WO2023105747A1 - Nickel plating solution, and method for manufacturing nickel or nickel alloy plating coating - Google Patents

Nickel plating solution, and method for manufacturing nickel or nickel alloy plating coating Download PDF

Info

Publication number
WO2023105747A1
WO2023105747A1 PCT/JP2021/045506 JP2021045506W WO2023105747A1 WO 2023105747 A1 WO2023105747 A1 WO 2023105747A1 JP 2021045506 W JP2021045506 W JP 2021045506W WO 2023105747 A1 WO2023105747 A1 WO 2023105747A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
plating solution
fine particles
sic fine
plating
Prior art date
Application number
PCT/JP2021/045506
Other languages
French (fr)
Japanese (ja)
Inventor
友佑 相川
Original Assignee
日本カニゼン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本カニゼン株式会社 filed Critical 日本カニゼン株式会社
Priority to PCT/JP2021/045506 priority Critical patent/WO2023105747A1/en
Publication of WO2023105747A1 publication Critical patent/WO2023105747A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt

Definitions

  • the present invention relates to a nickel plating solution containing a nickel component and SiC particles, and a method for producing a nickel or nickel alloy plating film.
  • Nickel or nickel alloy plating is used in the field of surface treatment technology for the purpose of improving circuit formation, decoration, and wear resistance and corrosion resistance of mechanical parts.
  • plating films in which fine particles of SiC (silicon carbide) are dispersed in nickel or nickel alloy plating films are applied to parts that require high wear resistance, such as sliding parts such as shafts, cylinders, and bearings.
  • An example of the method of forming the above plating film is to perform electrolytic plating or electroless plating using a plating solution containing a water-soluble nickel compound and SiC fine particles, thereby forming a plating film in which SiC is dispersed in a nickel matrix. (See Patent Literature 1, for example).
  • the SiC fine particles contained in the plating film are dispersed uniformly in the plating film at a high concentration.
  • concentration of the SiC fine particles contained in the plating film can be increased.
  • the concentration of the SiC fine particles in the plating solution increases, the excessively added SiC fine particles settle to the bottom of the container containing the plating solution. Therefore, even if the concentration of the SiC fine particles in the plating solution is excessively increased, the substantial concentration of the SiC fine particles in the plating solution near the object to be plated reaches a ceiling. As a result, the deposition efficiency of the SiC fine particles onto the nickel plating film is lowered.
  • a nickel plating solution for solving the above problems contains a water-soluble nickel compound, SiC fine particles, and a dispersant consisting of at least one selected from deoxycholic acid and deoxycholic acid derivatives.
  • the dispersant comprising at least one selected from deoxycholic acid and deoxycholic acid derivatives can enhance the dispersibility of the SiC fine particles contained in the nickel plating solution.
  • the SiC fine particles can be uniformly deposited in the nickel matrix of the plating film.
  • it is possible to suppress sedimentation of the SiC fine particles in the nickel plating solution it is possible to increase the deposition efficiency of the SiC fine particles onto the plating film.
  • the dispersant can enhance the dispersibility of the SiC fine particles contained in the nickel plating solution.
  • the SiC fine particles can be uniformly deposited in the nickel matrix of the plating film, and the deposition efficiency of the SiC fine particles onto the plating film can be enhanced.
  • the electroless plating solution used for electroless plating contains a nickel component, a reducing agent, a complexing agent, a pH adjuster, SiC fine particles, and a dispersing agent.
  • Nickel component As the nickel component, a water-soluble nickel compound that is soluble in the plating solution is used.
  • the water-soluble nickel compound is, for example, at least one selected from the group consisting of nickel sulfate, nickel chloride, nickel sulfamate, and nickel hypophosphite.
  • nickel sulfate is preferable because it has good solubility in the plating solution.
  • concentration of the nickel component is, for example, 0.5 g/L or more and 50 g/L or less.
  • the reducing agent is, for example, at least one selected from the group consisting of hypophosphorous acid, hypophosphite (sodium salt, potassium salt, ammonium salt), borohydride compounds such as dimethylamine borane, and hydrazine. .
  • the concentration of the reducing agent is, for example, 0.01 g/L or more and 100 g/L or less.
  • Complexing agents include, for example, monocarboxylic acids, dicarboxylic acids, hydroxycarboxylic acids, aminopolycarboxylic acids, ethylenediaminediacetic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, and their ammonium, potassium and sodium salts. At least one selected from the group consisting of Monocarboxylic acids are, for example, acetic acid or formic acid. Dicarboxylic acids are, for example, malonic acid, succinic acid, adipic acid, maleic acid, fumaric acid. Hydroxycarboxylic acids are, for example, malic acid, lactic acid, glycolic acid, gluconic acid, citric acid.
  • Aminopolycarboxylic acids are, for example, ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid. Phosphonic acids, amino acids and the like may also be used as complexing agents.
  • concentration of the complexing agent is, for example, 5 g/L or more and 180 g/L or less.
  • the pH adjuster is, for example, at least one selected from the group consisting of inorganic acids such as sulfuric acid and phosphoric acid, sodium hydroxide, and aqueous ammonia.
  • the pH range of the electroless plating solution is usually 2 or more and 9 or less.
  • the pH range of the electroless plating solution of this embodiment is 4.0 or more and 6.0 or less.
  • SiC fine particles improve the wear resistance and corrosion resistance of the plating film by dispersing in the nickel matrix of the nickel or nickel alloy plating film.
  • SiC fine particles for example, particles of arbitrary shapes including plate-like, spherical, and amorphous shapes can be applied.
  • the particle diameter of the SiC fine particles is preferably 0.1 ⁇ m or more and 3.0 ⁇ m or less, more preferably 0.2 ⁇ m or more and 2.0 ⁇ m or less, as a 50% particle diameter (median diameter D50).
  • the concentration of SiC fine particles in the electroless plating solution is preferably 100 mg/L or more and 5000 mg/L or less, more preferably 300 mg/L or more and 3000 mg/L or less, and further preferably 400 mg/L or more and 2800 mg/L or less. preferable.
  • the dispersant enhances the dispersibility of the SiC fine particles contained in the electroless plating solution, thereby uniformly depositing the SiC fine particles in the nickel matrix of the plating film. In addition, the dispersant suppresses sedimentation of the SiC fine particles in the nickel plating solution, thereby increasing the deposition efficiency of the SiC fine particles onto the plating film.
  • the dispersant suppresses the sedimentation of the SiC fine particles in the nickel plating solution, thereby suppressing the consumption of the nickel component in the nickel plating solution due to the plating reaction occurring on the surface of the precipitated SiC fine particles.
  • At least one selected from deoxycholic acid and deoxycholic acid derivatives is used as the dispersant.
  • Deoxycholic acid derivatives are, for example, bile acids such as hyodeoxycholic acid, chenodeoxycholic acid, and cholic acid. These bile acids are added alone or in the form of salts such as sodium.
  • the total concentration of the dispersant composed of at least one selected from deoxycholic acid and deoxycholic acid derivatives is preferably 10 ⁇ g/L or more and 10000 ⁇ g/L or less, more preferably 20 ⁇ g/L or more and 5000 ⁇ g/L or less. and more preferably 40 ⁇ g/L or more and 4800 ⁇ g/L or less.
  • an example of the concentration of deoxycholic acid in the electroless plating solution is 40 ⁇ g/L or more and 280 ⁇ g/L or less.
  • an example of the concentration of hyodeoxycholic acid in the electroless plating solution is 600 ⁇ g/L or more and 4800 ⁇ g/L or less.
  • the concentration of the dispersant is below the above lower limit, the effect of improving the uniformity of precipitation of the SiC fine particles and the efficiency of precipitation is reduced. Further, when the concentration of the dispersant exceeds the above upper limit, it is difficult to improve the uniform deposition property and the deposition efficiency of the SiC fine particles with respect to the amount of the dispersant added, and rather they tend to gradually decrease. Therefore, by setting the concentration of the dispersing agent within the above range from the lower limit to the upper limit, the SiC fine particles are deposited more uniformly in the nickel matrix of the plating film, and the deposition efficiency of the SiC fine particles onto the plating film is increased. can be enhanced.
  • the concentration of the dispersing agent when the concentration of the dispersing agent is excessively high, the plating solution tends to foam, which may adversely affect the workability of the plating process.
  • the concentration of the dispersing agent by setting the concentration of the dispersing agent to be equal to or less than the above upper limit value, it is possible to suppress deterioration of workability in the plating process.
  • deoxycholic acid and deoxycholic acid derivatives have dispersibility not only in SiC fine particles but also in graphite. Therefore, even if graphite diffuses into the nickel plating solution, deoxycholic acid and deoxycholic acid derivatives stabilize and disperse graphite, thereby avoiding the above-described poor appearance and poor plating adhesion.
  • additives may be added to the electroless plating solution.
  • Stabilizers which are examples of additives, are selected from the group consisting of, for example, lead salts such as lead nitrate and lead acetate, bismuth salts such as bismuth nitrate and bismuth acetate, and sulfur compounds such as thiodiglycolic acid and sodium thiosulfate. is at least one
  • the amount of stabilizer added is, for example, 0.01 mg/L or more and 100 mg/L or less.
  • a pH buffer which is an example of an additive, is, for example, at least one selected from the group consisting of boric acid, phosphoric acid, phosphorous acid, carbonic acid, sodium salts, potassium salts, and ammonium salts thereof.
  • the amount of the pH buffer added is, for example, 0.1 g/L or more and 200 g/L or less.
  • a surfactant which is an example of an additive, is, for example, at least one selected from the group consisting of nonionic, cationic, anionic, and amphoteric.
  • the amount of surfactant added is, for example, 0.1 mg/L or more and 100 mg/L or less.
  • An example of an electroless plating solution is 25 g/L nickel sulfate hexahydrate, 25 g/L sodium hypophosphite monohydrate, 20 g/L malic acid, and 10 g/L sodium acetate. , 10 g/L of sodium hydroxide, 100 mg/L or more and 5000 mg/L or less of SiC fine particles, and 10 ⁇ g/L or more and 10000 ⁇ g/L or less of a dispersant.
  • an optional stabilizer is added to the electroless plating solution so that the bismuth ion in the electroless plating solution is 0.5 mg/L.
  • Electroplating solution In the case of the electroplating method, an electroplating solution such as Watt's bath or nickel sulfamate bath is used. All of these electroplating solutions contain a nickel component, SiC fine particles, and a dispersant. A metal component such as tungsten may be added to the plating solution for the purpose of increasing the hardness of the plating film.
  • the nickel component is, for example, at least one selected from the group consisting of water-soluble nickel compounds such as nickel sulfate hexahydrate, nickel chloride hexahydrate, and nickel carbonate tetrahydrate.
  • water-soluble nickel compounds nickel sulfate hexahydrate or nickel chloride hexahydrate is preferable in terms of excellent deposition on the material to be plated, and nickel sulfate hexahydrate and nickel chloride hexahydrate are preferred. A mixture is more preferred.
  • nickel sulfate hexahydrate and nickel chloride hexahydrate are mixed and used as a nickel component
  • the amount of nickel sulfate hexahydrate added is 200 g / L or more and 500 g / L or less, and nickel chloride hexahydrate The amount added is preferably 70 g/L or less.
  • the nickel component is, for example, a water-soluble nickel compound such as nickel sulfamate, nickel chloride hexahydrate, or a mixture thereof.
  • SiC fine particles Regarding the SiC fine particles contained in the electrolytic plating solution, there is no great difference in the shape, proper value of particle size, and proper value of concentration of the SiC fine particles used in the electroless plating solution. That is, the SiC fine particles contained in the electrolytic plating solution can be used in the same form as the SiC fine particles used in the electroless plating solution and at the same concentration as the SiC fine particles used in the electroless plating solution.
  • the dispersant contained in the electrolytic plating solution can be of the same type and form as the dispersant used in the electroless plating solution. Also, the proper value of the concentration of the dispersant in the electrolytic plating solution is equivalent to the proper value of the concentration of the dispersant used in the electroless plating solution.
  • the primary brightener is, for example, at least one selected from the group consisting of saccharin, benzene such as sodium naphthalenesulfonate, derivatives such as naphthalene, sulfonates, and sulfonamides.
  • the secondary brightener is at least one selected from the group consisting of butynediol, propargyl alcohol and coumarin.
  • An example of an electroplating solution for a Watt bath is 240 g/L nickel sulfate hexahydrate, 45 g/L nickel chloride hexahydrate, 45 g/L boric acid, and 5 g/L oxalic acid. It contains nickel dihydrate particles, SiC fine particles of 100 mg/L or more and 5000 mg/L or less, and a dispersant of 10 ⁇ g/L or more and 10000 ⁇ g/L or less. Other brighteners may include 2 g/L or less of saccharin and 0.2 g/L or less of butynediol. Further, the pH range of the electroplating solution in the Watt bath is 4.0 or more and 4.5 or less.
  • An example plating solution for a nickel sulfamate bath is 450 g/L nickel sulfamate tetrahydrate, 15 g/L nickel chloride hexahydrate, 30 g/L boric acid, and 5 g/L oxalic acid. It contains nickel dihydrate particles, SiC fine particles of 100 mg/L or more and 5000 mg/L or less, and a dispersant of 10 ⁇ g/L or more and 10000 ⁇ g/L or less. Further, the pH range of the electrolytic plating solution in the nickel sulfamate bath is 4.0 or more and 4.5 or less.
  • the method for producing the nickel plating solution is not particularly limited to either the electroless plating solution or the electrolytic plating solution.
  • Any of the nickel plating solutions can be prepared by diluting one or two or more chemicals in which a plurality of components are mixed with water, or by dissolving a single raw material in water one by one.
  • a method for adding the SiC fine particles is not particularly limited. From the viewpoint of maximizing the interaction with the dispersant, for example, SiC fine particles are added to a dispersant diluted with water to prepare a dispersion liquid in which the SiC fine particles are sufficiently dispersed, and then the dispersion is added to the nickel plating solution. Thus, a desired nickel plating solution may be obtained.
  • LC-MS/MS is a combination of high-performance liquid chromatograph (HPLC) and triple quadrupole mass spectrometer (MS/MS).
  • HPLC high-performance liquid chromatograph
  • MS/MS triple quadrupole mass spectrometer
  • the dispersant comprising at least one selected from deoxycholic acid and deoxycholic acid derivatives can enhance the dispersibility of the SiC fine particles contained in the nickel plating solution.
  • the SiC fine particles can be uniformly deposited in the nickel matrix of the plating film.
  • the dispersant can suppress the sedimentation of the SiC fine particles in the nickel plating solution, the deposition efficiency of the SiC fine particles onto the plating film can be enhanced.
  • the dispersant suppresses the sedimentation of the SiC fine particles in the nickel plating solution, causing a plating reaction on the surface of the precipitated SiC fine particles to consume the nickel component in the nickel plating solution. can be suppressed.
  • the dispersant disperses and stabilizes the graphite, which is the residue of the raw material of the SiC fine particles, in the plating solution. Defects can be suppressed.
  • the concentration of SiC fine particles contained in the nickel plating solution is preferably 100 mg/L or more and 5000 mg/L or less, more preferably 300 mg/L or more and 3000 mg/L or less, and still more preferably 400 mg/L or more and 2800 mg. /L or less.
  • the concentration of the dispersant contained in the nickel plating solution is preferably 10 ⁇ g/L or more and 10000 ⁇ g/L or less, more preferably 20 ⁇ g/L or more and 5000 ⁇ g/L or less, and still more preferably 40 ⁇ g/L or more and 4800 ⁇ g/L or less. is.
  • the concentration of the SiC fine particles contained in the nickel plating solution and the concentration of the dispersing agent within the above ranges, the dispersibility of the SiC fine particles contained in the nickel plating solution can be favorably enhanced.
  • the SiC fine particles can be more uniformly deposited in the nickel matrix of the plating film, and the deposition efficiency of the SiC fine particles onto the plating film can be further enhanced.
  • the dispersant enhances the dispersibility of the SiC fine particles contained in the nickel plating solution.
  • the SiC fine particles can be uniformly deposited in the nickel matrix of the plating film, and the deposition efficiency of the SiC fine particles onto the plating film can be enhanced.
  • SiC fine particle additives 1 to 5 were prepared by adding SiC fine particles to pure water.
  • the SiC fine particle additives 3 to 5 contain a dispersant in addition to pure water and SiC fine particles.
  • Electroless plating was performed using an electroless nickel plating solution obtained by adding 4 mL/L of SiC fine particle additive 3 to medium-high phosphorus type electroless nickel plating solution “SEC-930” (manufactured by Nippon Kanigen Co., Ltd.).
  • the base material was immersed in an electroless plating solution stirred with a stirrer, electroless plated at 90° C. until the film thickness reached about 5 ⁇ m, then washed with water and dried.
  • Example 2 Using an electroless nickel plating solution obtained by adding 28 mL / L of SiC fine particle additive 3 to a medium-high phosphorous type electroless nickel plating solution “SEC-930” (manufactured by Nippon Kanigen Co., Ltd.), the same procedure as in Example 1 was performed. Electroplating treatment was applied.
  • Example 3 Using an electroless nickel plating solution obtained by adding 3 mL / L of SiC fine particle additive 4 to a medium-high phosphorous type electroless nickel plating solution “SEC-930” (manufactured by Nippon Kanigen Co., Ltd.), the same procedure as in Example 1 was performed. Electroplating treatment was applied.
  • Example 4 Using an electroless nickel plating solution obtained by adding 24 mL / L of SiC fine particle additive 4 to a medium-high phosphorus type electroless nickel plating solution “SEC-930” (manufactured by Nippon Kanigen Co., Ltd.), the same procedure as in Example 1 was performed. Electroplating treatment was applied.
  • Example 5 Using an electroless nickel plating solution obtained by adding 10 mL / L of SiC fine particle additive 5 to a medium-high phosphorus type electroless nickel plating solution “SEC-930” (manufactured by Nippon Kanigen Co., Ltd.), the same procedure as in Example 1 was performed. Electroplating treatment was applied.
  • Electrolytic plating was performed using an electrolytic nickel plating solution containing 4 mL/L of SiC fine particle additive 3 in a Watts bath.
  • the Watt bath contained 280 g/L nickel sulfate, 40 g/L nickel chloride, and 20 g/L boric acid with a pH of 4.5.
  • the substrate was immersed while being stirred with a stirrer, electroplated at 50° C. by DC electrolysis with a current density of 2 A/dm 2 until the film thickness reached about 5 ⁇ m, then washed with water and dried.
  • Example 1 Using an electroless nickel plating solution obtained by adding 4 mL / L of SiC fine particle additive 1 to a medium-high phosphorus type electroless nickel plating solution “SEC-930” (manufactured by Nippon Kanigen Co., Ltd.), the same procedure as in Example 1 was performed. Electroplating treatment was applied.
  • Electroplating was performed in the same procedure as in Example 6 using an electrolytic nickel plating solution in which 4 mL/L of SiC fine particle additive 1 was added to the same Watt bath as in Example 6.
  • Tables 1 and 2 show the plating solution preparation conditions, plating solution compositions, and evaluation results of evaluations 1 to 3 in Examples 1 to 6 and Comparative Examples 1 to 3.
  • Example 5 which contains 50 mg/L of deoxycholic acid and 2000 mg/L of cholic acid, and the total concentration of the dispersant is 2050 mg/L, uniform deposition of SiC fine particles and an effect of improving the deposition efficiency were confirmed. was done.
  • Example 1 when comparing Example 1 and Comparative Example 1 in which conditions other than the presence or absence of a dispersant are the same for the case of electroless plating, the plating solution of Example 1 containing a dispersant was superior to Comparative Example 1 in the stability of the plating solution and the dispersibility of the SiC fine particles in the plating film.
  • the content of SiC fine particles in the plating film of Example 1 was significantly higher than that of Comparative Example 1. Therefore, by adding a dispersant to the plating solution, the deposition efficiency of the SiC fine particles on the plating film was improved.
  • Example 4 and Comparative Example 2 which were identical in conditions other than the presence or absence of the dispersant, were compared.
  • Example 6 containing a dispersant is more SiC in the plating film than Comparative Example 3. Excellent fine particle dispersibility.
  • the content of SiC fine particles in the plating film of Example 6 was significantly higher than that of Comparative Example 3. Therefore, it was confirmed that the deposition efficiency of the SiC fine particles onto the plated film was enhanced by adding a dispersant to the plating solution not only in the electroless plating but also in the electroplating.
  • the plating film manufactured using the nickel plating solution of the present embodiment is not limited to the nickel plating film, and a nickel alloy plating film is produced by adding a metal component to the components of the nickel plating solution of the present embodiment. may be formed.
  • the concentration of hyodeoxycholic acid should be less than 600 ⁇ g/L as long as the dispersibility of the SiC fine particles contained in the nickel plating solution is ensured. may be greater than 4800 ⁇ g/L.
  • the concentration of deoxycholic acid may be less than 40 ⁇ g/L as long as the dispersibility of the SiC fine particles contained in the nickel plating solution is ensured. , may be greater than 280 ⁇ g/L.
  • the total concentration of the components constituting the dispersant may be less than 10 ⁇ g/L. Further, the total concentration of the components constituting the dispersant may exceed 10000 ⁇ g/L as long as the nickel plating solution and the plating film produced using the nickel plating solution are not adversely affected.

Abstract

Provided are a nickel plating solution and a method for manufacturing a nickel or nickel alloy plating coating with which it is possible to enhance the efficiency of deposition of SiC microparticles on a nickel or nickel alloy plating coating. The nickel plating solution contains a water-soluble nickel compound and SiC microparticles, the nickel plating solution further containing a dispersant comprising at least one substance selected from deoxycholic acid and deoxycholic acid derivatives.

Description

ニッケルめっき液、及び、ニッケルまたはニッケル合金めっき皮膜の製造方法Nickel plating solution and method for producing nickel or nickel alloy plating film
 本発明は、ニッケル成分とSiC粒子とを含むニッケルめっき液、及び、ニッケルまたはニッケル合金めっき皮膜の製造方法に関する。 The present invention relates to a nickel plating solution containing a nickel component and SiC particles, and a method for producing a nickel or nickel alloy plating film.
 ニッケルまたはニッケル合金めっきは、表面処理技術の分野において回路形成、装飾、及び機械部品の耐摩耗性及び耐食性等の向上を目的として使用される。特に、ニッケルまたはニッケル合金めっき皮膜にSiC(シリコンカーバイド)の微粒子を分散させためっき皮膜は、シャフト、シリンダ、軸受け等の摺動部のような高い耐摩耗性が要求される部分に適用される。上記のめっき皮膜を形成する方法の一例は、水溶性ニッケル化合物とSiC微粒子とを含むめっき液を用いて電解めっきまたは無電解めっきを行うことで、ニッケルマトリクス中にSiCが分散しためっき皮膜を形成する(例えば、特許文献1を参照)。  Nickel or nickel alloy plating is used in the field of surface treatment technology for the purpose of improving circuit formation, decoration, and wear resistance and corrosion resistance of mechanical parts. In particular, plating films in which fine particles of SiC (silicon carbide) are dispersed in nickel or nickel alloy plating films are applied to parts that require high wear resistance, such as sliding parts such as shafts, cylinders, and bearings. . An example of the method of forming the above plating film is to perform electrolytic plating or electroless plating using a plating solution containing a water-soluble nickel compound and SiC fine particles, thereby forming a plating film in which SiC is dispersed in a nickel matrix. (See Patent Literature 1, for example).
特開2020-105573号公報JP 2020-105573 A
 めっき皮膜に含まれるSiC微粒子は、めっき皮膜の耐摩耗性を向上させる観点から、めっき皮膜のなかで高濃度かつ均一に分散することが好ましい。例えば、めっき液中のSiC微粒子の濃度を高めることで、めっき皮膜に含まれるSiC微粒子の濃度を高めることができる。しかし、めっき液中のSiC微粒子の濃度が高まるにつれて、過剰に添加されたSiC微粒子は、めっき液を収容する容器の底に沈降する。したがって、めっき液へのSiC微粒子の濃度を過剰に増加させても、被めっき処理物近傍の実質的なめっき液中のSiC微粒子の濃度が頭打ちとなる。結果として、ニッケルめっき皮膜へのSiC微粒子の析出効率が低下する。 From the viewpoint of improving the wear resistance of the plating film, it is preferable that the SiC fine particles contained in the plating film are dispersed uniformly in the plating film at a high concentration. For example, by increasing the concentration of the SiC fine particles in the plating solution, the concentration of the SiC fine particles contained in the plating film can be increased. However, as the concentration of the SiC fine particles in the plating solution increases, the excessively added SiC fine particles settle to the bottom of the container containing the plating solution. Therefore, even if the concentration of the SiC fine particles in the plating solution is excessively increased, the substantial concentration of the SiC fine particles in the plating solution near the object to be plated reaches a ceiling. As a result, the deposition efficiency of the SiC fine particles onto the nickel plating film is lowered.
 上記課題を解決するためのニッケルめっき液は、水溶性ニッケル化合物と、SiC微粒子と、デオキシコール酸及びデオキシコール酸誘導体から選択される少なくとも1種からなる分散剤と、を含む。 A nickel plating solution for solving the above problems contains a water-soluble nickel compound, SiC fine particles, and a dispersant consisting of at least one selected from deoxycholic acid and deoxycholic acid derivatives.
 上記構成によれば、デオキシコール酸またはデオキシコール酸誘導体から選択される少なくとも1種からなる分散剤によって、ニッケルめっき液に含まれるSiC微粒子の分散性を高めることができる。これにより、めっき皮膜のニッケルマトリクス中にSiC微粒子を均一に析出させることができる。また、ニッケルめっき液中のSiC微粒子の沈降を抑制することも可能となるため、めっき皮膜へのSiC微粒子の析出効率を高めることができる。 According to the above configuration, the dispersant comprising at least one selected from deoxycholic acid and deoxycholic acid derivatives can enhance the dispersibility of the SiC fine particles contained in the nickel plating solution. Thereby, the SiC fine particles can be uniformly deposited in the nickel matrix of the plating film. In addition, since it is possible to suppress sedimentation of the SiC fine particles in the nickel plating solution, it is possible to increase the deposition efficiency of the SiC fine particles onto the plating film.
 上記課題を解決するためのニッケルまたはニッケル合金めっき皮膜の製造方法は、上記のニッケルめっき液を用いて電解めっき、または無電解めっきを行う。
 上記製造方法によれば、分散剤によって、ニッケルめっき液に含まれるSiC微粒子の分散性を高めることができる。これにより、めっき皮膜のニッケルマトリクス中にSiC微粒子を均一に析出させ、かつ、めっき皮膜へのSiC微粒子の析出効率を高めることができる。
In a method for producing a nickel or nickel alloy plating film for solving the above problems, electrolytic plating or electroless plating is performed using the above nickel plating solution.
According to the manufacturing method described above, the dispersant can enhance the dispersibility of the SiC fine particles contained in the nickel plating solution. As a result, the SiC fine particles can be uniformly deposited in the nickel matrix of the plating film, and the deposition efficiency of the SiC fine particles onto the plating film can be enhanced.
 本発明によれば、ニッケルまたはニッケル合金めっき皮膜へのSiC微粒子の析出効率を高めることができる。 According to the present invention, it is possible to increase the deposition efficiency of SiC fine particles onto the nickel or nickel alloy plating film.
 以下、本発明のニッケルめっき液の実施形態について、無電解めっき法に用いる無電解めっき液の構成、及び、電解めっき法に用いる電解めっき液の構成の各々について説明する。 Hereinafter, with regard to the embodiment of the nickel plating solution of the present invention, the configuration of the electroless plating solution used in the electroless plating method and the configuration of the electrolytic plating solution used in the electroplating method will be described.
 [無電解めっき液]
 無電解めっき法の場合に用いる無電解めっき液は、ニッケル成分、還元剤、錯化剤、pH調整剤、SiC微粒子、及び、分散剤を含む。
[Electroless plating solution]
The electroless plating solution used for electroless plating contains a nickel component, a reducing agent, a complexing agent, a pH adjuster, SiC fine particles, and a dispersing agent.
 [ニッケル成分]
 ニッケル成分は、めっき液に可溶な水溶性ニッケル化合物が使用される。水溶性ニッケル化合物は、例えば、硫酸ニッケル、塩化ニッケル、スルファミン酸ニッケル、次亜リン酸ニッケルからなる群から選択される少なくとも1種である。特に、めっき液への溶解性が良好である点で硫酸ニッケルが好ましい。ニッケル成分の濃度は、例えば、0.5g/L以上50g/L以下である。
[Nickel component]
As the nickel component, a water-soluble nickel compound that is soluble in the plating solution is used. The water-soluble nickel compound is, for example, at least one selected from the group consisting of nickel sulfate, nickel chloride, nickel sulfamate, and nickel hypophosphite. In particular, nickel sulfate is preferable because it has good solubility in the plating solution. The concentration of the nickel component is, for example, 0.5 g/L or more and 50 g/L or less.
 [還元剤]
 還元剤は、例えば、次亜リン酸、次亜リン酸塩(ナトリウム塩、カリウム塩、アンモニウム塩)、ジメチルアミンボランなどの水素化ホウ素化合物、ヒドラジンからなる群から選択される少なくとも1種である。還元剤の濃度は、例えば、0.01g/L以上100g/L以下である。
[Reducing agent]
The reducing agent is, for example, at least one selected from the group consisting of hypophosphorous acid, hypophosphite (sodium salt, potassium salt, ammonium salt), borohydride compounds such as dimethylamine borane, and hydrazine. . The concentration of the reducing agent is, for example, 0.01 g/L or more and 100 g/L or less.
 [錯化剤]
 錯化剤は、例えば、モノカルボン酸、ジカルボン酸、ヒドロキシカルボン酸、アミノポリカルボン酸、エチレンジアミンジ酢酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、及びこれらのアンモニウム塩、カリウム塩、ナトリウム塩からなる群から選択される少なくとも1種である。モノカルボン酸は、例えば、酢酸、あるいは蟻酸である。ジカルボン酸は、例えば、マロン酸、コハク酸、アジピン酸、マレイン酸、フマール酸である。ヒドロキシカルボン酸は、例えば、リンゴ酸、乳酸、グリコール酸、グルコン酸、クエン酸である。アミノポリカルボン酸は、例えば、エチレンジアミンテトラ酢酸、ジエチレントリアミンペンタ酢酸である。他にも、ホスホン酸類、アミノ酸類等も錯化剤として用いてもよい。錯化剤の濃度は、例えば、5g/L以上180g/L以下である。
[Complexing agent]
Complexing agents include, for example, monocarboxylic acids, dicarboxylic acids, hydroxycarboxylic acids, aminopolycarboxylic acids, ethylenediaminediacetic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, and their ammonium, potassium and sodium salts. At least one selected from the group consisting of Monocarboxylic acids are, for example, acetic acid or formic acid. Dicarboxylic acids are, for example, malonic acid, succinic acid, adipic acid, maleic acid, fumaric acid. Hydroxycarboxylic acids are, for example, malic acid, lactic acid, glycolic acid, gluconic acid, citric acid. Aminopolycarboxylic acids are, for example, ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid. Phosphonic acids, amino acids and the like may also be used as complexing agents. The concentration of the complexing agent is, for example, 5 g/L or more and 180 g/L or less.
 [pH調整剤]
 pH調整剤は、例えば、硫酸、リン酸等の無機酸、水酸化ナトリウム、アンモニア水からなる群から選択される少なくとも1種である。無電解めっき液におけるpH範囲は、通常、2以上9以下である。なお、本実施形態の無電解めっき液におけるpH範囲は、4.0以上6.0以下である。
[pH adjuster]
The pH adjuster is, for example, at least one selected from the group consisting of inorganic acids such as sulfuric acid and phosphoric acid, sodium hydroxide, and aqueous ammonia. The pH range of the electroless plating solution is usually 2 or more and 9 or less. The pH range of the electroless plating solution of this embodiment is 4.0 or more and 6.0 or less.
 [SiC微粒子]
 SiC微粒子は、ニッケルまたはニッケル合金めっき皮膜のニッケルマトリクス中に分散することで、めっき皮膜の耐摩耗性及び耐食性を向上させる。SiC微粒子は、例えば、板状や球状などの定形、及び、無定形も含めた任意の形状の粒子を適用可能である。SiC微粒子の粒子径は、50%粒子径(メジアン径D50)で0.1μm以上3.0μm以下が好ましく、0.2μm以上2.0μm以下であればより好ましい。無電解めっき液におけるSiC微粒子の濃度は、好ましくは100mg/L以上5000mg/L以下であり、300mg/L以上3000mg/L以下であればより好ましく、400mg/L以上2800mg/L以下であればさらに好ましい。
[SiC fine particles]
SiC fine particles improve the wear resistance and corrosion resistance of the plating film by dispersing in the nickel matrix of the nickel or nickel alloy plating film. As the SiC fine particles, for example, particles of arbitrary shapes including plate-like, spherical, and amorphous shapes can be applied. The particle diameter of the SiC fine particles is preferably 0.1 μm or more and 3.0 μm or less, more preferably 0.2 μm or more and 2.0 μm or less, as a 50% particle diameter (median diameter D50). The concentration of SiC fine particles in the electroless plating solution is preferably 100 mg/L or more and 5000 mg/L or less, more preferably 300 mg/L or more and 3000 mg/L or less, and further preferably 400 mg/L or more and 2800 mg/L or less. preferable.
 [分散剤]
 分散剤は、無電解めっき液に含まれるSiC微粒子の分散性を高めることで、めっき皮膜のニッケルマトリクス中にSiC微粒子を均一に析出させる。また、分散剤がニッケルめっき液中のSiC微粒子の沈降を抑制することで、めっき皮膜へのSiC微粒子の析出効率を高める。
[Dispersant]
The dispersant enhances the dispersibility of the SiC fine particles contained in the electroless plating solution, thereby uniformly depositing the SiC fine particles in the nickel matrix of the plating film. In addition, the dispersant suppresses sedimentation of the SiC fine particles in the nickel plating solution, thereby increasing the deposition efficiency of the SiC fine particles onto the plating film.
 無電解めっきの場合、めっき液の中でSiC微粒子が沈降すると、沈降したSiC微粒子表面においてもめっき反応が生じることで、処理液中のニッケル成分が消費される。この点、分散剤がニッケルめっき液中のSiC微粒子の沈降を抑制することで、沈降したSiC微粒子の表面でめっき反応が生じてニッケルめっき液中のニッケル成分が消費されることを抑制できる。 In the case of electroless plating, when the SiC fine particles settle in the plating solution, a plating reaction also occurs on the surface of the precipitated SiC fine particles, consuming the nickel component in the treatment solution. In this respect, the dispersant suppresses the sedimentation of the SiC fine particles in the nickel plating solution, thereby suppressing the consumption of the nickel component in the nickel plating solution due to the plating reaction occurring on the surface of the precipitated SiC fine particles.
 分散剤は、デオキシコール酸(Deoxycholic acid)及びデオキシコール酸誘導体から選択される少なくとも1種が用いられる。デオキシコール酸誘導体は、例えば、ヒオデオキシコール酸(Hyodeoxycholic acid)、ケノデオキシコール酸(Chenodeoxycholic acid)、コール酸(Cholic acid)等の胆汁酸である。これらの胆汁酸は、単体、もしくは、ナトリウム等との塩の形態で添加される。 At least one selected from deoxycholic acid and deoxycholic acid derivatives is used as the dispersant. Deoxycholic acid derivatives are, for example, bile acids such as hyodeoxycholic acid, chenodeoxycholic acid, and cholic acid. These bile acids are added alone or in the form of salts such as sodium.
 デオキシコール酸及びデオキシコール酸誘導体から選択される少なくとも1種で構成される分散剤の合計濃度は、好ましくは10μg/L以上10000μg/L以下であり、より好ましくは20μg/L以上5000μg/L以下であり、さらに好ましくは40μg/L以上4800μg/L以下である。分散剤としてデオキシコール酸を用いる場合、無電解めっき液におけるデオキシコール酸の濃度の一例は、40μg/L以上280μg/L以下である。また、分散剤としてデオキシコール酸誘導体の一例であるヒオデオキシコール酸を用いる場合、無電解めっき液におけるヒオデオキシコール酸の濃度の一例は、600μg/L以上4800μg/L以下である。 The total concentration of the dispersant composed of at least one selected from deoxycholic acid and deoxycholic acid derivatives is preferably 10 μg/L or more and 10000 μg/L or less, more preferably 20 μg/L or more and 5000 μg/L or less. and more preferably 40 μg/L or more and 4800 μg/L or less. When using deoxycholic acid as a dispersant, an example of the concentration of deoxycholic acid in the electroless plating solution is 40 μg/L or more and 280 μg/L or less. When hyodeoxycholic acid, which is an example of a deoxycholic acid derivative, is used as the dispersant, an example of the concentration of hyodeoxycholic acid in the electroless plating solution is 600 μg/L or more and 4800 μg/L or less.
 仮に、分散剤の濃度が上記の下限値を下回る場合は、SiC微粒子の均一析出性及び析出効率向上効果が減退する。また、分散剤の濃度が上記の上限値を上回った場合は、分散剤の添加量に対してSiC微粒子の均一析出性及び析出効率が向上し難く、むしろ徐々に減退する傾向がある。したがって、分散剤の濃度を上記の下限値から上限値の範囲とすることで、めっき皮膜のニッケルマトリクス中にSiC微粒子をより均一に析出させ、かつ、めっき皮膜へのSiC微粒子の析出効率をより高めることができる。加えて、分散剤の濃度が過剰に高い場合は、めっき液が発泡し易くなり、これによってめっき工程の作業性に悪影響を与えるおそれがある。この点、分散剤の濃度を上記の上限値以下とすることで、めっき工程における作業性の低下を抑制できる。 If the concentration of the dispersant is below the above lower limit, the effect of improving the uniformity of precipitation of the SiC fine particles and the efficiency of precipitation is reduced. Further, when the concentration of the dispersant exceeds the above upper limit, it is difficult to improve the uniform deposition property and the deposition efficiency of the SiC fine particles with respect to the amount of the dispersant added, and rather they tend to gradually decrease. Therefore, by setting the concentration of the dispersing agent within the above range from the lower limit to the upper limit, the SiC fine particles are deposited more uniformly in the nickel matrix of the plating film, and the deposition efficiency of the SiC fine particles onto the plating film is increased. can be enhanced. In addition, when the concentration of the dispersing agent is excessively high, the plating solution tends to foam, which may adversely affect the workability of the plating process. In this respect, by setting the concentration of the dispersing agent to be equal to or less than the above upper limit value, it is possible to suppress deterioration of workability in the plating process.
 また、SiC微粒子にはその製法上、原料の残渣である黒鉛が残留する場合が多い。黒鉛がSiC微粒子から脱離してニッケルめっき液中に拡散すると、めっき対象部品に付着して外観不良やめっき付着不良の原因となる。この点、デオキシコール酸及びデオキシコール酸誘導体は、SiC微粒子のみならず、黒鉛に対する分散性も有する。そのため、仮に黒鉛がニッケルめっき液中に拡散しても、デオキシコール酸及びデオキシコール酸誘導体が黒鉛を分散安定化することによって、上記の外観不良やめっき付着不良を回避し得る効果も奏する。 In addition, graphite, which is a residue of raw materials, often remains in SiC fine particles due to the manufacturing method. When graphite detaches from the SiC fine particles and diffuses into the nickel plating solution, it adheres to parts to be plated, causing poor appearance and poor plating adhesion. In this regard, deoxycholic acid and deoxycholic acid derivatives have dispersibility not only in SiC fine particles but also in graphite. Therefore, even if graphite diffuses into the nickel plating solution, deoxycholic acid and deoxycholic acid derivatives stabilize and disperse graphite, thereby avoiding the above-described poor appearance and poor plating adhesion.
 [添加剤]
 また、無電解めっき液には、各種の添加剤を添加してもよい。添加剤の一例である安定剤は、例えば、硝酸鉛及び酢酸鉛等の鉛塩、硝酸ビスマス及び酢酸ビスマス等のビスマス塩、チオジグリコール酸及びチオ硫酸ナトリウム等の硫黄化合物からなる群から選択される少なくとも1種である。安定剤の添加量は、例えば、0.01mg/L以上100mg/L以下である。添加剤の一例であるpH緩衝剤は、例えば、ホウ酸、リン酸、亜リン酸、炭酸、これらのナトリウム塩、カリウム塩、アンモニウム塩からなる群から選択される少なくとも1種である。pH緩衝剤の添加量は、例えば、0.1g/L以上200g/L以下である。添加剤の一例である界面活性剤は、例えば、ノニオン性、カチオン性、アニオン性、両性からなる群から選択される少なくとも1種である。界面活性剤の添加量は、例えば、0.1mg/L以上100mg/L以下である。
[Additive]
Various additives may be added to the electroless plating solution. Stabilizers, which are examples of additives, are selected from the group consisting of, for example, lead salts such as lead nitrate and lead acetate, bismuth salts such as bismuth nitrate and bismuth acetate, and sulfur compounds such as thiodiglycolic acid and sodium thiosulfate. is at least one The amount of stabilizer added is, for example, 0.01 mg/L or more and 100 mg/L or less. A pH buffer, which is an example of an additive, is, for example, at least one selected from the group consisting of boric acid, phosphoric acid, phosphorous acid, carbonic acid, sodium salts, potassium salts, and ammonium salts thereof. The amount of the pH buffer added is, for example, 0.1 g/L or more and 200 g/L or less. A surfactant, which is an example of an additive, is, for example, at least one selected from the group consisting of nonionic, cationic, anionic, and amphoteric. The amount of surfactant added is, for example, 0.1 mg/L or more and 100 mg/L or less.
 無電解めっき液の一例は、25g/Lの硫酸ニッケル六水和物と、25g/Lの次亜リン酸ナトリウム一水和物と、20g/Lのリンゴ酸と、10g/Lの酢酸ナトリウムと、10g/Lの水酸化ナトリウムと、100mg/L以上5000mg/L以下のSiC微粒子と、10μg/L以上10000μg/L以下の分散剤とを含む。他にも、無電解めっき液には、無電解めっき液中のビスマスイオンが0.5mg/Lとなるように任意の安定剤が添加される。 An example of an electroless plating solution is 25 g/L nickel sulfate hexahydrate, 25 g/L sodium hypophosphite monohydrate, 20 g/L malic acid, and 10 g/L sodium acetate. , 10 g/L of sodium hydroxide, 100 mg/L or more and 5000 mg/L or less of SiC fine particles, and 10 μg/L or more and 10000 μg/L or less of a dispersant. In addition, an optional stabilizer is added to the electroless plating solution so that the bismuth ion in the electroless plating solution is 0.5 mg/L.
 [電解めっき液]
 電解めっき法の場合では、ワット浴、スルファミン酸ニッケル浴等の電解めっき液が用いられる。これらの電解めっき液は、何れもニッケル成分、SiC微粒子、及び、分散剤を含む。なお、めっき皮膜の硬度を高める目的で、タングステンのような金属成分をめっき液に加えてもよい。
[Electroplating solution]
In the case of the electroplating method, an electroplating solution such as Watt's bath or nickel sulfamate bath is used. All of these electroplating solutions contain a nickel component, SiC fine particles, and a dispersant. A metal component such as tungsten may be added to the plating solution for the purpose of increasing the hardness of the plating film.
 [ニッケル成分]
 ワット浴の場合、ニッケル成分は、例えば、水溶性ニッケル化合物である硫酸ニッケル六水和物、塩化ニッケル六水和物、炭酸ニッケル四水和物からなる群から選択される少なくとも1種である。水溶性ニッケル化合物の中でも、被めっき材への析出性に優れる点で、硫酸ニッケル六水和物または塩化ニッケル六水和物が好ましく、硫酸ニッケル六水和物と塩化ニッケル六水和物との混合物がより好ましい。ニッケル成分として硫酸ニッケル六水和物及び塩化ニッケル六水和物を混合して用いる場合、硫酸ニッケル六水和物の添加量が200g/L以上500g/L以下、かつ塩化ニッケル六水和物の添加量が70g/L以下であることが好ましい。また、スルファミン酸ニッケル浴の場合、ニッケル成分は、例えば、水溶性ニッケル化合物であるスルファミン酸ニッケル、塩化ニッケル六水和物、または、これらを混合した混合物である。
[Nickel component]
In the case of the Watt bath, the nickel component is, for example, at least one selected from the group consisting of water-soluble nickel compounds such as nickel sulfate hexahydrate, nickel chloride hexahydrate, and nickel carbonate tetrahydrate. Among the water-soluble nickel compounds, nickel sulfate hexahydrate or nickel chloride hexahydrate is preferable in terms of excellent deposition on the material to be plated, and nickel sulfate hexahydrate and nickel chloride hexahydrate are preferred. A mixture is more preferred. When nickel sulfate hexahydrate and nickel chloride hexahydrate are mixed and used as a nickel component, the amount of nickel sulfate hexahydrate added is 200 g / L or more and 500 g / L or less, and nickel chloride hexahydrate The amount added is preferably 70 g/L or less. In the case of a nickel sulfamate bath, the nickel component is, for example, a water-soluble nickel compound such as nickel sulfamate, nickel chloride hexahydrate, or a mixture thereof.
 [SiC微粒子]
 電解めっき液が含むSiC微粒子は、無電解めっき液に用いられるSiC微粒子の形状、粒子径の適正値、濃度の適正値に大きな差異はない。すなわち、電解めっき液が含むSiC微粒子は、無電解めっき液に用いられるSiC微粒子と同様の形態のものを、無電解めっき液に用いられるSiC微粒子と同様の濃度で用いることができる。
[SiC fine particles]
Regarding the SiC fine particles contained in the electrolytic plating solution, there is no great difference in the shape, proper value of particle size, and proper value of concentration of the SiC fine particles used in the electroless plating solution. That is, the SiC fine particles contained in the electrolytic plating solution can be used in the same form as the SiC fine particles used in the electroless plating solution and at the same concentration as the SiC fine particles used in the electroless plating solution.
 [分散剤]
 電解めっき液が含む分散剤は、無電解めっき液に用いられる分散剤と同様の種類、形態のものを用いることができる。また、電解めっき液における分散剤の濃度の適正値は、無電解めっき液に用いられる分散剤の濃度の適正値と同等である。
[Dispersant]
The dispersant contained in the electrolytic plating solution can be of the same type and form as the dispersant used in the electroless plating solution. Also, the proper value of the concentration of the dispersant in the electrolytic plating solution is equivalent to the proper value of the concentration of the dispersant used in the electroless plating solution.
 [光沢剤]
 また、電解めっき液には、各種の一次光沢剤及び二次光沢剤を添加してもよい。一次光沢剤は、例えば、サッカリン、ナフタレンスルホン酸ナトリウム等のベンゼン、ナフタレン等の誘導体、スルホン酸塩、スルホンアミドからなる群から選択される少なくとも1種である。二次光沢剤は、ブチンジオール、プロパルギルアルコール、クマリンからなる群から選択される少なくとも1種である。
[Brightener]
Further, various primary brighteners and secondary brighteners may be added to the electrolytic plating solution. The primary brightener is, for example, at least one selected from the group consisting of saccharin, benzene such as sodium naphthalenesulfonate, derivatives such as naphthalene, sulfonates, and sulfonamides. The secondary brightener is at least one selected from the group consisting of butynediol, propargyl alcohol and coumarin.
 ワット浴の場合の電解めっき液の一例は、240g/Lの硫酸ニッケル六水和物と、45g/Lの塩化ニッケル六水和物と、45g/Lのホウ酸と、5g/Lのシュウ酸ニッケル二水和物粒子と、100mg/L以上5000mg/L以下のSiC微粒子と、10μg/L以上10000μg/L以下の分散剤とを含む。他にも、光沢剤として、2g/L以下のサッカリンと、0.2g/L以下のブチンジオールとを含んでもよい。また、ワット浴の場合の電解めっき液のpH範囲は、4.0以上4.5以下である。 An example of an electroplating solution for a Watt bath is 240 g/L nickel sulfate hexahydrate, 45 g/L nickel chloride hexahydrate, 45 g/L boric acid, and 5 g/L oxalic acid. It contains nickel dihydrate particles, SiC fine particles of 100 mg/L or more and 5000 mg/L or less, and a dispersant of 10 μg/L or more and 10000 μg/L or less. Other brighteners may include 2 g/L or less of saccharin and 0.2 g/L or less of butynediol. Further, the pH range of the electroplating solution in the Watt bath is 4.0 or more and 4.5 or less.
 スルファミン酸ニッケル浴のめっき液の一例は、450g/Lのスルファミン酸ニッケル四水和物と、15g/Lの塩化ニッケル六水和物と、30g/Lのホウ酸と、5g/Lのシュウ酸ニッケル二水和物粒子と、100mg/L以上5000mg/L以下のSiC微粒子と、10μg/L以上10000μg/L以下の分散剤とを含む。また、スルファミン酸ニッケル浴の場合の電解めっき液のpH範囲は、4.0以上4.5以下である。 An example plating solution for a nickel sulfamate bath is 450 g/L nickel sulfamate tetrahydrate, 15 g/L nickel chloride hexahydrate, 30 g/L boric acid, and 5 g/L oxalic acid. It contains nickel dihydrate particles, SiC fine particles of 100 mg/L or more and 5000 mg/L or less, and a dispersant of 10 μg/L or more and 10000 μg/L or less. Further, the pH range of the electrolytic plating solution in the nickel sulfamate bath is 4.0 or more and 4.5 or less.
 [めっき液の建浴形態]
 ニッケルめっき液の製造方法は、無電解めっき液の場合及び電解めっき液の場合の何れも特に限定されない。何れのニッケルめっき液の場合も、複数の成分が混合された薬品の1種または2種以上を水で希釈するか、単一原料を1つずつ水に溶解させることで作製可能である。SiC微粒子の添加方法は、特に限定されるものではない。分散剤とのインタラクションを最大限に発揮させる観点から、例えば、水で希釈した分散剤にSiC微粒子を添加し、SiC微粒子を充分に分散させた分散液を作製した後、ニッケルめっき液に投入することにより、所望のニッケルめっき液を得てもよい。
[Bath making form of plating solution]
The method for producing the nickel plating solution is not particularly limited to either the electroless plating solution or the electrolytic plating solution. Any of the nickel plating solutions can be prepared by diluting one or two or more chemicals in which a plurality of components are mixed with water, or by dissolving a single raw material in water one by one. A method for adding the SiC fine particles is not particularly limited. From the viewpoint of maximizing the interaction with the dispersant, for example, SiC fine particles are added to a dispersant diluted with water to prepare a dispersion liquid in which the SiC fine particles are sufficiently dispersed, and then the dispersion is added to the nickel plating solution. Thus, a desired nickel plating solution may be obtained.
 [めっき液中の分散剤の分析方法]
 デオキシコール酸及びデオキシコール酸誘導体は、高速液体クロマトグラフ(HPLC)と三連四重極型質量分析計(MS/MS)を組合わせたLC-MS/MSにて同定および定量が可能である。上記の分析手段であれば、本実施形態のような多成分が混在するニッケルめっき液においても非常に高い測定感度を有し、具体的には、およそ1μg/Lのオーダー迄の定量性を有する。
[Method for analyzing dispersant in plating solution]
Deoxycholic acid and deoxycholic acid derivatives can be identified and quantified by LC-MS/MS, which is a combination of high-performance liquid chromatograph (HPLC) and triple quadrupole mass spectrometer (MS/MS). . With the above analysis means, even in a nickel plating solution in which multiple components are mixed as in the present embodiment, it has a very high measurement sensitivity. .
 [実施形態の効果]
 上記実施形態によれば、以下に列挙する効果を得ることができる。
 (1)デオキシコール酸またはデオキシコール酸誘導体から選択される少なくとも1種からなる分散剤によって、ニッケルめっき液に含まれるSiC微粒子の分散性を高めることができる。これにより、めっき皮膜のニッケルマトリクス中にSiC微粒子を均一に析出させることができる。また、分散剤がニッケルめっき液中のSiC微粒子の沈降を抑制することも可能となるため、めっき皮膜へのSiC微粒子の析出効率を高めることができる。
[Effects of Embodiment]
According to the above embodiment, the following effects can be obtained.
(1) The dispersant comprising at least one selected from deoxycholic acid and deoxycholic acid derivatives can enhance the dispersibility of the SiC fine particles contained in the nickel plating solution. Thereby, the SiC fine particles can be uniformly deposited in the nickel matrix of the plating film. In addition, since the dispersant can suppress the sedimentation of the SiC fine particles in the nickel plating solution, the deposition efficiency of the SiC fine particles onto the plating film can be enhanced.
 (2)無電解めっきの場合では、分散剤がニッケルめっき液中のSiC微粒子の沈降を抑制することで、沈降したSiC微粒子の表面でめっき反応が生じてニッケルめっき液中のニッケル成分が消費されることを抑制できる。 (2) In the case of electroless plating, the dispersant suppresses the sedimentation of the SiC fine particles in the nickel plating solution, causing a plating reaction on the surface of the precipitated SiC fine particles to consume the nickel component in the nickel plating solution. can be suppressed.
 (3)分散剤がSiC微粒子の原料の残渣である黒鉛をめっき液中で分散安定化することによって、ニッケルめっき液中に拡散した黒鉛がめっき対象部品に付着することで生じる外観不良やめっき付着不良を抑制できる。 (3) The dispersant disperses and stabilizes the graphite, which is the residue of the raw material of the SiC fine particles, in the plating solution. Defects can be suppressed.
 (4)ニッケルめっき液に含まれるSiC微粒子の濃度は、好ましくは100mg/L以上5000mg/L以下であり、より好ましくは300mg/L以上3000mg/L以下であり、さらに好ましくは400mg/L以上2800mg/L以下である。ニッケルめっき液に含まれる分散剤の濃度は、好ましくは10μg/L以上10000μg/L以下であり、より好ましくは20μg/L以上5000μg/L以下であり、さらに好ましくは40μg/L以上4800μg/L以下である。ニッケルめっき液に含まれるSiC微粒子の濃度、及び、分散剤の濃度を上記範囲とすることで、ニッケルめっき液に含まれるSiC微粒子の分散性を好適に高めることができる。これにより、めっき皮膜のニッケルマトリクス中にSiC微粒子をより均一に析出させ、かつ、めっき皮膜へのSiC微粒子の析出効率をより高めることができる。 (4) The concentration of SiC fine particles contained in the nickel plating solution is preferably 100 mg/L or more and 5000 mg/L or less, more preferably 300 mg/L or more and 3000 mg/L or less, and still more preferably 400 mg/L or more and 2800 mg. /L or less. The concentration of the dispersant contained in the nickel plating solution is preferably 10 μg/L or more and 10000 μg/L or less, more preferably 20 μg/L or more and 5000 μg/L or less, and still more preferably 40 μg/L or more and 4800 μg/L or less. is. By setting the concentration of the SiC fine particles contained in the nickel plating solution and the concentration of the dispersing agent within the above ranges, the dispersibility of the SiC fine particles contained in the nickel plating solution can be favorably enhanced. As a result, the SiC fine particles can be more uniformly deposited in the nickel matrix of the plating film, and the deposition efficiency of the SiC fine particles onto the plating film can be further enhanced.
 (5)本実施形態のニッケルめっき液を用いた電解めっき、または無電解めっきによってニッケルまたはニッケル合金めっき皮膜を形成することで、分散剤によってニッケルめっき液に含まれるSiC微粒子の分散性を高めることができる。このようなニッケルまたはニッケル合金めっき皮膜の製造方法であれば、めっき皮膜のニッケルマトリクス中にSiC微粒子を均一に析出させ、かつ、めっき皮膜へのSiC微粒子の析出効率を高めることができる。 (5) By forming a nickel or nickel alloy plating film by electroplating or electroless plating using the nickel plating solution of the present embodiment, the dispersant enhances the dispersibility of the SiC fine particles contained in the nickel plating solution. can be done. With such a method for producing a nickel or nickel alloy plating film, the SiC fine particles can be uniformly deposited in the nickel matrix of the plating film, and the deposition efficiency of the SiC fine particles onto the plating film can be enhanced.
 [実施例]
 以下、本発明の実施例1~6及び比較例1~3を説明する。なお、各実施例及び各比較例は、上記の実施形態を限定するものではない。
[Example]
Examples 1 to 6 and Comparative Examples 1 to 3 of the present invention are described below. In addition, each example and each comparative example do not limit said embodiment.
 [基材及びめっき前処理]
 実施例1~6及び比較例1~3では、基材として100mm×50mm×t1.0mmの冷間圧延鋼板SPCC-SB(株式会社パルテック製)を用いた。また、めっき処理の前工程として、アルカリ脱脂、脱イオン水洗、電解脱脂、脱イオン水洗、酸洗(17%塩酸)、脱イオン水洗の順に基材の表面清浄化を行った。
[Base material and plating pretreatment]
In Examples 1 to 6 and Comparative Examples 1 to 3, a cold-rolled steel plate SPCC-SB (manufactured by Paltec Co., Ltd.) of 100 mm×50 mm×t1.0 mm was used as the base material. In addition, as a pre-plating step, the surface of the substrate was cleaned in the order of alkaline degreasing, deionized water washing, electrolytic degreasing, deionized water washing, acid washing (17% hydrochloric acid), and deionized water washing.
 [SiC微粒子添加剤の作製]
 ニッケルめっき液を作成するために、純水にSiC微粒子を添加したSiC微粒子添加剤1~5を作製した。なお、SiC微粒子添加剤3~5は、純水及びSiC微粒子に加えて分散剤を含む。
[Preparation of SiC fine particle additive]
In order to prepare a nickel plating solution, SiC fine particle additives 1 to 5 were prepared by adding SiC fine particles to pure water. The SiC fine particle additives 3 to 5 contain a dispersant in addition to pure water and SiC fine particles.
 [SiC微粒子添加剤1]
 SiCの濃度が100g/Lとなるように、純水にα型SiC微粒子#40000(株式会社フジミインコーポレーテッド製、粒子径D50=0.27μm)を添加して撹拌した。その後、SiC微粒子の2次粒子の破砕、及び、SiC微粒子の攪拌を目的として、超音波を10分間照射してSiC微粒子添加剤1とした。
[SiC fine particle additive 1]
α-SiC fine particles #40000 (manufactured by Fujimi Incorporated, particle diameter D50=0.27 μm) were added to pure water and stirred so that the concentration of SiC was 100 g/L. After that, for the purpose of crushing the secondary particles of the SiC fine particles and stirring the SiC fine particles, ultrasonic waves were applied for 10 minutes to prepare SiC fine particle additive 1 .
 [SiC微粒子添加剤2]
 SiCの濃度が100g/Lとなるように、純水にGMF-12H(太平洋ランダム株式会社製、粒子径D50=0.7μm)を添加して撹拌した。その後、超音波を10分間照射してSiC微粒子添加剤2とした。
[SiC fine particle additive 2]
GMF-12H (produced by Taiheiyo Rundum Co., Ltd., particle size D50=0.7 μm) was added to pure water and stirred so that the concentration of SiC was 100 g/L. After that, ultrasonic waves were applied for 10 minutes to prepare SiC fine particle additive 2 .
 [SiC微粒子添加剤3]
 デオキシコール酸の濃度が10mg/Lとなるように、純水にデオキシコール酸ナトリウムを溶解した。さらに、SiCの濃度が100g/Lとなるように、α型SiC微粒子#40000(株式会社フジミインコーポレーテッド製、粒子径D50=0.27μm)を添加して撹拌した。その後、超音波を10分間照射してSiC微粒子添加剤3とした。
[SiC fine particle additive 3]
Sodium deoxycholate was dissolved in pure water so that the deoxycholic acid concentration was 10 mg/L. Further, α-type SiC fine particles #40000 (manufactured by Fujimi Incorporated, particle diameter D50=0.27 μm) were added and stirred so that the concentration of SiC was 100 g/L. After that, ultrasonic waves were applied for 10 minutes to obtain SiC fine particle additive 3 .
 [SiC微粒子添加剤4]
 ヒオデオキシコール酸の濃度が200mg/Lとなるように、純水にヒオデオキシコール酸を添加した後、溶液が中性になるまで水酸化ナトリウムを加えて溶解した。さらに、SiCの濃度が100g/Lとなるように、GMF-12H(太平洋ランダム株式会社製;粒子径D50=0.7μm)を添加して撹拌した。その後、超音波を10分間照射してSiC微粒子添加剤4とした。
[SiC fine particle additive 4]
After adding hyodeoxycholic acid to pure water so that the concentration of hyodeoxycholic acid was 200 mg/L, sodium hydroxide was added and dissolved until the solution became neutral. Further, GMF-12H (manufactured by Taiheiyo Random Co., Ltd.; particle size D50=0.7 μm) was added and stirred so that the SiC concentration was 100 g/L. After that, ultrasonic waves were applied for 10 minutes to obtain SiC fine particle additive 4 .
 [SiC微粒子添加剤5]
 デオキシコール酸の濃度が5mg/Lとなるように、純水にデオキシコール酸ナトリウムを添加し、さらに、コール酸の濃度が200mg/Lとなるように、コール酸を添加した後、溶液が中性になるまで水酸化ナトリウムを加えて溶解した。さらに、SiCの濃度が100g/Lとなるように、GMF-12H(太平洋ランダム株式会社製;粒子径D50=0.7μm)を添加して撹拌した。その後、超音波を10分間照射してSiC微粒子添加剤5とした。
[SiC fine particle additive 5]
Sodium deoxycholate was added to pure water so that the concentration of deoxycholic acid was 5 mg/L, and further cholic acid was added so that the concentration of cholic acid was 200 mg/L. Sodium hydroxide was added and dissolved until it became liquid. Further, GMF-12H (manufactured by Taiheiyo Random Co., Ltd.; particle size D50=0.7 μm) was added and stirred so that the SiC concentration was 100 g/L. After that, ultrasonic waves were applied for 10 minutes to prepare SiC fine particle additive 5 .
 [実施例1]
 中高リン型無電解ニッケルめっき液「SEC-930」(日本カニゼン社製)に4mL/LのSiC微粒子添加剤3を添加した無電解ニッケルめっき液を用いて無電解めっき処理を施した。無電解めっき処理では、スターラーで撹拌した状態の無電解めっき液に基材を浸漬して90℃にて膜厚が約5μmになるまで無電解めっきを施した後、水洗、乾燥した。
[Example 1]
Electroless plating was performed using an electroless nickel plating solution obtained by adding 4 mL/L of SiC fine particle additive 3 to medium-high phosphorus type electroless nickel plating solution “SEC-930” (manufactured by Nippon Kanigen Co., Ltd.). In the electroless plating treatment, the base material was immersed in an electroless plating solution stirred with a stirrer, electroless plated at 90° C. until the film thickness reached about 5 μm, then washed with water and dried.
 [実施例2]
 中高リン型無電解ニッケルめっき液「SEC-930」(日本カニゼン社製)に28mL/LのSiC微粒子添加剤3を添加した無電解ニッケルめっき液を用いて、実施例1と同様の手順で無電解めっき処理を施した。
[Example 2]
Using an electroless nickel plating solution obtained by adding 28 mL / L of SiC fine particle additive 3 to a medium-high phosphorous type electroless nickel plating solution “SEC-930” (manufactured by Nippon Kanigen Co., Ltd.), the same procedure as in Example 1 was performed. Electroplating treatment was applied.
 [実施例3]
 中高リン型無電解ニッケルめっき液「SEC-930」(日本カニゼン社製)に3mL/LのSiC微粒子添加剤4を添加した無電解ニッケルめっき液を用いて、実施例1と同様の手順で無電解めっき処理を施した。
[Example 3]
Using an electroless nickel plating solution obtained by adding 3 mL / L of SiC fine particle additive 4 to a medium-high phosphorous type electroless nickel plating solution “SEC-930” (manufactured by Nippon Kanigen Co., Ltd.), the same procedure as in Example 1 was performed. Electroplating treatment was applied.
 [実施例4]
 中高リン型無電解ニッケルめっき液「SEC-930」(日本カニゼン社製)に24mL/LのSiC微粒子添加剤4を添加した無電解ニッケルめっき液を用いて、実施例1と同様の手順で無電解めっき処理を施した。
[Example 4]
Using an electroless nickel plating solution obtained by adding 24 mL / L of SiC fine particle additive 4 to a medium-high phosphorus type electroless nickel plating solution “SEC-930” (manufactured by Nippon Kanigen Co., Ltd.), the same procedure as in Example 1 was performed. Electroplating treatment was applied.
 [実施例5]
 中高リン型無電解ニッケルめっき液「SEC-930」(日本カニゼン社製)に10mL/LのSiC微粒子添加剤5を添加した無電解ニッケルめっき液を用いて、実施例1と同様の手順で無電解めっき処理を施した。
[Example 5]
Using an electroless nickel plating solution obtained by adding 10 mL / L of SiC fine particle additive 5 to a medium-high phosphorus type electroless nickel plating solution “SEC-930” (manufactured by Nippon Kanigen Co., Ltd.), the same procedure as in Example 1 was performed. Electroplating treatment was applied.
 [実施例6]
 ワット浴に4mL/LのSiC微粒子添加剤3を添加した電解ニッケルめっき液を用いて電解めっき処理を施した。ワット浴は、280g/Lの硫酸ニッケル、40g/Lの塩化ニッケル、及び、20g/Lのホウ酸を含み、pHを4.5とした。電解めっき処理では、スターラーで撹拌しながら基材を浸漬させ、50℃にて電流密度が2A/dmである直流電解で膜厚が約5μmになるまで電気めっきした後、水洗、乾燥した。
[Example 6]
Electrolytic plating was performed using an electrolytic nickel plating solution containing 4 mL/L of SiC fine particle additive 3 in a Watts bath. The Watt bath contained 280 g/L nickel sulfate, 40 g/L nickel chloride, and 20 g/L boric acid with a pH of 4.5. In the electroplating treatment, the substrate was immersed while being stirred with a stirrer, electroplated at 50° C. by DC electrolysis with a current density of 2 A/dm 2 until the film thickness reached about 5 μm, then washed with water and dried.
 [比較例1]
 中高リン型無電解ニッケルめっき液「SEC-930」(日本カニゼン社製)に4mL/LのSiC微粒子添加剤1を添加した無電解ニッケルめっき液を用いて、実施例1と同様の手順で無電解めっき処理を施した。
[Comparative Example 1]
Using an electroless nickel plating solution obtained by adding 4 mL / L of SiC fine particle additive 1 to a medium-high phosphorus type electroless nickel plating solution “SEC-930” (manufactured by Nippon Kanigen Co., Ltd.), the same procedure as in Example 1 was performed. Electroplating treatment was applied.
 [比較例2]
 中高リン型無電解ニッケルめっき液「SEC-930」(日本カニゼン社製)に22mL/LのSiC微粒子添加剤2を添加した無電解ニッケルめっき液を用いて、実施例1と同様の手順で無電解めっき処理を施した。
[Comparative Example 2]
An electroless nickel plating solution obtained by adding 22 mL/L of SiC fine particle additive 2 to a medium-high phosphorous type electroless nickel plating solution “SEC-930” (manufactured by Nippon Kanigen Co., Ltd.) was used in the same procedure as in Example 1. Electroplating treatment was applied.
 [比較例3]
 実施例6と同様のワット浴に4mL/LのSiC微粒子添加剤1を添加した電解ニッケルめっき液を用いて、実施例6と同様の手順で電解めっき処理を施した。
[Comparative Example 3]
Electroplating was performed in the same procedure as in Example 6 using an electrolytic nickel plating solution in which 4 mL/L of SiC fine particle additive 1 was added to the same Watt bath as in Example 6.
 [評価1:めっき液安定性]
 無電解めっき処理を行った実施例1~5、及び比較例1,2について、めっき処理後のめっき槽底部のSiC微粒子の沈降度合いに基づいてめっき液安定性を評価した。SiC微粒子の沈降がほぼ確認されないものを「〇」とし、少量のSiC微粒子の沈降が確認されたものを「△」とし、「△」の水準よりも多くのSiC微粒子の沈降が確認されたものを×とした。
[Evaluation 1: Plating solution stability]
For Examples 1 to 5 and Comparative Examples 1 and 2 in which electroless plating was performed, the stability of the plating solution was evaluated based on the degree of sedimentation of SiC fine particles on the bottom of the plating bath after plating. A case where almost no settling of SiC fine particles is confirmed is indicated by "○", a case where a small amount of SiC fine particles is confirmed is indicated by "△", and a larger amount of SiC fine particles than the level of "△" is confirmed to be precipitated. was x.
 無電解ニッケルめっきにおいて、めっき槽底部に沈降したSiC微粒子は、還元剤の作用によって次第に微粒子表面にニッケルが析出する。これにより、めっき液中のニッケル成分が消費されるため、めっき液の更新を余儀なくされる。なお、電解ニッケルめっき液は、基本的には還元剤を含まないため、電解ニッケルめっきではこのような反応は起こらない。よって、本評価は、無電解ニッケルめっき処理を行った実施例1~5、及び比較例1、2においてのみ行った。 In electroless nickel plating, the SiC fine particles that settle to the bottom of the plating tank gradually deposit nickel on the fine particle surface due to the action of the reducing agent. As a result, the nickel component in the plating solution is consumed, necessitating renewal of the plating solution. Since the electrolytic nickel plating solution basically does not contain a reducing agent, such a reaction does not occur in electrolytic nickel plating. Therefore, this evaluation was performed only for Examples 1 to 5 and Comparative Examples 1 and 2 in which electroless nickel plating was performed.
 [評価2:めっき皮膜のSiC微粒子分散性]
 めっき皮膜を走査型電子顕微鏡で観察し、めっき皮膜中でのSiC微粒子分散性を評価した。めっき皮膜中でSiC微粒子が均一に分散し、凝集が確認されなかったものを「〇」とし、めっき皮膜中に若干のSiC微粒子の凝集が確認されたものを「△」とし、めっき皮膜中に明らかなSiC微粒子の凝集が確認されたものを「×」とした。
[Evaluation 2: SiC Fine Particle Dispersibility of Plating Film]
The plated film was observed with a scanning electron microscope to evaluate the dispersibility of the SiC fine particles in the plated film. If the SiC fine particles were uniformly dispersed in the plating film and no agglomeration was confirmed, it was rated as "○", and if some SiC fine particles were confirmed to be agglomerated in the plating film, it was rated as "△". A case in which clear aggregation of SiC fine particles was confirmed was rated as "x".
 [評価3:めっき皮膜中のSiC微粒子含有率]
 めっき処理によって基材上にめっき皮膜が形成された試験片を67.5%硝酸に40分間浸漬させることでめっき皮膜を剥離した。試験片の面積及び剥離前後の質量差よりめっき皮膜量を算出した。次に、剥離液中のSiC微粒子を濾過によって採取し、水洗及び乾燥後、SiC微粒子量を測定した。最後に、めっき皮膜量とSiC微粒子量から、めっき皮膜中のSiC微粒子含有率を算出した。
[Evaluation 3: Content of SiC fine particles in plating film]
The plated film was peeled off by immersing the test piece in which the plated film was formed on the base material by plating in 67.5% nitric acid for 40 minutes. The amount of plating film was calculated from the area of the test piece and the difference in mass before and after peeling. Next, the SiC fine particles in the stripping solution were collected by filtration, washed with water and dried, and then the amount of SiC fine particles was measured. Finally, the content of SiC fine particles in the plating film was calculated from the amount of the plating film and the amount of SiC fine particles.
 [評価結果]
 実施例1~6、及び、比較例1~3におけるめっき液の作製条件、めっき液組成、及び、評価1~3の評価結果を表1及び表2に示す。
[Evaluation results]
Tables 1 and 2 show the plating solution preparation conditions, plating solution compositions, and evaluation results of evaluations 1 to 3 in Examples 1 to 6 and Comparative Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、280mg/L以上2800mg/L以下のSiC微粒子に対して、40mg/L以上4400mg/L以下の分散剤を含む実施例1~6の場合では、SiC微粒子の均一析出性及び析出効率向上効果が確認された。詳述すると、40mg/L以上280mg/L以下のデオキシコール酸を含む実施例1,2,6の場合では、SiC微粒子の均一析出性及び析出効率向上効果が確認された。また、600mg/L以上4800mg/L以下のヒオデオキシコール酸を含む実施例3,4の場合では、SiC微粒子の均一析出性及び析出効率向上効果が確認された。そして、50mg/Lのデオキシコール酸と2000mg/Lのコール酸と含み、分散剤の合計濃度が2050mg/Lである実施例5の場合では、SiC微粒子の均一析出性及び析出効率向上効果が確認された。 As shown in Table 1, with respect to SiC fine particles of 280 mg / L or more and 2800 mg / L or less, in the case of Examples 1 to 6 containing a dispersant of 40 mg / L or more and 4400 mg / L or less, the uniform precipitation of SiC fine particles And the precipitation efficiency improvement effect was confirmed. More specifically, in Examples 1, 2, and 6 containing 40 mg/L or more and 280 mg/L or less of deoxycholic acid, uniform precipitation of SiC fine particles and an effect of improving precipitation efficiency were confirmed. Further, in the cases of Examples 3 and 4 containing 600 mg/L or more and 4800 mg/L or less of hyodeoxycholic acid, uniform precipitation of SiC fine particles and an effect of improving the precipitation efficiency were confirmed. In the case of Example 5, which contains 50 mg/L of deoxycholic acid and 2000 mg/L of cholic acid, and the total concentration of the dispersant is 2050 mg/L, uniform deposition of SiC fine particles and an effect of improving the deposition efficiency were confirmed. was done.
 表1及び表2に示すように、無電解めっきの場合について、分散剤の有無以外の条件が同等である実施例1と比較例1とを比較すると、めっき液が分散剤を含む実施例1の方が比較例1よりもめっき液安定性、めっき皮膜のSiC微粒子分散性に優れていた。また、実施例1の方が比較例1よりもめっき皮膜中のSiC微粒子含有率が大幅に増加した。したがって、めっき液に分散剤を添加することで、めっき皮膜へのSiC微粒子の析出効率が向上した。なお、分散剤の有無以外の条件が同等である実施例4と比較例2とを比較した場合も、同様の傾向が確認された。 As shown in Tables 1 and 2, when comparing Example 1 and Comparative Example 1 in which conditions other than the presence or absence of a dispersant are the same for the case of electroless plating, the plating solution of Example 1 containing a dispersant was superior to Comparative Example 1 in the stability of the plating solution and the dispersibility of the SiC fine particles in the plating film. In addition, the content of SiC fine particles in the plating film of Example 1 was significantly higher than that of Comparative Example 1. Therefore, by adding a dispersant to the plating solution, the deposition efficiency of the SiC fine particles on the plating film was improved. A similar tendency was confirmed when Example 4 and Comparative Example 2, which were identical in conditions other than the presence or absence of the dispersant, were compared.
 また、電解めっきの場合について、分散剤の有無以外の条件が同等である実施例6と比較例3とを比較すると、分散剤を含む実施例6の方が比較例3よりもめっき皮膜のSiC微粒子分散性に優れていた。また、実施例6の方が比較例3よりもめっき皮膜中のSiC微粒子含有率が大幅に増加した。したがって、無電解めっきだけでなく、電解めっきにおいても、めっき液に分散剤を添加することで、めっき皮膜へのSiC微粒子の析出効率が高められることが確認された。 In addition, in the case of electrolytic plating, when comparing Example 6 and Comparative Example 3, which have the same conditions other than the presence or absence of a dispersant, Example 6 containing a dispersant is more SiC in the plating film than Comparative Example 3. Excellent fine particle dispersibility. In addition, the content of SiC fine particles in the plating film of Example 6 was significantly higher than that of Comparative Example 3. Therefore, it was confirmed that the deposition efficiency of the SiC fine particles onto the plated film was enhanced by adding a dispersant to the plating solution not only in the electroless plating but also in the electroplating.
 [変更例]
 なお、上記実施形態は、以下のように変更して実施することができる。
 ・本実施形態のニッケルめっき液を用いて製造されるめっき皮膜は、ニッケルめっき皮膜に限定されず、本実施形態のニッケルめっき液の成分に対してさらに金属成分を加えることでニッケル合金めっき皮膜を形成してもよい。
[Change example]
It should be noted that the above embodiment can be implemented with the following modifications.
・The plating film manufactured using the nickel plating solution of the present embodiment is not limited to the nickel plating film, and a nickel alloy plating film is produced by adding a metal component to the components of the nickel plating solution of the present embodiment. may be formed.
 ・分散剤としてヒオデオキシコール酸を含む場合であっても、ニッケルめっき液に含まれるSiC微粒子の分散性が確保されるのであれば、ヒオデオキシコール酸の濃度は、600μg/L未満であってもよく、4800μg/L超であってもよい。 ・Even if hyodeoxycholic acid is included as a dispersant, the concentration of hyodeoxycholic acid should be less than 600 μg/L as long as the dispersibility of the SiC fine particles contained in the nickel plating solution is ensured. may be greater than 4800 μg/L.
 ・分散剤としてデオキシコール酸を含む場合であっても、ニッケルめっき液に含まれるSiC微粒子の分散性が確保されるのであれば、デオキシコール酸の濃度は、40μg/L未満であってもよく、280μg/L超であってもよい。 ・Even if deoxycholic acid is contained as a dispersant, the concentration of deoxycholic acid may be less than 40 μg/L as long as the dispersibility of the SiC fine particles contained in the nickel plating solution is ensured. , may be greater than 280 μg/L.
 ・ニッケルめっき液に含まれるSiC微粒子の分散性が確保されるのであれば、分散剤を構成する成分の合計濃度が10μg/L未満であってもよい。また、ニッケルめっき液、及び、ニッケルめっき液を用いて製造されるめっき皮膜に悪影響が生じないのであれば、分散剤を構成する成分の合計濃度が10000μg/L超であってもよい。 · As long as the dispersibility of the SiC fine particles contained in the nickel plating solution is ensured, the total concentration of the components constituting the dispersant may be less than 10 µg/L. Further, the total concentration of the components constituting the dispersant may exceed 10000 μg/L as long as the nickel plating solution and the plating film produced using the nickel plating solution are not adversely affected.

Claims (2)

  1.  水溶性ニッケル化合物と、
     SiC微粒子と、
     デオキシコール酸及びデオキシコール酸誘導体から選択される少なくとも1種からなる分散剤と、を含む
     ことを特徴とするニッケルめっき液。
    a water-soluble nickel compound;
    SiC fine particles;
    and a dispersant comprising at least one selected from deoxycholic acid and deoxycholic acid derivatives.
  2.  請求項1に記載のニッケルめっき液を用いて電解めっき、または無電解めっきを行う
     ことを特徴とするニッケルまたはニッケル合金めっき皮膜の製造方法。
    A method for producing a nickel or nickel alloy plating film, wherein electrolytic plating or electroless plating is performed using the nickel plating solution according to claim 1.
PCT/JP2021/045506 2021-12-10 2021-12-10 Nickel plating solution, and method for manufacturing nickel or nickel alloy plating coating WO2023105747A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045506 WO2023105747A1 (en) 2021-12-10 2021-12-10 Nickel plating solution, and method for manufacturing nickel or nickel alloy plating coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/045506 WO2023105747A1 (en) 2021-12-10 2021-12-10 Nickel plating solution, and method for manufacturing nickel or nickel alloy plating coating

Publications (1)

Publication Number Publication Date
WO2023105747A1 true WO2023105747A1 (en) 2023-06-15

Family

ID=86729973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045506 WO2023105747A1 (en) 2021-12-10 2021-12-10 Nickel plating solution, and method for manufacturing nickel or nickel alloy plating coating

Country Status (1)

Country Link
WO (1) WO2023105747A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279959A (en) * 2009-06-02 2010-12-16 Mishima Kosan Co Ltd Mold for continuous casting
JP2013241649A (en) * 2012-05-21 2013-12-05 Kanto Gakuin Composite plating solution, method for producing composite plating solution, and laminate
WO2016013219A1 (en) * 2014-07-23 2016-01-28 日本ゼオン株式会社 Plating solution and method for producing same, composite material, copper composite material, and method for producing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010279959A (en) * 2009-06-02 2010-12-16 Mishima Kosan Co Ltd Mold for continuous casting
JP2013241649A (en) * 2012-05-21 2013-12-05 Kanto Gakuin Composite plating solution, method for producing composite plating solution, and laminate
WO2016013219A1 (en) * 2014-07-23 2016-01-28 日本ゼオン株式会社 Plating solution and method for producing same, composite material, copper composite material, and method for producing same

Similar Documents

Publication Publication Date Title
EP2855732B1 (en) Plating bath for electroless deposition of nickel layers
JP2000144441A (en) Electroless gold plating method and electroless gold plating solution used therefor
CN108441902B (en) Monovalent gold cyanide-free gold-plating electroplating solution based on alkaloid composite coordination and application thereof
CN109852952B (en) Hydrazine hydrate chemical nickel plating solution, preparation method thereof and nickel plating method
TWI675129B (en) Environmentally friendly nickel electroplating compositions and methods
US8961670B2 (en) Alkaline plating bath for electroless deposition of cobalt alloys
WO2009139384A1 (en) Copper‑zinc alloy electroplating bath and plating method using same
TWI674341B (en) Environmentally friendly nickel electroplating compositions and methods
TW538144B (en) Tin-indium alloy electroplating solution
WO2023105747A1 (en) Nickel plating solution, and method for manufacturing nickel or nickel alloy plating coating
WO2019004057A1 (en) Electroless nickel strike plating solution and method for forming nickel plating film
JP4599599B2 (en) Electroless gold plating solution
KR20100128865A (en) A composition of eletroless chemical copper plating for nano scale device interconnection
TW202028541A (en) Indium electroplating compositions and methods for electroplating indium on nickel
WO2012052832A2 (en) Electroless nickel plating bath and electroless nickel plating method using same
JP7462799B2 (en) Silver/tin electroplating bath and method of use
TW202106928A (en) Tin plating bath and a method for depositing tin or tin alloy onto a surface of a substrate
JPH09272995A (en) Non-acidic bath for tin plating and tin-lead alloy plating and plating method using the same
WO2018066398A1 (en) Nickel plating solution and nickel plating solution production method
WO2021145300A1 (en) Electroless plating process and two-layer plating film
CN115807248A (en) Silver plating brightener and preparation method thereof
CN113737164A (en) Stable tin chemical plating solution and application thereof
KR20220071430A (en) Electroplating solution of tin-silver alloy for wafer bumps with improved distribution deviation of silver content in plating films
WO2005118917A1 (en) Electroplating solution for alloys of gold with tin
CN115613084A (en) Cyanide-free alkali copper electroplating solution and use method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21967241

Country of ref document: EP

Kind code of ref document: A1