WO2016015658A1 - 碳纳米管-高分子层状复合透明柔性电极及其制备方法 - Google Patents

碳纳米管-高分子层状复合透明柔性电极及其制备方法 Download PDF

Info

Publication number
WO2016015658A1
WO2016015658A1 PCT/CN2015/085531 CN2015085531W WO2016015658A1 WO 2016015658 A1 WO2016015658 A1 WO 2016015658A1 CN 2015085531 W CN2015085531 W CN 2015085531W WO 2016015658 A1 WO2016015658 A1 WO 2016015658A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
acid
preparation
carrier
conductive
Prior art date
Application number
PCT/CN2015/085531
Other languages
English (en)
French (fr)
Inventor
郝海燕
蔡丽菲
戴雷
Original Assignee
广东阿格蕾雅光电材料有限公司
北京阿格蕾雅科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东阿格蕾雅光电材料有限公司, 北京阿格蕾雅科技发展有限公司 filed Critical 广东阿格蕾雅光电材料有限公司
Priority to KR1020177003539A priority Critical patent/KR101956145B1/ko
Publication of WO2016015658A1 publication Critical patent/WO2016015658A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention adopts a carbon nanotube film which is prepared by using a carbon nanotube as a conductive material, a spin-coating process or an inkjet printing process to prepare a uniform network structure on a PET surface, and then spin-coating or ink-jet printing a layer of PEDOT:PSS on the surface thereof.
  • the conductive polymer forms a carbon nanotube-polymer layered composite transparent electrode having a small surface roughness and good conductivity.
  • Carbon nanotubes are carbon materials with typical lamellar hollow structure characteristics.
  • the tube body constituting carbon nanotubes is composed of hexagonal graphite carbon ring structural units and has a special structure (radial size is nanometer order One-dimensional quantum material with an axial dimension of the order of microns.
  • Its pipe wall constitutes a coaxial pipe mainly composed of several layers to several tens of layers. The layer is maintained at a fixed distance between the layers of about 0.34 nm and a diameter of typically 2-20 nm.
  • the P electrons of the carbon atoms on the carbon nanotubes form a wide range of delocalized ⁇ bonds, and thus the conjugation effect is remarkable. Since the structure of the carbon nanotubes is the same as that of the graphite, it has good electrical properties.
  • carbon nanomaterials have received much attention in the field of electronic science as an electrode material.
  • the advantage is that as an excellent photoelectric property of the transparent electrode material, the super-aligned carbon nanotubes can be spin-spun with excellent mechanical properties, and the carbon nanotubes have strong environmental corrosion resistance and are not affected by the environment. reduce.
  • the transparent electrode prepared by the film-drawing process of the carbon nanotube super-sequential film can be widely applied on the touch screen (CN1016254665A), the square resistance is large (greater than 1000 ⁇ / ⁇ ), and the transmittance is 80%.
  • the power consumption of such a carbon nanotube film is large, and the performance of the device may be affected by the thermal effect of the electrode itself.
  • the invention is based on the application of the carbon nanotube solution blending process in the transparent electrode material, and provides a carbon nanotube composite conductive ink with high dispersion and viscosity control, which is compounded by ultrasonic dispersion, mechanical stirring, cell pulverization and the like.
  • the technology realizes the uniform dispersion of the carbon nanotubes and the organic carrier, and the prepared ink has stability and viscosity controllable; the conductive ink prepares a uniform network structure of the carbon nanotube film on the PET surface by a spin coating process or an inkjet printing process, and then A layer of PEDOT:PSS conductive polymer is spin-coated or ink-jet printed on the surface to form a carbon nanotube-polymer layered composite transparent electrode having small surface roughness and good electrical conductivity.
  • the layered carbon nanotube-polymer composite transparent flexible electrode has a square resistance of 20-30 ⁇ / ⁇ and an optical transmittance of 80% or more.
  • the layered composite electrode film is on a touch screen, a solar cell, and
  • the flexible transparent electrode required for display devices such as OLEDs has a good application prospect.
  • the carbon nanotube-polymer layered composite transparent flexible electrode is characterized in that a carbon nanotube layer and a conductive polymer layer are sequentially arranged from the inside to the outside of the PET surface, and the conductive polymer layer is composed of a mixed PEDOT: PSS polymer material composition.
  • the carbon nanotube layer is a single-walled carbon nanotube, a multi-walled carbon nanotube, a double-walled carbon nanotube, and a modified carbon nanotube.
  • the preparation method of the carbon nanotube-polymer layered composite transparent flexible electrode comprises the following steps: (1) preparing a carbon nanotube conductive ink, the conductive ink composition is 0.03-1% of the carbon nanotube powder, and the carrier is 0.2. %-0.5%, carrier two 0.2%-0.5%, solvent 98%-99%, wherein carrier one is an alkylated quaternary ammonium base, carrier two is a water-soluble anionic acid substance, the solvent is water; (2) The conductive ink is prepared by a spin coating process or an inkjet printing process on a PET surface to prepare a uniform network structure of the carbon nanotube film, and dried; (3) immersed in ethanol or nitric acid, washed with deionized water, dried to form a carbon nanotube layer, (4) The PEDOT:PSS aqueous solution is attached to the surface of the carbon nanotube layer by a spin coating process or an inkjet printing process to form a conductive polymer layer, which is dried to obtain a layered composite transparent flexible electrode
  • the alkylated quaternary ammonium base is cetyltrimethylammonium hydroxide, dodecyltrimethylammonium hydroxide, tetradecyltrimethylammonium hydroxide, benzyltrimethylammonium hydroxide One or several combinations.
  • the water-soluble anionic acidic substance is butyl benzoic acid (PT) dodecylbenzenesulfonic acid, phthalic acid, p-tert-butylbenzoic acid p-hydroxybenzoic acid, ⁇ -phenylacrylic acid, phenylacetic acid, and water yang One or several combinations of acids.
  • PT butyl benzoic acid
  • the PEDOT:PSS accounts for 1.0 to 1.7% of the solid content of the PEDOT:PSS aqueous solution.
  • the step (2) adopts a spin coating process, the rotation speed and time: 500 rpm / 30 s, the drying process: 50 ° C / 5 min, after the surface drying, at 120 ° C / 10 min, the drying in the step (3) is normal temperature
  • the lower blowing step (4) adopts a spin coating process, the rotation speed and time: 1500 rpm / 30 s, and the drying process: 120 ° C / 10 min.
  • the preparation method of the carbon nanotube conductive ink is:
  • the steps (2) and (3) are ultrasonically dispersed, and the step (4) is performed by magnetic stirring.
  • the preparation method of the pure carbon nanotube powder is as follows: the carbon nanotubes are ultrasonically dispersed into a suspension in methanol, and then the carbon nanotube suspension is irradiated in a UV light cleaning machine, and centrifuged to obtain carbon nanotubes. Powder; the powder is added to a mixed aqueous solution of concentrated HNO 3 and ammonium persulfate, the magnet is stirred, refluxed at 120 ° C for 5 h, centrifuged, repeatedly centrifuged with deionized water to neutral, and dried to obtain pure carbon nano Tube powder.
  • the pure carbon nanotube powder is prepared by dispersing the carbon nanotubes in a suspension in an organic solvent, allowing to stand for swelling, centrifuging, and washing; adding to concentrated nitric acid, reacting at 120 ° C for 4 hours, centrifuging, and washing. Neutral, dry pure carbon nano Tube powder.
  • the preparation method of the carbon nanotube-polymer layer composite transparent flexible electrode of the invention is as follows:
  • a highly dispersed carbon nanotube composite conductive ink consisting of the following components and their weight percentages:
  • the carbon nanotube powder type may be single-walled carbon nanotubes, multi-walled carbon nanotubes, double-walled carbon nanotubes, and modified carbon nanotubes.
  • Carrier 1 an aqueous solution of an alkylated quaternary ammonium base such as cetyltrimethylammonium hydroxide, dodecyltrimethylammonium hydroxide, tetradecyltrimethylammonium hydroxide, benzyltrimethyl An aqueous solution of an organic base such as ammonium hydroxide.
  • an alkylated quaternary ammonium base such as cetyltrimethylammonium hydroxide, dodecyltrimethylammonium hydroxide, tetradecyltrimethylammonium hydroxide, benzyltrimethyl
  • An aqueous solution of an organic base such as ammonium hydroxide.
  • Carrier 2 water-soluble anionic surfactants such as: butyl benzoic acid (PT) dodecylbenzene sulfonic acid, phthalic acid, p-tert-butylbenzoic acid p-hydroxybenzoic acid, ⁇ -phenylacrylic acid, phenylacetic acid An aqueous solution of salicylic acid
  • PT butyl benzoic acid
  • phthalic acid p-tert-butylbenzoic acid p-hydroxybenzoic acid
  • ⁇ -phenylacrylic acid phenylacetic acid
  • a viscosity-visible viscoelastic solution system is formed.
  • the present invention employs its viscosity-adjustable property to disperse high-concentration carbon nanotubes, and the viscous dispersion system is easy to form a film.
  • the viscosity of the dispersion formed by mixing the carrier 1 and the carrier 2 is 10-20 Pa.s, the carbon nanotubes can be effectively dispersed.
  • the film-forming carrier is easily desorbed in ethanol easily, and remains little on the surface of the film layer after further water washing.
  • a layer of PEDOT:PSS conductive polymer is spin-coated or ink-jet printed on the surface of the carbon nanotube film to form a carbon nanotube-polymer layered composite transparent electrode having small surface roughness and good conductivity.
  • the content ratio of both PEDOT:PSS can be adjusted as needed (commercially available products).
  • the layered carbon nanotube-polymer composite transparent flexible electrode has a square resistance of 20-30 ⁇ / ⁇ and an optical transmittance of 80% or more.
  • the layered composite electrode film has a good application prospect in the flexible transparent electrodes required for display devices such as touch screens, solar cells, and OLEDs.
  • Figure 2 is an SEM image of a pure single-walled carbon nanotube film (SWCNT),
  • Fig. 4 AFM photograph of the surface topography of the carbon nanotube-polymer layered composite transparent flexible electrode.
  • SWCNTs single-walled carbon nanotubes
  • the SWCNT suspension was placed in a UV light washer for 40 min to obtain SWCNT powder; 20 ml of deionized water was placed in a single-mouth flask, and 10 ml of concentrated HNO3 (68 wt%) was added, and 5 wt% ammonium persulfate was added.
  • the aqueous solution of (APS) was uniformly mixed, and then the purified SWCNT powder was added, and the magnetic particles were stirred, and refluxed at 120 ° C for 5 hours.
  • the deionized water was repeatedly centrifuged (7000 rpm, 10 min) three times to obtain a purified single-walled carbon nanotube as shown in Fig. 1A.
  • the formed carbon nanotube film is immersed in ethanol at room temperature for 30 minutes, cleaned with deionized water, and blown dry.
  • a carbon nanotube film having a transmittance of 87% was formed on the surface of the PET, and the square resistance was 500.
  • the surface morphology is shown in Figure 2 and Figure 3.
  • the formed carbon nanotube/PEDOT:PSS layered composite electrode has an optical transmittance of more than 80% and a square resistance of 200 ⁇ / ⁇ .
  • the formed carbon nanotube film is immersed in concentrated nitric acid at room temperature for 2 minutes, cleaned with deionized water, and blown dry.
  • Surface shape on PET The carbon nanotube film having a transmittance of 87% has a square resistance of 150-200 ⁇ / ⁇ . The surface morphology is shown in Figure 2 and Figure 3.
  • the formed carbon nanotube/PEDOT:PSS layered composite electrode has an optical transmittance of more than 80% and a square resistance of 15-40 ⁇ / ⁇ .
  • the formed carbon nanotube film is immersed in concentrated nitric acid at room temperature for 2 minutes, cleaned with deionized water, and blown dry.
  • a carbon nanotube film having a transmittance of 87% was formed on the surface of the PET, and the square resistance was 150-200 ⁇ / ⁇ .
  • the surface topography is shown in Figures 2 and 3.
  • the formed carbon nanotube/PEDOT:PSS layered composite electrode has an optical transmittance of more than 80% and a square resistance of 20-45 ⁇ / ⁇ .
  • the invention adopts a high-dispersion, viscosity-controllable carbon nanotube composite conductive ink mainly composed of carbon nanotubes, and prepares a carbon nanotube with uniform network structure on the PET surface through a spin coating process or an inkjet printing process.
  • the film is then spin-coated or ink-jet printed on the surface of a layer of PEDOT:PSS conductive polymer to form a layered carbon nanotube polymer composite transparent electrode with small surface roughness and good electrical conductivity.
  • the layered carbon nanotube polymer composite transparent flexible electrode has a square resistance of 20-30 ⁇ / ⁇ and an optical transmittance of 80% or more.
  • the layered composite electrode film has a good application prospect in the flexible transparent electrodes required for display devices such as touch screens, solar cells, and OLEDs.
  • the composite conductive ink of the invention has strong process operability, and can adopt the inkjet printing technology, the spin coating technology and the matched lithography technology, and can realize the preparation of carbon nanometer on the surface of glass, transparent crystal, transparent ceramic, polymer film and the like.
  • the surface layer of the conductive film layer is shown in Fig. 4.
  • the carbon nanotubes In the carbon nanotube dispersion liquid, the carbon nanotubes have good dispersion properties, and a single bundle of network dispersion is formed. After the carbon nanotubes are coated on the surface of the PET film, the carbon nanotube film formed by the ethanol or HNO 3 immersion is a relatively uniform network link.
  • the carbon nano-transparent conductive film layer formed by the ink of the present invention has good electrical conductivity and optical transmittance and flexibility in the visible light range.
  • the layered carbon nanotube polymer composite transparent flexible electrode has a square resistance of 20-30 ⁇ / ⁇ and an optical transmittance of 80% or more. Compared with the performance of carbon nano-conductive polymer electrode materials at home and abroad, the performance of the carbon nano-flexible electrode material prepared by the invention is at a leading level. See Table 2
  • the carbon nanotube flexible electrode ink developed by the invention and the transparent flexible conductive film prepared by the invention have good application prospects in the flexible transparent electrodes required for display devices such as touch screens, solar cells and OLEDs.

Abstract

一种碳纳米管-高分子层状复合透明柔性电极,该电极为在PET表面由里至外依次分布有碳纳米管层和导电高分子层。采用一种以碳纳米管为导电质的高分散、粘度可控性好的碳纳米管复合导电墨水,经旋涂工艺或喷墨打印工艺在PET表面制备均匀网络结构的碳纳米管薄膜,然后在其表面旋涂或喷墨打印一层PEDOT:PSS导电高分子,形成表面粗糙度小,导电性良好的碳纳米管-高分子层状复合透明电极。此层状的碳纳米管高分子复合透明柔性电极的方阻可达到20-30Ω/□,光学透过率可达到80%以上。此层状复合电极薄膜在触摸屏、太阳能电池以及OLED等显示器件所需的柔性透明电极方面具备良好的应用前景。

Description

碳纳米管-高分子层状复合透明柔性电极及其制备方法 技术领域
本发明采用一种以碳纳米管为导电质,经旋涂工艺或喷墨打印工艺在PET表面制备均匀网络结构的碳纳米管薄膜,然后在其表面旋涂或喷墨打印一层PEDOT:PSS导电高分子,形成表面粗糙度小,导电性良好的碳纳米管-高分子层状复合透明电极。
背景技术
碳纳米管是一种具有典型的层状中空结构特征的碳材料,构成碳纳米管的管身由六边形石墨碳环结构单元组成,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级)的一维量子材料。它的管壁构成主要为数层到数十层的同轴圆管。层与层之间保持固定的距离,约为0.34nm,直径一般为2~20nm。碳纳米管上碳原子的P电子形成大范围的离域π键,因此共轭效应显著。由于碳纳米管的结构与石墨的片层结构相同,具有很好的电学性能。为此碳纳米作为一种电极材料在电子科学领域中受到较大的关注。其优势在于作为透明电极材料优异的光电性能,超顺排的碳纳米管以其优良的机械性能可以纺丝拉膜,此外碳纳米管的耐环境腐蚀性能较强,不会受到环境的影响而降低。
然而,由于碳纳米管之间很强的范德华作用力(~500eV/μm)和大的长径比(>1000),通常容易形成大的管束,难以分散,极大地制约了其优异光电性能的发挥和实际应用的开发。虽然碳纳米管超顺排薄膜通过拉膜工艺制备的透明电极在触摸屏上得以大面积应用(CN1016254665A),但其方阻较大(大于1000Ω/□),透过率80%。相对于电阻要求更高高透明电极薄膜的电子器件来说,此类碳纳米管薄膜的功耗很大,会由于电极自身的热效应影响器件的性能。
发明内容
本发明立足于碳纳米管溶液的共混工艺在透明电极材料中的应用,提供一种高分散、粘度可调控的碳纳米管复合导电墨水,通过超声波分散、机械搅拌、细胞粉碎等工艺方法复合技术,实现了碳纳米管与有机载体的均匀分散,制备的墨水稳定性和粘度可调控;该导电墨水通过旋涂工艺或喷墨打印工艺在PET表面制备均匀网络结构的碳纳米管薄膜,然后在其表面旋涂或喷墨打印一层PEDOT:PSS导电高分子,形成表面粗糙度小,导电性能良好的碳纳米管-高分子层状复合透明电极。此层状的碳纳米管-高分子复合透明柔性电极的方阻可达到20-30Ω/□,光学透过率可达到80%以上。此层状复合电极薄膜在触摸屏、太阳能电池以及 OLED等显示器件所需的柔性透明电极方面具备良好的应用前景。
碳纳米管-高分子层状复合透明柔性电极,其特征在于:以PET表面为基底由里至外依次分布有碳纳米管层和导电高分子层,所述导电高分子层由混合的PEDOT:PSS高分子材料组成。
所述碳纳米管层为单壁碳纳米管、多壁碳纳米管、双壁碳纳米管以及改性的碳纳米管。
碳纳米管-高分子层状复合透明柔性电极的制备方法,包括如下步骤:(1)制备碳纳米管导电墨水,所述导电墨水的组成为碳纳米管粉体0.03-1%,载体一0.2%-0.5%,载体二0.2%-0.5%,溶剂98%-99%,其中载体一为烷基化季铵碱,载体二为水溶性阴离子型酸性物质,所述溶剂为水;(2)将导电墨水采用旋涂工艺或喷墨打印工艺在PET表面制备均匀网络结构的碳纳米管薄膜,干燥;(3)在乙醇或硝酸中浸泡,去离子水清洗,干燥,形成碳纳米管层,(4)将PEDOT:PSS水溶液采用旋涂工艺或喷墨打印工艺附在碳纳米管层表面,形成导电高分子层,干燥得层状复合透明柔性电极。
所述烷基化季铵碱为十六烷基三甲基氢氧化铵,十二烷基三甲基氢氧化铵、十四烷基三甲基氢氧化铵、苄基三甲基氢氧化铵中的一种或几种组合。
所述水溶性阴离子型酸性物质为丁基苯甲酸(P-T)十二烷基苯磺酸、邻苯二甲酸,对叔丁基苯甲酸对羟基苯甲酸,β-苯丙烯酸、苯乙酸、水杨酸一种或几种组合。
所述PEDOT:PSS占PEDOT:PSS水溶液的固含量1.0~1.7%。
所述步骤(2)采用旋涂工艺,其转速及时间:500rpm/30s,干燥工艺:50℃/5min,表干后,在120℃/10min,,所述步骤(3)中的干燥为常温下吹干所述步骤(4)采用旋涂工艺,其转速及时间:1500rpm/30s,干燥工艺:120℃/10min。
所述碳纳米管导电墨水的制备方法为:
1)取部分溶剂将载体一、载体二制备成水溶液,
2)将纯净碳纳米管粉体材料分散于载体一的水溶液中,
3)再加入余下溶剂,
4)在搅拌下滴加载体二的水溶液。
所述步骤(2)、(3)采用超声分散,所述步骤(4)采用磁力搅拌。
所述纯净碳纳米管粉体的制备方法为:将碳纳米管在甲醇中超声分散成悬浊液,再将碳纳米管悬浊液放入UV光清洗机中照射,离心,得碳纳米管粉体;将此粉体加入到浓HNO3与过硫酸铵的混合水溶液中,磁子搅拌,120℃下回流反应5h,离心,用去离子水反复离心冲洗至中性,干燥得纯净碳纳米管粉体。
所述纯净碳纳米管粉体的制备方法为:将碳纳米管在有机溶剂分散成悬浊液,静置溶胀,离心,清洗;再加入到浓硝酸中,120℃下反应4h,离心,清洗至中性,干燥得纯净碳纳米 管粉体。
本发明碳纳米管-高分子层状复合透明柔性电极的制备方法如下:
1)该复合导电墨水的一种制备方法说明
一种高分散碳纳米管复合导电墨水,由下列成分及其重量百分含量组成:
Figure PCTCN2015085531-appb-000001
碳纳米管粉体种类可以是单壁碳纳米管、多壁碳纳米管、双壁碳纳米管以及改性的碳纳米管。
载体一:烷基化季铵碱的水溶液,如十六烷基三甲基氢氧化铵,十二烷基三甲基氢氧化铵、十四烷基三甲基氢氧化铵、苄基三甲基氢氧化铵等有机碱水溶液。
载体二:为水溶性阴离子表面活性剂如:丁基苯甲酸(P-T)十二烷基苯磺酸、邻苯二甲酸,对叔丁基苯甲酸对羟基苯甲酸,β-苯丙烯酸、苯乙酸、水杨酸等的水溶液
当载体一和载体二以一定浓度混合时,会形成一种粘度可调的粘弹态的溶液体系。本发明采用其粘度可调特性来分散高浓度的碳纳米管,并且粘态的分散体系易于成膜。载体一和载体二混合后形成的分散体系的粘度在10-20Pa.s时,可有效分散碳纳米管。成膜后的载体容易在乙醇容易中脱附,在经过进一步水洗后在膜层表面残留很少。
在碳纳米管薄膜表面旋涂或喷墨打印一层PEDOT:PSS导电高分子,形成表面粗糙度小,导电性良好的碳纳米管-高分子层状复合透明电极。PEDOT:PSS两者的含量比可以根据需要调整(己有市售产品)。此层状的碳纳米管-高分子复合透明柔性电极的方阻可达到20-30Ω/□,光学透过率可达到80%以上。此层状复合电极薄膜在触摸屏、太阳能电池以及OLED等显示器件所需的柔性透明电极方面具备良好的应用前景。
附图说明
图1单壁碳纳米管形貌,
其中A,B为不同纯化工艺的SEM图像,
图2纯单壁碳纳米管薄膜(SWCNT)的SEM图像,
其中A,B,C为不同放大倍数图像,
图3纯单壁碳纳米管薄膜(SWCNT)的AFM表面形貌图
图4碳纳米管-高分子层状复合透明柔性电极表面形貌图AFM照片。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
实施例1:
1)单壁碳纳米管的纯化:0.05g的单壁碳纳米管(SWCNT)在20ml甲醇中超声分散20min后形成SWNT悬浊液。将此SWCNT悬浊液放入UV光清洗机中处理40min,得到SWCNT粉体;取20ml的去离子水放入单口烧瓶中,再加入10ml的浓HNO3(68wt%),加入5wt%过硫酸铵(APS)水溶液,混合均匀后加入提纯过的SWCNT粉体,磁子搅拌,120℃下回流反应5h。去离子水反复离心冲洗(7000rpm,10min)3次,得到纯化后的单壁碳纳米管见图1A。
2)将纯化后的单壁碳纳米管分散在0.05M的3ml十六烷基三甲基氢氧化铵(CTAOH)中,再加入16ml水,经超声分散15min。在此混合体系在磁力搅拌的条件下逐步滴加0.45M丁基苯甲酸0.15-0.2ml,形成高分散的粘度可调的碳纳米分散体系,其粘度在10-20Pa.S内可调。
3)将高分散的碳纳米管墨水采用旋涂工艺在PET薄膜上制备均匀的碳纳米管薄膜。工艺参数为:转速及时间:500rpm/30s,烘干工艺:50℃/5min,表干后,在120℃/10min.
4)形成的碳纳米管薄膜在乙醇中常温浸泡30min,用去离子水清洗干净,吹干。在PET表面形成透过率为87%的碳纳米管薄膜,方阻电阻为500。其表面形貌见图2和图3
5)在碳纳米管表面旋涂PEDOT:PSS水溶液(市售产品,固含量1.0~1.7%),其工艺参数为1500rpm/30s,烘干工艺:120℃/10min。层状碳纳米管高分子复合透明电极的表面形貌见图4
6)形成的碳纳米管/PEDOT:PSS层状复合电极的光学透过率大于80%,方阻为200Ω/□。
实施例2:
1)取0.05g SWCNT(加入到40ml苯甲酸乙酯溶剂中,超声分散40min,静置溶胀2天后,离心,再依次用乙醇,去离子水离心清洗。将溶胀后的SWCNT加入到30ml浓硝酸中,120℃下反应4h,取出后离心清洗多次至上清液基本澄清,达到离心溶液近中性。离心分离得到的单壁碳纳米管的粉体见图1B
2)将纯化后的单壁碳纳米管分散在0.05M的3ml十二烷基三甲基氢氧化铵中,再加入18ml水,经超声分散15min。在此混合体系在磁力搅拌的条件下逐步滴加0.3M邻苯二甲酸0.1-0.2ml。形成高分散的粘度可调的碳纳米分散体系。其粘度在10-20Pa.S内可调。
3)将高分散的碳纳米管墨水采用旋涂工艺在PET薄膜上制备均匀的碳纳米管薄膜。工艺参数为:转速及时间:500rpm/30s,烘干工艺:50℃/5min,表干后,在120℃/10min.
4)形成的碳纳米管薄膜在浓硝酸常温浸泡2min,用去离子水清洗干净,吹干。在PET表面形 成透过率为87%的碳纳米管薄膜,方阻电阻为150-200Ω/□。其表面形貌见图2和图3
5)在碳纳米管表面旋涂PEDOT:PSS水溶液(市售产品,固含量1.0~1.7%),其工艺参数为1500rpm/30s,烘干工艺:120℃/10min。层状碳纳米管高分子复合透明电极的表面形貌见图4
6)形成的碳纳米管/PEDOT:PSS层状复合电极的光学透过率大于80%,方阻为15-40Ω/□。
实施例3
1)取0.05g SWCNT加入到40mlDMF中,超声分散40min,静置溶胀48h后,离心,再依次用乙醇,去离子水离心清洗。将溶胀后的SWCNT加入到30ml浓硝酸中,120℃下反应4h,取出后离心清洗多次至上清液基本澄清,达到离心溶液近中性。离心分离得到的单壁碳纳米管的粉体,见图1A。
2)将纯化后的单壁碳纳米管分散在0.05M的3ml苄基三甲基氢氧化铵中,再加入13ml水,经超声分散15min。在此混合体系在磁力搅拌的条件下逐步滴加0.3M邻苯二甲酸0.15-0.2ml,形成高分散的粘度可调的碳纳米分散体系,其粘度在10-20Pa.S内可调。
3)将高分散的碳纳米管墨水采用旋涂工艺在PET薄膜上制备均匀的碳纳米管薄膜。工艺参数为:转速及时间:500rpm/30s,烘干工艺:50℃/5min,表干后,在120℃/10min.
4)形成的碳纳米管薄膜在浓硝酸常温浸泡2min,用去离子水清洗干净,吹干。在PET表面形成透过率为87%的碳纳米管薄膜,方阻电阻为150-200Ω/□。其表面形貌见图2和图3。
5)在碳纳米管表面旋涂PEDOT:PSS水溶液(市售产品,固含量1.0~1.7%),其工艺参数为1500rpm/30s,烘干工艺:120℃/10min。层状碳纳米管高分子复合透明电极的表面形貌见图4。
6)形成的碳纳米管/PEDOT:PSS层状复合电极的光学透过率大于80%,方阻为20-45Ω/□。
本发明采用一种以碳纳米管导电质为主的高分散、粘度可控性好的碳纳米管复合导电墨水,经旋涂工艺或喷墨打印工艺在PET表面制备均匀网络结构的碳纳米管薄膜,然后在其表面旋涂或喷墨打印一层PEDOT:PSS导电高分子,形成表面粗糙度小,导电性良好的层状碳纳米管高分子复合透明电极。此层状的碳纳米管高分子复合透明柔性电极的方阻可达到20-30Ω/□,光学透过率可达到80%以上。此层状复合电极薄膜在触摸屏、太阳能电池以及OLED等显示器件所需的柔性透明电极方面具备良好的应用前景。
本发明的复合导电墨水,其工艺可操作性强,可采用喷墨打印技术,旋涂技术以及配套的光刻技术,可实现在玻璃,透明晶体,透明陶瓷,高分子薄膜等表面制备碳纳米导电膜层,其膜层表面形貌如图4所示。
碳纳米管分散液中,碳纳米管的分散性能良好,形成了单束网状分散。碳纳米管在PET薄膜表面涂膜后,经过乙醇或HNO3浸泡,形成的碳纳米管薄膜为较为均一网状链接。
碳纳米导电薄膜膜层性能检测见表1:
表1 碳纳米管电薄膜光电性
样品名称 方阻Ω/□ 透过率/550nm
PET膜层 90%
碳纳米导电薄膜 100-150 87%
层状碳纳米管高分子复合透明电极 20-45 80%
本发明墨水形成的碳纳米透明导电膜层具有良好的导电性能和可见光范围内光学透过率以及柔性。此层状的碳纳米管高分子复合透明柔性电极的方阻可达到20-30Ω/□,光学透过率可达到80%以上。相比国内外碳纳米导电高分子电极材料的性能,本发明所制备的碳纳米柔性电极材料性能处于领先的水平。参见表2
表2 国内外碳纳米导电薄膜与本发明碳纳米薄膜的光电性能比较
样品名称 方阻Ω/□ 透过率/550nm
碳纳米导电薄膜 100 87%
层状碳纳米管高分子复合透明电极 20-40 80
同行最佳 152 83%
本发明所研制的碳纳米管柔性电极墨水及其所制备的透明柔性导电薄膜在触摸屏,太阳能电池以及OLED等显示器件所需的柔性透明电极方面具备良好的应用前景。

Claims (10)

  1. 碳纳米管-高分子层状复合透明柔性电极,其特征在于:在PET表面由里至外依次分布有碳纳米管层和导电高分子层,所述导电高分子层由混合的PEDOT:PSS高分子材料组成。
  2. 根据权利要求1所述的碳纳米管-高分子层状复合透明柔性电极,所述碳纳米管层为单壁碳纳米管、多壁碳纳米管、双壁碳纳米管以及改性的碳纳米管。
  3. 权利要求1-2任一所述碳纳米管-高分子层状复合透明柔性电极的制备方法,包括如下步骤:(1)制备碳纳米管导电墨水,所述导电墨水的组成为碳纳米管粉体0.03-1%,载体一0.2%-0.5%,载体二0.2%-0.5%,溶剂98%-99%,其中载体一为烷基化季铵碱的水溶液,载体二为水溶性阴离子型酸性物质,所述溶剂为水;(2)将导电墨水采用旋涂工艺或喷墨打印工艺在PET表面制备均匀网络结构的碳纳米管薄膜,干燥;(3)在乙醇或硝酸中浸泡,去离子水清洗,干燥,形成碳纳米管层,(4)将PEDOT:PSS水溶液采用旋涂工艺或喷墨打印工艺附在碳纳米管层表面,形成导电高分子层,干燥得层状复合透明柔性电极。
  4. 根据权利要求3所述的制备方法,所述烷基化季铵碱为十六烷基三甲基氢氧化铵,十二烷基三甲基氢氧化铵、十四烷基三甲基氢氧化铵、苄基三甲基氢氧化铵中的一种或几种组合,所述水溶性阴离子型酸性物质为丁基苯甲酸(P-T)十二烷基苯磺酸、邻苯二甲酸,对叔丁基苯甲酸对羟基苯甲酸,β-苯丙烯酸、苯乙酸、水杨酸一种或几种组合。
  5. 根据权利要求3所述的制备方法,所述PEDOT:PSS占PEDOT:PSS水溶液的固含量1.0~1.7%。
  6. 根据权利要求3所述的制备方法,所述步骤(2)采用旋涂工艺,其转速及时间:500rpm/30s,干燥工艺:50℃/5min,表干后,在120℃/10min,,所述步骤(3)中的干燥为常温下吹干所述步骤(4)采用旋涂工艺,其转速及时间:1500rpm/30s,干燥工艺:120℃/10min。
  7. 根据权利要求3所述的制备方法,所述碳纳米管导电墨水的制备方法为:
    1)取部分溶剂将载体一、载体二制备成水溶液,
    2)将纯净碳纳米管粉体材料分散于载体一的水溶液中,
    3)再加入余下溶剂,
    4)在搅拌下滴加载体二的水溶液。
  8. 根据权利要求3所述的制备方法,所述步骤(2)、(3)采用超声分散,所述步骤(4)采用磁力搅拌。
  9. 根据权利要求3所述的制备方法,所述纯净碳纳米管粉体的制备方法为:将碳纳米管 在甲醇中超声分散成悬浊液,再将SWCNT悬浊液放入UV光清洗机中照射,离心,得SWCNT粉体;将此粉体加入到浓HNO3与过硫酸铵的混合水溶液中,磁子搅拌,120℃下回流反应5h,离心,用去离子水反复离心冲洗至中性,干燥得纯净碳纳米管粉体。
  10. 根据权利要求3所述的制备方法,所述纯净碳纳米管粉体的制备方法为:将碳纳米管在有机溶剂分散成悬浊液,静置溶胀,离心,清洗;再加入到浓硝酸中,120℃下反应4h,离心,清洗至中性,干燥得纯净碳纳米管粉体。
PCT/CN2015/085531 2014-08-01 2015-07-30 碳纳米管-高分子层状复合透明柔性电极及其制备方法 WO2016015658A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020177003539A KR101956145B1 (ko) 2014-08-01 2015-07-30 탄소나노튜브-폴리머 층상 복합 투명 플렉서블 전극 및 그 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410376558.XA CN105321592B (zh) 2014-08-01 2014-08-01 碳纳米管‑高分子层状复合透明柔性电极及其制备方法
CN201410376558.X 2014-08-01

Publications (1)

Publication Number Publication Date
WO2016015658A1 true WO2016015658A1 (zh) 2016-02-04

Family

ID=55216780

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085531 WO2016015658A1 (zh) 2014-08-01 2015-07-30 碳纳米管-高分子层状复合透明柔性电极及其制备方法

Country Status (5)

Country Link
KR (1) KR101956145B1 (zh)
CN (1) CN105321592B (zh)
HK (1) HK1215615A1 (zh)
TW (1) TWI578336B (zh)
WO (1) WO2016015658A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565045A (zh) * 2018-04-27 2018-09-21 戚明海 一种硬质碳纳米管导电薄膜及其制备方法
CN112133834A (zh) * 2020-11-03 2020-12-25 上海大学 一种基于复合维度柔性透明电极的紫外稳定太阳能电池
CN113809225A (zh) * 2021-09-17 2021-12-17 陕西科技大学 一种SnS/C-PEDOT:PSS柔性热电薄膜及制备方法
CN114235931A (zh) * 2021-12-17 2022-03-25 湘潭大学 一种改善柔性光电探测器性能的方法
CN114773754A (zh) * 2022-05-09 2022-07-22 南京邮电大学 一种聚乙烯醇-芴基纳米片复合薄膜及其制备方法
CN114883513A (zh) * 2022-03-30 2022-08-09 南京邮电大学 一种织物电极及其快速制备方法与应用
CN115207261A (zh) * 2022-07-20 2022-10-18 南京邮电大学 一种柔性织物顶发射聚合物发光二极管及其制备方法与应用
CN116130608A (zh) * 2023-04-04 2023-05-16 山东科技大学 一种通过自组装技术制备氧化钛薄膜柔性电极的方法
CN116178930A (zh) * 2023-01-17 2023-05-30 昆明理工大学 一种3d打印制备碳纳米管基柔性温敏材料的方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105914240A (zh) * 2016-06-16 2016-08-31 中国华能集团公司 一种使用碳纳米管透明电极的太阳能电池
CN107623074A (zh) * 2017-09-18 2018-01-23 深圳市华星光电半导体显示技术有限公司 一种oled器件及制备用于该器件的待喷射液态材料的方法
CN107946470B (zh) * 2017-11-28 2021-01-12 上海迈电科技有限公司 一种异质结太阳能电池及其制备方法
CN108110146A (zh) * 2017-12-18 2018-06-01 青岛海信电器股份有限公司 柔性电致发光器件及其制备方法、柔性显示装置
CN110034007B (zh) * 2018-01-12 2021-07-09 东北师范大学 一种实现透明可拉伸电极超高精度图案化的方法
CN110911030B (zh) * 2018-09-18 2021-06-04 天津工业大学 一种“三明治”结构的碳纳米管/聚3,4-乙烯二氧噻吩透明导电薄膜及制备方法
CN109449245A (zh) * 2018-10-22 2019-03-08 福州大学 一种金属氧化物光晶体管及其制备方法
CN109742244A (zh) * 2018-12-13 2019-05-10 东莞理工学院 一种钙钛矿太阳能电池碳背电极的制备方法
CN112011079A (zh) * 2019-06-01 2020-12-01 碳星科技(天津)有限公司 一种钢筋混凝土结构的柔性透明电极及其制备方法
CN110205807A (zh) * 2019-06-12 2019-09-06 汉能移动能源控股集团有限公司 一种柔性电极材料及其制备方法
CN112509729B (zh) * 2019-09-16 2023-01-24 天津工业大学 一种柔性透明导电薄膜及其制备方法
CN112509728A (zh) * 2019-09-16 2021-03-16 天津工业大学 一种四氯金酸三水合物掺杂碳纳米管柔性透明导电薄膜及其制备方法
CN110952225B (zh) * 2019-12-03 2021-09-21 大连理工大学 一种柔性一体化压电传感材料及其制备方法
CN112326074B (zh) * 2020-06-17 2022-06-21 中国科学院深圳先进技术研究院 一种触觉传感器、制备方法及包括触觉传感器的智能设备
CN115910432A (zh) * 2022-11-26 2023-04-04 宁波碳源新材料科技有限公司 一种非共价改性碳纳米管柔性透明导电薄膜及其制备方法
CN116567945B (zh) * 2023-05-18 2024-03-22 南京林业大学 一种导电的柔性透明木膜、电子器件及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124029A (ja) * 2009-12-09 2011-06-23 Alps Electric Co Ltd 透明導電膜及びその製造方法
CN103000816A (zh) * 2012-09-07 2013-03-27 天津工业大学 一种基于柔性碳纳米管薄膜的有机发光器件
CN103928637A (zh) * 2013-01-14 2014-07-16 北京阿格蕾雅科技发展有限公司 碳纳米管透明复合电极的制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682486B2 (ja) * 1995-01-18 1997-11-26 日本電気株式会社 カーボンナノチューブの精製方法
US20050221016A1 (en) * 2003-12-31 2005-10-06 Glatkowski Paul J Methods for modifying carbon nanotube structures to enhance coating optical and electronic properties of transparent conductive coatings
US7455793B2 (en) * 2004-03-31 2008-11-25 E.I. Du Pont De Nemours And Company Non-aqueous dispersions comprising electrically doped conductive polymers and colloid-forming polymeric acids
US7569158B2 (en) * 2004-10-13 2009-08-04 Air Products And Chemicals, Inc. Aqueous dispersions of polythienothiophenes with fluorinated ion exchange polymers as dopants
KR100790216B1 (ko) * 2006-10-17 2008-01-02 삼성전자주식회사 전도성 분산제를 이용한 cnt 투명전극 및 그의 제조방법
WO2009064133A2 (en) * 2007-11-14 2009-05-22 Cheil Industries Inc. Conductivity enhanced transparent conductive film and fabrication method thereof
JP2009211978A (ja) * 2008-03-05 2009-09-17 Sony Corp 透明導電膜及びこれを用いた光学装置
KR20110055464A (ko) * 2009-11-18 2011-05-25 전주대학교 산학협력단 탄소나노튜브를 함유한 조성물 및 이의 제조방법
WO2012056774A1 (ja) * 2010-10-29 2012-05-03 リンテック株式会社 透明導電性フィルム、電子デバイス及び電子デバイスの製造方法
JP5621568B2 (ja) * 2010-12-10 2014-11-12 ソニー株式会社 透明導電膜の製造方法、透明導電膜、導電性繊維の製造方法、導電性繊維、および、電子機器
CN102157358B (zh) * 2010-12-30 2012-08-29 北京理工大学 水热法合成碳纳米管和氧化锌异质结构的方法
CN103101899B (zh) * 2011-11-15 2015-05-13 北京化工大学 一种基于复合胶束体系制备纳米材料薄膜的方法
TWI466140B (zh) * 2011-11-23 2014-12-21 Ind Tech Res Inst 透明導電膜與其形成方法
KR20130070729A (ko) * 2011-12-20 2013-06-28 제일모직주식회사 메탈나노와이어 및 탄소나노튜브를 포함하는 적층형 투명전극.
JP6192732B2 (ja) * 2012-10-29 2017-09-06 スリーエム イノベイティブ プロパティズ カンパニー 伝導性インク及び伝導性ポリマーコーティング
CN103280255B (zh) * 2013-05-29 2016-06-15 苏州汉纳材料科技有限公司 无色差的图案化碳纳米管透明导电薄膜及其制备方法
TWM478896U (zh) * 2013-10-02 2014-05-21 Plasmag Technology Inc 透明導電薄膜結構

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124029A (ja) * 2009-12-09 2011-06-23 Alps Electric Co Ltd 透明導電膜及びその製造方法
CN103000816A (zh) * 2012-09-07 2013-03-27 天津工业大学 一种基于柔性碳纳米管薄膜的有机发光器件
CN103928637A (zh) * 2013-01-14 2014-07-16 北京阿格蕾雅科技发展有限公司 碳纳米管透明复合电极的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, JIANFENG ET AL.: "Organic Light-Emitting Diodes Having Carbon Nanotube Anodes", NANO LETTERS, vol. 6, no. 11, 3 October 2006 (2006-10-03), pages 2472 - 2477, XP002478681, DOI: doi:10.1021/nl061616a *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108565045A (zh) * 2018-04-27 2018-09-21 戚明海 一种硬质碳纳米管导电薄膜及其制备方法
CN112133834A (zh) * 2020-11-03 2020-12-25 上海大学 一种基于复合维度柔性透明电极的紫外稳定太阳能电池
CN113809225A (zh) * 2021-09-17 2021-12-17 陕西科技大学 一种SnS/C-PEDOT:PSS柔性热电薄膜及制备方法
CN114235931A (zh) * 2021-12-17 2022-03-25 湘潭大学 一种改善柔性光电探测器性能的方法
CN114235931B (zh) * 2021-12-17 2024-01-19 湘潭大学 一种改善柔性光电探测器性能的方法
CN114883513B (zh) * 2022-03-30 2024-02-23 南京邮电大学 一种织物电极及其快速制备方法与应用
CN114883513A (zh) * 2022-03-30 2022-08-09 南京邮电大学 一种织物电极及其快速制备方法与应用
CN114773754B (zh) * 2022-05-09 2023-09-26 南京邮电大学 一种聚乙烯醇-芴基纳米片复合薄膜及其制备方法
CN114773754A (zh) * 2022-05-09 2022-07-22 南京邮电大学 一种聚乙烯醇-芴基纳米片复合薄膜及其制备方法
CN115207261A (zh) * 2022-07-20 2022-10-18 南京邮电大学 一种柔性织物顶发射聚合物发光二极管及其制备方法与应用
CN115207261B (zh) * 2022-07-20 2024-02-27 南京邮电大学 一种柔性织物顶发射聚合物发光二极管及其制备方法与应用
CN116178930A (zh) * 2023-01-17 2023-05-30 昆明理工大学 一种3d打印制备碳纳米管基柔性温敏材料的方法
CN116178930B (zh) * 2023-01-17 2024-04-19 昆明理工大学 一种3d打印制备碳纳米管基柔性温敏材料的方法
CN116130608A (zh) * 2023-04-04 2023-05-16 山东科技大学 一种通过自组装技术制备氧化钛薄膜柔性电极的方法

Also Published As

Publication number Publication date
KR20170041738A (ko) 2017-04-17
CN105321592A (zh) 2016-02-10
CN105321592B (zh) 2017-03-22
TW201606805A (zh) 2016-02-16
TWI578336B (zh) 2017-04-11
KR101956145B1 (ko) 2019-03-08
HK1215615A1 (zh) 2016-09-02

Similar Documents

Publication Publication Date Title
WO2016015658A1 (zh) 碳纳米管-高分子层状复合透明柔性电极及其制备方法
Wang et al. Tannic acid modified graphene/CNT three-dimensional conductive network for preparing high-performance transparent flexible heaters
WO2014146534A1 (zh) 透明碳纳米管高分子复合导电墨水及其制备方法
JP5706998B2 (ja) 透明導電性インク及び透明導電パターン形成方法
CN106928773B (zh) 一种可用于喷墨打印的石墨烯复合导电墨水及其制备方法
WO2015096591A1 (zh) 高分散碳纳米管复合导电墨水
TWI502782B (zh) 於塑膠次結構上選擇性蝕刻奈米碳管(cnt)聚合物基質的方法
JP6152492B2 (ja) 単層カーボンナノチューブを均一に分散させる方法
CN105788754A (zh) 碳纳米管透明导电薄膜及其制备方法
Yu et al. Fabrication of carbon nanotube based transparent conductive thin films using layer-by-layer technology
WO2009018261A2 (en) Rheology-controlled conductive materials, methods of production and uses thereof
WO2020239143A1 (zh) 一种石墨烯导电油墨及其制备方法
WO2018225863A1 (ja) カーボンナノチューブ複合膜及びカーボンナノチューブ分散液
JP5111324B2 (ja) カーボンナノチューブ配向膜の作製法
Wang et al. Mono-dispersed ultra-long single-walled carbon nanotubes as enabling components in transparent and electrically conductive thin films
TWI578335B (zh) 高分散、黏度可控的碳奈米管透明電極墨水
TWI496846B (zh) 墨水組合物以及使用其之抗靜電薄膜
Souza et al. Conducting, transparent and flexible substrates obtained from interfacial thin films of double-walled carbon nanotubes
Liu et al. Modified carbon nanotubes/polyvinyl alcohol composite electrothermal films
CN108017049B (zh) 基于咔唑基共轭聚合物的碳纳米管分散剂及分散方法
Mei et al. Gels of carbon nanotubes and a nonionic surfactant prepared by mechanical grinding
JP5475645B2 (ja) アロイルビフェニル系ハイパーブランチポリマーからなるカーボンナノチューブ可溶化剤
Manivannan et al. Properties of surface treated transparent conducting single walled carbon nanotube films
Han et al. Influence of a silane coupling agent on the optoelectrical properties of carbon nanotube/binder hybrid thin films
JP2023018187A (ja) 塗料組成物、塗膜の製造方法、及び透明導電膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15827959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177003539

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15827959

Country of ref document: EP

Kind code of ref document: A1