WO2006043431A1 - Composite metal article and method for preparation thereof - Google Patents

Composite metal article and method for preparation thereof Download PDF

Info

Publication number
WO2006043431A1
WO2006043431A1 PCT/JP2005/018606 JP2005018606W WO2006043431A1 WO 2006043431 A1 WO2006043431 A1 WO 2006043431A1 JP 2005018606 W JP2005018606 W JP 2005018606W WO 2006043431 A1 WO2006043431 A1 WO 2006043431A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
modified
composite
particles
carbon nanotubes
Prior art date
Application number
PCT/JP2005/018606
Other languages
French (fr)
Japanese (ja)
Inventor
Kouichi Ichiki
Original Assignee
Shinano Kenshi Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinano Kenshi Kabushiki Kaisha filed Critical Shinano Kenshi Kabushiki Kaisha
Priority to EP05790620A priority Critical patent/EP1806417A1/en
Priority to US10/591,941 priority patent/US20070190348A1/en
Priority to JP2006542324A priority patent/JP4390807B2/en
Publication of WO2006043431A1 publication Critical patent/WO2006043431A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • C22C47/14Making alloys containing metallic or non-metallic fibres or filaments by powder metallurgy, i.e. by processing mixtures of metal powder and fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/002Carbon nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/1216Continuous interengaged phases of plural metals, or oriented fiber containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/1216Continuous interengaged phases of plural metals, or oriented fiber containing
    • Y10T428/12167Nonmetal containing

Definitions

  • the present invention relates to a composite metal body and a method for producing the same, and more particularly to a composite metal body in which carbon nanotubes are dispersed and a method for producing the same.
  • a composite metal body is obtained by adding and dispersing carbon nanotubes in an acid solution in which metal particles are dissolved, followed by drying and sintering.
  • the method for producing a composite metal body proposed in this publication has the disadvantage that the process is extremely troublesome, requires a long time, and the production cost of the composite metal body is high.
  • the applicant of the Shinano Mainichi Newspaper, issued on September 2, 2003 consists of the carbon nanotube shown in FIG. 11 and a metal such as copper.
  • Modified metal particles with ends protruding in a u-shape can be obtained by electrolysis using an electrolytic solution containing metal ions in which carbon nanotubes are dispersed with a special dispersing agent, and a modification is also made.
  • metal particles can be thermocompression bonded to form composite metal bodies with excellent heat dissipation.
  • metal particles for example, copper particles
  • metal particles for example, aluminum particles or alloy particles
  • metals that are difficult to obtain modified metal particles by an electrolytic method include metals that are necessary for reducing the weight of structures, such as aluminum.
  • the composite metal body contains a metal that is difficult to obtain modified metal particles by the electrolytic method, if the carbon nanotube can be dispersed in the composite metal body, it has various physical properties in addition to excellent heat dissipation. A composite metal body can be obtained.
  • an object of the present invention is to provide a composite metal body in which carbon nanotubes are dispersed in a composite metal body containing a metal for which it is difficult to obtain modified metal particles by an electrolytic method, and a method for producing the same.
  • the present inventor has obtained modified metal particles modified by carbon nanotubes partially protruding outward from the metal particles made of copper isotropic obtained by an electrolytic method.
  • a single-bonn nanotube can be dispersed in a metal such as aluminum where it is difficult to obtain modified metal particles by an electrolytic method. Reached.
  • the present invention is formed of at least two kinds of metals, and a first metal part formed on one side of the two kinds of metals and a second metal part formed on the other side of the two kinds of metals are randomly formed.
  • the composite metal body is characterized in that carbon nanotubes are dispersed and blended on at least one side of the first metal portion and the second metal portion.
  • a modified metal obtained by modifying carbon nanotubes with carbon nanotubes that partly protrudes outward from the metal particles formed of metal force on at least one side of the metal forming the composite metal body.
  • modified metal particles modified metal particles obtained by an electrolytic method or a redox method can be suitably used.
  • the modified metal particles obtained by the electrolytic method can be obtained by passing an electric current between a cathode and an anode immersed in an electrolytic solution in which carbon nanotubes are dispersed.
  • the modified metal particles by the oxidation-reduction method form composite particles made of a metal salt or metal oxide that is hardly soluble in water containing carbon nanotubes, and then the composite particles
  • the metal salt or metal oxide can be obtained by an oxidation-reduction method in which a reduction agent is used to reduce the metal salt or metal oxide.
  • the first metal portion formed from at least one of the two kinds of metals and the second metal portion formed from the other side of the two kinds of metals are randomly added.
  • the metal particles are formed of metal force on at least one side of the two kinds of metals, and are modified with carbon nanotubes that partially protrude outward from the metal particles.
  • a carbon nanotube is mixed into at least one side of the first metal portion and the second metal portion.
  • the porous metal is impregnated with a molten metal obtained by melting the metal forming the second metal portion after the modified metal particles are compression-molded to form the first metal portion having the porous body force.
  • a composite metal body in which carbon nanotubes are dispersed can be obtained.
  • carbon nanotubes can be incorporated into a metal body by heat compression molding of modified metal particles made of metal forming the first metal portion and metal particles made of metal forming the second metal portion. Easy to disperse.
  • the modified metal particles obtained by the above-described electrolytic method or redox method can be suitably used.
  • FIG. 1 is a schematic view illustrating an example of a composite metal body according to the present invention.
  • FIG. 2 is a schematic diagram illustrating an example of modified metal particles used in the present invention.
  • FIG. 3 is a schematic view illustrating another example of modified metal particles used in the present invention.
  • ⁇ 4 A schematic diagram illustrating a porous body obtained by compression molding modified metal particles.
  • FIG. 5 is an electron micrograph showing an example of a composite metal body according to the present invention.
  • FIG. 6 is an electron micrograph showing an example of modified metal particles used in the present invention.
  • FIG. 7 is a photomicrograph of a cross section of a composite metal body obtained using the modified metal particles shown in FIG.
  • FIG. 8 is an electron micrograph of the fracture surface of the composite metal body shown in FIG.
  • FIG. 9 is a microscopic photograph of a cross section of another metal body obtained using the modified metal particles shown in FIG.
  • FIG. 10 is an electron micrograph of the fracture surface of the composite metal body shown in FIG.
  • FIG. 11 shows electron micrographs of conventional modified metal particles.
  • FIG. 1 shows an outline of an example of the composite metal body according to the present invention.
  • a composite metal body 10 shown in FIG. 1 includes a first metal portion made of a porous body formed by compression-molding metal particles made of metal 12 into a predetermined shape, and a metal that has entered the voids of the porous body. It consists of a second metal part consisting of 14.
  • carbon nanotubes 16, 16... are dispersed in a porous body that forms the first metal portion made of the metal 12.
  • the physical properties of the composite metal body 10 such as electrical conductivity and thermal conductivity can be changed by mixing the carbon nanotubes 16, 16, ... It cannot be improved sufficiently.
  • the modified metal particles 18 shown in FIG. 2 are obtained by modifying the outer peripheral surface of the particulate metal particles 22 with some of the carbon nanotubes 16, 16.
  • modified metal particles 20 shown in FIG. 3 are obtained by modifying the outer peripheral surface of the fibrous metal fiber 24 so that a part of the carbon nanotubes 16, 16.
  • modified metal particles 18 and 20 shown in Fig. 2 and Fig. 3 can be used independently. Yes, you may use both together.
  • each of the carbon nanotubes 16, 1 6 ⁇ is partially embedded in the metal particles 22 or the metal fibers 24, and the remainder is made of metal. Projecting outward of the particles 22 or metal fibers 24.
  • each base side of the carbon nanotubes 16, 16... Is buried in the metal particles 22 or the metal fibers 24 and the tip side protrudes, or both ends thereof are buried in the metal particles 22 or the metal fibers 24 and the middle part. Is in a state of being exposed and talking, or both states are coexisting!
  • the carbon nanotubes 16 used for the modified metal particles 18 and 20 may be either single-walled or multi-walled, and one or both ends thereof may be closed with a fullerene cup. Furthermore, the carbon nanotubes 16 have a tubular shape whose length is 100 times or more of the diameter.
  • the carbon nanotube 16 preferably has a diameter of several nm to several hundred nm (for example, 300 nm) or less.
  • the conductivity may be lowered.
  • n and m chiral exponent
  • carbon nanotubes 16 having a diameter of 15 nm or more exhibit conductivity even when the chiral index is other than the above conditions.
  • the modified metal particles 18 and 20 whose outer peripheral surfaces are modified with the carbon nanotubes 16 and 20 are in contact with the carbon nanotubes 16, the carbon nanotubes 16 or each other, or other metal particles on the surface layer. Any outermost layer (contact layer) of the fiber 24 may be modified with the carbon nanotubes 16.
  • the metal particles 22 or the metal fibers 24 modified by the carbon nanotubes 16 are made of a metal that is easily modified by the carbon nanotubes 16, for example, copper power. May be.
  • the shape of the metal particles 22 is not limited to a spherical shape, but may be a non-spherical shape or a flake shape.
  • Each of the modified metal particles 18 and 20 shown in Fig. 2 and Fig. 3 is modified on the surface of the cathode by electrolysis by passing a current between the cathode and anode inserted in the electrolyte solution in which the carbon nanotubes 16, 16 It can be obtained by electrolytic deposition of metal particles (metal powder) containing metal particles 18 and 20.
  • the metal can be easily obtained if the metal is easily deposited by an electrolytic method, for example, the modified metal particles 18 and 20 made of copper.
  • modified metal particles 18 and 20 having an aluminum force by electrolysis under normal conditions as compared with the modified metal particles 18 and 20 made of copper.
  • modified metal particles 18 and 20 made of alloy by electrolysis under normal conditions.
  • the porous body may be further fired as necessary.
  • the carbon nanotubes 16, 16... are partially embedded in the metal particles 22 or the metal fibers 24. Therefore, even if a force such as compression molding is applied, the metal particles 22 or It is possible to prevent the metal fiber 24 and the carbon nanotubes 16, 16.
  • FIG. 4 shows an outline of the porous body 30 obtained by compression molding the modified metal particles 18, 18... Shown in FIG. In the obtained porous body 30, the modified metal particles 18, 18... Are in contact with each other, and voids 32, 32... Are formed between the modified metal particles 18, 18. The carbon nanotubes 16, 16... Are entangled with each other in the void 32.
  • the porous body 30 having the internal structure shown in FIG. 4 is immersed in a molten metal obtained by melting a metal different from the metal forming the particulate modified metal particles 18, and the voids 32, 32 in the porous body 30 are immersed.
  • a molten metal obtained by melting a metal different from the metal forming the particulate modified metal particles 18, and the voids 32, 32 in the porous body 30 are immersed.
  • Impregnated with molten metal it is preferable to immerse the porous body 30 in the molten metal while vacuum suction or pressurization, and forcibly impregnate the molten metal in the porous body 30.
  • the porous metal 30 impregnated with the molten metal is taken out of the molten metal force and cooled, whereby the composite metal body 10 shown in FIG. 1 can be obtained.
  • the second metal portion made of the metal 14 of the composite metal body 10 shown in FIG. 1 is formed by cooling the molten metal filled in each of the voids 32, 32. It is.
  • Each of the voids 32, 32 ⁇ is intertwined with the carbon nanotubes 16, 16 ⁇ , and the carbon nanotubes 16, 16, ⁇ are dispersed from the metal 14 into the second metal portion. Yes.
  • the metal particles 22 having a copper force that can easily form the modified metal particles 18 are used, and the outer peripheral surface of the metal particles 22 is modified with the carbon nanotubes 16, 16.
  • molten aluminum is impregnated into the porous body 30, whereby a first metal portion that also has copper force as the metal 12 and a second metal portion that also has aluminum force as the metal 14 are formed. It is possible to obtain a composite metal body 10 that is randomly formed and in which the carbon nanotubes 16, 16... Are dispersed in the first metal portion.
  • the porous body 30 as the first metal portion shown in FIG. 4 is a force obtained by compression-molding the particulate modified metal particles 18, 18... Shown in FIG. 2
  • the fibrous modified metal shown in FIG. It can also be obtained by compression molding the particles 20, 20.
  • the composite metal body 10 shown in FIG. 1 has been manufactured by using particulate metal particles 22 or metal fibers 24 made of metal 12 and modified with carbon nanotubes 16, 16.
  • 20 has been described as a manufacturing method for impregnating a porous body 30 forming a first metal part obtained by compression molding with a molten metal obtained by melting a metal 14 forming a second metal part. It is also possible to add and knead at least one of the particulate modified metal particles 18 and the fibrous modified metal particles 20 forming the first metal portion to the molten metal obtained by melting the metal 14 forming the metal. Obtainable.
  • the particulate modified metal particles 18 composed of the metal 12 forming the first metal portion and the fibers.
  • compression molding is performed to obtain a molded product of a predetermined shape.
  • the composite metal body 10 shown in FIG. 1 can also be obtained by melting metal particles made of the metal 14. In this case, the melting point of the metal 14 is preferably lower than that of the metal 12 forming the modified metal particles 18, 20.
  • the carbon nanotubes 16, 16... are scattered in a non-oxidizing atmosphere, and the molten metal is injected into the non-oxidizing atmosphere by pulverizing or fiberizing the molten metal with a piezoelectric pump.
  • the carbon nanotubes 16 can be adhered and fixed to the surface of the metal fibers 24 to obtain them.
  • the molten metal in which the carbon nanotubes 16, 16... Are dispersed by kneading can be formed by crushing and forming particles or fibers.
  • composite particles made of a metal salt or metal oxide that is hardly soluble in water containing carbon nanotubes 16, 16,... are formed, and then the precipitated composite particles are reduced to the metal salt or metal oxide.
  • the particulate modified metal particles 18 or the fibrous modified metal particles 20 can also be obtained by an oxidation-reduction method in which a reduction treatment is performed with a reducing agent.
  • the dispersion of the carbon nanotubes 16, 16... Is caused by applying a shock to the aqueous solution by applying an ultrasonic wave, or by adding a dispersing agent while stirring the aqueous solution by mechanical stirring using a stirrer or the like. Can also be done.
  • the dispersant any surfactant that can disperse the carbon nanotubes 16, 16,. Examples include enoxypolyethoxyethanol, sodium dodecyl sulfate, and polyacrylic acid.
  • a water-soluble metal salt made of copper, nickel or silver can be preferably used, and more preferably, a sulfate, nitrate or acetate made of copper, nickel or silver is used. be able to.
  • Fine composite particles in water formed in this way comprising metal salts or metal Sani ⁇ force of sparingly soluble substantially a spherical, including the particle size 1 mu m or less of the carbon nanotubes 16, 16 ... It is the composite particle which has.
  • Such composite particles are formed in an aqueous solution in which carbon nanotubes 16, 16,... Are dispersed, and in the process of forming the composite particles, the carbon nanotubes 16, 16,. Carbon nanotubes 16, 16... Are contained in a uniformly dispersed state in the formed composite particles.
  • the obtained composite particles are reduced with a reducing agent that reduces a metal salt or metal oxide that is hardly soluble in water, whereby particulate modified metal particles 18 or fibrous modified metal particles 20 are obtained. Can be obtained.
  • hydrazine As a powerful reducing agent, one or more of hydrazine, hydrazine compound, formalin, acetoaldehyde, formic acid, Rossiel salt, hydroxylamine, glucose and peracid hydrogen power are used. be able to.
  • This reducing agent may be added to an aqueous solution in which composite particles composed of metal salts or metal oxides are precipitated, and direct contact between the composite particles composed of metal salts or metal oxides separated from the aqueous solution and the reducing agent. Then, the metal salt or metal oxide may be reduced.
  • an antifoaming agent such as alcohol may be added.
  • the modified metal particles 18 and 20 can be obtained even if the metal 14 is difficult to obtain the modified metal particles 18 and 20 by the electrolytic method. Therefore, at least one of the particulate modified metal particle 18 and the fibrous modified metal particle 20 composed of the metal 12 forming the first metal portion, and the particulate modified metal composed of the metal 14 forming the second metal portion.
  • the composite metal body 10 shown in FIG. 1 can be obtained by mixing at least one of the metal particles 18 and the fibrous modified metal particles 20 and compression molding. Even in this case, it may be fired as necessary after compression molding.
  • the metal 12 forming the modified metal particles 18, 20 is removed by chemically dissolving or melting, and the metal 14 is A composite metal body in which nanotubes 16, 16... Are dispersed may be used.
  • the composite metal body from which the metal 12 has been removed may be impregnated with a molten metal composed of the metal 14 or with a molten metal composed of another kind of metal.
  • the space between the second metal parts made of the metal 14 is filled with the first metal parts made of the metal 12 in which the single-bonn nanotubes 16, 16. It can be a composite metal body.
  • a strong composite metal body can be obtained by mixing metal particles composed of metal 14 and at least one of particulate modified metal particles 18 and fibrous modified metal particles 20 and then heat-compressing them. it can.
  • the metal particles composed of the metal 14 and at least one of the particulate modified metal particles 18 and the fibrous modified metal particles 20 may be mixed, and then compression molded and further fired.
  • Electrolysis was performed by passing a current between the cathode and the anode inserted into the electrolyte solution in which carbon nanotubes 16, 16... Having a diameter of 200 nm were dispersed, and copper particles were electrolytically deposited on the cathode surface. According to the electron micrograph of the copper particles, as shown in FIG. 2, modified metal particles 18 modified by carbon nanotubes 16, 16. It was.
  • the metal particles composed of the modified metal particles 18 were compression molded to obtain a molded product having a predetermined shape.
  • the cross section of this molded product was observed with a microscope, it was a porous body in which a large number of gaps were formed as shown in FIG.
  • the obtained molded product was immersed in molten aluminum maintained at 750 ° C. for about 1 hour while being vacuum-sucked, and the molded product was forcibly impregnated with molten aluminum.
  • the molded product taken out from the molten aluminum was cooled to obtain a composite metal body having copper, aluminum, and carbon nanotube force.
  • the cross section of the composite metal body was observed with a microscope, as shown in FIG. 1, the second metal portion made of aluminum force was randomly formed in the first metal portion made of a porous body made of copper.
  • carbon nanotubes (indicated by arrows) were dispersed in copper and aluminum.
  • the obtained composite particles are nickel-colored nickel metal particles containing 5 wt% of carbon nanotubes, and one end of the carbon nanotube is a particle as shown by the arrow in the micrograph in FIG. -Shaped modified metal particles projecting outward from the metal-shaped metal particles Met.
  • the obtained particulate modified metal particles and the atomized copper powder were mixed, and then held at a temperature of 500 ° C. for 1 hour while being pressed to be molded into a predetermined shape.
  • the mixing amount of the atomized copper powder was adjusted so that the atomized copper powder in the fired body was 60 wt%.
  • the obtained fired body was such that the first metal portion made of nickel force was buried as a binder around the second metal portion made of atomized copper powder.
  • carbon nanotubes were dispersed in the nickel portion of the fracture surface of the strong fired body.
  • the particulate modified metal particles comprising carbon nanotubes and nickel obtained in Example 2 were mixed with tungsten powder, and then calcined by maintaining at 500 ° C. for 2 hours while applying pressure. The mixing amount of this tungsten powder was adjusted so that the tungsten powder in the fired body was 55 vol%.
  • the obtained fired body had the second metal part made of nickel powder buried as a binder around the second metal part made of tungsten powder.
  • the two kinds of gold are formed of at least two kinds of metals.
  • a composite metal body in which a first metal part composed of one side of a genus and a second metal part composed of the other side of two kinds of metals are randomly formed, at least one of the two kinds of metals is produced.
  • modified metal particles that are modified with carbon nanotubes that partially protrude outward from the metal particles, the carbon nanotubes are not separated during the composite metal production process. Carbon nanotubes can be mixed into at least one side of the first metal portion or the second metal portion.
  • the carbon nanotube can be mixed on at least one side of the first metal portion and the second metal portion. According to the invention, a composite metal body in which carbon nanotubes are dispersed can be obtained.

Abstract

Provided is a method for preparing a composite metal article wherein carbon nano-tube is dispersed in a composite metal article which contains a metal being difficult to prepare a modified metal particle by an electrolytic method. The above method is characterized in that in the preparation of a composite metal article in which a first metal part comprising a metal (12) and a second metal part comprising a metal (14) are randomly formed, use is made of a modified metal article which is a metal particle comprising the metal (12) and is modified with a carbon nano-tube projecting to the outside of the metal particle, and thus carbon nano-tube is incorporated into the above second metal part.

Description

明 細 書  Specification
複合金属体及びその製造方法  Composite metal body and method for producing the same
技術分野  Technical field
[0001] 本発明は複合金属体及びその製造方法に関し、更に詳細にはカーボンナノチュー ブが分散された複合金属体及びその製造方法に関する。  The present invention relates to a composite metal body and a method for producing the same, and more particularly to a composite metal body in which carbon nanotubes are dispersed and a method for producing the same.
背景技術  Background art
[0002] 金属内にカーボンナノチューブを分散させた複合金属体は、特開 2000— 22300 4号公報に提案されている。  A composite metal body in which carbon nanotubes are dispersed in a metal has been proposed in Japanese Patent Application Laid-Open No. 2000-223004.
この複合金属体を製造する際に、直径が 200〜: LOOOnmの金属粒子と直径が 5〜 20nmのカーボンナノチューブとを単純に混合しても、両者の粒径差が極めて大き!/ヽ ため、両者が均一に混合された混合物を得ることは困難である。  When manufacturing this composite metal body, the particle size difference between them is extremely large even if the metal particles with diameter of 200 ~: LOOOnm and carbon nanotubes with diameter of 5 ~ 20nm are simply mixed! Therefore, it is difficult to obtain a mixture in which both are uniformly mixed.
このため、同公報では、金属粒子を溶かした酸溶液にカーボンナノチューブを添カロ し分散した後、乾燥し焼結することによって複合金属体を得ている。  For this reason, in this publication, a composite metal body is obtained by adding and dispersing carbon nanotubes in an acid solution in which metal particles are dissolved, followed by drying and sintering.
この公報に提案された複合金属体の製造方法は、その工程が極めて厄介であり、 長時間を要し、複合金属体の製造コストが高価となる欠点が存在する。  The method for producing a composite metal body proposed in this publication has the disadvantage that the process is extremely troublesome, requires a long time, and the production cost of the composite metal body is high.
かかる公報の複合金属体の製造方法に対し、本出願人は、平成 15年 9月 2日発行 の信濃毎日新聞において、図 11に示すカーボンナノチューブと銅等の金属とから成 り、カーボンナノチューブの端部がゥ-状に突出した修飾金属粒子を、カーボンナノ チューブを特殊な分散剤により分散した金属イオンを含有する電解液を用いた電解 法〖こよって得ることができること、及びカゝかる修飾金属粒子を熱圧着して放熱性に優 れた複合金属体を形成できることを提案した。  For the method of manufacturing a composite metal body of this publication, the applicant of the Shinano Mainichi Newspaper, issued on September 2, 2003, consists of the carbon nanotube shown in FIG. 11 and a metal such as copper. Modified metal particles with ends protruding in a u-shape can be obtained by electrolysis using an electrolytic solution containing metal ions in which carbon nanotubes are dispersed with a special dispersing agent, and a modification is also made. We proposed that metal particles can be thermocompression bonded to form composite metal bodies with excellent heat dissipation.
発明の開示  Disclosure of the invention
[0003] 本出願人が前掲した新聞記事に提案した技術によれば、金属内にカーボンナノチ ユーブを分散させた複合金属体を容易に得ることができる。  [0003] According to the technique proposed in the newspaper article previously described by the present applicant, a composite metal body in which carbon nanotubes are dispersed in a metal can be easily obtained.
ところで、修飾金属粒子を電解法によって容易に得ることができる金属粒子 (例え ば銅粒子)と、電解法によって修飾金属粒子を得ることが困難な金属粒子 (例えばァ ルミ-ゥム粒子や合金粒子)とが存在することが知られて ヽる。 しかし、電解法によって修飾金属粒子を得ることが困難な金属には、アルミニウムの 様に、構造体の軽量化等を図る場合に必要な金属が存在する。 By the way, metal particles (for example, copper particles) from which modified metal particles can be easily obtained by an electrolytic method, and metal particles (for example, aluminum particles or alloy particles) from which it is difficult to obtain modified metal particles by an electrolytic method. ) And is known to exist. However, metals that are difficult to obtain modified metal particles by an electrolytic method include metals that are necessary for reducing the weight of structures, such as aluminum.
この様に、電解法によって修飾金属粒子を得ることが困難な金属を含む複合金属 体であっても、複合金属体中にカーボンナノチューブを分散できれば、優れた放熱 性の他に種々の物性を有する複合金属体を得ることができる。  In this way, even if the composite metal body contains a metal that is difficult to obtain modified metal particles by the electrolytic method, if the carbon nanotube can be dispersed in the composite metal body, it has various physical properties in addition to excellent heat dissipation. A composite metal body can be obtained.
そこで、本発明の課題は、電解法によって修飾金属粒子を得ることが困難な金属を 含む複合金属体中にカーボンナノチューブが分散された複合金属体及びその製造 方法を提供することにある。  Accordingly, an object of the present invention is to provide a composite metal body in which carbon nanotubes are dispersed in a composite metal body containing a metal for which it is difficult to obtain modified metal particles by an electrolytic method, and a method for producing the same.
本発明者は、前記課題を解決すべく検討を重ねたところ、電解法によって得られた 、銅等力 成る金属粒子の外方に一部が突出するカーボンナノチューブで修飾され て成る修飾金属粒子 (以下、単に修飾金属粒子と称することがある)を用いることによ つて、電解法によって修飾金属粒子を得ることが困難なアルミニウム等の金属中に力 一ボンナノチューブを分散できることを見出し、本発明に到達した。  As a result of repeated studies to solve the above problems, the present inventor has obtained modified metal particles modified by carbon nanotubes partially protruding outward from the metal particles made of copper isotropic obtained by an electrolytic method. In the present invention, it has been found that a single-bonn nanotube can be dispersed in a metal such as aluminum where it is difficult to obtain modified metal particles by an electrolytic method. Reached.
すなわち、本発明は、少なくとも二種の金属によって形成され、前記二種の金属の 一方側から成る第 1金属部分と、前記二種の金属の他方側から成る第 2金属部分と がランダムに形成されている複合金属体であって、前記第 1金属部分と第 2金属部分 との少なくとも一方側にカーボンナノチューブが分散されて配合されていることを特徴 とする複合金属体にある。  That is, the present invention is formed of at least two kinds of metals, and a first metal part formed on one side of the two kinds of metals and a second metal part formed on the other side of the two kinds of metals are randomly formed. The composite metal body is characterized in that carbon nanotubes are dispersed and blended on at least one side of the first metal portion and the second metal portion.
かかる本発明おいて、カーボンナノチューブを、複合金属体を形成する金属の少な くとも一方側の金属力 成る金属粒子の外方に、一部が突出するカーボンナノチュー ブで修飾されて成る修飾金属粒子を介して混入することによって、圧縮成形する際 にも、カーボンナノチューブと金属粒子との分離を防止できる。  In the present invention, a modified metal obtained by modifying carbon nanotubes with carbon nanotubes that partly protrudes outward from the metal particles formed of metal force on at least one side of the metal forming the composite metal body. By mixing through the particles, separation between the carbon nanotubes and the metal particles can be prevented even during compression molding.
この修飾金属粒子としては、電解法又は酸化還元法によって得られた修飾金属粒 子を好適に用いることができる。  As the modified metal particles, modified metal particles obtained by an electrolytic method or a redox method can be suitably used.
ここで、電解法による修飾金属粒子は、カーボンナノチューブが分散した電解液に 浸漬した陰極と陽極との間に電流を流すことによって得ることができる。  Here, the modified metal particles obtained by the electrolytic method can be obtained by passing an electric current between a cathode and an anode immersed in an electrolytic solution in which carbon nanotubes are dispersed.
一方、酸化還元法による修飾金属粒子は、カーボンナノチューブを含有する水に 難溶の金属塩又は金属酸化物から成る複合粒子を形成し、次いで、前記複合粒子 の金属塩又は金属酸化物を還元する還元剤によって還元処理する、酸化還元法に よって得ることができる。 On the other hand, the modified metal particles by the oxidation-reduction method form composite particles made of a metal salt or metal oxide that is hardly soluble in water containing carbon nanotubes, and then the composite particles The metal salt or metal oxide can be obtained by an oxidation-reduction method in which a reduction agent is used to reduce the metal salt or metal oxide.
また、本発明は、少なくとも二種の金属によって形成され、前記二種の金属の一方 側から成る第 1金属部分と、前記二種の金属の他方側から成る第 2金属部分とがラン ダムに形成されている複合金属体を製造する際に、該二種の金属の少なくとも一方 側の金属力 成る金属粒子であって、前記金属粒子の外方に一部が突出するカー ボンナノチューブで修飾されて成る修飾金属粒子を用い、前記第 1金属部分と第 2金 属部分との少なくとも一方側にカーボンナノチューブを混入することを特徴とする複 合金属体の製造方法にある。  In the present invention, the first metal portion formed from at least one of the two kinds of metals and the second metal portion formed from the other side of the two kinds of metals are randomly added. When the formed composite metal body is produced, the metal particles are formed of metal force on at least one side of the two kinds of metals, and are modified with carbon nanotubes that partially protrude outward from the metal particles. And a carbon nanotube is mixed into at least one side of the first metal portion and the second metal portion.
力かる本発明において、修飾金属粒子を圧縮成形して多孔体力 成る第 1金属部 分を形成した後、第 2金属部分を形成する金属を溶融した溶融金属を、前記多孔体 内に含浸することによって、カーボンナノチューブが分散された複合金属体を得るこ とがでさる。  In the present invention, the porous metal is impregnated with a molten metal obtained by melting the metal forming the second metal portion after the modified metal particles are compression-molded to form the first metal portion having the porous body force. Thus, a composite metal body in which carbon nanotubes are dispersed can be obtained.
ここで、溶融金属として、電解法によって修飾金属粒子を得られ難い金属を溶融し た溶融金属を用いることによって、電解法では修飾金属粒子を得られ難 、金属であ つても、カーボンナノチューブを容易に分散できる。  Here, by using a molten metal obtained by melting a metal that is difficult to obtain modified metal particles by an electrolysis method as a molten metal, it is difficult to obtain modified metal particles by an electrolysis method. Can be distributed.
或いは、第 1金属部分を形成する金属から成る修飾金属粒子と、第 2金属部分を形 成する金属から成る金属粒子とを加熱圧縮成形することによつても、カーボンナノチ ユーブを金属体中に容易に分散できる。  Alternatively, carbon nanotubes can be incorporated into a metal body by heat compression molding of modified metal particles made of metal forming the first metal portion and metal particles made of metal forming the second metal portion. Easy to disperse.
カゝかる修飾金属粒子としては、前述した電解法又は酸化還元法によって得られた 修飾金属粒子を好適に用いることができる。  As the modified metal particles, the modified metal particles obtained by the above-described electrolytic method or redox method can be suitably used.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明に係る複合金属体の一例を説明する概略図である。 FIG. 1 is a schematic view illustrating an example of a composite metal body according to the present invention.
[図 2]本発明で用いる修飾金属粒子の一例を説明する概略図である。  FIG. 2 is a schematic diagram illustrating an example of modified metal particles used in the present invention.
[図 3]本発明で用いる修飾金属粒子の他の例を説明する概略図である。 FIG. 3 is a schematic view illustrating another example of modified metal particles used in the present invention.
圆 4]修飾金属粒子を圧縮成形して得た多孔体を説明する概略図である。 圆 4] A schematic diagram illustrating a porous body obtained by compression molding modified metal particles.
[図 5]本発明に係る複合金属体の一例を示す電子顕微鏡写真である。 FIG. 5 is an electron micrograph showing an example of a composite metal body according to the present invention.
[図 6]本発明で用いる修飾金属粒子の一例を示す電子顕微鏡写真である。 [図 7]図 6に示す修飾金属粒子を用いて得られた複合金属体の横断面についての顕 微鏡写真である。 FIG. 6 is an electron micrograph showing an example of modified metal particles used in the present invention. FIG. 7 is a photomicrograph of a cross section of a composite metal body obtained using the modified metal particles shown in FIG.
[図 8]図 7に示す複合金属体の破面につ 、ての電子顕微鏡写真である。  FIG. 8 is an electron micrograph of the fracture surface of the composite metal body shown in FIG.
[図 9]図 6に示す修飾金属粒子を用いて得られた他の金属体の横断面についての顕 微鏡写真である。  FIG. 9 is a microscopic photograph of a cross section of another metal body obtained using the modified metal particles shown in FIG.
[図 10]図 9に示す複合金属体の破面につ 、ての電子顕微鏡写真である。  FIG. 10 is an electron micrograph of the fracture surface of the composite metal body shown in FIG.
[図 11]従来の修飾金属粒子の電子顕微鏡写真を各々示す。 FIG. 11 shows electron micrographs of conventional modified metal particles.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る複合金属体の一例の概要を図 1に示す。図 1に示す複合金属体 10 は、金属 12から成る金属粒子を所定形状に圧縮成形して形成された多孔体から成 る第 1金属部分と、この多孔体の空隙内に進入している金属 14から成る第 2金属部 分とから成る。  FIG. 1 shows an outline of an example of the composite metal body according to the present invention. A composite metal body 10 shown in FIG. 1 includes a first metal portion made of a porous body formed by compression-molding metal particles made of metal 12 into a predetermined shape, and a metal that has entered the voids of the porous body. It consists of a second metal part consisting of 14.
この図 1に示す複合金属体 10では、金属 12から成る第 1金属部分を形成する多孔 体にカーボンナノチューブ 16, 16 · ·が分散されている。  In the composite metal body 10 shown in FIG. 1, carbon nanotubes 16, 16... Are dispersed in a porous body that forms the first metal portion made of the metal 12.
複合金属体 10中にカーボンナノチューブ 16, 16 · ·が凝集し偏在している場合に は、複合金属体 10の電気伝導率や熱伝導率等の物性をカーボンナノチューブ 16, 16 · ·の混合によって充分に向上できない。  When the carbon nanotubes 16, 16 ... are aggregated and unevenly distributed in the composite metal body 10, the physical properties of the composite metal body 10 such as electrical conductivity and thermal conductivity can be changed by mixing the carbon nanotubes 16, 16, ... It cannot be improved sufficiently.
ところで、金属 12から成る金属粒子、金属 14から成る金属粒子及びカーボンナノ チューブ 16, 16 · ·を単に混合した混合物を所定形状に圧縮成形しても、その工程 中でカーボンナノチューブ 16, 16 · ·は金属粒子と容易に分離する。両者の粒径差 及び比重差が極めて大き 、からである。  By the way, even if a mixture obtained by simply mixing metal particles made of metal 12, metal particles made of metal 14 and carbon nanotubes 16, 16, is compressed into a predetermined shape, carbon nanotubes 16, 16, Easily separates from metal particles. This is because the particle size difference and specific gravity difference between the two are extremely large.
このため、図 1に示す複合金属体 10を製造する際に、図 2に示す修飾金属粒子 18 及び図 3に示す修飾金属粒子 20の少なくとも一方を用いる。図 2に示す修飾金属粒 子 18は、粒子状の金属粒子 22の外周面を、カーボンナノチューブ 16, 16 · ·の一部 が外方に突出して修飾しているものである。  Therefore, when producing the composite metal body 10 shown in FIG. 1, at least one of the modified metal particles 18 shown in FIG. 2 and the modified metal particles 20 shown in FIG. 3 is used. The modified metal particles 18 shown in FIG. 2 are obtained by modifying the outer peripheral surface of the particulate metal particles 22 with some of the carbon nanotubes 16, 16.
また、図 3に示す修飾金属粒子 20は、繊維状の金属繊維 24の外周面を、カーボン ナノチューブ 16, 16 · ·の一部が外方に突出して修飾しているものである。  Further, the modified metal particles 20 shown in FIG. 3 are obtained by modifying the outer peripheral surface of the fibrous metal fiber 24 so that a part of the carbon nanotubes 16, 16.
力かる図 2及び図 3に示す修飾金属粒子 18、 20は、それぞれ単独に用いることが でき、両者を併用してもよい。 The modified metal particles 18 and 20 shown in Fig. 2 and Fig. 3 can be used independently. Yes, you may use both together.
力かる図 2及び図 3に示す修飾金属粒子 18, 20では、カーボンナノチューブ 16, 1 6 · ·の各々は、その一部が金属粒子 22又は金属繊維 24に埋没しており、残部が金 属粒子 22又は金属繊維 24の外方に突出している。  In the modified metal particles 18 and 20 shown in Fig. 2 and Fig. 3, each of the carbon nanotubes 16, 1 6 ··· is partially embedded in the metal particles 22 or the metal fibers 24, and the remainder is made of metal. Projecting outward of the particles 22 or metal fibers 24.
具体的には、カーボンナノチューブ 16, 16 · ·の各基部側が金属粒子 22又は金属 繊維 24に埋没して先端側が突出している状態又はその両端側が金属粒子 22又は 金属繊維 24に埋没して中途部が露出して ヽる状態、或いは両状態が併存して!/ヽる 状態にある。  Specifically, each base side of the carbon nanotubes 16, 16... Is buried in the metal particles 22 or the metal fibers 24 and the tip side protrudes, or both ends thereof are buried in the metal particles 22 or the metal fibers 24 and the middle part. Is in a state of being exposed and talking, or both states are coexisting!
かかる修飾金属粒子 18, 20に用いるカーボンナノチューブ 16は、単層、多層どち らでもよぐその一端または両端がフラーレン状のカップで閉ざされていてもよい。 更に、カーボンナノチューブ 16は、その長さが直径の 100倍以上あるチューブ状の 形態である。  The carbon nanotubes 16 used for the modified metal particles 18 and 20 may be either single-walled or multi-walled, and one or both ends thereof may be closed with a fullerene cup. Furthermore, the carbon nanotubes 16 have a tubular shape whose length is 100 times or more of the diameter.
このカーボンナノチューブ 16は、その直径が数 nmから数百 nm (例えば 300nm) 以下のものを用いることが好まし 、。  The carbon nanotube 16 preferably has a diameter of several nm to several hundred nm (for example, 300 nm) or less.
直径が 15nm未満のカーボンナノチューブ 16の場合は、導電性が低下する場合が ある。この直径が 15nm未満のカーボンナノチューブ 16では、その結晶構造の螺旋 方向を指定するカイラルベクトルを決定する二つの整数 nと m (カイラル指数)力 n— m= 3の倍数又は n=mの場合に、導電性が生じる。  In the case of carbon nanotubes 16 having a diameter of less than 15 nm, the conductivity may be lowered. For carbon nanotubes 16 with a diameter of less than 15 nm, two integers n and m (chiral exponent) force that determine the chiral vector that specifies the spiral direction of the crystal structure, n—a multiple of m = 3 or n = m Conductivity occurs.
一方、直径が 15nm以上のカーボンナノチューブ 16では、カイラル指数が上記条 件以外の場合であっても導電性を呈する。  On the other hand, carbon nanotubes 16 having a diameter of 15 nm or more exhibit conductivity even when the chiral index is other than the above conditions.
この様なカーボンナノチューブ 16は、黒鉛のように導電性に異方性はなぐ表面の あらゆる方向に電流が流れる。  In such a carbon nanotube 16, an electric current flows in all directions on the surface where the anisotropy is not electrically conductive like graphite.
このため、カーボンナノチューブ 16で外周面が修飾された修飾金属粒子 18、 20で は、カーボンナノチューブ 16、カーボンナノチューブ 16同士、又は他の金属粒子と 表層面で接触するため、少なくとも金属粒子 22又は金属繊維 24の最外層 (接触層) がカーボンナノチューブ 16で修飾されたものであればよい。  For this reason, the modified metal particles 18 and 20 whose outer peripheral surfaces are modified with the carbon nanotubes 16 and 20 are in contact with the carbon nanotubes 16, the carbon nanotubes 16 or each other, or other metal particles on the surface layer. Any outermost layer (contact layer) of the fiber 24 may be modified with the carbon nanotubes 16.
また、カーボンナノチューブ 16によって修飾される金属粒子 22又は金属繊維 24は 、カーボンナノチューブ 16によって修飾され易い金属、例えば銅力も成るものであつ てもよい。 Further, the metal particles 22 or the metal fibers 24 modified by the carbon nanotubes 16 are made of a metal that is easily modified by the carbon nanotubes 16, for example, copper power. May be.
尚、金属粒子 22の形状は、球形の他に、非球形や薄片状であってもよぐその形 状には囚われない。  The shape of the metal particles 22 is not limited to a spherical shape, but may be a non-spherical shape or a flake shape.
図 1に示す内部構造の複合金属体 10を得るには、先ず、図 2及び図 3に示す修飾 金属粒子 18, 20の少なくとも一方を製造する。  In order to obtain the composite metal body 10 having the internal structure shown in FIG. 1, first, at least one of the modified metal particles 18 and 20 shown in FIG. 2 and FIG. 3 is produced.
図 2及び図 3に示す修飾金属粒子 18, 20の各々は、カーボンナノチューブ 16, 16 • ·を分散した電解液に挿入した陰極と陽極との間に電流を流して電解し、陰極表面 に修飾金属粒子 18, 20を含む金属粒子 (金属粉)を電解析出させることによって得 ることがでさる。  Each of the modified metal particles 18 and 20 shown in Fig. 2 and Fig. 3 is modified on the surface of the cathode by electrolysis by passing a current between the cathode and anode inserted in the electrolyte solution in which the carbon nanotubes 16, 16 It can be obtained by electrolytic deposition of metal particles (metal powder) containing metal particles 18 and 20.
力かる修飾金属粒子 18, 20としては、電解法によって金属が析出し易い金属、例 えば銅力 成る修飾金属粒子 18, 20であれば容易に得ることができる。  As the modified metal particles 18 and 20, the metal can be easily obtained if the metal is easily deposited by an electrolytic method, for example, the modified metal particles 18 and 20 made of copper.
これに対し、銅から成る修飾金属粒子 18, 20比較して、アルミニウム力 成る修飾 金属粒子 18, 20を、通常の条件下での電解によって得ることは困難である。また、合 金から成る修飾金属粒子 18, 20でも、原則として、通常の条件下での電解によって 得ることは困難である。  On the other hand, it is difficult to obtain the modified metal particles 18 and 20 having an aluminum force by electrolysis under normal conditions as compared with the modified metal particles 18 and 20 made of copper. Also, in principle, it is difficult to obtain modified metal particles 18 and 20 made of alloy by electrolysis under normal conditions.
この様にして、電解法によって得られた粒子状の修飾金属粒子 18, 18 · ·及び繊維 状の修飾金属粒子 20, 20· ·の少なくとも一方を、圧縮成形して多孔体を得る。この 多孔体に対しては、更に必要に応じて焼成してもよい。  In this way, at least one of the particulate modified metal particles 18, 18... And the fibrous modified metal particles 20, 20. The porous body may be further fired as necessary.
かかる圧縮成形の工程でも、カーボンナノチューブ 16, 16 · ·は、その一部が金属 粒子 22又は金属繊維 24に埋没しているため、圧縮成形等の力が加えられても、金 属粒子 22又は金属繊維 24とカーボンナノチューブ 16, 16 · ·とが分離することを防 止できる。  Even in such a compression molding process, the carbon nanotubes 16, 16... Are partially embedded in the metal particles 22 or the metal fibers 24. Therefore, even if a force such as compression molding is applied, the metal particles 22 or It is possible to prevent the metal fiber 24 and the carbon nanotubes 16, 16.
図 2に示す修飾金属粒子 18, 18 · ·を圧縮成形して得た多孔体 30の概要を図 4に 示す。得られた多孔体 30では、修飾金属粒子 18, 18 · ·同士が互いに接触している と共に、修飾金属粒子 18, 18 · ·の間に空隙 32, 32· ·が形成されている。この空隙 3 2内には、カーボンナノチューブ 16, 16 · ·同士が絡み合って進入している。  FIG. 4 shows an outline of the porous body 30 obtained by compression molding the modified metal particles 18, 18... Shown in FIG. In the obtained porous body 30, the modified metal particles 18, 18... Are in contact with each other, and voids 32, 32... Are formed between the modified metal particles 18, 18. The carbon nanotubes 16, 16... Are entangled with each other in the void 32.
次いで、図 4に示す内部構造の多孔体 30を、粒子状の修飾金属粒子 18を形成す る金属と異なる金属を溶融して得た溶融金属に浸漬し、多孔体 30内の空隙 32, 32· •に溶融金属を含浸する。この場合、多孔体 30を真空吸引又は加圧しつつ溶融金 属に浸漬し、多孔体 30内に溶融金属を強制含浸することが好ましい。 Next, the porous body 30 having the internal structure shown in FIG. 4 is immersed in a molten metal obtained by melting a metal different from the metal forming the particulate modified metal particles 18, and the voids 32, 32 in the porous body 30 are immersed. · • Impregnated with molten metal. In this case, it is preferable to immerse the porous body 30 in the molten metal while vacuum suction or pressurization, and forcibly impregnate the molten metal in the porous body 30.
その後、溶融金属が含浸された多孔体 30を溶融金属力 取り出して冷却すること によって、図 1に示す複合金属体 10を得ることができる。  Thereafter, the porous metal 30 impregnated with the molten metal is taken out of the molten metal force and cooled, whereby the composite metal body 10 shown in FIG. 1 can be obtained.
図 1に示す複合金属体 10の金属 14から成る第 2金属部分は、第 1金属部分である 多孔体 30の空隙 32, 32· ·の各々に充填された溶融金属が冷却されて形成されたも のである。  The second metal portion made of the metal 14 of the composite metal body 10 shown in FIG. 1 is formed by cooling the molten metal filled in each of the voids 32, 32. It is.
かかる空隙 32, 32· ·の各々には、カーボンナノチューブ 16, 16 · ·同士が絡み合 つて進入しており、金属 14から第 2金属部分中にもカーボンナノチューブ 16, 16 · · が分散されている。  Each of the voids 32, 32 ··· is intertwined with the carbon nanotubes 16, 16 ···, and the carbon nanotubes 16, 16, ··· are dispersed from the metal 14 into the second metal portion. Yes.
このため、例えば修飾金属粒子 18を容易に形成し易い銅力も成る金属粒子 22を 用い、金属粒子 22の外周面をカーボンナノチューブ 16, 16 · ·で修飾した修飾金属 粒子 18によって第 1金属部分である多孔体 30を形成した後、溶融アルミニウムを多 孔体 30内に含浸することにより、金属 12としての銅力も成る第 1金属部分と金属 14と してのアルミニウム力も成る第 2金属部分とがランダムに形成され、且つ第 1金属部分 にカーボンナノチューブ 16, 16 · ·が第 1金属部分に分散された複合金属体 10を得 ることがでさる。  For this reason, for example, the metal particles 22 having a copper force that can easily form the modified metal particles 18 are used, and the outer peripheral surface of the metal particles 22 is modified with the carbon nanotubes 16, 16. After forming a porous body 30, molten aluminum is impregnated into the porous body 30, whereby a first metal portion that also has copper force as the metal 12 and a second metal portion that also has aluminum force as the metal 14 are formed. It is possible to obtain a composite metal body 10 that is randomly formed and in which the carbon nanotubes 16, 16... Are dispersed in the first metal portion.
図 4に示す第 1金属部分としての多孔体 30は、図 2に示す粒子状の修飾金属粒子 18, 18 · ·を圧縮成形して得たものである力 図 3に示す繊維状の修飾金属粒子 20, 20 · ·を圧縮成形しても得ることができる。  The porous body 30 as the first metal portion shown in FIG. 4 is a force obtained by compression-molding the particulate modified metal particles 18, 18... Shown in FIG. 2 The fibrous modified metal shown in FIG. It can also be obtained by compression molding the particles 20, 20.
これまでは、図 1に示す複合金属体 10の製造方法としては、金属 12から成る金属 粒子 22又は金属繊維 24をカーボンナノチューブ 16, 16 · ·で修飾した粒子状又は 繊維状の修飾金属粒子 18, 20を圧縮成形して得た第 1金属部分を形成する多孔体 30に、第 2金属部分を形成する金属 14を溶融した溶融金属を含浸させる製造方法 を説明してきたが、第 2金属部分を形成する金属 14を溶融した溶融金属に、第 1金 属部分を形成する粒子状の修飾金属粒子 18及び繊維状の修飾金属粒子 20の少な くとも一方を添加し混練することによつても得ることができる。  Up to now, the composite metal body 10 shown in FIG. 1 has been manufactured by using particulate metal particles 22 or metal fibers 24 made of metal 12 and modified with carbon nanotubes 16, 16. , 20 has been described as a manufacturing method for impregnating a porous body 30 forming a first metal part obtained by compression molding with a molten metal obtained by melting a metal 14 forming a second metal part. It is also possible to add and knead at least one of the particulate modified metal particles 18 and the fibrous modified metal particles 20 forming the first metal portion to the molten metal obtained by melting the metal 14 forming the metal. Obtainable.
更に、第 1金属部分を形成する金属 12から成る粒子状の修飾金属粒子 18及び繊 維状の修飾金属粒子 20の少なくとも一方と、第 2金属部分を形成する金属 14から成 る金属粒子とを混合した後、圧縮成形して所定形状の成形品とし、この成形品をカロ 熱して金属 14から成る金属粒子を溶融することによつても、図 1に示す複合金属体 1 0を得ることができる。この場合、金属 14の融点が修飾金属粒子 18, 20を形成する 金属 12よりも低温であることが好まし 、。 Further, the particulate modified metal particles 18 composed of the metal 12 forming the first metal portion and the fibers. After mixing at least one of the fibrous modified metal particles 20 and the metal particles made of the metal 14 forming the second metal portion, compression molding is performed to obtain a molded product of a predetermined shape. The composite metal body 10 shown in FIG. 1 can also be obtained by melting metal particles made of the metal 14. In this case, the melting point of the metal 14 is preferably lower than that of the metal 12 forming the modified metal particles 18, 20.
また、粒子状の修飾金属粒子 18又は繊維状の修飾金属粒子 20の製造方法として は、電解法の他に種々な製造方法を採用できる。  Further, as a method for producing the particulate modified metal particles 18 or the fibrous modified metal particles 20, various production methods can be adopted in addition to the electrolytic method.
例えば、カーボンナノチューブ 16, 16 · ·を非酸化雰囲気中に飛散し、この非酸ィ匕 雰囲気中に、溶融金属を圧電ポンプにより粒子化又は繊維化して注入することによ つて、金属粒子 22又は金属繊維 24の表面にカーボンナノチューブ 16を付着、固定 すること〖こより得ることができる。  For example, the carbon nanotubes 16, 16... Are scattered in a non-oxidizing atmosphere, and the molten metal is injected into the non-oxidizing atmosphere by pulverizing or fiberizing the molten metal with a piezoelectric pump. The carbon nanotubes 16 can be adhered and fixed to the surface of the metal fibers 24 to obtain them.
更に、カーボンナノチューブ 16, 16 · ·を混練により分散させた溶融金属を、破砕し 、粒子化又は繊維化することによつても形成できる。  Further, the molten metal in which the carbon nanotubes 16, 16... Are dispersed by kneading can be formed by crushing and forming particles or fibers.
或いは、カーボンナノチューブ 16, 16 · ·を含有する水に難溶の金属塩又は金属酸 化物から成る複合粒子を形成し、次いで、析出した複合粒子を、前記金属塩又は金 属酸化物を還元する還元剤によって還元処理する、酸化還元法によっても、粒子状 の修飾金属粒子 18又は繊維状の修飾金属粒子 20を得ることができる。  Alternatively, composite particles made of a metal salt or metal oxide that is hardly soluble in water containing carbon nanotubes 16, 16,... Are formed, and then the precipitated composite particles are reduced to the metal salt or metal oxide. The particulate modified metal particles 18 or the fibrous modified metal particles 20 can also be obtained by an oxidation-reduction method in which a reduction treatment is performed with a reducing agent.
具体的には、カーボンナノチューブ 16, 16 · ·を分散した水溶液に水溶性金属塩を 溶解した後、この水溶液に溶解している金属イオンと反応して水に難溶の金属塩又 は金属酸化物を生成するアルカリを、カーボンナノチューブ 16, 16 · ·を分散しつつ 水溶液に添加して、カーボンナノチューブ 16, 16 · ·を含有する水に難溶の金属塩 又は金属酸化物から成る複合粒子を析出し、次いで、析出した複合粒子を、その金 属塩又は金属酸化物を還元する還元剤によって還元処理することにより、粒子状の 修飾金属粒子 18又は繊維状の修飾金属粒子 20を得ることができる。  Specifically, after dissolving a water-soluble metal salt in an aqueous solution in which carbon nanotubes 16, 16,... Are dispersed, it reacts with metal ions dissolved in this aqueous solution to cause a metal salt or metal oxide that is hardly soluble in water. Is added to the aqueous solution while dispersing the carbon nanotubes 16, 16,..., And composite particles made of a metal salt or metal oxide that is hardly soluble in water and contains the carbon nanotubes 16, 16,. Precipitating, and then reducing the precipitated composite particles with a reducing agent that reduces the metal salt or metal oxide, thereby obtaining particulate modified metal particles 18 or fibrous modified metal particles 20. it can.
この酸化還元方法において、カーボンナノチューブ 16, 16 · ·の分散は、水溶液に 超音波による衝撃を与えること、或いは撹拌機等による機械的撹拌によって水溶液 を撹拌しつつ、分散剤を添加することによつても行うことができる。この分散剤としては 、カーボンナノチューブ 16, 16 · ·を分散できる界面活性剤であればよぐォクチルフ エノキシポリエトキシエタノール、ドデシル硫酸ナトリウム、ポリアクリル酸を挙げること ができる。 In this oxidation-reduction method, the dispersion of the carbon nanotubes 16, 16... Is caused by applying a shock to the aqueous solution by applying an ultrasonic wave, or by adding a dispersing agent while stirring the aqueous solution by mechanical stirring using a stirrer or the like. Can also be done. As the dispersant, any surfactant that can disperse the carbon nanotubes 16, 16,. Examples include enoxypolyethoxyethanol, sodium dodecyl sulfate, and polyacrylic acid.
かかるカーボンナノチューブ 16, 16 · ·の分散を更に容易に行うには、上記分散剤 を添加した水溶液に超音波による衝撃を与えることが好ましい。  In order to more easily disperse the carbon nanotubes 16, 16..., It is preferable to apply an ultrasonic impact to the aqueous solution to which the dispersant is added.
更に、水溶性金属塩としては、銅、ニッケル又は銀カゝら成る水溶性金属塩を好適に 用いることができ、更に好ましくは、銅、ニッケル又は銀から成る硫酸塩、硝酸塩又は 酢酸塩を用いることができる。  Further, as the water-soluble metal salt, a water-soluble metal salt made of copper, nickel or silver can be preferably used, and more preferably, a sulfate, nitrate or acetate made of copper, nickel or silver is used. be able to.
この様にして形成した水に難溶の金属塩又は金属酸ィ匕物力 成る微細な複合粒子 は、実質的に球状であって、粒径 1 μ m以下のカーボンナノチューブ 16, 16 · ·を含 有する複合粒子である。 Fine composite particles in water formed in this way comprising metal salts or metal Sani匕物force of sparingly soluble substantially a spherical, including the particle size 1 mu m or less of the carbon nanotubes 16, 16 ... It is the composite particle which has.
更に、かかる複合粒子はカーボンナノチューブ 16, 16 · ·が分散された水溶液中で 形成しており、その複合粒子を形成する過程で、水溶液中に分散されているカーボ ンナノチューブ 16, 16 · ·を複合粒子中に取り込むことができ、形成された複合粒子 中にはカーボンナノチューブ 16, 16 · ·が均一分散された状態で含有される。  Further, such composite particles are formed in an aqueous solution in which carbon nanotubes 16, 16,... Are dispersed, and in the process of forming the composite particles, the carbon nanotubes 16, 16,. Carbon nanotubes 16, 16... Are contained in a uniformly dispersed state in the formed composite particles.
次いで、得られた複合粒子を、その水に難溶の金属塩又は金属酸ィ匕物を還元する 還元剤によって還元処理することによって、粒子状の修飾金属粒子 18又は繊維状 の修飾金属粒子 20を得ることができる。  Next, the obtained composite particles are reduced with a reducing agent that reduces a metal salt or metal oxide that is hardly soluble in water, whereby particulate modified metal particles 18 or fibrous modified metal particles 20 are obtained. Can be obtained.
力かる還元剤としては、ヒドラジン、ヒドラジンィ匕合物、ホルマリン、ァセトアルデヒド、 蟻酸、ロッシエル塩、ヒドロキシルァミン、ブドウ糖及び過酸ィ匕水素力も成る群のうち、 1種又は 2種以上を用いることができる。この還元剤は、金属塩又は金属酸化物から 成る複合粒子が沈殿して ヽる水溶液に添加してもよく、水溶液から分離した金属塩 又は金属酸化物から成る複合粒子と還元剤とを直接接触して、その金属塩又は金属 酸化物を還元させてもょ ヽ。  As a powerful reducing agent, one or more of hydrazine, hydrazine compound, formalin, acetoaldehyde, formic acid, Rossiel salt, hydroxylamine, glucose and peracid hydrogen power are used. be able to. This reducing agent may be added to an aqueous solution in which composite particles composed of metal salts or metal oxides are precipitated, and direct contact between the composite particles composed of metal salts or metal oxides separated from the aqueous solution and the reducing agent. Then, the metal salt or metal oxide may be reduced.
尚、水溶液に添加した還元剤による還元反応や添加した界面活性剤によって発泡 する場合は、アルコール等の消泡剤を添加してもよ 、。  In the case of foaming by a reducing reaction with a reducing agent added to an aqueous solution or a surfactant added, an antifoaming agent such as alcohol may be added.
これらの修飾金属粒子 18, 20の製造方法によれば、電解法によって修飾金属粒 子 18, 20を得ることが困難な金属 14であっても、修飾金属粒子 18, 20を得ることが できる。 このため、第 1金属部分を形成する金属 12から成る粒子状の修飾金属粒子 18及 び繊維状の修飾金属粒子 20の少なくとも一方と、第 2金属部分を形成する金属 14 から成る粒子状の修飾金属粒子 18及び繊維状の修飾金属粒子 20の少なくとも一方 とを混合し、圧縮成形することによって図 1に示す複合金属体 10を得ることができる。 この場合でも、圧縮成形後に必要に応じて焼成してもよい。 According to the method for producing these modified metal particles 18 and 20, the modified metal particles 18 and 20 can be obtained even if the metal 14 is difficult to obtain the modified metal particles 18 and 20 by the electrolytic method. Therefore, at least one of the particulate modified metal particle 18 and the fibrous modified metal particle 20 composed of the metal 12 forming the first metal portion, and the particulate modified metal composed of the metal 14 forming the second metal portion. The composite metal body 10 shown in FIG. 1 can be obtained by mixing at least one of the metal particles 18 and the fibrous modified metal particles 20 and compression molding. Even in this case, it may be fired as necessary after compression molding.
これまで説明してきた図 1に示す複合金属体 10を用い、修飾金属粒子 18, 20を形 成する金属 12のみをィ匕学的に溶解又は溶融することによって除去し、金属 14に力 一ボンナノチューブ 16, 16 · ·が分散された複合金属体としてもよい。  Using the composite metal body 10 shown in Fig. 1 described so far, only the metal 12 forming the modified metal particles 18, 20 is removed by chemically dissolving or melting, and the metal 14 is A composite metal body in which nanotubes 16, 16... Are dispersed may be used.
更に、金属 12を除去した複合金属体に、金属 14から成る溶融金属を含浸させても よぐ他種の金属から成る溶融金属を含浸させてもよい。  Further, the composite metal body from which the metal 12 has been removed may be impregnated with a molten metal composed of the metal 14 or with a molten metal composed of another kind of metal.
また、図 1に示す複合金属体 10に代えて、金属 14から成る第 2金属部分の間が力 一ボンナノチューブ 16, 16 · ·が分散された金属 12から成る第 1金属部分によって充 填されて!、る複合金属体であってもよ 、。  Further, instead of the composite metal body 10 shown in FIG. 1, the space between the second metal parts made of the metal 14 is filled with the first metal parts made of the metal 12 in which the single-bonn nanotubes 16, 16. It can be a composite metal body.
力かる複合金属体は、金属 14から成る金属粒子と、粒子状の修飾金属粒子 18及 び繊維状の修飾金属粒子 20の少なくとも一方とを混合した後、加熱圧縮成形するこ とによって得ることができる。  A strong composite metal body can be obtained by mixing metal particles composed of metal 14 and at least one of particulate modified metal particles 18 and fibrous modified metal particles 20 and then heat-compressing them. it can.
尚、金属 14から成る金属粒子と、粒子状の修飾金属粒子 18及び繊維状の修飾金 属粒子 20の少なくとも一方とを混合した後、圧縮成形して更に焼成を施してもよい。  The metal particles composed of the metal 14 and at least one of the particulate modified metal particles 18 and the fibrous modified metal particles 20 may be mixed, and then compression molded and further fired.
(実施例 1) (Example 1)
直径 200nmのカーボンナノチューブ 16, 16 · ·を分散した電解液に挿入した陰極 と陽極との間に電流を流して電解し、陰極表面に銅粒子を電解析出させた。この銅 粒子についての電子顕微鏡写真によれば、図 2に示す様に、銅粒子 22の外方に一 部が突出するカーボンナノチューブ 16, 16 · ·によって修飾されて成る修飾金属粒子 18が得られた。  Electrolysis was performed by passing a current between the cathode and the anode inserted into the electrolyte solution in which carbon nanotubes 16, 16... Having a diameter of 200 nm were dispersed, and copper particles were electrolytically deposited on the cathode surface. According to the electron micrograph of the copper particles, as shown in FIG. 2, modified metal particles 18 modified by carbon nanotubes 16, 16. It was.
この修飾金属粒子 18から成る金属粒子を圧縮成形して所定形状の成形品を得た 。この成形品の断面を顕微鏡観察すると、図 4に示す様に、多数の間隙が形成され た多孔体であった。 得られた成形品を真空吸引しつつ、 750°Cに保持されている溶融アルミニウムに約 1時間浸漬し、成形品内に溶融アルミニウムを強制含浸させた。 The metal particles composed of the modified metal particles 18 were compression molded to obtain a molded product having a predetermined shape. When the cross section of this molded product was observed with a microscope, it was a porous body in which a large number of gaps were formed as shown in FIG. The obtained molded product was immersed in molten aluminum maintained at 750 ° C. for about 1 hour while being vacuum-sucked, and the molded product was forcibly impregnated with molten aluminum.
次いで、溶融アルミニウムから取り出した成形品を冷却して、銅、アルミニウム及び カーボンナノチューブ力も成る複合金属体を得た。この複合金属体の断面を顕微鏡 観察すると、図 1に示す様に、銅によって形成された多孔体から成る第 1金属部分中 にアルミニウム力 成る第 2金属部分がランダムに形成されていた。  Subsequently, the molded product taken out from the molten aluminum was cooled to obtain a composite metal body having copper, aluminum, and carbon nanotube force. When the cross section of the composite metal body was observed with a microscope, as shown in FIG. 1, the second metal portion made of aluminum force was randomly formed in the first metal portion made of a porous body made of copper.
この複合金属体の断面についての図 5に示す電子顕微鏡写真によれば、銅及びァ ルミ-ゥム中にカーボンナノチューブ (矢印で示す)が分散されて 、た。  According to the electron micrograph shown in FIG. 5 for the cross section of this composite metal body, carbon nanotubes (indicated by arrows) were dispersed in copper and aluminum.
(実施例 2) (Example 2)
( 1 )修飾金属粒子 18の製造  (1) Production of modified metal particles 18
カーボンナノチューブ(昭和電工株式会社製 VGCF) 0. 36g、水 100g、及び界面 活性剤としてのォクチルフエノキシポリエトキシエタノール [商品名: TRITON X-100(I CN BiomedicaUnc.製) 0. 4gを、超音波ホモジナイザー (Ultra Sonic,Inc.製 VC- 750) によって分散処理を施した後、塩ィ匕ニッケル (NiCl )28gを投入してスターラで撹拌し  Carbon nanotube (VGCF manufactured by Showa Denko KK) 0.3g, water 100g, and octylphenoxypolyethoxyethanol as surfactant (trade name: TRITON X-100 (I CN BiomedicaUnc.) 0.4g After dispersion with an ultrasonic homogenizer (VC-750 manufactured by Ultra Sonic, Inc.), 28 g of salty nickel (NiCl) was added and stirred with a stirrer.
2  2
つつ 50°Cまで加熱して分散液を得た。 While heating to 50 ° C, a dispersion was obtained.
更に、純水 50gに水酸ィ匕ナトリウム(NaOH) 13gを添カ卩したアルカリ溶液を準備し た。  Further, an alkaline solution prepared by adding 13 g of sodium hydroxide (NaOH) to 50 g of pure water was prepared.
次 ヽで、得られた分散液を超音波洗浄機 [株式会社ァズワン製 US— 1]によって超 音波を与えると共に、ガラス棒で撹拌しつつ、アルカリ溶液を添加した。分散液は、複 合粒子が析出した析出液となった。  Next, an ultrasonic solution was applied to the obtained dispersion by an ultrasonic cleaner [US-1 manufactured by Azwan Co., Ltd.], and an alkaline solution was added while stirring with a glass rod. The dispersion became a precipitate in which composite particles were precipitated.
この析出液を 60°Cまで加熱しつつ、スターラで撹拌しつつ還元剤としてのヒドラジ ン一水和物(N H ·Η 0) 64gを添カ卩して還元反応させた。その際に、発泡の状況に  While heating this precipitate to 60 ° C. and stirring with a stirrer, 64 g of hydrazine monohydrate (N H · 0) as a reducing agent was added to cause a reduction reaction. At that time, the situation of foaming
2 4 2  2 4 2
応じてエタノール 100g添加して還元反応を終了させた。還元反応が終了した後、析 出液を常温に冷却して沈殿物を回収し、洗浄、真空乾燥した。 In response, 100 g of ethanol was added to complete the reduction reaction. After the reduction reaction was completed, the precipitate was cooled to room temperature, the precipitate was collected, washed and dried in vacuum.
得られた複合粒子は、ニッケル色をしており、カーボンナノチューブが 5wt%含有さ れたニッケル金属粒子であって、図 6の顕微鏡写真の矢印で示す様に、カーボンナ ノチューブの一端部が粒子状の金属粒子の外方に突出する粒子状の修飾金属粒子 であった。 The obtained composite particles are nickel-colored nickel metal particles containing 5 wt% of carbon nanotubes, and one end of the carbon nanotube is a particle as shown by the arrow in the micrograph in FIG. -Shaped modified metal particles projecting outward from the metal-shaped metal particles Met.
(2)複合金属体の製造 (2) Manufacture of composite metal bodies
得られた粒子状の修飾金属粒子とアトマイズ銅粉とを混合した後、加圧しつつ温度 500°Cで 1時間保持して所定形状に成形した。このアトマイズ銅粉の混合量は、焼成 体中のアトマイズ銅粉が 60wt%となるよう調整した。  The obtained particulate modified metal particles and the atomized copper powder were mixed, and then held at a temperature of 500 ° C. for 1 hour while being pressed to be molded into a predetermined shape. The mixing amount of the atomized copper powder was adjusted so that the atomized copper powder in the fired body was 60 wt%.
得られた焼成体は、図 7の断面の顕微鏡写真に示す様に、アトマイズ銅粉カゝら成る 第 2金属部分の周囲をニッケル力 成る第 1金属部分がバインダーとして埋めるもの であった。  As shown in the micrograph of the cross section of FIG. 7, the obtained fired body was such that the first metal portion made of nickel force was buried as a binder around the second metal portion made of atomized copper powder.
力かる焼成体の破面のニッケル部分では、図 8の電子顕微鏡写真に矢印で示す様 に、カーボンナノチューブが分散されて 、るものであった。  As shown by the arrows in the electron micrograph of FIG. 8, carbon nanotubes were dispersed in the nickel portion of the fracture surface of the strong fired body.
(実施例 3) (Example 3)
実施例 2で得られたカーボンナノチューブとニッケルとから成る粒子状の修飾金属 粒子とタングステン粉とを混合した後、加圧しつつ温度 500°Cで 2時間保持して焼成 した。このタングステン粉の混合量は、焼成体中のタングステン粉が 55vol%となるよ う調整した。  The particulate modified metal particles comprising carbon nanotubes and nickel obtained in Example 2 were mixed with tungsten powder, and then calcined by maintaining at 500 ° C. for 2 hours while applying pressure. The mixing amount of this tungsten powder was adjusted so that the tungsten powder in the fired body was 55 vol%.
得られた焼成体は、図 9の断面の顕微鏡写真に示す様に、タングステン粉から成る 第 2金属部分の周囲をニッケル力 成る第 2金属部分がバインダーとして埋めるもの であった。  As shown in the micrograph of the cross section of FIG. 9, the obtained fired body had the second metal part made of nickel powder buried as a binder around the second metal part made of tungsten powder.
力かる焼成体の破面のニッケル部分では、図 10の電子顕微鏡写真に矢印で示す 様に、
Figure imgf000013_0001
、るものであった。
In the nickel part of the fracture surface of the strong fired body, as shown by the arrow in the electron micrograph of Fig. 10,
Figure imgf000013_0001
It was something.
産業上の利用可能性 Industrial applicability
複数種の金属粒子とカーボンナノチューブとを単に混合した混合物を所定形状に 圧縮成形しても、その工程中でカーボンナノチューブは凝集して金属粒子と容易に 分離する。このため、複数種の金属力 成る金属体中にカーボンナノチューブが分 散されて!ヽる複合金属体を得ることは極めて困難である。  Even if a mixture obtained by simply mixing a plurality of types of metal particles and carbon nanotubes is compression-molded into a predetermined shape, the carbon nanotubes aggregate and easily separate from the metal particles during the process. For this reason, it is extremely difficult to obtain a composite metal body in which carbon nanotubes are dispersed in a metal body having a plurality of kinds of metal forces.
この点、本発明によれば、少なくとも二種の金属によって形成され、前記二種の金 属の一方側から成る第 1金属部分と、二種の金属の他方側から成る第 2金属部分と がランダムに形成されている複合金属体を製造する際に、二種の金属の少なくとも一 方の金属力 成る金属粒子であって、金属粒子の外方に一部が突出するカーボン ナノチューブで修飾されて成る修飾金属粒子を用いることによって、複合金属の製造 工程中でカーボンナノチューブが分離することなぐ第 1金属部分又は第 2金属部分 の少なくとも一方側にカーボンナノチューブを混入できる。 In this regard, according to the present invention, the two kinds of gold are formed of at least two kinds of metals. When producing a composite metal body in which a first metal part composed of one side of a genus and a second metal part composed of the other side of two kinds of metals are randomly formed, at least one of the two kinds of metals is produced. By using modified metal particles that are modified with carbon nanotubes that partially protrude outward from the metal particles, the carbon nanotubes are not separated during the composite metal production process. Carbon nanotubes can be mixed into at least one side of the first metal portion or the second metal portion.
この第 1金属部分と第 2金属部分とは、複合金属体中にランダムに形成されている ため、かかる第 1金属部分及び第 2金属部分の少なくとも一方側にカーボンナノチュ ーブを混入できる本発明によれば、カーボンナノチューブが分散された複合金属体 中を得ることができる。  Since the first metal portion and the second metal portion are randomly formed in the composite metal body, the carbon nanotube can be mixed on at least one side of the first metal portion and the second metal portion. According to the invention, a composite metal body in which carbon nanotubes are dispersed can be obtained.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも二種の金属によって形成され、前記二種の金属の一方側から成る第 1金 属部分と、前記二種の金属の他方側力も成る第 2金属部分とがランダムに形成され て 、る複合金属体であって、  [1] A first metal part formed of at least two kinds of metals and made of one side of the two kinds of metals and a second metal part made of the other side of the two kinds of metals are randomly formed. A composite metal body,
前記第 1金属部分と第 2金属部分との少なくとも一方側にカーボンナノチューブが 分散されて配合されて!ゝることを特徴とする複合金属体。  A composite metal body comprising carbon nanotubes dispersed and blended on at least one side of the first metal portion and the second metal portion.
[2] カーボンナノチューブは、複合金属体を形成する少なくとも金属の一方側の金属か ら成る金属粒子の外方に、一部が突出するカーボンナノチューブで修飾されて成る 修飾金属粒子を介して混入されている請求項 1記載の複合金属体。 [2] The carbon nanotubes are mixed into the outside of the metal particles made of at least one metal of the metal forming the composite metal body via the modified metal particles partially modified with the protruding carbon nanotubes. The composite metal body according to claim 1.
[3] 修飾金属粒子が、カーボンナノチューブが分散した電解液に浸漬した陰極と陽極 との間に電流を流す電解法によって得られた修飾金属粒子である請求項 2記載の複 合金属体。 [3] The composite metal body according to claim 2, wherein the modified metal particle is a modified metal particle obtained by an electrolytic method in which a current is passed between a cathode and an anode immersed in an electrolytic solution in which carbon nanotubes are dispersed.
[4] 修飾金属粒子が、カーボンナノチューブを含有する水に難溶の金属塩又は金属酸 化物から成る複合粒子を形成し、次いで、前記複合粒子の金属塩又は金属酸化物 を還元する還元剤によって還元処理する、酸化還元法によって得られた修飾金属粒 子である請求項 2記載の複合金属体。  [4] The modified metal particles form a composite particle composed of a metal salt or metal oxide that is hardly soluble in water containing carbon nanotubes, and then a reducing agent that reduces the metal salt or metal oxide of the composite particle. 3. The composite metal body according to claim 2, wherein the composite metal body is a modified metal particle obtained by an oxidation-reduction method to be subjected to a reduction treatment.
[5] 少なくとも二種の金属によって形成され、前記二種の金属の一方側から成る第 1金 属部分と、前記二種の金属の他方側力も成る第 2金属部分とがランダムに形成され ている複合金属体を製造する際に、 [5] A first metal part formed of at least two kinds of metals and made of one side of the two kinds of metals and a second metal part made of the other side of the two kinds of metals are randomly formed. When manufacturing a composite metal body
該二種の金属の少なくとも一方の金属から成る金属粒子であって、前記金属粒子 の外方に一部が突出するカーボンナノチューブで修飾されて成る修飾金属粒子を用 い、前記第 1金属部分又は第 2金属部分の少なくとも一方側にカーボンナノチューブ を混入することを特徴とする複合金属体の製造方法。  Metal particles composed of at least one of the two kinds of metals, wherein the modified metal particles are modified with carbon nanotubes that partially protrude outward from the metal particles, and the first metal portion or A method for producing a composite metal body comprising mixing carbon nanotubes on at least one side of a second metal portion.
[6] 修飾金属粒子を圧縮成形して多孔体から成る第 1金属部分を形成した後、第 2金 属部分を形成する金属を溶融した溶融金属を、前記多孔体内に含浸する請求項 5 記載の複合金属体の製造方法。 6. The porous body is impregnated with molten metal obtained by melting the metal forming the second metal portion after compression metal molding of the modified metal particles to form the first metal portion comprising the porous body. A method for producing a composite metal body.
[7] 溶融金属として、電解法によって修飾金属粒子を得られ難 ヽ金属を溶融した溶融 金属を用いる請求項 6記載の複合金属体の製造方法。 [7] The method for producing a composite metal body according to [6], wherein a molten metal obtained by melting a metal that is difficult to obtain modified metal particles by an electrolytic method is used as the molten metal.
[8] 第 1金属部分を形成する金属から成る修飾金属粒子と、第 2金属部分を形成する 金属から成る金属粒子とを加熱圧縮成形する請求項 5記載の複合金属体の製造方 法。 8. The method for producing a composite metal body according to claim 5, wherein the modified metal particles made of the metal forming the first metal portion and the metal particles made of the metal forming the second metal portion are heat compression molded.
[9] 修飾金属粒子として、カーボンナノチューブが分散した電解液に浸漬した陰極と陽 極との間に電流を流す電解法によって得た修飾金属粒子を用いる請求項 5記載の 複合金属体の製造方法。  [9] The method for producing a composite metal body according to claim 5, wherein the modified metal particle is a modified metal particle obtained by an electrolytic method in which an electric current is passed between a cathode and an anode immersed in an electrolyte solution in which carbon nanotubes are dispersed. .
[10] 修飾金属粒子として、カーボンナノチューブを含有する水に難溶の金属塩又は金 属酸化物から成る複合粒子を形成し、次いで、前記複合粒子の金属塩又は金属酸 化物を還元する還元剤によって還元処理する、酸化還元法によって得られた修飾金 属粒子を用いる請求項 5記載の複合金属体。  [10] A reducing agent that forms composite particles composed of a metal salt or metal oxide hardly soluble in water containing carbon nanotubes as the modified metal particles, and then reduces the metal salt or metal oxide of the composite particles. 6. The composite metal body according to claim 5, wherein the modified metal particles obtained by an oxidation-reduction method are subjected to a reduction treatment by using a modified metal particle.
PCT/JP2005/018606 2004-10-21 2005-10-07 Composite metal article and method for preparation thereof WO2006043431A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05790620A EP1806417A1 (en) 2004-10-21 2005-10-07 Composite metal article and method for preparation thereof
US10/591,941 US20070190348A1 (en) 2004-10-21 2005-10-07 Composite metal article and production method thereof
JP2006542324A JP4390807B2 (en) 2004-10-21 2005-10-07 Composite metal body and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-307078 2004-10-21
JP2004307078 2004-10-21

Publications (1)

Publication Number Publication Date
WO2006043431A1 true WO2006043431A1 (en) 2006-04-27

Family

ID=36202849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/018606 WO2006043431A1 (en) 2004-10-21 2005-10-07 Composite metal article and method for preparation thereof

Country Status (5)

Country Link
US (1) US20070190348A1 (en)
EP (1) EP1806417A1 (en)
JP (1) JP4390807B2 (en)
CN (1) CN1934281A (en)
WO (1) WO2006043431A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326149A (en) * 2006-05-12 2007-12-20 Chiba Inst Of Technology Method for producing composite body of carbon nanomaterial and metallic material
JP2013097157A (en) * 2011-10-31 2013-05-20 Panasonic Corp Display apparatus and method of manufacturing display apparatus
WO2016013219A1 (en) * 2014-07-23 2016-01-28 日本ゼオン株式会社 Plating solution and method for producing same, composite material, copper composite material, and method for producing same
JP2018188732A (en) * 2017-05-08 2018-11-29 ツィンファ ユニバーシティ Three-dimensional porous composite material

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070110977A1 (en) * 2005-08-29 2007-05-17 Al-Haik Marwan S Methods for processing multifunctional, radiation tolerant nanotube-polymer structure composites
US7998367B2 (en) * 2006-06-21 2011-08-16 Stc.Unm Metal-carbon nanotube composites for enhanced thermal conductivity for demanding or critical applications
US7514063B1 (en) * 2008-02-08 2009-04-07 International Business Machines Corporation Method for the purification of semiconducting single walled carbon nanotubes
WO2010090480A2 (en) * 2009-02-05 2010-08-12 주식회사 엘지화학 Method for preparing carbon particles / copper composite materials
AU2010270992A1 (en) * 2009-06-24 2012-02-09 Third Millennium Metals, Llc Copper-carbon composition
US8349759B2 (en) * 2010-02-04 2013-01-08 Third Millennium Metals, Llc Metal-carbon compositions
CA2864141A1 (en) 2011-03-04 2012-09-13 Third Millennium Metals, Llc Aluminum-carbon compositions
EP2511393A1 (en) * 2011-04-11 2012-10-17 Siemens Aktiengesellschaft Matrix with nanotubes
RU2508961C2 (en) * 2012-05-22 2014-03-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Method of making 3d complex-shape nanostructured structural and functional materials
KR102166230B1 (en) * 2013-08-01 2020-10-15 세키스이가가쿠 고교가부시키가이샤 Conductive filler, method for producing same, conductive paste and method for producing conductive paste
JP6007350B1 (en) * 2016-04-22 2016-10-12 茶久染色株式会社 Conductive yarn
EP3688201B1 (en) * 2017-09-26 2024-03-20 Norse Biotech AS Process for forming metal composites, metal composites, process for forming metal ion modified particles, and metal ion modified particles
DE102018116559B4 (en) * 2018-07-09 2023-02-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the production of a composite material, a composite material and the use of the composite material as a heat conductor and transmitter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223004A (en) * 1999-01-25 2000-08-11 Lucent Technol Inc Device including carbon nano-tube, device including field emission structure, and its manufacture
JP2004179021A (en) * 2002-11-28 2004-06-24 Shinano Kenshi Co Ltd Electrical contact member
WO2004094700A1 (en) * 2003-02-18 2004-11-04 Shinshu University Metal particles and method for producing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1461176A (en) * 1974-04-11 1977-01-13 Plessey Inc Method of producing powdered materials
US6132487A (en) * 1998-11-11 2000-10-17 Nikko Materials Company, Limited Mixed powder for powder metallurgy, sintered compact of powder metallurgy, and methods for the manufacturing thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223004A (en) * 1999-01-25 2000-08-11 Lucent Technol Inc Device including carbon nano-tube, device including field emission structure, and its manufacture
JP2004179021A (en) * 2002-11-28 2004-06-24 Shinano Kenshi Co Ltd Electrical contact member
WO2004094700A1 (en) * 2003-02-18 2004-11-04 Shinshu University Metal particles and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326149A (en) * 2006-05-12 2007-12-20 Chiba Inst Of Technology Method for producing composite body of carbon nanomaterial and metallic material
JP2013097157A (en) * 2011-10-31 2013-05-20 Panasonic Corp Display apparatus and method of manufacturing display apparatus
WO2016013219A1 (en) * 2014-07-23 2016-01-28 日本ゼオン株式会社 Plating solution and method for producing same, composite material, copper composite material, and method for producing same
JPWO2016013219A1 (en) * 2014-07-23 2017-04-27 日本ゼオン株式会社 Plating solution and method for producing the same, and composite material, copper composite material and method for producing the same
JP2018188732A (en) * 2017-05-08 2018-11-29 ツィンファ ユニバーシティ Three-dimensional porous composite material

Also Published As

Publication number Publication date
US20070190348A1 (en) 2007-08-16
JP4390807B2 (en) 2009-12-24
JPWO2006043431A1 (en) 2008-05-22
CN1934281A (en) 2007-03-21
EP1806417A1 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
JP4390807B2 (en) Composite metal body and method for producing the same
US11139473B2 (en) Porous silicon compositions and devices and methods thereof
JP6490253B2 (en) Method for preparing graphene / silver composite material
KR101583916B1 (en) Nano-carbon reinforced aluminium composite materials and method for manufacturing the same
EP2208706B1 (en) Metal-coated carbon material and carbon-metal composite material using the same
CN104846231B (en) Preparation method of copper-based graphene composite blocky material
KR101027073B1 (en) Carbon Nanotube Reinforced Metal Alloy Nanocomposite and Fabrication Process Thereof
JP2015105439A (en) Electrical contact material and method for producing the same
EP3096328B1 (en) Method for preparing electrical contact materials including ag plated cnts
CN108889959B (en) rGO/Cu composite material and preparation method thereof
US10629900B2 (en) Porous silicon compositions and devices and methods thereof
WO2006082962A1 (en) Method for producing composite particles
CN110578065B (en) Preparation method of graphene reinforced copper-based composite material
CN110983211A (en) Preparation method of carbon nano tube reinforced copper-based composite material
EP2402285A1 (en) Method for fabricating composite material comprising nano carbon and metal or ceramic
CN107012349A (en) A kind of CNT strengthens the preparation method of foamed aluminium radical composite material
Daoush Processing and characterization of CNT/Cu nanocomposites by powder technology
JP4421556B2 (en) Metal particle and method for producing the same
CN104611648B (en) Method for reinforcing magnesium matrix composite through carbon nanotubes coated with magnesium oxide
CN106917020B (en) A kind of method of three dimension scale nano-carbon material enhancing magnesium-based composite material
JP4898144B2 (en) Alumina composite precursor, method for producing alumina composite, and method for producing sintered alumina composite
CN109487246B (en) Magnetic core/shell structure Ti3C2alkene/Ni powder and preparation method thereof
CN114807656B (en) Preparation method of nanoscale carbon material reinforced metal matrix composite material and product thereof
JP4719875B2 (en) Expanded carbon fiber-containing composite material and method for producing the same
KR20030043453A (en) A method for preparing sphere and/or plate type micrometal using liquid phase reduction method and micrometal prepared from this method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006542324

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005790620

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10591941

Country of ref document: US

Ref document number: 2007190348

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580009443.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005790620

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10591941

Country of ref document: US