率。
本发明的再一个目的在于提供一种洗干一体机,该洗干一体机内设置有上述的热泵***,可以提高衣物烘干效率。
本发明的还一个目的在于提供一种干衣机,该干衣机内设置有上述的热泵***,可以提高衣物烘干效率。
本发明实施例采用以下技术方案:
一种热泵***,包括蒸发器、压缩机、冷凝器以及制冷剂调节子***,所述蒸发器、压缩机、冷凝器以及制冷剂调节子***通过管道依次连通形成制冷剂循环回路,所述制冷剂调节子***包括并联并联连接在蒸发器和冷凝器之间的第一支路和第二支路;
所述第一支路包括出口与蒸发器入管口相连的第一节流装置以及位于所述第一节流装置和冷凝器之间的储液装置;
所述第二支路上串联有第二节流装置。
作为优选,所述第二支路和第一支路通过换向阀与所述冷凝器的出管口相连。
作为优选,所述冷凝器与储液装置之间的第一支路上以及第二节流装置与冷凝器之间的第二支路上分别设置有电磁阀。
作为优选,所述第一节流装置为第一毛细管,所述第二节流装置为第二毛细管,所述第一毛细管的长度小于第二毛细管的长度。
作为优选,所述第一节流装置以及第二节流装置为同一个电子膨胀阀,所述电子膨胀阀的开启度大小可调。
作为优选,所述第一节流装置以及第二节流装置均为电子膨胀阀,所有电子膨胀阀的开启度大小可调。
作为优选,所述储液装置与第一节流装置之间的第一支路上以及第二节流 装置与电磁阀之间的第二支路上分别设置有单向阀。
一种洗干一体机,包括外筒、风道以及设置于所述外筒内的内筒,所述风道的进风口和出风口分别连接外筒的后部和前部,所述风道与外筒形成一个闭合的回路,所述风道内设置有风机,还包括以上任一项所述的热泵***,所述热泵***的蒸发器设置于所述风道的进风口处,用于对流经风道的空气进行冷凝,所述热泵***的冷凝器位于所述风机与蒸发器之间的风道内,用于加热流经风道的空气。
一种干衣机,包括箱体、风道以及安装在所述箱体内的干燥筒,所述风道的进风口和出风口分别连接干燥筒的后部和前部,与干燥筒形成一个闭合的回路,所述风道内设置有风机,还包括以上任一项所述的热泵***,所述热泵***的蒸发器设置于所述风道的进风口处,用于对流经风道的空气进行冷凝,所述热泵***的冷凝器位于所述风机与蒸发器之间的风道内,用于加热流经风道的空气。
作为优选,在所述风机与所述风道的出风口之间的风道内设置有辅助电加热装置。
本发明实施例提出的技术方案的有益技术效果是:
(1)由于热泵***的制冷剂调节子***包括并联连接在蒸发器和冷凝器之间的第一支路和第二支路;所述第一支路包括出口与蒸发器入管口相连的第一节流装置以及位于所述第一节流装置和冷凝器之间的储液装置;所述第二支路上串联有第二节流装置。在环境温度高时,制冷剂的流动方向为:压缩机、冷凝器、第一支路(储液装置、第一节流装置)、蒸发器、压缩机。在环境温度低时,制冷剂的流动方向为:压缩机、冷凝器、第二支路(第二节流装置)、蒸发器、压缩机。所以,在温度高时,储液装置使得容纳制冷剂的空间增大,压力 负荷不会快速上升。而在低温时,制冷剂从冷凝器中只经过第二节流装置进入蒸发器,由于容纳制冷剂的空间减小,所以压缩机负荷会上升较快,因此可以提高低温环境下压缩机的负荷上升速率。
(2)所述第一毛细管的长度小于第二毛细管的长度,即第二毛细管的长度较长,低温状态设置毛细管较长是为了匹配此环境下蒸发器的过热度,不会由于压力上升较快进入蒸发器的制冷剂过多而蒸发不完全,避免液体状态的制冷剂沿压缩机吸气管进入压缩机所造成的压缩机故障的问题。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对本发明实施例描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本发明实施例的内容和这些附图获得其他的附图。
图1是本发明装置实施例提供的热泵***的结构示意图;
图2是本发明装置实施例提供的干衣机的结构示意图。
图中:
1、制冷剂调节子***;2、冷凝器;3、蒸发器;4、压缩机;5、风道;6、箱体;7、干燥筒;
11、第一支路;12、第二支路;
111、第一节流装置;112、第一单向阀;114、储液装置;116、第一电磁阀;
121、第二节流装置;122、第二电磁阀;
51、进风口;52、出风口;53、辅助电加热装置;54、风机;55、过滤网。
具体实施方式
为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本发明实施例的技术方案作进一步的详细描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本方案从一个新的角度对现有技术中存在的低温下压缩机负荷问题进行了解决。图1是本发明装置实施例提供的热泵***的结构示意图。如图1所示,该热泵***包括蒸发器3、压缩机4、冷凝器2以及制冷剂调节子***1,所述蒸发器3、压缩机4、冷凝器2以及制冷剂调节子***1通过管道依次连通形成制冷剂循环回路。其中,所述制冷剂调节子***1包括并联连接在蒸发器3和冷凝器2之间的第一支路11和第二支路12。
所述第一支路11包括出口与蒸发器3入管口相连的第一节流装置111以及用于储存制冷剂的储液装置114,所述储液装置114位于所述第一节流装置111和冷凝器2之间。
所述第二支路12上串联有第二节流装置121。
于本实施例中,作为优选方案,所述第二支路12和第一支路11通过换向阀与所述冷凝器2的出管口相连。换向阀与控制器相连接,换向阀根据接收到的控制器发送的信号控制从冷凝器2流出的制冷剂的流向,控制制冷剂流经第一支管11或者第二支路12。所以采用换向阀的目的是控制制冷剂在两个流向之间进行切换。
当然,并不局限于以上方案,作为另一种优选方案,还可以在所述冷凝器2与储液装置114之间的第一支管11上设置第一电磁阀116,在所述第二节流装 置121与冷凝器2的出管口之间的第二支路12上设置第二电磁阀122。所述第一电磁阀116和第二电磁阀122均与控制器相连,控制器通过控制第一电磁阀116或第二电磁阀122的开启或关闭来控制从冷凝器2流出的制冷剂的流向,控制制冷剂流经第一支管11或者第二支路12。所以采用电磁阀的目的也是控制制冷剂在两个流向之间进行切换。
以下介绍热泵***的工作过程:
在环境温度高时,制冷剂的流动方向为:从压缩机4流出的高温高压的气态制冷剂流经冷凝器2,经过冷凝器2的冷凝作用后变为液态的冷凝剂,此过程冷凝器2向外界放热,液态的冷凝剂经过换向阀进入储液装置114,储液装置114对制冷剂进行暂时的储存,之后制冷剂从储液装置114经过第一节流装置111进入蒸发器3,蒸发器3将液态制冷剂进行蒸发,变为气态制冷剂,此过程蒸发器3吸收周围的热量,气态制冷剂沿着管道进入压缩机4。
在环境温度低时,制冷剂的流动方向为:从压缩机4流出的高温高压的气态制冷剂流经冷凝器2,经过冷凝器2的冷凝作用后变为液态的冷凝剂,此过程冷凝器2向外界放热,液态的冷凝剂经过换向阀进入第二支路12,沿着第二支路12进入第二节流装置121,之后流向蒸发器3,蒸发器3将液态制冷剂进行蒸发,变为气态制冷剂,此过程蒸发器3吸收周围的热量,气态制冷剂沿着管道进入压缩机4。
因此,在温度高时,制冷剂会由于储液装置114的空间容纳,压力负荷不会快速上升。而在低温时,压缩机4启动,首先换向阀关闭,使储液装置114内的制冷剂在压缩机4的作用下回流到制冷***中。之后换向阀接通第二支路12,使制冷剂进行烘干过程循环,此支路由于容纳制冷剂的空间减小,所以压缩机4负荷会上升较快。
于本实施例中,作为优选方案,所述第一节流装置111为第一毛细管,所述第二节流装置121为第二毛细管。
于本实施例中,作为优选方案,所述第一毛细管的长度小于第二毛细管的长度。设置第二毛细管较长是为了匹配低温状态下蒸发器3的过热度。不会由于压力上升较快进入蒸发器3的制冷剂过多而蒸发不完全。
当然,所述第一节流装置111和第二节流装置121的选择并不局限于此,所述第一节流装置111以及第二节流装置121还可以分别使用电子膨胀阀,两条支路上的电子膨胀阀分别与控制器相连,电子膨胀阀根据控制器发送的指令信号调节自身的开启度。第一支路11上的电子膨胀阀正常工作时的开启度大于第二支路12上的电子膨胀阀正常工作时的开启度。
所述第一节流装置111以及第二节流装置121还可以使用同一个电子膨胀阀,电子膨胀阀与控制器相连,电子膨胀阀根据控制器发送的指令信号调节自身的开启度。***使用不同的支路时,电子膨胀阀的开启度也不同,通常第一支路11正常工作时电子膨胀阀的开启度大于第二支路12正常工作时电子膨胀阀的开启度。
于本实施例中,作为优选方案,所述储液装置114与第一节流装置111之间的第一支路11上设置有第一单向阀112。第一单向阀112的作用是避免制冷剂在低温模式运转下回流到储液装置114内。
于本实施例中,如果第二支路12上的第二电磁阀122到第二毛细管的距离较大,也可以在所述第二节流装置121与第二电磁阀122之间的第二支路113上设置有第二单向阀,避免在高环境温度状态下管道内聚集制冷剂或润滑油。
于本实施例中,作为优选方案,所述储液装置114为储液罐,当然,并不局限于此,还可以选择其储液装置。
本申请还提供了一种干衣机,如图2所示,所述干衣机包括箱体6、风道5以及安装在所述箱体6内的干燥筒7,所述风道5的进风口51和出风口52分别连接干燥筒7的后部和前部,所述风道5与干燥筒7形成一个闭合的回路,所述风道5内设置有风机54。所述干衣机还包括以上所述的热泵***,所述热泵***的蒸发器3设置于所述风道5的进风口51处,作为风道5内的冷凝装置,用于对流经风道5的空气进行冷凝,所述热泵***的冷凝器2位于所述风机54与蒸发器3之间的风道5内,作为风道5内的加热装置,用于加热流经风道5的空气。
于本实施例中,作为优选方案,在所述风机54与所述风道5的出风口52之间的风道5内设置有辅助电加热装置53,用于对流经风道5的空气进行进一步的加热。
于本实施例中,作为优选方案,所述风道5的进风口51处设置有过滤网55,所述过滤网55可以对从干燥筒7进入风道5内的空气进行过滤,防止空气中的毛屑等杂物进入风道5,保障风道5内的清洁卫生。
所述干衣机的烘干过程为:风机54驱动空气在风道5和干燥筒7内循环流动,同时热泵***的冷凝器2对流经其处的空气进行加热,热空气进入干燥筒7,将衣物中的水汽蒸发出来并带走,然后含有水汽的空气经过热泵***的蒸发器3,蒸发器3吸收周围的热量使得周围的空气变冷,使得热空气中的水汽受冷凝结成液态水并随自来水一块排出到机外。除去水汽的干燥空气被热泵***的冷凝器2再次加热,并再次进入干燥筒7干燥衣物。此过程不断循环进行,直至衣物被烘干。
本申请还提供了一种洗干一体机,所述洗干一体机包括外筒、风道以及设置于所述外筒内的内筒,所述风道的进风口和出风口分别连接外筒的后部和前 部,所述风道与外筒形成一个闭合的回路,所述风道内设置有风机。所述洗干一体机还包括以上任一项所述的热泵***,所述热泵***的蒸发器3设置于所述风道的进风口处,作为风道内的冷凝装置,用于对流经风道的空气进行冷凝,所述热泵***的冷凝器2位于所述风机54与蒸发器3之间的风道内,作为风道内的加热装置,用于加热流经风道的空气。
于本实施例中,作为优选方案,在所述风机与所述风道的出风口之间的风道内设置有辅助电加热装置,用于对流经风道的空气进行进一步的加热。
所述洗干一体机的烘干过程与所述干衣机的烘干过程相似,在此不做累述。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种热泵***,包括蒸发器、压缩机、冷凝器以及制冷剂调节子***,所述蒸发器、压缩机、冷凝器以及制冷剂调节子***通过管道依次连通形成制冷剂循环回路,其特征在于,所述制冷剂调节子***包括并联连接在蒸发器和冷凝器之间的第一支路和第二支路;
    所述第一支路包括出口与蒸发器入管口相连的第一节流装置以及位于所述第一节流装置和冷凝器之间的储液装置;
    所述第二支路上串联有第二节流装置。
  2. 如权利要求1所述的热泵***,其特征在于,所述第二支路和第一支路通过换向阀与所述冷凝器的出管口相连。
  3. 如权利要求1所述的热泵***,其特征在于,所述冷凝器与储液装置之间的第一支路上以及第二节流装置与冷凝器之间的第二支路上分别设置有电磁阀。
  4. 如权利要求1所述的热泵***,其特征在于,所述第一节流装置为第一毛细管,所述第二节流装置为第二毛细管,所述第一毛细管的长度小于第二毛细管的长度。
  5. 如权利要求1所述的热泵***,其特征在于,所述第一节流装置以及第二节流装置为同一个电子膨胀阀,所述电子膨胀阀的开启度大小可调。
  6. 如权利要求1所述的热泵***,其特征在于,所述第一节流装置以及第二节流装置均为电子膨胀阀,所有电子膨胀阀的开启度大小可调。
  7. 如权利要求3所述的热泵***,其特征在于,所述储液装置与第一节流装置之间的第一支路上以及第二节流装置与电磁阀之间的第二支路上分别设置有单向阀。
  8. 一种洗干一体机,包括外筒、风道以及设置于所述外筒内的内筒,所述 风道的进风口和出风口分别连接外筒的后部和前部,所述风道与外筒形成一个闭合的回路,所述风道内设置有风机,其特征在于,还包括如权利要求1至7任一项所述的热泵***,所述热泵***的蒸发器设置于所述风道的进风口处,用于对流经风道的空气进行冷凝,所述热泵***的冷凝器位于所述风机与蒸发器之间的风道内,用于加热流经风道的空气。
  9. 一种干衣机,包括箱体、风道以及安装在所述箱体内的干燥筒,所述风道的进风口和出风口分别连接干燥筒的后部和前部,与干燥筒形成一个闭合的回路,所述风道内设置有风机,其特征在于,还包括如权利要求1至7任一项所述的热泵***,所述热泵***的蒸发器设置于所述风道的进风口处,用于对流经风道的空气进行冷凝,所述热泵***的冷凝器位于所述风机与蒸发器之间的风道内,用于加热流经风道的空气。
  10. 如权利要求9所述的干衣机,其特征在于,在所述风机与所述风道的出风口之间的风道内设置有辅助电加热装置。
PCT/CN2014/091311 2014-08-18 2014-11-17 一种热泵***、洗干一体机及干衣机 WO2016026226A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/503,785 US20180016726A1 (en) 2014-08-18 2014-11-17 Heat pump system, washing-drying integrated machine and clothes dryer
JP2017510307A JP6389563B2 (ja) 2014-08-18 2014-11-17 ヒートポンプシステム、洗濯乾燥機及び乾燥機
KR1020177007063A KR20170044673A (ko) 2014-08-18 2014-11-17 열 펌프 시스템, 세탁건조기 및 의류건조기
EP14900320.4A EP3184934B1 (en) 2014-08-18 2014-11-17 Heat pump system, combo washer-dryer, and dryer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410406212.X 2014-08-18
CN201410406212.XA CN105466078A (zh) 2014-08-18 2014-08-18 一种热泵***、洗干一体机及干衣机

Publications (1)

Publication Number Publication Date
WO2016026226A1 true WO2016026226A1 (zh) 2016-02-25

Family

ID=55350141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091311 WO2016026226A1 (zh) 2014-08-18 2014-11-17 一种热泵***、洗干一体机及干衣机

Country Status (6)

Country Link
US (1) US20180016726A1 (zh)
EP (1) EP3184934B1 (zh)
JP (1) JP6389563B2 (zh)
KR (1) KR20170044673A (zh)
CN (1) CN105466078A (zh)
WO (1) WO2016026226A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106015657A (zh) * 2016-06-29 2016-10-12 无锡小天鹅股份有限公司 用于干衣机或洗干一体机的单向阀及干衣机或洗干一体机
CN109059411A (zh) * 2018-08-30 2018-12-21 Tcl家用电器(合肥)有限公司 冰箱及其控制方法、控制装置、可读存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108951047B (zh) * 2017-05-17 2021-10-01 青岛海尔洗涤电器有限公司 一种可调整***负荷的热泵***及干衣机及控制方法
CN110965292A (zh) * 2018-09-29 2020-04-07 青岛海尔滚筒洗衣机有限公司 一种衣物处理装置及其控制方法
JP7149463B2 (ja) * 2019-04-09 2022-10-07 パナソニックIpマネジメント株式会社 洗濯機
KR20210002281A (ko) * 2019-06-28 2021-01-07 엘지전자 주식회사 의류처리장치
CN114182504B (zh) * 2021-11-30 2022-08-26 珠海格力电器股份有限公司 一种压缩机的散热控制方法及使用其的热泵衣物处理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3264837A (en) * 1965-04-09 1966-08-09 Westinghouse Electric Corp Refrigeration system with accumulator means
CN1050764A (zh) * 1989-10-05 1991-04-17 莫斯科工艺研究所 压缩式制冷机
JPH04203757A (ja) * 1990-11-30 1992-07-24 Hitachi Ltd 空気調和機
CN1645016A (zh) * 2005-01-27 2005-07-27 广东科龙电器股份有限公司 一种高温自适应分体式空调器
CN102330316A (zh) * 2011-08-12 2012-01-25 海尔集团公司 一种具有前后双烘干进风口的洗干一体机及控制方法
CN102677438A (zh) * 2012-04-27 2012-09-19 海尔集团公司 干衣机和干衣机的烘干方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2983269B2 (ja) * 1990-09-14 1999-11-29 株式会社東芝 空気調和機
JP2002106959A (ja) * 2000-09-28 2002-04-10 Sanyo Electric Co Ltd ヒートポンプ給湯機
JP3906637B2 (ja) * 2000-12-26 2007-04-18 三菱電機株式会社 冷凍冷蔵庫
JP2004205116A (ja) * 2002-12-25 2004-07-22 Toshiba Kyaria Kk 冷温水発生装置およびその制御方法
US7178362B2 (en) * 2005-01-24 2007-02-20 Tecumseh Products Cormpany Expansion device arrangement for vapor compression system
CN2847128Y (zh) * 2005-11-01 2006-12-13 张文化 多功能三合一空调热水器
JP2009056078A (ja) * 2007-08-31 2009-03-19 Sanyo Electric Co Ltd 洗濯乾燥機
JP2009097779A (ja) * 2007-10-16 2009-05-07 Denso Corp 超臨界冷凍サイクル
JP5239897B2 (ja) * 2009-01-26 2013-07-17 パナソニック株式会社 冷蔵庫
CN101893356B (zh) * 2010-06-30 2012-08-22 广东美的电器股份有限公司 空调器及空调器控制方法
JP5634597B2 (ja) * 2011-04-25 2014-12-03 三菱電機株式会社 気液分離器及びこの気液分離器を搭載した冷凍サイクル装置
EP2527522B1 (en) * 2011-05-26 2013-12-25 Electrolux Home Products Corporation N.V. A heat pump laundry dryer
JP2013085681A (ja) * 2011-10-18 2013-05-13 Panasonic Corp 衣類乾燥機
JP2013190906A (ja) * 2012-03-13 2013-09-26 Panasonic Corp 自動販売機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3264837A (en) * 1965-04-09 1966-08-09 Westinghouse Electric Corp Refrigeration system with accumulator means
CN1050764A (zh) * 1989-10-05 1991-04-17 莫斯科工艺研究所 压缩式制冷机
JPH04203757A (ja) * 1990-11-30 1992-07-24 Hitachi Ltd 空気調和機
CN1645016A (zh) * 2005-01-27 2005-07-27 广东科龙电器股份有限公司 一种高温自适应分体式空调器
CN102330316A (zh) * 2011-08-12 2012-01-25 海尔集团公司 一种具有前后双烘干进风口的洗干一体机及控制方法
CN102677438A (zh) * 2012-04-27 2012-09-19 海尔集团公司 干衣机和干衣机的烘干方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106015657A (zh) * 2016-06-29 2016-10-12 无锡小天鹅股份有限公司 用于干衣机或洗干一体机的单向阀及干衣机或洗干一体机
CN109059411A (zh) * 2018-08-30 2018-12-21 Tcl家用电器(合肥)有限公司 冰箱及其控制方法、控制装置、可读存储介质

Also Published As

Publication number Publication date
JP6389563B2 (ja) 2018-09-12
JP2017526887A (ja) 2017-09-14
EP3184934B1 (en) 2019-06-19
EP3184934A1 (en) 2017-06-28
KR20170044673A (ko) 2017-04-25
US20180016726A1 (en) 2018-01-18
EP3184934A4 (en) 2018-04-18
CN105466078A (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
WO2016026226A1 (zh) 一种热泵***、洗干一体机及干衣机
KR101613962B1 (ko) 히트펌프 사이클을 구비한 의류처리장치 및 이의 제어방법
KR101613966B1 (ko) 의류처리장치
KR101613963B1 (ko) 히트펌프 사이클을 구비한 의류처리장치
KR102009278B1 (ko) 운전모드에 따라 변경이 가능한 팽창변을 구비한 의류건조기 및 이의 운전방법
JP2007175528A (ja) 洗濯乾燥機
EP2060671B1 (en) Home laundry drier
KR102364677B1 (ko) 의류처리장치의 제어방법
JP2008048810A (ja) 衣類乾燥装置
CN105316920B (zh) 干衣机和干衣机热泵***及其控制方法
JP2007082864A (ja) 衣類乾燥機
KR20110029579A (ko) 히트펌프식 건조기 및 히트펌프식 건조기 제어방법
JP2006087484A (ja) 洗濯乾燥機
KR101718041B1 (ko) 의류건조기 및 이의 제어방법
JP6518498B2 (ja) 洗濯乾燥機
JP2018114037A (ja) 衣類乾燥機
WO2014146704A1 (en) Appliance for drying laundry
JP2008183335A (ja) 洗濯乾燥システム
KR101760331B1 (ko) 제습 건조기
JP2013031503A (ja) 洗濯乾燥機、乾燥制御方法および洗濯方法
JP6321870B2 (ja) 冷凍サイクル装置
JP2013113462A (ja) 冷却装置および圧縮空気除湿装置
JP2014079391A (ja) 衣類乾燥機
CN112824578B (zh) 一种衣物处理设备的控制方法及衣物处理设备
EP2745760A1 (en) Laundry or tableware treating appliance having a heat pump system exploiting a reduced amount of refrigerant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900320

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510307

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177007063

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014900320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014900320

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15503785

Country of ref document: US