WO2016002917A1 - 振動型アクチュエータ、レンズ鏡筒、撮像装置及び自動ステージ - Google Patents

振動型アクチュエータ、レンズ鏡筒、撮像装置及び自動ステージ Download PDF

Info

Publication number
WO2016002917A1
WO2016002917A1 PCT/JP2015/069218 JP2015069218W WO2016002917A1 WO 2016002917 A1 WO2016002917 A1 WO 2016002917A1 JP 2015069218 W JP2015069218 W JP 2015069218W WO 2016002917 A1 WO2016002917 A1 WO 2016002917A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrator
type actuator
vibration type
pressurizing
driven body
Prior art date
Application number
PCT/JP2015/069218
Other languages
English (en)
French (fr)
Inventor
関 裕之
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2016002917A1 publication Critical patent/WO2016002917A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction

Definitions

  • the present invention relates to a vibration type actuator, a lens barrel having a vibration type actuator, an imaging device, and an automatic stage.
  • a predetermined vibration mode is excited in a vibrator formed by joining an electro-mechanical energy conversion element such as a piezoelectric element to an elastic body such as a metal to cause an elliptical motion on the surface of the elastic body and contact the elastic body.
  • a vibration type actuator for driving a driven body is known.
  • the vibration type actuator is also called an ultrasonic motor or a vibration wave motor, and various structures have been proposed. For example, as an actuator for rotationally driving a lens barrel such as a camera, a ring-shaped ultrasonic motor, a rod-shaped rotary ultrasonic motor, or a rotary ultrasonic motor having a plurality of chip-shaped vibrators arranged on the circumference Various types of structures have been proposed.
  • Vibrating actuators such as ultrasonic motors that use vibrators have features that output torque per unit volume is larger than electromagnetic motors, and can be reduced gearless (direct drive), thus reducing size It is suitable for driving sources such as lens barrels that are becoming lighter.
  • the vibration-type actuators that combine chip-shaped vibrators have the advantage of being able to achieve both space saving and low cost, as well as high design flexibility with respect to the dimensions and shape of the applied lens barrel, etc. There are benefits.
  • Patent Documents 1 and 2 disclose vibration type actuators that combine chip-shaped vibrators.
  • Patent Document 1 there are two contact portions on one surface, each contact portion generates an elliptical vibration, and contacts (pressurizing contact) with the contact portion of the vibrator.
  • An ultrasonic motor having a rotor (driven body) driven by elliptical vibration is described.
  • a support shaft is provided at a portion that becomes a node of vibration when vibration is excited in the vibrator, and the vibrator is pressed against the rotor by a pressure spring through the support shaft. The part is brought into contact with the rotor, so that the rotor can be friction driven by the contact part.
  • a guide groove extending in the pressurizing direction is provided in the housing so that the pressurizing spring bends and the vibrator can move in the pressurizing direction when the rotor is friction driven, and the support provided on the vibrator is provided.
  • the shaft is fitted in the guide groove.
  • Patent Document 2 includes a rectangular vibrator having at least one vibration node, a support member that is fixed in the vicinity of the joint of the vibrator and supports the vibrator, and a rotor that is rotatably disposed.
  • An ultrasonic motor is described.
  • a support member is formed by bending a part of a ring-shaped base in a direction in which pressure is applied to the rotor to form a cantilever, and the vibrator is disposed at the end of the support member. Yes.
  • a function as a pressure spring that urges the applied pressure between the rotor and the vibrator is imparted to the support member.
  • JP 2006-158053 A Japanese Patent Application Laid-Open No. 11-235062
  • the support rigidity of the vibrator is set small so that the vibrator can easily follow the contact surface of the rotor. Therefore, when the driving of the ultrasonic motor is stopped, the vibrator and the rotor can be stably maintained in a good contact state.
  • the vibrator is driven in the driving direction (the contact portion of the vibrator and the rotor) by the frictional driving force exerted on the contact surface of the rotor and the support reaction force generated in the support section of the vibrator. A moment that tilts in the direction in which the relative position of the contact portion changes) is generated. Therefore, when the support rigidity of the vibrator is small, the vibrator easily tilts with respect to the frictional sliding surface of the rotor due to a moment that tilts the vibrator in the driving direction. As a result, an operation sound (abnormal sound) called output reduction or squealing occurs.
  • the ultrasonic motor described in Patent Document 1 has a structure in which a support shaft fixed to a vibrator and the vibrator are integrated into a guide groove provided in the housing.
  • this structure there is a backlash corresponding to the dimensional tolerance between the support shaft and the guide groove, which reduces the positioning accuracy of the vibrator, and thus reduces the controllability of the ultrasonic motor.
  • An object of the present invention is to provide a vibration type actuator that can stably hold the posture of a vibrator with respect to a driven body and can maintain high positioning accuracy of the vibrator.
  • the vibration-type actuator includes an electro-mechanical energy conversion element, a vibrator having an elastic body to which the electro-mechanical energy conversion element is bonded, and a target that comes into contact with a drive unit provided in the vibrator.
  • the vibrator and the driven body are configured such that a relative position between the vibrator and the driven body is changed by vibration excited by the vibrator, and the relative position is changed.
  • the posture of the vibrator is configured to follow the pressing member rather than the driven body. It is characterized by.
  • Another vibration type actuator according to the present invention is applied to an electro-mechanical energy conversion element, a vibrator having an elastic body to which the electro-mechanical energy conversion element is joined, and a drive unit provided in the vibrator.
  • a pressurizing unit having a driven body to be in contact with and a pressurizing member for supporting the vibrator; and pressing the vibrator against the driven body by pressing the pressurizing member against the vibrator.
  • the vibrator and the driven body are configured such that a relative position between the vibrator and the driven body is changed by vibration excited by the vibrator, and the pressure member is One or a plurality of parts that contact the vibrator, the vibrator includes one or a plurality of parts that contact the driven body, and the pressurizing unit drives the vibrator When viewed from the direction of pressure applied to the body, Of the region where the pressure member is in contact with the vibrator or the region formed by connecting the plurality of portions where the pressure member is in contact with the vibrator (in one case, the region), the region having the largest area is the first.
  • the region having the largest value is the second region
  • the first region is larger than the second region
  • the first region and the second region include the vibrator and the driven body. In order not to rotate, at least a part overlaps when viewed from the pressurizing direction.
  • Still another vibration actuator includes an electro-mechanical energy conversion element, a vibrator having an elastic body to which the electro-mechanical energy conversion element is joined, and a drive unit provided in the vibrator.
  • a pressure member that has a driven body that abuts and a pressure member that supports the vibrator, and presses the vibrator against the driven body by pressing the pressure member against the vibrator;
  • the vibrator and the driven body are configured such that a relative position between the vibrator and the driven body is changed by vibration excited by the vibrator, and the vibrator is A surface of a portion where the vibrator receives a force from the pressurizing means when supported by the pressurizing means without coming into contact with the driven body is a first surface, and the vibrator is the pressurizing means.
  • the surface of the portion where the vibrator receives a force from the driven body is the second surface, and when a force perpendicular to the first surface is applied to the second surface, it acts on the first surface.
  • the sum of absolute values of rotational moments about the centroid of the second surface due to the reaction force is defined as the first moment, and the force and magnitude perpendicular to the first surface are equal to and perpendicular to the second surface.
  • the sum of absolute values of rotational moments about the centroid of the first surface due to the reaction force acting on the second surface when a large force is applied to the first surface is defined as the second moment.
  • the vibrator, the driven body, and the pressurizing means are in a plane including a direction in which the relative position changes and a pressurizing direction in which the pressurizing means presses the vibrator against the driven body.
  • the first moment is configured to be larger than the second moment.
  • the vibrator can be accurately positioned with respect to the frictional sliding surface of the rotor and can be firmly held while keeping the support rigidity of the vibrator large.
  • the vibrator can be stably held even when an external force or an impact force at the time of reversal is applied when the vibration actuator is driven, and a stable drive characteristic (output characteristic) can be obtained.
  • FIG. 1A It is a top view which shows schematic structure of the vibration type actuator which concerns on 1st Embodiment of this invention. It is a front view which shows schematic structure of the drive unit which comprises the vibration type actuator of FIG. 1A. It is sectional drawing corresponding to FIG. 1B. It is a top view (plan view) showing a structure of a vibrator constituting the drive unit of FIGS. 1B and 1C. It is a side view corresponding to FIG. 2A. It is a front view corresponding to FIG. 2A. It is a 1st schematic diagram explaining the rotational moment of the vibrator
  • FIG. 1A It is a perspective view which shows the structure of the supporting member which comprises the drive unit of FIG. 1B and 1C. It is a front view which shows the state which attached the vibrator
  • 1B is a top view (plan view) schematically showing a state in which a conventional method is applied as a pressurizing method for pressing a vibrator against a rotor in the vibration type actuator of FIG. 1A.
  • FIG. It is a side view corresponding to the top view of FIG. 5A. It is a front view corresponding to the top view of FIG. 5A.
  • FIG. 6 is a diagram schematically showing a state in which a good contact state between the convex portion of the vibrator and the rotor cannot be obtained in the pressurization method of FIG. 5.
  • FIG. 6B is a first side view corresponding to the top view of FIG. 6A.
  • FIG. 6B is a second side view corresponding to the top view of FIG. 6A.
  • It is a front view which shows schematic structure of the drive unit which comprises the vibration type actuator which concerns on 2nd Embodiment of this invention.
  • FIG. 7B is a top view (plan view) schematically showing the contact state of the pressure member with the vibrator in the drive unit of FIG. 7A.
  • FIG. 7B is a diagram for explaining the relationship between the contact region where the pressure member contacts the vibrator and the structure of the vibrator in the drive unit of FIG. 7A.
  • FIG. 7B is a side view showing a state where the pressing member presses the vibrator against the rotor in an ideal state in the drive unit of FIG. 7A.
  • FIG. 7B is a side view schematically showing the contact state between the vibrator and the rotor when it is assumed that the pressure member and the rotor are not installed in parallel in the drive unit of FIG. 7A.
  • FIG. 9A It is a perspective view which shows the structure of the supporting member shown to FIG. 9A. It is a front view which shows schematic structure of the drive unit which comprises the vibration type actuator which concerns on 4th Embodiment of this invention. It is sectional drawing of the drive unit of FIG. 10A. It is a front view which shows the partial structure of the pressurization member which comprises the vibration type actuator which concerns on 5th Embodiment of this invention. It is a top view which shows schematic structure of the vibrator
  • FIG. 12A It is a top view which shows schematic structure of the vibration type actuator which concerns on 6th Embodiment of this invention. It is a front view corresponding to FIG. 12A It is a top view which shows schematic structure of the vibration type actuator which concerns on 7th Embodiment of this invention. It is a front view corresponding to FIG. 13A. It is a fragmentary sectional view corresponding to FIG. 13A. It is a top view which shows schematic structure of an imaging device provided with the vibration type actuator which concerns on embodiment of this invention. It is an appearance perspective view of a microscope which has an XY stage provided with a vibration type actuator concerning an embodiment of the present invention.
  • the posture of the member A follows the member C from the member B means “when the surface of the member B and the member C facing the member A is non-parallel, the member A is more than the member B. “To be in a posture along the inclination of C” or “When member B and member C move by the same amount, member A takes a posture that is more strongly influenced by member C than member B”.
  • FIG. 1A is a plan view (top view) showing the overall structure of the vibration type actuator 100 according to the first embodiment of the present invention.
  • FIG. 1B is a front view showing a schematic structure of the drive unit 200 constituting the vibration type actuator 100
  • FIG. 1C is a cross-sectional view showing a schematic structure of the drive unit 200.
  • the front view of FIG. 1B shows a schematic structure of the drive unit 200 when the inner diameter side is viewed from the outer diameter side of the vibration type actuator 100 shown in FIG. 1A, and the cross-sectional view of FIG. 1C is shown in FIG. It is sectional drawing in arrow LL.
  • the vibration type actuator 100 includes a cylindrical fixing member 8, a rotor 4 that is an annular driven body, and a plurality of balls 7 disposed between the fixing member 8 and the rotor 4.
  • the fixing member 8 includes a cylindrical main body 8a, and a flange portion 8b that is formed integrally with the main body 8a so as to protrude to the outer diameter side of the main body 8a.
  • a V-groove is formed in a surface of the flange portion 8b facing the rotor 4 so as to be concentric with the main body 8a, and a surface of the rotor 4 facing the flange portion 8b is also formed in the V-shaped portion 8b.
  • a V-groove is formed at a position facing the groove (see FIG. 1C).
  • the plurality of balls 7 are sandwiched between the flange portion 8 b and the V groove of the rotor 4 at substantially equal intervals in the circumferential direction of the V groove.
  • a bearing (ball bearing) in which the rotor 4 is rotatable (movable) relative to the fixed member 8 is configured.
  • the drive unit 200 of the vibration type actuator 100 includes a support member 6 that is fixed to the fixing member 8 with screws 11, a vibrator 3 that is joined to the support member 6, and a pressure that presses the vibrator 3 against the rotor 4.
  • the vibrator 3 includes a diaphragm 1 that is an elastic body that contacts a surface of the rotor 4 on which no V-groove is formed, and a piezoelectric element 2 that is an electro-mechanical energy conversion element that excites predetermined vibration on the diaphragm 1.
  • a flexible printed circuit board (not shown) that applies a predetermined alternating voltage (drive voltage) is attached to the piezoelectric element 2.
  • the support member 6 is fixed to the outer peripheral wall of the main body 8a of the fixing member 8 with a screw 11 in a state where the vibrator 3 is bonded.
  • the pressure mechanism includes a pressure spring 9, a spring holding member 10 that is fixed to the main body 8a of the fixing member 8 and holds the pressure spring 9, and between the pressure spring 9 and the piezoelectric element 2 (vibrator 3). And a pressurizing member 5 disposed on the surface. The pressure member 5 presses the vibrator 3 against the rotor 4 by the biasing force of the pressure spring 9.
  • the diaphragm 1 constituting the vibrator 3 includes, for example, a rectangular diaphragm main body 1a and a diaphragm arm 1b extending from the end of the diaphragm main body 1a in the longitudinal direction of the diaphragm main body 1a.
  • the diaphragm 1 is formed, for example, by punching a metal thin plate or the like.
  • the two diaphragm arm portions 1b of the diaphragm 1 are joined to the two support arm portions 6c provided on the support member 6 by spot welding or the like.
  • a piezoelectric element 2 is bonded to one surface (upper surface) of the diaphragm main body 1a by adhesion or the like, and bosses 1c are provided at two locations on the other surface (lower surface) of the diaphragm main body 1a. Yes.
  • a convex portion 1 d that is a contact portion with the rotor 4 and serves as a drive portion that drives the rotor 4 is provided.
  • the two convex portions 1d are in contact with the surface (friction sliding surface) on which the V-groove of the rotor 4 is not formed by the urging force of the pressurizing mechanism (see FIG. 1B).
  • a flexible printed board (not shown) is bonded to the piezoelectric element 2 by adhesion or the like.
  • an alternating voltage is applied from the power source to the piezoelectric element 2 through the flexible printed circuit board, two different standing wave vibrations are excited by the vibrator 3, thereby exciting an elliptical vibration at the convex portion 1 d of the diaphragm 1.
  • the rotor 4 in contact with the convex portion 1d is frictionally driven by the elliptical vibration of the convex portion 1d, and the relative position between the contact portion of the vibrator 3 and the contact portion of the rotor 4 is changed (hereinafter referred to as “drive direction”). ").
  • this driving direction is a direction connecting the two convex portions 1d to the vibrator 3, and the fixing member 8 is fixed to an external member (not shown) and does not move. Therefore, in the following description, it is assumed that the rotor 4 is rotationally driven with respect to the vibrator 3 whose position with respect to the fixing member 8 does not change.
  • 3A and 3B are a first schematic diagram and a second schematic diagram, respectively, for explaining the rotational moment of the vibrator 3.
  • the region having the largest area on the surface perpendicular to the pressurizing direction is shown in FIG. 3A. As shown, the first region S1.
  • FIG. 1B and FIG. 1C by removing the member above the pressure member 5 and the support member 6, a state where the vibrator 3 is supported by the rotor 4 without contacting the pressure mechanism is obtained.
  • a surface of a portion of the vibrator 3 supported by the rotor 4 at this time is a second surface.
  • FIG. 3B a region having the largest area on the surface perpendicular to the pressing direction is shown in FIG. 3B. In this way, the second region S2.
  • a sum of absolute values of rotational moments about the centroid G1 of the first region S1 due to the reaction force fb is defined as a second moment.
  • the area of the first region S1 is larger than the area of the second region S2, and the first region S1 and the second region S2 are pressed in the pressing direction so that the vibrator 3 and the rotor 4 do not rotate. When seen from, at least partly overlaps.
  • the first region S1 is considered to be substantially the same as the outer shape of the upper surface of the piezoelectric element 2.
  • the second region S2 has the outermost shape (outer shape) including the tip surfaces of the two convex portions 1d where the region formed by connecting the tip surfaces of the two convex portions 1d that are separated from each other is the largest.
  • the centroid is defined as centroid G2.
  • the vibrator 3, the rotor 4, and the pressurizing mechanism are configured such that the first moment is larger than the second moment in a plane perpendicular to the driving direction.
  • This is due to the following reason. That is, when the vibration actuator 100 is driven, the vibrator 3 and the rotor 4 (driven body) come into contact with each other to transmit the driving force, so that a force in the driving direction is applied to the contact portion of the vibrator 3 with respect to the rotor 4. . Then, a rotational moment about the direction orthogonal to the driving direction is likely to be generated in the vibrator 3.
  • the first moment is smaller than the second moment, and the pressure mechanism side is configured to follow the contact portion with the driven body. Therefore, FIGS. 5A to 5C and FIGS. 6A to 6C are used. As will be described later with reference to, the contact state between the vibrator and the driven body may become unstable.
  • the first moment is made larger than the second moment to suppress the vibrator 3 from rotating by the pressurizing mechanism. That is, the posture of the vibrator 3 around the axis orthogonal to the drive direction follows the pressure mechanism side of the rotor 4 (driven body) in the plane including the drive direction and the pressure direction by the pressure mechanism. Thereby, it is possible to avoid the unstable contact state between the vibrator 3 and the rotor 4 and to drive the vibration actuator 100 stably.
  • the first region S1 and the second region S2 are larger than the second region S2 when viewed from the pressurizing direction. Further, the first region S1 and the second region S2 overlap at least partially when viewed from the pressurizing direction so that the vibrator 3 and the rotor 4 do not rotate. Thereby, the posture of the vibrator 3 around the axis orthogonal to the drive direction follows the pressure mechanism side of the rotor 4 (driven body) in the plane including the drive direction and the pressure direction by the pressure mechanism.
  • the vibrator 3, the rotor 4, and the pressing member 5 are configured such that the center of the second region S2 is located inside the first region S1 when viewed from the pressing direction. Details will be described later in conjunction with the description of FIGS. 5A to 5C and FIGS. 6A to 6C.
  • the first moment is the second moment even in the case of a rotational moment about the direction orthogonal to the pressurizing direction by the pressurizing mechanism and the direction orthogonal to the driving direction. It is desirable to make it larger.
  • the first region S1 is larger than the second region S2 when viewed from the pressing direction on the surface orthogonal to the pressing direction by the pressing mechanism, and the first region S1 and the second region S2 are In order to prevent the vibrator 3 and the rotor 4 from rotating, it is desirable that at least part of them overlap when viewed from the pressurizing direction. Thereby, rotation of the vibrator 3 can be suppressed by the pressurizing mechanism.
  • the second region S2 is inside the first region S1 when viewed from the pressurizing direction, the rotation of the vibrator 3 can be suppressed by the pressurizing mechanism.
  • FIG. 4A is a perspective view showing the structure of the support member 6, and FIG. 4B is a front view showing a state where the vibrator 3 is attached to the support member 6.
  • the support member 6 has a substantially L-shaped cross section, and can be manufactured by, for example, pressing a metal plate.
  • the support member 6 has an attachment portion 6a for attachment to the fixing member 8, and a support portion 6b bent at about 90 ° from the attachment portion 6a.
  • a screw hole 6d (attachment hole) for attaching the support member 6 to the fixing member 8 with screws 11 is provided in the attachment portion 6a.
  • the support portion 6b At the end portion of the support portion 6b that is substantially parallel to the friction sliding surface of the rotor 4, two support arm portions 6c that are joined to the diaphragm arm portion 1b are provided.
  • the two diaphragm arm portions 1b of the diaphragm 1 are joined to the two support arm portions 6c by spot welding or the like.
  • the support portion 6b has a low rigidity in the direction of arrow A, which is a pressing direction for pressing the convex portion 1d against the rotor 4, and is designed to be relatively easily deformable.
  • the vibrator 3 is pressed against the rotor 4.
  • the pressure does not change significantly.
  • the support portion 6b has a large rigidity in the direction B connecting the two convex portions 1d and the rotation direction of the rotor 4, and is not easily deformed. Therefore, it is possible to avoid a decrease in positioning accuracy of the vibrator 3 due to a driving reaction force applied when the rotor 4 is driven and a reaction force (impact force) applied when the rotation direction of the rotor 4 is reversed.
  • the tip surface (contact surface with the rotor 4) of the convex portion 1d provided on the boss portion 1c of the diaphragm 1 has an extremely small area.
  • it is designed to have a circular shape of about ⁇ 1 mm. This is derived from the driving principle of the vibrator 3 in which an elliptical vibration is generated in the convex portion 1d which is a part of the vibrator 3 by combining two different standing wave vibrations.
  • the standing wave vibration has a different amplitude and vibration direction depending on the position (location) in the vibrator 3, and therefore, when the standing wave of two different vibration modes is synthesized to generate an elliptical vibration, A region having the same direction is limited to a narrow range. Therefore, if the area of the front end surface of the convex portion 1d is increased and brought into contact with the rotor 4 at the same time, slippage occurs in the contact surface and drive efficiency is reduced. In order to avoid this problem, the convex portion 1d is configured to come into contact with the rotor 4 in a range where the transmission of the driving force can be appropriately performed and in the smallest possible area.
  • the front end surface of the convex portion 1d is a smooth surface that has been subjected to processing such as lapping in order to maintain a stable contact state with the friction sliding surface of the rotor 4, and the front ends of the two convex portions 1d.
  • the surfaces are designed to be coplanar.
  • the frictional sliding surface with the convex portion 1d of the rotor 4 is also smooth and is subjected to surface processing such as lapping so that the warpage is extremely small.
  • the tip surfaces of the two convex portions 1d are in contact with the frictional sliding surface of the rotor 4 uniformly. Realizing the state is not easy. Therefore, conventionally, the two protrusions 1 d are brought into contact with the rotor 4 by pressing the vibrator 3 against the rotor 4.
  • FIG. 5A, FIG. 5B and FIG. 5C are a top view (plan view), a side view and a front view, respectively, schematically showing a state where a conventional method is applied as a method of pressing the vibrator 3 against the rotor 4.
  • 5A to 5C the illustration of the rotor 4 is omitted.
  • the vibrator 3 can be swung between the Rx direction and the Ry direction by applying point pressure to the central point P1 of the diaphragm 1 in the X direction (longitudinal direction) and the Y direction (short direction).
  • the two convex portions 1d are configured to follow the frictional sliding surface of the rotor 4.
  • FIG. 6A is a top view (plan view) schematically showing a state in which a good contact state of the protrusion 1d with the rotor 4 cannot be obtained. Since the state when viewed from the upper surface side is equivalent to the state of FIG. 5A, FIG. 6A is the same as FIG. 5A here. 6B and 6C are respectively a first side view and a second side view corresponding to FIG. 6A. As shown in FIG.
  • the concentrated load F2 is applied to a position shifted by ⁇ X1 from the center point P1 in the X direction, the vibrator 3 easily tilts in the Rx1 direction, and the convex portion 1d is good with respect to the rotor 4. A contact state cannot be obtained.
  • the concentrated load F3 is applied to the center point P1.
  • the vibrator 3 is easily inclined in the Rx ⁇ direction. Therefore, a good contact state of the convex portion 1d with the rotor 4 cannot be obtained.
  • the support rigidity for holding the posture of the vibrator 3 when the frictional driving force acts on the contact surface of the rotor 4 is very small. For this reason, the vibrator 3 easily tilts or falls with respect to the frictional sliding surface of the rotor 4, so that the contact state between the convex portion 1d and the rotor 4 becomes unstable, and as a result, the output decreases. End up.
  • the upper surface of the vibrator 3 (upper surface of the piezoelectric element 2) is surface-added with the lower surface (contact portion) of the pressing member 5 arranged in parallel with the rotor 4.
  • a structure is adopted in which the posture of the vibrator 3 is stabilized by following the lower surface of the pressure member 5 by applying pressure. Below, the advantage of this structure is demonstrated.
  • each vibrator 3 is arranged at equal intervals on the circumference of the rotor 4 which is a single member, and the upper surface of each vibrator 3 (opposite to the convex portion 1d).
  • the pressure member 5 which is an annular single member is disposed so as to abut on the upper surface of the piezoelectric element 2 on the side.
  • the pressed member 5 is parallel to the frictional sliding surface of the rotor 4.
  • the pressurizing member 5 is made of a material such as a resin so as not to prevent the vibration excited by the vibrator 3 in a state of being in contact with the entire upper surface of the piezoelectric element 2.
  • the convex portion 1d is applied from the entire upper surface of the piezoelectric element 2 having substantially the same area as the diaphragm main body portion 1a of the diaphragm 1.
  • the pressure abuts against the frictional sliding surface of the rotor 4.
  • the posture of the vibrator 3 is stabilized by being regulated so that the upper surface of the piezoelectric element 2 follows the contact surface with the pressing member 5.
  • the vibrator 3 can be maintained in a state parallel to the frictional sliding surface of the rotor 4, and the support rigidity in the Rx direction and the Ry direction shown in FIG. 5 can be increased.
  • the rotor 4 is described as rotating.
  • the present invention is not limited to this.
  • the rotor 4 is fixed to an external member and the fixing member 8 provided with the vibrator 3 is rotated.
  • the vibration type actuator 100 is configured to include the three vibrators 3, the configuration is not limited thereto, and may be configured to include one or a plurality of vibrators 3.
  • the vibration type actuator according to the second embodiment uses a pressure member 15 described below instead of the pressure member 5 constituting the vibration type actuator 100. Is different.
  • the components of the vibration type actuator according to the second embodiment other than the pressure member 15 are the same as the components of the vibration type actuator 100. Therefore, in the following description, it demonstrates centering on the effect obtained by using the structure of the pressurization member 15, and the pressurization member 15, and abbreviate
  • FIG. 7A is a front view showing a schematic structure of a drive unit 200A constituting the vibration type actuator according to the second embodiment of the present invention, and is drawn from the same viewpoint as FIG. 1B.
  • FIG. 7B is a top view (plan view) schematically showing a contact state of the pressing member 15 with respect to the vibrator 3.
  • protrusions 15 a that abut on the piezoelectric element 2 in the contact area A (shaded area) at the longitudinal end of the piezoelectric element 2 are formed in a portion of the pressure member 15 that faces the vibrator 3. Since the three drive units 200A are arranged with respect to the pressure member 15 (see FIG. 1A), the protrusions 15a are provided at six locations in the entire pressure member 15. Thus, by making the contact area between the vibrator 3 and the pressure member 15 as small as possible, it is possible to prevent the vibration of the vibrator 3 from being hindered by the material constituting the pressure member 15.
  • the portion where the convex portion 1d of the vibrator 3 is in contact with the rotor 4 has a structure that is located inside the contact region A, which is the portion where the pressing member 5 contacts the vibrator 3, in the driving direction. .
  • the posture of the vibrator 3 when the vibrator 3 is pressed against the rotor 4 can be set to a more stable posture.
  • FIG. 8 is a diagram illustrating a state where the vibrator 3 is pressed against the rotor 4 in the drive unit 200A.
  • FIG. 8A is a top view similar to FIG. 7B, and is a diagram for explaining the relationship between the contact region A where the pressing member 15 contacts the vibrator 3 and the structure of the vibrator 3.
  • FIG. 8B is a side view showing a state where the pressing member 15 presses the vibrator 3 against the rotor 4 in an ideal state.
  • FIG. 8C is a side view schematically showing a contact state between the vibrator 3 and the rotor 4 when it is assumed that the pressure member 15 and the rotor 4 are not installed in parallel.
  • the outermost contour (first region) is defined as a pressure application region B.
  • the pressure application region B is a region where the pressure applied from the pressure member 15 by the pressure spring 9 acts on the vibrator 3.
  • the outermost contour (second region), which is the region having the largest area among the regions formed by connecting the contact portions with the rotor 4 in the convex portion 1 d of the vibrator 3, is defined as the drive contact region C.
  • the first area is set to be larger than the second area, and as a more preferable form, the drive contact area C is set to be located inside the pressurizing action area B. ing.
  • the pressure W is larger when the width W2 of the pressure application region B is larger than the width W1 of the drive contact region C and the pressure applied by the pressure spring 9 is applied.
  • the shape design is made so that the action area B completely encompasses the drive contact area C.
  • the vibrator 3 When the vibrator 3 is sandwiched between two members (the rotor 4 and the pressure member 15) and the posture is determined, the contact area with the side to which the posture of the vibrator 3 is to be copied is widened and viewed from the pressure direction. So that the contact area on the other side is completely included. Thereby, the vibrator 3 can be made to follow the intended surface.
  • the pressurizing action region B When viewed in a plan view, the pressurizing action region B is set so as to completely include the driving contact region C as shown in FIG. 8A.
  • the vibrator 3 is in contact with the rotor 4 at two circular positions (tip surfaces of the convex portions 1d at two positions). It is not limited. Further, the number and shape of the contact surfaces of the pressing member 15 with respect to the vibrator 3 may be any as long as the relationship between the pressurizing action region B and the driving contact region C is established, and is limited to the above configuration. It is not a thing.
  • the vibration type actuator according to the third embodiment is different from the vibration type actuator 100 according to the first embodiment in that a support member 16 described below is used instead of the support member 6 constituting the vibration type actuator 100. ing.
  • the constituent elements of the vibration type actuator according to the third embodiment other than the support member 16 are the same as the constituent elements of the vibration type actuator 100. Therefore, hereinafter, the description will be focused on the structure of the support member 16 and the effects obtained by using the support member 16, and description of the common components already described will be omitted.
  • FIG. 9A is a front view showing a state in which the vibrator 3 is joined to the support member 16 constituting the vibration type actuator according to the third embodiment of the present invention
  • FIG. 9B is a perspective view showing the structure of the support member 16. It is.
  • the support member 16 includes an attachment portion 16a, a support portion 16b, a support arm portion 16c, and a screw hole 16d, which are respectively the attachment portion 6a, the support portion 6b, and the support arm of the support member 6 described in the first embodiment. It corresponds to the part 6c and the screw hole 6d.
  • the difference between the support member 16 and the support member 6 used in the first embodiment is the shape of a screw hole for attachment to the fixing member 8.
  • the screw hole 6 d of the support member 6 is a round hole
  • the screw hole 16 d of the support member 16 is a long hole that is long in a direction parallel to the direction in which the vibrator 3 is pressed against the rotor 4. Accordingly, when the vibrator 3 integrally joined to the support member 16 is assembled and fixed in the drive unit, the position of the vibrator 3 can be adjusted in a direction in which the vibrator 3 is pressed against the rotor 4.
  • the thickness of the rotor 4 varies, the position error of the screw hole 6 d of the support member 6, the position error of the screw hole provided in the fixing member 8, etc. "). Therefore, in the vibration type actuator 100, when the vibrator 3 is incorporated into the drive unit 200, there is a possibility that the assembling position of the vibrator 3 with respect to the friction surface of the rotor 4 may vary due to dimensional variations. Therefore, in the first embodiment, the support portion 6b of the support member 6 is designed to bend and absorb the dimensional variation so that the applied pressure that presses the vibrator 3 against the rotor 4 is not affected. On the other hand, the third embodiment aims to eliminate the influence of dimensional variations as much as possible.
  • the assembly of the drive unit using the support member 16 is performed as follows. First, a predetermined number of balls 7 are arranged at substantially equal intervals in the circumferential direction in the V groove formed in the flange portion 8 b of the fixing member 8, and the rotor 4 is arranged so that the balls 7 come into contact with the V groove formed in the rotor 4. Put it on.
  • the vibrator 3 and the support member 16 are joined in advance by welding or the like, and the vibrator 3 and the support member 16 are installed so that the front end surface of the convex portion 1 d of the vibrator 3 is in contact with the friction surface of the rotor 4. At this time, the support member 16 is roughly aligned and temporarily fixed with the screw 11.
  • the pressure member 5 is placed on the upper surface of the piezoelectric element 2 of the vibrator 3, and the pressure spring 9 and the spring holding member 10 are installed to apply pressure to the vibrator 3.
  • the screw 11 temporarily fixed is loosened, and the position of the support member 16 is readjusted so that the support member 16 (support portion 16b) is not bent. Then, the screw 11 is retightened to firmly fix the support member 16.
  • the vibration type actuator according to the fourth embodiment is different from the vibration type actuator 100 according to the first embodiment in that the vibration type actuator 100 includes an insulating member 12 described below which is not included in the vibration type actuator 100.
  • the components of the vibration type actuator according to the fourth embodiment other than the insulating member 12 are the same as those of the vibration type actuator 100. Therefore, hereinafter, the description will be focused on the structure of the insulating member 12 and the effects obtained by using the insulating member 12, and description of common components will be omitted.
  • FIG. 10A is a front view showing a schematic structure of a drive unit 200B constituting a vibration type actuator according to a fourth embodiment of the present invention
  • FIG. 10B is a cross-sectional view of the drive unit 200B.
  • the drive unit 200B has an insulating member 12 disposed between the vibrator 3 and the pressure member 5, and the other constituent members are the same as those of the drive unit 200 described in the first embodiment. is there.
  • the pressing member 5 made of resin or the like is in direct contact with the upper surface of the piezoelectric element 2 of the vibrator 3.
  • the fourth embodiment aims to enable the posture of the vibrator 3 to be maintained without impeding the vibration of the vibrator 3 without limiting the material constituting the pressure member 5. Therefore, the insulating member 12 is made of a material that can maintain a contact state without restricting the vibration of the vibrator 3, and specifically, felt, malt plane, or the like is used.
  • the elastic modulus in the thickness direction is an initial value (elastic modulus in a state before being incorporated in the drive unit 200B). Higher than. Therefore, the rigidity for supporting the vibrator 3 from the piezoelectric element 2 side can be increased. Thereby, even if the insulating member 12 is arranged, a holding structure that does not hinder the vibration of the vibrator 3 without impairing the posture holding ability of the vibrator 3 by the pressure member 5 can be realized.
  • the vibration type actuator according to the fifth embodiment differs from the vibration type actuator 100 according to the first embodiment in place of the pressure member 15 and the vibrator 3 of the vibration type actuator 100, and a pressure member 25 described below and The difference is that a vibrator 23 is provided.
  • the components of the vibration type actuator according to the fifth embodiment other than the pressure member 25 and the vibrator 23 are the same as the components of the vibration type actuator 100. Therefore, hereinafter, the structure of the pressure member 25 and the diaphragm 21 and the effects obtained by using the pressure member 25 and the vibrator 23 will be mainly described, and description of common components will be omitted.
  • FIG. 11A is a front view showing a partial structure of the pressure member 25 constituting the vibration type actuator according to the fifth embodiment of the present invention.
  • 11B, 11C, and 11D are a plan view, a side view, and a front view, respectively, showing a schematic structure of the vibrator 23 that constitutes the vibration type actuator according to the fifth embodiment of the present invention.
  • the fifth embodiment is characterized in that a portion that restrains the posture of the vibrator 23 by the pressure member 25 is a node common to a plurality of vibration modes excited by the vibrator 23.
  • the diaphragm 21 constituting the vibrator 23 has a diaphragm main body 21a and a diaphragm arm 21b extending to the longitudinal end of the diaphragm main body 21a.
  • the vibrator 23 is designed such that the fifth-order out-of-plane bending vibration mode M1 and the second-order out-of-plane bending vibration mode M2 are excited. Therefore, the longitudinal length of the diaphragm body 21a is longer than the longitudinal length of the diaphragm body 1a of the diaphragm 1 described in the first embodiment, and the shape of the piezoelectric element 22 is also the diaphragm. In accordance with the shape of the main body 21a, the rectangular shape is set in plan view.
  • the vibrator 23 can be held so as to follow the pressure member 25 without affecting the vibration of the vibrator 23.
  • the vibration type actuator according to the present invention is embodied as a rotary drive device that rotates the rotor 4.
  • the vibration type actuators according to the sixth embodiment and the seventh embodiment described later are realized as a linear drive device that reciprocates the slider, which is a driven body, in a linear direction. .
  • the 12A and 12B are a plan view and a front view showing a schematic structure of a vibration type actuator 100A according to a sixth embodiment of the present invention, respectively.
  • the basic structure of the vibration type actuator 100A is the same as that of the first embodiment.
  • the fixing member 38 constituting the vibration type actuator 100 ⁇ / b> A has a bottom wall part 38 a and a side wall part 38 b, has a U-shaped cross section, and has a substantially rectangular parallelepiped shape that is long in the X direction that is the driving direction of the slider 34.
  • Each of the four vibrators 33 is joined to a support member 36 equivalent to the support member 6, and each of the four support members 36 is fixed to the side wall portion 38 b of the fixing member 38.
  • the vibrator 33 is equivalent to the vibrator 23 described in the fifth embodiment.
  • the slider 34 has a substantially rectangular parallelepiped shape that is long in the X direction, which is the driving direction, and is in contact with the bottom wall portion 38 a of the fixing member 38 via a plurality of balls 37.
  • Each of the plurality of balls 37 is sandwiched between V-grooves (not shown) extending in the X direction formed on the upper surface of the bottom wall portion 38a of the fixing member 38 and the surface of the slider 34 on the bottom wall portion 38a side. ing.
  • V-grooves not shown
  • the pressure spring 39 is held by the spring holding member 40 and abuts against the upper surface of the piezoelectric element 22 via the pressure member 35, thereby pressing the vibrator 33 against the slider 34.
  • the spring holding member 40 and the pressure spring 39 are not shown, and the spring holding member 40 and the pressure member 35 are indicated by broken lines.
  • the dimensions of the four vibrators 33 are controlled so as to be the same. Therefore, the pressure member 35 that is in contact with the piezoelectric element constituting the vibrator 33 is maintained in a state substantially parallel to the friction surface of the slider 34. Therefore, the vibrator 33 whose posture is constrained by the pressure member 35 can also maintain the posture parallel to the slider 34, thereby realizing a stable contact state and obtaining stable driving characteristics.
  • the vibration type actuator is configured by the four vibrators 33, the number of the vibrators 33 is not limited to this.
  • the vibration type actuator according to the seventh embodiment includes a pressure member 45 in which the shape of the pressure member 35 constituting the vibration type actuator 100A according to the sixth embodiment is changed.
  • the components of the vibration type actuator according to the seventh embodiment other than the pressure member 45 are the same as the components of the vibration type actuator 100A according to the sixth embodiment. Therefore, hereinafter, the description will be focused on the pressure member 45 and the effects obtained by using the pressure member 45, and the description of the common components will be omitted.
  • 13A, 13B, and 13C are a plan view, a front view, and a partial cross-sectional view showing a schematic structure of a vibration type actuator 100B according to a seventh embodiment of the present invention, respectively.
  • the pressing member 45 is provided with a protrusion 45 a serving as a contact portion with the vibrator 33.
  • One protrusion 45 a is provided for each transducer 33 so as to contact the vicinity of the center of the piezoelectric element of each transducer 33.
  • the protrusion 45 a has a short width in the X direction that is the driving direction of the slider 34, while it is almost the same as the width of the vibrator 33 in the Y direction that is the width direction of the vibrator 33 orthogonal to the X direction. Designed to dimensions.
  • the pressure application region in which the pressing member 45 abuts on the vibrator 33 to apply the pressure is in the vicinity of the center of the vibrator 33 in the driving direction (X direction) of the slider 34.
  • the pressure application region of the pressing member 45 is such that the convex portion of the vibrator 33 that contacts the slider 34 is perpendicular to both the driving direction of the slider 34 and the direction in which the vibrator 33 is pressed against the slider 34. It is wider than the area.
  • the posture of the vibrator 33 is restricted following the pressure member 45 only with respect to the inclination in the width direction (roll direction), but with respect to the inclination (pitching) in the driving direction, the slider 34 Has the freedom to follow the friction surface.
  • Such a structure is a vibration type actuator in which the driving reaction force applied to the vibrator 33 and the external force transmitted from the slider 34 are relatively small, and the influence of these forces is small in stabilizing the posture of the vibrator 33. It is very effective for this.
  • the structure of the pressing member 45 is not limited to the linear drive device as in the present embodiment, but can also be applied to the rotary drive device described in the first embodiment.
  • FIG. 14 is a top view illustrating a schematic configuration of the imaging apparatus 80 according to the embodiment of the present invention.
  • the imaging device 80 includes a camera body 83 and a lens barrel 87.
  • the camera body 83 includes a power button 81 and an image sensor 82 that converts an optical image formed by the light passing through the lens barrel 87 into an electrical signal.
  • the lens barrel 87 includes a lens 84 and a vibration type actuator 85 having a drive unit 86.
  • the vibration type actuator 85 and the drive unit 86 are, for example, the vibration type actuator 100 and the drive unit 200 described in the first embodiment, respectively.
  • the lens barrel 87 can be replaced with the camera body 83 as an interchangeable lens, and a lens barrel 87 suitable for the subject to be photographed can be attached to the camera body 83.
  • the lens 84 is, for example, a zoom lens that changes the imaging angle of view, or a focus lens that focuses on the subject.
  • three (one not shown) drive units 86 drive a driven body (not shown), and the driven body drives a gear or a cam to hold the lens 84 (not shown). The holding member is moved in the optical axis direction. As a result, a highly reliable imaging device 80 capable of stable lens driving can be realized.
  • the driving unit 86 can also be used to drive an image blur correction lens for correcting image blur of an optical image formed on the image sensor 82.
  • the image blur correcting lens may be arbitrarily moved in each of two orthogonal directions within a plane orthogonal to the optical axis using two drive units 86.
  • the image sensor 82 may be arbitrarily moved in each of two orthogonal directions within a plane orthogonal to the optical axis.
  • FIG. 15 is an external perspective view of a microscope 90 having an automatic stage 96 according to the embodiment of the present invention.
  • the microscope 90 includes an image pickup unit 92 including an image pickup element and an optical system, and an automatic stage 96 having a stage 94 moved in the XY plane.
  • the automatic stage 96 includes at least two drive units that drive the stage 94 as a driven body. At least one drive unit is used for driving the stage 94 in the X direction, and at least one other drive unit is used for driving the stage 94 in the Y direction.
  • the object to be observed is placed on the stage 94 and an enlarged image is taken by the imaging unit 92.
  • the automatic stage 96 is driven to move the observation object in the X direction or the Y direction to move the observation object, thereby acquiring a large number of captured images.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

振動型アクチュエータ100は、圧電素子2と振動板1が接合されてなる振動子3と、振動子3を支持する支持部材6と、振動子3に当接して相対的に移動する被駆動体であるロータ4と、振動子3に当接する加圧部材5を有し、加圧部材5を振動子3に押し当てることで振動子3をロータ4に対して加圧する加圧機構とを備える。支持部材6に振動子3と接合される2カ所の支持腕部6cを、ロータ4の移動方向に対する剛性が大きく、且つ、加圧力が作用する方向に対する剛性は小さくなるように設け、加圧部材5が圧電素子2の所定の領域に当接することで振動子3の姿勢を加圧部材5に倣わせる構造とすることで、ロータ4に対する振動子3の姿勢を安定して保持し、振動子3の位置決め精度を高く維持する。

Description

振動型アクチュエータ、レンズ鏡筒、撮像装置及び自動ステージ
 本発明は、振動型アクチュエータと、振動型アクチュエータを有するレンズ鏡筒、撮像装置及び自動ステージに関する。
 圧電素子等の電気−機械エネルギ変換素子を金属等の弾性体に接合してなる振動子に所定の振動モードを励起して弾性体の表面に楕円運動を生ぜしめ、弾性体に当接させた被駆動体を駆動する振動型アクチュエータが知られている。振動型アクチュエータは、超音波モータ或いは振動波モータとも呼ばれており、種々の構造のものが提案されている。例えば、カメラ等のレンズ鏡筒を回転駆動するアクチュエータとして、リング形状の超音波モータや棒状の回転型超音波モータ、チップ形状の振動子を円周上に複数配置してなる回転型超音波モータ等、多種の構造のものが提案されている。
 振動子を用いた超音波モータ等の振動型アクチュエータは、電磁モータと比べて単位体積当たりの出力トルクが大きく、減速ギアレス化(ダイレクト駆動)が可能という特徴を有しており、よって、小型化と軽量化が進むレンズ鏡筒等の駆動源に適している。特に、チップ形状の振動子を組み合わせた振動型アクチュエータには、省スペース化とローコスト化を両立することができるというメリットや、適用されるレンズ鏡筒等の寸法や形状に対する設計自由度が高いというメリットがある。
 チップ形状の振動子を組み合わせた振動型アクチュエータが、例えば、特許文献1,2に開示されている。特許文献1には、一方の面に2カ所の接触部を有し、各接触部に楕円振動を発生させる振動子と、振動子の接触部に当接(加圧接触)し、接触部の楕円振動により駆動されるロータ(被駆動体)とを有する超音波モータが記載されている。この超音波モータでは、振動子に振動を励起したときに振動の節となる部分に支持軸を設け、この支持軸を介して加圧バネで振動子をロータに対して押し当てることにより、接触部をロータに当接させて、接触部によるロータの摩擦駆動を可能としている。また、ロータが摩擦駆動される際に加圧バネが撓んで振動子が加圧方向で動くことができるように、加圧方向に延在するガイド溝をハウジングに設け、振動子に設けた支持軸をガイド溝に嵌め込んでいる。また、ロータの接触面と振動子の接触部とが安定して接触することができるように、振動子を支持軸回りに回転可能に支持することで、ロータの接触面に倣って振動子が傾くことができる構造となっている。
 特許文献2には、振動の節を少なくとも1つ有する矩形状の振動子と、振動子の節部の近傍に固定されて振動子を支持する支持部材と、回転自在に配置されたロータとを有する超音波モータが記載されている。この超音波モータでは、リング状ベースの一部をロータに加圧力を作用させる方向に折り曲げて片持ち梁状とすることにより支持部材を形成し、振動子を支持部材の端部に配置している。こうして、ロータと振動子との間に加圧力を付勢する加圧バネとしての機能を、支持部材に付与している。
 上記特許文献1,2に記載された超音波モータでは、上述した振動子の支持構造を採用することにより、ロータの振動子との接触面の平面度が低い場合や支持部材とロータとの平行度が低い場合でも、各振動子とロータとの適切な接触状態を維持することができる。
特開2006−158053号公報 特開平11−235062号公報
 上記特許文献1,2に記載された振動子の支持構造では、振動子がロータの接触面に対して容易に倣うことができるように、振動子の支持剛性が小さく設定されている。そのため、超音波モータの駆動停止時に、振動子とロータとを良好な接触状態に安定して維持することができる。
 しかし、超音波モータの駆動時には、振動子がロータの接触面に及ぼす摩擦駆動力と振動子の支持部に発生する支持反力とにより、振動子を駆動方向(振動子の接触部とロータの接触部の相対位置が変化する方向)に傾かせるモーメントが生じる。したがって、振動子の支持剛性が小さいと、振動子を駆動方向に傾かせるモーメントにより、振動子がロータの摩擦摺動面に対して容易に傾いてしまう。その結果、出力の低下や鳴きと呼ばれる動作音(異音)の発生が生じてしまう。
 また、特許文献1に記載された超音波モータでは、振動子に固定された支持軸と振動子とが一体となって、ハウジングに設けられたガイド溝に填め込まれる構造となっている。この構造では、支持軸とガイド溝との寸法公差の分だけガタが生じ、これが振動子の位置決め精度を低下させ、ひいては、超音波モータの制御性を低下させる原因になる。
 本発明は、被駆動体に対する振動子の姿勢を安定して保持することができると共に、振動子の位置決め精度を高く維持することができる振動型アクチュエータを提供することを目的とする。
 本発明に係る振動型アクチュエータは、電気−機械エネルギ変換素子、及び、前記電気−機械エネルギ変換素子が接合された弾性体を有する振動子と、前記振動子に設けられた駆動部に当接する被駆動体と、前記振動子を支持する加圧部材を有し、前記加圧部材を前記振動子に対して押し当てることにより前記振動子を前記被駆動体に対して押し当てる加圧手段と、を備え、前記振動子と前記被駆動体は、前記振動子に励起された振動により前記振動子と前記被駆動体との相対位置が変化するように構成され、前記相対位置が変化する方向と前記加圧手段が前記振動子を前記被駆動体に押し当てる加圧方向とを含む面において、前記振動子の姿勢が前記被駆動体よりも前記加圧部材に倣うように構成されていることを特徴とする。
 本発明に係る別の振動型アクチュエータは、電気−機械エネルギ変換素子、及び、前記電気−機械エネルギ変換素子が接合された弾性体を有する振動子と、前記振動子に設けられた駆動部に当接する被駆動体と、前記振動子を支持する加圧部材を有し、前記加圧部材を前記振動子に対して押し当てることにより前記振動子を前記被駆動体に対して押し当てる加圧手段と、を備え、前記振動子と前記被駆動体は、前記振動子に励起された振動により前記振動子と前記被駆動体との相対位置が変化するように構成され、前記加圧部材は、前記振動子と当接する1つ又は複数の部分を有し、前記振動子は、前記被駆動体と当接する1つ又は複数の部分を有し、前記加圧手段が前記振動子を前記被駆動体に押し当てる加圧方向から見たときに、前記加圧部材が前記振動子に当接する領域又は前記加圧部材が前記振動子に当接する複数の部分を結んで形成される領域(1つの場合はその領域)のうち、面積が最も大きい領域を第1の領域とし、前記振動子が前記被駆動体に当接する領域又は前記振動子が前記被駆動体に当接する複数の部分を結んで形成される領域(1つの場合はその領域)のうち面積が最も大きい領域を第2の領域としたときに、前記第1の領域は前記第2の領域より大きく、前記第1の領域と前記第2の領域は、前記振動子及び前記被駆動体が回転しないように、前記加圧方向から見たときに少なくとも一部が重なっていることを特徴とする。
 本発明に係る更に別の振動型アクチュエータは、電気−機械エネルギ変換素子、及び、前記電気−機械エネルギ変換素子が接合された弾性体を有する振動子と、前記振動子に設けられた駆動部に当接する被駆動体と、前記振動子を支持する加圧部材を有し、前記加圧部材を前記振動子に対して押し当てることにより前記振動子を前記被駆動体に対して押し当てる加圧手段と、を備え、前記振動子と前記被駆動体は、前記振動子に励起された振動により前記振動子と前記被駆動体との相対位置が変化するように構成され、前記振動子が前記被駆動体と当接せずに前記加圧手段に支持されたときに、前記振動子が前記加圧手段から力を受ける部分の面を第1の面とし、前記振動子が前記加圧手段と当接せずに前記被駆動体に支持されたときに、前記振動子が前記被駆動体から力を受ける部分の面を第2の面とし、前記第1の面に垂直な力を前記第2の面に作用させたときに前記第1の面に働く反力による、前記第2の面の図心を中心とする回転モーメントの絶対値の総和を第1モーメントとし、前記第1の面に垂直な力と大きさが等しく前記第2の面に垂直な力を前記第1の面に作用させたときに前記第2の面に働く反力による、前記第1の面の図心を中心とする回転モーメントの絶対値の総和を第2モーメントとしたときに、前記相対位置が変化する方向と前記加圧手段が前記振動子を前記被駆動体に押し当てる加圧方向とを含む面において、前記振動子、前記被駆動体及び前記加圧手段は、前記第1モーメントが前記第2モーメントより大きくなるように構成されていることを特徴とする。
 本発明によれば、振動子の支持剛性を大きく保ちながら、振動子をロータの摩擦摺動面に対して正確に位置決めして、強固に保持することができる。これにより、振動型アクチュエータの駆動時に外力や反転時の衝撃力等が作用しても振動子を安定して保持することができ、ひいては安定した駆動特性(出力特性)を得ることができる。
本発明の第1実施形態に係る振動型アクチュエータの概略構造を示す平面図である。 図1Aの振動型アクチュエータを構成する駆動ユニットの概略構造を示す正面図である。 図1Bに対応する断面図である。 図1B,1Cの駆動ユニットを構成する振動子の構造を示す上面図(平面図)である。 図2Aに対応する側面図である。 図2Aに対応する正面図である。 図1Aの振動型アクチュエータにおける振動子の回転モーメントを説明する第1の模式図である。 図1Aの振動型アクチュエータにおける振動子の回転モーメントを説明する第2の模式図である。 図1B,1Cの駆動ユニットを構成する支持部材の構造を示す斜視図である。 図4Aの支持部材に振動子を取り付けた状態を示す正面図である。 図1Aの振動型アクチュエータにおいて、ロータに対して振動子を押し当てる加圧方法として従来方法を適用した状態を模式的に示す上面図(平面図)である。 図5Aの上面図に対応する側面図である。 図5Aの上面図に対応する正面図である。 図5の加圧方法において、振動子の凸部とロータとの良好な当接状態が得られなくなる状態を模式的に示す図である。 図6Aの上面図に対応する第1の側面図である。 図6Aの上面図に対応する第2の側面図である。 本発明の第2実施形態に係る振動型アクチュエータを構成する駆動ユニットの概略構造を示す正面図である。 図7Aの駆動ユニットにおける、振動子に対する加圧部材の当接状態を模式的に示す上面図(平面図)である。 図7Aの駆動ユニットにおいて、加圧部材が振動子と接触する接触領域と振動子の構造との関係を説明する図である。 図7Aの駆動ユニットにおいて、理想的な状態で加圧部材が振動子をロータに押し当てている状態を示す側面図である。 図7Aの駆動ユニットにおいて、加圧部材とロータとが平行に設置されていない状態を仮定した場合の振動子とロータとの接触状態を模式的に示す側面図である。 本発明の第3実施形態に係る振動型アクチュエータを構成する支持部材に振動子を接合した状態を示す正面図である。 図9Aに示す支持部材の構造を示す斜視図である。 本発明の第4実施形態に係る振動型アクチュエータを構成する駆動ユニットの概略構造を示す正面図である。 図10Aの駆動ユニットの断面図である。 本発明の第5実施形態に係る振動型アクチュエータを構成する加圧部材の部分的な構造を示す正面図である。 本発明の第5実施形態に係る振動型アクチュエータを構成する振動子の概略構造を示す平面図である。 図11Bの平面図に対応する側面図である。 図11Bの平面図に対応する正面図である。 本発明の第6実施形態に係る振動型アクチュエータの概略構造を示す平面図である。 図12Aに対応する正面図である 本発明の第7実施形態に係る振動型アクチュエータの概略構造を示す平面図である。 図13Aに対応する正面図である。 図13Aに対応する部分断面図である。 本発明の実施形態に係る振動型アクチュエータを備える撮像装置の概略構成を示す上面図である。 本発明の実施形態に係る振動型アクチュエータを備えるX−Yステージを有する顕微鏡の外観斜視図である。
 以下、本発明の実施形態について、添付図面を参照して詳細に説明する。なお、本実施形態において「部材Aの姿勢が部材Bより部材Cに倣う」とは、「部材Bと部材Cの部材Aに対向する面が非平行の場合に、部材Aが部材Bより部材Cの傾きに沿った姿勢となること」又は「部材Bと部材Cが同じ量動いた場合に、部材Aは部材Bより部材Cの影響を強く受けた姿勢となること」を指す。
 本発明の第1実施形態について説明する。図1Aは、本発明の第1実施形態に係る振動型アクチュエータ100の全体構造を示す平面図(上面図)である。図1Bは振動型アクチュエータ100を構成する駆動ユニット200の概略構造を示す正面図、図1Cは駆動ユニット200の概略構造を示す断面図である。図1Bの正面図は、図1Aに示す振動型アクチュエータ100の外径側から内径側を見たときの駆動ユニット200の概略構造を示しており、図1Cの断面図は、図1A内に示す矢視L−Lでの断面図である。
 振動型アクチュエータ100は、円筒状の固定部材8と、環状の被駆動体であるロータ4と、固定部材8とロータ4との間に配置される複数のボール7とを有する。固定部材8は、円筒状の本体8aと、本体8aと一体的に本体8aの外径側に張り出して形成された鍔部8bとを有する。鍔部8bにおいてロータ4と対向する面には、本体8aと同心円となるようにV溝が形成されており、ロータ4において鍔部8bと対向する面にも、鍔部8bに形成されたV溝と対向する位置にV溝が形成されている(図1C参照)。複数のボール7は、鍔部8bとロータ4のV溝間において、V溝の周方向に略等間隔で挟持されている。これにより、ロータ4が固定部材8に対して相対的に回転可能(移動可能)な軸受け(ボールベアリング)が構成されている。
 振動型アクチュエータ100の駆動ユニット200は、固定部材8にビス11により固定される支持部材6と、支持部材6に接合される振動子3と、振動子3をロータ4に対して押し当てる加圧機構とを有する。振動子3は、ロータ4においてV溝が形成されていない面に当接する弾性体である振動板1と、振動板1に所定の振動を励起する電気−機械エネルギ変換素子である圧電素子2とを有する。圧電素子2には、所定の交番電圧(駆動電圧)を印加する不図示のフレキシブルプリント基板が取り付けられる。支持部材6は、振動子3が接合された状態で、ビス11により固定部材8の本体8aの外周壁に固定される。加圧機構は、加圧バネ9と、固定部材8の本体8aに固定されて加圧バネ9を保持するバネ保持部材10と、加圧バネ9と圧電素子2(振動子3)との間に配置される加圧部材5とを有する。加圧部材5は、加圧バネ9の付勢力によって振動子3をロータ4に対して押し当てる。
 図2A、図2B及び図2Cはそれぞれ、振動子3の構造を示す上面図(平面図)、側面図及び正面図である。振動子3を構成する振動板1は、例えば矩形形状の、振動板本体部1aと、振動板本体部1aの長手方向において、振動板本体部1aの端から延出する振動板腕部1bとを有する。振動板1は、例えば、金属薄板等をパンチング加工することにより成形されている。後述するように、振動板1の2カ所の振動板腕部1bはそれぞれ、支持部材6に設けられた2カ所の支持腕部6cに対してスポット溶接等で接合される。
 振動板本体部1aの一方の面(上面)には圧電素子2が接着等により接合されており、振動板本体部1aの他方の面(下面)にはボス部1cが2カ所に設けられている。2カ所のボス部1cのそれぞれの先端中央部には、ロータ4との接触部であり、ロータ4を駆動する駆動部となる凸部1dが設けられている。2カ所の凸部1dは、加圧機構による付勢力によって、ロータ4のV溝が形成されていない面(摩擦摺動面)に当接している(図1B参照)。
 不図示のフレキシブルプリント基板は、圧電素子2に接着等により接合されている。電源からフレキシブルプリント基板を通して圧電素子2に交番電圧が印加されると、2つの異なる定在波振動が振動子3に励起されることで、振動板1の凸部1dに楕円振動が励起される。これにより、凸部1dと当接しているロータ4は、凸部1dの楕円振動によって摩擦駆動され、振動子3の接触部とロータ4の接触部の相対位置が変化する方向(以下「駆動方向」という)に駆動される。第1実施形態では、この駆動方向は、振動子3に対して2カ所の凸部1dを結ぶ方向となり、固定部材8は不図示の外部部材に固定されて不動である。したがって、以下では、固定部材8に対する位置が変化することのない振動子3に対してロータ4が回転駆動されるものとして説明を行う。
 ここで、振動子3の回転モーメントについて説明する。図3A及び図3Bはそれぞれ、振動子3の回転モーメントを説明する第1の模式図及び第2の模式図である。振動子3がロータ4と当接せずに加圧機構に支持された状態を考える。つまり、図1B,1Cにおいて振動子3(振動板1)から加圧バネ9までの部分を支持部材6と固定部材8とを除いて取り出し、上下を逆にすると、振動子3がロータ4と当接せずに加圧機構に支持された状態が得られる。このときの振動子3の、加圧機構によって支持される部分の面を、第1の面とする。また、第1の面において加圧機構と振動子3とが当接する複数の部分を結んで形成される領域のうち、加圧方向に垂直な面において最も面積が大きくなる領域を、図3Aに示すように、第1の領域S1とする。
 また、振動子3が加圧機構と当接せずロータ4に支持された状態を考える。つまり、図1B及び図1Cにおいて、加圧部材5よりも上側の部材と支持部材6を取り除くことで、振動子3が加圧機構と当接せずロータ4に支持された状態が得られる。このときの振動子3の、ロータ4によって支持される部分の面を、第2の面とする。また、第2の面において振動子3とロータ4とが当接する複数の部分を結んで形成される領域のうち、加圧方向に垂直な面において最も面積が大きくなる領域を、図3Bに示すように、第2の領域S2とする。
 振動型アクチュエータ100において、図3Aに示すように、第1の面にある第1の領域S1に垂直な力Faを、第2の面にある第2の領域S2に作用させると、第1の領域S1に反力faが働く。この反力faによる、第2の領域S2の図心G2を中心とする回転モーメントの絶対値の総和を第1モーメントとする。また、図3Bに示すように、第1の面にある第1の領域S1に垂直な力Faと大きさが等しく、第2の面にある第2の領域S2に垂直な力Fbを、第1の領域S1に作用させると、第2の領域S2に反力fbが働く。この反力fbによる、第1の領域S1の図心G1を中心とする回転モーメントの絶対値の総和を第2モーメントとする。ここで、第1の領域S1の面積は、第2の領域S2の面積より大きく、第1の領域S1と第2の領域S2は、振動子3及びロータ4が回転しないように、加圧方向から見たときに、少なくとも一部で重なっている。
 なお、ここでは便宜的に、第1の領域S1は、圧電素子2の上面の外形と略同一であるとみなしている。また、第2の領域S2は、互いに離れている2つの凸部1dの先端面を結んでできる領域が最も大きくなる、2つの凸部1dの先端面を含む最外形(外郭)としており、その図心を図心G2と定義している。
 第1実施形態では、振動子3、ロータ4及び加圧機構は、駆動方向に垂直な面において、第1モーメントが第2モーメントよりも大きくなるよう構成されている。これは、以下の理由による。即ち、振動型アクチュエータ100の駆動時には、振動子3とロータ4(被駆動体)とが接触して駆動力が伝達されるため、ロータ4に対する振動子3の接触部に駆動方向の力が加わる。すると、駆動方向と直交する方向を軸とする回転モーメントが振動子3に対して発生しやすくなる。このとき、従来の振動子では、第1モーメントが第2モーメントよりも小さく、加圧機構側が被駆動体との当接部に倣う構成となっているため、図5A~5C及び図6A~6Cを参照して後述するように、振動子と被駆動体の接触状態が不安定となることがある。
 これに対して、第1実施形態では、第1モーメントを第2モーメントよりも大きくすることによって、振動子3が回転してしまうのを加圧機構によって抑制する構成としている。つまり、駆動方向と直交する軸回りでの振動子3の姿勢は、駆動方向及び加圧機構による加圧方向を含む面において、ロータ4(被駆動体)よりも加圧機構側に倣う。これにより、振動子3とロータ4との接触状態が不安定となることを回避して、振動型アクチュエータ100を安定的に駆動することができる。
 例えば、構成としては、第1の領域S1と第2の領域S2は、加圧方向から見たときに、第1の領域S1が第2の領域S2より大きい。また、第1の領域S1と第2の領域S2は、振動子3及びロータ4が回転しないように、加圧方向から見たときに、少なくとも一部で重なっている。これにより、駆動方向と直交する軸回りでの振動子3の姿勢は、駆動方向及び加圧機構による加圧方向を含む面において、ロータ4(被駆動体)よりも加圧機構側に倣う。例えば、振動子3、ロータ4及び加圧部材5は、加圧方向から見たときに、第2の領域S2の中心が第1の領域S1の内部に位置するように構成される。なお、詳細は図5A~5C及び図6A~6Cについての説明に併せて後述する。
 振動子3の回転を加圧機構によって抑制するために、加圧機構による加圧方向と直交すると共に駆動方向と直交する方向を軸とした回転モーメントの場合にも、第1モーメントが第2モーメントより大きくなるようにすることが望ましい。同様に、加圧機構による加圧方向と直交する面において、加圧方向から見たときに第1の領域S1が第2の領域S2より大きく、第1の領域S1と第2の領域S2は、振動子3及びロータ4が回転しないように、加圧方向から見たときに少なくとも一部が重なっていることが望ましい。これにより、振動子3の回転を加圧機構によって抑制することができる。例えば、加圧方向から見たときに、第2の領域S2が第1の領域S1の内側にあることで、振動子3の回転を加圧機構によって抑制することができる。
 図4Aは、支持部材6の構造を示す斜視図であり、図4Bは、支持部材6に振動子3を取り付けた状態を示す正面図である。支持部材6は、断面形状が略L字形状を有し、例えば、金属板をプレス加工等することにより製造することができる。支持部材6は、固定部材8に取り付けるための取付部6aと、取付部6aから約90°に折り曲げられた支持部6bとを有する。取付部6aには、支持部材6を固定部材8にビス11により取り付けるためのビス穴6d(取付穴)が設けられている。
 ロータ4の摩擦摺動面と略平行となる支持部6bの端部には、振動板腕部1bとの接合部となる2つの支持腕部6cが設けられている。2カ所の支持腕部6cに対して振動板1の2カ所の振動板腕部1bがそれぞれ、スポット溶接等で接合される。ここで、支持部6bは、凸部1dをロータ4に対して押し当てる加圧方向である矢印A方向での剛性は小さく、比較的容易に変形することができるように設計されている。そのため、振動板1の厚さのばらつきや支持部材6を固定部材8へ取り付ける際の位置誤差等に起因して支持部6bが変形することがあっても、振動子3をロータ4に押し当てる加圧力が大きく変わってしまうことはない。一方、支持部6bは、2カ所の凸部1dを結ぶ方向であってロータ4の回転方向であるB方向での剛性は大きく、変形し難い。そのため、ロータ4の駆動時にかかる駆動反力やロータ4の回転方向を反転させたときにかかる反力(衝撃力)によって振動子3の位置決め精度が低下してしまうことを回避することができる。
 次に、駆動ユニット200における振動子3の姿勢保持機能について説明する。振動板1のボス部1cに設けられた凸部1dの先端面(ロータ4との接触面)は、極めて面積が小さく、例えば、第1実施形態ではφ1mm程度の円形に設計されている。これは、2つの異なる定在波振動を合成することによって、振動子3の一部である凸部1dに楕円振動を生成させるという振動子3の駆動原理に由来する。即ち、定在波振動は、振動子3内の位置(場所)によってその振幅と振動方向が異なるため、2つの異なる振動モードの定在波を合成して楕円振動を生成させている場合、振動方向が等しい領域は狭い範囲に限られる。したがって、凸部1dの先端面の面積を広くして同時にロータ4に接触させると、接触面内で滑りが発生して、駆動効率が低下してしまう。この問題を回避するために、駆動力の伝達が適切に可能となる範囲で、且つ、できる限り狭い面積でロータ4に接触するように、凸部1dを構成している。
 凸部1dの先端面は、ロータ4の摩擦摺動面と安定した接触状態を維持するために、ラップ等の加工が施された平滑面となっており、且つ、2つの凸部1dの先端面は同一平面上にあるように設計されている。また、ロータ4の凸部1dとの摩擦摺動面も同様に、平滑で、反りが極めて小さくなるようにラップ等の表面加工が施されている。
 振動型アクチュエータ100を効率の高いモータとするためには、2つの凸部1dの先端面がロータ4の摩擦摺動面に均一に当接することが理想であるが、組み立て精度でそのような接触状態を実現することは容易ではない。そこで、従来から、振動子3をロータ4に対して押し当てることで、2つの凸部1dをロータ4に当接させている。
 図5A、図5B及び図5Cはそれぞれ、ロータ4に対して振動子3を押し当てる方法として従来方法を適用した状態を模式的に示す上面図(平面図)、側面図及び正面図である。なお、図5A~5Cでは、ロータ4の図示を省略している。従来は、振動板1のX方向(長手方向)とY方向(短手方向)の中心点P1に集中荷重F1を加える点加圧によって、振動子3をRx方向とRy方向とで揺動可能として、2カ所の凸部1dをロータ4の摩擦摺動面に倣わせる構成を取っている。
 しかし、凸部1dの先端面の面積が小さい場合には、加圧点の位置がずれた場合や加圧方向がずれた場合に、凸部1dのロータ4に対する良好な接触状態が得られなくなる。図6Aは、凸部1dのロータ4に対する良好な接触状態が得られなくなる状態を模式的に示す上面図(平面図)である。上面側から見たときの状態は、図5Aの状態と同等であるため、ここでは、図6Aは図5Aと同じである。図6B及び図6Cはそれぞれ、図6Aに対応する第1の側面図及び第2の側面図である。図6Bに示すように、中心点P1からX方向にΔX1だけずれた位置に集中荷重F2が加わってしまうと、振動子3がRx1方向に簡単に傾いてしまい、凸部1dのロータ4に対する良好な接触状態が得られなくなる。また、図6Cに示すように、中心点P1に集中荷重F3が加わっているが、その方向がX方向から角度θだけずれている場合も同様に、振動子3がRxθ方向に簡単に傾いてしまい、凸部1dのロータ4に対する良好な接触状態が得られなくなる。
 更に、図5で説明した点加圧の場合には、ロータ4の接触面に摩擦駆動力が作用した際に振動子3の姿勢を保持するための支持剛性が非常に小さい。そのため、振動子3がロータ4の摩擦摺動面に対して簡単に傾き或いは倒れてしまうことで、凸部1dとロータ4との接触状態が不安定になり、その結果、出力が低下してしまう。
 このような問題を解決するため、第1実施形態では、振動子3の上面(圧電素子2の上面)をロータ4と平行に配置された加圧部材5の下面(当接部)で面加圧することにより、振動子3の姿勢を加圧部材5の下面に倣わせて安定化させる構造を採用している。以下に、この構造の利点について説明する。
 図1Aに示したように、振動型アクチュエータ100では、単一部材であるロータ4の円周上に3つの駆動ユニット200を等間隔で配置し、各振動子3の上面(凸部1dの反対側の圧電素子2の上面)に当接するように、環状の単一部材である加圧部材5を配置している。ここで、それぞれの振動子3の高さ(凸部1dの先端面から圧電素子2の上面までの距離)は同一になるように寸法管理されているため、各振動子3の上面に当接した加圧部材5は、ロータ4の摩擦摺動面と平行になる。なお、加圧部材5は、圧電素子2の上面全体に当接した状態で振動子3に励起される振動を妨げることのないように、樹脂等の材料からなる。
 この状態で加圧バネ9により振動子3をロータ4に対して押し当てると、凸部1dは、振動板1の振動板本体部1aとほぼ面積の等しい圧電素子2の上面全体から加えられる加圧力によってロータ4の摩擦摺動面に当接する。このとき、振動子3の姿勢は、圧電素子2の上面が加圧部材5との接触面に倣うように規制されることで安定する。その結果、振動子3をロータ4の摩擦摺動面に対して平行な状態に維持することができると共に、図5に示したRx方向とRy方向の支持剛性を大きくすることができる。よって、ロータ4の駆動時に反転等で大きな反力が振動子3に作用しても、凸部1dとロータ4との接触が不安定になることがなく、安定した出力を得ることができる。
 なお、第1実施形態では、ロータ4が回転するとして説明したが、これに限定されず、例えば、ロータ4が外部部材に固定され、振動子3が設けられた固定部材8が回転する構成としてもよい。また、振動型アクチュエータ100を、3つの振動子3を備える構成としたが、これに限定されず、1つ又は複数の振動子3を備える構成であってもよい。
 次に、本発明の第2実施形態について説明する。第2実施形態に係る振動型アクチュエータは、第1実施形態に係る振動型アクチュエータ100と比較すると、振動型アクチュエータ100を構成する加圧部材5に代えて以下に説明する加圧部材15を用いる点で異なっている。そして、加圧部材15以外の第2実施形態に係る振動型アクチュエータの構成要素は、振動型アクチュエータ100の構成要素と同じである。よって、以下の説明では、加圧部材15の構造と加圧部材15を用いることで得られる効果を中心に説明を行い、既に説明した共通する構成要素についての説明を省略する。
 図7Aは、本発明の第2実施形態に係る振動型アクチュエータを構成する駆動ユニット200Aの概略構造を示す正面図であり、図1Bと同じ視点で描かれている。図7Bは、振動子3に対する加圧部材15の当接状態を模式的に示す上面図(平面図)である。
 加圧部材15において振動子3と対向する部分には、圧電素子2の長手方向端の接触領域A(斜線領域)において圧電素子2に当接する2カ所の突起部15aが形成されている。なお、加圧部材15に対して3つの駆動ユニット200Aが配置されるため(図1A参照)、突起部15aは、加圧部材15全体では6カ所に設けられる。このように振動子3と加圧部材15との接触領域をできる限り小さくすることによって、加圧部材15を構成する材料によって振動子3の振動が阻害されることを回避することができる。
 また、振動子3の凸部1dがロータ4と当接する部分が、駆動方向において、加圧部材5が振動子3に当接する部分である接触領域Aよりも内側に位置する構造となっている。これにより、振動子3がロータ4に対して押し当てられているときの振動子3の姿勢をより安定な姿勢とすることができる。
 図8は、駆動ユニット200Aにおいて振動子3がロータ4に押し当てられている状態を説明する図である。図8Aは、図7Bと同様の上面図であり、加圧部材15が振動子3と接触する接触領域Aと振動子3の構造との関係を説明する図である。図8Bは、理想的な状態で加圧部材15が振動子3をロータ4に押し当てている状態を示す側面図である。図8Cは、加圧部材15とロータ4とが平行に設置されていない状態を仮定した場合の、振動子3とロータ4との接触状態を模式的に示す側面図である。
 図8Aに示すように、加圧部材15の突起部15aが振動子3(圧電素子2)と当接する部分である2つの接触領域Aを結んで形成される領域のうち、面積が最も大きい領域である、最外形(第1の領域)を加圧力作用領域Bとする。加圧力作用領域Bは、加圧バネ9による加圧部材15からの加圧力が振動子3に作用する領域である。また、振動子3の凸部1dにおけるロータ4との接触部を結んで形成される領域のうち、面積が最も大きい領域である、最外形(第2の領域)を、駆動接触領域Cとする。第2実施形態では、第1の領域が第2の領域よりも大きくなるように設定されており、より好ましい形態として、駆動接触領域Cが加圧力作用領域Bの内側に位置するように設定されている。
 これは、振動子3の姿勢を加圧部材15に倣わせるための必須条件である。即ち、第2実施形態に係る振動型アクチュエータでは、図8Bに示すように、加圧部材15と振動子3とロータ4とが平行になる姿勢を保っていることが望ましい。つまり、振動子3の凸部1dの先端面全体がロータ4の摩擦面と均一に接触すると同時に、加圧部材15の突起部15aの先端面全体が振動子3(圧電素子2)の上面と均一に当接している状態となっていることが望ましい。しかし、加圧部材15とロータ4のそれぞれの姿勢は個別に決定されるため、加圧部材15、振動子3及びロータ4が揃って自然に平行になるように組み立てられることはまれである。したがって、傾きの自由度を持っている振動子3が、加圧部材15又はロータ4のいずれか一方に倣う姿勢で落ち着いた状態に保持されるようにする必要がある。
 そこで、図8A及び図8Bに示す通り、駆動接触領域Cの幅W1より加圧力作用領域Bの幅W2が大きく、且つ、加圧バネ9による加圧力が作用する方向から見たときに加圧力作用領域Bが駆動接触領域Cを完全に包含するように、形状設計がなされている。これにより、仮に加圧部材15とロータ4とが平行に設置されていないために振動子3がロータ4の摩擦面に倣うように傾いても、図8Cに示すように、振動子3にはF4×Lの回転モーメントがQ点に作用する。その結果、振動子3は加圧部材15に倣う姿勢で安定するようになる。なお、逆の場合(振動子3が加圧部材15との接触面(第1の領域:接触領域A)に倣うように傾き、駆動接触領域C側のQ点に集中荷重が掛かっている場合等)には、振動子3を傾かせる回転モーメントは発生しない。
 振動子3が2つの部材(ロータ4、加圧部材15)に挟持されて姿勢が定まる場合、振動子3の姿勢を倣わせようとする側との接触領域を広くし、加圧方向から見たときに他方側の接触領域を完全に包含するようにする。これにより、振動子3を意図する側の面に倣わせることができる。これは、ロータ4の駆動方向についても同様であり、平面図で見た場合に、図8Aに示すように、加圧力作用領域Bが駆動接触領域Cを完全に包含するように設定される。
 なお、第2実施形態のように、加圧力作用領域Bの重心が駆動接触領域Cの内部に位置する構成とすることで、上記の振動子3を意図する側の面に倣わせる効果をより効果的に得ることができる。第2実施形態では、振動子3がロータ4に対して円形の2カ所(2カ所の凸部1dの先端面)で当接する形態を示しているが、接触面の数や形状等はこれに限定されるものではない。また、加圧部材15の振動子3に対する当接面の数や形状についても、上述の加圧力作用領域Bと駆動接触領域Cとの関係が成り立つものであればよく、上記構成に限定されるものではない。
 次に、本発明の第3実施形態について説明する。第3実施形態に係る振動型アクチュエータは、第1実施形態に係る振動型アクチュエータ100とは、振動型アクチュエータ100を構成する支持部材6に代えて、以下に説明する支持部材16を用いる点で異なっている。そして、支持部材16以外の第3実施形態に係る振動型アクチュエータの構成要素は、振動型アクチュエータ100の構成要素と同じである。よって、以下、支持部材16の構造と支持部材16を用いることで得られる効果を中心に説明を行い、既に説明した共通する構成要素についての説明を省略する。
 図9Aは、本発明の第3実施形態に係る振動型アクチュエータを構成する支持部材16に振動子3を接合した状態を示す正面図であり、図9Bは、支持部材16の構造を示す斜視図である。支持部材16は、取付部16a、支持部16b、支持腕部16c及びビス穴16dを有し、これらはそれぞれ、第1実施形態で説明した支持部材6の取付部6a、支持部6b、支持腕部6c及びビス穴6dに対応する。
 支持部材16と第1実施形態で用いた支持部材6との相違点は、固定部材8へ取り付けるためのビス穴の形状である。即ち、支持部材6ではビス穴6dを丸穴としたのに対して、支持部材16のビス穴16dは、振動子3をロータ4に押し当てる方向と平行な方向に長い長穴としている。これにより、支持部材16と一体的に接合された振動子3を駆動ユニットに組み込んで固定する際に、振動子3をロータ4に押し当てる方向で振動子3の位置を調節することができる。
 例えば、振動型アクチュエータ100を構成する部品については、ロータ4の厚さのバラつきや支持部材6のビス穴6dの位置誤差、固定部材8に設けられたビス穴の位置誤差等(以下「寸法ばらつき」という)がある。そのため、振動型アクチュエータ100では、振動子3を駆動ユニット200に組み込む際に、寸法ばらつきにより、ロータ4の摩擦面に対する振動子3の組み込み位置にばらつきが生じるおそれがある。そこで、第1実施形態では、支持部材6の支持部6bが撓んで寸法ばらつきを吸収することで、振動子3をロータ4に押し当てる加圧力に影響が出ないように設計されている。これに対して、第3実施形態は、寸法ばらつきの影響を可能な限り無くすことを目的としている。
 支持部材16を用いた駆動ユニットの組み立ては、以下の通りにして行われる。先ず、固定部材8の鍔部8bに形成されたV溝に所定数のボール7を周方向に略等間隔で並べ、ロータ4に形成されたV溝にボール7が当接するようにロータ4を載せる。振動子3と支持部材16とを予め溶接等で接合しておき、これを振動子3の凸部1dの先端面がロータ4の摩擦面に当接するように設置する。このとき、支持部材16を大まかに位置合わせして、ビス11で仮止めする。次に、加圧部材5を振動子3の圧電素子2の上面に載せ、加圧バネ9とバネ保持部材10を設置して、振動子3に加圧力を付与する。この状態で、仮止めしていたビス11を緩め、支持部材16(支持部16b)の撓みがなくなるように支持部材16の位置を再調整する。そして、ビス11を締め直して支持部材16を強固に固定する。
 これにより、駆動ユニットの組み立て時に生じる支持部材16の不要な撓みをほぼ無くすことができ、また、部品精度に起因して各振動子3のロータ4に対する加圧力にむらが生じることを回避することができる。こうして、安定した駆動性能を得ることができる。
 次に、本発明の第4実施形態について説明する。第4実施形態に係る振動型アクチュエータは、第1実施形態に係る振動型アクチュエータ100とは、振動型アクチュエータ100にはない以下に説明する絶縁部材12を備える点で異なっている。絶縁部材12以外の第4実施形態に係る振動型アクチュエータの構成要素は、振動型アクチュエータ100の構成要素と同じである。よって、以下、絶縁部材12の構造と絶縁部材12を用いることで得られる効果を中心に説明を行い、共通する構成要素についての説明を省略する。
 図10Aは、本発明の第4実施形態に係る振動型アクチュエータを構成する駆動ユニット200Bの概略構造を示す正面図であり、図10Bは、駆動ユニット200Bの断面図である。駆動ユニット200Bは、振動子3と加圧部材5との間に配置された絶縁部材12を有しており、その他の構成部材は第1実施形態で説明した駆動ユニット200の構成部材と同じである。
 第1実施形態では、振動子3の圧電素子2の上面に樹脂等で構成された加圧部材5を直接接触する構成とした。これに対して、第4実施形態では、加圧部材5を構成する材料を限定することなく、振動子3の振動を妨げずに振動子3の姿勢維持を可能にすることを目的としている。そのために、絶縁部材12には、振動子3の振動を拘束することなく、当接状態を維持することができる材料が用いられ、具体的には、フェルトやモルトプレーン等が用いられる。
 絶縁部材12は、加圧部材5と振動子3との間で圧縮された状態で設置されるため、厚さ方向の弾性率が初期値(駆動ユニット200Bに組み込む前の状態での弾性率)よりも高くなる。よって、振動子3を圧電素子2側から支える剛性を高めることができる。これにより、絶縁部材12を配置しても、加圧部材5による振動子3の姿勢保持能力を損なうことなく、振動子3の振動を阻害しない保持構造を実現することができる。
 次に、本発明の第5実施形態について説明する。第5実施形態に係る振動型アクチュエータは、第1実施形態に係る振動型アクチュエータ100とは、振動型アクチュエータ100の加圧部材15及び振動子3に代えて、以下に説明する加圧部材25及び振動子23を備える点で異なっている。加圧部材25及び振動子23以外の第5実施形態に係る振動型アクチュエータの構成要素は、振動型アクチュエータ100の構成要素と同じである。よって、以下、加圧部材25と振動板21の構造と、加圧部材25と振動子23を用いることで得られる効果を中心に説明を行い、共通する構成要素についての説明を省略する。
 図11Aは、本発明の第5実施形態に係る振動型アクチュエータを構成する加圧部材25の部分的な構造を示す正面図である。図11B、図11C及び図11Dはそれぞれ、本発明の第5実施形態に係る振動型アクチュエータを構成する振動子23の概略構造を示す平面図、側面図及び正面図である。第5実施形態は、加圧部材25により振動子23の姿勢を拘束する部分が、振動子23に励起される複数の振動モードに共通する節部となっていることを特徴とする。
 振動子23を構成する振動板21は、振動板本体部21aと、振動板本体部21aの長手方向端に延出した振動板腕部21bとを有する。振動子23は、5次の面外屈曲振動モードM1と、2次の面外屈曲振動モードM2とが励起されるように設計されている。そのため、振動板本体部21aの長手方向長さは、第1実施形態で説明した振動板1の振動板本体部1aの長手方向長さよりも長くなっており、圧電素子22の形状も、振動板本体部21aの形状に合わせて、平面視で矩形形状に設定されている。
 図11B~11Dに示されるように、振動モードM1では5カ所に節部(節線Nm)が形成され、振動モードM2では2カ所の節部(節線Nm)が形成される。これらの節線が交差する部分(節点Nm12)が10カ所に形成され、これら10カ所の節点Nm12では、振動モードM1,M2を同時に励起しても、振動変位は現れない。よって、加圧部材25を節点Nm12に押し当てても、振動子23の振動に実質的な影響はない。
 そこで、10カ所の節点Nm12のうち、第2実施形態で説明した加圧力作用領域を最大にする4点を選択し、これら4点を加圧部材25と当接させる加圧力作用領域Dとする。そのために、図11Aに示すように、加圧部材25において振動子3と対向する部分には、圧電素子22の長手方向端の加圧力作用領域Dにおいて圧電素子22に当接する4カ所の突起部25aが形成されている。なお、第5実施形態に係る振動型アクチュエータにおいても、加圧部材25は単一部材であるため、3つの振動子23に対応させて、加圧部材25全体では12カ所に突起部25aが形成されている。第5実施形態によれば、振動子23の振動に影響を与えることなく、振動子23を加圧部材25に倣わせるようにして保持することができる。
 次に、本発明の第6実施形態について説明する。上述した第1乃至第5実施形態では、本発明に係る振動型アクチュエータをロータ4を回転させる回転型駆動装置として具現化した。これに対して、第6実施形態及び後述の第7実施形態に係る振動型アクチュエータは、本発明に係る振動型アクチュエータを被駆動体であるスライダを直線方向で往復させるリニア駆動装置として具現化する。
 図12A及び図12Bはそれぞれ、本発明の第6実施形態に係る振動型アクチュエータ100Aの概略構造を示す平面図及び正面図である。振動型アクチュエータ100Aの基本的な構造は、第1実施形態と同様である。振動型アクチュエータ100Aを構成する固定部材38は、底壁部38aと側壁部38bとを有し、断面コの字形状で、スライダ34の駆動方向であるX方向に長い略直方体の形状を有する。4つの振動子33はそれぞれ、支持部材6と同等の支持部材36に接合され、4つの支持部材36はそれぞれ、固定部材38の側壁部38bに固定されている。振動子33は、例えば、第5実施形態で説明した振動子23と同等である。
 スライダ34は、駆動方向であるX方向に長い略直方体の形状を有し、複数のボール37を介して固定部材38の底壁部38aと接している。なお、複数のボール37はそれぞれ、固定部材38の底壁部38aの上面とスライダ34の底壁部38a側の面のそれぞれに形成されたX方向に延在する不図示のV溝に挟持されている。こうして、転がりの軸受けが形成されることにより、スライダ34は駆動方向であるX方向に移動可能となる。加圧バネ39は、バネ保持部材40に保持されて、加圧部材35を介して圧電素子22の上面と当接することで、振動子33をスライダ34へ押し当てている。なお、図12Aでは、バネ保持部材40と加圧バネ39の図示を省略し、バネ保持部材40と加圧部材35を破線で示している。
 4つの振動子33の高さ(スライダ34との接触面から加圧部材35との接触面までの厚さ)は同一となるように寸法管理されている。そのため、振動子33を構成する圧電素子に当接している加圧部材35は、スライダ34の摩擦面と略平行な状態に維持される。よって、加圧部材35に姿勢を拘束される振動子33もスライダ34と平行な姿勢を維持することができ、これにより、安定した接触状態を実現して、安定した駆動特性を得ることができる。なお、ここでは、4つの振動子33で振動型アクチュエータを構成したが、振動子33の数はこれに限定されるものではない。
 次に、本発明の第7実施形態について説明する。第7実施形態に係る振動型アクチュエータは、第6実施形態に係る振動型アクチュエータ100Aを構成する加圧部材35の形状を変更した加圧部材45を備えている。加圧部材45以外の第7実施形態に係る振動型アクチュエータの構成要素は、第6実施形態に係る振動型アクチュエータ100Aの構成要素と同じである。よって、以下、加圧部材45と、加圧部材45を用いることで得られる効果を中心に説明を行い、共通する構成要素についての説明を省略する。
 図13A、図13B及び図13Cはそれぞれ、本発明の第7実施形態に係る振動型アクチュエータ100Bの概略構造を示す平面図、正面図及び部分断面図である。加圧部材45には、図13Cに示すように、振動子33との接触部となる突起部45aが設けられている。突起部45aは、各振動子33の圧電素子の中心近傍に当接するように、各振動子33に対して1カ所ずつ設けられている。ここで、突起部45aは、スライダ34の駆動方向であるX方向での幅は短く、一方、X方向と直交する振動子33の幅方向であるY方向では、振動子33の幅とほぼ同じ寸法に設計されている。
 つまり、加圧部材45が振動子33に当接して加圧力を作用させる加圧力作用領域は、スライダ34の駆動方向(X方向)における振動子33の中心近傍である。同時に、加圧部材45の加圧力作用領域は、スライダ34の駆動方向と振動子33をスライダ34に押し当てる方向の両方向と直交する方向おいて、スライダ34と当接する振動子33の凸部の面積よりも広い。
 よって、振動子33は、幅方向の傾き(ロール方向)に対してのみ加圧部材45に倣って姿勢が拘束されるが、駆動方向の前後の傾き(ピッチング)に対しては、スライダ34の摩擦面に追従することができる自由度を持つ。このような構造は、振動子33に加わる駆動反力やスライダ34から伝達される外力等が比較的小さく、振動子33の姿勢を安定化する上でこれらの力による影響が小さい振動型アクチュエータに対しては非常に有効となる。なお、加圧部材45の構造は、本実施形態のようなリニア駆動装置に限らず、第1実施形態で説明した回転型駆動装置にも適用することができる。
 次に、本発明の第8実施形態について説明する。第8実施形態では、上述した本発明の実施形態に係る種々の振動型アクチュエータを撮像装置に応用した例について説明する。図14は、本発明の実施形態に係る撮像装置80の概略構成を示す上面図である。撮像装置80は、カメラ本体83とレンズ鏡筒87とを備える。カメラ本体83は、電源ボタン81と、レンズ鏡筒87を通過した光が結像した光学像を電気信号に変換する撮像素子82とを備える。レンズ鏡筒87は、レンズ84と、駆動ユニット86を有する振動型アクチュエータ85とを備える。振動型アクチュエータ85及び駆動ユニット86はそれぞれ、例えば、第1実施形態で説明した振動型アクチュエータ100及び駆動ユニット200である。
 レンズ鏡筒87は、交換レンズとしてカメラ本体83に対して取り換え可能であり、撮影対象に合わせて適したレンズ鏡筒87をカメラ本体83に取り付けることができる。レンズ84は、例えば、撮像画角を変化させるズームレンズ、又は、被写体に対してピントを合わせるフォーカスレンズである。撮像装置80では、3つ(1つは不図示)の駆動ユニット86が不図示の被駆動体を駆動し、この被駆動体がギア又はカムを駆動することによって、レンズ84を保持した不図示の保持部材を光軸方向に移動させる。これにより、安定したレンズ駆動が可能な、信頼性の高い撮像装置80を実現することができる。
 なお、駆動ユニット86は、撮像素子82に結像する光学像の像ぶれを補正するための像ぶれ補正用レンズの駆動に用いることもできる。この場合、例えば、2つの駆動ユニット86を用いて、光軸と直交する面内の直交する2方向のそれぞれに任意に像ぶれ補正用レンズを移動させる構成とすればよい。また、像ぶれを補正するために、像ぶれ補正用レンズに代えて、撮像素子82を光軸と直交する面内の直交する2方向のそれぞれに任意に移動させる構成としてもよい。
 次に、本発明の第9実施形態について説明する。第9実施形態では、上述した本発明の実施形態に係る種々の振動型アクチュエータを自動ステージに応用した例について説明する。図15は、本発明の実施形態に係る自動ステージ96を有する顕微鏡90の外観斜視図である。顕微鏡90は、撮像素子と光学系を内蔵する撮像部92と、X−Y面内で移動されるステージ94を有する自動ステージ96を備える。自動ステージ96の詳細な構成の図示は省略するが、自動ステージ96は、ステージ94を被駆動体として駆動する少なくとも2つの駆動ユニットを備える。少なくとも1つの駆動ユニットは、ステージ94のX方向駆動に用いられ、少なくとも1つの別の駆動ユニットは、ステージ94のY方向駆動に用いられる。
 被観察物をステージ94上に載置し、拡大画像を撮像部92で撮影する。観察範囲が広範囲にある場合には、自動ステージ96を駆動して、被観察物をX方向やY方向に移動させて被観察物を移動させることにより、多数の撮影画像を取得する。撮影された画像を不図示のコンピュータで画像処理により結合させることで、観察範囲が広範囲で、高精細な1枚の画像を取得することができる。
 以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明に含まれる。更に、上述した各実施形態は本発明の一実施形態を示すものにすぎず、各実施形態を適宜組み合わせることも可能である。
 1,21  振動板
 2,22  圧電素子
 3,23  振動子
 4  ロータ(被駆動体)
 5,15,25,35  加圧部材
 6,16,36  支持部材
 7,37  ボール
 8,38  固定部材
 9,39  加圧バネ
 10,40  バネ保持部材
 80  撮像装置
 96  自動ステージ
 100,100A,100B  振動型アクチュエータ
 200,200B  駆動ユニット

Claims (23)

  1.  電気−機械エネルギ変換素子、及び、前記電気−機械エネルギ変換素子が接合された弾性体を有する振動子と、
     前記振動子に設けられた駆動部に当接する被駆動体と、
     前記振動子を支持する加圧部材を有し、前記加圧部材を前記振動子に対して押し当てることにより前記振動子を前記被駆動体に対して押し当てる加圧手段と、を備え、
     前記振動子と前記被駆動体は、前記振動子に励起された振動により前記振動子と前記被駆動体との相対位置が変化するように構成され、
     前記相対位置が変化する方向と前記加圧手段が前記振動子を前記被駆動体に押し当てる加圧方向とを含む面において、前記振動子の姿勢が前記被駆動体よりも前記加圧部材に倣うように構成されていることを特徴とする振動型アクチュエータ。
  2.  電気−機械エネルギ変換素子、及び、前記電気−機械エネルギ変換素子が接合された弾性体を有する振動子と、
     前記振動子に設けられた駆動部に当接する被駆動体と、
     前記振動子を支持する加圧部材を有し、前記加圧部材を前記振動子に対して押し当てることにより前記振動子を前記被駆動体に対して押し当てる加圧手段と、を備え、
     前記振動子と前記被駆動体は、前記振動子に励起された振動により前記振動子と前記被駆動体との相対位置が変化するように構成され、
     前記加圧部材は、前記振動子と当接する1つ又は複数の部分を有し、
     前記振動子は、前記被駆動体と当接する1つ又は複数の部分を有し、
     前記加圧手段が前記振動子を前記被駆動体に押し当てる加圧方向から見たときに、前記加圧部材が前記振動子に当接する領域又は前記加圧部材が前記振動子に当接する複数の部分を結んで形成される領域のうち、面積が最も大きい領域を第1の領域とし、前記振動子が前記被駆動体に当接する領域又は前記振動子が前記被駆動体に当接する複数の部分を結んで形成される領域のうち、面積が最も大きい領域を第2の領域としたときに、前記第1の領域は前記第2の領域より大きく、
     前記第1の領域と前記第2の領域は、前記振動子及び前記被駆動体が回転しないように、前記加圧方向から見たときに少なくとも一部が重なっていることを特徴とする振動型アクチュエータ。
  3.  前記加圧方向から見たときに、前記第2の領域の中心が前記第1の領域の内部に位置することを特徴とする請求項2に記載の振動型アクチュエータ。
  4.  前記加圧方向から見たときに、前記第2の領域は前記第1の領域の内側にあることを特徴とする請求項2又は3に記載の振動型アクチュエータ。
  5.  前記加圧部材が前記振動子に当接する複数の部分を結んで形成される領域は、前記振動子の前記相対位置が変化する方向における中心近傍であることを特徴とする請求項2乃至4のいずれか1項に記載の振動型アクチュエータ。
  6.  前記加圧部材が前記振動子に当接する複数の部分を結んで形成される領域の少なくとも一部は、前記振動子に励起される振動の節部に設けられていることを特徴とする請求項2乃至5のいずれか1項に記載の振動型アクチュエータ。
  7.  電気−機械エネルギ変換素子、及び、前記電気−機械エネルギ変換素子が接合された弾性体を有する振動子と、
     前記振動子に設けられた駆動部に当接する被駆動体と、
     前記振動子を支持する加圧部材を有し、前記加圧部材を前記振動子に対して押し当てることにより前記振動子を前記被駆動体に対して押し当てる加圧手段と、を備え、
     前記振動子と前記被駆動体は、前記振動子に励起された振動により前記振動子と前記被駆動体との相対位置が変化するように構成され、
     前記振動子が前記被駆動体と当接せずに前記加圧手段に支持されたときに、前記振動子が前記加圧手段から力を受ける部分の面を第1の面とし、
     前記振動子が前記加圧手段と当接せずに前記被駆動体に支持されたときに、前記振動子が前記被駆動体から力を受ける部分の面を第2の面とし、
     前記第1の面に垂直な力を前記第2の面に作用させたときに前記第1の面に働く反力による、前記第2の面の図心を中心とする回転モーメントの絶対値の総和を第1モーメントとし、
     前記第1の面に垂直な力と大きさが等しく前記第2の面に垂直な力を前記第1の面に作用させたときに前記第2の面に働く反力による、前記第1の面の図心を中心とする回転モーメントの絶対値の総和を第2モーメントとしたときに、
     前記相対位置が変化する方向と前記加圧手段が前記振動子を前記被駆動体に押し当てる加圧方向とを含む面において、前記振動子、前記被駆動体及び前記加圧手段は、前記第1モーメントが前記第2モーメントより大きくなるように構成されていることを特徴とする振動型アクチュエータ。
  8.  前記振動子、前記被駆動体及び前記加圧手段は、前記相対位置が変化する方向と直交する方向と前記加圧方向とを含む面において、前記第1モーメントが前記第2モーメントよりも大きくなるように構成されていることを特徴とする請求項7に記載の振動型アクチュエータ。
  9.  前記加圧方向から見たときに、前記振動子が前記被駆動体と当接する部分は、前記加圧部材が前記振動子に当接する部分の内側にあることを特徴とする請求項7又は8に記載の振動型アクチュエータ。
  10.  前記振動子を前記加圧部材と同じ方向から支持する支持部材を有することを特徴とする請求項1乃至9のいずれか1項に記載の振動型アクチュエータ。
  11.  前記支持部材は、前記振動子と接合される2カ所の接合部を有し、前記2カ所の接合部は、前記相対位置が変化する方向に対する剛性が前記加圧方向に対する剛性より大きくなるよう構成されていることを特徴とする請求項10に記載の振動型アクチュエータ。
  12.  前記支持部材が固定される固定部材を備えることを特徴とする請求項10又は11に記載の振動型アクチュエータ。
  13.  前記支持部材は、略L字形状の断面形状を有し、前記固定部材に取り付けられる一方の面に前記支持部材を前記固定部材に固定するための取付穴が設けられ、
     前記取付穴は、前記加圧方向と平行な方向に長い長穴であり、前記支持部材を前記固定部材に取り付ける際に前記支持部材の前記固定部材に対する位置の調節が可能となっていることを特徴とする請求項12に記載の振動型アクチュエータ。
  14.  前記弾性体は、前記電気−機械エネルギ変換素子が接合され、前記相対位置が変化する方向を長手方向とする本体部と、前記本体部の長手方向端に延出した腕部とからなり、
     前記本体部において前記電気−機械エネルギ変換素子が接合される面の反対側の面に前記駆動部が設けられ、
     前記支持部材は、前記相対位置が変化する方向と垂直な面において略L字形状の断面形状を有し、前記被駆動体の摩擦面と略平行になる一方の面の先端が2つの支持腕部に分かれ、
     前記支持腕部に前記弾性体の前記腕部が接合されていることを特徴とする請求項10乃至13のいずれか1項に記載の振動型アクチュエータ。
  15.  複数の前記振動子を備え、
     前記加圧部材は、前記複数の振動子に当接する単一部材であることを特徴とする請求項1乃至14のいずれか1項に記載の振動型アクチュエータ。
  16.  前記加圧部材と前記振動子との間に配置された絶縁部材をさらに備えることを特徴とする請求項1乃至15のいずれか1項に記載の振動型アクチュエータ。
  17.  前記絶縁部材は、前記加圧部材と前記振動子との間で圧縮されて保持されることを特徴とする請求項16に記載の振動型アクチュエータ。
  18.  前記加圧部材は、前記電気−機械エネルギ変換素子に当接しており、
    前記駆動部は、前記電気−機械エネルギ変換素子が接合されている面とは反対側の前記弾性体の面に設けられていることを特徴とする請求項1乃至17のいずれか1項に記載の振動型アクチュエータ。
  19.  レンズと、
     光軸方向に前記レンズを移動させる請求項1乃至18のいずれか1項に記載の振動型アクチュエータと、を備えることを特徴とするレンズ鏡筒。
  20.  像ぶれ補正用レンズと、
     光軸方向と直交する面内で前記像ぶれ補正用レンズを移動させる請求項1乃至18のいずれか1項に記載の振動型アクチュエータと、を備えることを特徴とするレンズ鏡筒。
  21.  レンズ鏡筒と、
     前記レンズ鏡筒に配置されたレンズを光軸方向に移動させる請求項1乃至18のいずれか1項に記載の振動型アクチュエータと、
     前記レンズ鏡筒を通過した光が結像した光学像を電気信号に変換する撮像素子と、を備えることを特徴とする撮像装置。
  22.  レンズ鏡筒と、
     前記レンズ鏡筒を通過した光が結像した光学像を電気信号に変換する撮像素子と、
     前記撮像素子を光軸方向と直交する面内で移動させて前記撮像素子に結像する前記光学像の像ぶれを補正する請求項1乃至18のいずれか1項に記載の振動型アクチュエータと、を備えることを特徴とする撮像装置。
  23.  ステージと、
     前記ステージをその面内で移動させる請求項1乃至18のいずれか1項に記載の振動型アクチュエータと、を備えることを特徴とする自動ステージ。
PCT/JP2015/069218 2014-06-30 2015-06-26 振動型アクチュエータ、レンズ鏡筒、撮像装置及び自動ステージ WO2016002917A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014134001 2014-06-30
JP2014-134001 2014-06-30
JP2015126703A JP2016027780A (ja) 2014-06-30 2015-06-24 振動型アクチュエータ、レンズ鏡筒、撮像装置及び自動ステージ
JP2015-126703 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016002917A1 true WO2016002917A1 (ja) 2016-01-07

Family

ID=55019443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069218 WO2016002917A1 (ja) 2014-06-30 2015-06-26 振動型アクチュエータ、レンズ鏡筒、撮像装置及び自動ステージ

Country Status (2)

Country Link
JP (1) JP2016027780A (ja)
WO (1) WO2016002917A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018191437A (ja) * 2017-05-08 2018-11-29 セイコーエプソン株式会社 圧電駆動装置、電子部品搬送装置、ロボット、プロジェクターおよびプリンター

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7263566B2 (ja) * 2017-06-02 2023-04-24 キヤノン株式会社 撮像装置及び移動体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333749A (ja) * 2004-05-20 2005-12-02 Olympus Corp 超音波振動子及びそれを用いた超音波モータ
JP2007202398A (ja) * 2007-04-23 2007-08-09 Seiko Instruments Inc 超音波モータ及び超音波モータ付電子機器
WO2009151081A1 (ja) * 2008-06-12 2009-12-17 株式会社ニコン 圧電アクチュエータ、レンズ鏡筒、光学機器
JP2013223406A (ja) * 2012-04-19 2013-10-28 Canon Inc 振動子、振動波駆動装置及び振動子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333749A (ja) * 2004-05-20 2005-12-02 Olympus Corp 超音波振動子及びそれを用いた超音波モータ
JP2007202398A (ja) * 2007-04-23 2007-08-09 Seiko Instruments Inc 超音波モータ及び超音波モータ付電子機器
WO2009151081A1 (ja) * 2008-06-12 2009-12-17 株式会社ニコン 圧電アクチュエータ、レンズ鏡筒、光学機器
JP2013223406A (ja) * 2012-04-19 2013-10-28 Canon Inc 振動子、振動波駆動装置及び振動子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018191437A (ja) * 2017-05-08 2018-11-29 セイコーエプソン株式会社 圧電駆動装置、電子部品搬送装置、ロボット、プロジェクターおよびプリンター

Also Published As

Publication number Publication date
JP2016027780A (ja) 2016-02-18

Similar Documents

Publication Publication Date Title
TWI472143B (zh) 馬達及透鏡單元
US9705426B2 (en) Ultrasonic motor and lens apparatus including the same
US9537429B2 (en) Ultrasonic motor and lens apparatus including the same
JP6567020B2 (ja) 駆動装置、光学機器及び撮像装置
JP6366674B2 (ja) 振動波モータ
JP6771939B2 (ja) 振動型アクチュエータ及び電子機器
US10804820B2 (en) Motor and apparatus using the same
US11606046B2 (en) Vibration type actuator, optical apparatus, and electronic apparatus
JP2016086619A (ja) 振動型駆動装置、レンズ鏡筒、撮像装置及びステージ装置
JP6579836B2 (ja) 振動型アクチュエータ及び光学装置
WO2016002917A1 (ja) 振動型アクチュエータ、レンズ鏡筒、撮像装置及び自動ステージ
JP2015186329A (ja) 圧電モーター
JP6708472B2 (ja) 振動波モータ及び振動波モータが搭載された光学機器
JP2018174616A (ja) 振動波モータ及び振動波モータを有する撮像装置
CN107947626B (zh) 使用振子的马达以及电子设备
JP2020005374A (ja) 振動型モータおよび駆動装置
JP6624859B2 (ja) 振動波モータ
JP2018101094A (ja) 振動型アクチュエータ、レンズ駆動装置、光学機器及び電子機器
JP6812510B2 (ja) 振動型アクチュエータ及びそれを有する電子機器
JP6537482B2 (ja) 振動波モータおよび電子機器
JP2016101023A (ja) 振動波モータ及びそれを有する光学装置
JP6525801B2 (ja) 振動型モータ、レンズ鏡筒、撮像装置及び駆動装置
JP2016140141A (ja) 振動型駆動装置及びその駆動方法、並びに撮像装置
JP2020102971A (ja) 振動波モータ
JP2019221072A (ja) 振動波モータ及び振動波モータを備えた駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814454

Country of ref document: EP

Kind code of ref document: A1