WO2016002878A1 - ヒートポンプ式蒸気生成装置 - Google Patents

ヒートポンプ式蒸気生成装置 Download PDF

Info

Publication number
WO2016002878A1
WO2016002878A1 PCT/JP2015/069124 JP2015069124W WO2016002878A1 WO 2016002878 A1 WO2016002878 A1 WO 2016002878A1 JP 2015069124 W JP2015069124 W JP 2015069124W WO 2016002878 A1 WO2016002878 A1 WO 2016002878A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot water
water
gas
steam
flow path
Prior art date
Application number
PCT/JP2015/069124
Other languages
English (en)
French (fr)
Inventor
拓人 小池
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2016531442A priority Critical patent/JP6394699B2/ja
Publication of WO2016002878A1 publication Critical patent/WO2016002878A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a heat pump type steam generator that recovers exhaust heat from factory wastewater and generates steam.
  • the heat pump type steam generator recovers waste heat from waste water such as factory waste water or used cooling water to generate steam. According to this type of heat pump steam generator, there are advantages such as lower running costs and reduced CO 2 emissions compared to a combustion system steam generator that generates steam using boiler equipment or the like. .
  • Water that has been treated with a soft water device or the like is used as the feed water that is the raw material for the steam in order to prevent adhesion of the scale (in which the components in the water are deposited) into the heat pump steam generator.
  • a silica (SiO 2 ) component cannot be removed with a water softener. For this reason, by continuously generating the steam, the scale-causing substance is concentrated in the steam generating apparatus and causes scale adhesion.
  • the heat pump unit is provided with an exhaust heat recovery device 110, a compressor 120, a condenser 130, and a throttle expander 140, which are connected by a refrigerant flow path L10 so that the refrigerant circulates and flows in the order described.
  • the hot water stored in the hot water tank 210 is supplied to the exhaust heat recovery unit 110 of the heat pump unit by the hot water pump P21 from the hot water supply flow path L20a.
  • the refrigerant is heated and vaporized by heat exchange between the hot water and the refrigerant.
  • the hot water heat-exchanged by the exhaust heat recovery device 110 is discharged out of the system through the hot water discharge channel L20b.
  • the compressor 120 the heated refrigerant is compressed to a predetermined pressure in the form of gas to generate a high-temperature and high-pressure refrigerant.
  • the refrigerant that has become a high-temperature and high-pressure gas is supplied to the condenser 130.
  • the refrigerant liquefied after passing through the condenser 130 is sent to the throttle expander 140 and depressurized to a predetermined pressure, and is then reintroduced into the exhaust heat recovery device 110 and warm water flowing through the exhaust heat recovery device 110. Used for heat recovery from Next, the steam generation unit will be described.
  • the supply water supplied from the water supply source by the supply water pump P31 merges with the hot water (circulation hot water) sent from the gas-liquid separator 310 via the circulation hot water flow path L70, and the circulation hot water and the supply water. And is fed to the condenser 130 through the supply water flow path L30.
  • the mixed hot water introduced into the condenser 130 recovers heat from the high-temperature and high-pressure refrigerant and generates a gas-liquid two-phase flow of hot water and steam.
  • This gas-liquid two-phase flow is sent to the gas-liquid separator 310 through the separated fluid flow path L40.
  • the steam separated by the gas-liquid separator 310 is supplied to the steam utilization facility 410 via the steam flow path L50.
  • a part of the hot water separated by the gas-liquid separator 310 is blowdown connected to the lower part of the gas-liquid separator 310 for the purpose of preventing the concentration of salt in the circulating hot water system and reducing the concentration of substances causing the scale. It is discharged from the flow path L60 as blowdown water periodically or temporarily.
  • the blowdown water becomes hot water of 100 ° C. or higher in steady operation and has a large amount of heat, but is normally discharged as it is to the drainage facility. The amount of heat is wasted.
  • Patent Document 2 is an example of using blowdown water from a gas-liquid separator as a heat source.
  • the conventional example shown in Patent Document 2 discloses a steam generation system that introduces a liquid phase separated by a gas-liquid separator into a heat exchanger and transmits boiler exhaust heat to a concentrated solution or a refrigerant liquid.
  • This configuration makes it possible to effectively use the thermal energy of blowdown water as a heat source for the steam generation heat pump.
  • an object of the present invention is to provide a heat pump type steam generator capable of efficiently recovering thermal energy from blowdown water having a large amount of heat and preventing scale from adhering to piping in the steam generator.
  • a heat pump steam generator is a heat pump steam generator that recovers heat of hot water to generate steam, and recovers heat from the hot water.
  • Exhaust heat recovery unit that heats the refrigerant
  • a compressor that compresses the refrigerant that has passed through the exhaust heat recovery unit, the heat of the refrigerant compressed by the compressor is transferred to the water to be heated, and the gas-liquid of hot water and steam A condenser that generates a two-phase flow or high-pressure hot water
  • a refrigerant circulation passage having a throttle expander that depressurizes the refrigerant that has passed through the condenser and lowers the temperature to return to the exhaust heat recovery device
  • the hot water A hot water supply channel for supplying to the exhaust heat recovery device, a hot water discharge channel for discharging the hot water from the exhaust heat recovery device to the outside of the system, and a supply water flow for introducing supply water as the heated water to the condenser And the gas
  • the heat pump type steam generation device according to claim 2 of the present invention is the heat pump type steam generation device according to claim 1, wherein the blow-down flow path is configured such that a part of hot water is supplied from a bottom surface of the gas-liquid separation unit or a side surface near the bottom. It is characterized by extracting.
  • the heat pump type steam generator according to claim 3 of the present invention is characterized in that, in the above-described claim 1, the blowdown channel extracts a part of hot water from the middle of the circulating hot water channel.
  • the heat pump type steam generator according to any one of the first to third aspects, wherein the hot water is stored upstream of the exhaust heat recovery device in the hot water supply channel.
  • a hot water tank that is connected to the hot water tank to supply the extracted hot water.
  • a heat pump steam generator according to claim 5 of the present invention is the heat pump type steam generator according to any one of claims 1 to 3, wherein the hot water is placed upstream of the exhaust heat recovery device in the hot water supply channel.
  • a hot water pump for supplying to the exhaust heat recovery device is provided, and the blow down channel is connected between the hot water pump of the hot water supply channel and the exhaust heat recovery device to supply the extracted hot water.
  • a heat pump type steam generator according to claim 6 of the present invention is the heat pump steam generator according to any one of claims 1 to 3, wherein a hot water tank for storing the hot water is provided upstream of the hot water supply flow path.
  • a heat pump type steam generator is the heat pump type steam generator according to any one of the first to sixth aspects, wherein the throttle expander includes an electronic expansion valve, a manual expansion valve, a constant pressure expansion valve, a temperature It is an expansion valve, an orifice, or a capillary.
  • the heat pump steam generator of the present invention joins the blowdown water to the hot water and then introduces it into the exhaust heat recovery device, the scale-causing substance in the blowdown water is diluted with the hot water and is supplied to the piping in the steam generator. Scale adhesion can be prevented. Therefore, it is possible to provide a heat pump steam generator that can utilize the thermal energy of blowdown water to the maximum with a simple system configuration.
  • FIG. 1 is a schematic configuration diagram of a heat pump steam generating apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a modified example of the heat pump steam generation apparatus according to the embodiment of the present invention.
  • FIG. 3 is a configuration diagram of a conventional heat pump steam generator in Patent Document 1. As shown in FIG.
  • FIG. 1 shows a first embodiment of a heat pump steam generator according to the present invention.
  • a blow-down flow path L80 is provided instead of the blow-down flow path L60.
  • the heat pump steam generator 1 is roughly divided into a heat pump facility 100 and a steam generator facility 300, and hot water is introduced from the hot water supply facility 200 as an external heat source.
  • the refrigerant circulates and circulates so as to collect the heat of the hot water from the hot water supply facility 200 through the refrigerant and to transfer the heat of the refrigerant to the heated water that circulates in the steam generation facility 300. It is configured.
  • the hot water supply facility 200 is provided with a hot water tank 210 and a hot water pump P21.
  • the hot water supply facility 200 is connected to the heat pump facility 100 via a hot water supply flow path L20a so that the warm water flows through the exhaust heat recovery device 110.
  • the hot water that has passed through the exhaust heat recovery device 110 is discharged out of the system through a further connected hot water discharge channel L20b.
  • the present invention is not limited to this, and may be used in cascade by another type of exhaust heat recovery device.
  • the steam generation facility 300 is provided with a supply water pump P31, a condenser 130, and a gas-liquid separator 310, and supplied water as heated water is supplied from an external water supply source.
  • Supply water is supplied to the condenser 130 by the supply water flow path L30.
  • the gas-liquid two-phase flow of hot water and steam generated from the supply water in the condenser 130 is supplied to the gas-liquid separator 310 through the separated fluid flow path L40.
  • a steam flow path L50 is connected to the upper part of the gas-liquid separator 310.
  • a blow-down flow path L80 is connected to the lower part of the gas-liquid separator 310 in order to supply blow-down water to the hot water supply flow path L20a between the hot water pump P21 and the exhaust heat recovery device 110.
  • a circulating hot water flow path L70 is connected to the lower part of the gas-liquid separator 310.
  • the heat pump facility 100 is provided with an exhaust heat recovery device 110, a compressor 120, a condenser 130, and a throttle expander 140, which are connected by a refrigerant flow path L10 so that the refrigerant circulates and flows in this order.
  • the refrigerant is heated in the exhaust heat recovery device 110 by heat exchange with the hot water supplied from the hot water supply flow path L ⁇ b> 20 a, becomes a gas, and is sent to the compressor 120.
  • the refrigerant is compressed to a predetermined pressure as a gas and becomes high temperature and pressure.
  • the high-temperature and high-pressure refrigerant exchanges heat with the supply water supplied from the supply water flow path L30 in the condenser 130.
  • the refrigerant that has been liquefied after passing through the condenser 130 is decompressed to a predetermined pressure in the expansion expander 140, and is then reintroduced into the exhaust heat recovery unit 110 and recovered from the hot water flowing through the exhaust heat recovery unit 110. Used for.
  • An electronic expansion valve is most suitable as the throttle expander 140 listed here, but a manual expansion valve, a constant pressure expansion valve, a temperature expansion valve, an orifice, a capillary, etc. may be appropriately selected according to the application and configuration. good.
  • the supply water from the supply water flow path L30 is heat-exchanged with the high-temperature and high-pressure refrigerant in the condenser 130 to become a gas-liquid two-phase flow of hot water and steam.
  • the supply water supplied from the supply water source by the supply water pump P31 is the sum of the mass flow rate Q1 of the supply water and the mass flow rate Q2 of the steam taken out from the steam channel L50 and the drainage flow rate Q3 from the blow-down channel L80.
  • the amount is controlled to be an amount (Q2 + Q3).
  • the feed water merges with the hot water (circulated hot water) sent from the gas-liquid separator 310 via the circulating hot water flow path L70 to become mixed hot water with the circulating hot water, and the condenser 130.
  • the liquid is sent to As described above, the mixed hot water introduced into the condenser 130 is heat-exchanged with the refrigerant having a high temperature and high pressure in the condenser 130, and becomes a gas-liquid two-phase flow of hot water and steam. This gas-liquid two-phase flow is sent to the gas-liquid separator 310.
  • the gas-liquid separator 310 separates the gas-liquid two-phase flow of hot water and steam into steam and hot water. And the vapor
  • the blow-down is periodically or temporarily performed for the purpose of preventing the concentration of salt in the circulating hot water system and reducing the concentration of the causative substances. Water is discharged.
  • the gas-liquid two-phase flow may be transferred in a state of applying high pressure and high-pressure hot water.
  • a flash tank may be provided as a gas-liquid separator instead of the gas-liquid separator, and the gas-liquid separation may be performed after vaporizing high-pressure hot water by decompression.
  • Hot water tank 210 stores hot water such as industrial water, cooling water, and steam drain after use.
  • the hot water stored in the hot water tank 210 flows through the hot water supply flow path L20a, flows through the hot water discharge flow path L20b via the hot water pump P21 and the exhaust heat recovery device 110, and is discharged outside the system.
  • the hot water pump P21 adjusts the amount of hot water supplied to the exhaust heat recovery device 110.
  • the heat of the hot water is transferred to the refrigerant flowing through the refrigerant flow path L10 to heat the refrigerant.
  • the blowdown flow path L80 is connected to the hot water supply flow path L20a, and the blowdown water is introduced into the hot water supply flow path L20a and mixed with the hot water.
  • Various valves such as a control valve and a check valve may be appropriately provided in the middle of the blow-down flow path L80.
  • FIG. 2 is a schematic configuration diagram of the second embodiment.
  • the second embodiment is different from the blowdown flow path L80 of FIG. 1 in that the blowdown flow path L90 is branched from the circulating hot water flow path L70.
  • the other components are common to FIGS. 1 and 2 and will not be described in detail.
  • the blow-down flow path L90 by dividing the blow-down flow path L90 from the circulating hot water flow path L70, the total amount of hot water taken out from the gas-liquid separator 310 can be adjusted only by the circulating hot water flow path L70, and appropriate valves are provided.
  • the ratio of hot water flowing through the circulating hot water flow path L70 and the blowdown flow path L90 can be easily controlled.
  • connection destination of the blowdown flow paths L80 and L90 is not limited to the heat pump steam generator 1, but may be any upstream side of the hot water of the exhaust heat recovery device 110, and is indicated by a broken line in FIGS. Thus, it may be between the hot water tank 210 and the hot water pump P21. In this case, the total amount of hot water flowing into the exhaust heat recovery device 110 can be adjusted by the hot water pump P21 regardless of the amount of hot water blown down.
  • blowdown channels L80 and L90 may be directly connected to the hot water tank 210. This prevents a water hammer effect caused by a partial vacuum created in the pipe due to a temperature difference that occurs when the blown-down hot water flows into the hot water supply flow path L20a. I can do it.
  • blowdown flow paths L80 and L90 may be branched to two or more of the connection destinations and switched as appropriate according to the conditions. This makes it possible to perform operations such as introducing blowdown water into the hot water tank 210 and storing it in the tank during processes that do not require hot water, such as when equipment is stopped, and use blowdown water more effectively. I can do it.
  • the heat pump type steam generator according to the present invention efficiently recovers the thermal energy of blowdown water while preventing the scale from adhering to the heat exchanger piping, Energy efficiency can be improved.
  • Heat pump steam generator 100 Heat pump equipment 110: Waste heat recovery device 120: Compressor 130: Condenser 140: Condenser expander 200: Hot water supply equipment 210: Hot water tank 300: Steam generation equipment 310: Gas-liquid separator 410: Steam utilization equipment L10: Refrigerant flow path L20a: Hot water supply flow path L20b: Hot water discharge flow path L30: Supply water flow path L40: Separation fluid flow path L50: Steam flow path L60: Blowdown flow path L70: Circulating hot water flow Paths L80 and L90: Blowdown flow path P21: Hot water pump P31: Supply water pump

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 温水の熱を回収して蒸気を生成するヒートポンプ式蒸気生成装置において、気液分離器で分離し、スケール原因物質の濃度上昇を抑制する目的で排出したブローダウン水を、温水供給流路に合流させることで、ブローダウン水の持つ熱エネルギーを最大限に利用しつつ、排熱回収器内のスケール付着を防止するヒートポンプ式蒸気生成装置を提供することができる。

Description

ヒートポンプ式蒸気生成装置
 本発明は、工場排水などから排熱を回収して蒸気を生成するヒートポンプ式蒸気生成装置に関する。
 蒸気生成装置の一つとして、ヒートポンプを利用したヒートポンプ式蒸気生成装置がある。ヒートポンプ式蒸気生成装置は、工場排水や使用済冷却水などの排温水から排熱を回収して蒸気を生成するものである。この種のヒートポンプ式蒸気生成装置によれば、ボイラ設備などを利用して蒸気を発生させる燃焼系蒸気生成装置に比べて、ランニングコストが低く、COの排出量を低減できるなどのメリットがある。
 蒸気の原料となる供給水には、ヒートポンプ式蒸気生成装置内へのスケール(水中の成分が析出したもの)の付着を防止するために、軟水装置などで処理された水が使用される。しかし、スケール原因物質を完全に除去することは難しく、例えば軟水装置ではシリカ(SiO)成分を除去できない。このため、蒸気を連続生成することによって、スケール原因物質が蒸気生成装置内に濃縮され、スケール付着の原因となる。
 特許文献1の図3に記載された従来例について説明する。
 まず、従来例のヒートポンプ部について説明する。ヒートポンプ部には、排熱回収器110、圧縮機120、凝縮器130、絞り膨張器140が設けられ、この記載順に冷媒が循環流通するように冷媒流路L10により接続されている。
 ヒートポンプ部の排熱回収器110には、温水タンク210に貯留された温水が、温水供給流路L20aから温水ポンプP21により供給される。排熱回収器110では、温水と冷媒との間の熱交換により冷媒を加熱し気化させている。なお、排熱回収器110で熱交換された温水は、温水排出流路L20bにて系外へ排出される。
 圧縮機120では、加熱された冷媒を気体のまま所定の圧力まで圧縮し、高温高圧の冷媒を生成する。この高温高圧の気体になった冷媒は、凝縮器130に供給される。そして、凝縮器130を通過して液化された冷媒は、絞り膨張器140に送られて所定圧力まで減圧された後、排熱回収器110に再び導入され、排熱回収器110を流通する温水からの熱回収に用いられる。
 次に、蒸気生成部について説明する。給水源から供給水ポンプP31によって供給された供給水は、気液分離器310から循環熱水流路L70を介して送られてくる熱水(循環熱水)と合流し、循環熱水と供給水との混合熱水となり、供給水流路L30によって凝縮器130に送液される。凝縮器130に導入された混合熱水は、高温高圧になった冷媒から熱を回収し、熱水及び蒸気の気液二相流を生成する。この気液二相流は被分離流体流路L40を通って、気液分離器310に送られる。
 気液分離器310で分離された蒸気は、蒸気流路L50を経由して蒸気利用設備410に供給される。気液分離器310で分離された熱水の一部は、循環熱水系統の塩分の濃縮防止やスケール原因物質の低濃度化を目的として、気液分離器310の下部に接続されたブローダウン流路L60から定期的又は一時的にブローダウン水として排出される。
 気液分離器310内は高圧になっているため、ブローダウン水は定常運転時では100℃以上の熱水となり、大きな熱量を有しているが、通常はそのまま排水設備へ排出されるため、その熱量は無駄となっている。
 気液分離器からのブローダウン水を熱源として利用する例としては、特許文献2が挙げられる。特許文献2に示される従来例には、気液分離器で分離された液相を熱交換器へ導入し、濃溶液又は冷媒液にボイラ排熱を伝達する蒸気生成システムが開示されている。
 このような構成にすることによって、蒸気生成ヒートポンプの熱源としてブローダウン水の持つ熱エネルギーを有効活用できる。
特開2012-247146号公報 特開2010-276304号公報
 このブローダウン水を熱源として利用する場合、ブローダウン水に含まれるスケール原因物質の濃度は運転を継続するに従って上昇していく。そのため、蒸気生成装置の熱交換器内でブローダウン水の温度が低下すると、スケール原因物質の溶解度が低下し、スケールが析出するようになる。このスケールが蒸気生成装置内の配管に付着することによって、熱交換性能が低下する問題があった。
 したがって本発明の目的は、大きな熱量を持つブローダウン水から熱エネルギーを効率的に回収し、かつ蒸気生成装置内の配管へのスケール付着を防止できるヒートポンプ式蒸気生成装置を提供することにある。
 上記目的を達成するため、本発明の請求項1に係るヒートポンプ式蒸気生成装置は、温水の熱を回収して蒸気を生成するヒートポンプ式蒸気生成装置であって、前記温水から熱を回収して冷媒を加温する排熱回収器、前記排熱回収器を通過した冷媒を圧縮する圧縮機、前記圧縮機で圧縮された冷媒の熱を被加熱水に伝熱して熱水と蒸気の気液二相流または高圧熱水を生成する凝縮器、及び前記凝縮器を通過した冷媒を減圧して温度を下げて前記排熱回収器に戻す絞り膨張器を有する冷媒循環流路と、前記温水を前記排熱回収器に供給する温水供給流路と、前記温水を前記排熱回収器から系外へ排出する温水排出流路と、前記凝縮器に前記被加熱水として供給水を導入する供給水流路と、前記凝縮器で生成した前記気液二相流または前記高圧熱水を蒸気と熱水とに分離する気液分離部と、前記凝縮器から前記気液分離部へ前記気液二相流または前記高圧熱水を供給する被分離流体流路と、前記気液分離部で分離した蒸気を、蒸気利用設備に送る蒸気流路と、前記気液分離部で分離した熱水を前記供給水流路に合流させる循環熱水流路と、前記気液分離部で分離した熱水の一部を抽出し、当該抽出した熱水を前記温水供給流路に供給するブローダウン流路と、を備えることを特徴とする。
 また、本発明の請求項2に係るヒートポンプ式蒸気生成装置は、上述した請求項1において、前記ブローダウン流路は、前記気液分離部の底部もしくは底部近傍の側面から熱水の一部を抽出することを特徴とする。
 また、本発明の請求項3に係るヒートポンプ式蒸気生成装置は、上述した請求項1において、前記ブローダウン流路は、前記循環熱水流路の途中から熱水の一部を抽出することを特徴とする。
 また、本発明の請求項4に係るヒートポンプ式蒸気生成装置は、上述した請求項1~請求項3のいずれかにおいて、前記温水供給流路の前記排熱回収器上流には、前記温水を貯留する温水タンクを備え、前記ブローダウン流路が温水タンクに接続されて前記抽出した熱水が供給されることを特徴とする。
 また、本発明の請求項5に係るヒートポンプ式蒸気生成装置は、上述した請求項1~請求項3のいずれかにおいて、前記温水供給流路の前記排熱回収器上流には、前記温水を前記排熱回収器に供給する温水ポンプを備え、前記ブローダウン流路が前記温水供給流路の温水ポンプと前記排熱回収器の間に接続されて前記抽出した熱水が供給されることを特徴とする。
 また、本発明の請求項6に係るヒートポンプ式蒸気生成装置は、上述した請求項1~請求項3のいずれかにおいて、前記温水供給流路の上流には、前記温水を貯留する温水タンクと、前記温水タンクの温水を前記排熱回収器に供給する温水ポンプを備え、前記ブローダウン流路が前記温水供給流路の前記温水タンクと前記温水ポンプとの間に接続されて前記抽出した熱水が供給されることを特徴とする。
 また、本発明の請求項7に係るヒートポンプ式蒸気生成装置は、上述した請求項1~請求項6のいずれかにおいて、前記絞り膨張器は、電子膨張弁、手動膨張弁、定圧膨張弁、温度膨張弁、オリフィス、キャピラリーのいずれかであることを特徴とする。
 本発明のヒートポンプ式蒸気生成装置は、ブローダウン水を温水に合流させた後に排熱回収器へ導入するため、ブローダウン水中のスケール原因物質は温水によって希釈され、蒸気生成装置内の配管へのスケール付着を防止することができる。したがって、シンプルなシステム構成で、ブローダウン水の持つ熱エネルギーを最大限に利用できるヒートポンプ式蒸気生成装置を提供することができる。
図1は、本発明の実施形態であるヒートポンプ式蒸気生成装置の概略構成図である。 図2は、本発明の実施形態であるヒートポンプ式蒸気生成装置の変形例の概略構成図である。 図3は、特許文献1における、従来のヒートポンプ式蒸気生成装置の構成図である。
 図1に本発明に係るヒートポンプ式蒸気生成装置の第一の実施形態を示す。従来例との相違点として、ブローダウン流路L60に代わり、ブローダウン流路L80を設けている。なお、図1において、図3と同じ構成要素は同じ符号で示すものとする。
 このヒートポンプ式蒸気生成装置1は、大きく分けてヒートポンプ設備100と蒸気生成設備300とからなり、外部熱源として温水供給設備200より温水を導入している。
 ヒートポンプ設備100では、冷媒が循環流通しており、冷媒を介して温水供給設備200からの温水の熱を回収するとともに、蒸気生成設備300を流通する被加熱水に冷媒の熱を伝熱するように構成されている。
 次に、温水の経路について説明する。
 温水供給設備200には、温水タンク210、温水ポンプP21が設けられている。温水供給設備200には、排熱回収器110に温水が流れるように温水供給流路L20aによりヒートポンプ設備100が接続されている。なお、排熱回収器110を通過した温水は、さらに接続された温水排出流路L20bにより系外に排出されている。しかしながら、本発明ではこれに限らず、さらに別種の排熱回収装置によりカスケード的に利用される場合もある。
 次に、蒸気生成設備300について説明する。
 蒸気生成設備300には、供給水ポンプP31、凝縮器130、気液分離器310が設けられ、外部の給水源より被加熱水である供給水が供給されている。
 供給水は供給水流路L30によって凝縮器130へ供給される。凝縮器130で供給水から生成された熱水と蒸気の気液二相流は、被分離流体流路L40を通って、気液分離器310に供給される。
 蒸気利用設備410に蒸気を供給するため、気液分離器310の上部には、蒸気流路L50が接続されている。また、温水ポンプP21と排熱回収器110との間の温水供給流路L20aにブローダウン水を供給するため、気液分離器310の下部には、ブローダウン流路L80が接続されている。供給水流路L30の凝縮器130よりも上流に熱水を戻すため、気液分離器310の下部には、循環熱水流路L70が接続されている。
 次に、本発明のヒートポンプ式蒸気生成装置の動作について、熱の流れに沿って説明する。
 (冷媒について)
 ヒートポンプ設備100には、排熱回収器110、圧縮機120、凝縮器130、絞り膨張器140が設けられ、この記載順に冷媒が循環流通するように冷媒流路L10により接続されている。
 冷媒は、排熱回収器110において、温水供給流路L20aから供給された温水との熱交換により加温されて気体となり、圧縮機120に送られる。
 冷媒は、圧縮機120において、気体のまま所定の圧力まで圧縮され高温高圧になる。この高温高圧の冷媒は、凝縮器130において、供給水流路L30から供給された供給水との間で熱交換が行われる。
 凝縮器130を通過して液化された冷媒は、絞り膨張器140において、所定圧力まで減圧された後、排熱回収器110に再び導入され、排熱回収器110を流通する温水からの熱回収に用いられる。
 ここで挙げられた絞り膨張器140としては、電子膨張弁が最も好適であるが、用途や構成に合わせ、手動膨張弁、定圧膨張弁、温度膨張弁、オリフィス、キャピラリーなどを適宜選択しても良い。
 一方、供給水流路L30からの供給水は、凝縮器130において、高温高圧になった冷媒と熱交換され、熱水及び蒸気の気液二相流になる。
 (供給水について)
 給水源から供給水ポンプP31で供給される供給水は、供給水の質量流量Q1が、蒸気流路L50から取出される蒸気の質量流量Q2及びブローダウン流路L80からの排水流量Q3との合計量(Q2+Q3)となるように制御される場合が多い。
 次に、供給水は、気液分離器310から循環熱水流路L70を介して送られてくる熱水(循環熱水)と合流し、循環熱水との混合熱水となって凝縮器130に送液される。凝縮器130に導入された混合熱水は、前述したように凝縮器130において、高温高圧になった冷媒と熱交換され、熱水及び蒸気の気液二相流になる。この気液二相流が気液分離器310に送られる。
 気液分離器310では、熱水及び蒸気の気液二相流を蒸気と熱水とに分離する。そして、気液分離器310の気相部に貯留された蒸気は、蒸気流路L50を経由して蒸気利用設備410に供給される。また、気液分離器310の液相部に貯留された熱水は、循環熱水流路L70を通して供給水流路L30内を流通する供給水と混合され循環利用される。
 また、気液分離器310の下部に接続されたブローダウン流路L80からは、循環熱水系統の塩分の濃縮防止やスケール原因物質の低濃度化を目的として、定期的又は一時的にブローダウン水が排出される。
 ここで、前記気液二相流については、圧力を加え高圧熱水の状態で移送しても良い。この場合には気液分離手段として、気液分離器の代わりにフラッシュタンクを設け、減圧により高圧熱水を気化させた上で気液分離を行っても良い。
 (温水について)
 温水タンク210には、使用後の工業用水、冷却水、蒸気ドレンなどの温水が貯留される。温水タンク210に貯留された温水は、温水供給流路L20aを流通し、温水ポンプP21、排熱回収器110を経由して温水排出流路L20bを流通し、系外へ排出される。温水ポンプP21は、排熱回収器110へ供給する温水量を調節する。排熱回収器110では、温水の熱を、冷媒流路L10を流通する冷媒に伝熱して冷媒を加温する。
 ブローダウン流路L80は温水供給流路L20aに接続されており、ブローダウン水は温水供給流路L20aへと導入されて温水と混合される。ブローダウン流路L80の中途には、調節弁や逆止弁など各種弁を適宜設けても良い。
 次に、第二の実施形態について説明する。図2は第二の実施形態の概略構成図である。第二の実施形態では、ブローダウン流路L90を循環熱水流路L70より分岐させている点が図1のブローダウン流路L80と異なっている。なお、その他の構成要素については図1、図2で共通であるので、詳細な説明は省略する。
 このように、ブローダウン流路L90を循環熱水流路L70から分岐させることにより、気液分離器310から取り出される合計熱水量を循環熱水流路L70のみで調整でき、適宜バルブなどを設けることで、循環熱水流路L70とブローダウン流路L90とを流通する熱水の比率を容易にコントロールすることが出来るようになる。
 また、ブローダウン流路L80およびL90の接続先は、ヒートポンプ式蒸気生成装置1内に限定されず、排熱回収器110の温水上流側であればよく、図1および図2の破線で示されるように、温水タンク210と温水ポンプP21の間でも良い。この場合、ブローダウンされる熱水の量に関わらず、温水ポンプP21によって排熱回収器110へ流入する温水の総量を調節することが出来る。
 また、ブローダウン流路L80およびL90を温水タンク210へ直接接続してもよい。これにより、ブローダウンされた熱水が温水供給流路L20aへ流入した際に生じる温度差により、配管内に部分的に真空状態が作られることを原因とする、水撃作用を防止することが出来る。
 また、ブローダウン流路L80およびL90を上記接続先の内2か所以上に分岐させ、条件に応じて適宜切り替えるようにしても良い。これにより、機器停止時など温水を必要としない工程時にはブローダウン水を温水タンク210へ導入し、タンク内に貯留させるなどの操作を行うことが可能となり、ブローダウン水をより有効に活用することが出来る。
 以上のように、本発明に係るヒートポンプ式蒸気生成装置は、熱交換器配管内へのスケール付着を防止しつつ、ブローダウン水の持つ熱エネルギーを効率的に回収することにより、系全体でのエネルギー効率を改善させることが出来る。
1:ヒートポンプ式蒸気生成装置
100:ヒートポンプ設備
110:排熱回収器
120:圧縮機
130:凝縮器
140:絞り膨張器
200:温水供給設備
210:温水タンク
300:蒸気生成設備
310:気液分離器
410:蒸気利用設備
L10:冷媒流路
L20a:温水供給流路
L20b:温水排出流路
L30:供給水流路
L40:被分離流体流路
L50:蒸気流路
L60:ブローダウン流路
L70:循環熱水流路
L80、L90:ブローダウン流路
P21:温水ポンプ
P31:供給水ポンプ

Claims (7)

  1.  温水の熱を回収して蒸気を生成するヒートポンプ式蒸気生成装置であって、
     前記温水から熱を回収して冷媒を加温する排熱回収器、前記排熱回収器を通過した冷媒を圧縮する圧縮機、前記圧縮機で圧縮された冷媒の熱を被加熱水に伝熱して熱水と蒸気の気液二相流または高圧熱水を生成する凝縮器、及び前記凝縮器を通過した冷媒を減圧して温度を下げて前記排熱回収器に戻す絞り膨張器を有する冷媒循環流路と、
     前記温水を前記排熱回収器に供給する温水供給流路と、
     前記温水を前記排熱回収器から系外へ排出する温水排出流路と、
     前記凝縮器に前記被加熱水として供給水を導入する供給水流路と、
     前記凝縮器で生成した前記気液二相流または前記高圧熱水を蒸気と熱水とに分離する気液分離部と、
     前記凝縮器から前記気液分離部へ前記気液二相流または前記高圧熱水を供給する被分離流体流路と、
     前記気液分離部で分離した蒸気を、蒸気利用設備に送る蒸気流路と、
     前記気液分離部で分離した熱水を前記供給水流路に合流させる循環熱水流路と、
     前記気液分離部で分離した熱水の一部を抽出し、当該抽出した熱水を前記温水供給流路に供給するブローダウン流路と、
     を備えることを特徴とするヒートポンプ式蒸気生成装置。
  2.  前記ブローダウン流路は、前記気液分離部の底部もしくは底部近傍の側面から熱水の一部を抽出することを特徴とする請求項1に記載のヒートポンプ式蒸気生成装置。
  3.  前記ブローダウン流路は、前記循環熱水流路の途中から熱水の一部を抽出することを特徴とする請求項1に記載のヒートポンプ式蒸気生成装置。
  4.  前記温水供給流路の前記排熱回収器上流には、前記温水を貯留する温水タンクを備え、
     前記ブローダウン流路が温水タンクに接続されて前記抽出した熱水が供給されることを特徴とする請求項1~請求項3のいずれか1項に記載のヒートポンプ式蒸気生成装置。
  5.  前記温水供給流路の前記排熱回収器上流には、前記温水を前記排熱回収器に供給する温水ポンプを備え、
     前記ブローダウン流路が前記温水供給流路の温水ポンプと前記排熱回収器の間に接続されて前記抽出した熱水が供給されることを特徴とする請求項1~請求項3のいずれか1項に記載のヒートポンプ式蒸気生成装置。
  6.  前記温水供給流路の上流には、前記温水を貯留する温水タンクと、前記温水タンクの温水を前記排熱回収器に供給する温水ポンプを備え、
     前記ブローダウン流路が前記温水供給流路の前記温水タンクと前記温水ポンプとの間に接続されて前記抽出した熱水が供給されることを特徴とする請求項1~請求項3のいずれか1項に記載のヒートポンプ式蒸気生成装置。
  7.  前記絞り膨張器は、電子膨張弁、手動膨張弁、定圧膨張弁、温度膨張弁、オリフィス、キャピラリーのいずれかであることを特徴とする請求項1~請求項6のいずれか1項に記載のヒートポンプ式蒸気生成装置。
PCT/JP2015/069124 2014-07-02 2015-07-02 ヒートポンプ式蒸気生成装置 WO2016002878A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016531442A JP6394699B2 (ja) 2014-07-02 2015-07-02 ヒートポンプ式蒸気生成システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-137004 2014-07-02
JP2014137004 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016002878A1 true WO2016002878A1 (ja) 2016-01-07

Family

ID=55019405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069124 WO2016002878A1 (ja) 2014-07-02 2015-07-02 ヒートポンプ式蒸気生成装置

Country Status (2)

Country Link
JP (1) JP6394699B2 (ja)
WO (1) WO2016002878A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151388A (ja) * 2015-02-18 2016-08-22 富士電機株式会社 ヒートポンプ式蒸気生成装置及びヒートポンプ式蒸気生成装置の運転方法
CN113006892A (zh) * 2021-03-12 2021-06-22 阳春新钢铁有限责任公司 一种汽轮发电机用废热回收装置
CN114440203A (zh) * 2021-12-20 2022-05-06 苏州翔云节能科技有限公司 一种自热回收的热泵热水与蒸汽制备***及其工作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102505403B1 (ko) * 2022-05-03 2023-03-06 주식회사 대열보일러 보일러 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309360A (ja) * 2007-06-12 2008-12-25 Tokyo Electric Power Co Inc:The 蒸気生成システム
JP2010276304A (ja) * 2009-05-29 2010-12-09 Ebara Corp 蒸気発生システム
JP2012032135A (ja) * 2010-07-08 2012-02-16 Miura Co Ltd 蒸気システム
JP2012247146A (ja) * 2011-05-30 2012-12-13 Fuji Electric Co Ltd ヒートポンプ式蒸気生成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5593902B2 (ja) * 2010-07-15 2014-09-24 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP5786449B2 (ja) * 2010-07-27 2015-09-30 富士電機株式会社 ヒートポンプ式蒸気生成装置
JP5821411B2 (ja) * 2011-08-25 2015-11-24 三浦工業株式会社 蒸気発生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008309360A (ja) * 2007-06-12 2008-12-25 Tokyo Electric Power Co Inc:The 蒸気生成システム
JP2010276304A (ja) * 2009-05-29 2010-12-09 Ebara Corp 蒸気発生システム
JP2012032135A (ja) * 2010-07-08 2012-02-16 Miura Co Ltd 蒸気システム
JP2012247146A (ja) * 2011-05-30 2012-12-13 Fuji Electric Co Ltd ヒートポンプ式蒸気生成装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151388A (ja) * 2015-02-18 2016-08-22 富士電機株式会社 ヒートポンプ式蒸気生成装置及びヒートポンプ式蒸気生成装置の運転方法
CN113006892A (zh) * 2021-03-12 2021-06-22 阳春新钢铁有限责任公司 一种汽轮发电机用废热回收装置
CN114440203A (zh) * 2021-12-20 2022-05-06 苏州翔云节能科技有限公司 一种自热回收的热泵热水与蒸汽制备***及其工作方法
CN114440203B (zh) * 2021-12-20 2023-11-28 苏州翔云节能科技有限公司 一种自热回收的热泵热水与蒸汽制备***及其工作方法

Also Published As

Publication number Publication date
JP6394699B2 (ja) 2018-09-26
JPWO2016002878A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP4972421B2 (ja) ヒートポンプ式蒸気・温水発生装置
JP6394699B2 (ja) ヒートポンプ式蒸気生成システム
JP5674922B2 (ja) 複合サイクル発電システムにおける出力増大のためのエネルギ回収および蒸気供給
TWI646286B (zh) 具有熱整合的燃煤氧設備
KR102332878B1 (ko) 열 통합형 산소 공급 시스템의 순산소 보일러 발전소
NO338864B1 (no) Fremgangsmåte for øking av virkningsgraden til et gassturbinanlegg, og et derfor egnet gassturbinanlegg
JP2012007762A (ja) ドレン回収設備
JP2010038391A (ja) ヒートポンプ式蒸気発生装置
JP2012247156A (ja) ヒートポンプ式蒸気発生方法
JP2015212583A (ja) 給水予熱装置を持ったボイラ
JP2010276304A (ja) 蒸気発生システム
KR101878536B1 (ko) 열 통합형 공기 분리 유닛을 갖는 순산소 보일러 발전소
JP2015087044A (ja) ボイラシステム
KR101917430B1 (ko) 발전장치
JP6207086B2 (ja) アミン吸収液再生のための熱供給手段を備えた吸収式ヒートポンプ装置
JP2010001783A (ja) ブローイングアウト装置およびブローイングアウト方法
JP6209940B2 (ja) ボイラシステム
JP2003329201A (ja) 排熱回収ボイラと複合発電方法と装置
JP2013204878A (ja) 低圧蒸気加熱装置
JP2011127787A (ja) 廃蒸気回収装置
JP2019209249A (ja) 発電設備用の蒸発濃縮装置及び方法ならびに発電設備
JP5486322B2 (ja) 廃蒸気回収装置
KR101825316B1 (ko) 플래시 탱크 구조
JP2014145520A (ja) ドレイン回収および再生設備
KR101476557B1 (ko) 열공급장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814360

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814360

Country of ref document: EP

Kind code of ref document: A1