JP2009117701A - パワーモジュール - Google Patents

パワーモジュール Download PDF

Info

Publication number
JP2009117701A
JP2009117701A JP2007290760A JP2007290760A JP2009117701A JP 2009117701 A JP2009117701 A JP 2009117701A JP 2007290760 A JP2007290760 A JP 2007290760A JP 2007290760 A JP2007290760 A JP 2007290760A JP 2009117701 A JP2009117701 A JP 2009117701A
Authority
JP
Japan
Prior art keywords
electrode
power
power module
elastic body
power elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007290760A
Other languages
English (en)
Inventor
Naoichi Harada
直一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007290760A priority Critical patent/JP2009117701A/ja
Publication of JP2009117701A publication Critical patent/JP2009117701A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】放熱が迅速であり、ヒートサイクルに起因する熱応力が半田接合の部分に生じても、熱応力を吸収して接合破損が生じないパワーモジュールを提供することを目的とする。
【解決手段】平面上に所定の間隔を有して隣接して配置された複数のパワー素子10、20を有するパワーモジュールであって、
前記複数のパワー素子の双方に跨って配置され、前記複数のパワー素子の双方に半田接合された電極30を有し、
該電極は、その一部に導電性弾性体32を含むことを特徴とする。
【選択図】図2

Description

本発明は、パワーモジュールに関し、特に、平面上に所定の間隔を有して隣接して配置された複数のパワー素子を有するパワーモジュールに関する。
従来から、半導体チップであるIGBT(Insulated Gate Bipolar Transistor、絶縁ゲートバイポーラトランジスタ)とFWD(Free-Wheeling Diode、環流ダイオード)が近接して並ぶように絶縁基板上の配線パターンにマウントされるとともに、IGBTとFWDの双方にまたがってその上面の主電極面に通電導体兼用のヒートパイプを重ね、半田付けなどにより電気的及び伝熱的に接合し、IGBT及びFWDに発生した熱を、ヒートパイプを介して絶縁基板の配線パターンに放熱し、冷却効果を高めるようにした技術が知られている(例えば、特許文献1参照)。
特開2004−6603号公報
しかしながら、上述の特許文献1に記載の構成では、熱の伝搬に作動液を封入したヒートパイプを使用しているため、蒸発/凝縮サイクルが必要となり、瞬間的に大電流が流れた場合には、熱の伝搬に時間差ができて遅れを生じてしまうという問題があった。
また、ヒートパイプを用いて十分に熱が放熱できた場合にはよいが、ヒートパイプによる熱輸送が不十分であった場合には、絶縁基板、ヒートパイプ、半導体チップの熱膨張係数の差により、ヒートサイクルに起因する熱応力が生じ、接合部分である半田付けの部分にクラック等の接合破壊が生じるという問題があった。
更に、ヒートパイプに亀裂が生じて作動液が漏れた場合には、パワー素子を破損してしまうおそれがあるので、信頼性の点でも問題があった。
そこで、本発明は、放熱が迅速であり、ヒートサイクルに起因する熱応力が半田接合の部分に生じても、熱応力を吸収して接合破損が生じないパワーモジュールを提供することを目的とする。
上記目的を達成するため、第1の発明に係るパワーモジュールは、平面上に所定の間隔を有して隣接して配置された複数のパワー素子を有するパワーモジュールであって、
前記複数のパワー素子の双方に跨って配置され、前記複数のパワー素子の双方に半田接合された電極を有し、
該電極は、その一部に導電性弾性体を含むことを特徴とする。
これにより、電極と半導体素子の熱膨張係数の相違により熱応力が加わった場合でも、導電性弾性体の部分で熱応力を吸収し、半田の接合破壊を防止することができる。また、導電性弾性体は、電極の一部にのみ設けられているので、電極の導電性を低下させることなく熱応力の吸収が可能となる。
第2の発明は、第1の発明に係るパワーモジュールにおいて、
前記導電性弾性体は、半田接合されていない領域に設けられていることを特徴とする。
これにより、ヒートサイクルにより電極が変形しても、最もパワー素子に負担の少ない領域で熱応力を吸収することができ、パワー素子への熱応力の影響を最小限とすることができる。また、半田付けは、通常の金属の電極部分について行われるので、半田付け工程も容易に行うことができる。
第3の発明は、第1又は第2の発明に係るパワーモジュールにおいて、
前記電極は、前記複数のパワー素子の上面に配置されていることを特徴とする。
これにより、電極の上方はフリーとなるので、熱応力を効果的に逃がすことができる。
第4の発明は、第1〜3のいずれか一つの発明に係るパワーモジュールにおいて、
前記導電性弾性体は、導電性ゴムであることを特徴とする。
これにより、導電性弾性体の部分で熱応力を効果的に吸収することができる。
第5の発明は、第1〜4のいずれか一つの発明に係るパワーモジュールにおいて、
前記電極の半田接合されている領域は、銅で構成されていることを特徴とする。
これにより、熱膨張係数のパワー素子との差が大きいが、熱伝導性が高く、放熱性の高い金属材料を電極に用いることが可能となり、冷却効果を高めることができる。
第6の発明は、第1〜5のいずれか一つの発明に係るパワーモジュールにおいて、
前記複数のパワー素子は、一方が絶縁ゲートバイポーラトランジスタであり、他方がダイオードの組み合わせを含むことを特徴とする。
これにより、電力変換用のインバータにおいて、熱応力を効果的に吸収し、半田接合部分の破壊を防止することができる。
本発明によれば、パワーモジュールの熱応力による接合破壊を防止することができる。
以下、図面を参照して、本発明を実施するための最良の形態の説明を行う。
図1は、本発明を適用した実施例に係るパワーモジュールの適用対象の一例となるインバータ回路を示した図である。図1において、インバータ回路は、6個のIGBT(Insulated Gate Bipolar Transistor、絶縁ゲートバイポーラトランジスタ)10と、各々のコレクタ−エミッタ間に並列に接続された6個のFWD(Free-Wheeling Diode、環流ダイオード、以下「ダイオード」という)20とを、パワー素子として備える。
図1において、インバータ回路は、1個のIGBT10と、これに並列に接続された1個のダイオード20同士が1つの組をなし、6つのIGBT10とダイオード20のパワー素子同士の組を備える。6つのパワー素子の組のうち、2つのパワー素子の組同士が直列接続されており、それぞれの直列接続点が、U出力、V出力及びW出力を構成し、三相インバータ回路の出力を構成している。直列接続は、一方の高電位側のIGBT10のエミッタと、他方の低電位側のIGBT10のコレクタが接続されて構成されており、高電位側のIGBT10のコレクタは、高電位側のPライン91に接続されている。同様に、低電位側のIGBT10のエミッタは、低電位側のNライン92に接続されている。かかるインバータ回路により、Pライン91及びNライン92に印加された直流電力を三相交流電力に電力変換して出力し、ACモータ等を駆動することができる。
本実施例に係るパワーモジュールは、例えば、図1に示したような、複数のパワー素子10、20を有するインバータ回路に好適に適用することができる。本実施例においては、以下、インバータ回路にパワーモジュールを適用した例を挙げて説明するが、複数のパワー素子を有するパワーモジュールであれば、種々の用途に適用することができる。
図2は、本発明を適用した実施例1に係るパワーモジュールの側面図である。図2において、実施例1に係るパワーモジュールは、パワー素子であるIGBT10及びダイオード20と、放熱板としての機能も有する上側の電極30と、同様に放熱板としての機能も有する下側の電極40と、絶縁材料で構成された絶縁基板50と、冷却器60と、各素子又は部品を半田接合している半田70と、全体を封止している封止材80とを有する。そして、上側の電極30は、その一部に導電性弾性材32を含んでいる。
なお、図2においては、IGBT10とダイオード20からなる複数のパワー素子10、20が1組のみ示されているが、例えば、図1に示したように6組のIGBT10とダイオード20の組み合わせがあれば、図2と同様な構成を平面上に6つ備えていてよい。この点は、他の実施例についても同様である。
IGBT10及びダイオード20は、各々パワー素子として機能する半導体素子であり、半導体基板上に形成された半導体チップとして構成される。図1において説明したインバータ回路においては、IGBT10は、スイッチング素子としての役割を果たす。また、ダイオード20は、モータの駆動用コイル(図示せず)により生じた逆起電力による電流を逃がす環流ダイオードとしての役割を果たす。図1において、IGBT10とダイオード20は、回路的に並列接続されて1つの組をなしていたが、図2に示すように、IGBT10とダイオード20は、物理的にも、平面状の電極40上に所定の間隔を有して隣接して配置される。このような隣接配置とすることにより、パワーモジュールに要する面積を小さくするとともに、IGBT10とダイオード20間の接続抵抗を小さくすることができる。
電極40は、パワー素子であるIGBT10及びダイオード20の下側に配置され、下部電極を構成する。電極40は、IGBT10及びダイオード20の下側の引き出し電極であるとともに、放熱板としての役割も果たす。一般的には、IGBT10のコレクタが下側に配置され、コレクタの引き出し電極として電極40は配置されるが、IGBT10のエミッタが下側に配置され、この引き出し電極40として配置されてもよい。ダイオード20は、IGBT10の配置の向きに適合してn型拡散層又はp型拡散層が下側になるように配置され、電極40は、ダイオード20の引き出し電極としての役割も共通して果たす。
電極40は、配線用の金属であれば、種々の材料が適用されてよいが、例えば、銅が適用されてもよい。銅は、熱伝導性及び導電性がアルミニウムよりも高く、配線材料としても、放熱材料としても、アルミニウムより好ましい特性を有している。しかしながら、半導体素子であるパワー素子10、20との熱膨張係数の差が、アルミニウムと比して大きいため、ヒートサイクルにより変形が生じた場合に、半田接合の部分に熱応力がかかり、接合破壊を招き易いという問題があった。後に上部の電極30について詳説するが、本実施例に係るパワーモジュールにおいては、電極30により熱応力による半田接合部分の破壊が起こり難い構成となっているので、電極40に銅を用いることができる。なお、銅の場合は、銅合金であってもよく、純粋な銅(Cu)の他、CuMo、CuC等が適宜用途に応じて適用されてよい。このように、電極40は、用途に応じて、銅、アルミニウム等の種々の配線用金属材料を適用することができる。
電極40は、その上面は、半田70により、パワー素子のIGBT10及びダイオード20と半田接合され、下からパワー素子10、20を支持する。また、電極40の下面は、半田70により、下に配置された絶縁基板50に半田接合され、絶縁基板50により下から支持される。
絶縁基板50は、絶縁材料で構成された基板であり、電極40と冷却器60に用いられている金属との絶縁を図るとともに、パワー素子10、20及び電極30、40を下から支持している。絶縁基板50は、例えばAlN(窒化アルミニウム)、エポキシ樹脂、Si(窒化ケイ素)等の材料や、セラミックス基板の一種であるDBA基板等が適用されてよい。
冷却器60は、下から絶縁基板50を支持するとともに、水冷により絶縁基板50から放出された熱を冷却する手段である。冷却器60は、ベース部61と、フィン62とを有し、ベース部61の内部に水を循環させて冷却し、フィン62によりその放熱効率を高める構成となっている。かかる冷却器60を設けることにより、パワー素子10、20の発熱の下側からの放熱効率を高めることができる。なお、冷却器60は、銅、アルミニウム等の熱伝導性の高い金属等で構成されてよく、冷却器60と絶縁基板50との接合は、半田70による半田接合でなされてよい。
電極30は、パワー素子10、20の上側に配置され、上部電極を構成する。電極30は、パワー素子10、20の引き出し電極を構成するとともに、放熱板としての機能も果たす。IGBT10は、一般的には、エミッタが上側に配置されるので、この場合には、電極30は、エミッタの引き出し電極となる。一方、逆配置でコレクタが上側に配置される場合もあり、この場合には、電極30は、コレクタの引き出し電極となる。また、電極30は、IGBT10に並列に接続されたダイオード20についても、IGBT10の配置の向きに応じて、p型拡散層又はn型拡散層の共通引き出し電極となる。このように、パワー素子10、20の上部電極である電極30は、パワー素子であるIGBT10とダイオード20の双方に跨った共通の電極を構成している。
電極30は、パワー素子10、20の上面に、半田70により半田接合されている。これにより、電気的接続及び物理的固定がなされている。
電極30は、その大部分は、銅やアルミニウム等の配線用金属で構成された金属部31であるが、一部に、導電性弾性体32で構成された部分を含む。図2においては、パワー素子10、20の直上の部分は金属部31として構成されるが、中央部分は、導電性弾性体32で構成されている。このように、電極30は、その一部に導電性弾性体32を含むことにより、熱応力が生じても、これを導電性弾性体で吸収することができる。
導電性弾性体32は、導電性を有する弾性体であり、例えば、導電性ゴムが適用される。導電性弾性体32は、弾性体でありながらも、導電性を有するので、電極30としての機能をそのまま維持することができる。
電極30の金属部31は、銅やアルミニウム等の配線用金属が用途に応じて種々適用されてよいが、例えば、銅が適用されてもよい。上述のように、銅は、導電性及び熱伝導性に優れた金属材料であるので、電極30に好適に適用可能である。また、銅は、アルミニウムと比較して、その熱膨張係数が半導体素子であるパワー素子10、20と大きく異なるが、本実施例に係るパワーモジュールにおいては、熱応力を逃がす応力緩和材として導電性弾性体32が金属部31に挟まれて設けられており、電極30の金属部31に変形が生じても、これにより生じる熱応力を吸収できるので、半田70の接合破壊のおそれなく銅を使用することができる。
このように、電極30の一部に導電性弾性体32を設けることにより、半田70の接合破壊を低減することができる。また、かかる構成を有することにより、電極30に放熱性の高い銅を使用することが可能となり、冷却性能自体も高めることができ、パワー素子10、20及びパワーモジュールをより小型に構成することが可能となる。
なお、導電性弾性体32は、パワー素子10、20と電極30が半田接合されていない、パワー素子10、20が所定の間隔を有して配置された間隔領域15の直上に設けられることが好ましい。パワー素子10、20の直上は、パワー素子10、20と電極30との確実な電気的接続と、パワー素子10、20で発生した熱を電極30により多く放熱するため、導電性及び熱伝導性の高い金属部31を配置し、半田接合により確実な接合を行うことが好ましい。一方、IGBT10とダイオード20との間隔領域15は、電極30とパワー素子10、20が半田接合されておらず、固定されていない領域である。よって、電極30の熱変形による膨張があっても、導電性弾性体32は固定的な拘束を受けることなく変形が可能であり、最もクッション効果の高い状態で応力吸収を行うことができる。
このように、本実施例に係るパワーモジュールは、発熱源であるパワー素子10、20の直上面には、全面的に放熱効果の高い金属部31を配置して過渡熱特性を向上させ、半田接合されていない非拘束領域に導電性弾性体32を設けることにより、導電性弾性体32による応力の吸収能力を効果的に発揮させる構成となっている。
また、本実施例に係るパワーモジュールにおいては、導電性弾性体32は、電極30の一部の領域にしか設けていないので、電極30としての導電性及び放熱性を低下させることなく熱応力を吸収し、半田70の接合破壊を防止することができる。
なお、導電性弾性体32は、パワー素子10、20の発熱量と、電極30の金属部31の変形量に応じて、その厚みや特性を適宜変化させて調整してよい。例えば、金属部31の変形量が大きいようであれば、導電性弾性体32をより厚くして構成するようにしてもよい。例えば、電極30の幅が30mm程度の場合に、導電性弾性体32は、0.05〜2mm程度の厚さであってよいが、これらは、金属部31のパワー素子10、20の発熱量に基づく変形量により、適宜適切な厚さのものを用いてよい。
また、本実施例に係るパワーモジュールにおいては、導電性弾性体32は、電極30の中央の、半田接合がなされていない部分に設けられた例を説明したが、導電性弾性体32を設ける位置は、これに限定される訳ではなく、用途に応じては、半田接合がなされた部分に設けてもよい。例えば、電極30の金属部31の変形量が、IGBT10の上部にある金属部31が特に大きい場合には、中央部に導電性弾性材32を設けるとともに、更にIGBT10の直上の部分にも導電性弾性体32を設けることも可能である。
封止材80は、ゲル又は樹脂を用いてパワー素子10、20等の部品を上部から封止し、これらの部品が埃により汚染されるのを防止する役割を果たす。樹脂が適用される場合は、ポッティング、トランスファーモールド等の加工により樹脂封止がなされてよいが、本実施例に係るパワーモジュールによれば、熱膨張を拘束するために樹脂封止を行ったり、モールドしたりする必要性が少なくなるので、ゲルを用いて封止してもよい。
このように、実施例1に係るパワーモジュールによれば、半田接合部の応力負荷を低減して接合破壊を防止することができ、パワーモジュールの信頼性を向上させることができる。また、熱応力耐性の高い構成であるため、熱応力設計の工数を削減することも可能となる。
図3は、本発明を適用した実施例2に係るパワーモジュールの側面図である。図3において、大部分の構成要素は、実施例1に係るパワーモジュールの構成要素と同様であるが、下部電極である電極40aにも、導電性弾性体42を設けた点で、実施例1に係るパワーモジュールと異なっている。
このように、パワー素子10、20の下側に配置された電極40aにも、導電性弾性体42を設けるようにしてもよい。図3において、電極40aは、金属部41と導電性弾性体42を有し、金属部41は、パワー素子10、20の直下に配置されてパワー素子10、20と半田接合されている。また、導電性弾性体42は、パワー素子10、20の間隔領域15の直下の部分に設けられている。かかる構成により、パワー素子10、20における発熱が、電極40aに熱伝搬して金属部41が変形しても、導電性弾性体42により変形による応力を吸収し、パワー素子10、20と電極40aとの間の半田70及び電極40aと絶縁基板50との間の半田70に加わる応力負荷を軽減することができる。
なお、他の構成要素については、実施例1に係るパワーモジュールと同様であるので、同一の構成要素には同一の参照符号を付し、その説明を省略する。
実施例2に係るパワーモジュールによれば、パワー素子10、20の上側の電極30だけでなく、下側の電極40aにも導電性弾性体42を設けたことにより、パワー素子10、20の発熱を、上下から効果的に放熱するとともに、下側の電極40aについても応力を緩和することができ、半田70の接合破壊が更に少ない、より信頼性の高いパワーモジュールとすることができる。
なお、実施例2に係るパワーモジュールにおいては、上部電極である電極30と、下部電極である電極40の双方に導電性弾性体32、42が設けられた例について説明したが、用途に応じて、下側の電極40aにのみ導電性弾性体42を設けるようにしてもよい。更に、実施例2においては、所定の空間領域15の直下に導電性弾性体42を設けた例について説明したが、実施例1において説明したように、用途に応じて、他の位置に導電性弾性体32を設けるようにしてもよい。
図4は、本発明を適用した実施例3に係るパワーモジュールの側面図である。図4において、実施例3に係るパワーモジュールは、パワー素子であるIGBT10及びダイオード20と、パワー素子10、20の上側に設けられた電極30aと、放熱板45と、冷却器60と、バスバー90と、ボンディング95と、封止材80とを備える。
IGBT10及びダイオード20は、パワー素子として機能する半導体素子であり、その構成及び機能については、実施例1及び実施例2と全く同様であるので、同一の参照符号を付して、その説明を省略する。
放熱板45は、パワー素子10、20で発生した熱を放熱するための手段であり、実施例1で説明した下側の電極40及び絶縁基板50の双方の役割を果たす。つまり、放熱板45は、冷却器60により下側から支持されているので、パワー素子10、20で発生した熱を熱伝搬し、冷却器60に放出する。
放熱板45は、例えば、アルミニウム、窒化ケイ素、アルミニウムの三層積層構造で形成されたDBA基板が適用されてもよい。この場合には、上層のアルミニウムは、パワー素子10、20に対する下部電極40としての機能を有し、窒化ケイ素は、絶縁基板50としての機能を有する。なお、放熱板45とパワー素子10、20とは、半田70により半田接合されている。
冷却器60は、ベース部61とフィン62とを有し、その構成及び機能は、実施例1及び実施例2と全く同様であるので、同一の参照符号を付し、その説明を省略する。
電極30aは、パワー素子10、20に対する上部電極であり、IGBT10に対しては、エミッタ又はコレクタの引き出し電極としての機能を有し、ダイオード20に対しても同様に、IGBT10の配置向きに対応するp型拡散層又はn型拡散層の引き出し電極としての機能を有する。従って、電極30aは、複数のパワー素子10、20に対する共通電極であるので、複数のパワー素子10、20の双方に跨って配置されている。
電極30aは、実施例1と同様に、金属部31aと、導電性弾性体32aとを有する。金属部31aは、銅、アルミニウム等の配線用金属が適用されてよいが、例えば、アルミニウムが適用されてもよい。アルミニウムは、銅ほど導電性及び熱伝導性は高くないが、パワー素子10、20を構成する半導体素子と熱膨張係数の差が銅ほどは大きくないので、半田70にかかる応力負荷は、銅を用いた場合よりは軽減される。しかしながら、アルミニウムの熱膨張係数は、パワー素子10、20の熱膨張係数とはやはり差があるので、パワー素子10、20の発熱量の大きさによっては、やはり電極30aとパワー素子10、20とを接合する半田70に応力負荷が加わってしまう。
そこで、実施例3に係るパワーモジュールにおいても、電極30aの一部に、導電性弾性体32aを設けている。導電性弾性体32aは、実施例1と同様に、例えば導電性ゴム等が適用されてよい。かかる導電性弾性体32aを電極30aの一部に設けることにより、電極30aの金属部31aの熱膨張による変形を吸収し、半田70に加わる応力負荷を緩和し、半田70の接合破壊を確実に防止することができる。このように、電極30aの金属部31aに、パワー素子10、20との熱膨張係数の差が極端には大きくない材料の金属が適用された場合であっても、導電性弾性体32aを電極30aの一部に設けることにより、半田70の接合破壊を確実に防止し、パワーモジュールの信頼性を高めることができる。
また、図4において、電極30aの金属部31aは、パワー素子10、20の直上の上面に配置され、半田70によりパワー素子10、20と半田接合されている。そして、導電性弾性体32aは、パワー素子10、20が平面状の放熱板45上に所定の間隔を有して配置された当該所定の間隔領域15の直上に設けられている。このように、実施例3に係るパワーモジュールおいても、金属部31aをパワー素子10、20の直上に配置して半田接合し、導電性弾性体32aを、半田接合されていない中央部分の領域に設けることにより、金属部31aにおける導電性及び熱伝導性と、導電性弾性体32aにおける可動性の双方を十分に高めた構成とすることができる。
なお、導電性弾性体32aの配置位置は、実施例1において説明したのと同様に、用途に応じては、半田接合されている位置としてもよいし、導電性弾性体32aを複数設けて、半田接合されていない間隔空間15の直上位置と、他の半田接合されている位置とに両方設けるようにしてもよい。
バスバー90は、電極30aに電源電位又はグランド電位を供給するための電位供給手段であり、ボンディング95により、電極30aと電気的に接続される。ボンディング95は、アルミニウム等の配線用金属材料が用いられてよい。
封止材80は、パワー素子10、20や他の部品を覆って埃の付着を防ぐ手段であり、ゲル又は種々の種類の樹脂が適用されてよい。封止材80の機能や種類等の内容は、実施例1における説明と同様であるので、同一の参照符号を付し、その説明を省略する。
なお、実施例2においては、電極30aの金属部31aにアルミニウムを適用した例を挙げて説明したが、銅等の他の配線金属を同様に適用してもよい。
以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形及び置換を加えることができる。
本実施例に係るパワーモジュールの適用対象のインバータ回路を示した図である。 実施例1に係るパワーモジュールの側面図である。 実施例2に係るパワーモジュールの側面図である。 実施例3に係るパワーモジュールの側面図である。
符号の説明
10 IGBT(パワー素子)
15 間隔領域
20 ダイオード(パワー素子)
30、30a、40 電極
31、31a、41 金属部
32、32a、42 導電性弾性体
45 放熱板
50 絶縁基板
60 冷却器
61 ベース部
62 フィン
70 半田
80 封止材
90 バスバー
95 ボンディング

Claims (6)

  1. 平面上に所定の間隔を有して隣接して配置された複数のパワー素子を有するパワーモジュールであって、
    前記複数のパワー素子の双方に跨って配置され、前記複数のパワー素子の双方に半田接合された電極を有し、
    該電極は、その一部に導電性弾性体を含むことを特徴とするパワーモジュール。
  2. 前記導電性弾性体は、半田接合されていない領域に設けられていることを特徴とする請求項1に記載のパワーモジュール。
  3. 前記電極は、前記複数のパワー素子の上面に配置されていることを特徴とする請求項1又は2に記載のパワーモジュール。
  4. 前記導電性弾性体は、導電性ゴムであることを特徴とする請求項1乃至3のいずれか一項に記載のパワーモジュール。
  5. 前記電極の半田接合されている領域は、銅で構成されていることを特徴とする請求項1乃至4のいずれか一項に記載のパワーモジュール。
  6. 前記複数のパワー素子は、一方が絶縁ゲートバイポーラトランジスタであり、他方がダイオードの組み合わせを含むことを特徴とする請求項1乃至5のいずれか一項に記載のパワーモジュール。
JP2007290760A 2007-11-08 2007-11-08 パワーモジュール Pending JP2009117701A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007290760A JP2009117701A (ja) 2007-11-08 2007-11-08 パワーモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007290760A JP2009117701A (ja) 2007-11-08 2007-11-08 パワーモジュール

Publications (1)

Publication Number Publication Date
JP2009117701A true JP2009117701A (ja) 2009-05-28

Family

ID=40784471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007290760A Pending JP2009117701A (ja) 2007-11-08 2007-11-08 パワーモジュール

Country Status (1)

Country Link
JP (1) JP2009117701A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258632A (ja) * 2010-06-07 2011-12-22 Nissan Motor Co Ltd 半導体装置
WO2013046400A1 (ja) * 2011-09-29 2013-04-04 トヨタ自動車株式会社 半導体装置
WO2015022993A1 (ja) * 2013-08-16 2015-02-19 日本碍子株式会社 セラミック回路基板及び電子デバイス
WO2015022994A1 (ja) * 2013-08-16 2015-02-19 日本碍子株式会社 放熱回路基板及び電子デバイス

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011258632A (ja) * 2010-06-07 2011-12-22 Nissan Motor Co Ltd 半導体装置
WO2013046400A1 (ja) * 2011-09-29 2013-04-04 トヨタ自動車株式会社 半導体装置
WO2015022993A1 (ja) * 2013-08-16 2015-02-19 日本碍子株式会社 セラミック回路基板及び電子デバイス
WO2015022994A1 (ja) * 2013-08-16 2015-02-19 日本碍子株式会社 放熱回路基板及び電子デバイス
JPWO2015022993A1 (ja) * 2013-08-16 2017-03-02 日本碍子株式会社 セラミック回路基板及び電子デバイス
JPWO2015022994A1 (ja) * 2013-08-16 2017-03-02 日本碍子株式会社 放熱回路基板及び電子デバイス

Similar Documents

Publication Publication Date Title
JP5434914B2 (ja) パワーモジュールおよびその制御方法
JP5206102B2 (ja) 半導体装置
US8405992B2 (en) Power-electronic arrangement
CN108735692B (zh) 半导体装置
JP4803241B2 (ja) 半導体モジュール
JP6685884B2 (ja) 半導体モジュール
JP2009105389A (ja) パワーモジュール
JP6003624B2 (ja) 半導体モジュール
JP2019071399A (ja) パワーモジュールおよびその製造方法、グラファイトプレート、および電源装置
JPWO2015198411A1 (ja) パワーモジュール装置、電力変換装置およびパワーモジュール装置の製造方法
JP5182274B2 (ja) パワー半導体装置
JP2014183078A (ja) 半導体装置
JP2009124082A (ja) 電力用半導体装置
JP4994123B2 (ja) パワー半導体モジュール
JP2008244394A (ja) 半導体装置
JP6286541B2 (ja) パワーモジュール装置及び電力変換装置
JP2013105882A (ja) 半導体モジュール
JP5845835B2 (ja) 半導体モジュール
JP2009117701A (ja) パワーモジュール
WO2018047485A1 (ja) パワーモジュールおよびインバータ装置
JP2007215302A (ja) インバータ装置
JP2021141221A (ja) 半導体モジュール
JP2009021445A (ja) インバータ装置
JP2019047591A (ja) 電力変換装置
JP2020188167A (ja) 半導体装置