WO2015198411A1 - パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法 - Google Patents

パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法 Download PDF

Info

Publication number
WO2015198411A1
WO2015198411A1 PCT/JP2014/066767 JP2014066767W WO2015198411A1 WO 2015198411 A1 WO2015198411 A1 WO 2015198411A1 JP 2014066767 W JP2014066767 W JP 2014066767W WO 2015198411 A1 WO2015198411 A1 WO 2015198411A1
Authority
WO
WIPO (PCT)
Prior art keywords
case
semiconductor
cooling
semiconductor component
power module
Prior art date
Application number
PCT/JP2014/066767
Other languages
English (en)
French (fr)
Inventor
谷江 尚史
英一 井出
寛 新谷
西原 淳夫
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to DE112014006676.1T priority Critical patent/DE112014006676B4/de
Priority to JP2016528800A priority patent/JP6286543B2/ja
Priority to US15/319,640 priority patent/US10064310B2/en
Priority to PCT/JP2014/066767 priority patent/WO2015198411A1/ja
Publication of WO2015198411A1 publication Critical patent/WO2015198411A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • H05K7/20418Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing the radiating structures being additional and fastened onto the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • H01L23/4012Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws for stacked arrangements of a plurality of semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/0247Electrical details of casings, e.g. terminals, passages for cables or wiring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/06Hermetically-sealed casings
    • H05K5/062Hermetically-sealed casings sealed by a material injected between a non-removable cover and a body, e.g. hardening in situ
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14329Housings specially adapted for power drive units or power converters specially adapted for the configuration of power bus bars
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a power module device, a power conversion device, and a method for manufacturing a power module device.
  • Power converters equipped with power semiconductor elements such as IGBT (Insulated Gate Bipolar Transistor) and FWD (Free Wheel Diode) are used in various products such as electric vehicles, hybrid vehicles, railways, and power equipment. Since these power semiconductor elements generate heat during operation, it is required to properly cool the power semiconductor elements.
  • a cooling device such as water cooling for circulating water or air cooling using fins is provided, and the power semiconductor element is cooled by exchanging heat with this cooling device.
  • a general power conversion device or the like requires a plurality of semiconductor elements, and further, it is required to make the mounting density of the plurality of semiconductor elements dense.
  • a structure for cooling a semiconductor component (a semiconductor element is stored) from both sides has been developed.
  • a technique is known in which semiconductor components and cooling tubes for cooling are alternately arranged and stacked. Such a technique is described in, for example, Japanese Patent Application Laid-Open No. 2011-181687 (Patent Document 1).
  • the semiconductor component and the cooling device are alternately arranged to realize high-efficiency cooling of the semiconductor element.
  • the semiconductor component is directed upward or downward.
  • a connection is made between the terminals. That is, in the above-described conventional technology, since insulation is simply ensured in the space, the arrangement density tends to be increased by alternately arranging the semiconductor components and the cooling device, but ensuring the breakdown voltage is not always sufficient. .
  • a power conversion device or the like that handles a large voltage, if an attempt is made to secure a breakdown voltage between semiconductor elements and circuits inside the device, the space for insulation is increased, and the device is large.
  • An object of the present invention is to provide a power module device, a power conversion device, and a method for manufacturing the power module device that are suitable for high pressure while maintaining cooling efficiency.
  • the present invention includes a case having a plurality of recesses and a plurality of semiconductor components, wherein the case is on one side which is the recess side and on the side opposite to the one side. And the case has an edge extending from the other side toward the one side, and each of the plurality of semiconductor components is sandwiched by the cooling device from both sides via the case.
  • Each of the recesses has a sealing material disposed on one side of the case, and the case can hold the sealing material on the one side to at least a part of the edge. It was configured to have an integral structure.
  • the semiconductor device includes a case and a semiconductor component, and the semiconductor component is disposed in the recess of the case so as to be sandwiched from both sides by the cooling device via the case, and the case includes a part of the semiconductor component.
  • the terminal portion to be formed or at least a part of the terminals connected to the semiconductor component can be sealed with a sealing material.
  • the semiconductor component is disposed in each of the plurality of recesses of the case molded so as to be able to hold at least a part of the edge so that the fluid does not leak, and the semiconductor component is sandwiched from both sides on the other side.
  • a cooling device is arranged, and a sealing material is sealed on the recess side.
  • FIG. 1 is an external view of a power conversion device according to a first embodiment provided with the present invention.
  • FIG. 2 is a side view and a cross-sectional view of the power conversion apparatus according to the first embodiment provided with the present invention.
  • FIG. 3 is an external view and a cross-sectional view of a semiconductor component incorporating a semiconductor element which is a component constituting the power conversion apparatus according to the first embodiment including the present invention.
  • FIG. 4A is an external view and a cross-sectional view of a heat sink that is a component constituting the power conversion apparatus according to the first embodiment including the present invention.
  • FIG. 1 is an external view of a power conversion device according to a first embodiment provided with the present invention.
  • FIG. 2 is a side view and a cross-sectional view of the power conversion apparatus according to the first embodiment provided with the present invention.
  • FIG. 3 is an external view and a cross-sectional view of a semiconductor component incorporating a semiconductor element which is a component constituting the power conversion apparatus according to
  • FIG. 4B is an external view and a cross-sectional view of a heat sink according to a part that constitutes the power conversion apparatus according to the first embodiment including the present invention and that uses extrusion processing.
  • FIG. 5 is an external view of a pressing plate that is a component constituting the power conversion device according to the first embodiment including the present invention.
  • FIG. 6 is a cross-sectional view of a terminal block which is a component constituting the power conversion apparatus according to the first embodiment including the present invention.
  • FIG. 7 is a cross-sectional view of a terminal block support member which is a component constituting the power conversion device according to the first embodiment including the present invention.
  • FIG. 8 is an external view and a cross-sectional view of a case which is a component constituting the power conversion apparatus according to the first embodiment including the present invention.
  • FIG. 9 is a diagram for explaining a method of manufacturing a case which is a component constituting the power conversion apparatus according to the first embodiment provided with the present invention.
  • FIG. 10 is a first diagram showing a method of manufacturing the power conversion apparatus according to the first embodiment having the present invention.
  • FIG. 11 is a second view showing a method of manufacturing the power conversion apparatus according to the first embodiment provided with the present invention.
  • FIG. 12 is a third view showing a method of manufacturing the power conversion apparatus according to the first embodiment having the present invention.
  • FIG. 13 is a fourth diagram showing a method of manufacturing the power conversion apparatus according to the first embodiment provided with the present invention.
  • FIG. 14 is a fifth diagram showing the method of manufacturing the power converter according to the first embodiment equipped with the present invention.
  • FIG. 15 is a sixth diagram illustrating the method of manufacturing the power conversion apparatus according to the first embodiment including the present invention.
  • FIG. 16 is a top view of FIG. 6 showing a method of manufacturing the power conversion apparatus according to the first embodiment provided with the present invention.
  • FIG. 17 is a seventh view showing the method of manufacturing the power converter according to the first embodiment provided with the present invention.
  • FIG. 18 is an eighth diagram showing a method of manufacturing the power converter according to the first embodiment equipped with the present invention.
  • FIG. 19 is a first diagram showing the effect of deflection of the pressurizing plate constituting the power conversion apparatus according to the first embodiment provided with the present invention.
  • FIG. 19 is a first diagram showing the effect of deflection of the pressurizing plate constituting the power conversion apparatus according to the first embodiment provided with the present invention.
  • FIG. 19 is a second view showing the effect of the deflection of the pressurizing plate constituting the power conversion apparatus according to the first embodiment provided with the present invention.
  • FIG. 21 is a diagram for explaining a method for manufacturing a case which is a component constituting the power conversion apparatus according to the second embodiment including the present invention.
  • FIG. 22 is a diagram showing a method of manufacturing a power conversion apparatus according to the second embodiment having the present invention.
  • FIG. 23 is a diagram showing a power conversion apparatus according to a third embodiment provided with the present invention.
  • FIG. 24 is an external view and a sectional view showing a power conversion apparatus according to a fourth embodiment provided with the present invention.
  • FIG. 25 is a diagram for explaining a method of manufacturing a case which is a component constituting the power conversion apparatus according to the fourth embodiment having the present invention.
  • FIG. 26 is a first diagram showing a method of manufacturing a power conversion apparatus according to the fourth embodiment having the present invention.
  • FIG. 27 is a second view showing a method of manufacturing the power conversion apparatus according to the fourth embodiment having the present invention.
  • FIG. 28 is an external view of a power conversion apparatus according to a fifth embodiment provided with the present invention.
  • FIG. 29 is a diagram showing a heat sink constituting the power conversion apparatus according to the fifth embodiment having the present invention.
  • FIG. 30 is a view showing a heat sink constituting a power conversion apparatus according to a fifth embodiment provided with the present invention, and a pipe connecting the heat sink.
  • FIG. 26 is a first diagram showing a method of manufacturing a power conversion apparatus according to the fourth embodiment having the present invention.
  • FIG. 27 is a second view showing a method of manufacturing the power conversion apparatus according to the fourth embodiment
  • FIG. 31 is an external view of a power converter as a sixth embodiment provided with the present invention.
  • FIG. 32 is an external view of a heat pipe constituting a power conversion apparatus according to a sixth embodiment having the present invention.
  • FIG. 33 is an entire circuit of the power conversion apparatus according to the first embodiment including the present invention.
  • FIG. 33 shows a circuit diagram of the power conversion apparatus according to the first embodiment provided with the present invention.
  • the case 1 stores a semiconductor component 27-1, a semiconductor component 27-2, and a semiconductor component 27-3.
  • a power converter is formed by two sets of cases 1, a capacitor 101, and a capacitor 102.
  • Semiconductor components 27-1 (upper) (S1), 27-2 (upper) (S2), 27-2 (lower) (S3), 27-1 (lower) (S4) are DC terminals + E and -E. Are connected in series via the external terminal 3-2 of each case 1 (semiconductor components 27-1, 27-2, 27-3 are collectively referred to as semiconductor component 27. Other Configurations) Similarly, “ ⁇ 1”, “ ⁇ 2”... Also means a part of the generic part.
  • the semiconductor components 27-1 and 27-2 are configured by a parallel circuit of a switching element such as an IGBT and a free wheel diode (reverse connection).
  • Capacitors 101 and 102 are connected in series between the DC terminals + E and ⁇ E in parallel with the series circuit of the semiconductor component 27.
  • a connection point between the capacitors 101 and 102 has a neutral terminal N as a neutral polarity.
  • a connection point between the neutral terminal N and the semiconductor components 27-1 (upper side) and 27-2 (upper side) is connected to the semiconductor component 27-3 (upper side) via an external terminal 3-3 arranged in each case 1. ).
  • the connection point of the semiconductor component 27-1 (lower side) and 27-2 (lower side) is connected by the semiconductor component 27-3 (lower side).
  • the semiconductor component 27-1 is connected to the external terminal 3-1 and the internal terminal 28-2-1 of the semiconductor component 27-2 via the internal terminal 28-1-1 and the internal terminal 28-1-2, respectively.
  • the semiconductor component 27-2 is connected to the internal terminal 28-2-1 and the external terminal 3-2 of the semiconductor component 27-2 through the internal terminal 28-2-2 and the internal terminal 28-2-2, respectively.
  • the semiconductor component 27-3 includes an internal terminal 28-1-2 of the semiconductor component 27-1 and an internal terminal 28-2 of the semiconductor component 27-2 via the internal terminal 28-3-1 and the internal terminal 28-3-2. -1 and the external terminal 3-3.
  • the semiconductor component 27-3 is configured as a diode. In such a configuration, by controlling on / off of the semiconductor components 27-1 and 27-2, any one of the DC voltage + E, the neutral voltage N, and the DC voltage ⁇ E is selectively selected.
  • DC terminal + E with the alternating current applied between the semiconductor component 27-2 (upper side) and 27-2 (lower side) as direct current
  • the output that is, the power is converted to the DC terminal -E.
  • FIG. 1 shows an external view of a power conversion apparatus according to a first embodiment provided with the present invention
  • FIG. 2 shows a side view and a sectional view.
  • Four heat sinks 5 are arranged at the lower part of the case 1, and the terminal block 4 is arranged at the upper part of the case 1, and the external terminals 3 protrude from the side surfaces of the terminal block 4.
  • the external terminal 3 functions as a power conversion device by establishing electrical continuity with the outside.
  • Pressurizing plates 6 are arranged on both sides of the heat sink 5, and pressurizing bolts 7 pass through holes provided at four locations near the corners of the pressurizing plate 6 to connect with the pressurizing nuts 8. Pressure.
  • the terminal block 4 is fixed by a terminal block support member 9 through which the pressure bolt 7 passes.
  • the case 1 is composed of a thin metal plate, and the cross-sectional shape of the case 1 is such that both side surfaces are higher than the sealing material 2 and have three depressions in the center.
  • an aluminum plate having a thickness of about 0.1 mm bent on the case 1 was used.
  • a semiconductor component 27 containing a semiconductor element is disposed in each of the recesses of the case 1, and a total of three semiconductor components 27 containing a semiconductor element are provided.
  • a semiconductor component 27 containing each semiconductor element includes a semiconductor element 21, a metal circuit 22, an insulating material 23, and a heat radiating member 24, which are sealed with a mold resin 25.
  • the semiconductor element 21 is electrically connected to the outside.
  • the terminal 26 protruding from the mold resin 25 of the semiconductor component 27 containing the semiconductor element and the internal terminal 28 protruding from the terminal block 4 are firmly joined by welding.
  • the terminals 26 protruding from the mold resin 25 and the internal terminals 28 protruding from the terminal block 4 are sealed with the sealing material 2.
  • silicone gel is used for the sealing material 2, and a sufficient breakdown voltage can be secured even when a high breakdown voltage semiconductor element is used.
  • heat sinks 5 are arranged outside the case 1, that is, below the case 1 shown in the sectional view of FIG. 2 so as to sandwich the semiconductor component 27 containing the semiconductor element via the case 1.
  • the semiconductor component 27 containing any semiconductor element can be cooled from both sides.
  • the thermal resistance between the semiconductor component 27 containing the semiconductor elements and the heat sink 5 can be reduced.
  • the heat sink 5 is disposed and pressed on both sides of all the semiconductor components 27 containing the semiconductor elements, so that the semiconductor components 27 containing the semiconductor elements are provided.
  • the internal heat generation can be efficiently cooled.
  • the semiconductor component 27 incorporating the semiconductor element and the heat sink 5 face each other through the thin metallic case 1 and do not involve a member having a large thermal resistance.
  • the thermal resistance between the heat sinks 5 can be reduced.
  • contact resistance can be improved by providing a low elastic body or grease having high thermal conductivity between the semiconductor component 27 containing the semiconductor element and the case 1 or between the case 1 and the heat sink 5. Can be further reduced.
  • the semiconductor element 21, the semiconductor component 27 containing the semiconductor element, the terminal 26, and the internal terminal 28 are all sealed with the mold resin 25 or the sealing material 2, and are used in a power conversion device that handles high voltage. However, sufficient pressure resistance can be secured. Further, even when the semiconductor component 27 containing the semiconductor element or the heat sink 5 is thin and the distance between the terminals 26 of the semiconductor component 27 containing the adjacent semiconductor element is short, sufficient pressure resistance can be secured by the silicone gel. , Power converter can be made smaller and space saving.
  • FIG. 3a shows an external view of a semiconductor component 27 containing a semiconductor element constituting the power conversion apparatus according to the first embodiment of the present invention.
  • the semiconductor component 27 incorporating the semiconductor element used in this embodiment has a structure in which the heat radiation member 24 is exposed at the center of the main surface, the terminals 26a and 26b protrude from the upper part, and these are sealed with the mold resin 25.
  • the heat dissipating member 24 is in contact with the case 1 on the surface and has a role of transmitting heat inside the semiconductor component 27 containing the semiconductor element to the heat sink 5.
  • a copper member having high flatness was used. Copper has high thermal conductivity, and the thermal resistance between the semiconductor component 27 and the heat sink 5 can be further reduced.
  • FIG. 3b shows a cross-sectional view of a semiconductor component 27 containing a semiconductor element constituting the power conversion apparatus according to the first embodiment provided with the present invention.
  • the semiconductor component 27 incorporates at least one or more semiconductor elements 1, the metal circuit 22 is disposed on both surfaces of the semiconductor element 1, and part of them is a terminal 26. In this embodiment, the semiconductor element 1 and the metal circuit 22 are joined by solder.
  • At least one side of the metal circuits 22 arranged on both surfaces of the semiconductor element 1 is thicker at a portion in contact with the semiconductor element 1 than at other portions. As a result, the distance between the circuits of the metal circuits 22 arranged on both surfaces of the semiconductor element 1 can be secured, so that sufficient reliability can be secured even when a high voltage is handled.
  • an insulating material 23 is disposed on the surface opposite to the side facing the semiconductor element 21, and the semiconductor element 21 and the metal circuit 22 are insulated from the case 1 and the like to ensure circuit reliability. To do.
  • the thickness of the insulating material 23 can be selected according to the voltage used. In this embodiment, silicon nitride having a thickness of about 0.64 mm is used for the insulating material 23.
  • insulating resin sheets can be used according to the required pressure resistance and thermal resistance.
  • the thermal conductivity of the insulating material used is large, and the thinner the thickness, the smaller the thermal resistance.
  • a heat radiating member 24 is disposed on the surface opposite to the side facing the metal circuit 22.
  • only copper, silicon nitride, and solder are disposed between the semiconductor element 21 and the heat dissipation member 24, and all of them are thin members having high thermal conductivity. The thermal resistance between the two can be reduced.
  • copper is used for the metal circuit 22 and the heat dissipating member 24, but aluminum or other metal material can also be used.
  • the thermal resistance increases because of its lower thermal conductivity than copper, but it has features such as light weight and ease of processing. It can be used properly according to the application.
  • the semiconductor element 21, the metal circuit 22, the insulating material 23, the heat dissipation member 24, and the terminal 26 are sealed with a mold resin 25 except for a part of the heat dissipation member and the terminal 26.
  • a mold resin 25 By sealing with the mold resin 25, an electrical short circuit can be prevented, pressure resistance can be ensured, a difference in thermal deformation of each member occurring during operation can be reduced, and strength reliability can be ensured.
  • FIG. 4A shows an external view and a cross-sectional view of the heat sink 5 constituting the power conversion apparatus according to the first embodiment provided with the present invention.
  • the heat sink 5 has a role of cooling the semiconductor member 27 with two main surfaces contacting the case.
  • a water channel 41 is formed by providing fins in a direction substantially orthogonal to the main surface.
  • Connecting members 42 and 44 are provided on the two main surfaces of the heat sink 5, respectively.
  • the connecting member 42 is provided with an O-ring groove 43, and an O-ring is disposed in this groove and connected to a connecting member 44 of another heat sink 5, thereby forming a water channel.
  • the outer diameter of the connecting member 42 and the inner diameter of the connecting member 44 are determined so that when these are connected, the O-ring can be properly crushed to prevent water leakage. In this embodiment, it is determined that the O-ring is crushed by about 20% during connection.
  • copper was used as the material for the heat sink. Thermal resistance can be reduced by using copper with high thermal conductivity. Depending on the type of cooling medium and the required heat dissipation performance, different materials such as aluminum can be used. When aluminum is used, the thermal resistance increases because of its lower thermal conductivity than copper, but it has features such as light weight and ease of processing. It can be used properly according to the application.
  • the fin is configured by combining a plurality of members. However, as shown in FIG.
  • the fin can be configured by one member by using the extruded member.
  • One heat sink 5 can be formed by joining an extruding member 46 having a water channel inside and a heat sink end member 47 integrated with the connecting members 42 and 43 by extruding. At this time, the extruding member 46 and the heat sink end member 47 can be joined by brazing, bonding, or the like.
  • the fin since the fin is constituted by one member, it is possible to provide a fin that is low in cost and excellent in reliability.
  • the shape of the fin is restricted by the workability of the extrusion process, when a more detailed fin shape is required, a structure in which the fin is configured by combining a plurality of members as shown in FIG. It is effective to use.
  • FIG. 5 shows an external view of the pressurizing plate 6 constituting the power conversion apparatus according to the first embodiment provided with the present invention.
  • the pressing plate 6 is a stainless steel plate having a thickness of about 5 mm.
  • a hole 51 for allowing the pressure bolt 7 to pass therethrough is provided in the vicinity of the corner portion of the pressure plate 6, a hole 51 for allowing the pressure bolt 7 to pass therethrough is provided.
  • a hole 52 for the connecting member of the heat sink 5 is also provided.
  • the pressing plate 6 has a longitudinal deflection in the out-of-plane direction. The effect of deflection will be described later.
  • FIG. 6 shows an external view of the terminal block 4 constituting the power conversion apparatus according to the first embodiment provided with the present invention.
  • the terminal block 4 is made of an epoxy resin
  • the copper external terminals 3 are protruded on the outside
  • the copper internal terminals 28 are protruded on the inner side
  • the external terminals 3 and 28 are located inside the terminal block 4.
  • the lower surface of the terminal block 4 is provided with a concave portion for positioning the terminal block 4 in a pair with the terminal block positioning convex portion 72 provided on the upper surface of the terminal block support member 9. Yes.
  • FIG. 7 shows an external view of the terminal block support member 9 constituting the power conversion apparatus according to the first embodiment provided with the present invention.
  • a hole 71 through which the pressurizing bolt 7 passes is provided on the side surface of the terminal block support member 9, and a terminal block positioning convex portion 72 is provided on the upper surface.
  • the thickness of the terminal block support member 9 is smaller than the thickness of the semiconductor component 27 containing the semiconductor element.
  • an epoxy resin is used as the material for the terminal block support member 9.
  • Other materials can be used as long as the rigidity necessary for positioning the terminal block can be secured.
  • FIG. 8 shows an external view and a cross-sectional view of case 1 constituting the power conversion apparatus according to the first embodiment including the present invention.
  • the case 1 is constructed by bending an aluminum plate having a thickness of 0.1 mm. Since three recesses for inserting the semiconductor component 27 containing the semiconductor element are provided and the end portions are bent so as to be arranged on substantially the same plane, a liquid silicone gel is injected. Can be sealed with silicone gel. Further, a portion that becomes a heat dissipation path facing the semiconductor component 27 or the heat sink 5 containing the semiconductor element is a flat surface, and has a shape effective for reducing thermal resistance, and also faces the semiconductor component 27 or the heat sink 5.
  • Case 1 has a shape that resembles a spring in the direction perpendicular to the surface that becomes the heat dissipation path, that is, the direction in which pressure is applied to reduce contact thermal resistance after mounting components, etc. is there. Therefore, when pressurizing, the rigidity of the case 1 is not hindered.
  • aluminum is used as the material of the case 1, but other materials such as copper, aluminum, copper alloys, and the like can also be used.
  • copper is used for case 1
  • the thermal resistance can be made smaller because the thermal conductivity is larger than that of aluminum.
  • the rigidity is greater than that of aluminum. In view of these, it can be selected.
  • case 1 is manufactured by bending a substantially rectangular thin plate 71.
  • Case 1 can be formed by folding the dotted line shown in the figure in the valley and the one-dot chain line in the mountain.
  • an aluminum plate having a thickness of 0.1 mm is used as the material of the case 1.
  • L1 to L7 are after bending
  • L1 is the width of the recess at the mounting position of the semiconductor component
  • L2 is the depth of the recess at the mounting position of the semiconductor component
  • L3 is the width of the mounting position of the heat sink 5
  • L4 is The width of the heat sink 5 installation position at the end of the case 1
  • L5 is the height of the edge of the case 1
  • L6 is the length of the recess at the mounting position of the semiconductor component
  • L7 is the dimension of the case 1 in the longitudinal direction when mounting the semiconductor component 27 It becomes.
  • FIG. 10 four heat sinks 5 are connected to form a water channel.
  • two types of heat sink 5a and heat sink 5b in which the positions of the connecting members 42 and 44 are symmetrical on the right and left sides, are prepared, and the water channel is configured by connecting them in order.
  • the O-ring groove 43 of the connecting member 42 is provided with an O-ring, and cooling water leakage at the connecting portion can be prevented.
  • the rigidity of the connecting portion does not hinder pressurization during pressurization.
  • the heat sink 5 is arranged on both sides of the recessed portion of the case 1 by installing the case 1 between the four connected heat sinks 5.
  • semiconductor components 27 each containing a semiconductor element are installed in three recesses of case 1.
  • the surface of the semiconductor component 27 on which the heat dissipation member 24 is exposed is arranged so as to be in contact with the surface of the case 1 facing the main surface of the heat sink 5.
  • the heat sink 5 can be disposed on the surface.
  • the semiconductor component 27 is installed in the recess of the case 1 after the case 1 is installed on the heat sink 5.
  • the case 1 is installed on the upper portion of the heat sink 5 after the semiconductor component 27 is installed in the recess of the case 1. May be installed.
  • a total of six terminal block support members 9 are arranged on the side portion of the semiconductor component 27 containing the semiconductor element. At this time, the terminal block positioning convex portion 72 of the nine terminal block support members is positioned higher than the edge of the case 1.
  • two pressurizing plates 6 are arranged on both sides of the heat sink 5. At this time, it arrange
  • the pressure plate 6 is provided with a hole 52 for a connecting member, the connection members 42 and 44 of the heat sink 5 and the pressure plate 6 do not come into contact with each other.
  • the width of the terminal block support member 9 in the pressing direction is smaller than the width of the semiconductor component 27, so that the pressure generated by the axial force of the pressing bolt 7 is
  • the semiconductor component 27 does not act on the support member 9 and receives pressure on the surface. Therefore, the semiconductor component 27 can be appropriately pressurized by pressurization.
  • the terminal block 4 is arranged on the upper part of the case 1, and the terminal 26 of the semiconductor component 27 and the internal terminal 28 of the terminal block are joined by welding. At this time, the terminal block can be positioned by adhering the concave portion on the lower surface of the terminal block 4 and the convex portion on the upper surface of the terminal block support member 9 with an adhesive.
  • liquid silicone gel before curing is injected as a sealing material 2 into the position where the semiconductor component 27 is mounted inside the case 1.
  • the liquid silicone gel is injected so that the liquid level is higher than the terminal 26 of the conductor component 27 and the internal terminal 28 of the terminal block, so that the interior of the terminal 26 and the terminal block of the semiconductor component 27 and the conductor component 27 is obtained.
  • the terminal 28 can be sealed.
  • the case 1 since the case 1 is bent so that the end of one aluminum plate is arranged on the substantially same plane, if the liquid level is located below the plane of the end, the liquid silicone gel Will not leak.
  • the silicone gel is injected, the gel is cured to complete the sealing, and the power converter is completed.
  • the power conversion device according to the first embodiment of the present invention, the structure and the manufacturing method of which is described, has heat sinks 5 arranged on both sides of all semiconductor components 27 containing semiconductor elements.
  • the semiconductor element 21 can be efficiently cooled from both sides.
  • the rigidity of the case 1 and the water channel is small in the pressurizing direction, the rigidity of the case 1 is not hindered when pressurizing to reduce the thermal resistance. Since the terminal block support member 9 is thinner than the semiconductor component 27, it is possible to prevent the terminal block support member 9 from hindering pressurization.
  • FIG. 19 shows a modification when the semiconductor component 27 is pressed with the pressing plate 6 without any deflection.
  • the applied pressure is generated at the position of the pressurizing bolt 7, that is, near the corner of the pressurizing plate 6. Since the size of the semiconductor component 27 is smaller than the distance at which the applied pressure is generated, when the pressing plate 19 is not bent, a four-point bending deformation with the end of the semiconductor component 27 as a fulcrum as shown in FIG. Occurs. As a result, the surface pressure near the center of the semiconductor component 27 is reduced.
  • the pressing plate 6 is deflected as shown in FIG.
  • a three-point bending deformation with the central portion of the semiconductor component 27 as a fulcrum occurs.
  • the surface pressure near the center of the semiconductor component 27 increases.
  • the intermediate deformation between the four-point bending deformation mode shown in FIG. 19 and the three-point bending deformation mode shown in FIG. 20 can be performed. Either position can be pressurized appropriately. If an extremely large deflection is provided on the pressing plate 6, the surface pressure near the center of the semiconductor component 27 increases while the surface pressure near the end of the semiconductor component 27 decreases. Therefore, an appropriate amount of deflection should be provided. Is desirable.
  • FIG. 21 shows a case 211 constituting the power conversion apparatus according to the second embodiment provided with the present invention and a developed view 212 thereof.
  • the difference from the case 1 used in the first embodiment is that the case 1 used in the first embodiment has three recesses in which the semiconductor components 27 containing the semiconductor elements are arranged, whereas the first embodiment uses this embodiment.
  • the case used for the power conversion device provided with the present invention can be shaped according to the number and size of the semiconductor components 27 to be installed by selecting the dimension and the folding position of the aluminum plate to be used. This is a major feature of the present invention.
  • the manufacturing method of the power converter device which is the 2nd example provided with the present invention is explained using FIG.
  • Three heat sinks 5 are arranged, and a case 212 is installed between them.
  • the heat sinks 5 are connected by the O-rings at the connecting portions 42 and 44, the length of the connecting portions can be freely changed in the connecting direction.
  • semiconductor components 27 each incorporating a semiconductor element are installed in two recesses of the case 211.
  • the surface of the semiconductor component 27 on which the heat dissipation member 24 is exposed is arranged so as to be in contact with the surface of the case 211 facing the main surface of the heat sink 5.
  • the heat sink 5 can be disposed on the surface.
  • the subsequent manufacturing method is the same as that of the first embodiment.
  • three semiconductor components 27 are provided inside the power conversion device, whereas in the present embodiment, two semiconductor components 27 are provided inside the power conversion device and used as the power conversion device.
  • the voltage and current conditions to be used are different from those in the first embodiment.
  • the same semiconductor component 27 and the heat sink 5 are prepared, and the number to be used is freely changed, so that a power conversion device suitable for the purpose of use can be configured. Therefore, a wide lineup corresponding to various usage purposes can be constructed using the same semiconductor component 27.
  • FIG. 23 shows a diagram for explaining a power conversion apparatus according to a third embodiment including the present invention.
  • the difference between this embodiment and the first embodiment is that three semiconductor components 27 are mounted on the case 1 as shown in FIG. 23a, and a terminal block (not shown) is installed as shown in FIG. 23b.
  • the trapezoidal regions at both ends of the case are cut as shown in FIG. 23c.
  • the trapezoidal regions at both ends of the case length serve to prevent leakage when liquid silicone gel is injected. However, after the silicone gel has hardened, no leakage will occur even if this area is cut.
  • the case in use can be miniaturized and the heat sink can be miniaturized, so that the entire power converter can be miniaturized.
  • a process of cutting the case and the cured silicone gel is required, it can be used separately from Example 1 in accordance with the purpose of downsizing and process shortening.
  • FIG. 24 shows an external view and a cross-sectional view of a power conversion apparatus according to a fourth embodiment provided with the present invention.
  • the external view is the same as that of the first embodiment.
  • the difference from the first embodiment is that, in the cross-sectional view, there is no mold resin 25 of the semiconductor component 27 incorporating the semiconductor element, and all sealing is performed only by the sealing material 2 that is silicone gel.
  • the sealing material 2 that is silicone gel.
  • the present embodiment when manufacturing the semiconductor component 27 incorporating the semiconductor element, it is not necessary to mold with resin, so that the manufacturing process can be simplified.
  • the outer size of the semiconductor component 27 can be reduced, which is effective in reducing the size of the entire power conversion device.
  • the case 1 and the metal circuit 22 are not in contact with each other when the semiconductor component 27 is installed in the case 1 without the mold resin 25. Electrical short circuit can be prevented. Furthermore, sufficient pressure resistance can be secured after silicone gel injection. However, since the semiconductor element 21 and the metal circuit 22 are not sealed with the mold resin 25, it is necessary to pay attention to reducing the thermal stress due to the thermal deformation difference of each member due to the temperature rise during operation.
  • molybdenum, tungsten, or the like which is a material having a small difference in linear expansion coefficient from that of the semiconductor element 21, for at least a part of the metal circuit 22.
  • carbon or a composite material containing carbon for a part of the metal circuit 22 is also effective in reducing thermal stress.
  • case 1 is the same as that of the first embodiment. However, since the outer dimension of the semiconductor component 27 is reduced, the case 1 can be reduced in size.
  • the case 1 is installed on the heat sink 5. Since the outer dimension of the semiconductor component 27 is reduced, the heat sink 5 can also be reduced in size.
  • an unmolded semiconductor component 241 is placed in the case 1. At this time, the semiconductor component 241 is not molded, and the metal circuit 22 and the semiconductor element 21 are exposed.
  • FIG. 25 to 27 The manufacturing method of case 1 shown in FIG. 25 is the same as that of the first embodiment. However, since the outer dimension of the semiconductor component 27 is reduced, the case 1 can be reduced in size.
  • the case 1 is installed on the heat sink 5. Since the outer dimension of the semiconductor component 27 is reduced, the heat sink 5 can also be reduced in size.
  • an unmolded semiconductor component 241 is placed in the case 1. At this time, the semiconductor component 241 is not molded, and the metal circuit 22 and the semiconductor element 21 are exposed.
  • FIG. 28 shows an external view of a power conversion apparatus according to a fifth embodiment provided with the present invention.
  • the difference from the first embodiment is that a plurality of heat sinks 281 are connected not by an O-ring but by a low elastic pipe 282.
  • the length of the connecting portion cannot be freely changed as in the case of connecting with an O-ring as in the first embodiment.
  • the rigidity in the pressurizing direction can be reduced if the material and dimensions of the pipe 282 are appropriately selected. As a result, the distance in the pressurizing direction between adjacent heat sinks can be freely changed, so that pressurization of the semiconductor component 27 is not hindered.
  • FIG. 29 shows an external view and a cross-sectional view of the heat sink 281 used in this embodiment.
  • Pipe insertion ports 291 are provided at both ends of the heat sink 281.
  • cooling fins are provided inside to enable efficient cooling.
  • FIG. 30 shows a connected state of the heat sink 281 and the pipe 282 used in this embodiment.
  • the pipe insertion port 291 of the adjacent heat sink 281 is connected by a pipe 282 to form one water channel.
  • the shape of the adjacent heat sinks 281 may be the same. For this reason, it is not necessary to prepare two types of symmetrical shapes as shown in the first embodiment, and one type of heat sink 281 may be prepared.
  • a heat sink 281 having a pipe insertion port 291 at each end is used, and the water channel is in series. When cooling water is allowed to flow in parallel to the plurality of heat sinks 281, heat sinks 281 having two pipe insertion ports 291 at both ends may be used.
  • the pipe 282 is provided outside the pressurizing bolt 7, but it is also possible to provide the pipe 282 inside the pressurizing bolt 7. In this case, the external size of the power return device can be reduced, which is effective for downsizing. On the other hand, since it is necessary to shorten the length of the heat sink 281 and the space around which the pipe 282 is routed is defined, the degree of freedom of the usable pipe diameter is reduced. In view of these, the pipe position can be selected.
  • FIG. 31 shows an external view of a power conversion apparatus according to a sixth embodiment provided with the present invention.
  • the difference from the first embodiment is that the heat pipe 311 is used for cooling instead of the water-cooled heat sink 5.
  • FIG. 32 shows a heat pipe 311 used in this embodiment.
  • a pipe portion 322 containing liquid protrudes from a contact portion 321 with the case of the heat pipe, and a cooling fin 323 is connected to the protruding portion.
  • four heat pipes 311 are arranged on both sides of the semiconductor component 27 through the case 1 so that the contact portions 321 with the case of the heat pipe are arranged, and the semiconductor component 27 is cooled from both sides.
  • the heat pipe 311 is disposed below the power converter, but the heat pipe is disposed above during operation.
  • the liquid inside the pipe portion 322 is disposed in the vicinity of the semiconductor component 27, is vaporized by heat generation of the semiconductor component 27, moves to the vicinity of the cooling fin 323, is cooled and liquefied, and is again in the vicinity of the semiconductor component 27. Move to. By repeating this cycle, the semiconductor component 27 is cooled.
  • four heat pipes 311 are used, but these heat pipes 311 may be connected at the positions of the cooling fins 323. In this case, it is necessary to pay attention to the shape of the cooling fins 323 and the like so that the mounting operation and the like are easy, but the rigidity is increased and the pressurization is not hindered.
  • the heat pipe 311 is disposed under the power converter, but the heat pipe 311 may be disposed beside the power converter.
  • the pipe portion 322 of the heat pipe 311 is passed through the side surface, that is, between the two pressurizing bolts 7.
  • the heat pipe 311 can be arranged beside the power converter.
  • the semiconductor parts and wiring and the cooling part are separated by the case 1, different cooling methods can be used without changing the semiconductor parts and wiring. It is.
  • a cooling method using a heat pipe is used, but other cooling methods such as an air cooling method may be used depending on the required cooling capacity. Regardless of which cooling method is used, the semiconductor component 27 can be cooled from both sides.
  • a substantially rectangular thin plate is folded and valley folded to form a shape having a number of depressions for mounting semiconductor components containing semiconductor elements, and at the same time, perpendicular to the folding direction.
  • a case is provided in which all the edges constituting the outer shape of the thin plate are arranged on substantially the same plane, and a semiconductor component containing a semiconductor element is placed in a position where the case becomes a depression.
  • the cooling device so as to sandwich the semiconductor component containing the semiconductor element via the semiconductor chip and sealing the semiconductor component containing the semiconductor element with silicone gel.
  • the case is made of a metal having high thermal conductivity. More preferably, the case is made of aluminum, copper, or an alloy containing these as a main component.
  • the cooling device arranges a plurality of independent cooling modules on both sides of a semiconductor component incorporating a semiconductor element, and connects each cooling module in a pressurizing direction with a low-rigidity connecting portion. Further, a member that supports the terminal block is disposed on a side portion of the semiconductor component containing the semiconductor element to support the terminal block. At this time, the thickness of the member supporting the terminal block is made smaller than that of the semiconductor component incorporating the semiconductor element.
  • the semiconductor components containing the semiconductor elements and the cooling device can be alternately arranged, so that the semiconductor elements can be efficiently cooled from both sides.
  • the rigidity of the case is small in the direction in which the semiconductor components containing the semiconductor element and the cooling device are alternately arranged, the pressure between the semiconductor component containing the semiconductor element and the cooling device is reduced to reduce the thermal resistance.
  • the rigidity of the case is not hindered.
  • a case shape in which all edges are arranged on substantially the same plane can be realized by bending a thin plate, and a semiconductor component containing a conductor element is arranged at the position where it becomes a depression. Even if this sealing material is injected, it does not leak and can be properly sealed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

 両面から半導体素子を冷却するために、半導体素子を内蔵する半導体部品と冷却装置とを交互に配置でき、なおかつ、耐圧を確保するための液状のシリコーンゲルを注入しても漏れることなく封止できるケースを備えたパワーモジュール装置を提供する。 ケースは、薄板を折り曲げ加工することで、半導体素子を内蔵する半導体部品を搭載する数の窪部を持つ形状を形成すると同時に,薄板の外形を構成する縁部全てが略同一面上に配置され、複数の半導体部品の各々は、ケースを介して冷却装置に両側から挟み込まれるように窪部の各々に配置され、封止材は、窪部及び縁部の一部に保持される。

Description

パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法
本発明は,パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法に関する。
 電気自動車やハイブリッド自動車,鉄道,電力機器など様々な製品において,IGBT(Insulated Gate Bipolar Transistor)やFWD(Free Wheel Diode)などのパワー半導体素子を搭載した電力変換装置が用いられる。これらのパワー半導体素子は動作時に発熱するため、パワー半導体素子を適切に冷却することが求められる。そのために、水を循環させる水冷、或いは、フィンを利用した風冷等の冷却器を設け、この冷却器と熱交換することでパワー半導体素子を冷却する。
 ここで、一般の電力変換装置等では複数の半導体素子が必要であり、さらに、この複数の半導体素子の実装密度を密にすることが要求されている。それらを効率良く冷却するために、半導体部品(半導体素子が格納されている)を両面から冷却する構造が開発されている。このように半導体素子の発熱を効率良く冷却するには,半導体素子を内蔵する半導体部品と冷却装置を交互に配置することが有効である。例えば,半導体部品と,冷却のための冷却チューブとを交互に配置して積層する技術が知られている。このような技術は、例えば、特開2011-181687号公報(特許文献1)に記載されている。
特開2011-181687号公報
 上記の従来技術では、半導体部品と冷却装置を交互に配置することで半導体素子の高効率の冷却を実現しているものの、その半導体素子や回路間の絶縁に関しては、半導体部品の上方向或いは下方向に空間を空けて基板を設けているところ、その間を端子で接続する構成となっている。すなわち、上記の従来技術では、単に空間で絶縁を確保しているので、半導体部品と冷却装置を交互に配置することで配置密度が高くなる傾向にあるところ、必ずしも耐圧の確保が十分ではなかった。また、大電圧を扱う電力変換装置等では,装置内部の半導体素子や回路間の耐圧を確保しようとすると、絶縁のための空間を大きくすることとなり、装置が大型になっていた。
本発明の目的は、冷却効率を維持しつつ、なお高圧化に適するパワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法を提供することにある。
 上記目的を達成するために、本発明では、複数の窪部を有するケースと、複数の半導体部品とを有し、前記ケースは、窪部側である一方側と、前記一方側と反対側である他方側を有し、前記ケースは前記他方側から前記一方側に向けて延長される縁部を有し、前記複数の半導体部品の各々は前記ケースを介して冷却装置に両側から挟み込まれるように前記窪部の各々に配置され、前記ケースの一方側に配された封止材を有し、前記ケースは少なくとも前記縁部の一部まで前記封止材を前記一方側に保持可能なように一体的な構造をするように構成した。
 あるいは、ケースと、半導体部品とを有し、前記半導体部品は前記ケースを介して冷却装置に両側から挟み込まれるように前記ケースの窪部に配置され、前記ケースは、前記半導体部品の一部をなす端子部、あるいは、前記半導体部品に接続される端子の少なくとも一部を封止材で封止可能な構成とする。
 あるいは、少なくとも縁部の一部まで流体が漏れないよう保持可能なように成型されたケースの複数の窪部の各々に半導体部品を配置すると共に、他方側に前記半導体部品を両側から挟み込むように冷却装置を配置し、前記窪部側に封止材を封入するように構成する。
 本発明によれば、冷却効率を維持しつつ、なお高圧化に適することが可能となる。
図1は本発明を備えた第1の実施例である電力変換装置の外観図である。 図2は本発明を備えた第1の実施例である電力変換装置の側面図および断面図である。 図3は本発明を備えた第1の実施例である電力変換装置を構成する部品である半導体素子を内蔵する半導体部品の外観図および断面図である。 図4aは本発明を備えた第1の実施例である電力変換装置を構成する部品であるヒートシンクの外観図および断面図である。 図4bは本発明を備えた第1の実施例である電力変換装置を構成する部品であって押し出し加工を利用したものに係るヒートシンクの外観図および断面図である。 図5は本発明を備えた第1の実施例である電力変換装置を構成する部品である加圧用板の外観図である。 図6は本発明を備えた第1の実施例である電力変換装置を構成する部品である端子ブロックの断面図である。 図7は本発明を備えた第1の実施例である電力変換装置を構成する部品である端子ブロック支持部材の断面図である。 図8は本発明を備えた第1の実施例である電力変換装置を構成する部品であるケースの外観図および断面図である。 図9は本発明を備えた第1の実施例である電力変換装置を構成する部品であるケースの製造方法を説明する図である。 図10は本発明を備えた第1の実施例である電力変換装置の製造方法を示す第1の図である。 図11は本発明を備えた第1の実施例である電力変換装置の製造方法を示す第2の図である。 図12は本発明を備えた第1の実施例である電力変換装置の製造方法を示す第3の図である。 図13は本発明を備えた第1の実施例である電力変換装置の製造方法を示す第4の図である。 図14は本発明を備えた第1の実施例である電力変換装置の製造方法を示す第5の図である。 図15は本発明を備えた第1の実施例である電力変換装置の製造方法を示す第6の図である。 図16は本発明を備えた第1の実施例である電力変換装置の製造方法を示す第6の図の上面図である。 図17は本発明を備えた第1の実施例である電力変換装置の製造方法を示す第7の図である。 図18は本発明を備えた第1の実施例である電力変換装置の製造方法を示す第8の図である。 図19は本発明を備えた第1の実施例である電力変換装置を構成する加圧用板のたわみの効果を示す第1の図である。 図19は本発明を備えた第1の実施例である電力変換装置を構成する加圧用板のたわみの効果を示す第2の図である。 図21は本発明を備えた第2の実施例である電力変換装置を構成する部品であるケースの製造方法を説明する図である。 図22は本発明を備えた第2の実施例である電力変換装置の製造方法を示す図である。 図23は本発明を備えた第3の実施例である電力変換装置を示す図である。 図24は本発明を備えた第4の実施例である電力変換装置を示す外観図および断面図である。 図25は本発明を備えた第4の実施例である電力変換装置を構成する部品であるケースの製造方法を説明する図である。 図26は本発明を備えた第4の実施例である電力変換装置の製造方法を示す第1の図である。 図27は本発明を備えた第4の実施例である電力変換装置の製造方法を示す第2の図である。 図28は本発明を備えた第5の実施例である電力変換装置の外観図である。 図29は本発明を備えた第5の実施例である電力変換装置を構成するヒートシンクを示す図である。 図30は本発明を備えた第5の実施例である電力変換装置を構成するヒートシンクと,ヒートシンクを連結するパイプを示す図である。 図31は本発明を備えた第6の実施例である電力変換装置の外観図である。 図32は本発明を備えた第6の実施例である電力変換装置を構成するヒートパイプの外観図である。 図33は本発明を備えた第1の実施例である電力変換装置の全体回路である。
 以下,図面を用いて実施例を説明する。
 図33に本発明を備えた第1の実施例である電力変換装置の回路図を示す。半導体モジュールとして、ケース1には、半導体部品27-1、半導体部品27-2及び半導体部品27-3が格納される。この例では、2組のケース1と、コンデンサ101、コンデンサ102で電力変換装置が形成される。
 半導体部品27-1(上側)(S1)、27-2(上側)(S2)、27-2(下側)(S3)、27-1(下側)(S4)が直流端子+E及びーEの間で直列に、各々のケース1の外部端子3-2を介して接続される(半導体部品27-1、27-2、27-3を総称して半導体部品27と記する。他の構成部品についても同様に「-1」「-2」…と記することで総称部品の一部をなすことを意味する。)。ここで、半導体部品27-1、27-2は、IGBT等のスイッチング素子と還流ダイオード(逆接続)の並列回路から構成される。直流端子+E及びーEの間には、半導体部品27の直列回路と並列に、コンデンサ101及び102が直列に接続さる。コンデンサ101及び102の接続点は中性極性として中性端子Nが構成される。中性端子Nと、半導体部品27-1(上側)と27-2(上側)の接続点は、各々のケース1に配される外部端子3-3を介して、半導体部品27-3(上側)により接続される。同様に、半導体部品27-1(下側)と27-2(下側)の接続点は半導体部品27-3(下側)により接続される。
 半導体部品27-1は内部端子28―1-1及び内部端子28―1-2を介して各々外部端子3-1及び半導体部品27-2の内部端子28―2-1に接続される。半導体部品27-2は内部端子28―2-2及び内部端子28―2-2を介して各々半導体部品27-2の内部端子28―2-1及び外部端子3-2に接続される。半導体部品27-3は内部端子28―3-1及び内部端子28―3-2を介して各々半導体部品27-1の内部端子28―1-2と半導体部品27-2の内部端子28―2-1の接続点、及び外部端子3-3及びに接続される。
 半導体部品27-3はダイオードとして構成される。このような構成において、半導体部品27-1、27-2のオン/オフを制御することで、直流電圧+E、中性電圧N、直流電圧ーEのいずれかを選択的に半導体部品27-2(上側)と27-2(下側)の間に出力するか、あるいは、半導体部品27-2(上側)と27-2(下側)の間に印加された交流を直流として直流端子+E、直流端子ーEに出力、すなわち、電力変換するのである。
 図1に本発明を備えた第1の実施例である電力変換装置の外観図,図2に側面図および断面図を示す。ケース1の下部に4個のヒートシンク5が,ケース1の上部に端子ブロック4が配置されており,端子ブロック4の側面には外部端子3が突出している。この外部端子3によって外部との電気的導通をとることで,電力変換装置として機能する。ヒートシンク5の両側面には,加圧用板6が配置され,加圧用板6の角部近傍4箇所に設けられた穴を加圧用ボルト7が貫通して加圧用ナット8と連結することで加圧している。また,端子ブロック4は,加圧用ボルト7が貫通する端子ブロック支持部材9によって固定されている。
 図2に示す断面図を用いて,本発明を備えた第1の実施例である電力変換装置の内部構造を説明する。ケース1は,薄い金属板によって構成されており,ケース1の断面形状は,両側面が封止材2より高く,中央部に3箇所の窪みを持つ形状である。本実施例では,ケース1に曲げ加工した厚さ約0.1mmのアルミ板を用いた。このケース1の窪みそれぞれに,半導体素子を内蔵する半導体部品27が配置されており,半導体素子を内蔵する半導体部品27を合計で3個備えている。それぞれの半導体素子を内蔵する半導体部品27は,内部に半導体素子21,金属回路22,絶縁材23,放熱部材24が積層され,これらの部材がモールド樹脂25で封止されている。また,金属回路22との電気的導通がとられた端子26がモールド樹脂25から突出し,端子ブロック4から突出する内部端子28と接続されている,内部端子28は,端子ブロック4の内部において外部端子3と接続され,半導体素子21と外部との電気的導通がとられる。本実施例において,半導体素子を内蔵する半導体部品27のモールド樹脂25から突出する端子26と端子ブロック4から突出する内部端子28は,溶接によって強固に接合されている。また,モールド樹脂25から突出する端子26と端子ブロック4から突出する内部端子28は,封止材2で封止されている。本実施例では,封止材2にシリコーンゲルを用いており,高耐圧な半導体素子を用いる場合であっても,十分な耐圧を確保できる。ケース1の外側,すなわち図2の断面図に示すケース1より下側には,ケース1を介して半導体素子を内蔵する半導体部品27を挟む様に4個のヒートシンク5が配置されている。この様にヒートシンクを配置することで,いずれの半導体素子を内蔵する半導体部品27も両面から冷却できる。これらの半導体素子を内蔵する半導体部品27とヒートシンク5を,加圧用板6で加圧することで,半導体素子を内蔵する半導体部品27とヒートシンク5の間の熱抵抗を低減できる。
 本発明を備えた第1の実施例である電力変換装置では,半導体素子を内蔵する半導体部品27全ての両面にヒートシンク5が配置されて加圧されているので,半導体素子を内蔵する半導体部品27内部での発熱を効率良く冷却できる。このとき,半導体素子を内蔵する半導体部品27とヒートシンク5は,薄い金属性のケース1を介して面しており,熱抵抗の大きい部材を介さないことから,半導体素子を内蔵する半導体部品27とヒートシンク5の間の熱抵抗を小さくできる。なお,図示はしていないが,半導体素子を内蔵する半導体部品27とケース1の間や,ケース1とヒートシンク5の間に,熱伝導率の高い低弾性体やグリースを設けることで,接触抵抗をより低減できる。半導体素子21,半導体素子を内蔵する半導体部品27,端子26,内部端子28は,全てモールド樹脂25あるいは封止材2で封止されており,高電圧を扱う電力変換装置に用いた場合であっても,十分な耐圧性を確保できる。さらに,半導体素子を内蔵する半導体部品27やヒートシンク5が薄く,隣接する半導体素子を内蔵する半導体部品27の端子26の間隔が短い場合であっても,シリコーンゲルによって十分な耐圧性を確保できることから,電力変換装置をより小型省スペース化することができる。
 図3から8を用いて,本発明を備えた第1の実施例である電力変換装置を構成する各部材を詳細に説明する。
 図3aに,本発明を備えた第1の実施例である電力変換装置を構成する半導体素子を内蔵する半導体部品27の外観図を示す。本実施例で用いる半導体素子を内蔵する半導体部品27は,主面の中央部に放熱部材24が露出し,上部から端子26a,26bが突出し,これらをモールド樹脂25で封止する構造である。放熱部材24はケース1と面で接して半導体素子を内蔵する半導体部品27内部の熱をヒートシンク5に伝える役割を持つ。本実施例では,平面度の高い銅製の部材を用いた。銅は熱伝導率が高く,半導体部品27とヒートシンク5の間の熱抵抗をより小さくできる。端子26a,26bにおいて,大電流を流す端子26aの断面積を大きくすることで電流密度が小さくなって通電時のジュール熱を低減できる。一方,大電流を流さない制御用の端子26bの断面積を小さくすることで導体部品27を小型化できる。図3bに,本発明を備えた第1の実施例である電力変換装置を構成する半導体素子を内蔵する半導体部品27の断面図を示す。半導体部品27は,少なくとも1つ以上の半導体素子1を内蔵し,半導体素子1の両面に金属回路22が配置され,その一部は端子26となっている。本実施例では,半導体素子1と金属回路22をはんだで接合している。半導体素子1の両面に配置される金属回路22のうち少なくとも片側は,半導体素子1と接する箇所の厚みが他の箇所よりも大きい。これによって,半導体素子1の両面に配置される金属回路22の回路間距離を確保できるので,高電圧を扱う場合でも十分な信頼性を確保できる。金属回路22において,半導体素子21と面する側と反対側の面には,それぞれ絶縁材23が配置され,半導体素子21や金属回路22を,ケース1などから絶縁し,回路の信頼性を確保する。絶縁材23の厚さは,使用する電圧に応じて選定することができる。本実施例では,絶縁材23に厚さ約0.64mmの窒化珪素を用いた。必要な耐圧や熱抵抗に応じて,他のセラミック材料や絶縁性を持つ樹脂シートなどを用いることも可能である。用いる絶縁材の熱伝導率が大きく,厚さが薄いほど熱抵抗を小さくできる。絶縁材23において,金属回路22を面する側と反対側の面には,放熱部材24が配置されている。本実施例では,半導体素子21から放熱部材24の間は,銅と窒化珪素とはんだのみが配置されており,いずれも熱伝導率が高く薄い部材であることから,半導体素子21と放熱部材24の間の熱抵抗を小さくできる。なお,本実施例では金属回路22や放熱部材24に銅を用いたが,アルミや他の金属材料を用いることも可能である。アルミを用いた場合,銅と比較して熱伝導率が小さいため熱抵抗は増加する一方,軽量や加工し易さといった特徴がある。用途に応じて使い分けることができる。半導体素子21,金属回路22,絶縁材23,放熱部材24,端子26は,放熱部材と端子26の一部を除き,モールドレジン25で封止されている。モールドレジン25で封止することで,電気的な短絡を防止し,耐圧性を確保すると共に,動作時に生じる各部材の熱変形差を低減し,強度的信頼性を確保することができる。
 図4(a)に,本発明を備えた第1の実施例である電力変換装置を構成するヒートシンク5の外観図および断面図を示す。ヒートシンク5は,主面である2面がケースと接して半導体部材27を冷却する役割を持つ。ヒートシンク5の内部は,主面に略直交する方向にフィンを設けることで,水路41が形成されている。ヒートシンク5の主面である2面には,それぞれ連結用部材42,44が設けられている。このうち,連結用部材42にはOリング用溝43が設けられており,この溝にOリングを配置して,他のヒートシンク5の連結用部材44と連結することで水路を構成できる。連結用部材42の外径と連結用部材44の内径は,これらを連結したときにOリングが適切に潰れて水漏れを防止できる様に定める。本実施例では,連結時にOリングが約2割潰れるように定めた。本実施例では,ヒートシンクの材料に銅を用いた。熱伝導率の高い銅を用いることで,熱抵抗を低減できる。なお,冷却媒体の種類や必要な放熱性能に応じて,アルミなど異なる材料を用いることも可能である。アルミを用いた場合,銅と比較して熱伝導率が小さいため熱抵抗は増加する一方,軽量や加工し易さといった特徴がある。用途に応じて使い分けることができる。
 図4(a)では,複数の部材を組み合わせてフィンを構成したが,図4(b)に示す様に,押し出し加工を施した部材を用いることで1つの部材でフィンを構成することもできる。押し出し加工によって内部に水路を持つ押し出し部材46と,連結用部材42や43と一体化されるヒートシンク端部部材47を接合することで,1つのヒートシンク5を構成することができる。このとき,押し出し部材46とヒートシンク端部部材47は,ろう付けや接着などによって接合することができる。本ヒートシンク構造では,1つの部材でフィンを構成することから,低コストで信頼性に優れたフィンを提供できる。その一方,フィンの形状が押し出し加工の加工性によって制約を受けるため,より詳細なフィン形状が求められる場合には,図4(a)の様に複数の部材を組み合わせてフィンを構成する構造を用いることが有効である。
 図5に,本発明を備えた第1の実施例である電力変換装置を構成する加圧用板6の外観図を示す。本実施例では,加圧用板6は厚さ約5mmのステンレス製の板材を用いた。加圧用板6の角部近傍には,加圧用ボルト7が貫通するための穴51が設けられている。また,ヒートシンク5の連結部材のための穴52も設けられている。加圧用板6は,図示するように長手方向に面外方向にたわみを持つ。たわみの効果については後述する。
 図6に,本発明を備えた第1の実施例である電力変換装置を構成する端子ブロック4の外観図を示す。本実施例において,端子ブロック4はエポキシ系の樹脂で構成されており,外側に銅製の外部端子3,内側に銅製の内部端子28が突出し,端子ブロック4の内部で外部端子3と内部端子28が結合している。なお,図示はしないが,端子ブロック4の下面には,端子ブロック支持部材9の上面に設けられた端子ブロック位置決め用凸部72と対になって端子ブロック4の位置決めをする凹部が設けられている。
 図7に,本発明を備えた第1の実施例である電力変換装置を構成する端子ブロック支持部材9の外観図を示す。端子ブロック支持部材9の側面には加圧用ボルト7が貫通するための穴71が設けられ,上面には端子ブロック位置決め用凸部72が設けられている。端子ブロック支持部材9の厚みは,半導体素子を内蔵する半導体部品27の厚みよりも小さい。本実施例において,端子ブロック支持部材9の材料にはエポキシ系樹脂を用いた。端子ブロックの位置決めに必要な剛性を確保できれば,他の材料を用いることもできる。
 図8に,本発明を備えた第1の実施例である電力変換装置を構成するケース1の外観図および断面図を示す。本実施例において,ケース1は厚さ0.1mmのアルミ板を折り曲げ加工することで構成されている。半導体素子を内蔵する半導体部品27を挿入する窪みが3箇所設けられていると共に,端部が略同一平面上に配置される様に折り曲げ加工されていることから,液状のシリコーンゲルを注入しても漏れることがなく,シリコーンゲルによる封止が可能である。さらに,半導体素子を内蔵する半導体部品27やヒートシンク5と面して放熱経路となる箇所は平面であり,熱抵抗低減に有効な形状となっている,また,半導体部品27やヒートシンク5と面して放熱経路となる面に垂直な方向,すなわち部品などを搭載した後に接触熱抵抗低減のために加圧する方向に対して,ケース1はバネに類似した形状となっており,非常に低剛性である。そのため,加圧する際に,ケース1の剛性が妨げとなることはない。なお,本実施例では,ケース1の材料にアルミを用いたが,銅など他の材料や,アルミや銅の合金などを用いることもできる。ケース1に銅を用いる場合,熱伝導率がアルミよりも大きいので熱抵抗をより小さくできる。一方,剛性がアルミよりも大きくなる。これらを鑑みて,選択することができる。
 図9から18を用いて,本発明を備えた第1の実施例である電力変換装置の製造方法を説明する。
 はじめに,図9を用いてケース1の製造方法を説明する。ケース1は,略四角形の薄板71を曲げ加工して製造される。図中に示す点線箇所を谷折し,一点鎖線箇所を山折りすると,ケース1が形成できる。本実施例ではケース1の材料に厚さ0.1mmのアルミ板を用いている。加工性に優れたアルミを用いることで,加工時の破断を防止しながら曲げ加工ができるので,完成したケース1にはシリコーンゲルが漏れる穴や破断箇所は発生しない。薄板91において,寸法L1~L7は折り曲げ加工後にそれぞれ,L1は半導体部品27搭載位置の窪みの幅,L2は半導体部品27搭載位置の窪みの深さ,L3はヒートシンク5設置位置の幅,L4はケース1端部のヒートシンク5設置位置の幅,L5はケース1縁の高さ,L6は半導体部品27搭載位置の窪みの長さ,L7は半導体部品27を搭載する際の長手方向のケース1寸法となる。薄板91の寸法や折り曲げ箇所を搭載する半導体部品27やヒートシンクの寸法や搭載数に応じて決めることで,任意の部品数や部品寸法に対応するケースを製造できる。
 次に,図10に示す様に,4個のヒートシンク5を連結して水路を構成する。このとき,連結部材42,44の位置が左右で対称なヒートシンク5aとヒートシンク5bの2種類を用意し,それぞれを順に連結させることで水路が構成される。このとき,連結部材42のOリング用溝43にはOリングを設けており,連結部での冷却水漏れを防止できる。また,連結部は,加圧方向,すなわち連結されている方向に自由に寸法を変化できるので,加圧時に連結部の剛性が加圧の妨げにならない。
 次に,図11に示す様に,4個の連結されたヒートシンク5の間にケース1を設置することで,ケース1の窪み部分の両側にヒートシンク5が配置される。
 次に,図12aに示す様に,ケース1の3箇所の窪みに,それぞれ半導体素子を内蔵する半導体部品27を設置する。このとき,半導体部品27の主面であり放熱部材24が露出している面を,ヒートシンク5の主面と面しているケース1の面と接する様に配置することで,半導体部品27の両面にヒートシンク5を配置できる。なお,本実施例では,ヒートシンク5の上部にケース1を設置した後にケース1の窪みに半導体部品27を設置したが,ケース1の窪みに半導体部品27を設置した後にヒートシンク5の上部にケース1を設置しても良い。
 次に,図13に示す様に,半導体素子を内蔵する半導体部品27の側部に端子ブロック支持部材9を合計6個配置する。このとき,端子ブロック支持部材9条面の端子ブロック位置決め用凸部72が,ケース1の縁よりも高い位置となる。
 次に,図14に示す様に,ヒートシンク5の両側面に,2枚の加圧用板6を配置する。このとき,加圧用板6のたわみが凸となる方向がヒートシンク5と面する様に配置する。加圧用板6には,連結部材のための穴52が設けられているので,ヒートシンク5の接続部材42や44と加圧用板6が接触することはない。
 次に,図15に示す様に,加圧用ボルト7を加圧用板6に設けられた加圧用ボルトが貫通するための穴51,水路モジュール5に設けられた加圧用ボルトが貫通するための穴45,端子ブロック支持部材9に設けられた加圧用ボルトが貫通するための穴71を貫通させ,加圧用ナット8と結合することで全体を加圧する。加圧用板6,水路モジュール5,端子ブロック支持部材9は,加圧用ボルト7が貫通して加圧することで位置が固定される。このとき,図16に示す上面図の様に,端子ブロック支持部材9の加圧方向の幅は半導体部品27の幅より小さいため,加圧用ボルト7の軸力によって発生する加圧力は,端子ブロック支持部材9には作用せず,半導体部品27が面で加圧力を受ける。したがって,加圧によって半導体部品27を適切に加圧できる。
 次に,図17に示す様に,ケース1の上部に端子ブロック4を配置し,半導体部品27の端子26と端子ブロックの内部端子28とを溶接で接合する。このとき,端子ブロック4の下面にある凹部と,端子ブロック支持部材9の上面にある凸部を接着材で接着することで,端子ブロックを位置決めすることができる。
 次に,図18に示す様に,ケース1の内側で半導体部品27が搭載されている位置に,硬化前の液状のシリコーンゲルを封止材2として注入する。液状のシリコーンゲルは,その液面が導体部品27の端子26や端子ブロックの内部端子28よりも上になる様に注入することで,半導体部品27や導体部品27の端子26や端子ブロックの内部端子28を封止できる。このとき,ケース1は一枚のアルミ板の端部が略同一平面上に配置される様に折り曲げ加工されていることから,液面が端部の平面より下に位置すれば液状のシリコーンゲルが漏れることはない。シリコーンゲル注入後,ゲルを硬化させることで封止が完了し,電力変換装置が完成する。
 図1から18を用いて,構造および製造方法を説明した本発明を備えた第1の実施例である電力変換装置は,半導体素子を内蔵する半導体部品27全ての両側にヒートシンク5が配置されて加圧されることで,半導体素子21を両面から効率的に冷却できる。また,加圧方向において,ケース1や水路の剛性が小さいので,加圧して熱抵抗を低減する場合に,ケース1の剛性が妨げになることが無い。端子ブロック支持部材9の幅が半導体部品27よりも薄いので,端子ブロック支持部材9が加圧の妨げになることも防止できる。さらに,薄板の折り曲げ加工によって薄板の外形を構成する辺全てが略同一面上に配置されるケース形状を実現し,その窪みとなる位置に導体素子を内蔵する半導体部品27を配置していることで,半導体素子21を内蔵する半導体部品27をシリコーンゲル封止するために液状のシリコーンゲルを注入しても漏れることがなく,適切に封止できる。これらのことから,冷却性や耐圧性に優れた電力変換装置を提供できる。
 なお,前述の様に,加圧用板6にはあらかじめたわみを設けている。この効果を図19で説明する。図19に,たわみを設けない加圧用板6で半導体部品27を加圧した場合の変形を示す。加圧力は,加圧用ボルト7の位置,すなわち加圧用板6の角部近傍で発生する。半導体部品27の寸法は,加圧力が発生する距離よりも小さいので,加圧用板19にたわみがない場合には,図19bに示す様に半導体部品27の端部を支点とした4点曲げ変形が生じる。この結果,半導体部品27の中央部近傍の面圧が低下する。一方,図20に示す様に加圧用板6にたわみがある場合,半導体部品27の中央部を支点とした3点曲げ変形が生じる。この結果,半導体部品27の中央部近傍の面圧が増加する。適切なたわみ量を設けることで,図19に示す4点曲げ変形のモードと図20に示す3点曲げ変形のモードの中間の変形をさせることができ,半導体部品27の中央部と端部のいずれの位置も適切に加圧できる。加圧用板6に極端に大きなたわみを設けると,半導体部品27の中央部近傍の面圧が大きくなる一方で半導体部品27の端部近傍の面圧が低下するので,適切なたわみ量を設けることが望ましい。
 なお,図19,20では,加圧板と半導体部品27のみを示したが,実際にはその間にヒートシンク5が配置される。そのため,加圧用板6の角部近傍に作用する加圧力は,ヒートシンク5によって平均化されるので,半導体部品27に作用する面圧をより均一化することができる。このとき,加圧板6の曲げ剛性がヒートシンク5の曲げ剛性よりも小さいと,加圧板6にたわみを設けた効果が低減する。そのため,加圧板6の材料および板厚は,曲げ剛性がヒートシンク5よりも大きくなる様に定めることが望ましい。
 図21に,本発明を備えた第2の実施例である電力変換装置を構成するケース211およびその展開図212を示す。実施例1で用いたケース1との相違点は,実施例1で用いたケース1には半導体素子を内蔵する半導体部品27を配置する窪みが3箇所あったのに対して,本実施例で用いるケース211には2箇所である点である。そのため,図9で示したケース1の展開図と比較して,ケース211の展開図212は折り曲げ前のアルミ板の長手方向寸法が短く,折り曲げ箇所が少ない。この様に,本発明を供えた電力変換装置に用いるケースは,用いるアルミ板の寸法や折り曲げ箇所を選択することで,設置する半導体部品27の数や寸法に応じた形状とすることができる点が,本発明の大きな特徴である。
 図22を用いて,本発明を備えた第2の実施例である電力変換装置の製造方法を説明する。3個のヒートシンク5を並べ,その間にケース212を設置する。このとき,実施例1と同様に,各ヒートシンク5は連結部42,44でOリングによって連結されているので,連結部の長さは連結方向には自由に変化できる。次に,ケース211の2箇所の窪みに,それぞれ半導体素子を内蔵する半導体部品27を設置する。このとき,半導体部品27の主面であり放熱部材24が露出している面を,ヒートシンク5の主面と面しているケース211の面と接する様に配置することで,半導体部品27の両面にヒートシンク5を配置できる。以降の製造方法は実施例1と同様である。
 実施例1では,電力変換装置の内部に3個の半導体部品27を備えるのに対して,本実施例では電力変換装置の内部に2個の半導体部品27を備えており,電力変換装置として使用する電圧や電流の条件が実施例1とは異なる。この様に,本発明を備えた電力変換装置では,同じ半導体部品27とヒートシンク5を用意して,使用する数を自由に変更することで,使用目的に適した電力変換装置を構成できる。そのため,同じ半導体部品27を用いて,様々な使用目的に対応する幅広いラインナップを構築することができる。
 図23に,本発明を備えた第3の実施例である電力変換装置を説明する図を示す。本実施例と第1の実施例との相違点は,図23aに示す様にケース1に3個の半導体部品27を搭載し,図23bに示す様に端子ブロック(図示せず)を設置してシリコーンゲル(輪郭を図示)で封止してゲルが硬化した後,図23cに示す様にケース長手両端部の台形形状の領域を切断する点である。ケース長手両端部の台形形状の領域は,液状のシリコーンゲルを注入する場合には漏れ防止の役割をする。ただし,シリコーンゲルが硬化した後には,この領域を切断しても漏れは発生しない。この領域を切断することで,使用時のケースを小型化できると共に,ヒートシンクの小型化も可能になるため,電力変換装置全体を小型化できる。その一方,ケースと硬化後のシリコーンゲルを切断する工程が必要になるため,小型化と工程短縮の目的に応じて実施例1と使い分けることができる。
 図24に,本発明を備えた第4の実施例である電力変換装置の外観図および断面図を示す。外観図は,実施例1と同様である。実施例1との相違点は,断面図において,半導体素子を内蔵する半導体部品27のモールド樹脂25が無く,シリコーンゲルである封止材2のみで全ての封止を行う点である。本実施例では,半導体素子を内蔵する半導体部品27を製造する際に,樹脂でモールドする必要がないので,製造工程を簡略化できる。また,モールド樹脂が無い分,半導体部品27の外寸を小さくできるので,電力変換装置全体の小型化に有効である。本実施例において,絶縁部材23の外寸を金属回路22より大きくすることで,モールド樹脂25が無くてもケース1に半導体部品27を設置する際にケース1と金属回路22は接触せず,電気的な短絡を防止できる。さらに,シリコーンゲル注入後は,十分な耐圧性を確保できる。ただし,半導体素子21や金属回路22などをモールド樹脂25で封止しないため,動作時の温度上昇に各部材の熱変形差に起因する熱応力を低減することに注意を払う必要がある。各部材の熱変形差を低減する方法として,金属回路22の少なくとも一部に,半導体素子21と線膨張係数差が小さい材料である,モリブデン,タングステンなどを用いることが有効である。また,カーボンやカーボンを含む複合材料を金属回路22の一部に用いることも,熱応力低減に有効である。
 図25から27を用いて,本発明を備えた第4の実施例である電力変換装置の製造方法を示す。図25に示すケース1の製造方法は実施例1と同様である。ただし,半導体部品27の外寸が小さくなるため,ケース1を小型化することができる。次に,図26に示す様に,ケース1をヒートシンク5に設置する。半導体部品27の外寸が小さくなるため,ヒートシンク5も小型化することができる。次に,図27に示す様に,モールドされていない半導体部品241をケース1に設置する。このとき,半導体部品241はモールドされておらず,金属回路22や半導体素子21が露出しているため,扱いには注意が必要である。次に,図28に示す様に,加圧用板6と加圧用ボルト7と加圧用ナット8で加圧し,ケース1の上部に端子ブロック4を設置し,端子26と28を接続する。次に,ケース1に液状のシリコーンゲルを注入し,ゲルを硬化させることで半導体素子21や金属回路22や端子26などを全て封止することで,電力変換装置が完成する。
 図28に,本発明を備えた第5の実施例である電力変換装置の外観図を示す。第1の実施例との相違点は,複数のヒートシンク281をOリングではなく,低弾性のパイプ282で連結する点である。低弾性のパイプ282で連結する場合,実施例1の様にOリングで連結する場合の様に連結部の長さを自由に変化させることはできない。ただし,加圧方向の荷重に対して低弾性のパイプ282の曲げ変形するので,パイプ282の材料や寸法を適切に選択すれば,加圧方向の剛性を小さくすることができる。その結果,隣接するヒートシンクとの加圧方向の距離を自由に変化させることができるので半導体部品27の加圧を妨げることはない。
 図29に,本実施例で用いるヒートシンク281の外観図と断面図を示す。ヒートシンク281の両端部にパイプ差込口291が設けられている。また,内部には,冷却フィンが設けられ,効率的な冷却を可能にしている。
 図30に,本実施例で用いるヒートシンク281とパイプ282の連結状態を示す。隣接するヒートシンク281のパイプ差込口291がパイプ282によって連結され,1つの水路が構成されている。本実施例では,隣接するヒートシンク281の形状は同じで良い。そのため,実施例1で示したように左右対称の形状を2種類用意する必要がなく,1種類のヒートシンク281を用意すればよい。なお,本実施例では両端部に1つずつパイプ差込口291を持つヒートシンク281を用いており,水路は直列となる。複数のヒートシンク281に冷却水を並列に流す場合,両端部に2つずつパイプ差込口291を持つヒートシンク281を用いればよい。冷却方法や冷却水の量によって使い分けることができる。また,本実施例では加圧用ボルト7の外側にパイプ282を設けたが,加圧用ボルト7の内側に設けることも可能である。この場合,電力返還装置の外寸を小さくできるので,小型化に有効である。その一方,ヒートシンク281の長さを短くする必要があることと,パイプ282を引き回す空間が規定されるので使用できるパイプ径の自由度が小さくなる。これらを鑑み,パイプ位置を選択できる。
 図31に,本発明を備えた第6の実施例である電力変換装置の外観図を示す。第1の実施例との相違点は,水冷のヒートシンク5ではなく,ヒートパイプ311を用いて冷却する点である。図32に,本実施例で用いるヒートパイプ311を示す。ヒートパイプのケースとの接触部321から内部に液体の入ったパイプ部322が突出し,突出部分には冷却フィン323が接続されている。図31の電力変換装置において,4個のヒートパイプ311がヒートパイプのケースとの接触部321がケース1を介して半導体部品27の両側に配置され,半導体部品27を両面から冷却する。なお,図ではヒートパイプ311が電力変換装置の下に配置されているが,動作時にはヒートパイプの方が上に配置される。その結果,パイプ部322の内部の液体は半導体部品27の近傍に配置され,半導体部品27の発熱によって気化し,冷却フィン323の近傍に移動し,冷却されて液化して再び半導体部品27の近傍に移動する。このサイクルを繰り返すことで,半導体部品27を冷却する。なお,本実施例では,4個のヒートパイプ311を用いたが,これらのヒートパイプ311が冷却フィン323の位置で連結されていても良い。この場合,取り付け作業などの取り扱いは容易になる一方,剛性が大きくなって加圧の妨げにならない様に,冷却フィン323の形状などを注意する必要がある。
 本実施例では,ヒートパイプ311を電力変換装置の下に配置したが,ヒートパイプ311を電力変換装置の横に配置することも可能である。本発明を備えた電力変換装置では,ヒートパイプのケースとの接触部321の側面に空間があるため,ヒートパイプ311のパイプ部322を側面,すなわち2本の加圧用ボルト7の間を通すことで,ヒートパイプ311を電力変換装置の横に配置できる。
 本発明を備えた電力変換装置では,半導体部品や配線と,冷却部分がケース1によって分離されているため,半導体部品や配線を変更することなく,異なる冷却方式を用いることができることが,大きな特徴である。本実施例では,ヒートパイプによる冷却方式を用いたが,必要な冷却能力によっては,空冷方式など他の冷却方式を用いることも可能である。いずれの冷却方式を用いる場合でも,半導体部品27を両面から冷却することができる。
 以上の実施例で説明したとおりに,略4角形の薄板を山折および谷折りすることで半導体素子を内蔵する半導体部品を搭載する数の窪みを持つ形状を形成すると同時に,上記折り曲げ方向と直交する方向の側辺を折り曲げることで,薄板の外形を構成する縁全てが略同一面上に配置されるケースを設け,そのケースの窪みとなる位置に半導体素子を内蔵する半導体部品を配置し,ケースを介して半導体素子を内蔵する半導体部品を挟む様に冷却装置を配置し,半導体素子を内蔵する半導体部品をシリコーンゲル封止することで解決できる。また,好ましくは,前記ケースは熱伝導率の高い金属で構成される。さらに望ましくは,前記ケースはアルミや銅またはこれらを主成分とする合金で構成される。
 冷却装置は,半導体素子を内蔵する半導体部品の両側に複数の独立した冷却モジュールを配置し,それぞれの冷却モジュールを加圧方向に低剛性な連結部で連結する。さらに,端子ブロックを支持する部材を,半導体素子を内蔵する半導体部品の側部に配置して端子ブロックを支持する。このとき,端子ブロックを支持する部材の厚みを,半導体素子を内蔵する半導体部品よりも小さくする。
 このような構成をとるので,半導体素子を内蔵する半導体部品と冷却装置を交互に配置できるため,半導体素子を両面から効率的に冷却できる。また,ケースの剛性は,半導体素子を内蔵する半導体部品と冷却装置が交互に配置される方向に小さいので,半導体素子を内蔵する半導体部品と冷却装置の間を加圧して熱抵抗を低減する場合に,ケースの剛性が妨げになることが無い。さらに,薄板の折り曲げ加工によって全ての縁が略同一面上に配置されるケース形状を実現でき,その窪みとなる位置に導体素子を内蔵する半導体部品を配置しているため,液状のシリコーンゲルなどの封止材を注入しても漏れることがなく,適切に封止できる。これらのことから,冷却性や耐圧性に優れた電力変換装置を提供できる。さらに,冷却装置や端子ブロックを支持する部材が,半導体素子を内蔵する半導体部品と冷却装置の加圧の妨げになることを防止でき,適切な加圧を実現できる。
 以上,本発明を実施例に基づき具体的に説明したが,本発明は前記実施例に限定されるものではなく,その趣旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
1 ・・・ケース
2 ・・・封止材
3 ・・・外部端子
4 ・・・端子ブロック
5 ・・・ヒートシンク
6 ・・・加圧用板
7 ・・・加圧用ボルト
8 ・・・加圧用ナット
9 ・・・端子ブロック支持部材
21 ・・・半導体素子
22 ・・・金属回路
23 ・・・絶縁材
24 ・・・放熱部材
25 ・・・モールド樹脂
26,26a,26b ・・・半導体素子を内蔵する半導体部品の端子
27 ・・・半導体素子を内蔵する半導体部品
28 ・・・内部端子
41 ・・・水路
42 ・・・連結用部材
43 ・・・Oリング用溝
44 ・・・連結用部材
45 ・・・位置決め用穴
46 ・・・押し出しフィン部材
47 ・・・ヒートシンク端部部材
51 ・・・加圧用ボルト7が貫通するための穴
52 ・・・ヒートシンク5の連結部材のための穴
71 ・・・加圧用ボルト7が貫通するための穴
72 ・・・端子ブロック位置決め用凸部
91 ・・・ケース折り曲げ加工前の薄板
L1 ・・・薄板の折り曲げ寸法
L2 ・・・薄板の折り曲げ寸法
L3 ・・・薄板の折り曲げ寸法
L4 ・・・薄板の折り曲げ寸法
L5 ・・・薄板の折り曲げ寸法
L6 ・・・薄板の折り曲げ寸法
L7 ・・・薄板の折り曲げ寸法
211 ・・・実施例2のケース
212 ・・・実施例2のケース展開図
241 ・・・モールドされない半導体素子を内蔵する半導体部品
281 ・・・パイプで連結されるヒートシンク
282 ・・・パイプ
291 ・・・パイプ差込口
292 ・・・加圧用ボルト7が貫通するための穴
311 ・・・ヒートパイプ
321 ・・・ヒートパイプのケースとの接触部
322 ・・・ヒートパイプのパイプ部
323 ・・・ヒートパイプの冷却フィン部

Claims (18)

  1.  複数の窪部を有するケースと、複数の半導体部品とを有し、前記ケースは、前記窪部の側である一方側と、前記一方側と反対側である他方側を有し、前記ケースは、前記一方側で前記窪部よりも延長される縁部を有し、前記複数の半導体部品の各々は前記ケースを介して冷却装置に両側から挟み込まれるように前記窪部の各々に配置され、前記ケースの一方側に配された封止材を有し、前記ケースは少なくとも前記縁部の一部まで前記封止材を前記一方側に保持可能なように一体的な構造をしていることを特徴とするパワーモジュール装置。
  2.  請求項1において,前記ケースが熱伝導性を持つ加工された薄板を折り曲げ加工することで製造され,前記ケースの縁部が略同一平面上に存在することを特徴とするパワーモジュール装置。
  3.  請求項2において,前記ケースが1枚のアルミまたは銅を主成分とする金属板を折り曲げ加工することで製造されていることを特徴とするパワーモジュール装置。
  4.  請求項1において,前記半導体部品が,内蔵する少なくとも1つの半導体素子の両主面に金属回路を備え,前記金属回路の半導体素子との反対側の面にそれぞれ絶縁材が配置され,さらに前記絶縁材の半導体素子との反対側の面にそれぞれ放熱部材が配置されることで,前記半導体部品の両主面の表面に放熱部材が配置されることを特徴とするパワーモジュール装置。
  5.  請求項1において,冷却部品の数が前記半導体部品の数よりも1つ多く,それぞれの前記冷却部品が内部に冷媒が通る部材で連結されて1つの液路を構成し,前記半導体部品がケースを介して両面から液冷されることを特徴とするパワーモジュール装置。
  6.  請求項5において,前記冷却部品が,加圧方向に長さが可変な連結部で連結されていることを特徴とするパワーモジュール装置。
  7.  請求項6において,前記冷却部品の連結部が,Oリングを介して連結されていることを特徴とするパワーモジュール装置。
  8.  請求項5において,冷却部品の連結部が,低弾性のパイプを介して連結されていることを特徴とするパワーモジュール装置。
  9.  請求項1において,前記半導体部品と端子ブロックを支持する部材が,加圧方向と直交する同一面上に配置され,前記子ブロックを支持する部材の加圧方向の厚みが,前記半導体部品の加圧方向の厚みよりも小さいことを特徴とするパワーモジュール装置。
  10.  請求項5において,並んで配置される冷却部品のうち,端に位置する2つの冷却部品の外側に冷却部品よりも曲げ剛性の大きい加圧用板を配置し,前記加圧用板によって冷却部品が加圧されていることを特徴とするパワーモジュール装置。
  11.  請求項10において,加圧板にあらかじめ撓みが設けられており,面が並んで配置される冷却部品のうち端に位置する2つの冷却部品の外側の面と加圧板の凸となる面が面することを特徴とするパワーモジュール装置。
  12.  請求項10において,加圧用板がボルトによって加圧され,前記ボルトが加圧用板と冷却部品とブロックを支持する部材を貫通することを特徴とするパワーモジュール装置。
  13.  請求項2において,冷却部品がヒートパイプによって構成されることを特徴とするパワーモジュール装置。
  14.  請求項14において,前記ヒートパイプのパイプがゲル表面となる面と略水平方向,あるいは前記ゲルの表面となる面で分割される2つの空間の内の前記ゲルが存在する側の空間に前記ゲルの表面の略垂直方向に突出していることを特徴とするパワーモジュール装置。
  15.  請求項2において,略同一の半導体素子を内蔵する前記半導体部品を搭載し,前記半導体部品の搭載数が異なり,前記搭載数の数だけケースの窪み部分が設けられて前記半導体部品がそれぞれ搭載されることで,複数のラインナップを構築することを特徴とするパワーモジュール装置。
  16.  ケースと、半導体部品とを有し、前記半導体部品は前記ケースを介して冷却装置に両側から挟み込まれるように前記ケースの窪部に配置され、前記ケースは、前記半導体部品の一部をなす端子部、あるいは、前記半導体部品に接続される端子の少なくとも一部を封止材で封止可能な構造をしていることを特徴とするパワーモジュール装置
  17.  複数の窪部を有するケースと、複数の半導体部品とを有し、前記ケースは、前記窪部の側である一方側と、前記一方側と反対側である他方側を有し、前記ケースは、前記一方側で前記窪部よりも延長される縁部を有し、前記複数の半導体部品の各々は前記ケースを介して冷却装置に両側から挟み込まれるように前記窪部の各々に配置され、前記ケースの一方側に配された封止材を有し、前記ケースは少なくとも前記縁部の一部まで前記封止材を前記一方側に保持可能なように一体的な構造をしており、複数の半導体部品の少なくとも一部はスイッチング素子を格納しており、前記スイッチング素子を制御することで電力変換することを特徴とする電力変換装置。
  18.  少なくとも縁部の一部まで流体が漏れないよう保持可能なように成型されたケースの複数の窪部の各々に半導体部品を配置すると共に、他方側に前記半導体部品を両側から挟み込むように冷却装置を配置し、前記窪部側に封止材を封入するパワーモジュール装置の製造方法。
PCT/JP2014/066767 2014-06-25 2014-06-25 パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法 WO2015198411A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014006676.1T DE112014006676B4 (de) 2014-06-25 2014-06-25 Leistungsmodulvorrichtung
JP2016528800A JP6286543B2 (ja) 2014-06-25 2014-06-25 パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法
US15/319,640 US10064310B2 (en) 2014-06-25 2014-06-25 Power-module device, power conversion device, and method for manufacturing power-module device
PCT/JP2014/066767 WO2015198411A1 (ja) 2014-06-25 2014-06-25 パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/066767 WO2015198411A1 (ja) 2014-06-25 2014-06-25 パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法

Publications (1)

Publication Number Publication Date
WO2015198411A1 true WO2015198411A1 (ja) 2015-12-30

Family

ID=54937546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/066767 WO2015198411A1 (ja) 2014-06-25 2014-06-25 パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法

Country Status (4)

Country Link
US (1) US10064310B2 (ja)
JP (1) JP6286543B2 (ja)
DE (1) DE112014006676B4 (ja)
WO (1) WO2015198411A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103155A (zh) * 2017-06-20 2018-12-28 通用电气公司 用于发热装置的热传递组件
US11562944B2 (en) 2019-06-07 2023-01-24 Denso Corporation Power conversion device and manufacturing method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076040A1 (ja) * 2014-11-13 2016-05-19 日立オートモティブシステムズ株式会社 電力変換装置
JP6635901B2 (ja) * 2016-09-21 2020-01-29 本田技研工業株式会社 電力変換装置
DE102017208925A1 (de) 2017-05-29 2018-11-29 Zf Friedrichshafen Ag Power Electronic Packaging
JP7151599B2 (ja) * 2019-04-08 2022-10-12 株式会社デンソー 電力変換器
US11716831B2 (en) * 2019-04-22 2023-08-01 Mitsubishi Electric Corporation Electronic device
US11502349B2 (en) 2020-08-31 2022-11-15 Borgwarner, Inc. Cooling manifold assembly
CN112930106B (zh) * 2021-01-22 2022-11-22 杭州唯灵医疗科技有限公司 一种柔性电子设备及柔性电子设备的组装方法
CN114126308B (zh) * 2021-12-03 2023-07-25 成都航天通信设备有限责任公司 一种模块化通信电台的密封结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534870U (ja) * 1976-06-29 1978-01-17
JPS5698532U (ja) * 1979-12-26 1981-08-04
JPH0578608A (ja) * 1991-01-30 1993-03-30 Atochem North America Inc ペイント剥離剤
JPH05235221A (ja) * 1992-02-21 1993-09-10 Inter Unit Kk 半導体スタック
JP2005237141A (ja) * 2004-02-20 2005-09-02 Toyota Motor Corp インバータおよびインバータの製造方法
JP2006005014A (ja) * 2004-06-15 2006-01-05 Denso Corp 積層型冷却器
JP2010135697A (ja) * 2008-12-08 2010-06-17 Toyota Motor Corp 積層モジュール構造

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5616943U (ja) 1979-07-16 1981-02-14
JP2518775Y2 (ja) * 1989-04-05 1996-11-27 富士電機株式会社 半導体装置
JP2536657B2 (ja) * 1990-03-28 1996-09-18 三菱電機株式会社 電気装置及びその製造方法
JPH0531248U (ja) 1991-09-30 1993-04-23 シヤープ株式会社 樹脂封止型電力半導体装置
US5823249A (en) * 1997-09-03 1998-10-20 Batchelder; John Samual Manifold for controlling interdigitated counterstreaming fluid flows
JP3969360B2 (ja) * 2003-07-03 2007-09-05 株式会社デンソー 冷却装置及びこれを備えた電力変換装置
US7508668B2 (en) * 2003-08-21 2009-03-24 Denso Corporation Electric power converter and mounting structure of semiconductor device
DE102004059963A1 (de) 2003-12-18 2005-08-11 Denso Corp., Kariya Einfach zusammengesetzter Kühler
JP2005332863A (ja) * 2004-05-18 2005-12-02 Denso Corp パワースタック
JP4284625B2 (ja) * 2005-06-22 2009-06-24 株式会社デンソー 三相インバータ装置
JP4564937B2 (ja) * 2006-04-27 2010-10-20 日立オートモティブシステムズ株式会社 電気回路装置及び電気回路モジュール並びに電力変換装置
JP4345862B2 (ja) * 2007-03-27 2009-10-14 株式会社デンソー 冷却器及びこれを備えた電力変換装置
JP5371833B2 (ja) 2010-03-01 2013-12-18 株式会社デンソー 電力変換装置
JP5439309B2 (ja) * 2010-07-28 2014-03-12 日立オートモティブシステムズ株式会社 電力変換装置
US8670237B2 (en) * 2010-12-28 2014-03-11 Mitsubishi Electric Corporation Power conversion apparatus
JP5821890B2 (ja) * 2013-04-17 2015-11-24 トヨタ自動車株式会社 電力変換装置
JP6156283B2 (ja) * 2014-08-07 2017-07-05 株式会社デンソー 電力変換装置
JP6197769B2 (ja) * 2014-09-12 2017-09-20 株式会社デンソー 電力変換装置及びその製造方法
JP6187448B2 (ja) * 2014-12-24 2017-08-30 トヨタ自動車株式会社 積層ユニット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534870U (ja) * 1976-06-29 1978-01-17
JPS5698532U (ja) * 1979-12-26 1981-08-04
JPH0578608A (ja) * 1991-01-30 1993-03-30 Atochem North America Inc ペイント剥離剤
JPH05235221A (ja) * 1992-02-21 1993-09-10 Inter Unit Kk 半導体スタック
JP2005237141A (ja) * 2004-02-20 2005-09-02 Toyota Motor Corp インバータおよびインバータの製造方法
JP2006005014A (ja) * 2004-06-15 2006-01-05 Denso Corp 積層型冷却器
JP2010135697A (ja) * 2008-12-08 2010-06-17 Toyota Motor Corp 積層モジュール構造

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109103155A (zh) * 2017-06-20 2018-12-28 通用电气公司 用于发热装置的热传递组件
US11562944B2 (en) 2019-06-07 2023-01-24 Denso Corporation Power conversion device and manufacturing method thereof

Also Published As

Publication number Publication date
JP6286543B2 (ja) 2018-02-28
DE112014006676T5 (de) 2017-03-09
DE112014006676B4 (de) 2021-01-07
JPWO2015198411A1 (ja) 2017-04-20
US20170325360A1 (en) 2017-11-09
US10064310B2 (en) 2018-08-28

Similar Documents

Publication Publication Date Title
JP6286543B2 (ja) パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法
US9013877B2 (en) Power semiconductor device
CN108735692B (zh) 半导体装置
WO2015194259A1 (ja) 冷却器及び冷却器の固定方法
JP4432892B2 (ja) 半導体冷却構造
WO2016158259A1 (ja) 電力変換装置
CN110506330B (zh) 功率电子模块以及包含该模块的电功率变换器
JP6286541B2 (ja) パワーモジュール装置及び電力変換装置
US10600717B2 (en) Semiconductor device
JP2010135697A (ja) 積層モジュール構造
JP5664472B2 (ja) 電力変換装置
JP2010140969A (ja) 積層モジュール構造
JP2019033226A (ja) 半導体装置
JP4994123B2 (ja) パワー半導体モジュール
WO2013118275A1 (ja) 半導体装置
JP5267238B2 (ja) 半導体装置及び半導体装置の製造方法
JP2019134018A (ja) 半導体装置
JP2013105884A (ja) 半導体モジュール
JP4935783B2 (ja) 半導体装置および複合半導体装置
JP6218856B2 (ja) 電力変換装置
JP2014127691A (ja) 半導体積層ユニット
JP2009117701A (ja) パワーモジュール
JP6314726B2 (ja) 半導体モジュール
JP2015053775A (ja) 半導体電力変換装置
US20240096727A1 (en) Power Semiconductor Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016528800

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014006676

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15319640

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14895765

Country of ref document: EP

Kind code of ref document: A1