WO2016010287A1 - Method for plating nonwoven fabric by using continuous electroless and electrolytic plating processes - Google Patents

Method for plating nonwoven fabric by using continuous electroless and electrolytic plating processes Download PDF

Info

Publication number
WO2016010287A1
WO2016010287A1 PCT/KR2015/006719 KR2015006719W WO2016010287A1 WO 2016010287 A1 WO2016010287 A1 WO 2016010287A1 KR 2015006719 W KR2015006719 W KR 2015006719W WO 2016010287 A1 WO2016010287 A1 WO 2016010287A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
nonwoven fabric
nickel
electroless
fiber
Prior art date
Application number
PCT/KR2015/006719
Other languages
French (fr)
Korean (ko)
Inventor
곽규범
강승원
이남귀
장민환
이종길
허수형
박민영
강병록
강지훈
Original Assignee
(주)크린앤사이언스
주식회사 불스원신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)크린앤사이언스, 주식회사 불스원신소재 filed Critical (주)크린앤사이언스
Priority to JP2017502868A priority Critical patent/JP6797790B2/en
Priority to US15/326,583 priority patent/US20170204519A1/en
Priority to DE112015003301.7T priority patent/DE112015003301B4/en
Publication of WO2016010287A1 publication Critical patent/WO2016010287A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated

Definitions

  • the present invention relates to a plating method of a nonwoven fabric using a continuous process of electroless and electrolytic plating, and to a nonwoven fabric plated by the above method, and more particularly to the metal constituting the nonwoven fabric and the fibers constituting the nonwoven fabric. It relates to the production of a metal plated nonwoven fabric having improved bonding strength of the improved conductivity.
  • Carbon fiber-reinforced composites which began to develop rapidly with the development of aviation and aerospace industries, are used today in various fields such as electric, electronic materials, civil engineering, building materials, automobiles, ships, military equipment, and sporting goods as well as aviation and aerospace industries. It is one of the high-tech materials.
  • the electroless carbon fiber plating method is somewhat limited in the part which enhances the conductivity of the carbon fiber by containing phosphorus due to chemical ion bonding, and in the case of electrolytic plating, the conductivity may be increased but uniform for each filament of the carbon fiber. It is not suitable as a composite material in which the role of each filament is important because it is not plated.
  • the plated carbon fiber produced by electroplating has a lot of fluff and filament breakage, so it is limited to use as a composite material to maintain the plating state of the product.
  • the present inventors have sought to develop a method for producing a metal plated fiber nonwoven fabric having excellent economy and conductivity.
  • a method of continuous electroless and electrolytic surface treatment the advantages of shorter process time, price competitiveness, and simplification of production equipment than conventional electroless or electrolytic surface treatment processes are adopted.
  • Another object of the present invention is to provide a nonwoven metal (nickel and nickel) plating method of an electroless and electrolytic continuous process.
  • Another object of the present invention is to provide a metal (copper and nickel) plated nonwoven fabric by the above-described method of the present invention.
  • Another object of the present invention is to provide a metal (nickel and nickel) plated nonwoven fabric by the method of the present invention described above.
  • the present invention provides a method for electroless and electrolytic continuous process metal plating of a non-woven fabric comprising the following steps:
  • Non-woven fabrics based on the volume of pure water Cu ions 2.5-5.5 g / 1, EDTA 20-55 g / 1, formalin 2.5-4.5 g / 1, TEA (triethanolamine) 2-6 g / 1, 25% NaOH 8-12 ml / 1 and 2,2'-bipi r idine 0.008- Plating copper on the nonwoven fabric for 6-10 minutes by passing through an electroless plating solution containing 0.15 g / 1 and having a pH of 12-13 and a temperature of 36-45 ° C .; And
  • the copper plated nonwoven fabric of step (a) comprises Ni (N S0 3 ) 2 280-320 g / 1, NiCl 2 15-25 g / 1 and 3 ⁇ 4 ⁇ 3 ⁇ 4 35-45 g / 1, pH 4.0 -4.2 and nickel plated on the copper plated nonwoven for 1-3 minutes by passing through an electrolytic plating solution at a temperature of 50-60 ° C.
  • the invention provides a method for electroless and electrolytic continuous process metal plating of a non-woven fabric comprising the following steps:
  • the nonwoven fabric is 5-7 g / 1, NaH 2 P0 2 20-30 g / 1, Na 3 C 6 H 5 0 7 20-30 g / 1 based on the volume of pure water. And plating nickel on the nonwoven fabric for 6-10 minutes by passing through an electroless plating solution containing 0.0005-0.001 g / 1 of potassium thiosulfate and having a pH of 8.5-9.5 and a temperature of 30-35 ° C .; And
  • step (b) the nickel plated nonwoven fabric of step (a) was Ni (N S0 3 ) 2 280-320 g / 1,
  • a feature of the method of the present invention is a cut in which a fiber nonwoven fabric is first surface-treated by a non-oxidation method, followed by electroless plating (copper or nickel) followed by electrolytic (nickel) plating, which minimizes the production process and anodic oxidation. Like this, continuous process is possible and high functional nonwoven fabric with relatively superior conductivity can be manufactured.
  • the method of the present invention proceeds by electroless copper plating, or electroless nickel plating first, followed by electroplating.
  • the method of the present invention can be applied to nonwoven fabrics by various known manufacturing methods, for example, dry nonwoven fabrics, wet nonwoven fabrics or spunbond nonwoven fabrics.
  • the method of the present invention may be applied to a carbon fiber nonwoven fabric or a PET nonwoven fabric as a wet nonwoven fabric.
  • the method of manufacturing the above-described dry nonwoven fabric, wet nonwoven fabric or spunbond nonwoven fabric is well known in the art, and has been disclosed in Korean Patent Application Publication Nos. 10-2012-0121079, Korean Patent No. 101049623, Korean Patent No. 101133851 and Republic of Korea No. 101156844 is incorporated by reference.
  • the plating method of the present invention can be applied to various kinds of known nonwoven fabrics, and for example, carbon fiber, polyester fiber, glass fiber, aramid fiber, ceramic fiber, metal fiber, polyimide fiber, polybenzoxazole fiber, natural fiber Or can be applied to nonwoven fabrics made of these mixed fibers.
  • Polyester fibers include polyethylene terephthalate (PET), polyglycolide (PGA), pulley lactic acid (PLA), polycaprolactone (PCL), polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), Polyethylene adipate (PEA), polybutylene succinate (PBS), poly (3-hydroxybutyrate-co-3—hydroxyvalerate (PHBV), polybutylene terephthalate (PBT), pulleytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN) and backtran (Vectran)
  • the method of the present invention may be applied to a carbon fiber nonwoven fabric or a PET fiber nonwoven fabric.
  • the nonwoven fabric to which the method of the present invention is applied can be produced by mixing the second fiber as the reinforcing fiber to the above-mentioned fiber (called the first fiber).
  • the reinforcing fiber is a material for increasing the strength of the nonwoven fabric, and is a low melting fiber or a low melting filament, and for example, L / M pulley fiber (LMP) can be used.
  • LMP L / M pulley fiber
  • Low melting polyester fibers have a melting point lower than 255 ° C, which is the melting point of conventional polyesters, and is used for thermal fusion purposes.
  • the low melting point fiber as the second fiber is L / M polyethylene terephthalate (low melting PET). Since L / M polyethylene terephthalate has a relatively low melting point, it melts when heated and pressed to about 1 CTC and mixes with the first fiber, thereby increasing the strength of the entire nonwoven fabric.
  • the electroless and electrolytic continuous process metal plating method of the non-woven fabric of the present invention is for producing a metal plated nonwoven fabric finally, the same meaning as the method for producing a metal plated non-woven fabric by an electroless and electrolytic continuous process Can be used as.
  • a detailed step-by-step description of the method of the present invention for producing a metal plated nonwoven fabric in an electroless and electrolytic continuous process as follows:
  • the nonwoven fabric is subjected to electroless plating.
  • the electroless plating solution when plating copper on a carbon fiber nonwoven fabric, includes pure water, copper metal salts, complexing agents, reducing agents, stabilizers, and pH adjusting agents.
  • the copper metal salt contained in the electroless plating solution supplies copper ions for imparting conductivity to the carbon fiber, the reducing agent used formalin, EDTA as a complexing agent, TEA (triethane amine) as a stabilizer, and 2, 2'-.
  • Bipiridine and NaOH at a concentration of 25% were used as a pH adjusting agent.
  • the plating rate increased as the concentration of formalin, a reducing agent included in the electroless plating solution, and NaOH, a pH adjusting agent, increased, but the life of the plating solution was shortened.
  • the amount of regulator was adopted.
  • the plating rate and liquid stability test was carried out by controlling the content of the reducing agent, the control of the concentration of copper ions and formalin as reducing agent It is possible to adjust the plating speed and the thickness of the plating layer, and to control the specific gravity, strength, elastic modulus and strain through the thickness of the plating layer, in the present invention, the thicker the thickness of the plating layer, the specific gravity increases, the strength , Since the elastic modulus and strain are lowered, electrolytic plating is performed along with the concentration control of copper ions and formalin, which is a reducing agent, thereby improving conductivity to a thin thickness, thereby solving the above problems. That's why.
  • the electroless plating step of step (a) is based on the volume of the non-woven fabric (pure water) Cu is 4.5-5.5 g / 1, EDTA 45-55 g / 1, Formalin 3.5-4.5 g / 1, TEA (triethanolamine) 4-6 g / 1, concentration 25% NaOH 8-12 ml / 1 and 2,2'-bipiridine 0.01-0.15 g / 1
  • the electroless plating solution includes pure water, nickel metal salts, pH buffers, reducing agents, and stabilizers.
  • the nickel metal salt included in the electroless plating solution supplies nickel ions for imparting conductivity to the nonwoven fabric, and NaH 2 P 2 0 is used as the reducing agent, potassium thiosulfate as a stabilizer, and Na 3 C 6 H 507 may be used as a pH buffer.
  • washing with water is performed in three stages, and in the third of the washing stages, water is mixed with 1-2% H2S04. This is a means to preserve the pH of the electrolytic plating bath and to activate the surface of the electroless plated carbon fiber.
  • step (a) nickel is continuously plated by the electrolytic plating process on the copper or nickel electroless plated nonwoven fabric.
  • One of the features of the present invention is that the electroless plating process followed by the nickel electroplating process improves the electrical conductivity of the fibers or nonwovens.
  • Ni (NH2S03) 2 and NiC12 are used as nickel metal salts, and H3B03 is used as a pH buffer.
  • the electrical resistance value is reduced by about 32-37 times compared to the carbon fiber which is not plated through the electroless and electrolytic continuous process.
  • the electrical conductivity was improved by about 2 times reduction compared with the comparative example.
  • the electrical conductivity is improved. It is believed that the electrical conductivity was improved by filling the pores of copper or nickel after electroless plating by filling Ni electroplating in a short time.
  • the electroplating process of step (c) is carried out by applying a constant voltage (CV, 5-15 Volt).
  • the electrolytic plating process is performed by applying a constant voltage (CV) of 5-10 Volt, more preferably by adding 6-8 Volt.
  • CV constant voltage
  • the electrolytic plating process is performed by applying a constant voltage (CV) of 10-15 Volt.
  • CV constant voltage
  • the advantages of electroless and electrolytic plating are excellent electrical conductivity, and are effective in adhesion and ductility, and attach an electrolytic metal to a space of metals produced by electroless plating, thereby forming an alloy layer having a thin thickness and excellent conductivity. In addition, it has the effect of even plating on the fiber or nonwoven fabric.
  • the nonwoven fabric of step (a) is characterized in that the pre-treatment (pre- eatment) a process comprising the following steps carried out before the step (a):
  • the resulting nonwoven fabric of step (i) comprises sodium bisulfite (NaHS03), sulfuric acid (H2S04), ammonium persulfate (aH onium persulfatel (NH4) 2S208) and pure water; Performing an etching process through the aqueous solution to neutralize, clean, and condition;
  • step (ni) performing a sensitizing process by passing the resulting nonwoven fabric of step (ii) through an aqueous PdC12 solution; And (iv) passing the resulting nonwoven fabric of step (iii) through an aqueous solution of sulfuric acid (H 2 SO 4) to perform an activating process.
  • Pretreatment of the nonwoven fabric in the process of the present invention first passes carbon fiber through an aqueous solution comprising a surfactant, an organic solvent and a nonionic surfactant to degrease and soften the nonwoven fabric.
  • the aqueous solution containing the surfactant, the organic solvent and the non-ionic surfactant has a degreasing action to remove the epoxy or urethane sized to the carbon fiber, and at the same time swells and softens the fiber surface.
  • the aqueous solution of step (i) is 15-35% by weight of a mixture of pure water and NaOH in a weight ratio of 40—49: 1-10 as a surfactant, diethyl propanediol as an organic solvent ( diethyl propanediol) 50-80% by weight and 5-15% by weight dipropylene glycol methyl ether, and 400-600 ppm of nonionic surfactant, and more preferably pure pure water) and 20-30% by weight of a mixture of NaOH in a weight ratio of 45-48: 2-5, 58-72% by weight of diethyl propanediol as an organic solvent and dipropylene glycol methyl ether ether) 8-12% by weight, and 450-550 ppm of nonionic surfactant.
  • the nonionic surfactants include various nonionic surfactants known in the art, but are preferably ethoxylated linear alcohol, ethoxylated linear alkyl—phenol or epoxyrays. Ethoxylated linear thiol, more preferably ethoxylated linear alcohol.
  • the step (i) is carried out for 1-5 minutes at a temperature of 40-60 ° C, more preferably for 1-3 minutes at 45-55 ° C silver degree .
  • Aqueous solutions for the etching process include sodium bisulfite (NaHS03), sulfuric acid (H2S04), ammonium persulfate (NH4) 2S208 and pure water.
  • the aqueous solution of step (ii) is sodium hydrogen sulfite (sodi ⁇ bisulfite; NaHS03) 0.1-10 weight sulfuric acid (H2S04) 0.1-3 weight%, ammonium persulfate (a ⁇ onium persulfate; (NH4) 2S208 5-25 weight% and pure water 62-94.8 weight? 3 ⁇ 4, more preferably sodium bisulfite (NaHS03) 0.8-2 weight 3 ⁇ 4, sulfuric acid (H2S04) 0.3-1 weight%, ammonium persulfate (NH4) 2S208) 10 -20 wt% and pure water 77-88.9 wt%.
  • step (ii) is carried out for 1-5 minutes at a temperature of 20-25 ° C., more preferably for 1-3 minutes at a temperature of 20-25 ° C.
  • step ( ⁇ ) is passed through a PdC12 aqueous solution to undergo a sensitizing process.
  • the sensitizing process is to allow metal ions to be adsorbed on the surface of the surface-modified fiber or nonwoven fabric.
  • the concentration of the PdC12 aqueous solution is 10-30%, even more preferably 15-25%.
  • step (iii) is carried out for 1-5 minutes at a temperature of 20-40 ° C., more preferably for 1-3 minutes at a temperature of 25-35 ° C.
  • step (iii) is passed through an aqueous solution of concentrated sulfuric acid (H 2 SO 4) to perform an activating process.
  • H 2 SO 4 concentrated sulfuric acid
  • the activation process removes colloidal Sn to prevent oxidation of Pd. To carry out.
  • the concentration of the sulfuric acid (H 2 SO 4) aqueous solution is 5-15%.
  • the step (iv) is carried out for 1-5 minutes at a temperature of 40-60 ° C, even more preferably for 1-3 minutes at a temperature 45-55 ° C. .
  • the nonwoven fabric can be pretreated, and the pretreated nonwoven fabric can be plated with metals, copper and nickel, and nickel and nickel in an electroless and electrolytic continuous process.
  • the pretreatment process is described as being made after the nonwoven fabric, the pretreatment process may be applied to the fiber itself before the nonwoven fabric is produced.
  • the invention provides a metal (copper and nickel) plated nonwoven fabric produced by the process of the invention described above.
  • the present invention provides a metal (nickel and nickel) plated nonwoven fabric produced by the method of the present invention described above.
  • the copper and nickel of the present invention, or the nickel and nickel plated nonwoven fabrics are manufactured by the method for producing metal fibers carbon plated by the electroless and electrolytic continuous process described above, the common content between the two is repeated. In order to avoid excessive complexity of the specification according to the description, the description is omitted.
  • the plating method used in the present invention is capable of continuous processing, stable processing and at the same time the fiber or nonwoven fabric has a high electrical conductivity by introducing copper-nickel alloy or nickel-nickel metal on the surface of the carbon fiber.
  • Figure 1 shows a surface treatment apparatus for a nonwoven fabric according to the present invention (side view).
  • Figure 1 is a schematic diagram of the device in the direction of the arrow through the installed lorler.
  • the carbon fiber nonwoven fabric or PET nonwoven fabric is subjected to primary plating in an electroless plating bath after passing through a pretreatment tank that determines the adhesion and plating pretreatment of the plating by a roller.
  • the electroless plating may select copper or nickel.
  • the electroplating bath After the first electroless plating, the electroplating bath finally performs nickel plating on the nonwoven fabric that has undergone electroless plating.
  • the electrolytic plate hangs the + electrode, and the roller
  • Electrode plating is performed by hanging the electrode, and finally, the product manufactures a conductive nonwoven fabric having a copper nickel or nickel-nickel double structure.
  • % used to indicate the concentration of a particular substance is solid / solid (weight / weight)%, solid / liquid (weight / volume) and liquid / Liquid is (volume / volume)%.
  • Carbon fiber nonwovens were fabricated in the form of wet nonwovens.
  • the carbon fiber (12K, purchased from Toray, Hyosung or TK) was cut to about 6 mm in length, and the cut carbon fiber chop was dispersed in water.
  • the dispersed carbon fibers were floated in water to form a layer having a predetermined thickness in water through left and right vibrations.
  • the carbon fiber layer is rolled out After drying, it was pressed on a roller to prepare a nonwoven fabric.
  • L / M PET low melting PET chop 6 ⁇
  • L / M PET low melting PET chop 6 ⁇
  • the nonwoven fabric produced by mixing a small amount with carbon fiber and heat pressing is increased in strength compared to the nonwoven fabric made of 100% carbon fiber.
  • the PET nonwoven fabric was manufactured in the form of a wet laid fabric, and was manufactured in the same manner as the carbon fiber nonwoven fabric manufacturing method described above except that PET (Purchased by TEIJIN, Japan) was used instead of carbon fiber. Meanwhile, as described above, in order to increase the strength of the PET nonwoven fabric, a nonwoven fabric may be generated by mixing a predetermined amount of L / M PET. Pretreatment of Carbon Fiber Nonwoven Fabric and PET Nonwoven Fabric
  • an epoxy solvent and a urethane were removed from the carbon fiber by using an organic solvent, and at the same time, the surface of the fiber was swelled to soften it.
  • the etching process was carried out using ammonium ((NH 4) 2 S 208) to aid the cleaning action and to make the adsorption of palladium strong by conditioning. Specifically, 1 wt% sodium bisulfite (NaHS03), 0.5 wt% sulfuric acid (H2S04), 15 wt% ammonium persulfate (NH4) 2S208, and 83.5 wt% pure water
  • the non-woven fabric passed through the degreasing and softening process was passed through a pretreatment tank including a etch process to neutralize, clean, and condition. The etching process was carried out for 2 minutes at a temperature of 20-25 ° C.
  • PdC12 having a concentration of 20% was heated on a nonwoven fabric subjected to the etching process.
  • the sensitizing process was carried out by treatment at 30 ° C for 2 minutes.
  • the sensitizing process is performed to adsorb metal ions on the surface of the surface-modified carbon fiber or PET.
  • sulfuric acid (H2S04) having a concentration of 10% at a temperature of 50 ° C. was treated for 2 minutes at a temperature of 50 ° C. in order to prevent oxidation of Pd.
  • the nonwoven fabric was pretreated, and the carbon fiber nonwoven fabric and the PET nonwoven fabric were pretreated in the same process.
  • Examples 2 and 3 Copper and nickel plated carbon fibers in electroless and electrolytic continuous plating processes
  • the electroless copper plating was performed on the carbon fiber pretreated by the process of Example 1 using the plating apparatus of FIG. 1 attached to the following Table 3, and the composition and conditions of the following Table 4 were performed in a continuous process.
  • An electrolytic nickel plating process was performed to produce copper and nickel plated carbon fibers: Table 3
  • Example 5 Copper and Nickel Plated Carbon in Electroless and Electrolytic Continuous Plating Process fiber
  • the electroless copper plating was performed on the carbon fiber pretreated by the process of Example 1 using the plating apparatus of FIG. 1 attached to the following Table 5, and the composition and conditions of the following Table 6 were performed in a continuous process.
  • An electrolytic nickel plating process was performed to produce copper and nickel plated carbon fibers:
  • the electroless nickel plating was performed on the carbon fiber pretreated in the process of Example 1 using the plating apparatus of FIG. 1 attached below with the composition and conditions of the following Table 7, and the composition and conditions of the following Table 8 in the continuous process.
  • An electrolytic nickel plating process was performed to produce nickel plated carbon fibers:
  • compositions and conditions for preparing the copper and nickel-plated carbon fibers of Example 4 optimization conditions for electroless and electrolytic plating were set by adjusting the concentration of NaOH to adjust pH and the concentration of HCH0 to help reduce the reaction of Cu. .
  • the copper concentration and the HCHO concentration were high, and the high-speed plating was possible and the thickness of the plating layer was also increased (plating thickness of 0.7 microns or more).
  • the copper ion concentration is 2.5-3.0 g / 1 and the HCH0 concentration is 2.5-3.0 g / 1 or less. The best result was obtained.
  • Example 7 Copper and nickel plated carbon fiber nonwoven fabric and PET nonwoven fabric by electroless and electrolytic continuous plating process
  • the electroless copper plating of the carbon fiber nonwoven fabric and the PET nonwoven fabric of Example 1 using the plating apparatus of FIG. 1 attached to the following Table 16 was carried out using the plating apparatus of FIG. An electrolytic nickel plating process was performed to prepare copper and nickel plated carbon fiber nonwoven fabrics and PET nonwoven fabrics.
  • the non-woven fabric pretreated by the process of Example 1 was subjected to electroless nickel plating according to the composition and conditions of the following Table 18 by using the plating apparatus of FIG. 1 attached below, and was electrolyzed under the composition and conditions of the following Table 19 in a continuous process.
  • a nickel plating process was performed to produce nickel plated nonwoven fabrics:
  • PET Polyethylene terephthalate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

The present invention relates to: a method for plating nonwoven fabric with metals (copper and nickel, or nickel and nickel) by electroless and electrolytic continuous processes; and a nonwoven fabric plated by the method. The present invention can prepare a metal-plated nonwoven fabric by electrolytic plating a space of metal ions, which are formed by performing electroless plating with copper or nickel, with nickel in a short amount of time, thereby filling up the space, and thus has excellent conductivity while being thin. A desired conductivity can be obtained by changing the composition of a plating solution or controlling the plating velocity, and a line capable of performing plating with copper and nickel, nickel and nickel, nickel alone, or copper alone, in combination, can be manufactured. In addition, a highly conductive nonwoven fabric having no difference in plating thickness of nonwoven fabric performed by only electroless plating can be produced.

Description

【명세서】  【Specification】
【발명의 명칭】 [Name of invention]
무전해 및 전해 도금의 연속 공정을 이용한 부직포의 도금방법  Plating method of nonwoven fabric using continuous process of electroless and electrolytic plating
【기술분야】 Technical Field
본 특허출원은 2014년 7월 17일에 대한민국 특허청에 제출된 대한민국 특허출원 제 10— 2014-0090300호에 대하여 우선권을 주장하며, 상기 특허출원의 개시 사항은 본 명세서에 참조로서 삽입된다. 、 본 발명은 본 발명은 무전해 및 전해 도금의 연속 공정을 이용한 부직포의 도금방법 및 상기 방법에 의해 도금된 부직포에 관한 것으로, 더욱 상세하게는 부직포에 표면 처리되는 금속과 부직포를 구성하는 섬유와의 결합력올 높여 전도성을 향상시킨 금속 도금된 부직포의 제조에 관한 것이다.  This patent application claims priority to Korean Patent Application No. 10—2014-0090300, filed with the Korean Intellectual Property Office on July 17, 2014, the disclosure of which is hereby incorporated by reference. The present invention relates to a plating method of a nonwoven fabric using a continuous process of electroless and electrolytic plating, and to a nonwoven fabric plated by the above method, and more particularly to the metal constituting the nonwoven fabric and the fibers constituting the nonwoven fabric. It relates to the production of a metal plated nonwoven fabric having improved bonding strength of the improved conductivity.
【배경기술】 Background Art
항공, 우주산업의 발달과 더불어 급속하게 개발되기 시작한 탄소 섬유 강화 복합재료는 오늘날 항공, 우주산업뿐만 아니라 전기, 전자 재료, 토목, 건축 재료, 자동차, 선박, 군사장비, 스포츠용품 등 다양한 분야에서 사용되고 있는 첨단 소재중의 한가지이다.  Carbon fiber-reinforced composites, which began to develop rapidly with the development of aviation and aerospace industries, are used today in various fields such as electric, electronic materials, civil engineering, building materials, automobiles, ships, military equipment, and sporting goods as well as aviation and aerospace industries. It is one of the high-tech materials.
그러나, 최근 탄소 섬유 강화 복합재료는 단점인 저전도성 문제로 인하여 기계적 물성과 전자파 차폐성능을 동시에 구현해야 하는 자동차 전장품 및 통신용 디바이스 하우징 (devi ce hous ing) 등에는 아주 제한적으로 사용되고 있다.  However, recently, carbon fiber-reinforced composite materials have been used in a limited number of automotive electronics and communication device housings (devi ce hing ing) that must simultaneously implement mechanical properties and electromagnetic shielding performance due to low conductivity problems, which are disadvantages.
따라서, 이를 극복 하고자 고분자 복합소재에 전자파 차폐기능을 구현하기 위한 필러 ( f i l l er )로서, 탄소 섬유 (carbon f iber) , 카본 블랙 (carbon bl ack) , CNT, Ti02 , 니켈 -코팅 혹연 (ni ckel coated graphi te) 및 가장 최근에 발표한 그래핀 등을 첨가하여 전자파 차폐 효율을 갖는 고분자 복합소재를 개발하고 있으나, 분산의 문제와 기계적 물성 저하 등의 이유로 그 상용화에 많은 문제점을 가지고 있다. 그리고, 가격적인 문제 및 기계적 물성 때문에 많은 시행착오를 경험하고 있다. 한편 , 종전 방식인 무전해 또는 전해 표면 처리공정 , 즉 각 단계를 분리하여 처리 후 재처리 하는 경우에는 공정 시간을 단축하지 못하고 가격 경쟁력이 없으며, 생산설비 역시 간소화하지 못하는 문제점이 있었다. Therefore, in order to overcome this, as a filler (fill er) for implementing the electromagnetic shielding function in the polymer composite material, carbon f iber, carbon black, carbon cNT, Ti02, nickel-coated nib (ni ckel) Coated graphi te) and the recently released graphene are added to develop a polymer composite material having electromagnetic shielding efficiency, but there are many problems in the commercialization due to the problem of dispersion and deterioration of mechanical properties. In addition, many trials and errors are experienced due to price problems and mechanical properties. On the other hand, the conventional electroless or electrolytic surface treatment process, that is, when each step is separated and reprocessed after treatment, there is a problem that can not shorten the process time, price competitiveness, and also simplify the production equipment.
그리고, 탄소 섬유와 금속간의 결합력을 높이기 위하여 종전에는 CVD 공정 혹은 스퍼터링 방식을 사용하고 있었는데, 이는 생산비용이 높아 가격경쟁력을 가지지 못하기 때문에 많은 문제점을 가지고 있었다.  In addition, in order to increase the bonding strength between the carbon fiber and the metal, the CVD process or the sputtering method was used in the past, which has many problems because the production cost is not high and the price is not competitive.
또한, 무전해 탄소 섬유 도금방법이 화학적 이온결합으로 인하여 인 성분을 함유하여 탄소 섬유에 도전성을 높이는 부분에서 다소 제한적이며, 전해 도금의 경우 전도도는 높일 수 있으나 탄소 섬유 각 필라멘트 ( f i l ament )에는 균일하게 도금이 되지 않아 각 필라멘트의 역할이 중요한 복합소재로서는 부적합하다. 전해 도금으로 생산된 도금 탄소 섬유는 보풀이 많이 발생하고 필라멘트 단절 현상이 많아 제품의 도금 상태를 유지해야 하는 복합재료로서의 사용이 제한적이다.  In addition, the electroless carbon fiber plating method is somewhat limited in the part which enhances the conductivity of the carbon fiber by containing phosphorus due to chemical ion bonding, and in the case of electrolytic plating, the conductivity may be increased but uniform for each filament of the carbon fiber. It is not suitable as a composite material in which the role of each filament is important because it is not plated. The plated carbon fiber produced by electroplating has a lot of fluff and filament breakage, so it is limited to use as a composite material to maintain the plating state of the product.
본 발명에서 개발한 연속공정의 하이브리드 타입 (hybr i d type)의 경우, 1차로 무전해 도금을 통하여 탄소 섬유의 모든 필라멘트에 도금이 되게 하고 화학적 시약을 완벽히 제거 후 전해를 통하게 되면 모든 탄소 섬유에 고루 균일하게 도금이 될 뿐 아니라 짧은 전해도금 시간에도 불구하고 금속 간에 치밀한 도금 층이 형성되어 두께가 얇으면서도 전도성이 급격히 향상되어 복합재료의 용도로 매우 적합한 것을 발견할 수 있었다.  In the case of the hybrid type (hybr id type) of the continuous process developed in the present invention, all the filaments of the carbon fiber are plated through the first electroless plating, and after removing the chemical reagent completely, all the carbon fibers are evenly distributed. Not only is it uniformly plated, but despite a short electroplating time, a dense plating layer is formed between the metals, so that the thickness is thin and the conductivity is rapidly improved.
종래 생산의 경우 각기 다른 생산 공정으로 진행하여 생산 공정의 비용이 매우 크고 생산설비도 비싸며 또한 제품의 도금 두께를 조정하여 전도성을 컨트롤 하는 것이 매우 어려웠다.  In the case of conventional production, it is very difficult to control the conductivity by adjusting the plating thickness of the product because the cost of the production process is very high, the production equipment is expensive, and the production process is very different.
그러나, 본 발명에서 개발한 연속 공정상의 하이브리드 타입의 경우, 단일 생산설비로 연속으로 무전해 및 전해를 진행함으로 비용이 저렴하고 컨트를이 용이하여 경쟁력 있는 제품의 생산이 가능하며 품질 검사가 용이 하다는 장점을 가지고 있다. 본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다. However, in the case of the hybrid type in the continuous process developed in the present invention, it is possible to produce a competitive product with low cost and easy control by carrying out electroless and electrolysis in a single production facility, and easy to inspect quality. It has advantages Throughout this specification, many papers and patent documents are referenced and their citations are indicated. The disclosures of cited papers and patent documents are incorporated herein by reference in their entirety and the level of the technical field to which the present invention belongs. And the content of the present invention is more clearly described.
【발명의 내용】 [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명자들은 경제성과 전도성이 우수한 금속 도금된 섬유 부직포를 제조하는 방법을 개발하고자 노력하였다. 그 결과, 무전해와 전해 표면처리 공정을 연속으로 진행하는 방법을 채택한 경우, 종전 방식인 무전해 또는 전해 표면 처리공정만을 실시하는 경우보다, 공정 시간을 단축, 가격 경쟁력, 생산설비 간소화 등의 장점이 있으며, 종전 방식에 의한 제품 보다 금속 구조 간에 치밀한 도금이 되어 전도성이 우수할 뿐만 아니라 생산비용이 저렴함을 확인하였다. 따라서, 본 발명의 목적은 무전해 및 전해 연속 공정의 부직포 금속 (구리 및 니켈) 도금방법을 제공하는 데 있다.  The present inventors have sought to develop a method for producing a metal plated fiber nonwoven fabric having excellent economy and conductivity. As a result, when adopting a method of continuous electroless and electrolytic surface treatment, the advantages of shorter process time, price competitiveness, and simplification of production equipment than conventional electroless or electrolytic surface treatment processes are adopted. In addition, it has been confirmed that not only the conductivity is excellent and the production cost is low due to the dense plating between the metal structures than the conventional products. Accordingly, it is an object of the present invention to provide a nonwoven metal (copper and nickel) plating method of an electroless and electrolytic continuous process.
본 발명의 다른 목적은 무전해 및 전해 연속 공정의 부직포 금속 (니켈 및 니켈) 도금방법을 제공하는 데 있다.  Another object of the present invention is to provide a nonwoven metal (nickel and nickel) plating method of an electroless and electrolytic continuous process.
본 발명의 또 다른 목적은 상술한 본 발명의 방법에 의해 금속 (구리 및 니켈) 도금된 부직포를 제공하는 데 있다.  Another object of the present invention is to provide a metal (copper and nickel) plated nonwoven fabric by the above-described method of the present invention.
본 발명의 다른 목적은 상술한 본 발명의 방법에 의해 금속 (니켈 및 니켈) 도금된 부직포를 제공하는 데 있다. 본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다 . 【과제의 해결 수단】  Another object of the present invention is to provide a metal (nickel and nickel) plated nonwoven fabric by the method of the present invention described above. Other objects and advantages of the present invention will become apparent from the following detailed description, claims and drawings. [Measures of problem]
본 발명의 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 부직포 (non-woven fabr i c)의 무전해 및 전해 연속 공정 금속 도금방법올 제공한다:  According to one aspect of the present invention, the present invention provides a method for electroless and electrolytic continuous process metal plating of a non-woven fabric comprising the following steps:
(a) 부직포를 순수 (pure water )의 부피를 기준으로 하여 Cu 이온 2.5-5.5 g/ 1 , EDTA 20-55 g/ 1 , 포르말린 2.5-4.5 g/ 1 , TEA (트리에탄올아민) 2-6 g/ 1 , 농도 25%의 NaOH 8-12 ml / 1 및 2,2 ' -비피리딘 (bipi r idine) 0.008- 0.15 g/1를 포함하고, pH 12-13 및 온도 36-45°C인 무전해 도금액에 통과시켜 6-10 분 동안 부직포에 구리를 도금시키는 단계 ; 및 (a) Non-woven fabrics based on the volume of pure water: Cu ions 2.5-5.5 g / 1, EDTA 20-55 g / 1, formalin 2.5-4.5 g / 1, TEA (triethanolamine) 2-6 g / 1, 25% NaOH 8-12 ml / 1 and 2,2'-bipi r idine 0.008- Plating copper on the nonwoven fabric for 6-10 minutes by passing through an electroless plating solution containing 0.15 g / 1 and having a pH of 12-13 and a temperature of 36-45 ° C .; And
(b) 상기 단계 (a)의 구리 도금된 부직포를 Ni(N S03)2 280-320 g/1, NiCl2 15-25 g/1 및 ¾Β¾ 35-45 g/1을 포함하고, pH 4.0-4.2 및 온도 50- 60°C인 전해 도금액에 통과시켜 1-3 분 동안 구리 도금된 부직포에 니켈을 도금시키는 단계 . 본 발명의 다른 양태에 따르면, 본 발명은 다음의 단계를 포함하는 부직포 (non-woven fabric)의 무전해 및 전해 연속 공정 금속 도금방법을 제공한다: (b) the copper plated nonwoven fabric of step (a) comprises Ni (N S0 3 ) 2 280-320 g / 1, NiCl 2 15-25 g / 1 and ¾Β¾ 35-45 g / 1, pH 4.0 -4.2 and nickel plated on the copper plated nonwoven for 1-3 minutes by passing through an electrolytic plating solution at a temperature of 50-60 ° C. According to another aspect of the invention, the invention provides a method for electroless and electrolytic continuous process metal plating of a non-woven fabric comprising the following steps:
(a) 부직포를 순수 (pure water)의 부피를 기준으로 하여 Ni이은 5-7 g/1, NaH2P0220-30 g/1, Na3C6H507 20-30 g/1 및 티오황산칼륨 0.0005-0.001 g/1을 포함하고, pH 8.5-9.5 및 온도 30-35°C인 무전해 도금액에 통과시켜 6-10 분 동안 부직포에 니켈을 도금시키는 단계 ; 및 (a) The nonwoven fabric is 5-7 g / 1, NaH 2 P0 2 20-30 g / 1, Na 3 C 6 H 5 0 7 20-30 g / 1 based on the volume of pure water. And plating nickel on the nonwoven fabric for 6-10 minutes by passing through an electroless plating solution containing 0.0005-0.001 g / 1 of potassium thiosulfate and having a pH of 8.5-9.5 and a temperature of 30-35 ° C .; And
(b) 상기 단계 (a)의 니켈 도금된 부직포를 Ni(N S03)2 280-320 g/1,(b) the nickel plated nonwoven fabric of step (a) was Ni (N S0 3 ) 2 280-320 g / 1,
NiCl2 15-25 g/1 및 H3B03 35-45 g/1을 포함하고, pH 4.0-4.2 및 온도 50- 55°C인 전해 도금액에 통과시켜 1-3 분 동안 니켈 도금된 부직포에 니켈을 도금시키는 단계 . 본 발명자들은 경제성과 전도성이 우수한 금속 도금된 섬유 부직포를 제조하는 방법을 개발하고자 예의 연구 노력한 결과, 무전해와 전해 표면처리 공정을 연속으로 진행하는 방법을 채택한 경우, 종전 방식인 무전해 또는 전해 표면 처리공정만을 실시하는 경우보다, 공정 시간을 단축, 가격 경쟁력, 생산설비 간소화 등의 장점이 있으며 , 종전 방식에 의한 제품 보다 금속 구조 간에 치밀한 도금이 되어 전도성이 우수할 뿐만 아니라 생산비용이 저렴함을 확인하였다. To a nickel plated nonwoven fabric for 1-3 minutes by passing through an electrolytic plating solution containing 15-25 g / 1 of NiCl 2 and 35-45 g / 1 of H 3 B0 3 and a temperature of 4.0-4.2 and a temperature of 50-55 ° C. Plating nickel. The present inventors have diligently researched to develop a method for producing a metal plated fiber nonwoven fabric having excellent economical efficiency and conductivity. As a result of adopting a method of continuously performing an electroless and electrolytic surface treatment process, the present inventors have used the conventional electroless or electrolytic surface. It has advantages such as shortening of process time, price competitiveness, and simplification of production equipment, compared to the case of only processing process, and it is confirmed that not only the conductivity is excellent but also the production cost is low due to the close plating between metal structures than the conventional products. It was.
본 발명의 방법의 특징은 섬유 (fiber) 부직포를 비 산화 방법에 의해 표면 처리하여 1차적으로 무전해 도금 (구리 또는 니켈)후 전해 (니켈)도금 하는 컷으로서, 이는 생산 공정을 최소화 하여 양극 산화처럼 연속공정이 가능하며 상대적으로 우월한 전도도를 갖는 고기능성 부직포를 제조할 수 있다. 본 발명의 방법은 무전해 구리도금, 또는 무전해 니켈도금을 1차로 한 뒤에 전해도금으로 이어지는 방식으로 진행된다. A feature of the method of the present invention is a cut in which a fiber nonwoven fabric is first surface-treated by a non-oxidation method, followed by electroless plating (copper or nickel) followed by electrolytic (nickel) plating, which minimizes the production process and anodic oxidation. Like this, continuous process is possible and high functional nonwoven fabric with relatively superior conductivity can be manufactured. The method of the present invention proceeds by electroless copper plating, or electroless nickel plating first, followed by electroplating.
본 발명의 방법은 공지된 다양한 제조방법에 의한 부직포에 적용될 수 있으며, 예컨대 건식부직포, 습식 부직포 또는 스편본드 (spunbond) 부직포 등에 적용될 수 있다. 본 발명의 일 실시예에 따르면, 본 발명의 방법은 습식 부직포로서 탄소섬유 부직포 또는 PET 부직포에 적용될 수 있다. 상술한 건식부직포, 습식 부직포 또는 스편본드 (spunbond) 부직포의 제조방법은 당업계에 널리 알려져 있으며, 대한민국 공개특허 제 10-2012-0121079호, 대한민국 등록특허 제 101049623호, 대한민국 등록특허 제 101133851호 및 대한민국 둥록특허 제 101156844호가 참조로서 삽입된다.  The method of the present invention can be applied to nonwoven fabrics by various known manufacturing methods, for example, dry nonwoven fabrics, wet nonwoven fabrics or spunbond nonwoven fabrics. According to one embodiment of the present invention, the method of the present invention may be applied to a carbon fiber nonwoven fabric or a PET nonwoven fabric as a wet nonwoven fabric. The method of manufacturing the above-described dry nonwoven fabric, wet nonwoven fabric or spunbond nonwoven fabric is well known in the art, and has been disclosed in Korean Patent Application Publication Nos. 10-2012-0121079, Korean Patent No. 101049623, Korean Patent No. 101133851 and Republic of Korea No. 101156844 is incorporated by reference.
본 발명의 도금 방법은 공지된 다양한 종류의 부직포에 적용될 수 있으며, 예컨대, 탄소 섬유, 폴리에스테르 섬유, 유리 섬유, 아라미드 섬유, 세라믹 섬유, 금속 섬유, 폴리이미드 섬유, 폴리벤즈옥사졸 섬유, 천연 섬유 또는 이들의 혼합 섬유로 제작된 부직포에 적용될 수 있다 .  The plating method of the present invention can be applied to various kinds of known nonwoven fabrics, and for example, carbon fiber, polyester fiber, glass fiber, aramid fiber, ceramic fiber, metal fiber, polyimide fiber, polybenzoxazole fiber, natural fiber Or can be applied to nonwoven fabrics made of these mixed fibers.
폴리에스테르 섬유는 폴리에틸렌 테레프탈레이트 (PET), 폴리글리콜리드 (PGA), 풀리락트산 (PLA), 폴리카프를락톤 (PCL), 폴리히드록시알카노에이트 (PHA), 폴리히드록시부티레이트 (PHB), 폴리에틸렌 아디페이트 (PEA), 폴리부틸렌 숙시네이트 (PBS), 폴리 (3- 히드록시부티레이트-코 -3—히드록시발레르에이트 (PHBV), 폴리부틸렌 테레프탈레이트 (PBT), 풀리트리메틸렌 테레프탈레이트 (PTT), 폴리에틸렌 나프탈레이트 (PEN) 및 백트란 (Vectran)을 포함하며 이에 한정되지 않는다. 본 발명의 일 실시예에 따르면, 본 발명의 방법은 탄소섬유 부직포 또는 PET 섬유 부직포에 적용될 수 있다.  Polyester fibers include polyethylene terephthalate (PET), polyglycolide (PGA), pulley lactic acid (PLA), polycaprolactone (PCL), polyhydroxyalkanoate (PHA), polyhydroxybutyrate (PHB), Polyethylene adipate (PEA), polybutylene succinate (PBS), poly (3-hydroxybutyrate-co-3—hydroxyvalerate (PHBV), polybutylene terephthalate (PBT), pulleytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN) and backtran (Vectran) According to one embodiment of the present invention, the method of the present invention may be applied to a carbon fiber nonwoven fabric or a PET fiber nonwoven fabric.
한편, 본 발명의 방법이 적용되는 부직포는 상술한 섬유 (제 1섬유라 한다)에 강화 섬유로서 제 2섬유를 흔합하여 제조할 수 있다. 강화 섬유란 부직포의 강도를 증가시키기 위한 재료로서, 저융점 섬유 (low melting fiber) 또는 저융점 필라멘트 (low melting filament)이며, 예컨대 L/M 풀리에스테르 섬유 (LMP)를 사용할 수 있다. 저융점 폴리에스테르 섬유는 일반적인 폴리에스테르의 융점인 255°C 보다 낮은 융점을 가지며, 열융착 목적으로 사용된다. 본 발명에 따르면, 상기 제 2섬유로서 저융점 섬유는 L/M 폴리에틸렌 테레프탈레이트 (low melting PET)이다. L/M 폴리에틸렌 테레프탈레이트는 용융점이 비교적 낮으므로, 약 1CTC로 가열 압착 시 용융되어 제 1섬유에 혼합됨으로써 전체 부직포의 강도를 증가시킨다 . On the other hand, the nonwoven fabric to which the method of the present invention is applied can be produced by mixing the second fiber as the reinforcing fiber to the above-mentioned fiber (called the first fiber). The reinforcing fiber is a material for increasing the strength of the nonwoven fabric, and is a low melting fiber or a low melting filament, and for example, L / M pulley fiber (LMP) can be used. Low melting polyester fibers have a melting point lower than 255 ° C, which is the melting point of conventional polyesters, and is used for thermal fusion purposes. According to the present invention, the low melting point fiber as the second fiber is L / M polyethylene terephthalate (low melting PET). Since L / M polyethylene terephthalate has a relatively low melting point, it melts when heated and pressed to about 1 CTC and mixes with the first fiber, thereby increasing the strength of the entire nonwoven fabric.
본 발명의 부직포 (non-woven fabric)의 무전해 및 전해 연속 공정 금속 도금방법은 최종적으로 금속 도금된 부직포를 제조하기 위한 것으로서, 무전해 및 전해 연속 공정으로 금속 도금된 부직포의 제조방법과 동일한 의미로서 사용될 수 있다. 이하, 무전해 및 전해 연속 공정으로 금속 도금된 부직포를 제조하기 위한 본 발명의 방법을 단계별로 상세하게 설명하면 다음과 같다:  The electroless and electrolytic continuous process metal plating method of the non-woven fabric of the present invention is for producing a metal plated nonwoven fabric finally, the same meaning as the method for producing a metal plated non-woven fabric by an electroless and electrolytic continuous process Can be used as. Hereinafter, a detailed step-by-step description of the method of the present invention for producing a metal plated nonwoven fabric in an electroless and electrolytic continuous process as follows:
(a) 무전해 도금 공정  (a) Electroless Plating Process
우선, 부직포에 금속을 무전해 도금시키는 단계를 거친다.  First, the nonwoven fabric is subjected to electroless plating.
일 구현예로서, 탄소 섬유 부직포에 구리를 도금시키는 경우에는 무전해 도금액은 순수 (pure water), 구리 금속염, 착화제, 환원제, 안정제 및 pH 조절제를 포함한다.  In one embodiment, when plating copper on a carbon fiber nonwoven fabric, the electroless plating solution includes pure water, copper metal salts, complexing agents, reducing agents, stabilizers, and pH adjusting agents.
상기 무전해 도금액에 포함되는 구리 금속염은 탄소 섬유에 도전성을 부여하기위한 구리 이온을 공급하며, 환원제는 포르말린을 이용하였으며, 착화제로 EDTA, 안정제로 TEA (트리에탄을아민) 및 2,2'- 비피리딘 (bipiridine), 그리고 pH 조절제로는 농도 25%의 NaOH를 이용하였다.  The copper metal salt contained in the electroless plating solution supplies copper ions for imparting conductivity to the carbon fiber, the reducing agent used formalin, EDTA as a complexing agent, TEA (triethane amine) as a stabilizer, and 2, 2'-. Bipiridine and NaOH at a concentration of 25% were used as a pH adjusting agent.
실시예에서 확인할 수 있듯이, 무전해 도금액에 포함되는 환원제인 포르말린 및 pH 조절제인 NaOH의 농도가 증가함에— 따라 도금 속도는 상승하였으나, 도금액의 수명이 짧아지는 단점이 있어, 이를 고려하여 환원제와 pH 조절제의 함량을 채택하였다.  As can be seen from the examples, the plating rate increased as the concentration of formalin, a reducing agent included in the electroless plating solution, and NaOH, a pH adjusting agent, increased, but the life of the plating solution was shortened. The amount of regulator was adopted.
한편, 실시예에서 명확히 확인할 수 있듯이, 구리 이온 및 착화제의 함량이 동일 비율로 증가할 때 환원제의 함량을 조절함으로써 도금 속도 및 액 안정성 시험을 실시한 결과, 구리 이온 및 환원제인 포르말린의 농도의 조절로 도금 속도 및 도금층의 두께를 조절할 수 있고, 도금층 두께 조절을 통해 비중, 강도, 탄성율 및 스트레인 (strain)을 조절할 수 있는 데, 본 발명에서는 도금층의 두께가 두꺼워 질수록, 비중이 증가하고, 강도, 탄성율 및 스트레인 (strain)이 저하되므로, 구리 이온 및 환원제인 포르말린의 농도 조절과 함께 전해 도금을 실시하여 얇은 두께로 전도도가 향상되어 상기 문제점을 해결하였으며 , 이는 본 발명에서 무전해 및 전해 연속 공정을 채택한 이유이다. On the other hand, as can be clearly seen in the examples, when the content of the copper ions and the complexing agent is increased at the same ratio, the plating rate and liquid stability test was carried out by controlling the content of the reducing agent, the control of the concentration of copper ions and formalin as reducing agent It is possible to adjust the plating speed and the thickness of the plating layer, and to control the specific gravity, strength, elastic modulus and strain through the thickness of the plating layer, in the present invention, the thicker the thickness of the plating layer, the specific gravity increases, the strength , Since the elastic modulus and strain are lowered, electrolytic plating is performed along with the concentration control of copper ions and formalin, which is a reducing agent, thereby improving conductivity to a thin thickness, thereby solving the above problems. That's why.
본 발명의 일 구현예에 따르면, 상기 단계 (a)의 무전해 도금 단계는 부직포를 순수 (pure water)의 부피를 기준으로 하여 Cu 이은 4.5-5.5 g/1, EDTA 45-55 g/1, 포르말린 3.5-4.5 g/1, TEA (트리에탄올아민) 4-6 g/1, 농도 25%의 NaOH 8-12 ml/1 및 2,2'-비피리딘 (bipiridine) 0.01-0.15 g/1를 포함하고 , pH 12-13 및 온도 40-45°C인 무전해 도금액에 통과시켜 6ᅳ10 분 동안 부직포에 구리를 도금시키는 것을 특징으로 한다. 다른 구현예로서, 부직포에 니켈을 도금시키는 경우에는 무전해 도금액은 순수 (pure water), 니켈 금속염, pH 완충제, 환원제 및 안정제를 포함한다. According to one embodiment of the invention, the electroless plating step of step (a) is based on the volume of the non-woven fabric (pure water) Cu is 4.5-5.5 g / 1, EDTA 45-55 g / 1, Formalin 3.5-4.5 g / 1, TEA (triethanolamine) 4-6 g / 1, concentration 25% NaOH 8-12 ml / 1 and 2,2'-bipiridine 0.01-0.15 g / 1 And, by passing through an electroless plating solution having a pH of 12-13 and a temperature of 40-45 ° C, it is characterized by plating copper on the nonwoven fabric for 6 10 minutes. In another embodiment, when nickel is plated on a nonwoven fabric, the electroless plating solution includes pure water, nickel metal salts, pH buffers, reducing agents, and stabilizers.
상기 무전해 도금액에 포함되는 니켈 금속염은 부직포에 도전성을 부여하기위한 니켈 이온을 공급하며, 환원제는 NaH2P02을 이용하였으며, 안정제로 티오황산칼륨, 그리고 pH 완층제로는 Na3C6H507를 이용할 수 있다. 그리고, 무전해 도금 후 수세 3단을 하며 수세 3단 중 3번째에는 H2S04 1-2%를 섞어 수세한다. 이는 전해 도금조의 pH를 보존하기 위한 수단이며 무전해 도금된 탄소섬유의 표면을 활성화 시켜주기 위함이다.  The nickel metal salt included in the electroless plating solution supplies nickel ions for imparting conductivity to the nonwoven fabric, and NaH 2 P 2 0 is used as the reducing agent, potassium thiosulfate as a stabilizer, and Na 3 C 6 H 507 may be used as a pH buffer. After electroless plating, washing with water is performed in three stages, and in the third of the washing stages, water is mixed with 1-2% H2S04. This is a means to preserve the pH of the electrolytic plating bath and to activate the surface of the electroless plated carbon fiber.
(b) 전해 도금 공정 (b) electrolytic plating process
단계 (a) 과정 이후, 구리 또는 니켈 무전해 도금된 부직포에 대하여 전해 도금 공정으로 니켈을 연속적으로 도금시킨다.  After the step (a), nickel is continuously plated by the electrolytic plating process on the copper or nickel electroless plated nonwoven fabric.
본 발명의 특징 중 하나는 무전해 도금 공정을 실시한 다음 니켈 전해 도금 공정을 실시하여 섬유 또는 부직포의 전기 전도도를 개선시켰다는 점이다.  One of the features of the present invention is that the electroless plating process followed by the nickel electroplating process improves the electrical conductivity of the fibers or nonwovens.
상기 전해 도금 공정을 실시하기 위한 전해 도금액은 니켈 금속염으로 Ni(NH2S03)2 및 NiC12을, pH 완충제로 H3B03를 이용한다.  As the electrolytic plating solution for carrying out the electrolytic plating process, Ni (NH2S03) 2 and NiC12 are used as nickel metal salts, and H3B03 is used as a pH buffer.
실시예에서 명확히 확인할 수 있듯이, 무전해 및 전해 연속 공정을 통해 도금되지 않는 탄소 섬유에 비해 전기저항 값이 약 32-37배 감소하며 , 비교예에 비해서는 약 2배 감소하여 전기 전도도가 개선되었다. 이로써, 탄소섬유로 제작한 부직포의 경우에도 전기 전도도가 개선됨을 알 수 있다. 이는 무전해 도금 후 구리 또는 니켈의 공극을 빠른 시간에 Ni 전해 도금을 실시하여 메꾸는 방식으로 전기 전도도가 개선되었다고 판단된다. 본 발명의 일 구현예에 따르면, 상기 단계 (c)의 전해 도금 공정은 정전압 (CV, constant voltage) 5-15 Volt를 가하여 실시한다. As can be clearly seen in the examples, the electrical resistance value is reduced by about 32-37 times compared to the carbon fiber which is not plated through the electroless and electrolytic continuous process. The electrical conductivity was improved by about 2 times reduction compared with the comparative example. As a result, it can be seen that even in the case of the nonwoven fabric made of carbon fiber, the electrical conductivity is improved. It is believed that the electrical conductivity was improved by filling the pores of copper or nickel after electroless plating by filling Ni electroplating in a short time. According to one embodiment of the invention, the electroplating process of step (c) is carried out by applying a constant voltage (CV, 5-15 Volt).
무전해 구리 도금 및 전해 니켈 도금의 연속 공정의 경우, 전해 도금 공정은 정전압 (CV, constant voltage) 5-10 Volt를 가하여 실시하고, 보다 바람직하게는 6-8 Volt를 가하여 실시한다.  In the case of a continuous process of electroless copper plating and electrolytic nickel plating, the electrolytic plating process is performed by applying a constant voltage (CV) of 5-10 Volt, more preferably by adding 6-8 Volt.
무전해 니켈 도금 및 전해 니켈 도금의 연속 공정의 경우, 전해 도금 공정은 정전압 (CV, constant voltage) 10-15 Volt를 가하여 실시한다. 이러한 무전해 및 전해 도금의 장점은 전기 전도도의 우수성을 띄며 밀착력 및 연성에 효과적이고 무전해 도금에서 생긴 금속들의 공간에 전해 금속이 붙어 두께는 얇고 전도도는 우수한 형태의 합금 층이 형성된다. 또한, 섬유 또는 부직포에 고른 도금을 할 수 있는 효과를 갖는다.  In the case of a continuous process of electroless nickel plating and electrolytic nickel plating, the electrolytic plating process is performed by applying a constant voltage (CV) of 10-15 Volt. The advantages of electroless and electrolytic plating are excellent electrical conductivity, and are effective in adhesion and ductility, and attach an electrolytic metal to a space of metals produced by electroless plating, thereby forming an alloy layer having a thin thickness and excellent conductivity. In addition, it has the effect of even plating on the fiber or nonwoven fabric.
1차로 무전해 도금 (구리 또는 니켈)후 연속으로 전해도금을 실시하며 욕 중에 부직포를 놓고 전압을 인가함으로써 무전해 도금에서 생긴 공극에 전해이온이 결합해 도금 두께가 얇고 전도도는 향상된 제품이 생산된다. 본 발명에 따르면, 상기 단계 (a)의 부직포는 단계 (a)의 실시 전 다음의 단계를 포함하는 방법으로 전처리 (pre- eatment)되는 것을 특징으로 한다: After electroless plating (copper or nickel) first, electroplating is carried out continuously. By placing a non-woven fabric in the bath and applying voltage, electrolytic ions are bonded to the pores resulting from electroless plating, resulting in a thin coating thickness and improved conductivity. . According to the invention, the nonwoven fabric of step (a) is characterized in that the pre-treatment (pre- eatment) a process comprising the following steps carried out before the step (a):
( i ) 부직포를 계면활성제, 유기 용매 및 비이온 계면활성제를 포함하는 수용액에 통과시켜 부직포를 탈지 및 연화시키는 단계;  (i) degreasing and softening the nonwoven by passing the nonwoven through an aqueous solution comprising a surfactant, an organic solvent and a nonionic surfactant;
(ii) 상기 단계 ( i )의 결과물인 부직포를 아황산수소나트륨 (sodium bisulfite; NaHS03), 황산 (H2S04), 과황산 암모늄 (a議 onium persulfatel (NH4)2S208) 및 순수 (pure water)를 포함하는 수용액에 통과시켜 중화, 세정 및 조질 (conditioning)작용을 하는 에칭 공정을 실시하는 단계;  (ii) the resulting nonwoven fabric of step (i) comprises sodium bisulfite (NaHS03), sulfuric acid (H2S04), ammonium persulfate (aH onium persulfatel (NH4) 2S208) and pure water; Performing an etching process through the aqueous solution to neutralize, clean, and condition;
(ni) 상기 단계 (ii)의 결과물인 부직포를 PdC12 수용액에 통과시켜 센시타이징 (sensitizing) 공정을 실시하는 단계 ; 및 (iv) 상기 단계 (iii)의 결과물인 부직포를 황산 (H2S04) 수용액에 통과시켜 활성화 (activating) 공정을 실시하는 단계. (ni) performing a sensitizing process by passing the resulting nonwoven fabric of step (ii) through an aqueous PdC12 solution; And (iv) passing the resulting nonwoven fabric of step (iii) through an aqueous solution of sulfuric acid (H 2 SO 4) to perform an activating process.
( i ) 탄소 섬유의 탈지 및 연화  (i) Degreasing and softening of carbon fiber
본 발명의 방법 중 부직포의 전처리는 우선, 탄소 섬유를 계면활성제, 유기 용매 및 비이온 계면활성제를 포함하는 수용액에 통과시켜 부직포를 탈지 및 연화시키는 단계를 거친다 .  Pretreatment of the nonwoven fabric in the process of the present invention first passes carbon fiber through an aqueous solution comprising a surfactant, an organic solvent and a nonionic surfactant to degrease and soften the nonwoven fabric.
상기 계면활성제, 유기 용매 및 비이은 계면활성제 포함하는 수용액은 탄소 섬유에 사이징된 에폭시나 우레탄을 제거하는 탈지 작용을 하며, 동시에 섬유 표면을 팽윤 (swelling)시켜 연화 (softening) 시킨다. 본 발명에 따르면, 상기 단계 ( i )의 수용액은 계면활성제로 순수 (pure water) 및 NaOH를 중량비 40—49: 1-10으로 혼합한 용액 15-35 중량 %, 유기 용매로 디에틸 프로판디올 (diethyl propanediol) 50-80중량 % 및 디프로필렌 글리콜 메틸 에테르 (dipropylene glycol methyl ether) 5-15 중량 %, 그리고 400-600 ppm의 비이온성 계면활성제를 포함하고, 보다 더 바람직하게는 계면활성제로 순수 (pure water) 및 NaOH를 중량비 45-48: 2- 5으로 흔합한 용액 20-30 중량 %, 유기 용매로 디에틸 프로판디올 (diethyl propanediol) 58— 72중량 % 및 디프로필렌 글리콜 메틸 에테르 (dipropylene glycol methyl ether) 8-12 중량 %, 그리고 450-550 ppm의 비이온성 계면활성제를 포함한다.  The aqueous solution containing the surfactant, the organic solvent and the non-ionic surfactant has a degreasing action to remove the epoxy or urethane sized to the carbon fiber, and at the same time swells and softens the fiber surface. According to the present invention, the aqueous solution of step (i) is 15-35% by weight of a mixture of pure water and NaOH in a weight ratio of 40—49: 1-10 as a surfactant, diethyl propanediol as an organic solvent ( diethyl propanediol) 50-80% by weight and 5-15% by weight dipropylene glycol methyl ether, and 400-600 ppm of nonionic surfactant, and more preferably pure pure water) and 20-30% by weight of a mixture of NaOH in a weight ratio of 45-48: 2-5, 58-72% by weight of diethyl propanediol as an organic solvent and dipropylene glycol methyl ether ether) 8-12% by weight, and 450-550 ppm of nonionic surfactant.
상기 비이온성 계면활성제는 당업계에 공지된 다양한 비이온성 계면활성제를 포함하나, 바람직하게는 에폭시레이티드 리니어 알코올 (ethoxylated linear alcohol), 에폭시레이티드 리니어 알킬페놀 (ethoxylated linear alkyl— phenol ) 또는 에폭시레이티드 리니어 티올 (ethoxylated linear thiol)이고, 보다 바람직하게는 에폭시레이티드 리니어 알코올 (ethoxylated linear alcohol) 이다.  The nonionic surfactants include various nonionic surfactants known in the art, but are preferably ethoxylated linear alcohol, ethoxylated linear alkyl—phenol or epoxyrays. Ethoxylated linear thiol, more preferably ethoxylated linear alcohol.
본 발명의 보다 다른 바람직한 구현예에 따르면, 상기 단계 ( i )는 온도 40-60°C에서 1-5분 동안 실시하고, 보다 바람직하게는 은도 45- 55°C에서 1-3분 동안 실시한다 . According to a further preferred embodiment of the invention, the step (i) is carried out for 1-5 minutes at a temperature of 40-60 ° C, more preferably for 1-3 minutes at 45-55 ° C silver degree .
(ii) 에칭 공정  (ii) etching process
이어, 강알카리 성분을 중화 시키고, 다음 공정인 센시타이징 (sensitizing)공정을 위해 세정작용을 돕고 조질 (conditioning)작용을 하는 에칭 공정을 실시한다. Subsequently, neutralize the strong alkalis and help the cleaning process for the next process, the sensitizing process. An etching process is performed to condition.
에칭 공정을 위한 수용액은 아황산수소나트륨 (sodium bisulfite; NaHS03), 황산 (H2S04), 과황산 암모늄 (a賺 onium persulfate; (NH4)2S208) 및 순수 (pure water)를 포함한다.  Aqueous solutions for the etching process include sodium bisulfite (NaHS03), sulfuric acid (H2S04), ammonium persulfate (NH4) 2S208 and pure water.
본 발명에 따르면, 상기 단계 (ii)의 수용액은 아황산수소나트륨 (sodi菌 bisulfite; NaHS03) 0.1—10 중량 황산 (H2S04) 0.1-3 중량 %, 과황산 암모늄 (a隱 onium persulfate; (NH4)2S208) 5-25 중량 % 및 순수 (pure water) 62-94.8 중량? ¾를 포함하고, 보다 더 바람직하게는 아황산수소나트륨 (sodium bisulfite; NaHS03) 0.8-2 중량 ¾, 황산 (H2S04) 0.3-1 중량 %, 과황산 암모늄 (a讓 onium persulfate; (NH4)2S208) 10-20 중량 % 및 순수 (pure water) 77-88.9 중량 %를 포함한다.  According to the present invention, the aqueous solution of step (ii) is sodium hydrogen sulfite (sodi 菌 bisulfite; NaHS03) 0.1-10 weight sulfuric acid (H2S04) 0.1-3 weight%, ammonium persulfate (a 隱 onium persulfate; (NH4) 2S208 5-25 weight% and pure water 62-94.8 weight? ¾, more preferably sodium bisulfite (NaHS03) 0.8-2 weight ¾, sulfuric acid (H2S04) 0.3-1 weight%, ammonium persulfate (NH4) 2S208) 10 -20 wt% and pure water 77-88.9 wt%.
본 발명의 일 구현예에 따르면, 상기 단계 (ii)는 온도 20-25°C에서 1-5분 동안 실시하고, 보다 더 바람직하게는 온도 20-25 °C에서 1-3분 동안 실시한다 . According to one embodiment of the invention, step (ii) is carried out for 1-5 minutes at a temperature of 20-25 ° C., more preferably for 1-3 minutes at a temperature of 20-25 ° C.
(iii) 센시타이징 (sensitizing) 공정  (iii) sensitizing process
그 다음, 상기 단계 (Π)의 결과물인 부직포를 PdC12 수용액에 통과시켜 센시타이징 (sensitizing) 공정을 실시하는 단계를 거친다.  Next, the resultant non-woven fabric of step (Π) is passed through a PdC12 aqueous solution to undergo a sensitizing process.
상기 센시타이징 공정은 표면 개질된 섬유 또는 부직포의 표면에 금속 이온이 흡착되도록 하기 위함이다.  The sensitizing process is to allow metal ions to be adsorbed on the surface of the surface-modified fiber or nonwoven fabric.
보다 바람직하게는 PdC12 수용액의 농도는 10-30%이고, 보다 더 바람직하게는 15-25%이다.  More preferably, the concentration of the PdC12 aqueous solution is 10-30%, even more preferably 15-25%.
본 발명의 일 구현예에 따르면, 상기 단계 (iii)은 온도 20-40°C에서 1-5분 동안 실시하고, 보다 더 바람직하게는 온도 25-35°C에서 1-3분 동안 실시한다. According to one embodiment of the invention, step (iii) is carried out for 1-5 minutes at a temperature of 20-40 ° C., more preferably for 1-3 minutes at a temperature of 25-35 ° C.
(iv) 활성화 (activating) 공정  (iv) activating process
이어, 상기 단계 (iii)의 결과물인 부직포를 농도 황산 (H2S04) 수용액에 통과시켜 활성화 (activating) 공정을 실시한다.  Subsequently, the resulting nonwoven fabric of step (iii) is passed through an aqueous solution of concentrated sulfuric acid (H 2 SO 4) to perform an activating process.
상기 활성화 공정은 센시타이징 공정 이후에 실시한 것으로 기재하였으나, 센시타이징 (sensitizing) 공정과 함께 실시하는 것도 본 발명의 범위에 포함된다.  Although the activation process is described as being carried out after the sensitizing process, it is also included in the scope of the present invention to perform in conjunction with the sensitizing process.
활성화 공정은 Pd의 산화방지를 위하여 콜로이드화된 Sn의 제거를 위하여 실시한다. The activation process removes colloidal Sn to prevent oxidation of Pd. To carry out.
보다 바람직하게는 황산 (H2S04) 수용액의 농도는 5-15%이다.  More preferably, the concentration of the sulfuric acid (H 2 SO 4) aqueous solution is 5-15%.
본 발명의 보다 바람직한 구현예에 따르면, 상기 단계 ( iv )는 온도 40-60°C에서 1-5분 동안 실시하고, 보다 더 바람직하게는 온도 45-55 °C에서 1-3분 동안 실시한다. According to a more preferred embodiment of the invention, the step (iv) is carried out for 1-5 minutes at a temperature of 40-60 ° C, even more preferably for 1-3 minutes at a temperature 45-55 ° C. .
이러한 방법으로 부직포를 전처리 할 수 있으며 , 전처리된 부직포에 금속인 구리 및 니켈, 그리고 니켈 및 니켈을 무전해 및 전해 연속 공정으로 도금시킬 수 있다. 한편, 상기 전처리 과정은 부직포 제작 후 이루어지는 것으로 기재되어 있지만, 부직포를 제작하기 이전 섬유 자체에 전처리 과정이 적용될 수도 있다. 본 발명의 또 다른 양태에 따르면, 본 발명은 상술한 본 발명의 방법에 의해 제조된 금속 (구리 및 니켈) 도금된 부직포를 제공한다.  In this way, the nonwoven fabric can be pretreated, and the pretreated nonwoven fabric can be plated with metals, copper and nickel, and nickel and nickel in an electroless and electrolytic continuous process. On the other hand, the pretreatment process is described as being made after the nonwoven fabric, the pretreatment process may be applied to the fiber itself before the nonwoven fabric is produced. According to another aspect of the invention, the invention provides a metal (copper and nickel) plated nonwoven fabric produced by the process of the invention described above.
본 발명의 다른 양태에 따르면, 본 발명은 상술한 본 발명의 방법에 의해 제조된 금속 (니켈 및 니켈) 도금된 부직포를 제공한다.  According to another aspect of the present invention, the present invention provides a metal (nickel and nickel) plated nonwoven fabric produced by the method of the present invention described above.
본 발명의 구리 및 니켈, 또는 니켈 및 니켈이 도금된 부직포는 상술한 본 발명의 무전해 및 전해 연속 공정으로 금속 도금된 탄소 섬유의 제조방법으로 제조되는 것이기 때문에, 이 둘 사이에 공통된 내용은 반복 기재에 따른 명세서의 과도한 복잡성을 피하기 위하여 , 그 기재를 생략힌 -다.  Since the copper and nickel of the present invention, or the nickel and nickel plated nonwoven fabrics are manufactured by the method for producing metal fibers carbon plated by the electroless and electrolytic continuous process described above, the common content between the two is repeated. In order to avoid excessive complexity of the specification according to the description, the description is omitted.
【발명의 효과】 【Effects of the Invention】
본 발명의 특징 및 이점올 요약하면 다음과 같다:  In summary, features and advantages of the present invention are as follows:
( a) 본 발명에서 사용한 도금방법은 연속공정이 가능하고, 안정적인 처리가 가능함과 동시에 탄소섬유 표면에 구리-니¾ 합금 또는 니켈 -니켈 금속을 도입시킴으로써 섬유 또는 부직포가 높은 전기 전도도를 가지게 된다.  (a) The plating method used in the present invention is capable of continuous processing, stable processing and at the same time the fiber or nonwoven fabric has a high electrical conductivity by introducing copper-nickel alloy or nickel-nickel metal on the surface of the carbon fiber.
(b) 또한 이를 이용하여 복합소재를 제작 시에 탄소 섬유와 구리- 니켈 도금 또는 니켈 -니켈 도금이 제품 성형 시 박리되는 현상이 없어 복합재료 완성 시에도 같은 전도도를 유지하므로 종래의 제품과는 달리 전기전도도를 높이기 위하여 도전성 필러 ( f i l er )를 추가하는 공정 및 비용을 절감할 수 있으며, 복합재료의 중요한 특성 중의 하나인 기계적 물성에도 문제가 없다. (b) In addition, unlike conventional products, carbon fiber and copper-nickel plating or nickel-nickel plating do not peel off when forming a composite material, and thus maintain the same conductivity when the composite material is finished. It is possible to reduce the process and cost of adding conductive fillers to increase electrical conductivity. There is no problem with physical properties.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1은 본 발명에 따른 부직포의 표면처리 장치를 나타낸다 (측면도) . 도 1은 설치된 를러를 통해 화살표 방향으로 장치가 진행되는 개략도 이다. 탄소섬유 부직포 또는 PET 부직포는 롤러에 의해, 도금의 밀착력 및 도금 전처리를 결정하는 전처리조를 통과한 이후, 무전해도금조에서 1차 도금을 진행한다. 이때 무전해 도금은 구리 또는 니켈을 선택할 수 있다. 1차 무전해 도금 이후, 전해도금조에서는 무전해도금이 진행된 부직포에 최종적으로 니켈 도금을 실시한다. 전해판은 + 전극을 걸어주고, 롤러에는 1 shows a surface treatment apparatus for a nonwoven fabric according to the present invention (side view). Figure 1 is a schematic diagram of the device in the direction of the arrow through the installed lorler. The carbon fiber nonwoven fabric or PET nonwoven fabric is subjected to primary plating in an electroless plating bath after passing through a pretreatment tank that determines the adhesion and plating pretreatment of the plating by a roller. In this case, the electroless plating may select copper or nickel. After the first electroless plating, the electroplating bath finally performs nickel plating on the nonwoven fabric that has undergone electroless plating. The electrolytic plate hangs the + electrode, and the roller
- 전극을 걸어주어 전해 도금이 진행되도록 하며, 최종적으로 제품은 구리ᅳ 니켈 또는 니켈 -니켈 이중 구조를 가지는 도전성 부직포를 제조한다. -Electrode plating is performed by hanging the electrode, and finally, the product manufactures a conductive nonwoven fabric having a copper nickel or nickel-nickel double structure.
【발명을 실시하기 위한 구체적인 내용】 [Specific contents to carry out invention]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다. 실시예  Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. . Example
본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 "% "는 별도의 언급이 없는 경우, 고체 /고체는 (중량 /중량) %, 고체 /액체는 (중량 /부피) 그리고 액체 /액체는 (부피 /부피) %이다. 실시예 1: 탄소섬유 부직포 및 PET부직포의 제작  Throughout this specification, unless otherwise indicated, "%" used to indicate the concentration of a particular substance is solid / solid (weight / weight)%, solid / liquid (weight / volume) and liquid / Liquid is (volume / volume)%. Example 1 Preparation of Carbon Fiber Nonwoven Fabric and PET Nonwoven Fabric
탄소섬유 부직포  Carbon fiber nonwoven fabric
탄소섬유 부직포는 습식 부직포 (wet l a i d ) 형태로 제작되었다.  Carbon fiber nonwovens were fabricated in the form of wet nonwovens.
우선 , 탄소섬유 ( 12K , 구입처: 토레이 (Toray) 사, 효성 사 또는 태광 (TK) 사)를 약 6 mm 길이로 절단한 후, 절단된 탄소섬유 chop을 물에 분산시켰다. 분산된 탄소섬유를 물에 띄워 좌우 진동을 통해 수중에서 일정 두께의 층을 형성시켰다. 이어, 상기 탄소섬유 층을 걷어내어 건조시킨 다음 롤러 (roller)에서 압착하여 부직포를 제작하였다. First, the carbon fiber (12K, purchased from Toray, Hyosung or TK) was cut to about 6 mm in length, and the cut carbon fiber chop was dispersed in water. The dispersed carbon fibers were floated in water to form a layer having a predetermined thickness in water through left and right vibrations. Next, the carbon fiber layer is rolled out After drying, it was pressed on a roller to prepare a nonwoven fabric.
한편, 부직포의 강도를 높이기 위하여, L/M PET (low melting PET chop 6 隱)를 탄소 섬유 6 睡 chop과 함께 물에 분산시킨 후, 가열 를러에서 약 100°C에서 압착하여 부직포를 생성할 수 있다. L/M PET는 약 100°C에서 용융성이 있으므로, 이를 탄소섬유에 소량 흔합한 후 가열 압착하여 생성된 부직포는 100% 탄소섬유로 제작된 부직포와 비교하여 강도가 증가된다. On the other hand, in order to increase the strength of the nonwoven fabric, L / M PET (low melting PET chop 6 隱) can be dispersed in water together with 6 chopped carbon fiber chop, and then pressed at about 100 ° C in a heating furnace to produce a nonwoven fabric. have. Since L / M PET is meltable at about 100 ° C., the nonwoven fabric produced by mixing a small amount with carbon fiber and heat pressing is increased in strength compared to the nonwoven fabric made of 100% carbon fiber.
PET부직포 PET nonwoven fabric
PET부직포는 습식 부직포 (wet laid) 형태로 제작되었으며, 탄소섬유 대신 PET (구입처:일본 TEIJIN 사) 6 画 chop을 사용한 점을 제외하고 상술한 탄소섬유 부직포 제작방법과 동일한 방별으로 제작되었다. 한편, 상술한 바와 같이 PET 부직포의 강도를 높이기 위하여 일정량의 L/M PET를 흔합하여 부직포를 생성할 수 있다. 탄소섬유 부직포 및 PET부직포의 전처리  The PET nonwoven fabric was manufactured in the form of a wet laid fabric, and was manufactured in the same manner as the carbon fiber nonwoven fabric manufacturing method described above except that PET (Purchased by TEIJIN, Japan) was used instead of carbon fiber. Meanwhile, as described above, in order to increase the strength of the PET nonwoven fabric, a nonwoven fabric may be generated by mixing a predetermined amount of L / M PET. Pretreatment of Carbon Fiber Nonwoven Fabric and PET Nonwoven Fabric
1) 탈지 및 연화 공정  1) Degreasing and Softening Process
우선, 유기용매를 이용하여 탄소섬유에 사이징된 에폭시나 우레탄을 제거하며, 동시에 섬유 표면을 팽윤 (Swelling)시켜 연화 (Softening) 시키는 공정을 실시하였다.  First, an epoxy solvent and a urethane were removed from the carbon fiber by using an organic solvent, and at the same time, the surface of the fiber was swelled to soften it.
계면활성제로 순수 (pure water) 및 NaOH를 중량비 47:3로 혼합한 용액 25 중량 유기용매로 디에틸 프로판디올 (diethyl propanediol) 65 중량 % 및 디프로필렌 글리콜 메틸 에테르 (dipropylene glycol methyl ether) 10 중량 %, 그리고 500 ppm의 비이온 계면 활성제 (non-ionic surfactant, low foam)로서 에폭시레이티드 리니어 알코올 (ethoxylated linear alcohol)를 포함하는 전처리 조에 실시예 1의 탄소섬유 부직포 또는 PET 부직포를 통과시켜 탈지 및 연화 공정을 실시하였다. 탈지 및 연화 공정은 온도 50°C에서 시간 2분 동안 실시하였다. , 25% by weight of a solution of pure water and NaOH in a weight ratio of 47: 3 as a surfactant, 65% by weight of diethyl propanediol and 10% by weight of dipropylene glycol methyl ether And degreased and softened by passing the carbon fiber nonwoven fabric or PET nonwoven fabric of Example 1 through a pretreatment bath containing an epoxylated linear alcohol as a 500 ppm non-ionic surfactant (low foam). The process was carried out. Degreasing and softening processes were carried out at a temperature of 50 ° C for 2 minutes. ,
2) 에칭 공정  2) etching process
NaOH의 강알카리 성분을 황산 (H2S04)을 이용하여 중화 시키고, 다음 공정인 센시타이징 (sensitizing)공정에 부담을 줄이며 과황산 암모늄 ((NH4)2S208)을 이용하여 세정작용을 돕고 조질 (Conditioning)작용을 하여 파라듐의 흡착을 강력하게 하기 위해서, 에칭 공정을 실시하였다. 구체적으로, 아황산수소나트륨 (sodium bisulfite; NaHS03) 1 중량 %, 황산 (H2S04) 0.5 중량 %, 과황산 암모늄 (a画 onium persulfate; (NH4)2S208) 15 중량 % 및 순수 (pure water) 83.5 중량 %를 포함하는 전처리 조에 탈지 및 연화 공정을 거친 부직포를 통과시켜 중화, 세정 및 조질 (conditioning)작용을 하는 에칭 공정을 실시하였다. 상기 에칭 공정은 온도 20-25°C에서 2분 동안 실시하였다. Neutralizes the strong alkali component of NaOH with sulfuric acid (H2S04), reducing the burden on the next process, sensitizing, and persulfate. The etching process was carried out using ammonium ((NH 4) 2 S 208) to aid the cleaning action and to make the adsorption of palladium strong by conditioning. Specifically, 1 wt% sodium bisulfite (NaHS03), 0.5 wt% sulfuric acid (H2S04), 15 wt% ammonium persulfate (NH4) 2S208, and 83.5 wt% pure water The non-woven fabric passed through the degreasing and softening process was passed through a pretreatment tank including a etch process to neutralize, clean, and condition. The etching process was carried out for 2 minutes at a temperature of 20-25 ° C.
3) 센시타이징 (sensitizing) 공정 (촉매부여공정)  3) Sensitizing process (catalyst granting process)
상기 에칭 공정을 실시한 부직포에 농도 20%의 PdC12를 온도 PdC12 having a concentration of 20% was heated on a nonwoven fabric subjected to the etching process.
30°C에서 2분 동안 처리하여 센시타이징 공정을 실시하였다. 센시타이징 공정은 표면 개질된 탄소섬유 또는 PET의 표면에 금속 이온을 흡착시키기 위해서 실시한다. The sensitizing process was carried out by treatment at 30 ° C for 2 minutes. The sensitizing process is performed to adsorb metal ions on the surface of the surface-modified carbon fiber or PET.
4) 활성화 (activating) 공정  4) activating process
센시타이징 (sensitizing) 공정과 함께 실시하는 공정으로 Pd의 산화방지를 위하여 콜로이드화된 Sn의 제거를 위하여 온도 50°C에서 농도 10%의 황산 (H2S04)을 부직포에 2분 동안 처리하였다. In order to prevent oxidation of Pd, sulfuric acid (H2S04) having a concentration of 10% at a temperature of 50 ° C. was treated for 2 minutes at a temperature of 50 ° C. in order to prevent oxidation of Pd.
상기 공정으로: 부직포를 전처리하였으며, 탄소섬유 부직포 및 PET 부직포는 동일한 공정으로 전처리하였다. 실시예 2 및 3: 무전해 및 전해 연속 도금 공정으로 구리 및 니켈 도금된 탄소섬유  By the above process: the nonwoven fabric was pretreated, and the carbon fiber nonwoven fabric and the PET nonwoven fabric were pretreated in the same process. Examples 2 and 3: Copper and nickel plated carbon fibers in electroless and electrolytic continuous plating processes
하기 첨부된 도 1의 도금 장치를 이용하여 상기 실시예 1의 공정으로 전처리된 탄소'섬유 (12K, 구입처: 토레이 (Toray) 사), 그리고 상기 실시예 1에서 전처리된 탄소 섬유 (12K, 구입처: 태광 (TK) 사)를 다음 표 1의 조성 및 조건으로 무전해 구리 도금을 실시하고, 연속 공정으로 다음 표 2의 조성 및 조건으로 전해 니켈 도금 공정을 실시하여 구리 및 니켈이 도금된 탄소 섬유를 제조하였으며 , 이를 각각 실시예 2 및 3으로 이용하였다: 이하 실시예에 기재된 도금액 성분의 함량은 순수 (pure water) 1L를 기준으로 한다 .  Carbon'fibers (12K, Toray) pretreated by the process of Example 1 using the plating apparatus of FIG. 1 attached below, and carbon fibers (12K, pre-treated in Example 1) Taekwang (TK) was subjected to electroless copper plating under the composition and conditions of the following Table 1, and electrolytic nickel plating process under the composition and conditions of the following Table 2 in a continuous process to obtain copper and nickel plated carbon fibers. It was prepared, and used in Examples 2 and 3: respectively: The content of the plating liquid components described in the following examples is based on 1 L of pure water.
【표 1】 무전해 구리 도금액 Table 1 Electroless Copper Plating Solution
Figure imgf000017_0001
Figure imgf000017_0001
【표 2】 Table 2
N i 전해 도금액  N i electrolytic plating solution
Figure imgf000017_0002
Figure imgf000017_0002
실시예 4 : 무전해 및 전해 연속 도금 공정으로 구리 및 니켈 도금된 탄소 섬유 Example 4 Copper and Nickel Plated Carbon Fibers in an Electroless and Electrolytic Continuous Plating Process
하기 첨부된 도 1의 도금 장치를 이용하여 상기 실시예 1의 공정으로 전처리된 탄소 섬유를 다음 표 3의 조성 및 조건으로 무전해 구리 도금을 실시하고, 연속 공정으로 다음 표 4의 조성 및 조건으로 전해 니켈 도금 공정을 실시하여 구리 및 니켈이 도금된 탄소 섬유를 제조하였다: 【표 3】 The electroless copper plating was performed on the carbon fiber pretreated by the process of Example 1 using the plating apparatus of FIG. 1 attached to the following Table 3, and the composition and conditions of the following Table 4 were performed in a continuous process. An electrolytic nickel plating process was performed to produce copper and nickel plated carbon fibers: Table 3
무전해 구리 도금액 Electroless Copper Plating Solution
Figure imgf000018_0001
Figure imgf000018_0001
【표 4】  Table 4
Ni 전해 도금액  Ni Electrolytic Plating Solution
Figure imgf000018_0002
Figure imgf000018_0002
전해 도금의 경우, 전해 니¾조에 정전압 (CV, constant voltage) 5-In the case of electrolytic plating, a constant voltage (CV) 5-
10 Volt를 가하였다. 양극으로 이용된 금속판은 Ni 금속판 또는 Ni 볼 (ball)을 이용하였다. 실시예 5: 무전해 및 전해 연속 도금 공정으로 구리 및 니켈 도금된 탄소 섬유 10 Volt was added. As the metal plate used as the anode, a Ni metal plate or a Ni ball was used. Example 5 Copper and Nickel Plated Carbon in Electroless and Electrolytic Continuous Plating Process fiber
하기 첨부된 도 1의 도금 장치를 이용하여 상기 실시예 1의 공정으로 전처리된 탄소 섬유를 다음 표 5의 조성 및 조건으로 무전해 구리 도금을 실시하고, 연속 공정으로 다음 표 6의 조성 및 조건으로 전해 니켈 도금 공정을 실시하여 구리 및 니켈이 도금된 탄소 섬유를 제조하였다:  The electroless copper plating was performed on the carbon fiber pretreated by the process of Example 1 using the plating apparatus of FIG. 1 attached to the following Table 5, and the composition and conditions of the following Table 6 were performed in a continuous process. An electrolytic nickel plating process was performed to produce copper and nickel plated carbon fibers:
【표 5】  Table 5
무전해 구리 도금액 Electroless Copper Plating Solution
Figure imgf000019_0001
Figure imgf000019_0001
【표 6】 Table 6
N i 전해 도금액  N i electrolytic plating solution
Figure imgf000019_0002
전해 도금의 경우, 전해 니켈조에 정전압 (CV , constant vol tage) 5一 10 Volt를 가하였다. 양극으로 이용된 금속판은 Ni 금속판 또는 Ni 볼 (ball)을 이용하였다. 실시예 6: 무전해 및 전해 연속 도금 공정으로 니켈 및 니켈 도금된 탄소 섬유
Figure imgf000019_0002
In the case of electrolytic plating, constant voltage (CV, constant voltage) 5 一 to electrolytic nickel bath 10 Volt was added. As the metal plate used as the anode, a Ni metal plate or a Ni ball was used. Example 6 Nickel and Nickel Plated Carbon Fibers in an Electroless and Electrolytic Continuous Plating Process
하기 첨부된 도 1의 도금 장치를 이용하여 상기 실시예 1의 공정으로 전처리된 탄소 섬유를 다음 표 7의 조성 및 조건으로 무전해 니켈 도금을 실시하고 , 연속 공정으로 다음 표 8의 조성 및 조건으로 전해 니켈 도금 공정을 실시하여 니켈이 도금된 탄소 섬유를 제조하였다:  The electroless nickel plating was performed on the carbon fiber pretreated in the process of Example 1 using the plating apparatus of FIG. 1 attached below with the composition and conditions of the following Table 7, and the composition and conditions of the following Table 8 in the continuous process. An electrolytic nickel plating process was performed to produce nickel plated carbon fibers:
【표 7】  Table 7
무전해 니켈 도금액 Electroless Nickel Plating Solution
Figure imgf000020_0001
Figure imgf000020_0001
【표 8】 Table 8
Ni 전해 도금액  Ni Electrolytic Plating Solution
Figure imgf000020_0002
전해 도금의 경우, 전해 니켈조에 정전압 (CV, constant voltage) 10- 15 Volt를 가하였다. 양극으로 이용된 금속판은 Ni 금속판 또는 Ni 볼 (ball)을 이용하였다. 실험예 1 : 전류 밀도의 변화 및 도금된 탄소섬유의 선저항값측정
Figure imgf000020_0002
In the case of electrolytic plating, a constant voltage (CV) of 10-15 Volt was applied to the electrolytic nickel bath. As the metal plate used as the anode, a Ni metal plate or a Ni ball was used. Experimental Example 1 Change of Current Density and Measurement of Wire Resistance of Plated Carbon Fiber
상기 실시예 4의 구리 및 니켈 도금된 탄소 섬유를 제조하는 조성 및 조건 중 pH를 조절하는 NaOH의 농도와 Cu의 환원 반웅을 돕는 HCH0의 농도 조절을 통해 무전해 및 전해 도금의 최적화 조건을 설정하였다.  Among the compositions and conditions for preparing the copper and nickel-plated carbon fibers of Example 4, optimization conditions for electroless and electrolytic plating were set by adjusting the concentration of NaOH to adjust pH and the concentration of HCH0 to help reduce the reaction of Cu. .
농도 25%의 NaOH를 8, 9, 10, 11 및 12 ml/1 , 그리고 HCH0를 2.5, 2.7, 2.9, 3.1, 3.3 g/1로 각각 변화시키면서, 탄소 섬유에 흐르는 전류밀도 (A)의 변화를 측정하고, 최종적으로 얻어진 제품 (구리 및 니켈 도금된 탄소 섬유)의 선저항값 (Ω /30cm)으로 평가 하였고, 그 결과는 아래 표 9에 정리하였고, 전해 니켈조에 정전압 (CV, constant voltage) 7 Volt를 가하였으며, 그 외 일정하게 유지한 조건은 다음 표 10 및 11에 정리하였다: 【표 9】  Changes in the current density (A) flowing through the carbon fiber, with 25% NaOH at 8, 9, 10, 11 and 12 ml / 1 and HCH0 at 2.5, 2.7, 2.9, 3.1 and 3.3 g / 1, respectively. Was measured and evaluated by the wire resistance value (Ω / 30cm) of the finally obtained product (copper and nickel plated carbon fiber), the results are summarized in Table 9 below, constant voltage (CV, constant voltage) in the electrolytic nickel bath 7 Volt was added and other constant conditions were summarized in the following Tables 10 and 11: [Table 9]
Figure imgf000021_0001
10 140 0.4
Figure imgf000021_0001
10 140 0.4
11 150 0.3  11 150 0.3
12 160 0.2  12 160 0.2
3. 1 8 130 0.6 4 turn사용  3. Use 1 8 130 0.6 4 turn
9 140 0.5  9 140 0.5
10 150 0.4  10 150 0.4
11 160 0.3  11 160 0.3
12 170 0.2  12 170 0.2
3.3 8 140 0.5 2 turn 사용  3.3 8 140 0.5 2 turn
9 150 0.4  9 150 0.4
10 160 0.3  10 160 0.3
11 170 0.2  11 170 0.2
12 180 0. 1 상기 표 9에서 1 turn은 무전해 구리 도금 1 건욕량을 나타낸다.  12 180 0.1 In Table 9 above, 1 turn represents the amount of electroless copper plating 1 dry bath.
【표 10】 Table 10
무전해 구리 도금액 Electroless Copper Plating Solution
Figure imgf000022_0001
【표 11】
Figure imgf000022_0001
Table 11
전해 도금액 Electrolytic Plating Solution
Figure imgf000023_0001
상기 표 9에서 확인할 수 있듯이, 환원제 및 NaOH의 양이 증가함에 따라 도금속도는 상승함을 알 수 있으나 도금액의 수명이 짧아지는 단점을 알 수 있었다. 이에 환원제의 양은 최소 (2 . 5-3 . 0 g/ 1 )로 유지하고 NaOH의 양을 최대로 올려 작업하는 것이 바람직하다 할 수 있다. 실험예 2 : 도금 속도 및 액 안정성 시험
Figure imgf000023_0001
As can be seen in Table 9, it can be seen that the plating rate increases as the amount of the reducing agent and NaOH increases, but it has been found that the life of the plating solution is shortened. Therefore, it may be desirable to keep the amount of reducing agent to a minimum (2.5-5 g / l) and to raise the amount of NaOH to the maximum. Experimental Example 2 : Plating rate and liquid stability test
구리이온 및 착화제 (EDTA)의 농도 조절를 통해 도금 속도 및 액 안정성 시험은 구리 이온과 착화제가 동일 비율로 상승할 때, 환원제의 양을 조절하여 (표 12), 구리 도금의 최적화 조건을 시험하였고, 그 외 일정하게 유지되는 성분 및 조건에 대해서는 아래 표 13 및 14에 정리하였다:  Plating rate and liquid stability test by adjusting the concentration of copper ions and complexing agent (EDTA) was tested to optimize the copper plating conditions by adjusting the amount of reducing agent (Table 12) when the copper ions and complexing agent were raised at the same rate And other constant components and conditions are summarized in Tables 13 and 14 below:
【표 12】  Table 12
Figure imgf000023_0002
【표 13]
Figure imgf000023_0002
Table 13
무전해 구리 도금액 Electroless Copper Plating Solution
Figure imgf000024_0001
Figure imgf000024_0001
【표 14] Table 14
전해 도금액 Electrolytic Plating Solution
Figure imgf000024_0002
Figure imgf000024_0002
상기 표 12에서 알 수 있듯이, 구리 농도와 HCHO의 농도가 높을수톡 고속 도금이 가능해지고 도금층의 두께도 높아짐을 확인하였다 (도금 두께 0.7 미크론 이상). 탄소 섬유에 바람직한 도금 두께 0.3 를 가지기 위해서는 구리이온 농도 2.5-3.0 g/1 및 HCH0 농도 2.5-3.0 g/1 이하에서 가장 좋은 결과물을 얻었다. As can be seen from Table 12, it was confirmed that the copper concentration and the HCHO concentration were high, and the high-speed plating was possible and the thickness of the plating layer was also increased (plating thickness of 0.7 microns or more). In order to have a desirable coating thickness of 0.3 for carbon fibers, the copper ion concentration is 2.5-3.0 g / 1 and the HCH0 concentration is 2.5-3.0 g / 1 or less. The best result was obtained.
탄소 섬유의 도금두께가 증가할수록 비중도 증가하며 강도, 탄성율 및 스트레인 ( strain)이 저하 되기 때문에 무전해 도금에서 무리하게 도금 두께를 올리는 것보다는 무전해 도금 후 Cu의 공극을 빠른시간에 Ni 전해 도금을 행하여 우수한 전기 전도도를 가지는 탄소 섬유를 제조하는 것이 바람직하다고 판단된다. 실험예 3 : 물성 및 전기 전도도의 비교  As the thickness of carbon fiber increases, specific gravity also increases, and strength, modulus and strain decrease. Therefore, rather than excessively increasing plating thickness in electroless plating, Ni electroplating the pores of Cu after electroless plating in a short time. It is judged that it is desirable to produce a carbon fiber having excellent electrical conductivity. Experimental Example 3 Comparison of Physical Properties and Electrical Conductivity
다음 표 15에는 실시예 2 및 3의 구리 및 니켈 도금된 탄소섬유와 시판 중인 무전해 도금 공정으로 제조된 니켈 도금 탄소 섬유를 비교예 1로 하여 물성 및 전기전도도 등의 특성을 비교하여 정리하였다:  In Table 15, copper and nickel plated carbon fibers of Examples 2 and 3 and nickel plated carbon fibers prepared by commercial electroless plating processes were compared to Comparative Example 1 to compare properties such as physical properties and electrical conductivity:
【표 15】  Table 15
Figure imgf000025_0001
상기 표 15에서 볼 수 있듯이, 무전해 도금 공정에 의해 제조된 비교예 1에 비해서 실시예 2 및 3의 구리 및 니켈 도금된 탄소 섬유는 물성이 우수하고 전기저항 값이 낮아 우수한 전기 전도도 값을 나태내고 으 _ _ oV =· ol l
Figure imgf000025_0001
As can be seen in Table 15, the copper and nickel plated carbon fibers of Examples 2 and 3, compared to Comparative Example 1 prepared by the electroless plating process, exhibited excellent electrical conductivity values due to excellent physical properties and low electrical resistance values. Ooo _ oV = · ol l
丁 λΛ ^Ί - 실시예 7 : 무전해 및 전해 연속 도금 공정으로구리 및 니켈 도금된 탄소섬유 부직포 및 PET부직포  丁 λΛ ^ Ί-Example 7: Copper and nickel plated carbon fiber nonwoven fabric and PET nonwoven fabric by electroless and electrolytic continuous plating process
하기 첨부된 도 1의 도금 장치를 이용하여 상기 실시예 1의 탄소섬유 부직포 및 PET 부직포를 다음 표 16의 조성 및 조건으로 무전해 구리 도금을 실시하고, 연속 공정으로 다음 표 17의 조성 및 조건으로 전해 니켈 도금 공정을 실시하여 구리 및 니켈이 도금된 탄소섬유 부직포 및 PET 부직포를 제조하였다.  The electroless copper plating of the carbon fiber nonwoven fabric and the PET nonwoven fabric of Example 1 using the plating apparatus of FIG. 1 attached to the following Table 16 was carried out using the plating apparatus of FIG. An electrolytic nickel plating process was performed to prepare copper and nickel plated carbon fiber nonwoven fabrics and PET nonwoven fabrics.
【표 16]  Table 16
무전해 구리 도금액 Electroless Copper Plating Solution
Figure imgf000026_0001
Figure imgf000026_0001
【표 17】 Table 17
Ni 전해 도금액
Figure imgf000026_0002
용액 NiCl2 15-25 g/1
Ni Electrolytic Plating Solution
Figure imgf000026_0002
Solution of NiCl 2 15-25 g / 1
pH 완층제 H3BO3 35-45 g/1  pH buffer H3BO3 35-45 g / 1
오 ψ 50-55 "COh ψ 50-55 " C
H 4.0-4.2  H 4.0-4.2
처리시간 1-3 min  Processing time 1-3 min
전해 도금의 경우, 전해 니¾조에 정전압 (CV, constant voltage) 5- 10 Volt를 가하였다. 양극으로 이용된 금속판은 Ni 금속판 또는 Ni 볼 (ball)을 이용하였다. 실시예 8: 무전해 및 전해 연속 도금 공정으로 니켈 도금된 탄소섬유 부직포 및 PET부직포 In the case of electrolytic plating, a constant voltage (CV) of 5-10 Volt was applied to the electrolytic knee bath. As the metal plate used as the anode, a Ni metal plate or a Ni ball was used. Example 8 Nickel-Plated Carbon Fiber Nonwoven and PET Nonwoven Fabric by Electroless and Electrolytic Continuous Plating Process
하기 첨부된 도 1의 도금 장치를 이용하여 상기 실시예 1의 공정으로 전처리된 부직포를 다음 표 18의 조성 및 조건으로 무전해 니켈 도금을 실시하고 , 연속 공정으로 다음 표 19의 조성 및 조건으로 전해 니켈 도금 공정을 실시하여 니켈이 도금된 부직포를 제조하였다:  The non-woven fabric pretreated by the process of Example 1 was subjected to electroless nickel plating according to the composition and conditions of the following Table 18 by using the plating apparatus of FIG. 1 attached below, and was electrolyzed under the composition and conditions of the following Table 19 in a continuous process. A nickel plating process was performed to produce nickel plated nonwoven fabrics:
【표 18]  Table 18
무전해 니켈 도금액 Electroless Nickel Plating Solution
Figure imgf000027_0001
Figure imgf000027_0001
【표 19】 Ni 전해 도금액 Table 19 Ni Electrolytic Plating Solution
Figure imgf000028_0001
Figure imgf000028_0001
전해 도금의 경우, 전해 니켈조에 정전압 (CV, constant voltage) 10- 15 Volt를 가하였다. 양극으로 이용된 금속판은 Ni 금속판 또는 Ni 볼 (ball)을 이용하였다. 실험예 4 : 부직포의 전기적 특성 In the case of electrolytic plating, a constant voltage (CV) of 10-15 Volt was applied to the electrolytic nickel bath. As the metal plate used as the anode, a Ni metal plate or a Ni ball was used. Experimental Example 4 Electrical Characteristics of the Nonwoven Fabric
상기 실시예 7 및 실시예 8의 도금된 부직포에 대하여 각각 표 20 및 표 21와 같이 전기적 특성을 분석하였다.  The electrical properties of the plated nonwoven fabrics of Examples 7 and 8 were analyzed as shown in Table 20 and Table 21, respectively.
【표 20】  Table 20
Figure imgf000028_0002
+ L/M PET
Figure imgf000028_0002
+ L / M PET
40%  40%
【표 21] Table 21
Figure imgf000029_0001
Figure imgf000029_0001
C/F : 탄소섬유 C / F : Carbon fiber
L/M PET : 저융점 PET  L / M PET : Low melting point PET
PET : 폴리에틸렌 테레프탈레이트  PET : Polyethylene terephthalate
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. Having described the specific part of the present invention in detail, it is apparent to those skilled in the art that such a specific technology is only a preferred embodiment, and the scope of the present invention is not limited thereto. Therefore, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

Claims

【특허청구범위】 [Patent Claims]
【청구항 11  [Claim 11
다음의 단계를 포함하는 부직포 (non-woven fabric)의 무전해 및 전해 연속 공정 금속 도금방법:  Electroless and electrolytic continuous process metal plating method of non-woven fabric comprising the following steps:
(a) 부직포를 순수 (pure water)의 부피를 기준으로 하여 Cu 이온 (a) Cu ions based on the volume of pure water
2.5-5.5 g/1, EDTA 20-55 g/1 , 포르말린 2.5-4.5 g/1, TEA (트리에탄올아민) 2-6 g/1, 농도 25%의 NaOH 8-12 ml/1 및 2,2 '-비피리딘 (bipir idine) 0.008- 0.15 g/1를 포함하고, pH 12-13 및 온도 36-45 °C인 무전해 도금액에 통과시켜 6-10 분 동안부직포에 구리를 도금시키는 단계 ; 및 2.5-5.5 g / 1, EDTA 20-55 g / 1, formalin 2.5-4.5 g / 1, TEA (triethanolamine) 2-6 g / 1, concentration 25% NaOH 8-12 ml / 1 and 2,2 Plating copper on the nonwoven fabric for 6-10 minutes by passing it through an electroless plating solution comprising 0.008-0.15 g / 1 of bi-piridine and having a pH of 12-13 and a temperature of 36-45 ° C .; And
(b) 상기 단계 (a)의 구리 도금된 부직포를 Ni(NH2S03)2280-320 g/1,(b) the copper plated nonwoven fabric of step (a) was Ni (NH 2 SO 3 ) 2 280-320 g / 1,
NiCl2 15-25 g/1 및 H3B03 35-45 g/1을 포함하고, pH 4.0-4.2 및 온도 5으 60°C인 전해 도금액에 통과시켜 1-3 분 동안 구리 도금된 부직포에 니켈을 도금시키는 단계 . 【청구항 2】 To a copper plated nonwoven fabric for 1-3 minutes by passing through an electrolytic plating solution containing NiCl 2 15-25 g / 1 and H 3 B0 3 35-45 g / 1, pH 4.0-4.2 and a temperature of 60 ° C. Plating nickel. [Claim 2]
다음의 단계를 포함하는 부직포 (non-woven fabric)의 무전해 및 전해 연속 공정의 금속 도금방법 :  Metal plating method of electroless and electrolytic continuous process of non-woven fabric comprising the following steps:
(a) 부직포를 순수 (pure water)의 부피를 기준으로 하여 Ni이은 5-7 g/1, NaH2P0220-30 g/1, Na3C6 07 20-30 g/1 및 티오황산칼륨 0.0005-0.001 g/1을 포함하고, pH 8.5-9.5 및 온도 30-35°C인 무전해 도금액에 통과시켜 6-10 분 동안 부직포에 니켈을 도금시키는 단계 ; 및 (a) The nonwoven fabric is 5-7 g / 1, NaH 2 P0 2 20-30 g / 1, Na 3 C 6 0 7 20-30 g / 1 and thio based on the volume of pure water Plating nickel on the nonwoven fabric for 6-10 minutes by passing through an electroless plating solution containing 0.0005-0.001 g / 1 of potassium sulfate and having a pH of 8.5-9.5 and a temperature of 30-35 ° C .; And
(b) 상기 단계 (a)의 니켈 도금된 부직포를 Ni(NH2S03)2280-320 g/1, NiCl2 15-25 g/1 및 ¾B03 35-45 g/ fr 포함하고, pH 4.0-4.2 및 은도 50- 55'C인 전해 도금액에 통과시켜 1-3 분 동안 니켈 도금된 부직포에 니켈을 도금시키는 단계 . (b) the nickel plated nonwoven fabric of step (a) comprises Ni (NH 2 S0 3 ) 2 280-320 g / 1, NiCl 2 15-25 g / 1 and ¾B0 3 35-45 g / fr, pH the silver is from 4.0 to 4.2, and 50- 55 'C was passed through the electrolytic plating step of plating nickel on a nickel-plated non-woven fabric for 1-3 minutes.
【청구항 3】 [Claim 3]
제 1 항 또는 제 2 항에 있어서, 상기 부직포는 탄소 섬유, 폴리에스테르 섬유, 유리 섬유, 아라미드 섬유, 세라믹 섬유, 금속 섬유ᅳ 폴리이미드 섬유, 폴리벤즈옥사졸 섬유, 천연 섬유 또는 이들의 흔합 섬유로 제작된 것을 특징으로 하는 방법. The nonwoven fabric according to claim 1 or 2, wherein the nonwoven fabric is made of carbon fiber, polyester fiber, glass fiber, aramid fiber, ceramic fiber, metal fiber or polyimide fiber, polybenzoxazole fiber, natural fiber or mixed fiber thereof. Method characterized in that the produced.
【청구항 4】 [Claim 4]
제 3 항에 있어서, 상기 폴리에스테르 섬유는 폴리에틸렌 테레프탈레이트 (PET), 폴리글리콜리드 (PGA), 폴리락트산 (PLA), 폴리카프롤락톤 (PCL), 폴리히드톡시알카노에이트 (PHA), 폴리히드록시부티레이트 (PHB), 폴리에틸렌 아디페이트 (PEA), 폴리부틸렌 숙시네이트 (PBS), 폴리 (3-히드록시부티레이트-코 -3- 히드록시발레르에이트 (PHBV), 폴리부틸렌 테레프탈레이트 (PBT), 폴리트리메틸렌 테레프탈레이트 (PTT), 폴리에틸렌 나프탈레이트 (PEN) 또는 백트란 (Vectran)인 것을 특징으로 하는 방법.  The method of claim 3, wherein the polyester fiber is polyethylene terephthalate (PET), polyglycolide (PGA), polylactic acid (PLA), polycaprolactone (PCL), polyhydroxyalkanoate (PHA), poly Hydroxybutyrate (PHB), polyethylene adipate (PEA), polybutylene succinate (PBS), poly (3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV), polybutylene terephthalate (PBT ), Polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN) or backtran (Vectran).
【청구항 5】 [Claim 5]
제 1 항에 있어서, 상기 단계 (a)는 부직포를 순수 (pure water)의 부피를 기준으로 하여 Cu 이온 4.5-5.5 g/1 , EDTA 45-55 g/1, 포르말린 3.5-4.5 g/1 , TEA (트리에탄을아민) 4-6 g/1, 농도 25%의 NaOH 8-12 ml/1 및 2,2'-비피리딘 (bipiridine) 0.01-0.15 g/1를 포함하고, pH 12-13 및 은도 40-45 °C인 무전해 도금액에 통과시켜 6-10 분 동안 부직포에 구리를 도금시키는 것을 특징으로 하는 방법 .  According to claim 1, wherein the step (a) is based on the volume of pure water (non-woven fabric) Cu-ion 4.5-5.5 g / 1, EDTA 45-55 g / 1, formalin 3.5-4.5 g / 1, TEA (triethane to amine) 4-6 g / 1, concentration 25% NaOH 8-12 ml / 1 and 2,2'-bipiridine 0.01-0.15 g / 1, pH 12-13 And plating copper on the nonwoven fabric for 6-10 minutes by passing through an electroless plating solution having a silver degree of 40-45 ° C.
【청구항 6】 [Claim 6]
제 1 항 또는 제 2 항에 있어서, 상기 단계 (b)는 정전압 (CV, constant voltage) 5-15 Volt를 가하여 실시하는 것을 특징으로 하는 방법.  The method of claim 1 or 2, wherein step (b) is performed by applying a constant voltage (CV) of 5-15 Volt.
【청구항 71 [Claim 71
제 1 항 또는 제 2 항에 있어서, 상기 단계 (a)의 부직포는 단계 The nonwoven fabric of claim 1 or 2, wherein the nonwoven fabric of step (a) is
(a)의 실시 전 다음의 단계를 포함하는 방법으로 전처리 (pre- treatment)되는 것을 특징으로 하는 방법: A method characterized by being pretreated by a method comprising the following steps before the implementation of (a):
( i ) 부직포를 계면활성제, 유기 용매 및 비이온 계면활성제를 포함하는 수용액에 통과시켜 부직포를 탈지 및 연화시키는 단계 ;  (i) degreasing and softening the nonwoven by passing the nonwoven through an aqueous solution comprising a surfactant, an organic solvent and a nonionic surfactant;
(Π) 상기 단계 ( i )의 결과물인 부직포를 아황산수소나트륨 (sodium bisulfite; NaHS03) , 황산 (H2S04), 과황산 암모늄 (a讓 onium persulfate; (NH4)2S208) 및 순수 (pure water)를 포함하는 수용액에 통과시켜 중화, 세정 및 조질 (conditioning)작용을 하는 에칭 공정을 실시하는 단계; (Π) The resulting nonwoven fabric of step (i) was treated with sodium bisulfite (NaHS0 3 ), sulfuric acid (H 2 S0 4 ), ammonium persulfate (a 讓 onium persulfate); Performing an etching process for neutralizing, washing and conditioning by passing through an aqueous solution comprising (NH 4 ) 2 S 2 O 8 ) and pure water;
(iii) 상기 단계 (ii)의 결과물인 부직포를 PdCl2수용액에 통과시켜 센시타이징 (sensitizing) 공정을 실시하는 단계; 및 (iii) performing a sensitizing process by passing the resulting nonwoven fabric of step (ii) through an aqueous PdCl 2 solution; And
(iv) 상기 단계 (iii)의 결과물인 부직포를 황산 (H2S04) 수용액에 통과시켜 활성화 (activating) 공정을 실시하는 단계. (iv) passing the resulting nonwoven fabric of step (iii) through an aqueous solution of sulfuric acid (H 2 SO 4 ) to perform an activating process.
【청구항 8】 [Claim 8]
제 7 항에 있어서, 상기 단계 ( i )의 수용액은 계면활성제로 순수 (pure water) 및 NaOH를 중량비 40-49: 1-10으로 흔합한 용액 15-35 중량 %, 유기 용매로 디에틸 프로판디올 (diethyl propanediol) 50-80 중량 % 및 디프로필렌 글리콜 메틸 에테르 (dipropylene glycol methyl ether) 5-15 중량 그리고 400-600 ppm의 비이온성 계면활성제를 포함하는 것을 특징으로 하는 방법 .  The method according to claim 7, wherein the aqueous solution of step (i) is 15-35% by weight of a mixture of pure water and NaOH in a weight ratio of 40-49: 1-10 as a surfactant and diethyl propanediol as an organic solvent. (diethyl propanediol) 50-80% by weight and 5-15 weight of dipropylene glycol methyl ether and 400-600 ppm of nonionic surfactant.
【청구항 9】 [Claim 9]
제 7 항에 있어서, 상기 단계 (ii)의 수용액은 아황산수소나트륨 (sodium bisulfite; NaHS03) 0.1-10 중량 ¾, 황산 (H2S04) 0.1-3 중량 %, 과황산 암모늄 (a隱 oniura persulfatei (NH4)2S2()8) 5-25 중량 % 및 순수 (pure water) 62-94.8 중량 %를 포함하는 것을 특징으로 하는 방법. The method of claim 7, wherein the aqueous solution of step (ii) is sodium bisulfite (sodium bisulfite; NaHS0 3) 0.1-10 weight ¾, sulfuric acid (H 2 S0 4) 0.1-3% by weight of ammonium persulfate (a隱oniura persulfatei (NH 4 ) 2 S 2 () 8 ) 5-25 wt% and pure water 62-94.8 wt%.
【청구항 10] [Claim 10]
제 7 항에 있어서 , 상기 단계 ( i )은 온도 40-60°C에서 1—5분 동안 실시하고, 상기 단계 (ii)는 온도 20-25°C에서 1-5분 동안 실시하며, 상기 단계 (iii)은 온도 20-4CTC에서 1-5분 동안 실시하고, 상기 단계 (iv)는 온도 40-60°C에서 1-5분 동안 실시하는 것을 특징으로 하는 방법. The method of claim 7, wherein the step (i) is carried out for 1-5 minutes at a temperature 40-60 ° C, and wherein step (ii) is carried out for 1-5 minutes at a temperature 20-25 ° C, the step (iii) for 1-5 minutes at a temperature of 20-4 CTC and said step (iv) for 1-5 minutes at a temperature of 40-60 ° C.
PCT/KR2015/006719 2014-07-17 2015-06-30 Method for plating nonwoven fabric by using continuous electroless and electrolytic plating processes WO2016010287A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017502868A JP6797790B2 (en) 2014-07-17 2015-06-30 Non-woven fabric plating method using a continuous process of electroless and electroplating
US15/326,583 US20170204519A1 (en) 2014-07-17 2015-06-30 Method for plating nonwoven fabric by using continuous electroless and electrolytic plating processes
DE112015003301.7T DE112015003301B4 (en) 2014-07-17 2015-06-30 Process for coating a nonwoven fabric by continuous electroless and electrolytic coating processes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140090300A KR101604858B1 (en) 2014-07-17 2014-07-17 Method for Plating of Non-woven Fabric using Continuous Process of Electroless and Electrolysis Plating
KR10-2014-0090300 2014-07-17

Publications (1)

Publication Number Publication Date
WO2016010287A1 true WO2016010287A1 (en) 2016-01-21

Family

ID=55078728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006719 WO2016010287A1 (en) 2014-07-17 2015-06-30 Method for plating nonwoven fabric by using continuous electroless and electrolytic plating processes

Country Status (5)

Country Link
US (1) US20170204519A1 (en)
JP (2) JP6797790B2 (en)
KR (1) KR101604858B1 (en)
DE (1) DE112015003301B4 (en)
WO (1) WO2016010287A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113605087A (en) * 2021-07-30 2021-11-05 铜陵蔚屹新材料有限公司 Continuous production process for nickel metal firmly-attached aromatic special fiber filament
CN114438565A (en) * 2022-02-21 2022-05-06 湖南昇通新材料科技有限公司 Production equipment and method for electromagnetic shielding fabric brush nickel plating
US11969963B2 (en) 2020-01-28 2024-04-30 General Nano Llc Light-weight, highly-conductive repair material

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101604858B1 (en) 2014-07-17 2016-03-21 (주)크린앤사이언스 Method for Plating of Non-woven Fabric using Continuous Process of Electroless and Electrolysis Plating
US10758936B2 (en) 2015-12-08 2020-09-01 The Boeing Company Carbon nanomaterial composite sheet and method for making the same
US10093041B2 (en) * 2016-04-11 2018-10-09 The Boeing Company Conductive pre-impregnated composite sheet and method for making the same
CN106756904A (en) * 2016-12-16 2017-05-31 贵阳华科电镀有限公司 A kind of high phosphorus chemical plating nickel liquid
CN111094646B (en) * 2017-07-21 2023-11-10 通用纳米有限责任公司 Conductive broad article providing lightning strike protection
KR102010366B1 (en) * 2018-02-14 2019-08-14 전주대학교 산학협력단 Method for producing metal-coated carbon fiber
WO2020040387A1 (en) * 2018-08-22 2020-02-27 전북대학교산학협력단 Method for manufacturing korean paper planar heating mat having replaceable blocks, and korean paper planar heating mat
DE102018124344A1 (en) 2018-10-02 2020-04-02 Chemische Fabrik Budenheim Kg Conductive textiles
CZ308348B6 (en) * 2018-11-06 2020-06-10 Bochemie A.S. Process for continuously metallizing a textile material, the apparatus for carrying out the process, metallized textile material and its use
KR102607280B1 (en) * 2019-02-01 2023-11-27 주식회사 엘지에너지솔루션 Battery assembly capable of simultaneous application of mechanical pressing and magnetic pressing to battery cell
KR102375924B1 (en) 2019-06-25 2022-03-18 주식회사 카본엑트 Method of manufacturing carbon fiber heating wire and carbon fiber heating wire manufactured thereby
CN110205611B (en) * 2019-06-25 2020-10-02 北京理工大学 Chemical nickel-phosphorus plating method for quartz fiber
CN112680959A (en) * 2020-12-16 2021-04-20 深圳大学 Metallized stretchable elastic fabric and preparation method thereof
CN113215630A (en) * 2021-04-21 2021-08-06 飞荣达科技(江苏)有限公司 High-performance carbon fiber and electroplating method thereof
CN113634745A (en) * 2021-08-06 2021-11-12 金华职业技术学院 Method for preparing NiCu double-layer alloy powder by chemical plating method and application thereof
CN115474345B (en) * 2022-09-14 2023-04-28 东华大学 Ceramic fabric circuit manufacturing method based on screen printing and chemical deposition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0176299B1 (en) * 1996-02-24 1999-02-18 김순택 Electroless plating for shielding electromagnetic wave
KR19990042939A (en) * 1997-11-28 1999-06-15 김만곤 Manufacturing method of electromagnetic shielding sheet
KR20010008204A (en) * 2000-11-15 2001-02-05 김선기 Conductive fabric and manufacturing method thereof
KR20030049703A (en) * 2001-12-17 2003-06-25 한국화학연구원 Manufacturing process of nickel-plated carbon fibers by electroplating method
KR20090011795A (en) * 2007-07-27 2009-02-02 조희욱 Electroless plating liquid and plating method of metal to textile used the same
JP2009163976A (en) * 2008-01-07 2009-07-23 Sumitomo Electric Ind Ltd Nonwoven fabric substrate for battery, and its manufacturing method
KR20140015006A (en) * 2012-07-27 2014-02-06 주식회사 불스원신소재 Method for processing conductive of carbon fiber

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3360445A (en) * 1965-01-04 1967-12-26 Du Pont Electrodeposition of nickel from the sulfamate bath
US4061802A (en) * 1966-10-24 1977-12-06 Costello Francis E Plating process and bath
US4503131A (en) * 1982-01-18 1985-03-05 Richardson Chemical Company Electrical contact materials
JPH01162868A (en) * 1987-12-17 1989-06-27 Mitsubishi Kasei Corp Electroless plating of alumina ceramic fiber
IT1217328B (en) * 1988-02-01 1990-03-22 Donegani Guido Ist PROCESS FOR THE METALLIZATION OF FIBROUS MATERIALS
JP2747321B2 (en) * 1989-04-19 1998-05-06 日清紡績株式会社 Method for producing metal-coated synthetic resin structure
JP3150810B2 (en) * 1993-01-19 2001-03-26 日本バイリーン株式会社 Manufacturing method of electroless plating material
JPH06326113A (en) * 1993-05-13 1994-11-25 Casio Comput Co Ltd Plating method
JP4225408B2 (en) 2003-01-20 2009-02-18 金星製紙株式会社 Dry pulp nonwoven fabric with integrated layered structure
JP2005048243A (en) * 2003-07-30 2005-02-24 C Uyemura & Co Ltd Conductive plated fibrous structure, and its production method
JP2005232634A (en) * 2004-02-20 2005-09-02 Gun Ei Chem Ind Co Ltd Abs/phenol conjugate fiber and method for producing electromagnetic shield material
JP5638751B2 (en) * 2008-08-07 2014-12-10 名古屋メッキ工業株式会社 Method for plating polymer fiber material and method for producing polymer fiber material
JP2010126824A (en) * 2008-11-26 2010-06-10 Daiwabo Holdings Co Ltd Metal-plated fiber structure and metal structure obtained by firing the same
KR101133851B1 (en) 2009-09-17 2012-04-06 도레이첨단소재 주식회사 Spunbond nonwoven treated with a natural extract and manufacturing method thereof
CN101705615B (en) * 2009-11-03 2011-11-23 上海大学 Preparation method of nickel-plated and copper-plated aromatic polyamide conductive fibers
KR101156844B1 (en) 2009-11-09 2012-06-18 도레이첨단소재 주식회사 Spunbond nonwoven mixed with fiber filament yarn and manufacturing method thereof
US20110272289A1 (en) * 2010-05-10 2011-11-10 Eci Technology, Inc. Boric acid replenishment in electroplating baths
KR101221936B1 (en) 2011-04-26 2013-01-15 건양대학교산학협력단 Wet Process Nonwoven Web and The Method for Preparing The Same
KR102031201B1 (en) 2012-12-20 2019-10-11 에스케이하이닉스 주식회사 Latency control circuit and semiconductor memory device including the same
KR101604858B1 (en) 2014-07-17 2016-03-21 (주)크린앤사이언스 Method for Plating of Non-woven Fabric using Continuous Process of Electroless and Electrolysis Plating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0176299B1 (en) * 1996-02-24 1999-02-18 김순택 Electroless plating for shielding electromagnetic wave
KR19990042939A (en) * 1997-11-28 1999-06-15 김만곤 Manufacturing method of electromagnetic shielding sheet
KR20010008204A (en) * 2000-11-15 2001-02-05 김선기 Conductive fabric and manufacturing method thereof
KR20030049703A (en) * 2001-12-17 2003-06-25 한국화학연구원 Manufacturing process of nickel-plated carbon fibers by electroplating method
KR20090011795A (en) * 2007-07-27 2009-02-02 조희욱 Electroless plating liquid and plating method of metal to textile used the same
JP2009163976A (en) * 2008-01-07 2009-07-23 Sumitomo Electric Ind Ltd Nonwoven fabric substrate for battery, and its manufacturing method
KR20140015006A (en) * 2012-07-27 2014-02-06 주식회사 불스원신소재 Method for processing conductive of carbon fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11969963B2 (en) 2020-01-28 2024-04-30 General Nano Llc Light-weight, highly-conductive repair material
CN113605087A (en) * 2021-07-30 2021-11-05 铜陵蔚屹新材料有限公司 Continuous production process for nickel metal firmly-attached aromatic special fiber filament
CN114438565A (en) * 2022-02-21 2022-05-06 湖南昇通新材料科技有限公司 Production equipment and method for electromagnetic shielding fabric brush nickel plating

Also Published As

Publication number Publication date
DE112015003301T5 (en) 2017-04-06
DE112015003301B4 (en) 2018-10-31
JP2020007639A (en) 2020-01-16
JP2017526816A (en) 2017-09-14
JP6797790B2 (en) 2020-12-09
US20170204519A1 (en) 2017-07-20
KR101604858B1 (en) 2016-03-21
KR20160010700A (en) 2016-01-28

Similar Documents

Publication Publication Date Title
WO2016010287A1 (en) Method for plating nonwoven fabric by using continuous electroless and electrolytic plating processes
KR101427309B1 (en) Method for Preparing of High Conductivity Carbon Fiber Using Continuous Process of Electroless and Electrolysis Plating
US10385208B2 (en) Preparation method for electromagnetic wave shield composite material using copper- and nickel-plated carbon fiber prepared by electroless and electrolytic continuous processes, and electromagnetic wave shield composite material
KR101548279B1 (en) Non-Woven Fabric for Shielding and Absorbing of Electromagnetic Waves or Non-Woven Fabric Composite Comprising the Same
JP3845823B2 (en) Method for coating natural fibers with carbon nanotubes
JP2015507100A (en) Carbon fiber for composites with improved conductivity
JP5255015B2 (en) Electroless copper plating method for polymer fiber
CN104164784B (en) Preparation method of composite fiber with high thermal conductivity through coating graphene on chemical fiber surface
CN102733179B (en) Method for chemically plating and electroplating copper on artificial fibers and textile
KR102010366B1 (en) Method for producing metal-coated carbon fiber
KR101423169B1 (en) A Method for Manufacturing of Shield Sheet for Preventing Electromagnetic Wave
Fatema et al. A new electroless Ni plating procedure of iodine-treated aramid fiber
KR101197723B1 (en) Manufacturing process of nickel-plated carbon fibers by non-electroplating method
KR101664857B1 (en) Conductive yarn and method for preparing the same
KR102072483B1 (en) Method for plating of carbon fiber fabric using continuous process of electroless and electrolysis plating, and fabrics that can shield electromagnetic waves including the carbon fiber fabric plated by the method
KR20170123407A (en) An electrically conductive fabric comprising metal-plated glass fiber, a process for preparing the same, a process for preparing a FRP prepreg using the same
CN106459457B (en) The manufacturing process and application of the composite part of surface conductance
CN112813675A (en) Metallized polyimide fiber and preparation method thereof
KR101504154B1 (en) Carbon fiber comprising ZnO nano-rod and fabrication method of the same
KR102109339B1 (en) Method for manufacturing highly conductive fiber with improved magnetic susceptibility using electroless-electrolytic plating method
KR20170123404A (en) METAL-PLATED GLASS FIBER SMC(Sheet Moldings Compound) FOR EMI SHIELDING AND MANUFACTURING METHOD THEREBY
KR20140015006A (en) Method for processing conductive of carbon fiber
Han et al. Adhesion strength enhancement of nickel-plated carbon fiber using edge selectively oxidized graphene
WO2014193169A1 (en) Preparation method for electromagnetic wave shield composite material using copper- and nickel- plated carbon fiber prepared by electroless and electrolytic continuous processes, and electromagnetic wave shield composite material
JP2005048243A (en) Conductive plated fibrous structure, and its production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821488

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15326583

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017502868

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015003301

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821488

Country of ref document: EP

Kind code of ref document: A1