WO2015186584A1 - 分相ガラス及び分相ガラスの製造方法並びに分相ガラスを用いた複合基板 - Google Patents

分相ガラス及び分相ガラスの製造方法並びに分相ガラスを用いた複合基板 Download PDF

Info

Publication number
WO2015186584A1
WO2015186584A1 PCT/JP2015/065267 JP2015065267W WO2015186584A1 WO 2015186584 A1 WO2015186584 A1 WO 2015186584A1 JP 2015065267 W JP2015065267 W JP 2015065267W WO 2015186584 A1 WO2015186584 A1 WO 2015186584A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
glass
less
phase separation
separated
Prior art date
Application number
PCT/JP2015/065267
Other languages
English (en)
French (fr)
Inventor
篤 虫明
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014113867A external-priority patent/JP2015227274A/ja
Priority claimed from JP2014113862A external-priority patent/JP2015227271A/ja
Priority claimed from JP2014192171A external-priority patent/JP2016011245A/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2015186584A1 publication Critical patent/WO2015186584A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to phase-separated glass, and specifically relates to phase-separated glass having a light scattering function, a method for producing the same, and a composite substrate using the same.
  • the light source for illumination is divided into a “directional light source” that illuminates a limited area and a “diffuse light source” that illuminates a wide area.
  • LED lighting corresponds to a “directional light source” and is being adopted as an alternative to an incandescent bulb.
  • an alternative light source for a fluorescent lamp corresponding to a “diffusion light source” is desired, and organic EL (electroluminescence) illumination is a promising candidate.
  • the organic EL element includes a glass plate, a transparent conductive film as an anode, an organic EL layer including an organic compound exhibiting electroluminescence that emits light by current injection, and a cathode, and a cathode. It is an element.
  • As the organic EL layer used in the organic EL element a low molecular dye material, a conjugated polymer material or the like is used.
  • a hole injection layer, a hole transport layer, an electron transport layer, an electron injection A laminated structure with layers and the like is formed.
  • An organic EL layer having such a laminated structure is disposed between the anode and the cathode, and by applying an electric field to the anode and the cathode, holes injected from the transparent electrode that is the anode and those injected from the cathode The electrons recombine in the light emitting layer, and the emission center is excited by the recombination energy to emit light.
  • Organic EL elements are being studied for use in mobile phones and displays, and some have already been put into practical use.
  • the organic EL element has a luminous efficiency equivalent to that of a thin television such as a liquid crystal display or a plasma display.
  • Patent Document 1 a light extraction layer in which a glass frit having a high refractive index is sintered is formed on the surface of a soda glass plate, and a scattering substance is dispersed in the light extraction layer, thereby reducing the light extraction efficiency. It is also described to increase.
  • the present invention has been made in view of the above circumstances, and its technical problem is that the light extraction efficiency of the organic EL element can be increased without forming a light extraction layer made of a sintered body, and The idea is to create a glass manufacturing method with excellent productivity.
  • the present inventors have found that the above technical problem can be solved by heat-treating a phase separation glass having a high refractive index to obtain the phase separation glass, and propose this as the first invention.
  • the manufacturing method of the phase-separated glass according to the first invention after the refractive index n d was molded 1.65 or more phase separation glass by heat-treating phase separation glass obtained, at least a first A phase-separated glass containing a phase and a second phase is obtained.
  • refractive index n d refers to the value of the d-line measured by a refractive index measuring device.
  • a rectangular parallelepiped sample of 25 mm ⁇ 25 mm ⁇ about 3 mm is first prepared, and is slowly cooled at a cooling rate of 0.1 ° C./min in the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps ⁇ 50 ° C.). after, while penetration of immersion the refractive index n d are aligned, it can be measured by the refractive index measuring instrument KPR-2000 manufactured by Shimadzu Corporation. Moreover, the light scattering accompanying formation of a 1st phase and a 2nd phase can be confirmed visually.
  • Phase-separating glass refers to glass that has not yet phase-separated but has a property of phase separation by heat treatment at 1100 ° C. or lower.
  • a refractive index n d is molded 1.65 or more phase separation glass.
  • the light incident from the organic EL layer is reflected at the interface between the glass plate and the transparent conductive film due to the large difference in refractive index between the glass plate and the transparent conductive film.
  • the refractive index n d of the transparent conductive film is 1.9 to 2.0, and the refractive index n d of the organic EL layer was 1.8-1.9.
  • the refractive index n d of the glass plate was usually about 1.5.
  • phase separation of glass phase-separated glass
  • the refractive index difference between such a glass plate and a transparent conductive film is reduced, the glass plate is incident light from the organic EL layer It becomes difficult to reflect at the interface between the transparent conductive film and the like, and the light extraction efficiency can be increased.
  • the phase separation glass is heat-treated to obtain the phase separation glass. This makes it easy to control the phase separation structure.
  • the optimal phase separation structure will also be different, but from the same phase separation glass, the optimum phase separation structure for the element structure of the organic EL device can be obtained simply by adjusting the heat treatment conditions. Obtainable.
  • a phase separation glass containing at least a first phase and a second phase is obtained.
  • the light incident on the glass plate from the organic EL layer is scattered at the interface between the first phase and the second phase, so that the light can be easily taken out to the outside.
  • the light extraction efficiency can be increased without forming a light extraction layer made of a sintered body.
  • the “organic EL device” includes not only organic EL lighting but also an organic EL display.
  • the content of SiO 2 in the first phase is preferably larger than the content of SiO 2 in the second phase.
  • the phase separation glass has a glass composition of 30% by mass, SiO 2 30 to 75%, Al 2 O 3 0 to 35%, BaO 10 as a glass composition. Preferably it contains ⁇ 50%. If it does in this way, it will become easy to raise refractive index nd to 1.65 or more, and it will become easy to raise productivity of a glass plate.
  • the phase separation glass is preferably formed into a flat plate shape.
  • the phase separation glass is preferably used for an organic EL device, particularly for organic EL illumination.
  • phase-separated glass according to the first aspect of the present invention is produced by the method for producing a phase-separated glass described above.
  • the phase separation glass according to the first aspect of the present invention preferably has a haze value of 5% or more at a wavelength of 400 to 700 nm. If it does in this way, since it will become easy to scatter light in glass, it will become easy to take out light outside, and it will become easy to raise light extraction efficiency as a result.
  • the “haze value” is a value calculated by (diffuse transmittance) ⁇ 100 / (total light transmittance).
  • “Diffusion transmittance” is a value measured in the thickness direction with a spectrophotometer (for example, UV-2500PC manufactured by Shimadzu Corporation). For example, glass whose both surfaces are mirror-polished can be used as a measurement sample.
  • Total light transmittance is a value measured in the thickness direction with a spectrophotometer (eg, UV-2500PC manufactured by Shimadzu Corporation).
  • a spectrophotometer eg, UV-2500PC manufactured by Shimadzu Corporation.
  • glass whose both surfaces are mirror-polished can be used as a measurement sample. .
  • phase separation glass according to the first invention a refractive index n d is not less than 1.65, and when subjected to heat treatment for 24 hours at 900 ° C., from the state where no phase separation, at least a It has the property of phase separation into one phase and a second phase.
  • phase-separated glass according to a second aspect of the present invention, the refractive index n d is not less than 1.65, a phase separation structure comprising at least a first phase and a second phase, at a wavelength of 400 ⁇ 700 nm
  • the difference between the maximum value and the minimum value of the total light transmittance is 40% or less.
  • “refractive index n d ” refers to the value of the d-line measured by a refractive index measuring device.
  • a rectangular parallelepiped sample of 25 mm ⁇ 25 mm ⁇ about 3 mm is first prepared, and is slowly cooled at a cooling rate of 0.1 ° C./min in the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps ⁇ 50 ° C.). after, while penetration of immersion the refractive index n d are aligned, it can be measured by the refractive index measuring instrument KPR-2000 manufactured by Shimadzu Corporation. Moreover, the light scattering accompanying formation of a 1st phase and a 2nd phase can be confirmed visually.
  • Total light transmittance is a value measured in the thickness direction with a spectrophotometer (eg, UV-2500PC manufactured by Shimadzu Corporation).
  • a spectrophotometer eg, UV-2500PC manufactured by Shimadzu Corporation.
  • glass whose both surfaces are mirror-polished can be used as a measurement sample. .
  • the phase-separated glass according to the second invention has a phase-separated structure including at least a first phase and a second phase.
  • a phase-separated structure including at least a first phase and a second phase.
  • the refractive index n d is 1.65 or more.
  • the refractive index n d of the transparent conductive film is 1.9 to 2.0, and the refractive index n d of the organic EL layer was 1.8-1.9.
  • the refractive index n d of the glass plate was typically about 1.50.
  • the refractive index nd is regulated as described above, so that the difference in refractive index between the glass plate and the transparent conductive film is reduced, so that light incident from the organic EL layer is reflected at the interface between the glass plate and the transparent conductive film. Light extraction efficiency can be increased.
  • phase separation glass of the present invention regulates the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm to 40% or less. Thereby, it becomes possible to eliminate the above-mentioned problem.
  • the difference between the maximum value and the minimum value of the total light transmittance at wavelengths of 400 to 700 nm can be reduced by regulating the particle size of the phase-separated particles within a predetermined range and causing a scattering phenomenon due to Mie scattering. it can.
  • the phase separation glass according to the second aspect of the present invention preferably has a phase separation particle size of 100 nm or more.
  • the phase separation glass according to the second invention preferably has a diffuse transmittance of 10% or more at a wavelength of 400 to 700 nm.
  • “Diffusion transmittance” is a value measured in the thickness direction with a spectrophotometer (for example, UV-2500PC manufactured by Shimadzu Corporation).
  • a spectrophotometer for example, UV-2500PC manufactured by Shimadzu Corporation.
  • glass whose both surfaces are mirror-polished can be used as a measurement sample.
  • the phase-separated glass according to the second aspect of the present invention is that the phase-separated glass contains, as a glass composition, 30% to 75% SiO2, 0 to 35% Al 2 O 3 , and 10 to 50% BaO. It is preferable to contain. If it does in this way, it will become easy to raise a refractive index and it will become easy to raise productivity of a glass plate.
  • the phase separation glass according to the second aspect of the present invention preferably has a thickness of 5 to 500 ⁇ m.
  • the phase separation glass according to the second aspect of the present invention is preferably used for organic EL devices, particularly organic EL lighting.
  • the composite substrate according to the second aspect of the present invention is a composite substrate obtained by bonding a phase separation glass plate and a substrate, and the phase separation glass plate preferably includes the phase separation glass described above.
  • the composite substrate according to the second aspect of the present invention is preferably a glass substrate.
  • the refractive index n d of the substrate is 1.50 greater.
  • phase separation glass plate and the substrate are joined by optical contact.
  • the composite substrate according to the second aspect of the present invention is preferably used for organic EL devices, particularly organic EL lighting.
  • phase-separated glass according to the third invention the refractive index n d is not less than 1.65, and has a phase separation structure comprising at least a first phase and a second phase, the first phase in the the content of SiO 2, characterized in that more than the content of SiO 2 in the second phase.
  • refractive index n d refers to the value of the d-line measured by a refractive index measuring device.
  • a rectangular parallelepiped sample of 25 mm ⁇ 25 mm ⁇ about 3 mm is first prepared, and is slowly cooled at a cooling rate of 0.1 ° C./min in the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps ⁇ 50 ° C.).
  • the refractive index n d after, while penetration of immersion the refractive index n d are aligned, it can be measured by the refractive index measuring instrument KPR-2000 manufactured by Shimadzu Corporation.
  • the light scattering accompanying formation of a 1st phase and a 2nd phase can be confirmed visually.
  • the details of each phase can be confirmed by observing the surface of the sample after being immersed in a 1M hydrochloric acid solution for 10 minutes with a scanning electron microscope.
  • the phase separation glass according to the third aspect of the present invention has a phase separation structure including at least a first phase and a second phase, and the content of SiO 2 in the first phase is in the second phase. More than the content of SiO 2 .
  • the “organic EL device” includes not only organic EL lighting but also an organic EL display.
  • the refractive index n d is 1.65 or more.
  • the refractive index n d of the transparent conductive film is 1.9 to 2.0, and the refractive index n d of the organic EL layer was 1.8-1.9.
  • the refractive index n d of the glass plate was usually about 1.5.
  • the refractive index nd is regulated as described above, so that the difference in refractive index between the glass plate and the transparent conductive film is reduced, so that light incident from the organic EL layer is reflected at the interface between the glass plate and the transparent conductive film. Light extraction efficiency can be increased.
  • the phase separation glass according to the third aspect of the present invention contains, as a glass composition, 30% to 75% SiO 2 , 0 to 35% Al 2 O 3 , and 10 to 50% BaO by mass%. preferable. If it does in this way, it will become easy to raise a refractive index and it will become easy to raise productivity of a glass plate.
  • the phase-separated glass according to the third aspect of the present invention preferably has an Al 2 O 3 content of less than 7% by mass in the glass composition.
  • the phase-separated glass according to the third aspect of the present invention preferably has a B 2 O 3 content of 20% by mass or less in the glass composition.
  • the phase-separated glass according to the third aspect of the present invention preferably has a P 2 O 5 content of 0.001 to 10% by mass in the glass composition.
  • the phase-separated glass according to the third aspect of the present invention preferably has a La 2 O 3 content of 0.001 to 15% by mass in the glass composition.
  • the Nb 2 O 5 content in the glass composition is preferably 0.001 to 20% by mass.
  • the phase separation glass according to the third aspect of the present invention preferably has a wavelength having a haze value of 5% or more at a wavelength of 400 to 700 nm. If it does in this way, since it will become easy to scatter light in glass, it will become easy to take out light outside, and it will become easy to raise light extraction efficiency as a result.
  • the “haze value” is a value calculated by (diffuse transmittance) ⁇ 100 / (total light transmittance).
  • “Diffusion transmittance” is a value measured in the thickness direction with a spectrophotometer (for example, UV-2500PC manufactured by Shimadzu Corporation). For example, glass whose both surfaces are mirror-polished can be used as a measurement sample.
  • Total light transmittance is a value measured in the thickness direction with a spectrophotometer (eg, UV-2500PC manufactured by Shimadzu Corporation).
  • a spectrophotometer eg, UV-2500PC manufactured by Shimadzu Corporation.
  • glass whose both surfaces are mirror-polished can be used as a measurement sample. .
  • the phase separation glass according to the third aspect of the present invention preferably has a total light transmittance of 10% or more at a wavelength of 400 to 700 nm.
  • the phase separation glass according to the third aspect of the present invention preferably has a flat plate shape.
  • the phase separation glass according to the third aspect of the present invention is preferably not subjected to a separate heat treatment step, phase separation is performed in the molding step, or phase separation is performed in the slow cooling (cooling) step immediately after molding. It is preferable. If it does in this way, the number of manufacturing processes of glass will decrease and glass productivity can be raised.
  • phase-separated glass according to the third invention when incorporated into the organic EL element, the current efficiency of the organic EL elements, incorporating a glass having a refractive index n d is not phase separation of comparable It is preferable to be higher than the case.
  • “current efficiency” is calculated by preparing a luminance meter in a direction perpendicular to the thickness direction of the glass after measuring the organic EL element using glass and measuring the front luminance of the glass. Can do.
  • the refractive index nd is about the same” means that the refractive index nd is within a range of ⁇ 0.05.
  • the phase separation glass according to the third aspect of the present invention is preferably used for an organic EL device, particularly for organic EL lighting.
  • the organic EL device according to the third aspect of the present invention comprises the above phase separation glass.
  • Sample No. after heat treatment according to [Example 2] This is data obtained by mirror-polishing both surfaces of 1 (plate thickness: 1.0 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer.
  • Sample No. 2 according to [Example 2] 1 is an image obtained by observing the obtained sample surface with a scanning electron microscope after 1 was immersed in a 1M hydrochloric acid solution for 10 minutes.
  • Sample No. after heat treatment according to [Example 3] 2 (plate thickness: 1.0 mm) both surfaces were mirror-polished, and the total light transmittance and diffuse transmittance in the thickness direction were measured with a spectrophotometer.
  • Sample No. after heat treatment according to [Example 4] 3 is an image obtained by immersing 3 in a 1M hydrochloric acid solution for 10 minutes and then observing the obtained sample surface with a scanning electron microscope.
  • Sample No. after heat treatment according to [Example 4] 3 (plate thickness: 1.0 mm) both surfaces were mirror-polished, and the total light transmittance and diffuse transmittance in the thickness direction were measured with a spectrophotometer.
  • sample No. 8 is an image obtained by immersing 8 in a 1M hydrochloric acid solution for 10 minutes and observing the obtained sample surface with a scanning electron microscope.
  • 9 shows an image obtained by immersing 9 in a 1M hydrochloric acid solution for 10 minutes and then observing the obtained sample surface with a scanning electron microscope.
  • 7 is a data obtained by mirror-polishing both surfaces of 7 (plate thickness 0.7 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer.
  • phase separation glass and the manufacturing method thereof according to the first embodiment of the present invention will be described.
  • the refractive index n d is molded 1.65 or more phase separation glass.
  • Refractive index n d of the phase separation property glass is preferably 1.66 or more, 1.67 or more, 1.68 or more, 1.69 or more, particularly 1.70 or more.
  • the refractive index n d is less than 1.65, it becomes difficult to efficiently extract light by reflection at the interface, such as a glass plate and a transparent conductive film.
  • the refractive index n d is preferably 2.30 or less, 2.20 or less, 2.10 or less, 2.00 or less, 1.90 or less or 1.80 or less, particularly preferably 1.75 or less.
  • the thickness in the case of a flat plate
  • the thickness is 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, 0.8 mm or less, 0.8 mm or less. It is preferable to mold a phase separation glass of 7 mm or less, 0.5 mm or less, 0.3 mm or less, or 0.2 mm or less, and it is particularly preferable to mold a phase separation glass of 0.1 mm or less.
  • the smaller the thickness the higher the flexibility and the easier it is to improve the design of organic EL lighting. However, when the thickness is extremely small, the glass tends to break. Therefore, the thickness is preferably 10 ⁇ m or more, particularly preferably 30 ⁇ m or more.
  • phase-separated glass In the method for producing phase-separated glass according to the first embodiment of the present invention, it is preferably molded into a flat plate shape, that is, preferably molded into a glass plate. If it does in this way, it will become easy to apply to an organic EL device.
  • it is preferable to make at least one surface into an unpolished surface especially the whole effective surface of at least one surface is an unpolished surface.
  • the theoretical strength of glass is very high, but breakage often occurs even at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow occurs on the surface of the glass plate in a post-molding process such as a polishing process. Therefore, if the surface of the glass plate is unpolished, the original mechanical strength is hardly lost, and thus the glass plate is difficult to break. Further, since the polishing step can be simplified or omitted, the manufacturing cost of the glass plate can be reduced.
  • the surface roughness Ra of at least one surface is 0.01 to 1 ⁇ m.
  • surface roughness Ra is large, when forming a transparent conductive film etc. on the surface, the quality of a transparent conductive film falls and it becomes difficult to obtain uniform light emission.
  • Suitable upper limit ranges of the surface roughness Ra are 1 ⁇ m or less, 0.8 ⁇ m or less, 0.5 ⁇ m or less, 0.3 ⁇ m or less, 0.1 ⁇ m or less, 0.07 ⁇ m or less, 0.05 ⁇ m or less, or 0.03 ⁇ m or less, particularly suitable The upper limit range is 10 nm or less.
  • the phase separation glass in the method for producing a phase separation glass according to the first embodiment of the present invention, it is preferable to form the phase separation glass by a downdraw method, particularly an overflow downdraw method.
  • a downdraw method particularly an overflow downdraw method.
  • the phase separation glass can be formed by a slot downdraw method. If it does in this way, it will become easy to produce a thin glass plate.
  • a redraw method for example, a float method, a roll-out method, etc.
  • the float process can efficiently produce a large glass plate.
  • a phase separation glass including at least a first phase and a second phase is obtained by heat treatment, and the phase separation glass is contained in the first phase.
  • the content of SiO 2 is, it is preferably greater than the content of SiO 2 in the second phase, and if containing B 2 O 3 in the glass composition, of B 2 O 3 in the second phase
  • the content is preferably larger than the content of B 2 O 3 in the first phase. If it does in this way, the refractive index of a 1st phase and a 2nd phase will become easy to differ, and the light-scattering function of glass can be improved.
  • the average particle size of phase-separated particles of at least one phase is 0.01 to 5 ⁇ m, particularly It is preferable to heat treat the phase separation glass so that the thickness becomes 0.05 to 0.5 ⁇ m. If the average particle size of the phase-separated particles is small, the light emitted from the organic EL layer is difficult to scatter at the interface between the first phase and the second phase. On the other hand, if the average particle size of the phase-separated particles is large, the scattering intensity becomes too strong and the total light transmittance may be lowered.
  • the heat treatment temperature is preferably 700 ° C. or higher, 800 ° C. or higher, or 850 ° C. or higher, particularly preferably 900 ° C. or higher. This makes it easy to obtain a phase separation structure.
  • the heat treatment temperature is preferably 1100 ° C. or less, particularly preferably 1000 ° C. or less. If the heat treatment temperature is too high, in addition to an increase in heat treatment cost, the scattering intensity becomes too strong, and the linear transmittance, total light transmittance, and the like may decrease.
  • the heat treatment time (holding time at the heat treatment temperature) is preferably 1 minute or longer, particularly 5 minutes or longer. This makes it easy to obtain a phase separation structure.
  • the heat treatment temperature is preferably 72 hours or less, 48 hours or less or 24 hours or less, particularly preferably 60 minutes or less. If the heat treatment time is too long, in addition to an increase in the heat treatment cost, the scattering intensity becomes too strong, and the linear transmittance, total light transmittance, and the like may decrease.
  • the phase separation glass (or phase separation glass) according to the first embodiment of the present invention has, as a glass composition, 30% to 75% SiO 2 , 0 to 35% Al 2 O 3 , and 10 to 50% BaO by mass%. It is preferable to contain.
  • % display means the mass%.
  • the content of SiO 2 is preferably 30 to 75%.
  • the preferable upper limit range of SiO 2 is 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, or 40% or less, and the particularly preferable upper limit range is 40%. Is less than.
  • the preferable lower limit range of SiO 2 is 30% or more, 32% or more, or 34% or more, and the particularly preferable lower limit range is 36% or more.
  • the content of Al 2 O 3 is preferably 0 to 35%.
  • Al 2 O 3 is a component that enhances devitrification resistance.
  • the preferable upper limit range of Al 2 O 3 is 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, less than 7%, 5% or less, particularly 3% or less.
  • the preferred lower limit range is 0.1% or more, 0.5% or more, particularly 1% or more.
  • the content of BaO is preferably 10 to 50%.
  • BaO is a component that increases the refractive index of alkaline earth metal oxides without extremely reducing the viscosity of the glass.
  • the preferred upper limit range of BaO is 40% or less, 30% or less, particularly 26% or less, and the preferred lower limit range is more than 10%, 14% or more, 20% or more, 22% or more, particularly 24% or more. is there.
  • the content of B 2 O 3 is preferably 0 to 50%.
  • B 2 O 3 is a component that enhances phase separation, but if the content of B 2 O 3 is too large, the component balance of the glass composition is impaired, and devitrification resistance is likely to decrease. The acid resistance tends to decrease. Therefore, the preferable upper limit range of B 2 O 3 is 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, 5% or less, particularly 2% or less. 1% or more, 0.3% or more, particularly 0.5% or more.
  • the content of Li 2 O is preferably 0 to 30%.
  • Li 2 O is a component that enhances phase separation, but if the content of Li 2 O is too large, the liquid phase viscosity tends to decrease, the strain point tends to decrease, and further, an etching step using an acid. In this case, the alkali component is easily eluted. Therefore, a suitable upper limit range of Li 2 O is 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, particularly 0.5% or less.
  • the content of Na 2 O is preferably 0-30%.
  • Na 2 O is a component that improves phase separation.
  • a preferable upper limit range of Na 2 O is 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, particularly 0.5% or less.
  • the content of K 2 O is preferably 0 to 30%.
  • K 2 O is a component that improves phase separation. However, if the content of K 2 O is too large, the liquid phase viscosity tends to decrease, the strain point tends to decrease, and further, an etching step using an acid. In this case, the alkali component is easily eluted. Therefore, a preferable upper limit range of K 2 O is 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, particularly 0.5% or less.
  • the content of MgO is preferably 0 to 30%.
  • MgO is a component that raises the refractive index, Young's modulus, and strain point and lowers the high-temperature viscosity.
  • the preferable upper limit range of MgO is 30% or less, 20% or less, 10% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, Less than 1%.
  • a suitable lower limit range is 0.1% or more, especially 0.9% or more.
  • the CaO content is preferably 0-30%.
  • CaO is a component that lowers the high-temperature viscosity.
  • the preferable upper limit range of CaO is 30% or less, 20% or less, 10% or less, 8% or less, particularly 6% or less, and the preferable lower limit range is 0.1% or more, 1% or more, 2% or more. In particular, it is 4% or more.
  • the SrO content is preferably 0-30%. If the SrO content is increased, the refractive index and the density are likely to be increased, and the balance of components of the glass composition is impaired, so that the devitrification resistance is likely to be lowered. Therefore, a preferable upper limit range of SrO is 30% or less, 20% or less, 10% or less, 8% or less, particularly 5% or less, and a preferable lower limit range is 1% or more, 3% or more, particularly 4% or more. is there.
  • the content of ZnO is preferably 0 to 30%.
  • a suitable upper limit range of ZnO is 20% or less, 10% or less, 5% or less, 4% or less, 3% or less, 2% or less, particularly less than 1%.
  • a suitable lower limit range is 0.1% or more, especially 0.9% or more.
  • TiO 2 is a component that increases the refractive index, and its content is preferably 0 to 20%. However, when the content of TiO 2 is increased, the component balance of the glass composition is impaired, and the devitrification resistance is easily lowered. In addition, the total light transmittance may be reduced. Therefore, the preferable upper limit range of TiO 2 is 20% or less, 15% or less, 10% or less, particularly 8% or less, and the preferable lower limit range is 0.001% or more, 0.01% or more, 0.1%. Above, 1% or more, 2% or more, especially 3% or more.
  • ZrO 2 is a component that increases the refractive index, and its content is preferably 0 to 20%. However, when the content of ZrO 2 increases, the component balance of the glass composition is impaired, and the devitrification resistance is likely to decrease. Therefore, the preferable upper limit range of ZrO 2 is 20% or less, 10% or less, particularly 5% or less, and the preferable lower limit range is 0.001% or more, 0.01% or more, 0.1% or more, 1%. Above, 1.5% or more, especially 2% or more.
  • P 2 O 5 is a component that increases phase separation, and its content is preferably 0 to 10%.
  • the preferable upper limit range of P 2 O 5 is 10% or less, 7% or less, 4% or less, 3% or less, particularly 2% or less, and the preferable lower limit range is 0.001% or more and 0.01%. These are 0.1% or more, 1% or more, 1.4% or more, particularly 1.6% or more.
  • the mass ratio P 2 O 5 / Al 2 O 3 is preferably 0.1 or more, 0.3 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, One or more, especially more than one. In this way, the phase separation can be effectively enhanced.
  • P 2 O 5 / Al 2 O 3 is a value obtained by dividing the content of P 2 O 5 by the content of Al 2 O 3 .
  • the mass ratio P 2 O 5 / B 2 O 3 is preferably 0.1 or more, 0.3 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, One or more, especially more than one. If it does in this way, phase separation property can be improved, ensuring acid resistance.
  • P 2 O 5 / B 2 O 3 is a value obtained by dividing the content of P 2 O 5 by the content of B 2 O 3 .
  • the mass ratio P 2 O 5 / (Li 2 O + Na 2 O + K 2 O) is preferably 0.1 or more, 0.3 or more, 0.5 or more, 0.6 or more, 0.7 or more, 0.8 or more, 0.9 or more, 1 or more, particularly more than 1. In this way, phase separation can be improved while maintaining a high strain point.
  • Li 2 O + Na 2 O + K 2 O is the total amount of Li 2 O, Na 2 O and K 2 O.
  • P 2 O 5 / (Li 2 O + Na 2 O + K 2 O)” is a value obtained by dividing the content of P 2 O 5 by the content of Li 2 O + Na 2 O + K 2 O.
  • La 2 O 3 is a component that increases the refractive index, and its content is preferably 0 to 15%. If the content of La 2 O 3 increases, the density tends to increase, the devitrification resistance and acid resistance easily decrease, the raw material cost increases, and the production cost of the glass plate easily increases. . Therefore, the suitable upper limit range of La 2 O 3 is 15% or less, 10% or less, 6% or less, particularly 4% or less, and the preferred lower limit range is 0.001% or more, 0.01% or more, 0. 5% or more, 1% or more, 2% or more, particularly 3% or more.
  • Nb 2 O 5 is a component that increases the refractive index, and its content is preferably 0 to 20%.
  • a preferable upper limit range of Nb 2 O 5 is 20% or less, 16% or less, 14% or less, 12% or less, particularly 10% or less, and a preferable lower limit range is 0.001% or more and 0.01%. These are 1% or more, 4% or more, 6% or more, particularly 8% or more.
  • La 2 O 3 and Nb 2 O 5 are components that increase the refractive index. However, if the content of these components increases, the density and thermal expansion coefficient tend to increase, and the devitrification resistance decreases, resulting in a high level. It becomes difficult to ensure the liquid phase viscosity, and further, the raw material cost increases, and the manufacturing cost of the glass plate is likely to increase. Therefore, the preferred upper limit range of La 2 O 3 + Nb 2 O 5 is 35% or less, 30% or less, 25% or less, 20% or less, particularly 15% or less, and the preferred lower limit range is 0.001% or more, 1% or more, 2% or more, 4% or more, 6% or more, 8% or more, particularly 10% or more.
  • “La 2 O 3 + Nb 2 O 5 ” refers to the total amount of La 2 O 3 and Nb 2 O 5 .
  • the mass ratio (La 2 O 3 + Nb 2 O 5 ) / (SiO 2 + Al 2 O 3 + B 2 O 3 ) is preferably 0.1 or more, 0.15 or more, 0.2 or more, 0.25 or more, 0 .28 or more, 0.29 or more, 0.3 or more, 0.31 or more, or 0.32 or more, particularly preferably 0.33 or more.
  • “SiO 2 + Al 2 O 3 + B 2 O 3 ” is the total amount of SiO 2 , Al 2 O 3 and B 2 O 3 .
  • Gd 2 O 3 is a component that increases the refractive index, and its content is preferably 0 to 10%.
  • a suitable upper limit range of Gd 2 O 3 is 10% or less, 5% or less, 3% or less, 2.5% or less, 1% or less, particularly 0.1% or less.
  • the total content of rare metal oxides is preferably 0 to 35%.
  • Rare metal oxide is a component that increases the refractive index, but as the content of these components increases, the density and thermal expansion coefficient tend to increase, and devitrification resistance decreases, ensuring high liquid phase viscosity.
  • the raw material cost is increased, and the manufacturing cost of the glass plate is likely to increase. Therefore, the preferable upper limit range of the rare metal oxide is 35% or less, 30% or less, 25% or less, 20% or less, particularly 15% or less, and the preferable lower limit range is 0.001% or more, 1% or more, 2 % Or more, 4% or more, 6% or more, 8% or more, particularly 10% or more.
  • the “rare metal oxide” as used in the present invention is a rare earth oxide such as La 2 O 3 , Nd 2 O 3 , Gd 2 O 3 , CeO 2 , Y 2 O 3 , Nb 2 O 5 , Ta 2 O 5. Point to.
  • the following oxide conversion means that an oxide having a valence different from the indicated oxide is handled after being converted to the indicated oxide.
  • the content of SnO 2 is preferably 0 to 1%, 0.001 to 1%, particularly 0.01 to 0.5%.
  • Fe 2 O 3 has a preferred upper limit range of 0.05% or less, 0.04% or less, 0.03% or less, particularly 0.02% or less, and a preferred lower limit range of 0.001% or more.
  • the CeO 2 content is preferably 0 to 6%.
  • the preferable upper limit range of CeO 2 is 6% or less, 5% or less, 3% or less, 2% or less, 1% or less, particularly 0.1% or less.
  • a suitable lower limit range of CeO 2 is 0.001% or more, particularly 0.01% or more.
  • PbO is a component that lowers the high temperature viscosity, but it is preferable to refrain from using it as much as possible from an environmental point of view.
  • the content of PbO is preferably 0.5% or less, and is desirably substantially free.
  • substantially does not contain PbO refers to a case where the content of PbO in the glass composition is less than 0.1%.
  • other components may be introduced in a total amount, preferably up to 10% (desirably 5%).
  • phase separation glass (or phase separation glass) according to the first embodiment of the present invention preferably has the following characteristics.
  • the density is preferably 5.0 g / cm 3 or less, 4.5 g / cm 3 or less, particularly 3.6 g / cm 3 or less. If it does in this way, an organic EL device can be reduced in weight.
  • the average thermal expansion coefficient at 30 to 380 ° C. is preferably 30 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 / ° C., 40 ⁇ 10 ⁇ 7 to 90 ⁇ 10 ⁇ 7 / ° C., 50 ⁇ 10 ⁇ 7 to 85 ⁇ 10 ⁇ 7 / ° C., in particular 60 ⁇ 10 ⁇ 7 to 75 ⁇ 10 ⁇ 7 / ° C.
  • flexibility is required for a glass plate from the viewpoint of enhancing design elements. In order to increase flexibility, it is necessary to reduce the thickness of the glass plate.
  • the thermal expansion coefficients of the glass plate and the transparent conductive film such as ITO or FTO are mismatched, the glass plate warps. It becomes easy. Therefore, if the average coefficient of thermal expansion at 30 to 380 ° C. is set in the above range, such a situation can be easily prevented.
  • the “average thermal expansion coefficient at 30 to 380 ° C.” can be measured with a dilatometer or the like.
  • the strain point is preferably 450 ° C or higher, 500 ° C or higher, 550 ° C or higher, 600 ° C or higher, particularly 650 ° C or higher.
  • the higher the temperature of the transparent conductive film the higher the transparency and the lower the electrical resistance.
  • the conventional glass plate has insufficient heat resistance, it has been difficult to form a transparent conductive film at a high temperature. Therefore, when the strain point is within the above range, both transparency of the transparent conductive film and low electric resistance can be achieved, and furthermore, in the manufacturing process of the organic device, the glass plate is hardly thermally contracted by heat treatment.
  • the temperature at 10 2.5 dPa ⁇ s is preferably 1600 ° C. or lower, 1560 ° C. or lower, 1500 ° C. or lower, particularly 1450 ° C. or lower. If it does in this way, since a meltability will improve, productivity of a glass plate will improve.
  • the liquidus temperature is preferably 1300 ° C. or lower, 1250 ° C. or lower, 1200 ° C. or lower, particularly 1150 ° C. or lower.
  • the liquid phase viscosity is preferably 10 2.5 dPa ⁇ s or more, 10 3.0 dPa ⁇ s or more, 10 3.5 dPa ⁇ s or more, 10 3.8 dPa ⁇ s or more, 10 4.0 dPa or more. S or more, 10 4.4 dPa ⁇ s or more, particularly 10 4.6 dPa ⁇ s or more.
  • the “liquid phase temperature” passed through 30 mesh (500 ⁇ m sieve opening), and the glass powder remaining in 50 mesh (300 ⁇ m sieve opening) was placed in a platinum boat and held in a temperature gradient furnace for 24 hours. Later, it refers to a value obtained by measuring the temperature at which crystals are deposited. “Liquid phase viscosity” refers to the viscosity of the glass at the liquidus temperature.
  • the phase separation temperature is preferably 1000 ° C. or lower, particularly 950 ° C. or lower.
  • the phase separation viscosity is preferably 10 4.0 dPa ⁇ s or more, particularly 10 5.0 to 10 8.0 dPa ⁇ s.
  • the heat treatment temperature can be lowered.
  • the “phase separation temperature” indicates that clear turbidity is observed when glass is placed in a platinum boat and remelted at 1400 ° C., then the platinum boat is transferred to a temperature gradient furnace and held in the temperature gradient furnace for 30 minutes.
  • Phase separation viscosity refers to a value obtained by measuring the viscosity of glass at the phase separation temperature by the platinum pulling method.
  • Phase separation viscosity refers to a value obtained by measuring the viscosity of glass at the phase separation temperature by the platinum pulling method.
  • the phase separation glass of this invention does not phase-separate at a shaping
  • the “haze value” is a value calculated by (diffuse transmittance) ⁇ 100 / (total light transmittance).
  • the total light transmittance at a wavelength of 400 to 700 nm is preferably 10% or more, 20% or more, 30% or more, 40% or more, particularly 50% or more. If the total light transmittance is too low, it becomes difficult to extract the light in the glass into the air.
  • the diffuse transmittance has a wavelength of 10% or more, 20% or more, particularly 30% or more at a wavelength of 400 to 700 nm. If there is no wavelength having a diffuse transmittance equal to or greater than a predetermined value, it is difficult to extract light in the glass into the air.
  • the method for producing phase-separated glass according to the first embodiment of the present invention when it has a flat plate shape, it is preferable to provide a roughening step for forming a roughened surface on at least one surface. If the roughened surface is arranged on the side in contact with air such as organic EL lighting, in addition to the scattering effect of the glass plate, the non-reflective structure of the roughened surface allows light emitted from the organic EL layer to be within the organic EL layer. As a result, the light extraction efficiency can be increased.
  • the surface roughness Ra of the roughened surface is preferably 10 mm or more, 20 mm or more, 30 mm or more, particularly 50 mm or more.
  • the roughened surface can be formed by HF etching, sandblasting, or the like. Moreover, you may form an uneven
  • the roughened surface can be formed by an atmospheric pressure plasma process. In this way, it is possible to uniformly roughen the other surface while maintaining the surface state of one surface of the glass plate. Moreover, it is preferable to use a gas containing F (for example, SF 6 , CF 4 ) as a source of the atmospheric pressure plasma process. In this way, since plasma containing HF gas is generated, the roughened surface can be formed efficiently.
  • a gas containing F for example, SF 6 , CF 4
  • a roughened surface can be formed on at least one surface during molding of the glass plate. This eliminates the need for a separate roughening process and improves the efficiency of the roughening process.
  • the uneven surface roughness Ra is preferably 10 mm or more, 20 mm or more, 30 mm or more, particularly 50 mm or more.
  • phase separation glass of the present invention the refractive index n d is not less than 1.65, and when subjected to heat treatment for 24 hours at 900 ° C., from the state where no phase separation, at least a first phase and a second phase It has the property of phase separation.
  • the technical characteristics (a suitable structure and effect) of the phase separation glass of this invention are already described in the description column of the manufacturing method of the phase separation glass of this invention, and detailed description is abbreviate
  • the phase separation glass according to the second embodiment of the present invention has a phase separation structure including at least a first phase and a second phase, and the content of SiO 2 in the first phase is It is preferable that the content of SiO 2 in the second phase is larger, and when B 2 O 3 is contained in the glass composition, the content of B 2 O 3 in the second phase is it is preferably larger than the content of B 2 O 3. If it does in this way, the refractive index of a 1st phase and a 2nd phase will become easy to differ, and the light-scattering function of glass can be improved.
  • the refractive index n d is 1.65 or more, preferably 1.66 or more, 1.67 or more, 1.68 or more, 1.69 or more, particularly 1.70 or more.
  • the refractive index n d is less than 1.65, it becomes difficult to efficiently extract light by reflection at the interface, such as a glass plate and a transparent conductive film.
  • the refractive index n d is preferably 2.30 or less, 2.20 or less, 2.10 or less, 2.00 or less, 1.90 or less, 1.80 or less, particularly 1.75 or less.
  • the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is preferably 40% or less, 30% or less, 20% or less, 10%. Hereinafter, it is especially 5% or less.
  • the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is too large, a scattering phenomenon due to Rayleigh scattering occurs. In this case, when an organic EL element, particularly a white OLED is manufactured. In addition, the viewing angle dependency of color increases.
  • the particle size of the phase separation particles of at least one phase is preferably 100 nm or more, 200 nm or more, 300 nm or more. 400 to 5000 nm, particularly 600 to 3000 nm. In this way, a scattering phenomenon due to Mie scattering is likely to occur, and the wavelength dependency of the total light transmittance is easily reduced.
  • the particle size of the phase-separated particles can be adjusted by the glass composition, molding conditions, slow cooling conditions, heat treatment temperature, heat treatment time, and the like.
  • the phase-separated glass according to the second embodiment of the present invention preferably contains, as a glass composition, 30 to 75% of SiO 2 , 0 to 35% of Al 2 O 3 and 10 to 50% of BaO by mass%.
  • % display means the mass%.
  • phase-separated glass according to the second embodiment of the present invention are as described above for the phase-separated glass according to the first embodiment of the present invention described above with respect to the following (1) to (9). Since they are the same, the description thereof will be omitted, and other items will be described below.
  • the phase-separated glass according to the second embodiment of the present invention preferably has a flat plate shape, that is, a glass plate. If it does in this way, it will become easy to apply to an organic EL device.
  • a flat plate shape it is preferable to have an unpolished surface on at least one surface (in particular, the entire effective surface of at least one surface is an unpolished surface).
  • the theoretical strength of glass is very high, but breakage often occurs even at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow occurs on the surface of the glass plate in a post-molding process such as a polishing process. Therefore, if the surface of the glass plate is unpolished, the original mechanical strength is hardly lost, and thus the glass plate is difficult to break. Further, since the polishing step can be simplified or omitted, the manufacturing cost of the glass plate can be reduced.
  • the thickness (in the case of a flat plate) is preferably 5 to 500 ⁇ m. If the thickness is too large, if the light scattering function is excessive, the total light transmittance becomes low, and it becomes difficult to extract the light in the phase separation glass into the air. Therefore, the thickness is preferably 500 ⁇ m or less, 400 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, particularly 50 ⁇ m or less. On the other hand, if the thickness is too small, the light scattering function tends to be lowered, and it becomes difficult to take out the light in the phase separation glass into the air. Therefore, the thickness is preferably 5 ⁇ m or more, 10 ⁇ m or more, 20 ⁇ m or more, particularly 30 ⁇ m or more.
  • the surface roughness Ra of at least one surface is preferably 0.01 to 1 ⁇ m.
  • surface roughness Ra is large, when forming a transparent conductive film etc. on the surface, the quality of a transparent conductive film falls and it becomes difficult to obtain uniform light emission.
  • Suitable upper limit ranges of the surface roughness Ra are 1 ⁇ m or less, 0.8 ⁇ m or less, 0.5 ⁇ m or less, 0.3 ⁇ m or less, 0.1 ⁇ m or less, 0.07 ⁇ m or less, 0.05 ⁇ m or less, 0.03 ⁇ m or less, particularly 10 nm. It is as follows.
  • the phase-separated glass according to the second embodiment of the present invention is preferably formed by a down draw method, particularly an overflow down draw method.
  • a down draw method particularly an overflow down draw method.
  • the overflow down draw method the surface to be the surface is not in contact with the bowl-shaped refractory and is molded in a free surface state.
  • a slot downdraw method can be employed. If it does in this way, it will become easy to produce a thin glass plate.
  • a redraw method for example, a float method, a roll-out method, etc.
  • the float process can efficiently produce a large glass plate.
  • the phase-separated glass according to the second embodiment of the present invention is preferably subjected to a heat treatment step. This makes it easy to control the scattering phenomenon of the phase separation glass (especially the scattering phenomenon due to Mie scattering), and to easily reduce the difference between the maximum value and the minimum value of the total light transmittance at wavelengths of 400 to 700 nm.
  • the heat treatment temperature is preferably 610 ° C or higher, 710 ° C or higher, 810 ° C or higher, particularly 910 ° C or higher. This makes it easier to control the scattering phenomenon (particularly the scattering phenomenon due to Mie scattering) of the phase separation glass.
  • the heat treatment temperature is preferably 1200 ° C. or lower, 1100 ° C. or lower, particularly 1000 ° C. or lower. If the heat treatment temperature is too high, in addition to an increase in heat treatment cost, the scattering intensity becomes too strong, and the linear transmittance, total light transmittance, and the like may decrease.
  • the heat treatment time is preferably 1 minute or longer, particularly 5 minutes or longer. This makes it easier to control the scattering phenomenon (particularly the scattering phenomenon due to Mie scattering) of the phase separation glass.
  • the heat treatment temperature is preferably 72 hours or less, 48 hours or less, 24 hours or less, particularly 60 minutes or less. If the heat treatment time is too long, in addition to an increase in the heat treatment cost, the scattering intensity becomes too strong, and the linear transmittance, total light transmittance, and the like may decrease.
  • At least one surface may be a roughened surface. If the roughened surface is arranged on the side in contact with air such as organic EL lighting, in addition to the scattering effect of the glass plate, the non-reflective structure of the roughened surface allows light emitted from the organic EL layer to be within the organic EL layer. As a result, the light extraction efficiency can be increased.
  • the surface roughness Ra of the roughened surface is preferably 10 mm or more, 20 mm or more, 30 mm or more, particularly 50 mm or more.
  • the roughened surface can be formed by HF etching, sandblasting, or the like.
  • the roughened surface can be formed by an atmospheric pressure plasma process. In this way, it is possible to uniformly roughen the other surface while maintaining the surface state of one surface of the glass plate. Moreover, it is preferable to use a gas containing F (for example, SF 6 , CF 4 ) as a source of the atmospheric pressure plasma process. In this way, since plasma containing HF gas is generated, the roughened surface can be formed efficiently.
  • a gas containing F for example, SF 6 , CF 4
  • a roughened surface can be formed on at least one surface during molding of the glass plate. This eliminates the need for a separate roughening process and improves the efficiency of the roughening process.
  • the uneven surface roughness Ra is preferably 10 mm or more, 20 mm or more, 30 mm or more, particularly 50 mm or more.
  • the composite substrate according to the second embodiment of the present invention is a composite substrate in which a phase separation glass plate and a substrate are joined, and the phase separation glass plate includes the above phase separation glass.
  • the phase separation glass plate functions as a light scattering plate, it is possible to increase the light extraction efficiency of the organic EL element only by combining with the substrate. Furthermore, if the phase separation glass plate and the substrate are joined and the phase separation glass plate is disposed on the side in contact with air, the scratch resistance of the composite substrate can be improved.
  • a resin substrate As the substrate, various materials can be used.
  • a metal substrate, or a glass substrate can be used.
  • a glass substrate is preferable from the viewpoints of permeability, weather resistance, and heat resistance.
  • Various materials can be used as the glass substrate.
  • a soda lime glass substrate, an aluminosilicate glass substrate, and an alkali-free glass substrate can be used.
  • the thickness of the glass substrate is preferably 0.3 to 3.0 mm, 0.4 to 2.0 mm, particularly more than 0.5 to 1.8 mm from the viewpoint of maintaining strength.
  • Refractive index n d of the glass substrate is preferably 1.65 or more, more preferably 1.66 or more, 1.67 or more, 1.68 or more, 1.69 or more, particularly preferably at least 1.70 . If the refractive index of the glass substrate is too low, it becomes difficult to efficiently extract light by reflection at the interface of the glass substrate and the transparent conductive film. On the other hand, if the refractive index nd is too high, the reflectance at the interface between the glass substrate and the phase separation glass plate becomes high, and it becomes difficult to extract the light in the glass substrate into the air through the phase separation glass plate. Therefore, the refractive index n d is preferably 2.30 or less, 2.20 or less, 2.10 or less, 2.00 or less, 1.90 or less, 1.80 or less, particularly 1.75 or less.
  • the surface roughness Ra of at least one surface (particularly the unpolished surface) of the glass substrate is preferably 0.01 to 1 ⁇ m. If the surface roughness Ra is too large, it becomes difficult to produce a composite substrate by optical contact. In addition, when a transparent conductive film or the like is formed on the surface, the quality of the transparent conductive film is lowered and uniform. It becomes difficult to obtain luminescence. Therefore, the preferable upper limit range of the surface roughness Ra of at least one surface is 1 ⁇ m or less, 0.8 ⁇ m or less, 0.5 ⁇ m or less, 0.3 ⁇ m or less, 0.1 ⁇ m or less, 0.07 ⁇ m or less, 0.05 ⁇ m or less, 0.03 ⁇ m or less, particularly 10 nm or less.
  • a method of joining with an adhesive tape, an adhesive sheet, an adhesive, a curing agent, or the like, or a method of joining with an optical contact can be used.
  • a method of bonding with an ultraviolet curable resin is preferable from the viewpoint of bonding reliability
  • a method of bonding with an optical contact is preferable from the viewpoint of increasing the transmittance of the composite substrate.
  • phase separation glass according to the third embodiment of the present invention will be described.
  • the refractive index n d is 1.65 or more, preferably 1.66 or more, 1.67 or more, 1.68 or more, 1.69 or more, particularly 1.70 or more.
  • the refractive index n d is less than 1.65, it becomes difficult to efficiently extract light by reflection at the interface, such as a glass plate and a transparent conductive film.
  • the refractive index n d is preferably 2.30 or less, 2.20 or less, 2.10 or less, 2.00 or less, 1.90 or less, 1.80 or less, particularly 1.75 or less.
  • the phase separation glass according to the third embodiment of the present invention has a phase separation structure including at least a first phase and a second phase, and the content of SiO 2 in the first phase is the second phase. more than the content of SiO 2 in, and if containing B 2 O 3 in the glass composition, the content of the second of B 2 O 3 in the phase, of B 2 O 3 in the first phase It is preferable that the content is larger than the content. If it does in this way, the refractive index of a 1st phase and a 2nd phase will become easy to differ, and the light-scattering function of glass can be improved.
  • the average particle size of the phase-separated particles of at least one phase is preferably 0.01 to 5 ⁇ m. If the average particle size of the phase-separated particles is small, the light emitted from the organic EL layer is difficult to scatter at the interface between the first phase and the second phase. On the other hand, if the average particle size of the phase-separated particles is large, the scattering intensity becomes too strong and the total light transmittance may be lowered.
  • the phase-separated glass according to the third embodiment of the present invention preferably contains, as a glass composition, 30 to 75% of SiO 2 , 0 to 35% of Al 2 O 3 and 10 to 50% of BaO by mass%.
  • % display means the mass%.
  • the components that can be introduced in addition to the above components are mostly the same as those already described for the phase-separated glass according to the first embodiment of the present invention, and the differences are only the items described below. is there. That is, when MgO is introduced, the preferred lower limit range is 0.1% or more, 1% or more, 3% or more, or 4% or more, and the particularly preferred range is 5% or more. In the case of introducing ZnO, the preferable lower limit range is 0.1% or more, particularly 1% or more.
  • phase-separated glass according to the third embodiment of the present invention are as described above for the phase-separated glass according to the first embodiment of the present invention described above with respect to the following (1) to (5). Since they are the same, the description thereof will be omitted, and other items will be described below.
  • the phase separation temperature is preferably 700 ° C. or higher, 800 ° C. or higher, particularly 900 ° C. or higher.
  • the phase separation viscosity is preferably 10 9.0 dPa ⁇ s or less, particularly 10 5.0 to 10 8.0 dPa ⁇ s. If it does in this way, it will become easy to phase-separate glass at a formation process and / or a slow cooling process, and it will become easy to shape a glass plate which has a phase separation structure by a float process or an overflow down draw method. As a result, after forming the glass plate, a separate heat treatment step becomes unnecessary, and the manufacturing cost of the glass plate can be easily reduced.
  • phase separation temperature indicates that clear turbidity is observed when glass is placed in a platinum boat and remelted at 1400 ° C., then the platinum boat is transferred to a temperature gradient furnace and held in the temperature gradient furnace for 30 minutes.
  • Phase separation viscosity refers to a value obtained by measuring the viscosity of glass at the phase separation temperature by the platinum pulling method.
  • the phase-separated glass according to the third embodiment of the present invention is preferably phase-separated in the molding step and / or the slow cooling step, but the glass is phase-separated in the melting step, for example, other than these steps. May be.
  • the total light transmittance at a wavelength of 400 to 700 nm is preferably 10% or more, 20% or more, 30% or more, 40% or more, particularly 50% or more. If the total light transmittance is too low, it becomes difficult to extract the light in the glass into the air.
  • the diffuse transmittance has a wavelength of 10% or more, 20% or more, particularly 30% or more at a wavelength of 400 to 700 nm. If there is no wavelength having a diffuse transmittance equal to or greater than a predetermined value, it is difficult to extract light in the glass into the air.
  • the thickness (in the case of a flat plate) is preferably 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, 0.8 mm or less, 0.7 mm or less, 0.5 mm or less, 0.3 mm or less, 0 .2 mm or less, particularly 0.1 mm or less.
  • the smaller the thickness the higher the flexibility and the easier it is to improve the design of organic EL lighting.
  • the thickness is preferably 10 ⁇ m or more, particularly 30 ⁇ m or more.
  • the phase-separated glass according to the third embodiment of the present invention preferably has a flat plate shape, that is, a glass plate. If it does in this way, it will become easy to apply to an organic EL device.
  • a flat plate shape it is preferable to have an unpolished surface on at least one surface (in particular, the entire effective surface of at least one surface is an unpolished surface).
  • the theoretical strength of glass is very high, but breakage often occurs even at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow occurs on the surface of the glass plate in a post-molding process such as a polishing process. Therefore, if the surface of the glass plate is unpolished, the original mechanical strength is hardly lost, and thus the glass plate is difficult to break. Further, since the polishing step can be simplified or omitted, the manufacturing cost of the glass plate can be reduced.
  • the surface roughness Ra of at least one surface is preferably 0.01 to 1 ⁇ m.
  • surface roughness Ra is large, when forming a transparent conductive film etc. on the surface, the quality of a transparent conductive film falls and it becomes difficult to obtain uniform light emission.
  • Suitable upper limit ranges of the surface roughness Ra are 1 ⁇ m or less, 0.8 ⁇ m or less, 0.5 ⁇ m or less, 0.3 ⁇ m or less, 0.1 ⁇ m or less, 0.07 ⁇ m or less, 0.05 ⁇ m or less, 0.03 ⁇ m or less, particularly 10 nm. It is as follows.
  • the phase-separated glass according to the third embodiment of the present invention is preferably formed by a down draw method, particularly an overflow down draw method.
  • a down draw method particularly an overflow down draw method.
  • the overflow down draw method the surface to be the surface is not in contact with the bowl-shaped refractory and is molded in a free surface state.
  • a slot downdraw method can be employed. If it does in this way, it will become easy to produce a thin glass plate.
  • a redraw method for example, a float method, a roll-out method, etc.
  • the float process can efficiently produce a large glass plate.
  • the phase-separated glass according to the third embodiment of the present invention is preferably not subjected to a separate heat treatment step, and is phase-separated in the molding step or phase-separated in the slow cooling (cooling) step immediately after molding. It is preferable.
  • a phase separation phenomenon may occur in the bowl-shaped structure, or a phase separation phenomenon may occur during stretch molding or slow cooling. If it does in this way, the number of manufacturing processes of glass will decrease and glass productivity can be raised.
  • the phase separation phenomenon can be controlled by the glass composition, molding conditions, slow cooling conditions, and the like.
  • At least one surface may be a roughened surface. If the roughened surface is arranged on the side in contact with the air such as organic EL lighting, the light emitted from the organic EL layer is reflected by the non-reflective structure of the roughened surface in addition to the light scattering effect of the glass plate. As a result, the light extraction efficiency can be increased.
  • the surface roughness Ra of the roughened surface is preferably 10 mm or more, 20 mm or more, 30 mm or more, particularly 50 mm or more.
  • the roughened surface can be formed by HF etching, sandblasting, or the like.
  • the roughened surface can be formed by an atmospheric pressure plasma process. In this way, it is possible to uniformly roughen the other surface while maintaining the surface state of one surface of the glass plate. Moreover, it is preferable to use a gas containing F (for example, SF 6 , CF 4 ) as a source of the atmospheric pressure plasma process. In this way, since plasma containing HF gas is generated, the roughened surface can be formed efficiently.
  • a gas containing F for example, SF 6 , CF 4
  • a roughened surface can be formed on at least one surface during molding of the glass plate. This eliminates the need for a separate roughening process and improves the efficiency of the roughening process.
  • the uneven surface roughness Ra is preferably 10 mm or more, 20 mm or more, 30 mm or more, particularly 50 mm or more.
  • Phase-separated glass according to a third embodiment of the present invention when incorporated into the organic EL element, the current efficiency of the organic EL element, than when incorporating the glass having a refractive index n d is not phase separation of comparable It is preferable to be high.
  • the current efficiency at 20 mA / cm 2 compared with a case incorporating a glass having a refractive index n d is not phase separation of comparable, more than 5%, 10% or more, 15% or more, preferably 20% or more It is preferable to be high. In this way, the brightness of the organic EL device can be increased. In particular, even if the existing glass composition is not significantly changed, the luminance of the organic EL device can be increased only by introducing a component that induces phase separation in the glass composition.
  • Table 1 shows sample No. 1 and 2 are shown. This sample No. The experiments and experimental results for 1 and 2 correspond to the phase-separated glass and the manufacturing method thereof according to the first embodiment of the present invention described above.
  • Table 2 shows sample No. 3 and 4 are shown. This sample No. The experiments and experimental results for 3 and 4 correspond to the above-described phase separation glass and the composite substrate using the same according to the second embodiment of the present invention.
  • Table 3 shows sample No. 5 to 9 are shown. This sample No. The experiments and experimental results for 5 to 9 correspond to the phase-separated glass and the method for manufacturing the same according to the third embodiment of the present invention described above.
  • glass raw materials were prepared so as to have the glass compositions shown in Tables 1 to 3, and the obtained glass batch was supplied to a glass melting furnace and melted at 1400 ° C. for 7 hours.
  • a simple slow cooling treatment was performed from the strain point to room temperature over 10 hours.
  • the obtained glass plate was processed as necessary to evaluate various properties.
  • the density ⁇ is a value measured by the well-known Archimedes method.
  • the average thermal expansion coefficient ⁇ is a value measured with a dilatometer in a temperature range of 30 to 380 ° C.
  • a ⁇ 5 mm ⁇ 20 mm cylindrical sample (the end surface is R-processed) was used as a measurement sample.
  • the strain point Ps is a value measured by the method described in ASTM C336-71. In addition, heat resistance becomes high, so that the strain point Ps is high.
  • the annealing point Ta and the softening point Ts are values measured by the method described in ASTM C338-93.
  • the temperatures at high temperature viscosities of 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, 10 2.5 dPa ⁇ s, and 10 2.0 dPa ⁇ s are values measured by the platinum ball pulling method. In addition, it is excellent in a meltability, so that high temperature viscosity is low.
  • the phase separation temperature TP is measured at a temperature at which white turbidity is clearly recognized when each glass is put in a platinum boat, remelted at 1400 ° C., then transferred to a temperature gradient furnace, and held in the temperature gradient furnace for 30 minutes. It is a thing.
  • the phase separation viscosity log ⁇ TP is obtained by measuring the viscosity of each glass at the phase separation temperature by the platinum ball pulling method.
  • phase separation after molding was transparent when the molded sample after the above-mentioned slow cooling treatment was visually observed as “ ⁇ ” when white turbidity due to phase separation was observed, and without white turbidity due to phase separation. Things were evaluated as “x”.
  • the phase separation after the heat treatment is the one in which white turbidity due to the phase separation was observed when the molded sample after the slow cooling treatment was heat-treated at 900 ° C. for 24 hours and the obtained heat-treated sample was visually observed. “ ⁇ ” was evaluated as “ ⁇ ” when the sample was transparent without white turbidity due to phase separation.
  • Refractive index n d is the value of the d-line as determined by the refractive index measuring instrument KPR-2000 manufactured by Shimadzu Corporation. Specifically, first, a rectangular parallelepiped sample of 25 mm ⁇ 25 mm ⁇ about 3 mm is prepared, and the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps ⁇ 50 ° C.) is set at a cooling rate of 0.1 ° C./min. It is a value measured by infiltrating an immersion liquid having a matching refractive index n d after annealing.
  • Sample No. after the above slow cooling treatment. 1 was put into a platinum boat having a size of about 15 mm ⁇ 130 mm, and the platinum boat was put into an electric furnace and remelted at 1400 ° C. The remelted glass in the platinum boat had a thickness of about 3 to 5 mm. After remelting, the platinum boat was taken out of the electric furnace and allowed to cool in the air. About the obtained phase separation glass, it heat-processed on the conditions for 24 hours at 900 degreeC, and was made to phase-separate.
  • Sample No. after the above slow cooling treatment. 2 was put into a platinum boat having a size of about 15 mm ⁇ 130 mm, and the platinum boat was put into an electric furnace and remelted at 1400 ° C. The remelted glass in the platinum boat had a thickness of about 3 to 5 mm. After remelting, the platinum boat was taken out of the electric furnace and allowed to cool in the air. The obtained phase separation glass was subjected to heat treatment at 950 ° C. for 24 hours to cause phase separation.
  • the heat-treated samples 1 and 2 each had a wavelength with a haze value of 5% or more at a wavelength of 400 to 700 nm, and had a light scattering function.
  • Example No. About 3, 4 The glass plate (sample No. 3) after the slow cooling treatment was put into a platinum boat having a size of about 15 mm ⁇ 130 mm, and the platinum boat was put into an electric furnace and remelted at 1400 ° C. The remelted glass in the platinum boat had a thickness of about 3 to 5 mm. After remelting, the platinum boat was taken out of the electric furnace and allowed to cool in the air. About the obtained glass, it heat-processed on 1000 degreeC on the conditions for 24 hours, and phase-separated.
  • Sample No. 3 subjected to heat treatment had a phase separation structure having phase separation particles of about 300 to 400 nm.
  • phase-separated glass after the heat treatment is processed into a glass plate having a thickness of about 10 mm ⁇ 30 mm ⁇ 1.0 mm, both surfaces are mirror-polished, and the spectrophotometer (Spectrophotometer UV-2500PC, manufactured by Shimadzu Corporation) The total light transmittance and diffuse transmittance of were measured. The result is shown in FIG.
  • the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is within 20%, the total light transmittance at a wavelength of 400 to 700 nm is 20% or more, The diffuse transmittance at a wavelength of 400 to 700 nm was 20% or more.
  • phase-separated glass after the heat treatment was processed into a glass plate having a thickness of about 10 mm ⁇ 30 mm ⁇ 1.0 mm to obtain a phase-separated glass plate.
  • a glass substrate (OA-10L manufactured by Nippon Electric Glass Co., Ltd .: refractive index n d 1.52) having a thickness of about 10 mm ⁇ 30 mm ⁇ 2.0 mm was prepared.
  • an ultraviolet curable resin Optoclave UT20 manufactured by MS Ardel Co., Ltd.
  • a composite substrate having a total thickness of 2.1 mm was obtained.
  • the total light transmittance and diffuse transmittance in the thickness direction were measured with a spectrophotometer (Spectrophotometer UV-2500PC manufactured by Shimadzu Corporation). The result is shown in FIG.
  • the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is within 20%, and the total light transmittance at a wavelength of 400 to 700 nm is 40%.
  • the diffuse transmittance at a wavelength of 400 to 700 nm was 20% or more.
  • Sample No. about 5, 7-9 Sample No. after the above slow cooling treatment (not heat-treated). 5, 7 to 9 were immersed in a 1M hydrochloric acid solution for 10 minutes, carbon was deposited, and the sample surface was observed with a field emission scanning electron microscope (S-4300SE, manufactured by Hitachi High-Technologies Corporation). The results are shown in FIGS. 8 to 11 show sample Nos. Images of the sample surfaces 5 and 7 to 9 observed with a field emission scanning electron microscope are shown. As can be seen from FIGS. 5, 7 to 9 had a phase separation structure.
  • Sample No. after the above slow cooling treatment (not heat-treated). 7 to 9 were processed to a thickness of 0.7 mm, and both surfaces were mirror-polished, and then the thickness was measured with a spectrophotometer (Spectrophotometer UV-2500PC manufactured by Shimadzu Corporation) for wavelengths of 300 to 800 nm. The total light transmittance and diffuse transmittance in the direction were measured. The results are shown in FIGS. As can be seen from FIGS. Nos. 7 to 9 each had a wavelength with a haze value of 5% or more at a wavelength of 400 to 700 nm, and had a light scattering function.
  • a spectrophotometer Spectrophotometer UV-2500PC manufactured by Shimadzu Corporation
  • Sample No. after the above slow cooling treatment (not heat-treated).
  • the glass plate (plate thickness 0.7mm) which concerns on 9 was produced, and ITO (thickness 100nm) was vapor-deposited as a transparent electrode layer on the surface of this glass plate using the mask.
  • polymer PEDOT-PSS (thickness 40 nm) as a hole injection layer
  • ⁇ -NPD thickness 50 nm
  • Ir (ppy) 3 as an organic light emitting layer are doped by 6% by mass on a glass plate.
  • the glass plate according to the comparative example as a glass composition, in mass%, SiO 2 37.6%, Al 2 O 3 1.5%, CaO 5.9%, SrO 4.9%, BaO 25.2 %, ZrO 2 3.2%, TiO 2 6.7%, P 2 O 5 1.8%, La 2 O 3 3.8%, Nb 2 O 5 9.4%, refractive index n d is 1.70.
  • Sample No. after the above slow cooling treatment (not heat-treated). 7 (plate thickness 0.7 mm) was prepared, and ITO (thickness 100 nm) was deposited on the glass plate surface as a transparent electrode layer using a mask. Subsequently, polymer PEDOT-PSS (thickness 40 nm) as a hole injection layer, ⁇ -NPD (thickness 50 nm) as a hole transport layer, and Ir (ppy) 3 as an organic light emitting layer are doped by 6% by mass on a glass plate.
  • PEDOT-PSS thickness 40 nm
  • ⁇ -NPD thickness 50 nm
  • Ir (ppy) 3 as an organic light emitting layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

 分相ガラスの製造方法は、屈折率nが1.65以上の分相性ガラスを成形した後、得られた分相性ガラスを熱処理して、少なくとも第一の相と第二の相を含む分相ガラスを得ることを特徴とする。また、分相ガラスは、屈折率nが1.65以上であり、少なくとも第一の相と第二の相を含む分相構造を有し、波長400~700nmにおける全光線透過率の最大値と最小値との差が40%以下であってもよい。さらに、分相ガラスは、屈折率nが1.65以上であり、少なくとも第一の相と第二の相を含む分相構造を有すると共に、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いものであってもよい。

Description

分相ガラス及び分相ガラスの製造方法並びに分相ガラスを用いた複合基板
 本発明は、分相ガラスに関し、具体的には、光散乱機能を有する分相ガラス及びその製造方法並びにそれを用いた複合基板に関する。
 近年、家電製品の普及、大型化、多機能化等の理由から、家庭等の生活空間で消費されるエネルギーが増えている。特に、照明機器のエネルギー消費が多くなっている。このため、高効率の照明が活発に検討されている。
 照明用光源は、限られた範囲を照らす「指向性光源」と、広範囲を照らす「拡散光源」とに分けられる。LED照明は、「指向性光源」に相当し、白熱球の代替として採用されつつある。その一方で、「拡散光源」に相当する蛍光灯の代替光源が望まれており、その候補として、有機EL(エレクトロルミネッセンス)照明が有力である。
 有機EL素子は、ガラス板と、陽極である透明導電膜と、電流の注入によって発光するエレクトロルミネッセンスを呈する有機化合物からなる一層又は複数層の発光層を含む有機EL層と、陰極とを備えた素子である。有機EL素子に用いられる有機EL層として、低分子色素系材料、共役高分子系材料等が用いられており、発光層を形成する場合、ホール注入層、ホール輸送層、電子輸送層、電子注入層等との積層構造が形成される。このような積層構造を有する有機EL層を、陽極と陰極の間に配置し、陽極と陰極に電界を印加することにより、陽極である透明電極から注入された正孔と、陰極から注入された電子とが、発光層内で再結合し、その再結合エネルギーによって発光中心が励起されて、発光する。
 有機EL素子は、携帯電話、ディスプレイ用途として検討が進められており、一部では既に実用化されている。また、有機EL素子は、液晶ディスプレイ、プラズマディスプレイ等の薄型テレビと同等の発光効率を有している。
 しかし、有機EL素子を照明用光源に適用するためには、輝度が未だ実用レベルに到達しておらず、更なる発光効率の改善が必要である。
 ガラス板と空気の屈折率差に起因して、ガラス板内に光が閉じ込められることが輝度低下の原因の一つである。例えば、屈折率nが1.5のガラス板を用いた場合、空気の屈折率nは1.0であるため、臨界角はスネルの法則より42°と計算される。よって、この臨界角以上の入射角の光は、全反射を起こし、ガラス板内に閉じ込められて、空気中に取り出されないことになる。
特開2012-25634号公報
 上記問題を解決するために、透明導電膜等とガラス板の間に、光取り出し層を形成することが検討されている。例えば、特許文献1には、ソーダガラス板の表面に、高屈折率のガラスフリットを焼結させた光取り出し層を形成すると共に、光取り出し層内に散乱物質を分散させることにより、光取り出し効率を高めることも記載されている。
 しかし、ガラス板の表面に光取り出し層を形成するためには、ガラス板の表面にガラスペーストを塗布する印刷工程が必要になり、この工程は生産コストの高騰を招く。更に、ガラスフリット中に散乱粒子を分散させる場合、散乱粒子自体の吸収により光取り出し層の透過率が低くなる。
 本発明は、上記事情に鑑み成されたものであり、その技術的課題は、焼結体からなる光取り出し層を形成しなくても、有機EL素子の光取り出し効率を高めることができ、しかも生産性に優れるガラスの製造方法を創案することである。
 本発明者は、鋭意検討の結果、高屈折率の分相性ガラスを熱処理して、分相ガラスを得ることにより、上記技術的課題を解決し得ることを見出し、第1の本発明として提案するものである。すなわち、第1の本発明に係る分相ガラスの製造方法は、屈折率nが1.65以上の分相性ガラスを成形した後、得られた分相性ガラスを熱処理して、少なくとも第一の相と第二の相を含む分相ガラスを得ることを特徴とする。ここで、「屈折率n」は、屈折率測定器で測定したd線の値を指す。例えば、まず25mm×25mm×約3mmの直方体試料を作製し、(徐冷点Ta+30℃)から(歪点Ps-50℃)までの温度域を0.1℃/分の冷却速度で徐冷処理した後、屈折率nが整合する浸液を浸透させながら、島津製作所社製の屈折率測定器KPR-2000により測定可能である。また、第一の相と第二の相の形成に伴う光散乱は、目視で確認可能である。更に、1Mの塩酸溶液に10分間浸漬させた後の試料表面を走査型電子顕微鏡で観察すれば、各相の詳細を確認可能である。「分相性ガラス」は、未だ分相していないが、1100℃以下の熱処理により分相する性質を有するガラスを指す。
 第1の本発明に係る分相ガラスの製造方法では、屈折率nが1.65以上の分相性ガラスを成形する。従来の有機EL照明等の有機ELデバイスは、ガラス板と透明導電膜等の屈折率差が大きいことに起因して、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し、光取り出し効率が低下するという問題もあった。具体的には、透明導電膜の屈折率nは1.9~2.0であり、有機EL層の屈折率nは1.8~1.9であった。これに対して、ガラス板の屈折率nは、通常、1.5程度であった。そこで、上記のように分相性ガラス(分相ガラス)の屈折率nを規制すれば、ガラス板と透明導電膜等の屈折率差が小さくなるため、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し難くなり、光取り出し効率を高めることができる。
 第1の本発明に係る分相ガラスの製造方法では、分相性ガラスを熱処理して、分相ガラスを得る。このようにすれば、分相構造を制御し易くなる。特に、有機ELデバイスの素子構造が異なると、最適な分相構造も異なってくるが、同一の分相性ガラスから、熱処理条件を調整するだけで有機ELデバイスの素子構造に最適な分相構造を得ることができる。
 第1の本発明に係る分相ガラスの製造方法では、少なくとも第一の相と第二の相を含む分相ガラスを得る。このようにすれば、有機ELデバイスに適用した場合、有機EL層からガラス板へ入射した光が、第一の相と第二の相の界面で散乱するため、光を外部に取り出し易くなり、結果として、焼結体からなる光取り出し層を形成しなくても、光取り出し効率を高めることができる。なお、「有機ELデバイス」には、有機EL照明のみならず、有機ELディスプレイ等が含まれる。
 第二に、第1の本発明に係る分相ガラスの製造方法は、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いことが好ましい。
 第三に、第1の本発明に係る分相ガラスの製造方法は、分相ガラスが、ガラス組成として、質量%で、SiO 30~75%、Al 0~35%、BaO 10~50%を含有することが好ましい。このようにすれば、屈折率nを1.65以上に高め易くなり、またガラス板の生産性を高め易くなる。
 第四に、第1の本発明に係る分相ガラスの製造方法は、分相性ガラスを平板形状に成形することが好ましい。
 第五に、第1の本発明に係る分相ガラスの製造方法は、分相ガラスを有機ELデバイス、特に有機EL照明に用いることが好ましい。
 第六に、第1の本発明に係る分相ガラスは、上記の分相ガラスの製造方法により作製されたことが好ましい。
 第七に、第1の本発明に係る分相ガラスは、波長400~700nmにおいてヘーズ値が5%以上の波長を有することが好ましい。このようにすれば、ガラス中で光が散乱し易くなるため、光を外部に取り出し易くなり、結果として、光取り出し効率を高め易くなる。ここで、「ヘーズ値」は、(拡散透過率)×100/(全光線透過率)で算出される値である。「拡散透過率」は、分光光度計(例えば、島津製作所社製UV-2500PC)により厚み方向で測定した値であり、例えば、両表面が鏡面研磨されたガラスを測定試料とすることができる。「全光線透過率」は、分光光度計(例えば、島津製作所社製UV-2500PC)により厚み方向で測定した値であり、例えば、両表面が鏡面研磨されたガラスを測定試料とすることができる。
 第八に、第1の本発明に係る分相性ガラスは、屈折率nが1.65以上であり、且つ900℃で24時間の熱処理を行うと、分相していない状態から、少なくとも第一の相と第二の相に分相する性質を有することを特徴とする。
 さらに、本発明者は、鋭意検討の結果、高屈折率の分相ガラスを用い、その全光線透過率を所定範囲に規制することにより、上記技術的課題を解決し得ることを見出し、第2の本発明として提案するものである。すなわち、第2の本発明に係る分相ガラスは、屈折率nが1.65以上であり、少なくとも第一の相と第二の相を含む分相構造を有し、波長400~700nmにおける全光線透過率の最大値と最小値との差が40%以下であることを特徴とする。ここで、「屈折率n」は、屈折率測定器で測定したd線の値を指す。例えば、まず25mm×25mm×約3mmの直方体試料を作製し、(徐冷点Ta+30℃)から(歪点Ps-50℃)までの温度域を0.1℃/分の冷却速度で徐冷処理した後、屈折率nが整合する浸液を浸透させながら、島津製作所社製の屈折率測定器KPR-2000により測定可能である。また、第一の相と第二の相の形成に伴う光散乱は、目視で確認可能である。更に、1Mの塩酸溶液に10分間浸漬させた後の試料表面を走査型電子顕微鏡で観察すれば、各相の詳細を確認可能である。「全光線透過率」は、分光光度計(例えば、島津製作所社製UV-2500PC)により厚み方向で測定した値であり、例えば、両表面が鏡面研磨されたガラスを測定試料とすることができる。
 第2の本発明に係る分相ガラスは、少なくとも第一の相と第二の相を含む分相構造を有することを特徴とする。このようにすれば、有機ELデバイスに適用した場合、有機EL層からガラス板へ入射した光が、第一の相と第二の相の界面で散乱するため、光を外部に取り出し易くなり、結果として、焼結体からなる光取り出し層を形成しなくても、光取り出し効率を高めることができる。なお、「有機ELデバイス」には、有機EL照明のみならず、有機ELディスプレイ等が含まれる。
 第2の本発明に係る分相ガラスは、屈折率nが1.65以上である。従来の有機EL照明等の有機ELデバイスは、ガラス板と透明導電膜等の屈折率差が大きいことに起因して、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し、光取り出し効率が低下するという問題もあった。具体的には、透明導電膜の屈折率nは1.9~2.0であり、有機EL層の屈折率nは1.8~1.9であった。これに対して、ガラス板の屈折率nは、通常、1.50程度であった。そこで、上記のように屈折率nを規制すれば、ガラス板と透明導電膜等の屈折率差が小さくなるため、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し難くなり、光取り出し効率を高めることができる。
 一方、分相ガラスを用いると、レイリー散乱により短波長の光が長波長の光よりも強く散乱し、有機EL素子、特に白色OLEDを作製した場合に、色の視野角依存性が大きくなり、照明用途として不適になる虞がある。そこで、本発明の分相ガラスは、波長400~700nmにおける全光線透過率の最大値と最小値との差を40%以下に規制している。これにより、上記不具合を解消することが可能になる。なお、波長400~700nmにおける全光線透過率の最大値と最小値との差は、分相粒子の粒子サイズを所定範囲に規制して、ミー散乱による散乱現象を生じさせることにより低減することができる。
 第二に、第2の本発明に係る分相ガラスは、分相粒子の粒子サイズが100nm以上であることが好ましい。
 第三に、第2の本発明に係る分相ガラスは、波長400~700nmにおける拡散透過率が10%以上であることが好ましい。「拡散透過率」は、分光光度計(例えば、島津製作所社製UV-2500PC)により厚み方向で測定した値であり、例えば、両表面が鏡面研磨されたガラスを測定試料とすることができる。
 第四に、第2の本発明に係る分相ガラスは、分相ガラスが、ガラス組成として、質量%で、SiO2 30~75%、Al 0~35%、BaO 10~50%を含有することが好ましい。このようにすれば、屈折率を高め易くなり、またガラス板の生産性を高め易くなる。
 第五に、第2の本発明に係る分相ガラスは、厚みが5~500μmであることが好ましい。
 第六に、第2の本発明に係る分相ガラスは、有機ELデバイス、特に有機EL照明に用いることが好ましい。
 第七に、第2の本発明に係る複合基板は、分相ガラス板と基板が接合されてなる複合基板であって、分相ガラス板が、上記の分相ガラスを備えることが好ましい。
 第八に、第2の本発明に係る複合基板は、基板がガラス基板であることが好ましい。
 第九に、第2の本発明に係る複合基板は、基板の屈折率nが1.50超であることが好ましい。
 第十に、第2の本発明に係る複合基板は、分相ガラス板と基板がオプティカルコンタクトにより接合されていることが好ましい。
 第十一に、第2の本発明に係る複合基板は、有機ELデバイス、特に有機EL照明に用いることが好ましい。
 加えて、本発明者は、鋭意検討の結果、高屈折率の分相ガラスを用いることにより、上記技術的課題を解決し得ることを見出し、第3の本発明として提案するものである。すなわち、第3の本発明に係る分相ガラスは、屈折率nが1.65以上であり、少なくとも第一の相と第二の相を含む分相構造を有すると共に、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いことを特徴とする。ここで、「屈折率n」は、屈折率測定器で測定したd線の値を指す。例えば、まず25mm×25mm×約3mmの直方体試料を作製し、(徐冷点Ta+30℃)から(歪点Ps-50℃)までの温度域を0.1℃/分の冷却速度で徐冷処理した後、屈折率nが整合する浸液を浸透させながら、島津製作所社製の屈折率測定器KPR-2000により測定可能である。また、第一の相と第二の相の形成に伴う光散乱は、目視で確認可能である。更に、1Mの塩酸溶液に10分間浸漬させた後の試料表面を走査型電子顕微鏡で観察すれば、各相の詳細を確認可能である。
 第3の本発明に係る分相ガラスは、少なくとも第一の相と第二の相を含む分相構造を有すると共に、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いことを特徴とする。このようにすれば、有機ELデバイスに適用した場合、有機EL層からガラス板へ入射した光が、第一の相と第二の相の界面で散乱するため、光を外部に取り出し易くなり、結果として、焼結体からなる光取り出し層を形成しなくても、光取り出し効率を高めることができる。なお、「有機ELデバイス」には、有機EL照明のみならず、有機ELディスプレイ等が含まれる。
 第3の本発明に係る分相ガラスは、屈折率nが1.65以上である。従来の有機EL照明等の有機ELデバイスは、ガラス板と透明導電膜等の屈折率差が大きいことに起因して、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し、光取り出し効率が低下するという問題もあった。具体的には、透明導電膜の屈折率nは1.9~2.0であり、有機EL層の屈折率nは1.8~1.9であった。これに対して、ガラス板の屈折率nは、通常、1.5程度であった。そこで、上記のように屈折率nを規制すれば、ガラス板と透明導電膜等の屈折率差が小さくなるため、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し難くなり、光取り出し効率を高めることができる。
 第二に、第3の本発明に係る分相ガラスは、ガラス組成として、質量%で、SiO 30~75%、Al 0~35%、BaO 10~50%を含有することが好ましい。このようにすれば、屈折率を高め易くなり、またガラス板の生産性を高め易くなる。
 第三に、第3の本発明に係る分相ガラスは、ガラス組成中のAlの含有量が7質量%未満であることが好ましい。
 第四に、第3の本発明に係る分相ガラスは、ガラス組成中のBの含有量が20質量%以下であることが好ましい。
 第五に、第3の本発明に係る分相ガラスは、ガラス組成中のPの含有量が0.001~10質量%であることが好ましい。
 第六に、第3の本発明に係る分相ガラスは、ガラス組成中のLaの含有量が0.001~15質量%であることが好ましい。
 第七に、第3の本発明に係る分相ガラスは、ガラス組成中のNbの含有量が0.001~20質量%であることが好ましい。
 第八に、第3の本発明に係る分相ガラスは、波長400~700nmにおいてヘーズ値が5%以上の波長を有することが好ましい。このようにすれば、ガラス中で光が散乱し易くなるため、光を外部に取り出し易くなり、結果として、光取り出し効率を高め易くなる。ここで、「ヘーズ値」は、(拡散透過率)×100/(全光線透過率)で算出される値である。「拡散透過率」は、分光光度計(例えば、島津製作所社製UV-2500PC)により厚み方向で測定した値であり、例えば、両表面が鏡面研磨されたガラスを測定試料とすることができる。「全光線透過率」は、分光光度計(例えば、島津製作所社製UV-2500PC)により厚み方向で測定した値であり、例えば、両表面が鏡面研磨されたガラスを測定試料とすることができる。
 第九に、第3の本発明に係る分相ガラスは、波長400~700nmにおける全光線透過率が10%以上であることが好ましい。
 第十に、第3の本発明に係る分相ガラスは、平板形状であることが好ましい。
 第十一に、第3の本発明に係る分相ガラスは、別途の熱処理工程を経ていないことが好ましく、成形工程で分相しているか、或いは成形直後の徐冷(冷却)工程で分相していることが好ましい。このようにすれば、ガラスの製造工程数が減少し、ガラスの生産性を高めることができる。
 第十二に、第3の本発明に係る分相ガラスは、有機EL素子に組み込んだ時に、有機EL素子の電流効率が、屈折率nが同程度の分相していないガラスを組み込んだ場合よりも高くなることが好ましい。ここで、「電流効率」は、ガラスを用いて有機EL素子を作製した後、ガラスの厚み方向に対して垂直な方向に輝度計を設置し、ガラスの正面輝度を測定することで算出することができる。「屈折率nが同程度」とは、屈折率nが±0.05の範囲内であることを指す。
 第十三に、第3の本発明に係る分相ガラスは、有機ELデバイス、特に有機EL照明に用いることが好ましい。
 第十四に、第3の本発明に係る有機ELデバイスは、上記の分相ガラスを備えてなることが好ましい。
[実施例2]に係る熱処理後の試料No.1(板厚1.0mm)の両表面を鏡面研磨し、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。 [実施例2]に係る試料No.1を1Mの塩酸溶液に10分間浸漬させた後、得られた試料表面を走査型電子顕微鏡で観察した像である。 [実施例3]に係る熱処理後の試料No.2(板厚1.0mm)の両表面を鏡面研磨し、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。 [実施例3]に係る試料No.2を1Mの塩酸溶液に10分間浸漬させた後、得られた試料表面を走査型電子顕微鏡で観察した像である。 [実施例4]に係る熱処理後の試料No.3を1Mの塩酸溶液に10分間浸漬させた後、得られた試料表面を走査型電子顕微鏡で観察した像である。 [実施例4]に係る熱処理後の試料No.3(板厚1.0mm)の両表面を鏡面研磨し、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。 [実施例5]に係る複合基板(分相ガラス板の板厚0.1mm、総板厚2.1mm)について、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。 [実施例6]に係る試料No.5を1Mの塩酸溶液に10分間浸漬させた後、得られた試料表面を走査型電子顕微鏡で観察した像である。 [実施例6]に係る試料No.7を1Mの塩酸溶液に10分間浸漬させた後、得られた試料表面を走査型電子顕微鏡で観察した像である。 [実施例6]に係る試料No.8を1Mの塩酸溶液に10分間浸漬させた後、得られた試料表面を走査型電子顕微鏡で観察した像である。 [実施例6]に係る試料No.9を1Mの塩酸溶液に10分間浸漬させた後、得られた試料表面を走査型電子顕微鏡で観察した像である。 [実施例7]に係る試料No.7(板厚0.7mm)の両表面を鏡面研磨し、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。 [実施例7]に係る試料No.8(板厚0.7mm)の両表面を鏡面研磨し、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。 [実施例7]に係る試料No.9(板厚0.7mm)の両表面を鏡面研磨し、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。
 先ず、本発明の第1実施形態に係る分相ガラス及びその製造方法について説明する。
 本発明の第1実施形態に係る分相ガラスの製造方法では、屈折率nが1.65以上の分相性ガラスを成形する。分相性ガラスの屈折率nは、好ましくは1.66以上、1.67以上、1.68以上、1.69以上、特に1.70以上である。屈折率nが1.65未満になると、ガラス板と透明導電膜等の界面の反射によって光を効率良く取り出すことが困難になる。一方、屈折率nが高過ぎると、ガラス板と空気の界面での反射率が高くなり、光を外部に取り出し難くなる。よって、屈折率nは、好ましくは2.30以下、2.20以下、2.10以下、2.00以下、1.90以下または1.80以下、特に好ましくは1.75以下である。
 本発明の第1実施形態に係る分相ガラスの製造方法において、厚み(平板形状の場合、板厚)が1.5mm以下、1.3mm以下、1.1mm以下、0.8mm以下、0.7mm以下、0.5mm以下、0.3mm以下または0.2mm以下の分相性ガラスを成形することが好ましく、特に0.1mm以下の分相性ガラスを成形することが好ましい。厚みが小さい程、可撓性が高まり、有機EL照明の意匠性を高め易くなるが、厚みが極端に小さくなると、ガラスが破損し易くなる。よって、厚みは、好ましくは10μm以上、特に好ましくは30μm以上である。
 本発明の第1実施形態に係る分相ガラスの製造方法において、平板形状に成形することが好ましく、つまりガラス板に成形することが好ましい。このようにすれば、有機ELデバイスに適用し易くなる。ガラス板に成形する場合、少なくとも一方の表面を未研磨面(特に、少なくとも一方の表面の有効面全体が未研磨面)とすることが好ましい。ガラスの理論強度は、非常に高いが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これは、ガラス板の表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。よって、ガラス板の表面を未研磨にすれば、本来の機械的強度を損ない難くなるため、ガラス板が破壊し難くなる。また、研磨工程を簡略化又は省略し得るため、ガラス板の製造コストを低廉化することができる。
 ガラス板に成形する場合、少なくとも一方の表面(特に未研磨面)の表面粗さRaが0.01~1μmになるように成形することが好ましい。表面粗さRaが大きいと、その面に透明導電膜等を形成する場合、透明導電膜の品位が低下して、均一な発光を得難くなる。表面粗さRaの好適な上限範囲は1μm以下、0.8μm以下、0.5μm以下、0.3μm以下、0.1μm以下、0.07μm以下、0.05μm以下または0.03μm以下、特に好適な上限範囲は10nm以下である。
 本発明の第1実施形態に係る分相ガラスの製造方法において、ダウンドロー法、特にオーバーフローダウンドロー法で分相性ガラスを成形することが好ましい。このようにすれば、未研磨で表面品位が良好なガラス板を製造することができる。その理由は、オーバーフローダウンドロー法の場合、表面になるべき面は樋状耐火物に接触せず、自由表面の状態で成形されるからである。なお、オーバーフローダウンドロー法以外にも、スロットダウンドロー法で分相性ガラスを成形することもできる。このようにすれば、薄肉のガラス板を作製し易くなる。
 上記成形方法以外にも、例えば、リドロー法、フロート法、ロールアウト法等を採用することができる。特に、フロート法は、大型のガラス板を効率良く作製することができる。
 本発明の第1実施形態に係る分相ガラスの製造方法では、熱処理により、少なくとも第一の相と第二の相を含む分相ガラスを得るが、その分相ガラスは、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いことが好ましく、またガラス組成中にBを含む場合、第二の相中のBの含有量が、第一の相中のBの含有量よりも多いことが好ましい。このようにすれば、第一の相と第二の相の屈折率が相違し易くなり、ガラスの光散乱機能を高めることができる。
 本発明の第1実施形態に係る分相ガラスの製造方法において、少なくとも一方の相(第一の相及び/又は第二の相)の分相粒子の平均粒子径が0.01~5μm、特に0.05~0.5μmになるように、分相性ガラスを熱処理することが好ましい。分相粒子の平均粒子径が小さいと、有機EL層から放射した光が、第一の相と第二の相の界面で散乱し難くなる。一方、分相粒子の平均粒子径が大きいと、散乱強度が強くなり過ぎて、全光線透過率が低下する虞がある。
 本発明の第1実施形態に係る分相ガラスの製造方法において、熱処理温度は、好ましくは700℃以上、800℃以上または850℃以上、特に好ましくは900℃以上である。このようにすれば、分相構造を得易くなる。一方、熱処理温度は、好ましくは1100℃以下、特に好ましくは1000℃以下である。熱処理温度が高過ぎると、熱処理コストが増大することに加えて、散乱強度が強くなり過ぎて、直線透過率、全光線透過率等が低下する虞がある。
 熱処理時間(熱処理温度での保持時間)は、好ましくは1分間以上、特に5分間以上である。このようにすれば、分相構造を得易くなる。一方、熱処理温度は、好ましくは72時間以下、48時間以下または24時間以下、特に好ましくは60分間以下である。熱処理時間が長過ぎると、熱処理コストが増大することに加えて、散乱強度が強くなり過ぎて、直線透過率、全光線透過率等が低下する虞がある。
 本発明の第1実施形態に係る分相ガラス(又は分相性ガラス)は、ガラス組成として、質量%で、SiO 30~75%、Al 0~35%、BaO 10~50%を含有することが好ましい。以下、上記のように各成分を限定した理由を説明する。なお、各成分の含有範囲の説明において、%表示は、質量%を意味する。
 SiOの含有量は30~75%が好ましい。SiOの含有量が多くなると、溶融性、成形性が低下し易くなり、また屈折率が低下し易くなる。よって、SiOの好適な上限範囲は75%以下、70%以下、65%以下、60%以下、55%以下、50%以下、45%以下または40%以下、特に好適な上限範囲は40%未満である。一方、SiOの含有量が少なくなると、ガラス網目構造を形成し難くなり、ガラス化が困難になる。またガラスの粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、SiOの好適な下限範囲は30%以上、32%以上または34%以上、特に好適な下限範囲は36%以上である。
 Alの含有量は0~35%が好ましい。Alは、耐失透性を高める成分であるが、Alの含有量が多過ぎると、分相性が低下し易くなることに加えて、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなり、また耐酸性も低下し易くなる。よって、Alの好適な上限範囲は35%以下、30%以下、25%以下、20%以下、15%以下、10%以下、7%未満、5%以下、特に3%以下であり、好適な下限範囲は0.1%以上、0.5%以上、特に1%以上である。
 BaOの含有量は10~50%が好ましい。BaOは、アルカリ土類金属酸化物の中ではガラスの粘性を極端に低下させずに、屈折率を高める成分である。BaOの含有量が多くなると、屈折率、密度が高くなり易く、またBaOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、BaOの好適な上限範囲は40%以下、30%以下、特に26%以下であり、好適な下限範囲は10%超、14%以上、20%以上、22%以上、特に24%以上である。
 上記成分以外にも、例えば、以下の成分を導入することができる。
 Bの含有量は0~50%が好ましい。Bは、分相性を高める成分であるが、Bの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなることに加えて、耐酸性が低下し易くなる。よって、Bの好適な上限範囲は50%以下、40%以下、30%以下、20%以下、10%以下、5%以下、特に2%以下であり、好適な下限範囲は0.1%以上、0.3%以上、特に0.5%以上である。
 LiOの含有量は0~30%が好ましい。LiOは、分相性を高める成分であるが、LiOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなり、更には、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、LiOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下、1%未満、特に0.5%以下である。
 NaOの含有量は0~30%が好ましい。NaOは、分相性を高める成分であるが、NaOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなり、更には、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、NaOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下、1%未満、特に0.5%以下である。
 KOの含有量は0~30%が好ましい。KOは、分相性を高める成分であるが、KOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなり、更には、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、KOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下、1%未満、特に0.5%以下である。
 MgOの含有量は0~30%が好ましい。MgOは、屈折率、ヤング率、歪点を高める成分であると共に、高温粘度を低下させる成分であるが、MgOを多量に含有させると、液相温度が上昇して、耐失透性が低下したり、密度が高くなり過ぎる虞がある。よって、MgOの好適な上限範囲は30%以下、20%以下、10%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下、特に1%未満である。なお、MgOを導入する場合、好適な下限範囲は0.1%以上、特に0.9%以上である。
 CaOの含有量は0~30%が好ましい。CaOは、高温粘度を低下させる成分であるが、CaOの含有量が多くなると、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、CaOの好適な上限範囲は30%以下、20%以下、10%以下、8%以下、特に6%以下であり、好適な下限範囲は0.1%以上、1%以上、2%以上、特に4%以上である。
 SrOの含有量は0~30%が好ましい。SrOの含有量が多くなると、屈折率、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、SrOの好適な上限範囲は30%以下、20%以下、10%以下、8%以下、特に5%以下であり、好適な下限範囲は1%以上、3%以上、特に4%以上である。
 ZnOの含有量は0~30%が好ましい。ZnOの含有量が多くなると、屈折率、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、ZnOの好適な上限範囲は20%以下、10%以下、5%以下、4%以下、3%以下、2%以下、特に1%未満である。なお、ZnOを導入する場合、好適な下限範囲は0.1%以上、特に0.9%以上である。
 TiOは、屈折率を高める成分であり、その含有量は0~20%が好ましい。しかし、TiOの含有量が多くなると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。また全光線透過率が低下する虞がある。よって、TiOの好適な上限範囲は20%以下、15%以下、10%以下、特に8%以下であり、好適な下限範囲は0.001%以上、0.01%以上、0.1%以上、1%以上、2%以上、特に3%以上である。
 ZrOは、屈折率を高める成分であり、その含有量は0~20%が好ましい。しかし、ZrOの含有量が多くなると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、ZrOの好適な上限範囲は20%以下、10%以下、特に5%以下であり、好適な下限範囲は0.001%以上、0.01%以上、0.1%以上、1%以上、1.5%以上、特に2%以上である。
 PОは、分相性を高める成分であり、その含有量は0~10%が好ましい。しかし、PОの含有量が多くなると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、PОの好適な上限範囲は10%以下、7%以下、4%以下、3%以下、特に2%以下であり、好適な下限範囲は0.001%以上、0.01%以上、0.1%以上、1%以上、1.4%以上、特に1.6%以上である。
 質量比PО/Alは、好ましくは0.1以上、0.3以上、0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、1以上、特に1超である。このようにすれば、分相性を効果的に高めることができる。ここで、「PО/Al」は、PОの含有量をAlの含有量で除した値である。
 質量比PО/Bは、好ましくは0.1以上、0.3以上、0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、1以上、特に1超である。このようにすれば、耐酸性を確保しつつ、分相性を高めることができる。ここで、「PО/B」は、PОの含有量をBの含有量で除した値である。
 質量比PО/(LiO+NaO+KO)は、好ましくは0.1以上、0.3以上、0.5以上、0.6以上、0.7以上、0.8以上、0.9以上、1以上、特に1超である。このようにすれば、高歪点を維持しつつ、分相性を高めることができる。ここで、「LiO+NaO+KO」は、LiO、NaO及びKOの合量である。「PО/(LiO+NaO+KO)」は、PОの含有量をLiO+NaO+KOの含有量で除した値である。
 Laは、屈折率を高める成分であり、その含有量は0~15%が好ましい。Laの含有量が多くなると、密度が高くなり易く、また耐失透性や耐酸性が低下し易くなり、更には原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、Laの好適な上限範囲は15%以下、10%以下、6%以下、特に4%以下であり、好適な下限範囲は0.001%以上、0.01%以上、0.5%以上、1%以上、2%以上、特に3%以上である。
 Nbは、屈折率を高める成分であり、その含有量は0~20%が好ましい。Nbの含有量が多くなると、密度が高くなり易く、また耐失透性が低下し易くなり、更には原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、Nbの好適な上限範囲は20%以下、16%以下、14%以下、12%以下、特に10%以下であり、好適な下限範囲は0.001%以上、0.01%以上、1%以上、4%以上、6%以上、特に8%以上である。
 LaとNbは屈折率を高める成分であるが、これらの成分の含有量が多くなると、密度、熱膨張係数が高くなり易く、また耐失透性が低下して、高い液相粘度を確保し難くなり、更には原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、La+Nbの好適な上限範囲は35%以下、30%以下、25%以下、20%以下、特に15%以下であり、好適な下限範囲は0.001%以上、1%以上、2%以上、4%以上、6%以上、8%以上、特に10%以上である。ここで、「La+Nb」は、LaとNbの合量を指す。
 質量比(La+Nb)/(SiO+Al+B)は、好ましくは0.1以上、0.15以上、0.2以上、0.25以上、0.28以上、0.29以上、0.3以上、0.31以上または0.32以上、特に好ましくは0.33以上である。このようにすれば、屈折率ndを1.65以上に高め易くなる。ここで、「SiO+Al+B」は、SiO、Al及びBの合量である。「(La+Nb)/(SiO+Al+B)」は、La+Nbの含有量をSiO+Al+Bの含有量で除した値である。
 Gdは、屈折率を高める成分であり、その含有量は0~10%が好ましい。Gdの含有量が多くなると、密度が高くなり過ぎたり、ガラス組成の成分バランスを欠いて、耐失透性が低下したり、高温粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、Gdの好適な上限範囲は10%以下、5%以下、3%以下、2.5%以下、1%以下、特に0.1%以下である。
 レアメタル酸化物の含有量は合量で0~35%が好ましい。レアメタル酸化物は、屈折率を高める成分であるが、これらの成分の含有量が多くなると、密度、熱膨張係数が高くなり易く、また耐失透性が低下して、高い液相粘度を確保し難くなり、更には原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、レアメタル酸化物の好適な上限範囲は35%以下、30%以下、25%以下、20%以下、特に15%以下であり、好適な下限範囲は0.001%以上、1%以上、2%以上、4%以上、6%以上、8%以上、特に10%以上である。なお、本発明でいう「レアメタル酸化物」は、La、Nd、Gd、CeO等の希土類酸化物、Y、Nb、Taを指す。
 清澄剤として、下記酸化物換算で、As、Sb、SnO、Fe、F、Cl、SO、CeOの群から選択された一種又は二種以上を0~3%導入することができる。特に、清澄剤として、SnO、Fe及びCeOが好ましい。一方、AsとSbは、環境的観点から、その使用を極力控えることが好ましく、各々の含有量は0.3%未満、特に0.1%未満が好ましい。ここで、「下記酸化物換算」は、表記の酸化物とは価数が異なる酸化物であっても、表記の酸化物に換算した上で取り扱うことを意味する。
 SnOの含有量は、好ましくは0~1%、0.001~1%、特に0.01~0.5%である。
 Feの好適な上限範囲は0.05%以下、0.04%以下、0.03%以下、特に0.02%以下であり、好適な下限範囲は0.001%以上である。
 CeOの含有量は0~6%が好ましい。CeOの含有量が多くなると、耐失透性が低下し易くなる。よって、CeOの好適な上限範囲は6%以下、5%以下、3%以下、2%以下、1%以下、特に0.1%以下である。一方、CeOを導入する場合、CeOの好適な下限範囲は0.001%以上、特に0.01%以上である。
 PbOは、高温粘性を低下させる成分であるが、環境的観点から、その使用を極力控えることが好ましい。PbOの含有量は0.5%以下が好ましく、実質的に含まないことが望ましい。ここで、「実質的にPbOを含まない」とは、ガラス組成中のPbOの含有量が0.1%未満の場合を指す。
 上記成分以外にも、他の成分を合量で好ましくは10%(望ましくは5%)まで導入してもよい。
 本発明の第1実施形態に係る分相ガラス(又は分相性ガラス)は、以下の特性を有することが好ましい。
 密度は、好ましくは5.0g/cm以下、4.5g/cm以下、特に3.6g/cm以下である。このようにすれば、有機ELデバイスを軽量化することができる。
 30~380℃における平均熱膨張係数は、好ましくは30×10-7~100×10-7/℃、40×10-7~90×10-7/℃、50×10-7~85×10-7/℃、特に60×10-7~75×10-7/℃である。近年、有機ELデバイスにおいて、デザイン的要素を高める観点から、ガラス板に可撓性が要求される場合がある。可撓性を高めるためには、ガラス板の板厚を小さくする必要があるが、この場合、ガラス板とITO、FTO等の透明導電膜の熱膨張係数が不整合になると、ガラス板が反り易くなる。そこで、30~380℃における平均熱膨張係数を上記範囲とすれば、このような事態を防止し易くなる。なお、「30~380℃における平均熱膨張係数」は、ディラトメーター等で測定可能である。
 歪点は、好ましくは450℃以上、500℃以上、550℃以上、600℃以上、特に650℃以上である。透明導電膜を高温で形成する程、透明性が高く、電気抵抗が低くなり易い。しかし、従来のガラス板は、耐熱性が不十分であるため、透明導電膜を高温で成膜することが困難であった。そこで、歪点を上記範囲とすれば、透明導電膜の透明性と低電気抵抗の両立が可能になり、更には有機デバイスの製造工程において、熱処理によりガラス板が熱収縮し難くなる。
 102.5dPa・sにおける温度は、好ましくは1600℃以下、1560℃以下、1500℃以下、特に1450℃以下である。このようにすれば、溶融性が向上するため、ガラス板の生産性が向上する。
 液相温度は、好ましくは1300℃以下、1250℃以下、1200℃以下、特に1150℃以下である。また、液相粘度は、好ましくは102.5dPa・s以上、103.0dPa・s以上、103.5dPa・s以上、103.8dPa・s以上、104.0dPa・s以上、104.4dPa・s以上、特に104.6dPa・s以上である。このようにすれば、成形時にガラスが失透し難くなり、例えば、フロート法又はオーバーフローダウンドロー法でガラス板を成形し易くなる。ここで、「液相温度」は、30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶の析出する温度を測定した値を指す。また「液相粘度」は、液相温度におけるガラスの粘度を指す。
 分相温度は、好ましくは1000℃以下、特に950℃以下である。また、分相粘度は、好ましくは104.0dPa・s以上、特に105.0~108.0dPa・sである。このようにすれば、熱処理温度を低下させることができる。結果として、熱処理コストを低減し易くなる。更に、熱処理温度を低下できれば、熱処理によるガラス板の軟化変形を抑制し易くなる。ここで、「分相温度」は、ガラスを白金ボートに入れ、1400℃でリメルトした後、白金ボートを温度勾配炉に移し、温度勾配炉中で30分間保持した時に、明確な白濁が認められる温度を指す。「分相粘度」は、分相温度におけるガラスの粘度を白金引き上げ法で測定した値を指す。「分相粘度」は、分相温度におけるガラスの粘度を白金引き上げ法で測定した値を指す。なお、本発明の分相ガラスは、成形工程及び/又は徐冷工程でガラスが分相しないことが好ましいが、これらの工程でガラスが分相していてもよい。
 波長400~700nmにおいてヘーズ値が5%以上、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、特に90%以上の波長を有することが好ましい。所定値以上のヘーズ値を有する波長が存在しないと、光散乱機能が不十分になり、ガラス中の光を空気中に取り出し難くなる。なお、「ヘーズ値」は、(拡散透過率)×100/(全光線透過率)で算出される値である。
 波長400~700nmにおける全光線透過率は、好ましくは10%以上、20%以上、30%以上、40%以上、特に50%以上である。全光線透過率が低過ぎると、ガラス中の光を空気中に取り出し難くなる。
 波長400~700nmにおいて拡散透過率が10%以上、20%以上、特に30%以上の波長を有することが好ましい。所定値以上の拡散透過率を有する波長が存在しないと、ガラス中の光を空気中に取り出し難くなる。
 本発明の第1実施形態に係る分相ガラスの製造方法において、平板形状を有する場合、少なくとも一方の表面に粗面化面を形成する粗面化工程を設けることが好ましい。粗面化面を有機EL照明等の空気と接する側に配置すれば、ガラス板の散乱効果に加えて、粗面化面の無反射構造により、有機EL層から放射した光が有機EL層内に戻り難くなり、結果として、光の取り出し効率を高めることができる。粗面化面の表面粗さRaは、好ましくは10Å以上、20Å以上、30Å以上、特に50Å以上である。粗面化面は、HFエッチング、サンドブラスト等で形成することができる。また、リプレス等の熱加工により、ガラス板の表面に凹凸形状を形成してもよい。このようにすれば、ガラス表面に正確な無反射構造を形成することができる。凹凸形状は、屈折率nを考慮しながら、その間隔と深さを調整すればよい。
 また、大気圧プラズマプロセスにより粗面化面を形成することもできる。このようにすれば、ガラス板の一方の表面の表面状態を維持した上で、他方の表面に対して、均一に粗面化処理を行うことができる。また、大気圧プラズマプロセスのソースとして、Fを含有するガス(例えば、SF、CF)を用いることが好ましい。このようにすれば、HF系ガスを含むプラズマが発生するため、粗面化面を効率良く形成することができる。
 更に、ガラス板の成形時に、少なくとも一方の表面に粗面化面を形成することもできる。このようにすれば、別途独立した粗面化処理が不要になり、粗面化処理の効率が向上する。
 なお、ガラス板に粗面化面を形成せずに、所定の凹凸形状を有する樹脂フィルムをガラス板の表面に貼り付けてもよい。なお、凹凸形状の表面粗さRaは、好ましくは10Å以上、20Å以上、30Å以上、特に50Å以上である。
 本発明の分相性ガラスは、屈折率nが1.65以上であり、且つ900℃で24時間の熱処理を行うと、分相していない状態から、少なくとも第一の相と第二の相に分相する性質を有することを特徴とする。なお、本発明の分相性ガラスの技術的特徴(好適な構成、効果)は、本発明の分相ガラスの製造方法の説明欄に記載済みであり、ここでは、詳細な説明を省略する。
 次に、本発明の第2実施形態に係る分相ガラス及びそれを用いた複合基板について説明する。
 本発明の第2実施形態に係る分相ガラスは、少なくとも第一の相と第二の相を含む分相構造を有することを特徴とし、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いことが好ましく、またガラス組成中にBを含む場合、第二の相中のBの含有量が、第一の相中のBの含有量よりも多いことが好ましい。このようにすれば、第一の相と第二の相の屈折率が相違し易くなり、ガラスの光散乱機能を高めることができる。
 本発明の第2実施形態に係る分相ガラスは、屈折率nは、1.65以上であり、好ましくは1.66以上、1.67以上、1.68以上、1.69以上、特に1.70以上である。屈折率nが1.65未満になると、ガラス板と透明導電膜等の界面の反射によって光を効率良く取り出すことが困難になる。一方、屈折率nが高過ぎると、ガラス板と空気の界面での反射率が高くなり、光を外部に取り出し難くなる。よって、屈折率nは、好ましくは2.30以下、2.20以下、2.10以下、2.00以下、1.90以下、1.80以下、特に1.75以下である。
 本発明の第2実施形態に係る分相ガラスにおいて、波長400~700nmにおける全光線透過率の最大値と最小値との差は、好ましくは40%以下、30%以下、20%以下、10%以下、特に5%以下である。波長400~700nmにおける全光線透過率の最大値と最小値との差が大き過ぎると、レイリー散乱による散乱現象が生じていることになり、この場合、有機EL素子、特に白色OLEDを作製した場合に、色の視野角依存性が大きくなる。
 本発明の第2実施形態に係る分相ガラスにおいて、少なくとも一方の相(第一の相及び/又は第二の相)の分相粒子の粒子サイズは、好ましくは100nm以上、200nm以上、300nm以上、400~5000nm、特に600~3000nmである。このようにすれば、ミー散乱による散乱現象が生じ易くなり、全光線透過率の波長依存性を低減し易くなる。なお、分相粒子の粒子サイズは、ガラス組成、成形条件、徐冷条件、熱処理温度、熱処理時間等により調整することができる。
 本発明の第2実施形態に係る分相ガラスは、ガラス組成として、質量%で、SiO 30~75%、Al 0~35%、BaO 10~50%を含有することが好ましい。なお、各成分の含有範囲の説明において、%表示は、質量%を意味する。
 上記のように各成分を限定した理由は、上述の本発明の第1実施形態に係る分相ガラスについて既に説明した事項と同一であるため、ここではその説明を省略する。
 上記成分以外に導入することができる成分については、上述の本発明の第1実施形態に係る分相ガラスについて既に説明した事項と同一であるため、ここではその説明を省略する。
 本発明の第2実施形態に係る分相ガラスの特性は、下記の(1)~(9)に関する事項については、上述の本発明の第1実施形態に係る分相ガラスについて既に説明した事項と同一であるので、その説明を省略し、その他の事項を引き続いて以下に説明する。(1)密度、(2)30~380℃における平均熱膨張係数、(3)歪点、(4)102.5dPa・sにおける温度、(5)液相温度と液相粘度、(6)分相温度と分相粘度、(7)全光線透過率、(8)拡散透過率、(9)ヘーズ値。
 本発明の第2実施形態に係る分相ガラスは、平板形状を有することが好ましく、つまりガラス板であることが好ましい。このようにすれば、有機ELデバイスに適用し易くなる。平板形状を有する場合、少なくとも一方の表面に未研磨面を有すること(特に、少なくとも一方の表面の有効面全体が未研磨面であること)が好ましい。ガラスの理論強度は、非常に高いが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これは、ガラス板の表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。よって、ガラス板の表面を未研磨にすれば、本来の機械的強度を損ない難くなるため、ガラス板が破壊し難くなる。また、研磨工程を簡略化又は省略し得るため、ガラス板の製造コストを低廉化することができる。
 厚み(平板形状の場合は、板厚)は5~500μmが好ましい。厚みが大き過ぎると、光散乱機能が過剰である場合、全光線透過率が低くなり、分相ガラス中の光を空気中に取り出し難くなる。よって、厚みは、好ましくは500μm以下、400μm以下、300μm以下、200μm以下、100μm以下、特に50μm以下である。一方、厚みが小さ過ぎると、光散乱機能が低下し易くなり、分相ガラス中の光を空気中に取り出し難くなる。よって、厚みは、好ましくは5μm以上、10μm以上、20μm以上、特に30μm以上である。
 平板形状を有する場合、少なくとも一方の表面(特に未研磨面)の表面粗さRaは0.01~1μmが好ましい。表面粗さRaが大きいと、その面に透明導電膜等を形成する場合、透明導電膜の品位が低下して、均一な発光を得難くなる。表面粗さRaの好適な上限範囲は1μm以下、0.8μm以下、0.5μm以下、0.3μm以下、0.1μm以下、0.07μm以下、0.05μm以下、0.03μm以下、特に10nm以下である。
 本発明の第2実施形態に係る分相ガラスは、ダウンドロー法、特にオーバーフローダウンドロー法で成形されてなることが好ましい。このようにすれば、未研磨で表面品位が良好なガラス板を製造することができる。その理由は、オーバーフローダウンドロー法の場合、表面になるべき面は樋状耐火物に接触せず、自由表面の状態で成形されるからである。なお、オーバーフローダウンドロー法以外にも、スロットダウンドロー法を採用することができる。このようにすれば、薄肉のガラス板を作製し易くなる。
 上記成形方法以外にも、例えば、リドロー法、フロート法、ロールアウト法等を採用することができる。特に、フロート法は、大型のガラス板を効率良く作製することができる。
 本発明の第2実施形態に係る分相ガラスは、熱処理工程を経ていることが好ましい。これにより、分相ガラスの散乱現象(特にミー散乱による散乱現象)を制御し易くなり、波長400~700nmにおける全光線透過率の最大値と最小値との差を低減し易くなる。
 熱処理温度は、好ましくは610℃以上、710℃以上、810℃以上、特に910℃以上である。このようにすれば、分相ガラスの散乱現象(特にミー散乱による散乱現象)を制御し易くなる。一方、熱処理温度は、好ましくは1200℃以下、1100℃以下、特に1000℃以下である。熱処理温度が高過ぎると、熱処理コストが増大することに加えて、散乱強度が強くなり過ぎて、直線透過率、全光線透過率等が低下する虞がある。
 熱処理時間は、好ましくは1分間以上、特に5分間以上である。このようにすれば、分相ガラスの散乱現象(特にミー散乱による散乱現象)を制御し易くなる。一方、熱処理温度は、好ましくは72時間以下、48時間以下、24時間以下、特に60分間以下である。熱処理時間が長過ぎると、熱処理コストが増大することに加えて、散乱強度が強くなり過ぎて、直線透過率、全光線透過率等が低下する虞がある。
 本発明の第2実施形態に係る分相ガラスは、平板形状を有する場合、少なくとも一方の表面を粗面化面としてもよい。粗面化面を有機EL照明等の空気と接する側に配置すれば、ガラス板の散乱効果に加えて、粗面化面の無反射構造により、有機EL層から放射した光が有機EL層内に戻り難くなり、結果として、光の取り出し効率を高めることができる。粗面化面の表面粗さRaは、好ましくは10Å以上、20Å以上、30Å以上、特に50Å以上である。粗面化面は、HFエッチング、サンドブラスト等で形成することができる。また、リプレス等の熱加工により、ガラス板の表面に凹凸形状を形成してもよい。このようにすれば、ガラス表面に正確な無反射構造を形成することができる。凹凸形状は、屈折率nを考慮しながら、その間隔と深さを調整すればよい。
 また、大気圧プラズマプロセスにより粗面化面を形成することもできる。このようにすれば、ガラス板の一方の表面の表面状態を維持した上で、他方の表面に対して、均一に粗面化処理を行うことができる。また、大気圧プラズマプロセスのソースとして、Fを含有するガス(例えば、SF、CF)を用いることが好ましい。このようにすれば、HF系ガスを含むプラズマが発生するため、粗面化面を効率良く形成することができる。
 更に、ガラス板の成形時に、少なくとも一方の表面に粗面化面を形成することもできる。このようにすれば、別途独立した粗面化処理が不要になり、粗面化処理の効率が向上する。
 なお、ガラス板に粗面化面を形成せずに、所定の凹凸形状を有する樹脂フィルムをガラス板の表面に貼り付けてもよい。なお、凹凸形状の表面粗さRaは、好ましくは10Å以上、20Å以上、30Å以上、特に50Å以上である。
 本発明の第2実施形態に係る複合基板は、分相ガラス板と基板が接合されてなる複合基板であって、分相ガラス板が、上記の分相ガラスを備えることを特徴とする。このようにすれば、分相ガラス板が光散乱板として機能するため、基板と複合化するだけで、有機EL素子の光取り出し効率を高めることができる。更に、分相ガラス板と基板を接合し、分相ガラス板を空気と接する側に配置すると、複合基板の耐傷性を高めることができる。
 基板として、種々の材料を使用することが可能であり、例えば、樹脂基板、金属基板、ガラス基板を使用することが可能である。その中でも、透過性、耐候性、耐熱性の観点から、ガラス基板が好ましい。ガラス基板として、種々の材料が使用可能であり、例えば、ソーダライムガラス基板、アルミノシリケートガラス基板、無アルカリガラス基板が使用可能である。
 ガラス基板の厚みは、強度を維持する観点から、好ましくは0.3~3.0mm、0.4~2.0mm、特に0.5超~1.8mmである。
 ガラス基板の屈折率nは、好ましくは1.65以上であり、より好ましくは1.66以上、1.67以上、1.68以上、1.69以上、特に好ましくは1.70以上である。ガラス基板の屈折率が低過ぎると、ガラス基板と透明導電膜等の界面の反射によって光を効率良く取り出すことが困難になる。一方、屈折率nが高過ぎると、ガラス基板と分相ガラス板の界面での反射率が高くなり、分相ガラス板を通して、ガラス基板中の光を空気中に取り出し難くなる。よって、屈折率nは、好ましくは2.30以下、2.20以下、2.10以下、2.00以下、1.90以下、1.80以下、特に1.75以下である。
 ガラス基板の少なくとも一方の表面(特に未研磨面)の表面粗さRaは0.01~1μmが好ましい。表面の表面粗さRaが大き過ぎると、オプティカルコンタクトで複合基板を作製し難くなることに加えて、その表面に透明導電膜等を形成する場合、透明導電膜の品位が低下して、均一な発光を得難くなる。よって、少なくとも一方の表面の表面粗さRaの好適な上限範囲は1μm以下、0.8μm以下、0.5μm以下、0.3μm以下、0.1μm以下、0.07μm以下、0.05μm以下、0.03μm以下、特に10nm以下である。
 分相ガラス板と基板を接合する方法として、種々の方法が利用可能である。例えば、粘着テープ、粘着シート、接着剤、硬化剤等により接合する方法、オプティカルコンタクトで接合する方法が利用可能である。その中でも、接合信頼性の観点から、紫外線硬化樹脂により接合する方法が好ましく、複合基板の透過率を高める観点から、オプティカルコンタクトで接合する方法が好ましい。
 次に、本発明の第3実施形態に係る分相ガラスについて説明する。
 本発明の第3実施形態に係る分相ガラスは、屈折率nが、1.65以上であり、好ましくは1.66以上、1.67以上、1.68以上、1.69以上、特に1.70以上である。屈折率nが1.65未満になると、ガラス板と透明導電膜等の界面の反射によって光を効率良く取り出すことが困難になる。一方、屈折率nが高過ぎると、ガラス板と空気の界面での反射率が高くなり、光を外部に取り出し難くなる。よって、屈折率nは、好ましくは2.30以下、2.20以下、2.10以下、2.00以下、1.90以下、1.80以下、特に1.75以下である。
 本発明の第3実施形態に係る分相ガラスは、少なくとも第一の相と第二の相を含む分相構造を有すると共に、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多く、またガラス組成中にBを含む場合、第二の相中のBの含有量が、第一の相中のBの含有量よりも多いことが好ましい。このようにすれば、第一の相と第二の相の屈折率が相違し易くなり、ガラスの光散乱機能を高めることができる。
 本発明の第3実施形態に係る分相ガラスにおいて、少なくとも一方の相(第一の相及び/又は第二の相)の分相粒子の平均粒子径は0.01~5μmが好ましい。分相粒子の平均粒子径が小さいと、有機EL層から放射した光が、第一の相と第二の相の界面で散乱し難くなる。一方、分相粒子の平均粒子径が大きいと、散乱強度が強くなり過ぎて、全光線透過率が低下する虞がある。
 本発明の第3実施形態に係る分相ガラスは、ガラス組成として、質量%で、SiO 30~75%、Al 0~35%、BaO 10~50%を含有することが好ましい。なお、各成分の含有範囲の説明において、%表示は、質量%を意味する。
 上記のように各成分を限定した理由は、上述の本発明の第1実施形態に係る分相ガラスについて既に説明した事項と同一であるため、ここではその説明を省略する。
 上記成分以外に導入することができる成分については、上述の本発明の第1実施形態に係る分相ガラスについて既に説明した事項と大半が同一であって、相違点は、次に述べる事項のみである。すなわち、MgOを導入する場合、好適な下限範囲は0.1%以上、1%以上、3%以上または4%以上、特に好適な範囲は5%以上である。ZnOを導入する場合、好適な下限範囲は0.1%以上、特に1%以上である。
 本発明の第3実施形態に係る分相ガラスの特性は、下記の(1)~(5)に関する事項については、上述の本発明の第1実施形態に係る分相ガラスについて既に説明した事項と同一であるので、その説明を省略し、その他の事項を引き続いて以下に説明する。(1)密度、(2)30~380℃における平均熱膨張係数、(3)歪点、(4)102.5dPa・sにおける温度、(5)液相温度と液相粘度。
 分相温度は、好ましくは700℃以上、800℃以上、特に900℃以上である。また、分相粘度は、好ましくは109.0dPa・s以下、特に105.0~108.0dPa・sである。このようにすれば、成形工程及び/又は徐冷工程でガラスが分相し易くなり、フロート法又はオーバーフローダウンドロー法で分相構造を有するガラス板を成形し易くなる。結果として、ガラス板を成形した後に、別途の熱処理工程が不要になり、ガラス板の製造コストを低減し易くなる。ここで、「分相温度」は、ガラスを白金ボートに入れ、1400℃でリメルトした後、白金ボートを温度勾配炉に移し、温度勾配炉中で30分間保持した時に、明確な白濁が認められる温度を指す。「分相粘度」は、分相温度におけるガラスの粘度を白金引き上げ法で測定した値を指す。なお、本発明の第3実施形態に係る分相ガラスは、成形工程及び/又は徐冷工程でガラスが分相することが好ましいが、これらの工程以外、例えば溶融工程でガラスが分相していてもよい。
 波長400~700nmにおいてヘーズ値が5%以上、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、特に90%以上の波長を有することが好ましい。所定値以上のヘーズ値を有する波長が存在しないと、光散乱機能が不十分になり、ガラス中の光を空気中に取り出し難くなる。
 波長400~700nmにおける全光線透過率は、好ましくは10%以上、20%以上、30%以上、40%以上、特に50%以上である。全光線透過率が低過ぎると、ガラス中の光を空気中に取り出し難くなる。
 波長400~700nmにおいて拡散透過率が10%以上、20%以上、特に30%以上の波長を有することが好ましい。所定値以上の拡散透過率を有する波長が存在しないと、ガラス中の光を空気中に取り出し難くなる。
 厚み(平板形状の場合、板厚)は、好ましくは1.5mm以下、1.3mm以下、1.1mm以下、0.8mm以下、0.7mm以下、0.5mm以下、0.3mm以下、0.2mm以下、特に0.1mm以下である。厚みが小さい程、可撓性が高まり、有機EL照明の意匠性を高め易くなるが、厚みが極端に小さくなると、ガラスが破損し易くなる。よって、厚みは、好ましくは10μm以上、特に30μm以上である。
 本発明の第3実施形態に係る分相ガラスは、平板形状を有することが好ましく、つまりガラス板であることが好ましい。このようにすれば、有機ELデバイスに適用し易くなる。平板形状を有する場合、少なくとも一方の表面に未研磨面を有すること(特に、少なくとも一方の表面の有効面全体が未研磨面であること)が好ましい。ガラスの理論強度は、非常に高いが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これは、ガラス板の表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。よって、ガラス板の表面を未研磨にすれば、本来の機械的強度を損ない難くなるため、ガラス板が破壊し難くなる。また、研磨工程を簡略化又は省略し得るため、ガラス板の製造コストを低廉化することができる。
 平板形状を有する場合、少なくとも一方の表面(特に未研磨面)の表面粗さRaは0.01~1μmが好ましい。表面粗さRaが大きいと、その面に透明導電膜等を形成する場合、透明導電膜の品位が低下して、均一な発光を得難くなる。表面粗さRaの好適な上限範囲は1μm以下、0.8μm以下、0.5μm以下、0.3μm以下、0.1μm以下、0.07μm以下、0.05μm以下、0.03μm以下、特に10nm以下である。
 本発明の第3実施形態に係る分相ガラスは、ダウンドロー法、特にオーバーフローダウンドロー法で成形されてなることが好ましい。このようにすれば、未研磨で表面品位が良好なガラス板を製造することができる。その理由は、オーバーフローダウンドロー法の場合、表面になるべき面は樋状耐火物に接触せず、自由表面の状態で成形されるからである。なお、オーバーフローダウンドロー法以外にも、スロットダウンドロー法を採用することができる。このようにすれば、薄肉のガラス板を作製し易くなる。
 上記成形方法以外にも、例えば、リドロー法、フロート法、ロールアウト法等を採用することができる。特に、フロート法は、大型のガラス板を効率良く作製することができる。
 本発明の第3実施形態に係る分相ガラスは、別途の熱処理工程を経ていないことが好ましく、成形工程で分相しているか、或いは成形直後の徐冷(冷却)工程で分相していることが好ましい。特に、オーバーフローダウンドロー法でガラス板を成形する場合、樋状構造物内で分相現象が生じていてもよく、延伸成形時や徐冷時に分相現象が生じていてもよい。このようにすれば、ガラスの製造工程数が減少し、ガラスの生産性を高めることができる。なお、分相現象は、ガラス組成、成形条件、徐冷条件等により制御することができる。
 本発明の第3実施形態に係る分相ガラスは、平板形状を有する場合、少なくとも一方の表面を粗面化面としてもよい。粗面化面を有機EL照明等の空気と接する側に配置すれば、ガラス板の光散乱効果に加えて、粗面化面の無反射構造により、有機EL層から放射した光が有機EL層内に戻り難くなり、結果として、光の取り出し効率を高めることができる。粗面化面の表面粗さRaは、好ましくは10Å以上、20Å以上、30Å以上、特に50Å以上である。粗面化面は、HFエッチング、サンドブラスト等で形成することができる。また、リプレス等の熱加工により、ガラス板の表面に凹凸形状を形成してもよい。このようにすれば、ガラス表面に正確な無反射構造を形成することができる。凹凸形状は、屈折率nを考慮しながら、その間隔と深さを調整すればよい。
 また、大気圧プラズマプロセスにより粗面化面を形成することもできる。このようにすれば、ガラス板の一方の表面の表面状態を維持した上で、他方の表面に対して、均一に粗面化処理を行うことができる。また、大気圧プラズマプロセスのソースとして、Fを含有するガス(例えば、SF、CF)を用いることが好ましい。このようにすれば、HF系ガスを含むプラズマが発生するため、粗面化面を効率良く形成することができる。
 更に、ガラス板の成形時に、少なくとも一方の表面に粗面化面を形成することもできる。このようにすれば、別途独立した粗面化処理が不要になり、粗面化処理の効率が向上する。
 なお、ガラス板に粗面化面を形成せずに、所定の凹凸形状を有する樹脂フィルムをガラス板の表面に貼り付けてもよい。なお、凹凸形状の表面粗さRaは、好ましくは10Å以上、20Å以上、30Å以上、特に50Å以上である。
 本発明の第3実施形態に係る分相ガラスは、有機EL素子に組み込んだ時に、有機EL素子の電流効率が、屈折率nが同程度の分相していないガラスを組み込んだ場合よりも高くなることが好ましい。例えば、20mA/cmにおける電流効率が、屈折率nが同程度の分相していないガラスを組み込んだ場合と比較して、5%以上、10%以上、15%以上、特に20%以上高くなることが好ましい。このようにすれば、有機ELデバイスの輝度を高めることができる。特に、既存のガラス組成を大幅に変更しなくても、ガラス組成中に分相を誘起する成分を導入するだけで有機ELデバイスの輝度を高めることができる。
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。
 表1は、試料No.1、2を示している。この試料No.1、2についての実験及び実験結果は、上述の本発明の第1実施形態に係る分相ガラス及びその製造方法に対応する。
 表2は、試料No.3、4を示している。この試料No.3、4についての実験及び実験結果は、上述の本発明の第2実施形態に係る分相ガラス及びそれを用いた複合基板に対応する。
 表3は、試料No.5~9を示している。この試料No.5~9についての実験及び実験結果は、上述の本発明の第3実施形態に係る分相ガラス及びその製造方法に対応する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 まず、表1~3に記載のガラス組成になるように、ガラス原料をそれぞれ調合した後、得られたガラスバッチをガラス溶融炉に供給して1400℃で7時間溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出し、平板形状に成形した後、歪点より室温まで10時間かけて簡易な徐冷処理を行った。最後に、得られたガラス板について、必要に応じて加工を行い、種々の特性を評価した。
 密度ρは、周知のアルキメデス法で測定した値である。
 平均熱膨張係数αは、30~380℃の温度範囲においてディラトメーターで測定した値である。なお、測定試料として、φ5mm×20mmの円柱状試料(端面はR加工されている)を用いた。
 歪点Psは、ASTM C336-71に記載の方法で測定した値である。なお、歪点Psが高い程、耐熱性が高くなる。
 徐冷点Ta、軟化点Tsは ASTM C338-93に記載の方法で測定した値である。
 高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・s及び102.0dPa・sにおける温度は、白金球引き上げ法で測定した値である。なお、高温粘度が低い程、溶融性に優れる。
 分相温度TPは、各ガラスを白金ボートに入れ、1400℃でリメルトした後、白金ボートを温度勾配炉に移し、温度勾配炉中で30分間保持した時に、白濁が明確に認められる温度を測定したものである。
 分相粘度logηTPは、分相温度における各ガラスの粘度を白金球引き上げ法で測定したものである。
 成形後の分相は、上記の徐冷処理後の成形試料を目視観察した際に、分相による白濁が認められたものを「○」、分相による白濁が認められず、透明であったものを「×」として評価した。
 熱処理後の分相は、上記の徐冷処理後の成形試料を900℃で24時間の条件で熱処理し、得られた熱処理試料を目視観察した際に、分相による白濁が認められたものを「○」、分相による白濁が認められず、透明であったものを「×」として評価した。
 屈折率nは、島津製作所社製の屈折率測定器KPR-2000により測定したd線の値である。具体的には、まず25mm×25mm×約3mmの直方体試料を作製し、(徐冷点Ta+30℃)から(歪点Ps-50℃)までの温度域を0.1℃/分の冷却速度で徐冷処理した後、屈折率nが整合する浸液を浸透させて測定した値である。
 [試料No.1について]
 上記徐冷処理後の試料No.1を約15mm×130mmのサイズの白金ボートに投入し、その白金ボートを電気炉内に投入し、1400℃でリメルトした。なお、白金ボート内でリメルトされたガラスの厚みは約3~5mmであった。リメルトした後、電気炉から白金ボートを取り出し、空気中で放冷した。得られた分相性ガラスについて、900℃で24時間の条件で熱処理して分相させた。更に、熱処理試料を約10mm×30mm×1.0mm厚のガラス板に加工した後、両表面を鏡面研磨し、波長300~800nmについて、分光光度計(島津製作所社製分光光度計UV-2500PC)により、厚み方向の全光線透過率及び拡散透過率を測定した。その結果を図1に示す。また、上記熱処理試料を1Mの塩酸溶液に10分間浸漬させた後、カーボン蒸着し、試料表面を電界放出型走査電子顕微鏡(日立ハイテクノロジーズ社製S-4300SE)により観察した。その結果を図2に示す。
 [試料No.2について]
 上記徐冷処理後の試料No.2を約15mm×130mmのサイズの白金ボートに投入し、その白金ボートを電気炉内に投入し、1400℃でリメルトした。なお、白金ボート内でリメルトされたガラスの厚みは約3~5mmであった。リメルトした後、電気炉から白金ボートを取り出し、空気中で放冷した。得られた分相性ガラスについて、950℃で24時間の条件で熱処理して分相させた。更に、熱処理試料を約10mm×30mm×1.0mm厚のガラス板に加工した後、両表面を鏡面研磨し、波長300~800nmについて、分光光度計(島津製作所社製分光光度計UV-2500PC)により、厚み方向の全光線透過率及び拡散透過率を測定した。その結果を図3に示す。また、上記熱処理試料を1Mの塩酸溶液に10分間浸漬させた後、カーボン蒸着し、試料表面を電界放出型走査電子顕微鏡(日立ハイテクノロジーズ社製S-4300SE)により観察した。その結果を図4に示す。
 図1、3に示すように、試料No.1、2の熱処理試料は、何れも波長400~700nmにおいてヘーズ値が5%以上となる波長が存在し、光散乱機能を有していた。
 [試料No.3、4について]
 上記徐冷処理後のガラス板(試料No.3)を約15mm×130mmのサイズの白金ボートに投入し、その白金ボートを電気炉内に投入し、1400℃でリメルトした。なお、白金ボート内でリメルトされたガラスの厚みは約3~5mmであった。リメルトした後、電気炉から白金ボートを取り出し、空気中で放冷した。得られたガラスについて、1000℃で24時間の条件で熱処理を行い、分相させた。更に、1Mの塩酸溶液に10分間浸漬させて、カーボン蒸着後、試料表面を電界放出型走査電子顕微鏡(日立ハイテクノロジーズ社製S-4300SE)により観察した。その結果を図5に示す。試料No.3に対し熱処理を施したものは300~400nm程度の分相粒子を有する分相構造を有していた。
 上記熱処理後の分相ガラスを約10mm×30mm×1.0mm厚のガラス板に加工した後、両表面を鏡面研磨し、分光光度計(島津製作所製分光光度計UV-2500PC)により、厚み方向の全光線透過率及び拡散透過率を測定した。その結果を図6に示す。
 図6に示すように、波長400~700nmにおける全光線透過率の最大値と最小値との差が20%以内であり、また波長400~700nmにおける全光線透過率が20%以上であり、更に波長400~700nmにおける拡散透過率が20%以上であった。
 上記熱処理後の分相ガラスを約10mm×30mm×1.0mm厚のガラス板に加工し、分相ガラス板を得た。また、約10mm×30mm×2.0mm厚のガラス基板(日本電気硝子社製OA-10L:屈折率n1.52)を用意した。次に、紫外線硬化樹脂(MSアーデル株式会社製オプトクレーブUT20)を用いて、分相ガラス板とガラス基板を接合した後、分相ガラス板の表面を研磨により0.1mm厚に加工することにより、総板厚2.1mmの複合基板を得た。この複合基板について、分光光度計(島津製作所製分光光度計UV-2500PC)により、厚み方向の全光線透過率及び拡散透過率を測定した。その結果を図7に示す。
 図7に示すように、上記複合基板は、波長400~700nmにおける全光線透過率の最大値と最小値との差が20%以内であり、また波長400~700nmにおける全光線透過率が40%以上であり、更に波長400~700nmにおける拡散透過率が20%以上であった。
 [実施例4]、[実施例5]では、試料No.3を用いて、実験したが、表2の試料No.4についても、同様の実験により、同様の傾向が得られるものと考えられる。
 [試料No.5、7~9について]
 上記徐冷処理後(熱処理していない)の試料No.5、7~9を1Mの塩酸溶液に10分間浸漬させた後、カーボン蒸着し、試料表面を電界放出型走査電子顕微鏡(日立ハイテクノロジーズ社製S-4300SE)により観察した。その結果を図8~11にそれぞれ示す。図8~11は、試料No.5、7~9の試料表面を電界放出型走査電子顕微鏡で観察した像をそれぞれ示している。図8~11から分かるように、試料No.5、7~9は、分相構造を有していた。
 [試料No.7~9について]
 上記徐冷処理後(熱処理していない)の試料No.7~9を板厚が0.7mmになるように加工し、更に両表面を鏡面研磨した後、波長300~800nmについて、分光光度計(島津製作所社製分光光度計UV-2500PC)により、厚み方向の全光線透過率及び拡散透過率を測定した。その結果を図12~14に示す。図12~14から分かるように、試料No.7~9は、何れも波長400~700nmにおいてヘーズ値が5%以上となる波長が存在し、光散乱機能を有していた。
 [試料No.9について]
 上記徐冷処理後(熱処理していない)の試料No.9に係るガラス板(板厚0.7mm)を作製し、該ガラス板表面上に、マスクを用いて透明電極層としてITO(厚み100nm)を蒸着させた。続いて、ガラス板上に、正孔注入層として高分子PEDOT-PSS(厚み40nm)、正孔輸送層としてα-NPD(厚み50nm)、有機発光層としてIr(ppy)を6質量%ドープしたCBP(厚み30nm)、正孔阻止層BAlq(厚み10nm)、電子輸送層Alq(厚み30nm)、電子注入層としてLiF(厚み0.8nm)、対向電極としてAl(厚み150nm)を形成した後、内部を封止して、有機EL素子を作製した。得られた有機EL素子について、発光面に垂直な方向に輝度計(株式会社トプコン社製BM-9)を配置し、正面輝度を測定し、電流効率を評価した。比較例として試料No.9と同程度の屈折率nを有する分相していないガラス板(板厚0.7mm)を組み込んで有機EL素子を作製した場合についても、同様にして正面輝度を測定し、電流効率を評価した。その結果、試料No.9に係るガラス板を組み込んだ場合、20mA/cmにおける電流効率は、比較例に係るガラス板を組み込んだ場合よりも22%向上した。なお、比較例に係るガラス板は、ガラス組成として、質量%で、SiO 37.6%、Al 1.5%、CaO 5.9%、SrO 4.9%、BaO 25.2%、ZrO 3.2%、TiO 6.7%、P 1.8%、La 3.8%、Nb 9.4%を含有しており、屈折率nが1.70である。
 [試料No.7について]
 上記徐冷処理後(熱処理していない)の試料No.7に係るガラス板(板厚0.7mm)を作製し、該ガラス板表面上に、マスクを用いて透明電極層としてITO(厚み100nm)を蒸着させた。続いて、ガラス板上に、正孔注入層として高分子PEDOT-PSS(厚み40nm)、正孔輸送層としてα-NPD(厚み50nm)、有機発光層としてIr(ppy)を6質量%ドープしたCBP(厚み30nm)、正孔阻止層BAlq(厚み10nm)、電子輸送層Alq(厚み30nm)、電子注入層としてLiF(厚み0.8nm)、対向電極としてAl(厚み150nm)を形成した後、内部を封止して、有機EL素子を作製した。得られた有機EL素子について、発光面に垂直な方向に輝度計(株式会社トプコン社製BM-9)を配置し、正面輝度を測定し、電流効率を評価した。比較例として[実施例8]で用いた比較例と同じガラス板(板厚0.7mm)を組み込んで有機EL素子を作製した場合についても、同様にして正面輝度を測定し、電流効率を評価した。その結果、試料No.7に係るガラス板を組み込んだ場合、20mA/cmにおける電流効率は、比較例に係るガラス板を組み込んだ場合よりも11%向上した。

Claims (33)

  1.  屈折率nが1.65以上の分相性ガラスを成形した後、得られた分相性ガラスを熱処理して、少なくとも第一の相と第二の相を含む分相ガラスを得ることを特徴とする分相ガラスの製造方法。
  2.  第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いことを特徴とする請求項1に記載の分相ガラスの製造方法。
  3.  分相ガラスが、ガラス組成として、質量%で、SiO 30~75%、Al 0~35%、BaO 10~50%を含有することを特徴とする請求項1又は2に記載の分相ガラスの製造方法。
  4.  分相性ガラスを平板形状に成形することを特徴とする請求項1~3の何れかに記載の分相ガラスの製造方法。
  5.  分相ガラスを有機EL照明に用いることを特徴とする請求項1~4の何れかに記載の分相ガラスの製造方法。
  6.  請求項1~5の何れかに記載の分相ガラスの製造方法により作製されたことを特徴とする分相ガラス。
  7.  波長400~700nmにおいてヘーズ値が5%以上の波長を有することを特徴とする請求項6に記載の分相ガラス。
  8.  屈折率nが1.65以上であり、且つ900℃で24時間の熱処理を行うと、分相していない状態から、少なくとも第一の相と第二の相に分相する性質を有することを特徴とする分相性ガラス。
  9.  屈折率nが1.65以上であり、少なくとも第一の相と第二の相を含む分相構造を有し、波長400~700nmにおける全光線透過率の最大値と最小値との差が40%以下であることを特徴とする分相ガラス。
  10.  分相粒子の粒子サイズが100nm以上であることを特徴とする請求項9に記載の分相ガラス。
  11.  波長400~700nmにおける拡散透過率が10%以上であることを特徴とする請求項9又は10に記載の分相ガラス。
  12.  分相ガラスが、ガラス組成として、質量%で、SiO2 30~75%、Al 0~35%、BaO 10~50%を含有することを特徴とする請求項9~11の何れかに記載の分相ガラス。
  13.  厚みが5~500μmであることを特徴とする請求項9~12の何れかに記載の分相ガラス。
  14.  有機EL照明に用いることを特徴とする請求項9~13の何れかに記載の分相ガラス。
  15.  分相ガラス板と基板が接合されてなる複合基板であって、分相ガラス板が、請求項9~14の何れかに記載の分相ガラスを備えることを特徴とする複合基板。
  16.  基板がガラス基板であることを特徴とする請求項15に記載の複合基板。
  17.  基板の屈折率nが1.50超であることを特徴とする請求項15又は16に記載の複合基板。
  18.  分相ガラス板と基板がオプティカルコンタクトにより接合されていることを特徴とする請求項15~17の何れかに記載の複合基板。
  19.  有機EL照明に用いることを特徴とする請求項15~18の何れかに記載の複合基板。
  20.  屈折率nが1.65以上であり、少なくとも第一の相と第二の相を含む分相構造を有すると共に、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いことを特徴とする分相ガラス。
  21.  ガラス組成として、質量%で、SiO 30~75%、Al 0~35%、BaO 10~50%を含有することを特徴とする請求項20に記載の分相ガラス。
  22.  ガラス組成中のAlの含有量が7質量%未満であることを特徴とする請求項20又は21に記載の分相ガラス。
  23.  ガラス組成中のBの含有量が20質量%以下であることを特徴とする請求項20~22の何れかに記載の分相ガラス。
  24.  ガラス組成中のPの含有量が0.001~10質量%であることを特徴とする請求項20~23の何れかに記載の分相ガラス。
  25.  ガラス組成中のLaの含有量が0.001~15質量%であることを特徴とする請求項20~24の何れかに記載の分相ガラス。
  26.  ガラス組成中のNbの含有量が0.001~20質量%であることを特徴とする請求項20~25の何れかに記載の分相ガラス。
  27.  波長400~700nmにおいてヘーズ値が5%以上の波長を有することを特徴とする請求項20~26の何れかに記載の分相ガラス。
  28.  波長400~700nmにおける全光線透過率が10%以上であることを特徴とする請求項20~27の何れかに記載の分相ガラス。
  29.  平板形状であることを特徴とする請求項20~28の何れかに記載の分相ガラス。
  30.  別途の熱処理工程を経ていないことを特徴とする請求項20~29の何れかに記載の分相ガラス。
  31.  有機EL素子に組み込んだ時に、有機EL素子の電流効率が、屈折率nが同程度の分相していないガラスを組み込んだ場合よりも高くなることを特徴とする請求項20~30の何れかに記載の分相ガラス。
  32.  有機EL照明に用いることを特徴とする請求項20~31の何れかに記載の分相ガラス。
  33.  請求項1~32の何れかに記載の分相ガラスを備えてなることを特徴とする有機ELデバイス。
     
PCT/JP2015/065267 2014-06-02 2015-05-27 分相ガラス及び分相ガラスの製造方法並びに分相ガラスを用いた複合基板 WO2015186584A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014113867A JP2015227274A (ja) 2014-06-02 2014-06-02 分相ガラス及びこれを用いた複合基板
JP2014113862A JP2015227271A (ja) 2014-06-02 2014-06-02 分相ガラスの製造方法
JP2014-113867 2014-06-02
JP2014-113862 2014-06-02
JP2014-113863 2014-06-02
JP2014113863 2014-06-02
JP2014192171A JP2016011245A (ja) 2014-06-02 2014-09-22 分相ガラス
JP2014-192171 2014-09-22

Publications (1)

Publication Number Publication Date
WO2015186584A1 true WO2015186584A1 (ja) 2015-12-10

Family

ID=54766657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065267 WO2015186584A1 (ja) 2014-06-02 2015-05-27 分相ガラス及び分相ガラスの製造方法並びに分相ガラスを用いた複合基板

Country Status (1)

Country Link
WO (1) WO2015186584A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015202970A (ja) * 2014-04-11 2015-11-16 日本電気硝子株式会社 ガラスフィルム及びこれを用いた複合基板
JP2015202971A (ja) * 2014-04-11 2015-11-16 日本電気硝子株式会社 分相ガラス及びこれを用いた複合基板
WO2018021279A1 (ja) * 2016-07-29 2018-02-01 旭硝子株式会社 ガラス板
US11397293B1 (en) 2020-08-25 2022-07-26 Apple Inc. Illuminated light transmitting panel with phase-separated glass

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100450A (ja) * 1985-10-23 1987-05-09 コ−ニング グラス ワ−クス 相分離ガラスおよびその製造方法
JP2011219352A (ja) * 2010-03-24 2011-11-04 Nippon Electric Glass Co Ltd ガラス板積層体の製造方法、及びガラス板の接合方法、並びに前記製造方法によって製造されたガラス板積層体
WO2012057043A1 (ja) * 2010-10-25 2012-05-03 旭硝子株式会社 有機el素子、透光性基板、および有機el素子の製造方法
JP2014144907A (ja) * 2013-01-04 2014-08-14 Nippon Electric Glass Co Ltd ガラス板
WO2015034030A1 (ja) * 2013-09-03 2015-03-12 日本電気硝子株式会社 ガラス及びその製造方法
JP2015105218A (ja) * 2013-12-02 2015-06-08 日本電気硝子株式会社 ガラス基板及びその製造方法
JP2015120614A (ja) * 2013-12-24 2015-07-02 日本電気硝子株式会社 ガラス

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62100450A (ja) * 1985-10-23 1987-05-09 コ−ニング グラス ワ−クス 相分離ガラスおよびその製造方法
JP2011219352A (ja) * 2010-03-24 2011-11-04 Nippon Electric Glass Co Ltd ガラス板積層体の製造方法、及びガラス板の接合方法、並びに前記製造方法によって製造されたガラス板積層体
WO2012057043A1 (ja) * 2010-10-25 2012-05-03 旭硝子株式会社 有機el素子、透光性基板、および有機el素子の製造方法
JP2014144907A (ja) * 2013-01-04 2014-08-14 Nippon Electric Glass Co Ltd ガラス板
WO2015034030A1 (ja) * 2013-09-03 2015-03-12 日本電気硝子株式会社 ガラス及びその製造方法
JP2015105218A (ja) * 2013-12-02 2015-06-08 日本電気硝子株式会社 ガラス基板及びその製造方法
JP2015120614A (ja) * 2013-12-24 2015-07-02 日本電気硝子株式会社 ガラス

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015202970A (ja) * 2014-04-11 2015-11-16 日本電気硝子株式会社 ガラスフィルム及びこれを用いた複合基板
JP2015202971A (ja) * 2014-04-11 2015-11-16 日本電気硝子株式会社 分相ガラス及びこれを用いた複合基板
WO2018021279A1 (ja) * 2016-07-29 2018-02-01 旭硝子株式会社 ガラス板
US11397293B1 (en) 2020-08-25 2022-07-26 Apple Inc. Illuminated light transmitting panel with phase-separated glass

Similar Documents

Publication Publication Date Title
KR101638488B1 (ko) 고굴절률 유리
JP6269933B2 (ja) ガラス板
WO2015186606A1 (ja) 分相ガラス、分相性ガラス、有機elデバイス及び分相ガラスの製造方法
WO2014112552A1 (ja) 結晶性ガラス基板及び結晶化ガラス基板並びに拡散板及びそれを備えた照明装置
WO2012157695A1 (ja) 高屈折率ガラス
US20160200624A1 (en) Glass and method for producing same
JP6066060B2 (ja) 結晶化ガラス基板及びその製造方法
WO2015186584A1 (ja) 分相ガラス及び分相ガラスの製造方法並びに分相ガラスを用いた複合基板
WO2016013612A1 (ja) 高屈折率ガラス
WO2015034030A1 (ja) ガラス及びその製造方法
JP2016098118A (ja) 分相ガラス
JP6249218B2 (ja) ガラスの製造方法及びガラス
JP2004051473A (ja) フラットパネルディスプレイ装置用ガラス基板
TWI603933B (zh) 高折射率玻璃、照明裝置、有機電致發光照明以及 有機電致發光顯示器
JP2016064970A (ja) 分相ガラス
JP6406571B2 (ja) ガラス
JP6331076B2 (ja) ガラスフィルム及びこれを用いた複合基板
JP6331077B2 (ja) 分相ガラス及びこれを用いた複合基板
JP2016011245A (ja) 分相ガラス
JP6435610B2 (ja) 高屈折率ガラス
JP2015227272A (ja) 分相ガラス及びこれを用いた複合基板
WO2016117406A1 (ja) 分相ガラス
JP2015105218A (ja) ガラス基板及びその製造方法
TW201602021A (zh) 分相玻璃、分相玻璃的製造方法、分相性玻璃、複合基板以及有機電致發光裝置
JP2015227274A (ja) 分相ガラス及びこれを用いた複合基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802719

Country of ref document: EP

Kind code of ref document: A1