WO2016015657A1 - 高分散、粘度可控的碳纳米管透明电极墨水 - Google Patents

高分散、粘度可控的碳纳米管透明电极墨水 Download PDF

Info

Publication number
WO2016015657A1
WO2016015657A1 PCT/CN2015/085530 CN2015085530W WO2016015657A1 WO 2016015657 A1 WO2016015657 A1 WO 2016015657A1 CN 2015085530 W CN2015085530 W CN 2015085530W WO 2016015657 A1 WO2016015657 A1 WO 2016015657A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
carrier
acid
viscosity
transparent electrode
Prior art date
Application number
PCT/CN2015/085530
Other languages
English (en)
French (fr)
Inventor
郝海燕
蔡丽菲
戴雷
Original Assignee
北京阿格蕾雅科技发展有限公司
广东阿格蕾雅光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京阿格蕾雅科技发展有限公司, 广东阿格蕾雅光电材料有限公司 filed Critical 北京阿格蕾雅科技发展有限公司
Priority to KR1020177003541A priority Critical patent/KR20170041739A/ko
Publication of WO2016015657A1 publication Critical patent/WO2016015657A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks

Definitions

  • the invention relates to a conductive ink containing carbon nanotubes, in particular to a carbon nanotube composite conductive ink with high dispersion and good viscosity controllability.
  • Carbon nanotubes are carbon materials with typical lamellar hollow structure characteristics.
  • the tube body constituting carbon nanotubes is composed of hexagonal graphite carbon ring structural units and has a special structure (radial size is nanometer order One-dimensional quantum material with an axial dimension of the order of microns.
  • Its tube wall is composed of several layers to tens of layers of coaxial tubes, and the layer is kept at a fixed distance of about 0.34 nm, and the diameter is generally 2-20 nm.
  • the P electrons of the carbon atoms of the carbon nanotubes form a wide range of delocalized ⁇ bonds, and thus the conjugation effect is remarkable. Since the structure of the carbon nanotubes is the same as that of the graphite, it has good electrical properties.
  • carbon nanotubes As a kind of electrode material, carbon nanotubes have received much attention in the field of electronic science.
  • the advantage is that as a transparent electrode material, the excellent photoelectric properties, super-aligned carbon nanotubes can be spun by its excellent mechanical properties.
  • the film in addition to carbon nanotubes, has a high resistance to environmental corrosion and is not affected by the environment.
  • the transparent electrode prepared by the film-drawing process of the carbon nanotube super-sequential film can be widely applied on the touch screen (CN1016254665A), the square resistance is large (greater than 1000 ⁇ / ⁇ ), and the transmittance is 80%.
  • the power consumption of such a carbon nanotube film is large, and the performance of the device may be affected by the thermal effect of the electrode itself.
  • the invention is based on the application of the carbon nanotube solution blending process in the transparent electrode material, and provides a high-dispersion, viscosity-adjustable carbon nanotube transparent electrode ink, which is compounded by ultrasonic dispersion, mechanical stirring, cell pulverization and the like.
  • the technology realizes the uniform dispersion of the carbon nanotubes and the organic carrier, and the prepared ink has good stability and viscosity controllable.
  • the highly dispersed, viscosity-controllable carbon nanotube transparent electrode ink consists of the following components and their weight percentages:
  • the carrier one is an alkylated quaternary ammonium base
  • the carrier two is a water-soluble anionic acidic substance
  • the solvent is water
  • the alkylated quaternary ammonium base is cetyltrimethylammonium hydroxide, dodecyltrimethylammonium hydroxide, tetradecyltrimethylammonium hydroxide, benzyltrimethylammonium hydroxide One or several combinations.
  • the water-soluble anionic acidic substance is butyl benzoic acid (PT) dodecylbenzenesulfonic acid, phthalic acid, p-tert-butylbenzoic acid, p-hydroxybenzoic acid, ⁇ -phenylacrylic acid, phenylacetic acid, water One or several combinations of salicylic acid.
  • PT butyl benzoic acid
  • the carbon nanotube powder is a single-walled carbon nanotube, a multi-walled carbon nanotube, a double-walled carbon nanotube, or a modified carbon nanotube.
  • a method for preparing a highly dispersed, viscosity-controllable carbon nanotube transparent electrode ink comprising the following steps;
  • the steps (2) and (3) are ultrasonically dispersed, and the step (4) is performed by magnetic stirring.
  • the preparation method of the pure carbon nanotube powder is as follows: the carbon nanotubes are ultrasonically dispersed into a suspension in methanol, and then the carbon nanotube suspension is irradiated in a UV light cleaning machine, and centrifuged to obtain carbon nanotubes. Powder; the powder is added to a mixed aqueous solution of concentrated HNO 3 and ammonium persulfate, the magnet is stirred, refluxed at 120 ° C for 5 h, centrifuged, repeatedly centrifuged with deionized water to neutral, and dried to obtain pure carbon nano Tube powder.
  • the pure carbon nanotube powder is prepared by dispersing the carbon nanotubes in a suspension in an organic solvent, allowing to stand for swelling, centrifuging, and washing; adding to concentrated nitric acid, reacting at 120 ° C for 4 hours, centrifuging, and washing. Neutral, dry pure carbon nanotube powder.
  • the present inventors have found that when the carrier 1 and the carrier 2 are mixed at a certain concentration, a viscosity-visible viscoelastic solution system is formed.
  • the present invention employs its viscosity-adjustable property to disperse high-concentration carbon nanotubes, and the viscous dispersion system is easy to form a film.
  • the film-forming carrier is easily desorbed in ethanol and remains little on the surface of the film after further water washing.
  • the carbon nanotubes can be effectively dispersed.
  • the ink of the invention has good dispersibility, good stability and adjustable viscosity, and the formed carbon nanotube transparent conductive film layer has good electrical conductivity and optical transmittance and flexibility in the visible light range.
  • the conductivity of the flexible carbon nanotube transparent conductive film can be adjusted at (100 ⁇ / ⁇ - 1 M ⁇ / ⁇ ).
  • the carbon nanotube conductive ink has low preparation cost, energy saving and environmental protection, and the product has no toxicity to human body, no side effect, and the process is simple.
  • a and B are images of different magnifications.
  • Figure 2 is an SEM image of a pure single-walled carbon nanotube film (SWCNT),
  • A, B, and C are images of different magnifications.
  • SWCNTs single-walled carbon nanotubes
  • the SWCNT suspension was placed in a UV light washer for 40 min to obtain SWCNT powder; 20 ml of deionized water was placed in a single-mouth flask, and 10 ml of concentrated HNO3 (68 wt%) was added, and 5 wt% ammonium persulfate was added.
  • the aqueous solution of (APS) was uniformly mixed, and then the purified SWCNT powder was added, and the magnetic particles were stirred, and refluxed at 120 ° C for 5 hours.
  • the deionized water was repeatedly centrifuged (7000 rpm, 10 min) three times to obtain a purified single-walled carbon nanotube as shown in Fig. 1.
  • the highly dispersed viscosity-adjustable carbon nanotube conductive ink according to the present invention can be used to prepare a fine electrode pattern by using a spin coating and a laser ablation technique at room temperature, or can be realized by a technique such as inkjet printing.
  • the one-shot preparation of the electrode pattern, the morphology of the prepared film is shown in Fig. 2.
  • the composite conductive ink of the invention has strong process operability, and can adopt the inkjet printing technology, the spin coating technology and the matched lithography technology, and can realize the preparation of carbon nanometer on the surface of glass, transparent crystal, transparent ceramic, polymer film and the like.
  • the conductive film layer has a film surface topography as shown in FIG.
  • the carbon nanotubes In the carbon nanotube dispersion liquid, the carbon nanotubes have good dispersion properties, and a single bundle of network dispersion is formed. After the carbon nanotubes are coated on the surface of the PET film, the carbon nanotube film formed by the ethanol or HNO 3 immersion is a relatively uniform network link.
  • the carbon nano-transparent conductive film layer formed by the ink of the present invention has good electrical conductivity and optical transmittance and flexibility in the visible light range.
  • the conductivity of the flexible carbon nanotube transparent conductive film can be adjusted at (100 ⁇ / ⁇ - 1 M ⁇ / ⁇ ).
  • the carbon nano-conductive ink has low preparation cost, energy saving and environmental protection, and the product has no toxicity to the human body, has no side effects, and has simple process. Compared with the performance of carbon nano-conductive polymer electrode materials at home and abroad, the performance of the carbon nano-flexible electrode material prepared by the invention is at a leading level. See Table 2.
  • the carbon nanotube flexible electrode ink developed by the invention and the transparent flexible conductive film prepared by the invention have good application prospects in the flexible transparent electrodes required for display devices such as touch screens, solar cells and OLEDs.

Abstract

高分散、粘度可控的碳纳米管透明电极墨水,由下列成分及其重量百分含量组成:纯净碳纳米管粉体 0.03%-1%,载体一 0.2%-0.5%,载体二 0.2%-0.5%,溶剂98%-99%;载体一为烷基化季铵碱,载体二为水溶性阴离子型酸性物质,溶剂为水。该墨水的制备方法,包括取部分溶剂将载体一、载体二制备成水溶液,将纯净碳纳米管粉体材料分散于载体一的水溶液中,再加入余下溶剂,在搅拌下滴加载体二的水溶液,其中步骤(2)、(3)采用超声分散,步骤(4)采用磁力搅拌。

Description

高分散、粘度可控的碳纳米管透明电极墨水 技术领域
本发明涉及一种含有碳纳米管的导电墨水,特别是涉及一种高分散、粘度可控性好的碳纳米管复合导电墨水。
背景技术
碳纳米管是一种具有典型的层状中空结构特征的碳材料,构成碳纳米管的管身由六边形石墨碳环结构单元组成,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级)的一维量子材料。它的管壁构成主要为数层到数十层的同轴圆管,层与层之间保持固定的距离,约为0.34nm,直径一般为2~20nm。碳纳米管的碳原子的P电子形成大范围的离域π键,因此共轭效应显著。由于碳纳米管的结构与石墨的片层结构相同,具有很好的电学性能。为此碳纳米管作为一种电极材料在电子科学领域中受到较大的关注,其优势在于作为透明电极材料优异的光电性能,超顺排的碳纳米管以其优良的机械性能可以纺丝拉膜,此外碳纳米管的耐环境腐蚀性能较强,不会受到环境的影响而降低。
然而,由于碳纳米管之间很强的范德华作用力(~500eV/μm)和大的长径比(>1000),通常容易形成大的管束,难以分散,极大地制约了其优异光电性能的发挥和实际应用的开发。虽然碳纳米管超顺排薄膜通过拉膜工艺制备的透明电极在触摸屏上得以大面积应用(CN1016254665A),但其方阻较大(大于1000Ω/□),透过率80%。相对于电阻要求更高高透明电极薄膜的电子器件来说,此类碳纳米管薄膜的功耗很大,会由于电极自身的热效应影响器件的性能。
发明内容
本发明立足于碳纳米管溶液的共混工艺在透明电极材料中的应用,提供一种高分散、粘度可调控的碳纳米管透明电极墨水,通过超声波分散、机械搅拌、细胞粉碎等工艺方法复合技术,实现了碳纳米管与有机载体的均匀分散,制备的墨水稳定性好、粘度可调控。
高分散、粘度可控的碳纳米管透明电极墨水,由下列成分及其重量百分含量组成:
Figure PCTCN2015085530-appb-000001
Figure PCTCN2015085530-appb-000002
所述载体一为烷基化季铵碱,载体二为水溶性阴离子型酸性物质,所述溶剂为水。
所述烷基化季铵碱为十六烷基三甲基氢氧化铵,十二烷基三甲基氢氧化铵、十四烷基三甲基氢氧化铵、苄基三甲基氢氧化铵中的一种或几种组合。
所述水溶性阴离子型酸性物质为丁基苯甲酸(P-T)十二烷基苯磺酸、邻苯二甲酸,对叔丁基苯甲酸,对羟基苯甲酸,β-苯丙烯酸、苯乙酸、水杨酸一种或几种组合。
所述碳纳米管粉体是单壁碳纳米管、多壁碳纳米管、双壁碳纳米管或者改性的碳纳米管。
高分散、粘度可控的碳纳米管透明电极墨水的制备方法,包括如下步骤;
(1)取部分溶剂将载体一、载体二制备成水溶液,
(2)将纯净碳纳米管粉体材料分散于载体一的水溶液中,
(3)再加入余下溶剂,
(4)在搅拌下滴加载体二的水溶液。
所述步骤(2)、(3)采用超声分散,所述步骤(4)采用磁力搅拌。
所述纯净碳纳米管粉体的制备方法为:将碳纳米管在甲醇中超声分散成悬浊液,再将碳纳米管悬浊液放入UV光清洗机中照射,离心,得碳纳米管粉体;将此粉体加入到浓HNO3与过硫酸铵的混合水溶液中,磁子搅拌,120℃下回流反应5h,离心,用去离子水反复离心冲洗至中性,干燥得纯净碳纳米管粉体。
所述纯净碳纳米管粉体的制备方法为:将碳纳米管在有机溶剂分散成悬浊液,静置溶胀,离心,清洗;再加入到浓硝酸中,120℃下反应4h,离心,清洗至中性,干燥得纯净碳纳米管粉体。
本发明发现,载体一和载体二以一定浓度混合时,会形成一种粘度可调的粘弹态的溶液体系。本发明采用其粘度可调特性来分散高浓度的碳纳米管,并且粘态的分散体系易于成膜。成膜后的载体容易在乙醇中脱附,在经过进一步水洗后在膜层表面残留很少。
载体一和载体二混合后形成的分散体系的粘度在10-20Pa.s时,可有效分散碳纳米管。
本发明墨水分散性好、稳定性好,粘度可调,形成的碳纳米管透明导电膜层具有良好的导电性能和可见光范围内光学透过率以及柔性。此柔性碳纳米管透明导电膜导电性可在(100Ω/□-1MΩ/□)可调。此碳纳米管导电墨水制备成本低,节能环保,产品对人体无毒无副作用,工艺简单。
附图说明
图1纯单壁碳纳米管(SWCNT)形貌,
其中A,B为不同放大倍数图像。
图2纯单壁碳纳米管薄膜(SWCNT)的SEM图像,
其中A,B,C为不同放大倍数图像。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
实施例1:
1)单壁碳纳米管的纯化:0.05g的单壁碳纳米管(SWCNT)在20ml甲醇中超声分散20min后形成SWNT悬浊液。将此SWCNT悬浊液放入UV光清洗机中处理40min,得到SWCNT粉体;取20ml的去离子水放入单口烧瓶中,再加入10ml的浓HNO3(68wt%),加入5wt%过硫酸铵(APS)水溶液,混合均匀后加入提纯过的SWCNT粉体,磁子搅拌,120℃下回流反应5h。去离子水反复离心冲洗(7000rpm,10min)3次,得到纯化后的单壁碳纳米管见图1。
2)将纯化后的单壁碳纳米管分散在0.05M的3ml十六烷基三甲基氢氧化铵(CTAOH)中,再加入16ml水,经超声分散15min。在此混合体系在磁力搅拌的条件下逐步滴加0.45M对叔丁基苯甲酸0.15-0.2ml,形成高分散的粘度可调的碳纳米分散体系,其粘度在10-20Pa.S内可调。
实施例2:
1)取0.05g SWCNT(加入到40ml苯甲酸乙酯溶剂中,超声分散40min,静置溶胀2天后,离心,再依次用乙醇,去离子水离心清洗。将溶胀后的SWCNT加入到30ml浓硝酸中,120℃下反应4h,取出后离心清洗多次至上清液基本澄清,达到离心溶液近中性。离心分离得到的单壁碳纳米管的粉体见图1。
2)将纯化后的单壁碳纳米管分散在0.05M的3ml十二烷基三甲基氢氧化铵中,再加入18ml水,经超声分散15min。在此混合体系在磁力搅拌的条件下逐步滴加0.3M邻苯二甲酸0.1-0.2ml。形成高分散的粘度可调的碳纳米分散体系。其粘度在10-20Pa.S内可调。
实施例3:
1)取0.05g SWCNT加入到40mlDMF中,超声分散40min,静置溶胀48h后,离心,再依次用乙醇,去离子水离心清洗。将溶胀后的SWCNT加入到30ml浓硝酸中,120℃下反应4h,取出后离心清洗多次至上清液基本澄清,达到离心溶液近中性。离心分离得到的单壁碳纳米管的粉体,见图1。
2)将纯化后的单壁碳纳米管分散在0.05M的3ml苄基三甲基氢氧化铵中,再加入13ml水,经超声分散15min。在此混合体系在磁力搅拌的条件下逐步滴加0.3M邻苯二甲酸0.15-0.2ml,形成高分散的粘度可调的碳纳米分散体系,其粘度在10-20Pa.S内可调。
实验例:
1、碳纳米导电薄膜的制备方法
本发明所涉及的高分散的粘度可调的碳纳米管导电墨水,可以在室温条件下,采用spin coating和激光烧蚀技术来制备精细的电极图案,也可以采用喷墨打印等技术实现微细结构电极图案的一次性制备,制备的薄膜形貌见图2。
本发明的复合导电墨水,其工艺可操作性强,可采用喷墨打印技术,旋涂技术以及配套的光刻技术,可实现在玻璃,透明晶体,透明陶瓷,高分子薄膜等表面制备碳纳米导电膜层,其膜层表面形貌如图2中。
碳纳米管分散液中,碳纳米管的分散性能良好,形成了单束网状分散。碳纳米管在PET薄膜表面涂膜后,经过乙醇或HNO3浸泡,形成的碳纳米管薄膜为较为均一网状链接。
碳纳米导电薄膜膜层性能检测见表1:
表1碳纳米管电薄膜光电性
样品名称 方阻Ω/□ 透过率/550nm
PET膜层 90%
碳纳米导电薄膜 100-150 87%
本发明墨水形成的碳纳米透明导电膜层具有良好的导电性能和可见光范围内光学透过率以及柔性。此柔性碳纳米管透明导电膜导电性可在(100Ω/□-1MΩ/□)可调。此碳纳米导电墨水制备成本低,节能环保,产品对人体无毒无副作用,工艺简单。相比国内外碳纳米导电高分子电极材料的性能,本发明所制备的碳纳米柔性电极材料性能处于领先的水平。参见表2。
表2国内外碳纳米导电薄膜与本发明碳纳米薄膜的光电性能比较
样品名称 方阻Ω/□ 透过率/550nm
碳纳米导电薄膜 100 87%
同行最佳 152 83%
本发明所研制的碳纳米管柔性电极墨水及其所制备的透明柔性导电薄膜在触摸屏,太阳能电池以及OLED等显示器件所需的柔性透明电极方面具备良好的应用前景。

Claims (8)

  1. 高分散、粘度可控的碳纳米管透明电极墨水,由下列成分及其重量百分含量组成:
    Figure PCTCN2015085530-appb-100001
    所述载体一为烷基化季铵碱,载体二为水溶性阴离子型酸性物质,所述溶剂为水。
  2. 根据权利要求1所述的高分散、粘度可控的碳纳米管透明电极墨水,所述烷基化季铵碱为十六烷基三甲基氢氧化铵,十二烷基三甲基氢氧化铵、十四烷基三甲基氢氧化铵、苄基三甲基氢氧化铵中的一种或几种组合。
  3. 根据权利要求1所述的高分散、粘度可控的碳纳米管透明电极墨水,所述水溶性阴离子型酸性物质为丁基苯甲酸(P-T)十二烷基苯磺酸、邻苯二甲酸,对叔丁基苯甲酸、对羟基苯甲酸、β-苯丙烯酸、苯乙酸、水杨酸一种或几种组合。
  4. 根据权利要求1所述的高分散、粘度可控的碳纳米管透明电极墨水,所述碳纳米管粉体是单壁碳纳米管、多壁碳纳米管、双壁碳纳米管或者改性的碳纳米管。
  5. 权利要求1-4任一所述高分散、粘度可控的碳纳米管透明电极墨水的制备方法,包括如下步骤:
    (1)取部分溶剂将载体一、载体二制备成水溶液,
    (2)将纯净碳纳米管粉体材料分散于载体一的水溶液中,
    (3)再加入余下溶剂,
    (4)在搅拌下滴加载体二的水溶液。
  6. 根据权利要求5所述的制备方法,所述步骤(2)、(3)采用超声分散,所述步骤(4)采用磁力搅拌。
  7. 根据权利要求5所述的制备方法,所述纯净碳纳米管粉体的制备方法为:将碳纳米管在甲醇中超声分散成悬浊液,再将悬浊液放入UV光清洗机中照射,离心,得碳纳米管粉体;将此粉体加入到浓HNO3与过硫酸铵的混合水溶液中,磁子搅拌,120℃下回流反应5h,离心,用去离子水反复离心冲洗至中性,干燥得纯净碳纳米管粉体。
  8. 根据权利要求5所述的制备方法,所述纯净碳纳米管粉体的制备方法为:将碳纳米管在有机溶剂分散成悬浊液,静置溶胀,离心,清洗;再加入到浓硝酸中,120℃下反应4h,离心,清洗至中性,干燥得纯净碳纳米管粉体。
PCT/CN2015/085530 2014-08-01 2015-07-30 高分散、粘度可控的碳纳米管透明电极墨水 WO2016015657A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020177003541A KR20170041739A (ko) 2014-08-01 2015-07-30 분산도가 높고 점도 조절이 가능한 탄소나노튜브 투명 전극 잉크

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410375478.2A CN105295554B (zh) 2014-08-01 2014-08-01 高分散、粘度可控的碳纳米管透明电极墨水
CN201410375478.2 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016015657A1 true WO2016015657A1 (zh) 2016-02-04

Family

ID=55193422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085530 WO2016015657A1 (zh) 2014-08-01 2015-07-30 高分散、粘度可控的碳纳米管透明电极墨水

Country Status (5)

Country Link
KR (1) KR20170041739A (zh)
CN (1) CN105295554B (zh)
HK (1) HK1215586A1 (zh)
TW (1) TWI578335B (zh)
WO (1) WO2016015657A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105949883A (zh) * 2016-06-01 2016-09-21 佛山市高明区海帝陶瓷原料有限公司 一种减少沉淀及腐蚀物的墙砖陶瓷墨水及制备方法
CN108630708A (zh) 2017-03-15 2018-10-09 京东方科技集团股份有限公司 导电基板及其制作方法、显示装置
CN107623074A (zh) * 2017-09-18 2018-01-23 深圳市华星光电半导体显示技术有限公司 一种oled器件及制备用于该器件的待喷射液态材料的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101417795A (zh) * 2008-11-24 2009-04-29 山东大学 一种含碳纳米管粘弹性流体的制备方法
US20100122642A1 (en) * 2008-11-17 2010-05-20 Xerox Corporation Inks including carbon nanotubes dispersed in a polymer matrix
CN102464914A (zh) * 2010-11-04 2012-05-23 索尼公司 导电性油墨及其制备方法和透明导电膜的制备方法
CN102634249A (zh) * 2012-04-10 2012-08-15 中国科学院苏州纳米技术与纳米仿生研究所 一种碳纳米管墨水的制备方法及晶体管器件的制作方法
CN103013229A (zh) * 2012-12-30 2013-04-03 中国科学院宁波材料技术与工程研究所 一种石墨烯基导电油墨、其制备方法及柔性导电薄膜
CN103641098A (zh) * 2013-11-29 2014-03-19 太原理工大学 一种将纳米碳材料快速组装到油水界面形成柔性薄膜的方法
CN103923529A (zh) * 2014-05-05 2014-07-16 北京印刷学院 一种复合油墨、柔性超级电容器电极及其制作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7455793B2 (en) * 2004-03-31 2008-11-25 E.I. Du Pont De Nemours And Company Non-aqueous dispersions comprising electrically doped conductive polymers and colloid-forming polymeric acids
US7569158B2 (en) * 2004-10-13 2009-08-04 Air Products And Chemicals, Inc. Aqueous dispersions of polythienothiophenes with fluorinated ion exchange polymers as dopants
CN101663714B (zh) * 2007-02-20 2012-06-06 东丽株式会社 碳纳米管集合体和导电性膜
EP2723682B1 (en) * 2011-06-23 2016-03-30 Molecular Rebar Design, LLC Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom
CN103930951B (zh) * 2011-06-24 2017-04-19 布鲁尔科技公司 具有增强导电率的高度可溶碳纳米管
CN103101899B (zh) * 2011-11-15 2015-05-13 北京化工大学 一种基于复合胶束体系制备纳米材料薄膜的方法
CN103172983A (zh) * 2011-12-20 2013-06-26 中国科学院合肥物质科学研究院 聚酯-碳纳米管-电气石粉复合材料及其制备方法
KR101442681B1 (ko) * 2012-11-09 2014-09-24 엔젯 주식회사 전도성 나노 잉크 조성물, 이를 이용한 전극선 및 투명전극
CN103073953A (zh) * 2013-02-07 2013-05-01 苏州牛剑新材料有限公司 一种水性导电油墨及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100122642A1 (en) * 2008-11-17 2010-05-20 Xerox Corporation Inks including carbon nanotubes dispersed in a polymer matrix
CN101417795A (zh) * 2008-11-24 2009-04-29 山东大学 一种含碳纳米管粘弹性流体的制备方法
CN102464914A (zh) * 2010-11-04 2012-05-23 索尼公司 导电性油墨及其制备方法和透明导电膜的制备方法
CN102634249A (zh) * 2012-04-10 2012-08-15 中国科学院苏州纳米技术与纳米仿生研究所 一种碳纳米管墨水的制备方法及晶体管器件的制作方法
CN103013229A (zh) * 2012-12-30 2013-04-03 中国科学院宁波材料技术与工程研究所 一种石墨烯基导电油墨、其制备方法及柔性导电薄膜
CN103641098A (zh) * 2013-11-29 2014-03-19 太原理工大学 一种将纳米碳材料快速组装到油水界面形成柔性薄膜的方法
CN103923529A (zh) * 2014-05-05 2014-07-16 北京印刷学院 一种复合油墨、柔性超级电容器电极及其制作方法

Also Published As

Publication number Publication date
KR20170041739A (ko) 2017-04-17
CN105295554A (zh) 2016-02-03
TWI578335B (zh) 2017-04-11
TW201606804A (zh) 2016-02-16
HK1215586A1 (zh) 2016-09-02
CN105295554B (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
WO2016015658A1 (zh) 碳纳米管-高分子层状复合透明柔性电极及其制备方法
Skakalova et al. Effect of chemical treatment on electrical conductivity, infrared absorption, and Raman spectra of single-walled carbon nanotubes
JP5473148B2 (ja) 導電性が改善された透明導電性フィルム及びその製造方法
WO2015096591A1 (zh) 高分散碳纳米管复合导电墨水
WO2014146534A1 (zh) 透明碳纳米管高分子复合导电墨水及其制备方法
JP6152492B2 (ja) 単層カーボンナノチューブを均一に分散させる方法
CN107221387B (zh) 基于短暂性构架的高电导率石墨烯薄膜的制备方法
Yu et al. Fabrication of carbon nanotube based transparent conductive thin films using layer-by-layer technology
JP2009193964A (ja) カーボンナノチューブ膜を調製するための方法、サンドイッチ構造を有するカーボンナノチューブ膜、該カーボンナノチューブ膜を含むアノードならびに該アノードおよびカーボンナノチューブデバイスを含む有機発光ダイオード
CN105788754A (zh) 碳纳米管透明导电薄膜及其制备方法
WO2020239142A2 (zh) 一种自稳定分散石墨烯纳米材料及制备方法
WO2016015657A1 (zh) 高分散、粘度可控的碳纳米管透明电极墨水
KR101371289B1 (ko) 탄소 나노박막의 제조방법
Souza et al. Conducting, transparent and flexible substrates obtained from interfacial thin films of double-walled carbon nanotubes
Liu et al. Modified carbon nanotubes/polyvinyl alcohol composite electrothermal films
CN108017049B (zh) 基于咔唑基共轭聚合物的碳纳米管分散剂及分散方法
JP5475645B2 (ja) アロイルビフェニル系ハイパーブランチポリマーからなるカーボンナノチューブ可溶化剤
Jirakittidul et al. Acid modified multiwalled carbon nanotubes condition by reflux
Tian et al. Improved resistance stability of transparent conducting films prepared by PEDOT: PSS hybrid CNTs treated by a two-step method
CN104464888A (zh) 磺化高分子/石墨烯纳米复合材料及其制备方法和应用
Manivannan et al. Properties of surface treated transparent conducting single walled carbon nanotube films
JP2017157339A (ja) 透明導電フィルム及びその製造方法
CN104599742B (zh) 一种薄膜太阳能电池用导电浆料
CN115558230B (zh) 一种水凝胶及其制备方法和应用
Liu et al. Preparation of carbon nanotube ink via organic hydrazine treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177003541

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15828262

Country of ref document: EP

Kind code of ref document: A1