WO2015184618A1 - 基于固态荧光材料的嵌入式白光led封装结构及其制作方法 - Google Patents

基于固态荧光材料的嵌入式白光led封装结构及其制作方法 Download PDF

Info

Publication number
WO2015184618A1
WO2015184618A1 PCT/CN2014/079253 CN2014079253W WO2015184618A1 WO 2015184618 A1 WO2015184618 A1 WO 2015184618A1 CN 2014079253 W CN2014079253 W CN 2014079253W WO 2015184618 A1 WO2015184618 A1 WO 2015184618A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent material
solid
package structure
yag
led package
Prior art date
Application number
PCT/CN2014/079253
Other languages
English (en)
French (fr)
Inventor
梁月山
曹顿华
马可军
Original Assignee
上海富迪照明电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海富迪照明电器有限公司 filed Critical 上海富迪照明电器有限公司
Priority to US14/761,954 priority Critical patent/US9537058B2/en
Priority to CN201480000543.1A priority patent/CN105431953B/zh
Priority to PCT/CN2014/079253 priority patent/WO2015184618A1/zh
Publication of WO2015184618A1 publication Critical patent/WO2015184618A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements

Definitions

  • the invention relates to the technical field of LED illumination, in particular to an embedded white LED package structure based on solid fluorescent material and a manufacturing method thereof.
  • LEDs are solid-state semiconductor devices that convert electrical energy directly into light energy. Compared with traditional incandescent lamps and fluorescent lamps, white LEDs have the advantages of low power consumption, high luminous efficiency, long service life, energy saving and environmental protection. Therefore, they are widely used not only in the field of daily lighting, but also in the field of display devices. Currently, access to white LEDs The technology can be divided into two categories, namely: (1) using three kinds of LEDs emitting red, green and blue light Chip mixing; (2) using a single color (blue or ultraviolet) LED chip to excite the appropriate fluorescent material.
  • white LEDs mainly use a blue LED chip and a yellow-emitting phosphor Ce:YAG which can be effectively excited by blue light, and then use a lens principle to mix complementary yellow and blue light to obtain white light.
  • conventional phosphors have disadvantages such as low excitation efficiency, low light conversion efficiency, and poor uniformity.
  • epoxy resin or silica gel mixed with phosphors tends to age at high temperatures, resulting in a decrease in transmittance, which ultimately affects white light devices. Light output efficiency.
  • the existing LED package structure needs to use a package bracket, the blue light is easy to leak, and the process is complicated, the cost is high, and the heat dissipation performance is poor.
  • the present invention provides an embedded white LED package structure based on solid fluorescent material and a manufacturing method thereof.
  • the technical problem to be solved by the invention is that the existing LED package structure has a complicated process, high cost, easy leakage of blue light, and poor heat dissipation performance.
  • the technical solution of the present invention is: an embedded white LED package structure based on a solid fluorescent material, comprising a blue chip and a Ce:YAG solid fluorescent material, wherein the Ce:YAG solid fluorescent material is provided There is a groove that matches the blue chip, and the blue chip is embedded in the groove.
  • the blue chip embedded surface of the Ce:YAG solid fluorescent material is provided with a reflective film.
  • the embedded white light LED package structure based on the solid fluorescent material further comprises a heat conductive substrate disposed on the blue chip embedded surface of the Ce:YAG solid fluorescent material.
  • the thermally conductive substrate is disposed behind the reflective film.
  • the light-emitting surface of the Ce:YAG solid-state fluorescent material is provided with a red light film, and the red light film can convert part of blue light into red light having an emission band of 580 nm to 660 nm.
  • the Ce:YAG solid fluorescent material is any one of a Ce:YAG fluorescent single crystal, a Ce:YAG fluorescent polycrystal, a Ce:YAG fluorescent ceramic, or a Ce:YAG fluorescent glass.
  • the chemical composition of the main component of the Ce:YAG solid fluorescent material is: (Y 1-xm A x Ce m ) 3 (Al 1-y B y ) 5 O 12 , wherein 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ m ⁇ 0.05; wherein A is one of Lu, Tb, Pr, La, Gd; B is one of Ga, Ti, Mn, Cr, Zr.
  • the blue chip is a gallium nitride based blue chip.
  • the invention also discloses a manufacturing method of an embedded white LED package structure based on a solid fluorescent material, comprising the following steps:
  • step B cutting and polishing the Ce:YAG solid fluorescent material prepared in step A to obtain a solid fluorescent sheet of a desired size
  • the blue chip is embedded in the recess of the solid fluorescent sheet, and then the electrode is mounted to form an integral package structure.
  • the present invention provides an embedded white LED package structure based on a solid fluorescent material and a manufacturing method thereof.
  • the high power blue chip is directly embedded in a groove of a solid fluorescent material, and the chip is used by a lens principle.
  • the emitted blue and solid fluorescent materials convert the yellow-green light emitted and mix to obtain white light.
  • the embedded white LED package structure based on solid-state fluorescent material has simple process and low cost; has high fluorescence efficiency, does not leak blue light; can directly dissipate heat through solid fluorescent material, has good heat dissipation performance; saves energy and protects environment and greatly improves the service life of LED lighting equipment .
  • Embodiment 1 is a schematic structural view of Embodiment 1 of the present invention.
  • Embodiment 2 is a schematic structural view of Embodiment 2 of the present invention.
  • Embodiment 3 is a schematic structural view of Embodiment 3 of the present invention.
  • Embodiment 4 is a schematic structural view of Embodiment 4 of the present invention.
  • the obtained embedded white LED package structure based on solid fluorescent material is shown in FIG. 1 .
  • the obtained embedded white LED package structure based on solid fluorescent material is shown in FIG. 2 .
  • the obtained embedded white LED package structure based on solid fluorescent material is shown in FIG. 3 .
  • the reflective film 6 is added to the blue chip insertion surface of the fluorescent crystal to adjust the overall light efficiency of the device.
  • the obtained embedded white LED package structure based on solid fluorescent material is shown in FIG. 4 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种基于固态荧光材料的嵌入式白光LED封装结构,包括蓝光芯片(1)和Ce:YAG固态荧光材料,Ce:YAG固态荧光材料上设有与蓝光芯片(1)相匹配的凹槽(7),蓝光芯片(1)嵌入凹槽(7)内。大功率蓝光芯片(1)直接嵌入贴合于固态荧光材料的凹槽(7)内,利用透镜原理将芯片(1)发出的蓝光和固态荧光材料转化发出的黄绿光并予以混合,得到白光。该基于固态荧光材料的嵌入式白光LED封装结构工艺简单、成本低;具有高荧光效率,蓝光***露;可以直接通过固态荧光材料散热,散热性能好;节能环保并且大幅提高LED照明设备的使用寿命。

Description

基于固态荧光材料的嵌入式白光LED封装结构及其制作方法 技术领域
本发明涉及LED照明技术领域,特别涉及一种基于固态荧光材料的嵌入式白光LED封装结构及其制作方法。
背景技术
LED是一种固态的半导体器件,它可以直接把电能转化为光能。与传统的白炽灯、荧光灯相比,白光LED具有耗电量小、发光效率高、使用寿命长、节能环保等优点,因此其不仅在日常照明领域得到广泛的应用,而且进入显示设备领域。目前,获取白光LED 的技术可以分为两大类,即: (1)采用发射红、绿、蓝色光线的三种LED 芯片混合;(2)采用单色(蓝光或紫外光)LED芯片激发适当的荧光材料。目前,白光LED主要是利用蓝光LED芯片和可被蓝光有效激发的、发黄光的荧光粉Ce:YAG结合,再利用透镜原理将互补的黄光和蓝光予以混合,从而得到白光。但是传统荧光粉存在激发效率和光转换效率低、均匀性差等缺点,尤其在大功率照明领域,由于混合荧光粉的环氧树脂或者硅胶在高温下容易老化使透过率下降,最终严重影响白光器件的出光效率。
此外,现有的LED封装结构需要使用封装支架,蓝光容易泄露,且工艺较复杂,成本高,而且散热性能较差。
技术问题
为了解决上述问题,本发明提供一种基于固态荧光材料的嵌入式白光LED封装结构及其制作方法。本发明要解决的技术问题是:现有LED封装结构工艺复杂、成本高、蓝光易泄露,而且散热性能较差。
技术解决方案
为了实现上述技术目的,本发明的技术方案为:基于固态荧光材料的嵌入式白光LED封装结构,包括蓝光芯片和Ce:YAG固态荧光材料,其特征在于,所述Ce:YAG固态荧光材料上设有与蓝光芯片相匹配的凹槽,所述蓝光芯片嵌入凹槽内。
上述方案中,所述Ce:YAG固态荧光材料的蓝光芯片嵌入面设有反光膜。
上述方案中,所述基于固态荧光材料的嵌入式白光LED封装结构还包括导热基板,所述导热基板设置于Ce:YAG固态荧光材料的蓝光芯片嵌入面。
上述方案中,如果是设有反光膜的于固态荧光材料的嵌入式白光LED封装结构,所述导热基板设置于反光膜的后面。
上述方案中,所述Ce:YAG固态荧光材料的出光面设有红光膜,所述红光膜可将部分蓝光转换为发光波段为580nm 到 660nm 的红光。
上述方案中,所述Ce:YAG固态荧光材料为Ce:YAG荧光单晶、Ce:YAG荧光多晶、Ce:YAG荧光陶瓷或Ce:YAG荧光玻璃中的任意一种。
上述方案中,所述Ce:YAG固态荧光材料主体成分化学式为:(Y1-x-mAxCem)3(Al1-yBy)5O12,其中,0≤x≤1,0≤y≤1,0≤m≤0.05;其中A为Lu、Tb、Pr、La、Gd中的一种;B为Ga、Ti、Mn、Cr、Zr中的一种。
上述方案中,所述蓝光芯片为氮化镓基蓝光芯片。
本发明还公开了基于固态荧光材料的嵌入式白光LED封装结构的制作方法,包括以下步骤:
A.制作Ce:YAG固态荧光材料;
B.对步骤A制得的Ce:YAG固态荧光材料切磨抛光得到所需尺寸的固态荧光片;
C.在固态荧光片上采用刻蚀工艺加工出凹槽,凹槽的大小与对应蓝光芯片相匹配;
D.将蓝光芯片嵌入固态荧光片的凹槽中,然后安装电极,形成整体封装结构。
上述方案中,所述步骤D后还包括以下步骤:
E.在封装结构的蓝光芯片端面增加反光膜;
F.将封装结构的反光膜端面固定于导热基板上;
G.在固态荧光片的表面增加红光膜。
有益效果
本发明的优点和有益效果在于:本发明提供基于固态荧光材料的嵌入式白光LED封装结构及其制作方法,大功率蓝光芯片直接嵌入贴合于固态荧光材料的凹槽内,利用透镜原理将芯片发出的蓝光和固态荧光材料转化发出的黄绿光并予以混合,得到白光。该基于固态荧光材料的嵌入式白光LED封装结构工艺简单、成本低;具有高荧光效率,蓝光***露;可以直接通过固态荧光材料散热,散热性能好;节能环保并且大幅提高LED照明设备的使用寿命。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例1的结构示意图
图2是本发明实施例2的结构示意图
图3是本发明实施例3的结构示意图
图4是本发明实施例4的结构示意图
图中:1、蓝光芯片2、固态荧光片3、电极4、导热基板5、红光膜6、反光膜7、凹槽
本发明的实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
实施例1
(1)通过泡生法生长Ce:YAG晶体;
(2)对步骤(1)得到的Ce:YAG晶片切磨抛光得到尺寸为10*10毫米,厚度0.5毫米的荧光晶片2;
(3)在荧光晶片2上采用刻蚀工艺加工出与蓝光芯片1尺寸相匹配的凹槽7;
(4)将蓝光芯片1装入荧光晶片的凹槽7中,依次串联,最后安装电极3。
所得基于固态荧光材料的嵌入式白光LED封装结构如图1所示。
实施例2
(1)通过提拉法生长Ce:YAG晶体;
(2)对步骤(1)得到的Ce:YAG晶片切磨抛光得到尺寸为6*6毫米,厚度0.6毫米的荧光晶片2;
(3)在荧光晶片2上采用刻蚀工艺加工出与蓝光芯片1尺寸相匹配的凹槽7;
(4)将蓝光芯片1装入荧光晶片2的凹槽7中,依次串联,安装电极3;
(5)最后将步骤(4)所得的整体器件的蓝光芯片嵌入面固定在导热基板4上,形成白光LED整体封装结构。
所得基于固态荧光材料的嵌入式白光LED封装结构如图2所示。
实施例3
(1)通过温度梯度法生长Ce:YAG晶体;
(2)对步骤(1)得到的Ce:YAG晶片切磨抛光得到尺寸为5*5毫米,厚度0.6毫米的荧光晶片2;
(3)在荧光晶片2上采用刻蚀工艺加工出与蓝光芯片1尺寸相匹配的凹槽7;
(4)将蓝光芯片1装入荧光晶片2的凹槽7中,依次串联,安装电极3;
(5)最后将荧光晶体的蓝光芯片嵌入面固定在导热基板4上,形成白光LED整体封装结构;
(6)在荧光晶体2的出光面增加红光膜5,以调整器件发光性能;
所得基于固态荧光材料的嵌入式白光LED封装结构如图3所示。
实施例4
(1)通过提拉法生长Ce:YAG晶体;
(2)对步骤(1)得到的Ce:YAG晶片切磨抛光得到尺寸为5*5毫米,厚度0.6毫米的荧光晶片2;
(3)在荧光晶片2上采用刻蚀工艺加工出与蓝光芯片1尺寸相匹配的凹槽7;
(4)将蓝光芯片1装入荧光晶片2的凹槽7中,依次串联,安装电极3;
(5)在荧光晶体的蓝光芯片嵌入面增加反光膜6,以调整器件整体光效。
(6)最后将器件的反光膜面固定在导热基板4上,形成白光LED整体封装结构。
所得基于固态荧光材料的嵌入式白光LED封装结构如图4所示。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 基于固态荧光材料的嵌入式白光LED封装结构,包括蓝光芯片和Ce:YAG固态荧光材料,其特征在于,所述Ce:YAG固态荧光材料上设有与蓝光芯片相匹配的凹槽,所述蓝光芯片嵌入凹槽内。
  2. 根据权利要求1所述的基于固态荧光材料的嵌入式白光LED封装结构,其特征在于,所述Ce:YAG固态荧光材料的蓝光芯片嵌入面设有反光膜。
  3. 根据权利要求1所述的基于固态荧光材料的嵌入式白光LED封装结构,其特征在于,所述基于固态荧光材料的嵌入式白光LED封装结构还包括导热基板,所述导热基板设置于Ce:YAG固态荧光材料的蓝光芯片嵌入面。
  4. 根据权利要求2所述的基于固态荧光材料的嵌入式白光LED封装结构,其特征在于,所述基于固态荧光材料的嵌入式白光LED封装结构还包括导热基板,所述导热基板设置于反光膜的后面。
  5. 根据权利要求1~4任一所述的基于固态荧光材料的嵌入式白光LED封装结构,其特征在于,所述Ce:YAG固态荧光材料的出光面设有红光膜,所述红光膜可将部分蓝光转换为发光波段为580nm 到660nm的红光。
  6. 根据权利要求1~4任一所述的基于固态荧光材料的嵌入式白光LED封装结构,其特征在于,所述Ce:YAG固态荧光材料为Ce:YAG荧光单晶、Ce:YAG荧光多晶、Ce:YAG荧光陶瓷或Ce:YAG荧光玻璃中的任意一种。
  7. 根据权利要求6所述的基于固态荧光材料的嵌入式白光LED封装结构,其特征在于,所述Ce:YAG固态荧光材料主体成分化学式为:(Y1-x-mAxCem)3(Al1-yBy)5O12,其中,0≤x≤1,0≤y≤1,0≤m≤0.05;其中A为Lu、Tb、Pr、La、Gd中的一种;B为Ga、Ti、Mn、Cr、Zr中的一种。
  8. 根据权利要求1~4任一所述的基于固态荧光材料的嵌入式白光LED封装结构,其特征在于,所述蓝光芯片为氮化镓基蓝光芯片。
  9. 基于固态荧光材料的嵌入式白光LED封装结构的制作方法,其特征在于,包括以下步骤:
    A.制作Ce:YAG固态荧光材料;
    B.对步骤A制得的Ce:YAG固态荧光材料切磨抛光得到所需尺寸的固态荧光片;
    C.在固态荧光片上采用刻蚀工艺加工出凹槽,凹槽的大小与对应蓝光芯片相匹配;
    D.将蓝光芯片嵌入固态荧光片的凹槽中,然后安装电极,形成整体封装结构。
  10. 根据权利要求9所述的基于固态荧光材料的嵌入式白光LED封装结构的制作方法,其特征在于,所述步骤D后还包括以下步骤:
    E.在封装结构的蓝光芯片端面增加反光膜;
    F.将封装结构的反光膜端面固定于导热基板上;
    G.在固态荧光片的表面增加红光膜。
PCT/CN2014/079253 2014-06-05 2014-06-05 基于固态荧光材料的嵌入式白光led封装结构及其制作方法 WO2015184618A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/761,954 US9537058B2 (en) 2014-06-05 2014-06-05 Embedded white light LED package structure based on solid-state fluorescence material and manufacturing method thereof
CN201480000543.1A CN105431953B (zh) 2014-06-05 2014-06-05 基于固态荧光材料的嵌入式白光led封装结构及其制作方法
PCT/CN2014/079253 WO2015184618A1 (zh) 2014-06-05 2014-06-05 基于固态荧光材料的嵌入式白光led封装结构及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/079253 WO2015184618A1 (zh) 2014-06-05 2014-06-05 基于固态荧光材料的嵌入式白光led封装结构及其制作方法

Publications (1)

Publication Number Publication Date
WO2015184618A1 true WO2015184618A1 (zh) 2015-12-10

Family

ID=54765956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079253 WO2015184618A1 (zh) 2014-06-05 2014-06-05 基于固态荧光材料的嵌入式白光led封装结构及其制作方法

Country Status (3)

Country Link
US (1) US9537058B2 (zh)
CN (1) CN105431953B (zh)
WO (1) WO2015184618A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298754B (zh) * 2016-09-30 2019-09-06 鸿利智汇集团股份有限公司 一种csp灯珠的制作方法及csp灯珠
CN106746687B (zh) * 2017-01-25 2019-10-01 上海应用技术大学 一种采用丝网印刷法制备led封装用荧光玻璃片的方法
CN112266239B (zh) * 2020-10-19 2022-11-25 徐州凹凸光电科技有限公司 一种白光led/ld用高热稳定性高显色指数荧光陶瓷及其制备方法
CN112599509A (zh) * 2020-11-09 2021-04-02 新沂市锡沂高新材料产业技术研究院有限公司 一种高亮度、色温可调的固态照明光源
CN112537953B (zh) * 2020-12-16 2022-03-08 中国科学院上海硅酸盐研究所 一种复合荧光陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070131940A1 (en) * 2005-12-08 2007-06-14 Unity Opto Technology Co., Ltd. Color-mixing LED
KR101173251B1 (ko) * 2011-07-01 2012-08-10 한국광기술원 프리폼 형광체 시트가 사용된 백색 엘이디 소자 제조 방법
CN103022325A (zh) * 2012-12-24 2013-04-03 佛山市香港科技大学Led-Fpd工程技术研究开发中心 应用远距式荧光粉层的led封装结构及其制成方法
CN103700753A (zh) * 2013-12-13 2014-04-02 张晓峰 一种360度发光的柔性led发光条
CN103840063A (zh) * 2013-11-15 2014-06-04 芜湖德豪润达光电科技有限公司 Led封装基板及其制作方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228170A (ja) * 1998-12-04 2000-08-15 Toshiba Lighting & Technology Corp 高圧放電ランプ、高圧放電ランプ装置、高圧放電ランプ点灯装置および照明装置
CN100423296C (zh) * 2001-09-03 2008-10-01 松下电器产业株式会社 半导体发光元件、发光装置及半导体发光元件的制造方法
CA2427559A1 (en) * 2002-05-15 2003-11-15 Sumitomo Electric Industries, Ltd. White color light emitting device
US20060171152A1 (en) * 2005-01-20 2006-08-03 Toyoda Gosei Co., Ltd. Light emitting device and method of making the same
US8441179B2 (en) * 2006-01-20 2013-05-14 Cree, Inc. Lighting devices having remote lumiphors that are excited by lumiphor-converted semiconductor excitation sources
JP5089212B2 (ja) * 2007-03-23 2012-12-05 シャープ株式会社 発光装置およびそれを用いたledランプ、発光装置の製造方法
US8212279B2 (en) * 2008-03-25 2012-07-03 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader, signal post and cavity
US8314438B2 (en) * 2008-03-25 2012-11-20 Bridge Semiconductor Corporation Semiconductor chip assembly with bump/base heat spreader and cavity in bump
JP5345363B2 (ja) * 2008-06-24 2013-11-20 シャープ株式会社 発光装置
KR20100030470A (ko) * 2008-09-10 2010-03-18 삼성전자주식회사 다양한 색 온도의 백색광을 제공할 수 있는 발광 장치 및 발광 시스템
TWI408831B (zh) * 2008-12-05 2013-09-11 私立中原大學 發光二極體及其製程
US8410679B2 (en) * 2010-09-21 2013-04-02 Cree, Inc. Semiconductor light emitting devices with densely packed phosphor layer at light emitting surface
KR101798884B1 (ko) * 2011-05-18 2017-11-17 삼성전자주식회사 발광소자 어셈블리 및 이를 포함하는 전조등
JP5864367B2 (ja) * 2011-06-16 2016-02-17 日東電工株式会社 蛍光接着シート、蛍光体層付発光ダイオード素子、発光ダイオード装置およびそれらの製造方法
US9423083B2 (en) * 2013-03-07 2016-08-23 Pacific Light Technologies, Corp. Multiple quantum dot (QD) device
CN103258938B (zh) * 2013-05-03 2016-04-13 杭州耀迪科技有限公司 一种含荧光粉的导热led灯条封装基板的制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070131940A1 (en) * 2005-12-08 2007-06-14 Unity Opto Technology Co., Ltd. Color-mixing LED
KR101173251B1 (ko) * 2011-07-01 2012-08-10 한국광기술원 프리폼 형광체 시트가 사용된 백색 엘이디 소자 제조 방법
CN103022325A (zh) * 2012-12-24 2013-04-03 佛山市香港科技大学Led-Fpd工程技术研究开发中心 应用远距式荧光粉层的led封装结构及其制成方法
CN103840063A (zh) * 2013-11-15 2014-06-04 芜湖德豪润达光电科技有限公司 Led封装基板及其制作方法
CN103700753A (zh) * 2013-12-13 2014-04-02 张晓峰 一种360度发光的柔性led发光条

Also Published As

Publication number Publication date
US20160268482A1 (en) 2016-09-15
US9537058B2 (en) 2017-01-03
CN105431953B (zh) 2018-03-16
CN105431953A (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2018010233A1 (zh) 一种led芯片发光灯条基板材料及led球泡灯
WO2015184618A1 (zh) 基于固态荧光材料的嵌入式白光led封装结构及其制作方法
WO2014117400A1 (zh) 背光模组及液晶显示装置
CN204289503U (zh) 基于固态荧光材料的嵌入式白光led封装结构
WO2012009918A1 (zh) Led白光光源模块
WO2013015597A2 (ko) 백색 led 장치
KR20130018529A (ko) 형광 조성물 및 이를 이용한 백색광 발광 장치
CN114920455B (zh) LED用(BaSr)2SiO4:Eu2+荧光玻璃及复合荧光玻璃的制备和应用
CN106986626B (zh) 一种羟基磷灰石基荧光陶瓷材料及其制备方法
WO2015184614A1 (zh) 大功率高温白光led封装及其制作方法
CN102102862A (zh) 一种微体积多led集成单元的封装方法及其电极封装方法
WO2013020415A1 (zh) 一种用于led灯具的透镜
WO2012009853A1 (zh) 一种发射白光的玻璃陶瓷及其制备方法
CN102454945A (zh) 一种获得高显色性暖白光的方法及其封装结构
CN204289523U (zh) 大功率高温白光led封装
WO2020015428A1 (zh) 半导体发光二极管装置和灯具
WO2019227993A1 (zh) 发光二极管封装结构及封装方法
CN101988637A (zh) 白光led光源、其制备方法及应用该白光led光源的路灯
WO2013058548A1 (en) Lighting device
CN205282499U (zh) 一种陶瓷荧光基板及发光装置
CN103915551A (zh) 一种新型白光led封装结构及制作方法
WO2011153686A1 (zh) 发射白光的透明玻璃陶瓷及其制备方法
CN203118943U (zh) 一种cob灯源板结构
CN201838590U (zh) 双晶片高显色性暖白光封装结构
CN106098909B (zh) 一种led照明用复合结构荧光玻璃片的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480000543.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 14761954

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10.02.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14893862

Country of ref document: EP

Kind code of ref document: A1