WO2015182118A1 - Coil device, power sensor in which said device is used, and power-detecting device in which said device is used - Google Patents

Coil device, power sensor in which said device is used, and power-detecting device in which said device is used Download PDF

Info

Publication number
WO2015182118A1
WO2015182118A1 PCT/JP2015/002645 JP2015002645W WO2015182118A1 WO 2015182118 A1 WO2015182118 A1 WO 2015182118A1 JP 2015002645 W JP2015002645 W JP 2015002645W WO 2015182118 A1 WO2015182118 A1 WO 2015182118A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
force sensor
detection
plate
application example
Prior art date
Application number
PCT/JP2015/002645
Other languages
French (fr)
Japanese (ja)
Inventor
文孝 齋藤
丹羽 正久
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2015182118A1 publication Critical patent/WO2015182118A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention generally relates to a coil device, and a force sensor and a force detection device using the coil device. More specifically, the present invention relates to a coil device having a configuration in which a lead wire is wound around a core, and a force sensor and a force detection device using the coil device. .
  • a magnetostrictive load sensor that detects a load applied to a magnetic body based on a change in magnetic permeability accompanying strain of the magnetic body magnetized by a current flowing through a coil.
  • Document 1 Japanese Patent Application Publication No. 2004 is published. -226196 (hereinafter referred to as Document 1).
  • the magnetostrictive load sensor described in Document 1 includes a ferromagnetic load receiving portion that receives a load from the outside, a coil that is wound around the load receiving portion, and a ferromagnetic member that houses the load receiving portion and the coil. And at least a case. Further, the coil is housed in a bobbin made of resin disposed around the load receiving portion.
  • the load receiving portion has a rod shape, and an axially symmetric region including the central axis in the height direction is penetrated to form a cylindrical hollow portion.
  • the load receiving portion receives a load applied in the axial direction of the rod-shaped member by inserting a rod-shaped member such as a wire or cable in close contact with the hollow portion.
  • This magnetostrictive load sensor detects (detects) a load caused by the movement of a rod-shaped member inserted into the hollow portion of the load receiving portion by measuring a voltage change at both ends of the coil accompanying this impedance change.
  • a coil device composed of a magnetic body and a coil is required.
  • an operation of forming a coil by winding a conductive wire around the magnetic body is necessary.
  • the work of winding the conductive wire around the magnetic material is not easy and the coil device is not easily manufactured.
  • the present invention has been made in view of the above reasons, and an object thereof is to provide a coil device that is easy to manufacture, and a force sensor and a force detection device using the coil device.
  • the coil device of the present invention has a core formed in an annular shape surrounding a hollow portion and a bundle of a plurality of conductive wires electrically insulated from each other, and is hung on the core through the hollow portion.
  • a coil is formed by the plurality of conductive wires by electrically connecting the conductive wires in series.
  • a force sensor includes the above coil device, and a magnetic path through which a magnetic flux generated by a current flowing between the pair of terminals passes is formed along the circumferential direction of the hollow portion.
  • a load receiving portion for receiving a load is provided on one surface in the intersecting direction intersecting the surface on which the magnetic path is formed.
  • a force detection device includes the force sensor and a detection circuit that detects a load based on a change in magnetic characteristics of the coil device.
  • FIG. 1A is a perspective view of a coil device according to Embodiment 1.
  • FIG. 1B is a cross-sectional view taken along the line XX of FIG. 1A.
  • 2A and 2B are perspective views illustrating the method for manufacturing the coil device according to the first embodiment. It is a perspective view of the coil apparatus which concerns on the modification 1 of Embodiment 1.
  • FIG. 4A is a perspective view of a coil device according to Embodiment 2.
  • FIG. It is a perspective view of the coil apparatus which concerns on the modification 2 of Embodiment 2.
  • FIG. 1A is a perspective view of a coil device according to Embodiment 1.
  • FIG. 1B is a cross-sectional view taken along the line XX of FIG. 1A.
  • FIG. 4B is a cross
  • FIG. 8A is a perspective view showing only the electric circuit structure and the connection structure of the coil device according to the third embodiment.
  • FIG. 8B is a plan view illustrating the connection structure of the coil device according to the third embodiment.
  • FIG. 9A is a perspective view showing only an electric circuit structure and a connection structure of a coil device according to Modification 1 of Embodiment 3.
  • FIG. 9B is a plan view illustrating the connection structure of the coil device according to the first modification of the third embodiment.
  • 10A is a schematic diagram illustrating a force sensor and a force detection device according to Application Example 1.
  • FIG. 10B is a plan view of the force sensor according to the first application example.
  • FIG. 10C is a cross-sectional view of the force sensor according to the first application example.
  • 10 is a schematic diagram of a detection circuit in a force detection device according to application example 1.
  • FIG. FIG. 12A is a diagram illustrating a magnetic flux distribution of an open magnetic path in a core having a hollow portion.
  • FIG. 12B is a diagram illustrating a magnetic flux distribution of an open magnetic path in a core that does not have a hollow portion.
  • the force sensor which concerns on the application example 1 it is sectional drawing which shows the structure using structures other than a board
  • 14A is a cross-sectional view of a force sensor according to Application Example 2.
  • FIG. 14B is a plan view of the force sensor according to the application example 2.
  • FIG. 15A is a plan view illustrating an example of a substrate in the force sensor according to the application example 2.
  • FIG. FIG. 15B is a plan view illustrating another example of the substrate in the force sensor according to the application example 2.
  • 16A is a schematic diagram illustrating an example in which each detection unit is individually connected to a detection circuit in the force detection device according to Application Example 2.
  • FIG. 16B is a schematic diagram illustrating an example in which each detection unit is individually connected to a detection circuit in the force detection device according to application example 2.
  • 10 is a schematic diagram illustrating an example in which each detection unit is connected in series to a detection circuit in the force detection device according to Application Example 2.
  • FIG. 10 is a schematic diagram illustrating a usage example of a force sensor according to Application Example 2.
  • FIG. 19A is a plan view illustrating an example of an arrangement of detection units in the force sensor according to the application example 2.
  • FIG. 19B is a plan view illustrating an example of the arrangement of the detection units in the force sensor according to Application Example 2.
  • FIG. 20A is a plan view illustrating an example in which a detection unit is arranged on a square substrate in the force sensor according to Application Example 2.
  • FIG. 20B is a plan view illustrating an example in which the detection unit is arranged on a semi-annular substrate in plan view in the force sensor according to Application Example 2.
  • FIG. FIG. 20C is a plan view illustrating an example in which the detection unit is arranged on an annular substrate in plan view in the force sensor according to the application example 2.
  • FIG. 25A is a cross-sectional view illustrating a configuration using a structure other than a substrate in the force sensor according to Application Example 2.
  • FIG. 25B is a plan view illustrating a configuration using a structure other than a substrate in the force sensor according to the application example 2.
  • FIG. 26A is a cross-sectional view illustrating another configuration using a structure other than a substrate in the force sensor according to Application Example 2.
  • FIG. 26B is a plan view showing another configuration using a structure other than the substrate in the force sensor according to the application example 2.
  • FIG. 27A is a plan view of a force sensor according to application example 3.
  • FIG. 27B is a cross-sectional view taken along the line XX of FIG. 27A.
  • FIG. 28A and FIG. 28B are schematic diagrams illustrating usage examples of the force sensor according to the application example 3, respectively.
  • FIG. 29B are plan views of a configuration including a force sensor blocking member according to Application Example 3, respectively.
  • FIG. 30A and FIG. 30B are side views of a configuration in which a restricting portion is provided on an elastic body in the force sensor according to Application Example 3, respectively.
  • FIG. 31A and FIG. 31B are side views showing a configuration in which the first plate and the second plate are each provided with a restricting portion in the force sensor according to Application Example 3.
  • 32A is a plan view of a force sensor according to Modification 1 of Application Example 3.
  • FIG. 32B is a cross-sectional view taken along the line XX of FIG. 32A.
  • 33A and 33B are schematic diagrams illustrating usage examples of the force sensor according to Modification 1 of Application Example 3, respectively.
  • FIG. 34B are plan views of a configuration including a force sensor closing member according to Modification 1 of Application Example 3, respectively.
  • FIG. 35A is a plan view of a configuration in which the force sensor according to the application example 3 includes another closing member.
  • FIG. 35B is a plan view of a configuration including another blocking member in the force sensor according to Modification 1 of Application Example 3;
  • FIG. 36A and FIG. 36B are plan views of configurations in which the connecting portion is a wire in the force sensor according to Application Example 4, respectively.
  • FIG. 37A is a side view of a configuration in which, in the force sensor according to the application example 4, the elastic body includes a restriction portion.
  • FIG. 37B is a side view of a configuration in which the first plate and the second plate are provided with a restriction portion in the force sensor according to the fourth application example.
  • FIG. 38A is a plan view of a configuration in which the connecting portion is a hinge in the force sensor according to the fourth application example.
  • FIG. 38B is a side view of a configuration in which the connecting portion is a hinge in the force sensor according to the fourth application example.
  • 39A and 39B are plan views of a force sensor according to Modification 1 of Application Example 4, respectively.
  • 40A and 40B are plan views of a force sensor according to Modification 2 of Application Example 4, respectively.
  • FIG. 41A is a plan view of a configuration including a blocking member in a force sensor according to Modification 1 of Application Example 4.
  • FIG. 41B is a plan view of a configuration including a closing member in a force sensor according to Modification 2 of Application Example 4.
  • a force sensor and a force detection device are a force sensor and a force detection device which detect the load added to a magnetic body using the inverse magnetostriction effect of the magnetic body of a coil device.
  • the coil device 50 includes a core 4 formed in an annular shape surrounding a hollow portion 40 with a magnetic material and a bundle of a plurality of conducting wires 53.
  • the electric circuit structure 51 which has, and the connection structure 52 electrically connected to the both ends of the electric circuit structure 51 are provided.
  • the multiple conducting wires 53 are electrically insulated from each other.
  • the electric circuit structure 51 is hung on the core 4 through the hollow portion 40.
  • the connection structure 52 has a pair of terminals 551 and 552, and a plurality of conductors 53 are electrically connected in series between the pair of terminals 551 and 552, and the coil 5 is formed by the plurality of conductors 53. Is configured to do.
  • the relationship between the electric circuit structure 51 and the core 4 suffices if the electric circuit structure 51 is hung on the core 4 through the hollow portion 40, and the electric circuit structure 51 may be in contact with or in contact with the core 4. It does not have to be.
  • the state where the electric circuit structure 51 is hung on the core 4 through the hollow portion 40 means a state where the electric circuit structure 51 is attached to the core 4 so as to surround a part of the core 4 through the hollow portion 40.
  • the electric circuit structure 51 is not wound around the core 4 several times, but is part of the core 4 to such an extent that the coil 5 composed of the plurality of conductive wires 53 and the core 4 are magnetically coupled. It is provided so as to be entangled loosely.
  • the “terminal” in the present embodiment does not necessarily have an entity as a part for connecting an electric wire, for example, a lead of an electronic part or a part of a conductor included in a printed board. Good.
  • the coil 5 is not formed by winding a single long conducting wire around the core 4 but by a bundle of a plurality of conducting wires 53 that pass through the hollow portion 40 of the core 4.
  • a coil 5 is formed. Therefore, when manufacturing the coil device 50, it is not necessary to pass the conductor wire through the hollow portion 40 of the core 4 many times as in the case of winding a single long conductor wire around the core 4. It is only necessary to pass the bundle of electric wires 53 (electric circuit structure 51) once. As a result, there exists an advantage that manufacture of the coil apparatus 50 becomes easy.
  • the coil device 50 configured in this way is not limited to a force sensor (and a force detection device) to be described later, but various uses as a cored coil such as a CT (Current Transformer) sensor used to measure current, for example. It is applicable to.
  • CT Current Transformer
  • the coil device 50 includes a core 4, an electric circuit structure 51, and a connection structure 52 as shown in FIG. 1A.
  • the core 4 is made of a magnetic material such as Ni (nickel) -Zn (zinc) ferrite.
  • the core 4 is formed in a disk shape with the vertical direction as the thickness direction, and the circular hollow portion 40 penetrating in the thickness direction (vertical direction) is formed.
  • the core 4 is a toroidal core that is formed in an annular shape in plan view and has a hollow portion 40.
  • the coil apparatus 50 of this embodiment is applied to the force sensor which detects the load added to a magnetic body using the inverse magnetostriction effect of a magnetic body, the core 4 will be subjected to a reverse magnetostriction when a load is applied to the core 4. It is formed of a magnetic material that has an effect.
  • the inverse magnetostriction effect is an effect in which the magnetized core 4 is distorted when a load is applied, and the permeability of the core 4 changes due to the distortion.
  • the core 4 has a mounting part 41 having a smaller cross-sectional area than other parts in a part of the circumferential direction of the hollow part 40, and the electric circuit structure 51 is hung on the mounting part 41. That is, the electric circuit structure 51 is attached to the attachment portion 41 provided in a part of the core 4 in the circumferential direction.
  • the mounting portion 41 has a smaller cross-sectional area (area of a cross section perpendicular to the circumferential direction of the hollow portion 40), that is, is thinner than other portions of the core 4 (portions other than the mounting portion 41).
  • the attachment portion 41 is formed to be thinner than other portions of the core 4 in both the thickness direction (vertical direction) of the core 4 and the radial direction of the core 4.
  • the electric circuit structure 51 is disposed within the width of the core 4 in the vertical direction so that the electric circuit structure 51 does not protrude from both surfaces (upper surface and lower surface) in the thickness direction of the core 4. Can fit. Furthermore, the electric circuit structure 51 can be accommodated within the width of the core 4 in the radial direction of the core 4 so that the electric circuit structure 51 does not protrude into the hollow portion 40 from the core 4. Note that whether or not the mounting portion 41 is designed with the above dimensions is arbitrary.
  • the electric circuit structure 51 is a cable in which a plurality of conductive wires 53 are covered with a covering member 513 having electrical insulation.
  • the cable (electric circuit structure 51) is a flat coaxial cable in which a plurality of thin coaxial cables are covered with a jacket (skin).
  • the thin coaxial cable here has a structure in which a central conductor (core wire) made of an extremely fine stranded wire is covered with a dielectric and a shield.
  • each of the plurality of central conductors corresponds to the conductive wire 53
  • the dielectric and the jacket correspond to the covering member 513.
  • the electric circuit structure 51 is a multi-core (six-core) cable having six conductors 53. When distinguishing these six conducting wires 53, they are distinguished as conducting wires 531 to 536.
  • the electric circuit structure 51 is formed in a strip shape that is long in the longitudinal direction of the plurality of conductive wires 53. At least at both ends in the longitudinal direction of the electric circuit structure 51, a plurality of (here, six) conductors 531 to 536 are arranged in a line along the width direction (short direction) of the electric circuit structure 51. A plurality of thin coaxial cables are integrated. As a result, a bundle of a plurality of conducting wires 53 is formed in the electric circuit structure 51.
  • the dimension of the electric circuit structure 51 in the short direction is smaller than the dimension of the mounting portion 41 (the dimension in the circumferential direction of the hollow portion 40). Both ends in the longitudinal direction of the electric circuit structure 51 configured as described above are electrically connected to the connection structure 52.
  • the several conducting wire 53 should just be bundled, and a several thin coaxial cable (plural conducting wire 53) is scattered except the both ends of the longitudinal direction of the electric circuit structure 51. It may be provided so that it may be integrated. In the present embodiment, a plurality of thin coaxial cables are provided apart from both ends in the longitudinal direction of the electric circuit structure 51.
  • the electric circuit structure 51 has a portion protruding from the hollow portion 40 along the radial direction of the core 4 with the central portion in the longitudinal direction passing through the core 4 so as to be located in the hollow portion 40 of the core 4. 4 is bent outward.
  • the part located in the hollow portion 40 in the electric circuit structure 51 is defined as the insertion part 510, and the parts on both sides of the insertion part 510 in the longitudinal direction of the electric circuit structure 51 are the first extraction part 511 and the second extraction part 512.
  • the first lead portion 511 and the second lead portion 512 are extended in the same direction from both end edges of the insertion portion 510 and face each other in the vertical direction (the thickness direction of the core 4). Thereby, the electric circuit structure 51 is attached to the core 4 so as to surround the attachment portion 41 with the insertion portion 510, the first extraction portion 511, and the second extraction portion 512.
  • the first drawer portion 511 side is viewed downward and the second drawer portion 512 side is viewed upward from the core 4. To do.
  • the connection structure 52 is a connector device that is electrically connected to both ends (in the longitudinal direction) of the electric circuit structure 51 in this embodiment.
  • the connection structure (connector device) 52 includes a first connector 521 and a second connector 522 that are mechanically coupled and electrically connected to each other.
  • the first connector 521 and the second connector 522 are detachable.
  • the first connector 521 is electrically connected to the end of the first lead portion 511 opposite to the insertion portion 510.
  • the second connector 522 is electrically connected to the end of the second lead portion 512 opposite to the insertion portion 510. Therefore, in a state where the first connector 521 and the second connector 522 are connected to each other, both ends of the electric circuit structure 51 are mechanically coupled and electrically connected via the connection structure 52. Become.
  • Each of the first connector 521 and the second connector 522 has a plurality of terminals, and a plurality of conductors 53 of the electric circuit structure 51 are electrically connected to each of the plurality of terminals one by one.
  • the number of terminals (the number of contacts) of each of the first connector 521 and the second connector 522 is set to be at least one more than the number (here, six) of the conductive wires 53 of the electric circuit structure 51.
  • the number of terminals of each of the first connector 521 and the second connector 522 is “7”.
  • Each of the plurality of terminals is assigned a terminal number.
  • connection conductors 541 to 547 When the first connector 521 and the second connector 522 are connected to each other, the terminals having the same terminal number are connected via the connection conductors 541 to 547. It will be electrically connected.
  • each of the connection conductors 541 to 547 includes a contact for electrically connecting terminals between the first connector 521 and the second connector 522.
  • the connection conductor 54n connected to the terminal having the terminal number “n” (n is a natural number) is referred to as a connection conductor 54n having the terminal number “n”.
  • the electric circuit structure 51 is electrically connected to the connection structure 52 so that the terminal numbers of the terminals to which the conductive wires 53 are connected are shifted one by one between the first connector 521 and the second connector 522. .
  • the conducting wire 531 is connected to the “No. 1” connection conductor 541, and similarly, the conducting wires 532 to 536 are connected to the “No. 2” to “No. 6” connection conductors 542 to 546.
  • the connection structure 52 is electrically connected to the connection structure 52 so that the terminal numbers of the terminals to which the conductive wires 53 are connected are shifted one by one between the first connector 521 and the second connector 522.
  • the conducting wire 531 is connected to the “No. 1” connection conductor 541
  • the conducting wires 532 to 536 are connected to the “No. 2” to “No. 6” connection conductors 542 to 546.
  • the conducting wire 531 is connected to the “second” connecting conductor 542, and similarly, the conducting wires 532 to 536 are one-to-one on the “third” to “seven” connecting conductors 543 to 547. Connected to correspond to.
  • connection structure 52 has a pair of terminals 551 and 552, and is configured to electrically connect a plurality of conductive wires 53 between the pair of terminals 551 and 552.
  • one end of the conducting wire 531 is electrically connected to one (first) terminal 552 of the pair of terminals 551 and 552 via the connecting conductor 541, and the other end of the conducting wire 531 is connected to the other end of the conducting wire 531.
  • One end of the conducting wire 532 is electrically connected through the connection conductor 542.
  • One end of a conducting wire 533 is electrically connected to the other end of the conducting wire 532 via a connecting conductor 543, and one end of the conducting wire 534 is electrically connected to the other end of the conducting wire 533 via a connecting conductor 544.
  • One end of a conducting wire 535 is electrically connected to the other end of the conducting wire 534 via a connecting conductor 545, and one end of a conducting wire 536 is electrically connected to the other end of the conducting wire 535 via a connecting conductor 546. .
  • the other (second) terminal 551 of the pair of terminals 551 and 552 is electrically connected to the other end of the conducting wire 536 through a connection conductor 547.
  • the plurality of conductive wires 531 to 536 connected in series between the pair of terminals 551 and 552 are equivalent to one conductive wire (winding) wound around the mounting portion 41 of the core 4. . Therefore, according to the configuration of the present embodiment, the plurality of conductive wires 53 form the coil 5 attached to the attachment portion 41.
  • the coil apparatus 50 of this embodiment comprises the toroidal coil with which the coil 5 was attached to the annular
  • the number of the conductive wires 53 is the number of turns of the coil 5, in the present embodiment in which the six conductive wires 53 are provided, the number of turns of the coil 5 is “6”.
  • the coil 5 can be electrically connected to an external circuit using the pair of terminals 551 and 552. is there. For example, by connecting a pair of connecting wires to the pair of terminals 551 and 552, an electrical connection between the external circuit and the coil 5 can be realized via the pair of connecting wires.
  • connection structures 52 first connector 521 and second connector 522
  • a core 4 a core 4
  • connection structures 52 first connector 521 and second connector 522
  • the connection between the first connector 521 and the second connector 522 is released.
  • the electric circuit structure 51 passes through the hollow portion 40 of the core 4.
  • the positional relationship between the electric circuit structure 51 and the core 4 is determined so that the electric circuit structure 51 is hung on the mounting portion 41 of the core 4.
  • the first connector 521 and the second connector 522 are connected to each other. Thereby, both ends of the electric circuit structure 51 are mechanically coupled and electrically connected, and the coil 5 is formed by the plurality of conductive wires 53.
  • a toroidal coil that is difficult to manufacture even when an automatic winding machine is used can be easily manufactured manually.
  • a relatively small coil device 50 it is difficult to pass the lead wire through the hollow portion 40 of the core 4 many times, so it is useful to apply the configuration of the present embodiment.
  • the coil device 50 since the coil device 50 has a configuration in which the coil 5 is attached to the core 4 having the hollow portion 40, the magnetic path along the circumferential direction of the hollow portion 40 is provided in the core 4 when the coil 5 is energized. (Magnetic circuit) is formed. This magnetic path is a closed magnetic path. Therefore, in this coil device 50, since the leakage of the magnetic flux from the core 4 to the outside hardly occurs, it is not necessary to provide a ferromagnetic case to prevent the leakage of the magnetic flux.
  • the coil device 50 is compared with the case where one long conducting wire is wound around the core 4.
  • the design accuracy of the characteristics (inductance, etc.) may be lowered.
  • the application uses a change (relative value) of the characteristic instead of the absolute value of the characteristic of the coil device 50 as in a force sensor described later, the design accuracy of the characteristic of the coil device 50 may be relatively low.
  • the coil device 50 of this embodiment is sufficiently applicable.
  • the electric circuit structure 51 is preferably a cable in which a plurality of conductive wires 53 are covered with a covering member 513 having electrical insulation. According to this configuration, since the electric circuit structure 51 can be realized by a general-purpose cable, the manufacturing of the coil device 50 is further facilitated. In addition, the number of turns of the coil 5 can be changed depending on the number of cores (number of cores) of the cable, that is, the number of conductive wires, and coils with various numbers of turns can be realized by using cables having different numbers of cores.
  • the core 4 has a mounting portion 41 having a smaller cross-sectional area than other portions in a part of the circumferential direction of the hollow portion 40, and the electric circuit structure 51 is attached to the mounting portion 41. Preferably it is hung.
  • the electric circuit structure 51 can be contained within the width in the thickness direction of the core 4 so that the electric circuit structure 51 does not protrude from both surfaces (upper surface and lower surface) of the core 4 in the thickness direction.
  • the electric circuit structure 51 can be accommodated within the width of the core 4 in the radial direction of the core 4 so that the electric circuit structure 51 does not protrude into the hollow portion 40 from the core 4.
  • FIG. 3 shows a first modified example of the first embodiment.
  • the coil device 50 further includes a binding member 56 that binds the electric circuit structure 51 between the core 4 and the connection structure 52.
  • the binding member 56 is a band-shaped adhesive tape, and the first drawing portion 511 and the second drawing portion 512 of the electric circuit structure 51 are bundled outside the hollow portion 40.
  • the binding member 56 includes a first drawing portion 511 and a second drawing portion 512 so that the distance between the first drawing portion 511 and the second drawing portion 512 in at least the vertical direction is smaller than the thickness dimension of the core 4. You just have to bundle.
  • the electric circuit structure 51 including the plurality of conductive wires 53 forms a loop that surrounds a part of the core 4 (attachment portion 41) in the vicinity of the core 4.
  • the degree of magnetic coupling between the coil 5 made of the conductive wire 53 and the core 4 is improved.
  • the binding member 56 has the first lead portion 511 and the second lead portion 512 in close contact with each other, thereby further improving the degree of magnetic coupling between the coil 5 and the core 4.
  • the position of the binding member 56 may be between the core 4 and the connection structure 52, but is preferably closer to the core 4.
  • the binding member 56 only needs to be configured to bundle the electric circuit structure 51 between the core 4 and the connection structure 52, and is not limited to the adhesive tape, and may be, for example, a binding band or a clip. Further, the bundling member 56 may be an adhesive or the like that adheres the first drawing portion 511 and the second drawing portion 512.
  • the electric circuit structure 51 may be a cable in which a plurality of conductive wires 53 are covered with a covering member 513 having electrical insulation, and is not limited to a flat coaxial cable, but may be, for example, a general-purpose flat cable or a round cable. May be. Further, the number of cores of the cable, that is, the number of the conductive wires 53 is not limited to 6, and may be 5 or less or 7 or more.
  • the coil apparatus 50 should just be the structure by which the electric circuit structure 51 was hung on the core 4 which has the hollow part 40, and is not restricted to the toroidal coil which employ
  • the plurality of conductive wires 53 are not limited to a single layer structure wound around the core 4 but may have a multilayer structure. Specifically, a flat cable in which a plurality of conductive wires 53 are provided in a plurality of layers in the thickness direction of the electric circuit structure 51 as well as in the width direction of the electric circuit structure 51, or the electric circuit structure 51 is used as the core 4. On the other hand, a multi-layer structure is realized by multiple times. Even when the electric circuit structure 51 is hung around the core 4 a plurality of times, the coil device 50 can be easily manufactured as compared with the case where one long conducting wire is wound around the core 4 to form the coil 5 having the same number of turns. Become.
  • the electric circuit structure 51 is bent with a predetermined radius of curvature in the hollow portion 40 of the core 4.
  • the configuration is not limited to this, and the insertion portion 510, the first extraction portion 511, and the second It may be bent at a substantially right angle at a boundary portion with each of the drawing portions 512.
  • a gap (gap) between the electric circuit structure 51 and the core 4 can be reduced, and the degree of magnetic coupling between the coil 5 formed of the plurality of conductive wires 53 and the core 4 is improved.
  • connection structure 52 is a connector device including the first connector 521 and the second connector 522 in the present embodiment, but is not limited to this configuration, and may be a terminal block, a printed circuit board, or the like. Examples in which the connection structure 52 is formed of a printed circuit board will be described in Embodiments 2 and 3. Furthermore, both ends of the electric circuit structure 51 may be directly connected to each other by aerial wiring using a lead wire or solder. In this case, the lead wire or solder corresponds to the connection structure 52.
  • the coil device 50 according to the present embodiment is different from the coil device 50 according to the first embodiment in that the electric circuit structure 51 is a flexible substrate.
  • the flexible substrate has a structure in which a plurality of conductive wires 53 are formed on at least one surface of a base film 514 having electrical insulation and flexibility.
  • the connection structure 52 is a printed board.
  • the flexible board includes a flexible printed board (FPC: Flexible Printed Circuits) and a flexible flat cable (FPC: Flexible Flat Cable). That is, the flexible substrate has a configuration in which a plurality of conductive wires 53 made of metal foil (for example, copper foil) is formed on at least one surface of the base film 514, and may be a substrate having flexibility as a whole. In the example of FIGS. 4A and 4B, the plurality of conductive wires 53 are formed only on one surface of the base film 514.
  • FPC Flexible Printed Circuits
  • FPC Flexible Flat Cable
  • connection structure 52 is a rigid board such as a glass epoxy board.
  • This connection structure (printed circuit board) 52 has a plurality of terminals on each surface in the thickness direction, and each of the plurality of terminals is electrically connected with a plurality of conductive wires 53 of the electric circuit structure 51.
  • the terminal is composed of a connection pad (metal foil) formed on each surface in the thickness direction of the printed board.
  • connection conductors 541 to 547 that electrically connect the terminals between both surfaces in the thickness direction of the printed circuit board are formed of through-hole conductors.
  • connection structure 52 has a pair of terminals 551 and 552, and is configured to electrically connect a plurality of conductive wires 53 between the pair of terminals 551 and 552.
  • connection pad connected to the “No. 7” connection conductor 547 constitutes the terminal 551
  • the connection pad connected to the “No. 1” connection conductor 541 constitutes the terminal 552.
  • the electric circuit structure 51 can be realized by a flexible substrate, the coil device 50 can be easily manufactured. And compared with the case where the electric circuit structure 51 consists of a cable, the electric circuit structure 51 can be reduced in thickness, and the coil apparatus 50 can be further reduced in size (thinner).
  • connection structure 52 is a printed circuit board
  • the connection structure 52 can be simplified and thinned as compared with the case where the connection structure 52 is a connector device. That is, since the connection form between the electric circuit structure 51 and the connection structure 52 can be realized by solder bonding or the like, the dimensions in the vertical direction can be kept relatively small with a simple configuration.
  • FIG. 5 illustrates a first modified example of the second embodiment.
  • both ends of the electric circuit structure 51 are connected to one surface (upper surface) in the thickness direction of the connection structure 52.
  • the electric circuit structure is formed on one surface in the thickness direction of the connection structure 52 and in the direction in which the core 4 and the connection structure 52 are aligned (the extension direction of the first extraction portion 511 and the second extraction portion 512).
  • the both ends of the body 51 are spaced apart.
  • FIG. 6 shows a second modification of the second embodiment.
  • both ends of the electric circuit structure 51 are connected to one surface (upper surface) in the thickness direction of the connection structure 52.
  • a direction that is on one surface in the thickness direction of the connection structure 52 and is orthogonal to the direction in which the core 4 and the connection structure 52 are arranged extension direction of the first extraction portion 511 and the second extraction portion 512.
  • the both ends of the electric circuit structure 51 are spaced apart.
  • the terminal is composed of a connection pad (metal foil) formed on one surface in the thickness direction of the printed board.
  • a connection conductor that electrically connects terminals on one surface in the thickness direction of the printed board is made of a metal foil (for example, copper foil) formed on one surface in the thickness direction of the printed board. That is, the connection structure 52 is composed of a single-sided printed board. The connection structure 52 having such a configuration will be described in detail in the third embodiment.
  • the coil device 50 according to the present embodiment is different from the coil device 50 according to the second embodiment in that the electric circuit structure 51 has a molded body 515 as shown in FIGS. 7, 8 ⁇ / b> A, and 8 ⁇ / b> B.
  • the electric circuit structure 51 has a structure in which a plurality of conductive wires 53 are formed on the surface of a molded body 515 having electrical insulation.
  • the same configurations as those of the second embodiment are denoted by common reference numerals, and the description thereof is omitted as appropriate.
  • the electric circuit structure 51 is a molded circuit component (MID: Molded Interconnect Devices) in which a plurality of conductive wires 53 are three-dimensionally formed of metal foil (for example, copper foil) on the surface of a molded body 515 made of resin or ceramic. ).
  • MID Molded Interconnect Devices
  • the insertion portion 510 and each of the first extraction portion 511 and the second extraction portion 512 are substantially orthogonal, and the first extraction portion 511 and the second extraction portion 512 are parallel to each other. It is formed as follows.
  • the molded body 515 forms a space between the molded body 515 and the connection structure 52 in a state where the molded body 515 is mounted on one surface of the printed board as the connection structure 52. In this space, a part of the core 4 (attachment portion 41) is located.
  • a plurality of conductive wires 53 are formed on one end surface of the molded body 515 orthogonal to the circumferential direction of the hollow portion 40, that is, in the width direction of the electric circuit structure 51. It is formed on one end face of.
  • connection structure 52 of the present embodiment is a single-sided printed board in which connection pads (metal foils) 571 to 578 as terminals are formed on one surface in the thickness direction.
  • connection pads metal foils
  • a plurality of conductive wires 53 are connected to the plurality of connection pads 571 to 578 at both ends of the electric circuit structure 51 by solder or the like.
  • the connection conductors 541 to 543 are made of metal foil (for example, copper foil) formed on one surface in the thickness direction of the printed board.
  • the connection conductors 541 to 543 electrically connect the connection pads 571 to 574 connected to one end of the electric circuit structure 51 and the connection pads 575 to 578 connected to the other end of the electric circuit structure 51. Connecting.
  • connection pad 574 electrically connected to the conductor 534 constitutes the terminal 551
  • connection pad 575 electrically connected to the conductor 531 constitutes the terminal 552.
  • the connection conductors 541 to 543 have a one-to-one connection between the connection pads 571 to 573 and the connection pads 576 to 578 so that the plurality of conductive wires 53 are electrically connected in series between the pair of terminals 551 and 552. Connect electrically. That is, the connection pads 571 to 574 connected to one end of the electric circuit structure 51 and the connection pads 575 to 578 connected to the other end of the electric circuit structure 51 are shifted one by one from each other. To 543.
  • the electric circuit structure 51 can be realized by the molded circuit component, the coil device 50 can be easily manufactured.
  • the electric circuit structure 51 is made of a cable, it is possible to reduce the interval between the plurality of conductive wires 53 and increase the number of the conductive wires 53.
  • FIGS. 9A and 9B illustrate a modified example of the third embodiment.
  • a plurality of conductive wires 53 (here, five conductive wires 531 to 535) are formed on the outer peripheral surface of the molded body 515. That is, the multiple conducting wires 53 are arranged so as to be aligned along the circumferential direction of the hollow portion 40.
  • connection conductors 541 to 544 include connection pads 571 to 575 connected to one end of the electric circuit structure 51 and connection pads 576 to 580 connected to the other end of the electric circuit structure 51. And electrically connect.
  • connection pad 575 electrically connected to the conductive wire 535 constitutes the terminal 551
  • connection pad 576 electrically connected to the conductive wire 531 constitutes the terminal 552.
  • the connection conductors 541 to 544 have a one-to-one connection between the connection pads 571 to 574 and the connection pads 577 to 580 so that the plurality of conductive wires 53 are electrically connected in series between the pair of terminals 551 and 552. Connect electrically.
  • connection pads 571 to 575 connected to one end of the electric circuit structure 51 and the connection pads 576 to 580 connected to the other end of the electric circuit structure 51 are shifted one by one from each other, and the connection conductor 541 is shifted. To 544.
  • the force sensor 2 and the force detection device 1 using the coil device 50 described in each of the above embodiments will be described with reference to FIGS.
  • the force sensor 2 and the force detection device 1 here detect a load applied to the magnetic body (core 4) by using the inverse magnetostriction effect of the magnetic body (core 4) of the coil device 50.
  • the force sensor 2 shown in the following application example includes the coil device 50 described in each of the above embodiments as the detection unit 20.
  • a magnetic path M ⁇ b> 1 (see FIG. 10B) through which a magnetic flux generated by a current flowing between the pair of terminals 551 and 552 passes is formed in the core 4 along the circumferential direction of the hollow portion 40.
  • the core 4 has a load receiving portion 42 (see FIG. 10B) that receives a load on one surface in the intersecting direction (vertical direction) intersecting the surface on which the magnetic path M1 is formed. That is, in this force sensor 2, since the “crossing direction” that intersects the surface on which the magnetic path M1 is formed becomes the load detection direction, the “crossing direction” is also referred to as “detection direction” below.
  • the force sensor 2 shown in the following application example includes a first plate 21 (see FIG. 10C) and a second plate 22 (see FIG. 10C) that are arranged so as to sandwich the core 4 from both sides in the detection direction (crossing direction). And an elastic body 23 (see FIG. 10C).
  • the elastic body 23 is formed of a material having a lower elastic modulus than the core 4 and positions between the first plate 21 and the second plate 22.
  • the first plate, the second plate, and the elastic body 23 are not essential components and can be omitted as appropriate.
  • the force detection device 1 shown in the following application example includes a force sensor 2 and a detection circuit 3 (see FIG. 10A).
  • the detection circuit 3 detects a load based on a change in the magnetic characteristics (inductance or conductance) of the coil 5.
  • the force detection device 1 of the application example 1 includes a force sensor 2 and a detection circuit 3 as illustrated in FIG. 10A. Further, as shown in FIGS. 10A to 10C, the force sensor 2 of the application example 1 includes a detection unit 20, a first plate 21, a second plate 22, an elastic body 23, a substrate (structure) 24, and the like. It has. In FIG. 10B, illustration of the second plate 22 and the elastic body 23 is omitted.
  • the detection unit 20 includes a core 4 formed of a magnetic material and a coil 5 that is magnetically coupled to the core 4. That is, the detection unit 20 is configured by the coil device 50 described in the above embodiments.
  • the magnetic flux generated when the coil 5 is energized passes through the core 4 as shown in FIG. 10B. For this reason, a magnetic path (magnetic circuit) M ⁇ b> 1 along the circumferential direction of the hollow portion 40 is formed in the core 4.
  • This magnetic path M1 is a closed magnetic path. Therefore, in the force sensor 2 of this application example, since the leakage of the magnetic flux from the core 4 to the outside hardly occurs, it is not necessary to provide a ferromagnetic case in order to prevent the leakage of the magnetic flux.
  • the first plate 21 and the second plate 22 are both plate-like members formed of, for example, a metal material.
  • the first plate 21 is formed in a circular shape in plan view.
  • the second plate 22 is formed in a circular shape in a plan view like the first plate 21.
  • the first plate 21 is disposed on the lower side of the core 4 so as to be in contact with the lower surface of the core 4.
  • the 2nd plate 22 is arrange
  • the shape of the 1st plate 21 and the 2nd plate 22 is not limited to circular shape by planar view, For example, rectangular shape and annular
  • the 1st plate 21 and the 2nd plate 22 should just have the intensity
  • the first plate 21 and the second plate 22 may not be formed of a metal material, and may be formed of a resin material such as CFRP (Carbon-Fiber-Reinforced Plastic).
  • the elastic body 23 is an adhesive mainly composed of, for example, an epoxy resin or a silicone resin.
  • the elastic body 23 bonds the first plate 21 and the second plate 22 to each other by adhering to the outer peripheral edge of the upper surface of the first plate 21 and the outer peripheral edge of the lower surface of the second plate 22.
  • the elastic body 23 is not limited to the adhesive, and may be formed of a material having a lower elastic modulus than the material forming the core 4. Moreover, the elastic body 23 should just be the structure which positions between both the 1st plate 21 and the 2nd plate 22. FIG.
  • the substrate 24 is accommodated in a space surrounded by the first plate 21, the second plate 22, and the elastic body 23, as shown in FIG. 10C.
  • the substrate 24 is fixed by the outer peripheral edge thereof being in contact with the elastic body 23.
  • the substrate 24 is formed in an annular shape in a plan view as shown in FIG. 10C, and its central portion has a circular positioning in a plan view having a diameter slightly larger than the diameter of the core 4. It is a hole 240.
  • the core 4 is positioned at a predetermined position by fitting the core 4 into the positioning hole 240.
  • the substrate (structure) 24 is a member that is disposed between the first plate 21 and the second plate 22 and positions the detection unit 20 at a predetermined position.
  • the substrate (structure) 24 has a positioning hole 240 penetrating in the vertical direction (detection direction).
  • the core 4 is disposed inside the positioning hole 240.
  • the shape of the positioning hole 240 is not limited to a circular shape in a plan view, and may be a rectangular shape in a plan view, for example. That is, the positioning hole 240 may have a shape into which the core 4 is fitted.
  • the detection circuit 3 includes an oscillation circuit 30, a period measurement circuit 31, a square circuit 32, a temperature compensation circuit 33, and a signal processing circuit 34.
  • the oscillation circuit 30 is configured to maintain the oscillation of the resonance circuit 35 including the coil 5.
  • the oscillation circuit 30 is configured to output an oscillation signal that oscillates at a frequency corresponding to the resonance frequency of the resonance circuit 35.
  • the period measurement circuit 31 is configured to measure the period of the oscillation signal output from the oscillation circuit 30 and output a signal corresponding to the measured period.
  • the square circuit 32 is configured to calculate and output the square value of the signal output from the period measurement circuit 31.
  • the temperature compensation circuit 33 is configured to suppress temperature fluctuation of the signal output from the squaring circuit 32 by temperature compensation processing.
  • the signal processing circuit 34 is configured to detect a change in load applied to the core 4 based on a signal output from the temperature compensation circuit 33.
  • the equivalent circuit of the resonance circuit 35 includes a series circuit of an inductor L1 and a resistor R1 and a parallel circuit of a capacitor C1.
  • the inductance of the inductor L1 is equivalent to the inductance of the coil 5.
  • the resistance value of the resistor R1 is equivalent to the resistance value of the winding resistance of the coil 5.
  • the capacitance value of the capacitor C1 is equivalent to the capacitance value of the parasitic capacitance of the coil 5.
  • the resonance circuit 35 may be configured by electrically connecting a capacitor in parallel with the coil 5.
  • the detection circuit 3 is configured by mounting electronic components on the substrate 24.
  • a circuit (detection circuit 3) is formed on the substrate (structure) 24. That is, in the force detection device 1 of this application example, the detection circuit 3 is provided integrally with the force sensor 2. Note that the detection circuit 3 does not need to be provided on the substrate 24 and may be provided separately from the substrate 24. Further, the detection circuit 3 may be provided on a substrate outside the force sensor 2, for example. That is, in the force detection device 1 of this application example, the detection circuit 3 may be provided separately from the force sensor 2.
  • the force sensor 2 and the force detection device 1 of the application example will be described.
  • the core 4 is magnetized and the magnetic path M1 is formed.
  • the oscillation circuit 30 of the detection circuit 3 supplies a current to the coil 5.
  • the load is received by the load receiving portion 42 (see FIG. 10B) composed of one surface (here, the upper surface) in the detection direction intersecting the surface on which the magnetic path M ⁇ b> 1 is formed.
  • the inductance of the coil 5 changes according to the magnitude of the load. That is, in the force sensor 2 of this application example, the core 4 (detection unit 20) is configured to receive a load applied from the first plate 21 and the second plate 22 in a direction along the vertical direction (detection direction). .
  • the oscillation circuit 30 When the inductance of the coil 5 changes, the resonance frequency of the resonance circuit 35 including the coil 5 changes. For this reason, the oscillation circuit 30 outputs an oscillation signal having a frequency corresponding to the resonance frequency of the resonance circuit 35, and the period measurement circuit 31 outputs a signal corresponding to the period of the oscillation signal.
  • the period of the oscillation signal is represented by the square root of the product of the inductance of the inductor L1 and the capacitance value of the capacitor C1 in the equivalent circuit.
  • the square circuit 32 calculates and outputs the square value of the output signal of the period measurement circuit 31, the output signal of the square circuit 32 changes linearly with respect to the change of the inductance of the coil 5.
  • the output signal of the square circuit 32 is corrected for temperature fluctuations by the temperature compensation circuit 33.
  • the signal processing circuit 34 calculates the inductance of the coil 5 based on the output signal of the temperature compensation circuit 33, and calculates the load applied to the core 4 from the amount of change in the inductance of the coil 5. That is, the detection circuit 3 detects the load applied to the core 4 based on the change in the inductance of the coil 5.
  • the detection unit 20 is sandwiched between the first plate 21 and the second plate 22, and the elastic body 23 positions between the first plate 21 and the second plate 22. It has a configuration. For this reason, in the force sensor 2 of this application example, it is not necessary to provide a strain-generating portion on the first plate 21 and the second plate 22, so the dimensions in the thickness direction of the first plate 21 and the second plate 22 are determined. Can be small. Therefore, the force sensor 2 of this application example can be thinned by reducing the dimension of the first plate 21 and the second plate 22 in the thickness direction. Further, the force sensor 2 of this application example includes an elastic body 23. For this reason, the force sensor 2 of this application example can improve the load detection accuracy because the load is easily transmitted to the core 4 when a load is applied to the first plate 21 or the second plate 22.
  • the coil 5 is provided so that the magnetic path M1 formed when the coil 5 is energized is a closed magnetic path.
  • the magnetic flux generated when the coil 5 is energized forms a magnetic path M ⁇ b> 2 that passes not only inside the core 4 but also outside the core 4. That is, in this configuration, the magnetic path M2 is an open magnetic path.
  • This configuration has an advantage that the core 4 is easy to manufacture because it is not necessary to process the core 4 by providing the attachment portion 41 or the like.
  • this configuration has an advantage that the coil 5 can be easily manufactured because the coil 5 can be manufactured simply by winding a conducting wire around the outer periphery of the core 4. That is, in this configuration, the core 4 and the coil 5 can be easily designed, so that the force sensor 2 can be easily reduced in size and thickness.
  • the core 4 may not have the hollow portion 40 as illustrated in FIG. 12B.
  • the core 4 is positioned by using the substrate 24.
  • the core 4 is positioned by a structure 27 other than the substrate 24.
  • the first plate 21 is provided with a circular through-hole 210 in the center in a plan view.
  • the second plate 22 is provided with a circular through-hole 220 in the center in a plan view.
  • These through holes 210 and 220 are used, for example, to pass the shaft portion of the bolt through the hollow portion 40 of the core 4 when detecting the tightening axial force of the bolt. Further, these through holes 210 and 220 pass the tendon 102A (see FIG.
  • the shape of the through-holes 210 and 220 is not limited to a circular shape in plan view, and may be any shape as long as it allows the shaft portion of the bolt and the tendon 102A to pass therethrough.
  • the structural body 27 is formed in a sheet shape from, for example, a metal material or a resin material, and is housed in a space surrounded by the first plate 21, the second plate 22, and the elastic body 23.
  • the structure 27 is fixed by filling the elastic body 23 in a part of the space.
  • the structure 27 is formed in an annular shape in a plan view like the substrate 24, and a central portion thereof is an annular positioning hole 270 in the plan view.
  • the core 4 is positioned at a predetermined position by fitting the core 4 into the positioning hole 270.
  • the shape of the positioning hole 270 is not limited to a circular shape in a plan view, and may be a rectangular shape in a plan view, for example. That is, the positioning hole 270 only needs to have a shape into which the core 4 is fitted.
  • the force sensor 2 does not include the substrate 24. That is, the detection circuit 3 is disposed outside the force sensor 2. Therefore, in this configuration, since it is not necessary to design a circuit such as the detection circuit 3 in the structure 27, the dimension in the thickness direction of the structure 27 can be reduced as compared with the substrate 24. Therefore, the force sensor 2 can be reduced in thickness.
  • the force sensor 2 of this application example whether or not the substrate 24 and the structure 27 are provided is arbitrary. That is, the force sensor 2 of this application example does not have to be provided with the substrate 24 and the structure 27 as long as the core 4 is positioned by the first plate 21 and the second plate 22 and the elastic body 23. However, if the configuration includes the substrate 24 and the structure 27, there is no need to provide a structure for positioning the core 4 by processing the first plate 21 and the second plate 22, and the first plate 21 and the second plate. There is an advantage that the thickness dimension of 22 can be reduced.
  • the detection circuit 3 does not include the square circuit 32 and the temperature compensation circuit 33, and the signal processing circuit 34 changes the load based on the signal output from the period measurement circuit 31.
  • the structure which detects this may be sufficient.
  • the configuration of the detection circuit 3 shown in FIG. 11 is an example, and the detection circuit 3 may be another configuration as long as it detects a load based on a change in magnetic characteristics (inductance or conductance) of the coil 5. May be.
  • the force sensor 2 and the force detection device 1 of the application example 2 are used, for example, in a ground anchor method.
  • the ground anchor method will be briefly described.
  • a ground anchor method is generally used to stabilize a structure provided on the slope.
  • the force sensor 2 of the application example 1 when used for a large member such as an anchor, it is necessary to use the core 4 having a large diameter according to the large member. However, it is difficult to increase the diameter of the core 4 without increasing the thickness of the core 4 in the thickness direction. In the force sensor 2 of Application Example 1, the core 4 can be prevented from being enlarged in the thickness direction. Absent. Therefore, when detecting the load of a large member, the force sensor 2 preferably includes a plurality of detection units 20.
  • the force sensor 2 and the force detection device 1 of the application example including the plurality of detection units 20 will be described with reference to the drawings.
  • the description of the components common to the application example 1 is omitted as appropriate.
  • the force sensor 2 of this application example includes a plurality (here, 12) of detection units 20, a first plate 21, a second plate 22, an elastic body 23, And a substrate (structure) 24. Moreover, the some detection part 20 is arrange
  • the first plate 21 is formed in a square shape in plan view as shown in FIG. 14B. Further, the second plate 22 is formed in a square shape in plan view like the first plate 21. As shown in FIG. 14A, the first plate 21 is disposed below the plurality of cores 4 in contact with the lower surfaces of the plurality (two in the drawing) of the cores 4. Further, as shown in FIG. 14A, the second plate 22 is disposed on the upper side of the plurality of cores 4 so as to be in contact with the upper surfaces of the plurality (two in the drawing) of the cores 4. That is, the first plate 21 and the second plate 22 are arranged so as to sandwich the plurality of cores 4 from both sides in the vertical direction (detection direction).
  • the first plate 21 is provided with a circular through-hole 210 in a plan view that penetrates the central portion in the vertical direction (detection direction).
  • the second plate 22 is provided with a circular through hole 220 in a plan view that penetrates the central portion in the vertical direction (detection direction).
  • the shape of the through-holes 210 and 220 is not limited to a circular shape in plan view, and may be any shape as long as it allows the shaft portion of the bolt and the tendon 102A to pass therethrough.
  • the through hole 210 is provided in the central portion of the first plate 21 and the through hole 220 is provided in the central portion of the second plate 22, but the positions where the through holes 210 and 220 are provided. It is not intended to limit. That is, the through-hole 210 may be provided so as to penetrate the first plate 21 in the vertical direction (detection direction), and the position thereof is not limited to the central portion. Similarly, the through hole 220 may be provided so as to penetrate the second plate 22 in the vertical direction (detection direction), and the position thereof is not limited to the central portion.
  • the elastic body 23 is bonded to the outer peripheral edge of the upper surface of the first plate 21 and the outer peripheral edge of the lower surface of the second plate 22, thereby connecting the first plate 21 and the second plate 22 to each other. Join. Further, as shown in FIG. 14A, the elastic body 23 is adhered to the periphery of the through hole 210 on the upper surface of the first plate 21 and the periphery of the through hole 220 on the lower surface of the second plate 22. 21 and the second plate 22 are coupled together. That is, the elastic body 23 may be configured to position between the first plate 21 and the second plate 22.
  • the substrate 24 is housed in a space surrounded by the first plate 21, the second plate 22, and the elastic body 23, as shown in FIG. 14A.
  • substrate 24 is formed in square shape by planar view, as shown to FIG. 14B.
  • a circular through hole 241 is provided in a central portion of the substrate 24 in a plan view having a diameter (for example, a diameter of 140 mm) slightly larger than the diameter of the through holes 210 and 220. Similar to the through holes 210 and 220, the through hole 241 may have any shape that allows the shaft portion of the bolt and the tendon 102A to pass therethrough.
  • the substrate 24 is fixed so that the outer peripheral edge thereof and the inner peripheral edge of the through hole 241 are in contact with the elastic body 23.
  • the substrate 24 is provided with a plurality of (in the figure, 12) positioning holes 240 around the through hole 241.
  • Each positioning hole 240 is formed in a circular shape in plan view, and is provided at equal intervals along the circumferential direction of the through hole 241.
  • the shape of the positioning hole 240 is not limited to a circular shape in a plan view, and may be a rectangular shape in a plan view as shown in FIG. 15B, for example. That is, the positioning hole 240 may have a shape into which the core 4 is fitted.
  • each positioning hole 240 is line-symmetric with respect to a reference line B1 passing through the center of the through hole 241 in a plane orthogonal to the vertical direction (detection direction). It is arranged to become.
  • Each positioning hole 240 is arranged to be point-symmetric with respect to the reference point B2 with the center of the through hole 241 as the reference point B2 on a plane orthogonal to the vertical direction (detection direction). Therefore, by arranging the core 4 in each positioning hole 240, each detection unit 20 is also arranged so as to be line-symmetric with respect to the reference line B1, and is arranged so as to be point-symmetric with respect to the reference point B2. Is done. In other words, the plurality of detection units 20 are arranged around the through holes 210 and 220.
  • each detection unit 20 is electrically connected to the detection circuit 3 individually. That is, both ends of each coil 5 are individually electrically connected to the detection circuit 3.
  • the detection circuit 3 can detect the load applied to all the cores 4 (that is, the load applied to the force sensor 2) by calculating based on the total value of the output signal levels of the detection units 20.
  • the detection circuit 3 can calculate the load applied to each detection unit 20 based on the level of the output signal of each detection unit 20. In this configuration, the detection circuit 3 can detect the distribution of the load applied to the first plate 21 or the second plate 22 by comparing the load applied to each detection unit 20. That is, in this configuration, it is possible to detect whether a load is uniformly applied to the first plate 21 or the second plate 22.
  • the detection circuit 3 can detect a load even when there is a detection unit 20 that does not include the coil 5. Therefore, in this configuration, the number of detection units 20 can be reduced according to the detection target, and the manufacturing cost can be reduced.
  • the force detection device 1 of this application example may have a configuration in which each detection unit 20 is electrically connected in series to the detection circuit 3 as shown in FIG. That is, both ends of the series circuit of each coil 5 are electrically connected to the detection circuit 3.
  • the detection circuit 3 calculates the load based on the total value of the levels of the output signals of all the detection units 20. There is an advantage that accuracy is improved.
  • this configuration has an advantage that mutual interference hardly occurs between the adjacent coils 5.
  • the anchor 100 is used to transmit the tensile force from the structure A1 to the ground.
  • the anchor 100 includes an anchor body having a function of transmitting a tensile force to the ground, an anchor head 101 for coupling the anchor 100 to the structure A1, and a tension portion that transmits the tensile force from the anchor head 101 to the anchor body. 102.
  • the anchor head 101 includes a nut 101A that is a fixing tool and an anchor plate 101B that is a bearing plate disposed on the structure A1.
  • the anchor plate 101B is provided with a hole 101C through which the tendon 102A can pass.
  • pulling part 102 is equipped with the bar-shaped tendon 102A comprised, for example by PC (Prestressed Concrete) steel strand.
  • An anchor body is mechanically connected to the first end in the longitudinal direction of the tendon 102A. Further, the second end in the longitudinal direction of the tendon 102A is tightened with the nut 101A while being passed through the hole 101C of the anchor plate 101B and the through holes 210, 220, and 241 of the force sensor 2 of this application example. .
  • the force sensor 2 of this application example is arranged in a form sandwiched between the nut 101A and the anchor plate 101B. Therefore, the force detection device 1 of this application example can detect the tensile force of the anchor 100 when the detection circuit 3 detects a load in which the nut 101A pushes down one surface of the force sensor 2.
  • the force sensor 2 and the force detection device 1 of this application example are configured to detect a load using a plurality of detection units 20 instead of a single detection unit 20. Therefore, the force sensor 2 and the force detection device 1 of this application example can reduce the diameter of the core 4 of each detection unit 20 as compared with the case where only one detection unit 20 is provided. The dimension in the thickness direction of 4 can also be reduced. Therefore, even when the force sensor 2 and the force detection device 1 of the application example are used for a large member such as the anchor 100, the thickness can be reduced.
  • the cores 4 (that is, the cores 4 included in each of the plurality of detection units 20) have the same dimension in the thickness direction (see 'T1' in FIG. 14A). Yes.
  • the force sensor 2 of this application example has the advantage that the surfaces perpendicular to the thickness direction of the cores 4 are aligned with each other, and therefore, it is easy to apply a load evenly to the cores 4 and that an uneven load is not easily generated.
  • “Equal” is an expression including “same” or “substantially identical”. Therefore, it is an error within an allowable range that the dimension in the thickness direction of each core 4 is slightly different from each other due to a manufacturing error. Note that whether or not the cores 4 have the same thickness in the thickness direction is arbitrary.
  • the detection units 20 are arranged so as to be symmetrical with respect to the reference line B1, and are symmetrical with respect to the reference point B2. Is arranged.
  • the respective cores 4 are evenly arranged on a plane perpendicular to the vertical direction (detection direction) (for example, a plane parallel to the lower surface of the first plate 21 and the upper surface of the second plate 22). Be placed. Therefore, the force sensor 2 of this application example has an advantage that a load is easily applied evenly to each core 4 and an uneven load is hardly generated.
  • each detection unit 20 may be arranged along a diagonal line of the substrate 24 as illustrated in FIG. 19A, for example. Even in this configuration, the detection units 20 are arranged symmetrically with respect to the reference line B1 and are arranged symmetrically with respect to the reference point B2. Each detection unit 20 may be arranged so as to be not symmetrical with respect to the reference point B2 although it is symmetrical with respect to the reference line B1. Further, each detection unit 20 may be arranged so as to be point-symmetric with respect to the reference point B2, although it is not line-symmetric with respect to the reference line B1.
  • each detection unit 20 may be selectively disposed in any of the plurality of positioning holes 240.
  • the plurality of detection units 20 may be arranged in a one-to-one correspondence with two or more detection positions selected from a plurality of detection positions (here, the positioning holes 240).
  • each detection part 20 may be arrange
  • the force sensor 2 of this application example the first plate 21 is provided with the through hole 210, the second plate 22 is provided with the through hole 220, and the substrate 24 is provided with the through hole 241, but the through holes 210, 220, and 241 are provided. Whether or not is provided is arbitrary. That is, the force sensor 2 of this application example has a configuration in which a plurality (nine in the drawing) of detection units 20 are arranged on a square substrate 24 in a plan view without the through-hole 241 as shown in FIG. 20A, for example. It may be. In this configuration, the first plate 21 and the second plate 22 also do not have the through holes 210 and 220, respectively.
  • the force sensor 2 of the application example includes the first plate 21 and the second plate 22 and the substrate 24 that are square in a plan view, but the first plate 21, the second plate 22, and the substrate 24 are It is not intended to limit the shape. That is, the force sensor 2 of this application example may include a first plate 21 and a second plate 22 and a substrate 24 that are semicircular in a plan view, as shown in FIG. 20B, for example. In addition, as shown in FIG. 20C, the force sensor 2 of this application example may include an annular first plate 21 and second plate 22 and a substrate 24 in plan view. 20A to 20C, the second plate 22 and the elastic body 23 are not shown.
  • the force sensor 2 of this application example is disposed between the outer shell including at least one of the first plate 21 and the second plate 22 and the substrate 24, and
  • the structure provided with the insulator 25 which electrically insulates between may be sufficient.
  • the outer shell is the first plate 21.
  • the insulator 25 is an adhesive made of a material having elasticity and insulation, for example. In this configuration, the insulation between the first plate 21 (or the second plate 22) and the substrate 24 on which a circuit such as the detection circuit 3 is designed can be improved. This is particularly effective when the first plate 21 (or the second plate 22) is formed of a metal material.
  • the insulator 25 may be an insulating sheet formed of an insulating material, or may be a coating agent formed of an insulating material and applied to one surface of the substrate 24. Moreover, the structure which provided the insulator 25 in both between the 1st plate 21 and the board
  • the force sensor 2 of this application example may have a configuration in which the coil 5 is provided by patterning a conductor along the circumferential direction of the positioning hole 240 of the substrate 24 as shown in FIG.
  • the coil 5 is configured by patterning a conductor on either the upper surface or the lower surface of the substrate 24. If the substrate 24 is a multilayer substrate, the coil 5 is configured by patterning a conductor on any layer of the substrate 24.
  • the core 4 does not need to have a thickness dimension required in order to wind a conducting wire. That is, this configuration can reduce the thickness of the core 4.
  • the core 4 which does not have the hollow part 40 is used, but the core 4 which has the hollow part 40 may be used.
  • the force sensor 2 of this application example has a configuration in which the positioning hole 240 is provided in the substrate 24, but may have a configuration in which a concave portion 242 is provided instead of the positioning hole 240 as shown in FIG.
  • the recess 242 is formed in a shape recessed downward from the upper surface of the substrate 24.
  • the shape of the recessed part 242 should just be a shape in which the core 4 fits in, and the opening may be circular shape in planar view, and another shape may be sufficient as it. Even in this configuration, the core 4 can be positioned at a predetermined position by disposing the core 4 inside the recess 242.
  • the force sensor 2 of Application Example 1 may also have a configuration in which the concave portion 242 is provided in the substrate 24 instead of the positioning hole 240.
  • the force sensor 2 of this application example may have a configuration in which the elastic body 23 is provided so as to sandwich the rigid body 26 from both sides in the vertical direction (detection direction).
  • the rigid body 26 is made of a material having higher rigidity than the elastic body 23 such as a metal material. In this configuration, the strength of the elastic body 23 with respect to the load can be improved as compared with the case where the rigid body 26 is not provided.
  • the thickness of the rigid body 26 is preferably adjustable according to the thickness of the core 4.
  • the configuration shown in FIG. 24 is a configuration in which a rigid body 26 is provided on the outer elastic body 23, but a configuration in which the rigid body 26 is also provided on the inner elastic body 23 may be used.
  • the force sensor 2 of this application example may have a configuration in which the core 4 is positioned by a structure 27 other than the substrate 24 as in the force sensor 2 of Application Example 1 (see FIGS. 25A and 25B).
  • FIG. 25B illustration of the 2nd plate 22 and the elastic body 23 is abbreviate
  • the structure 27 is accommodated in a space surrounded by the first plate 21, the second plate 22, and the elastic body 23.
  • the structure 27 is fixed by filling the elastic body 23 in a part of the space.
  • the structure 27 is formed in a square shape in plan view, like the substrate 24.
  • a circular through hole 271 in a plan view having a diameter dimension (for example, a diameter of 140 mm) slightly larger than the diameter dimension of the through holes 210 and 220 is provided in the central portion of the structure 27. It has been. Similar to the through holes 210 and 220, the through hole 271 may have a shape that allows the shaft portion of the bolt and the tendon 102A to pass therethrough.
  • the structure 27 is provided with a plurality of (12 in the drawing) positioning holes 270 around the through-hole 271.
  • Each positioning hole 270 is formed in a circular shape in plan view, and is provided at equal intervals along the circumferential direction of the through hole 271.
  • the shape of the positioning hole 270 is not limited to a circular shape in a plan view, and may be a rectangular shape in a plan view, for example. That is, the positioning hole 270 only needs to have a shape into which the core 4 is fitted.
  • the force sensor 2 can be made thin.
  • the force sensor 2 of this application example may have a structure in which the structure 27 is formed integrally with the first plate 21 (or the second plate 22).
  • the second plate 22 and the elastic body 23 are not shown.
  • the structure 27 is formed integrally with the first plate 21 (or the second plate 22) by a processing technique such as welding. Even with this configuration, the force sensor 2 can be thinned.
  • the force sensor 2 of this application example whether the substrate 24 or the structure 27 is provided is arbitrary as in the case of the force sensor 2 of Application Example 1. That is, the force sensor 2 of this application example does not have to be provided with the substrate 24 and the structure 27 as long as the core 4 is positioned by the first plate 21 and the second plate 22 and the elastic body 23. However, if the configuration includes the substrate 24 and the structure 27, there is no need to provide a structure for positioning the core 4 by processing the first plate 21 and the second plate 22, and the first plate 21 and the second plate. There is an advantage that the thickness dimension of 22 can be reduced.
  • the force sensor 2 of Application Example 3 is formed in a U shape as a whole in plan view.
  • the force sensor 2 of this application example includes a detection block 6.
  • the detection block 6 includes a first plate 21, a second plate 22, an elastic body 23, and a plurality of (here, nine) detection units 20.
  • the detection block 6 further includes a substrate (structure) 24, but whether or not the substrate 24 is included is arbitrary.
  • the detection block 6 has a circular through-hole 200 in the center in a plan view.
  • the through hole 200 is provided so as to penetrate the first plate 21, the second plate 22, and the substrate 24 in the vertical direction (detection direction).
  • the through hole 200 is a hole that connects the through hole 210 of the first plate 21 and the through hole 220 of the second plate 22 in the vertical direction.
  • the through hole 210 and the through hole 220 correspond to the through hole 200.
  • the through hole 200 is used for inserting the shaft portion of the bolt or the tendon 102A (see FIG. 28A) of the anchor 100 in the same manner as the force sensor 2 of the application example 2.
  • the shape of the through hole 200 is not limited to a circular shape in plan view, and may be any shape as long as the shaft portion of the bolt or the tendon 102A can be inserted.
  • the plurality of detection units 20 are arranged around the through hole 200. For this reason, for example, in a state where the shaft portion of the bolt is passed through the through hole 200, the nut easily faces each detection unit 20. Accordingly, when the bolt is tightened, the load by which the nut pushes down one surface of the force sensor 2 is easily transmitted to each detection unit 20.
  • the detection block 6 further has an opening 201.
  • the opening 201 is provided so as to open the through hole 200 to the outside in a direction along a plane orthogonal to the vertical direction (detection direction) (that is, a direction along the axial direction of the bolt or the radial direction of the tendon 102A). Yes.
  • the opening 201 only needs to have a width dimension (a dimension in the left-right direction in FIG. 27A) that allows the shaft portion of the bolt and the tendon 102A to pass through in the radial direction.
  • the force sensor 2 and the force detection device 1 of this application example can be used when detecting the tensile force of the anchor 100 as shown in FIGS. 28A and 28B, for example.
  • FIG. 28A illustration of the detection circuit 3 and the anchor plate 101B is omitted.
  • the force sensor 2 of this application example is attached to the anchor 100 in a state where the anchor 100 has already been constructed.
  • the anchor 100 is not removed from the structure A1.
  • the tendon 102A cannot be inserted into the through hole 200. That is, in the force sensor 2 in which the detection block 6 does not have an opening, the force sensor 2 cannot be attached to the anchor 100 unless the anchor 100 is removed from the structure A1.
  • the tendon 102A is passed through the opening 201 from the direction along the radial direction. It can be inserted into the hole 200. For this reason, in the force sensor 2 of this application example, the tendon 102A is inserted into the through-hole 200 from the opening 201 by loosening the tightening of the nut 101A and inserting the force sensor 2 into the gap between the nut 101A and the structure A1. can do.
  • the force sensor 2 of the application example can be attached to the anchor 100 without removing the anchor 100 from the structure A1, the workability can be improved.
  • the force sensor 2 of this application example can be attached to the bolt without removing the bolt, as in the case of attaching to the anchor 100.
  • the force sensor 2 of this application example may further include a closing member 7 that closes the opening 201 as shown in FIGS. 29A and 29B.
  • the blocking member 7 is formed in a rectangular shape in plan view. Similar to the detection block 6, the closing member 7 includes a first plate 21, a second plate 22, an elastic body 23, a substrate 24, and a plurality of (here, four) detection units 20. Note that whether or not the closing member 7 includes the substrate 24 is arbitrary.
  • the closing member 7 is also the detection block 60.
  • the force sensor 2 of this application example may include a plurality of detection blocks 6 and 60.
  • at least one of the plurality of detection blocks 6, 60 may also serve as the closing member 7.
  • the restricting portion 8 includes a convex portion 81 and a concave portion 82.
  • the recesses 82 are respectively provided at both ends (left and right ends in FIG. 29A) across the opening 201 of the detection block 6.
  • the convex portions 81 are provided at both ends in the longitudinal direction of the closing member 7 (left and right direction in FIG. 29A).
  • the occlusion member 7 occludes the opening 201 of the detection block 6 by fitting these projections 81 into the corresponding recesses 82 respectively. For this reason, in the force sensor 2 of this application example, the shaft portion of the bolt inserted into the through hole 200 and the tendon 102 ⁇ / b> A are difficult to come out through the opening 201.
  • the relative movement of the detection block 6 and the closing member 7 in the vertical direction is restricted by the restriction unit 8. For this reason, in the force sensor 2 of this application example, even if the detection block 6 and the closing member 7 receive a load, the vertical displacement is unlikely to occur.
  • the detection block 60 also serves as the closing member 7. For this reason, in the force sensor 2 of this application example, in addition to the function of detecting the load, the detection block 60 can have a function of closing the opening 201.
  • the restricting portion 8 is configured by providing the convex portion 81 on the elastic body 23 of the closing member 7 and the concave portion 82 on the elastic body 23 of the detection block 6. Also good. Further, for example, as shown in FIG. 31A and FIG. 31B, the restricting portion 8 includes a convex portion 81 in each of the first plate 21 and the second plate 22 of the closing member 7 and a concave portion 82 in the first plate 21 of the detection block 6. And it may be configured by being provided on each of the second plates 22. Further, the restricting portion 8 may be configured by providing the convex portion 81 in the detection block 6 and the concave portion 82 in the closing member 7.
  • the force sensor 2 of the modification 1 of the application example 3 is different from the force sensor 2 of the application example 3 in that it is formed in a Y shape in plan view as a whole as shown in FIGS. 32A and 32B.
  • the detection block 6 includes seven detection units 20.
  • the through hole 200 is formed in a triangular shape in plan view. Further, in the force sensor 2 of the present modification, the width dimension (the dimension in the left-right direction in FIG. 32A) increases from the through hole 200 toward the opening 201. For this reason, in the force sensor 2 of this modification, it is possible to insert into the through hole 200 the shaft part of various bolts and tendons 102A having different diameters.
  • the force sensor 2 and the force detection device 1 of this modification can be used when detecting the tensile force of the anchor 100 as shown in FIGS. 33A and 33B, for example.
  • FIG. 33A the detection circuit 3 and the anchor plate 101B are not shown.
  • the detection block 6 has an opening 201 as in the force sensor 2 of Application Example 3. For this reason, the force sensor 2 of this modification can produce the same effect as the force sensor 2 of the application example 3.
  • the force sensor 2 of the present modification may further include a closing member 7 (detection block 60), similar to the force sensor 2 of Application Example 3 (see FIGS. 34A and 34B).
  • the closing member 7 is different from the closing member 7 in the force sensor 2 of the application example 3 in that it includes five detection units 20, but the other configurations are the same.
  • the closing member 7 is the detection block 60, but may have other configurations.
  • the closing member 7 may have a function of closing only the opening 201 of the detection block 6 without having a function of detecting a load.
  • the closing member 7 is formed of a resin material such as a metal material or CFRP, and has a structure having rigidity equivalent to that of the core 4.
  • the closing member 7 may have a configuration having only a function of closing the opening 201 of the detection block 6 as shown in FIG. 35B, for example.
  • the detection block 6 includes a plurality of detection units 20, but may include only one detection unit 20.
  • the blocking member 7 has the same configuration as the detection block 6, it may include only one detection unit 20.
  • the detection circuit 3 individually processes the output signal of the detection unit 20 included in the detection block 6 and the output signal of the detection unit 20 included in the blocking member 7. Alternatively, they may be processed integrally.
  • the force sensor 2 of the application example 4 will be described. However, in the following, description of components common to the force sensor 2 of Application Example 3 is omitted as appropriate.
  • the force sensor 2 of this application example is formed in a square shape as a whole in plan view.
  • the force sensor 2 of this application example includes two detection blocks 61 and 62.
  • the detection blocks 61 and 62 are both formed in a rectangular shape in plan view. As with the detection block 6, each of the detection blocks 61 and 62 includes the first plate 21, the second plate 22, the elastic body 23, the substrate 24, and a plurality of (here, five) detection units 20. ing. Whether or not the detection blocks 61 and 62 include the substrate 24 is arbitrary.
  • the detection blocks 61 and 62 each have a semicircular through hole 200 and an opening 201 in plan view. As shown in FIG. 36B, the through-hole 200 constitutes a circular closed region in plan view by abutting the openings 201 of the detection blocks 61 and 62 with each other. That is, the detection block 61 also serves as the blocking member 7 when viewed from the detection block 62. Similarly, the detection block 62 also serves as the blocking member 7 when viewed from the detection block 61. In the following description, it is assumed that the detection block 62 also serves as the closing member 7.
  • the relative movement of the detection block 61 and the detection block 62 (blocking member 7) in the vertical direction (detection direction) is restricted by the restriction unit 8.
  • the restricting portion 8 is provided at the concave portion 82 provided at the first corner of the detection block 61 (upper right corner in FIG. 36A) and at the first corner of the detection block 62 (upper left corner in FIG. 36A). And a convex portion 81. Further, the restricting portion 8 includes a convex portion 81 provided at the second corner (the lower right corner in FIG. 36A) of the detection block 61 and a second corner (the lower left corner in FIG. 36A) of the detection block 62. ) Provided in the concave portion 82.
  • the restricting portion 8 may be configured by providing the elastic body 23 with a convex portion 81 and a concave portion 82. Further, as shown in FIG. 37B, for example, the restricting portion 8 is provided with a convex portion 81 in each of the first plate 21 and the second plate 22 and a concave portion 82 in each of the first plate 21 and the second plate 22. It may be configured.
  • the detection block 61 and the detection block 62 are connected to each other by a connecting portion 9.
  • the connecting portion 9 is composed of a wire 91. Of the both ends of the wire 91, the first end is mechanically connected to one end in the longitudinal direction of the detection block 61 (lower end in FIG. 36B), and the second end is one end in the longitudinal direction of the detection block 62 (lower end in FIG. 36B). ) Mechanically connected.
  • the detection blocks 61 and 62 each have an opening 201 as in the force sensor 2 of the application example 3. For this reason, in the force sensor 2 of this application example, the effect similar to the force sensor 2 of the application example 3 can be show
  • the detection block 61 and the detection block 62 are connected to each other by the wire 91 (connecting portion 9), these members are not separated. . That is, in the force sensor 2 of this application example, since the detection block 61 and the detection block 62 can be handled integrally, one of them is not lost at the construction site, and the workability can be improved. it can.
  • the connecting portion 9 is not limited to the wire 91 and may have other configurations.
  • the connecting portion 9 may be a hinge 92.
  • the hinge 92 includes a first arm portion 921, a second arm portion 922, a pin 923, and a pair of retaining rings 924.
  • the first arm portion 921 is provided so as to protrude outward from the first plate 21 of the detection block 61 (downward in FIG. 38A).
  • the second arm portion 922 is provided to protrude outward (downward in FIG. 38A) from the second plate 22 of the detection block 62.
  • the first arm portion 921 and the second arm portion 922 overlap each other in the vertical direction (detection direction).
  • Both the first arm portion 921 and the second arm portion 922 have circular holes in plan view. In these holes, round bar-like pins 923 elongated in the vertical direction (detection direction) are inserted. The pin 923 is prevented from coming off by a pair of retaining rings 924.
  • the detection block 61 and the detection block 62 are connected to each other by the hinge 92.
  • the detection blocks 61 and 62 can rotate about the pin 923 as an axis. That is, in this configuration, by rotating the detection blocks 61 and 62, the state in which the through holes 200 of the detection blocks 61 and 62 are opened to the outside and the state in which the through holes 200 are closed are alternatively selected. Can be switched.
  • the hinge 92 also functions as the restricting portion 8. That is, since the first plate 21 and the second plate 22 are sandwiched between the pair of retaining rings 924 in the vertical direction (detection direction), the relative movement in the vertical direction is restricted by the pair of retaining rings 924 of the hinge 92. Has been.
  • the restricting portion 8 includes a pair of projecting pieces 83 and 84 and a fastener 85 instead of the convex portion 81 and the concave portion 82.
  • the projecting piece 83 is provided to project outward (upward in FIG. 38A) from the first corner of the detection block 61.
  • the projecting piece 84 is provided so as to project outward (upward in FIG. 38A) from the first corner of the detection block 62.
  • the fastener 85 is made of a wire, for example. As shown in FIG. 38A, the projecting pieces 83 and 84 are fixed by a fastener 85 in a state where the detection blocks 61 and 62 are abutted with each other.
  • the restricting unit 8 has a function of holding the detection block 61 and the detection block 62 (the closing member 7) in a state where the through hole 200 is closed. For this reason, in this configuration, the force sensor 2 is unlikely to be detached from the bolt or the anchor 100.
  • the force sensor 2 of this application example includes the connecting portion 9, whether or not to include the connecting portion 9 is arbitrary. That is, in the force sensor 2 of this application example, the detection blocks 61 and 62 may be mechanically separated.
  • each of the detection blocks 61 and 62 includes a plurality of detection units 20, but may include only one detection unit 20.
  • the detection circuit 3 may individually process the output signal of the detection unit 20 included in the detection block 61 and the output signal of the detection unit 20 included in the detection block 62. However, they may be processed integrally. Further, an electrical connection between the detection block 61 and the detection block 62 may be ensured by an electric wire passing through the connecting portion 9.
  • the force sensor 2 according to the first modification of the application example 4 includes the three detection blocks 61 to 63 and does not include the connecting portion 9.
  • the force sensor 2 is different.
  • the detection blocks 61 and 63 each include three detection units 20, and the detection block 62 includes two detection units 20.
  • each of the detection blocks 61 to 63 includes a first plate 21, a second plate 22, an elastic body 23, a substrate 24, and a plurality of detection units 20. Whether or not the detection blocks 61 to 63 include the substrate 24 is arbitrary.
  • Each of the detection blocks 61 to 63 has a fan-shaped through hole 200 and an opening 201 in plan view.
  • the through-hole 200 constitutes a circular closed region in plan view by abutting the openings 201 of the detection blocks 61 to 63 with each other. That is, as viewed from any one of the plurality of detection blocks 61 to 63, the other detection blocks also serve as the blocking member 7.
  • the detection blocks 61 to 63 are each provided with a convex portion 81 and a concave portion 82. As shown in FIG. 39A, the convex portion 81 of the detection block 61 and the concave portion 82 of the detection block 63 constitute a restricting portion 8. Similarly, the convex portion 81 of the detection block 63 and the concave portion 82 of the detection block 62, and the convex portion 81 of the detection block 62 and the concave portion 82 of the detection block 61 constitute the restricting portion 8.
  • the detection blocks 61 to 63 each have an opening 201 as in the force sensor 2 of the application example 3. For this reason, in the force sensor 2 of this modification, the effect similar to the force sensor 2 of the application example 3 can be show
  • the force sensor 2 of the present modification does not include the connecting portion 9, but may include the connecting portion 9.
  • the force sensor 2 of this modification may have a configuration in which the detection block 61 and the detection block 62, and the detection block 62 and the detection block 63 are connected to each other by wires 91.
  • the connecting portion 9 may be a hinge 92 instead of the wire 91.
  • each of the detection blocks 61 to 63 includes a plurality of detection units 20, but may include only one detection unit 20.
  • the detection circuit 3 may individually process the output signals of the detection units 20 included in each of the detection blocks 61 to 63, or may process them integrally. .
  • the force sensor 2 according to the second modification of the application example 4 is configured with four detection blocks 61 to 64 and does not include the connecting portion 9.
  • the force sensor 2 is different.
  • the detection blocks 61 to 64 each include two detection units 20.
  • each of the detection blocks 61 to 64 includes the first plate 21, the second plate 22, the elastic body 23, the substrate 24, and a plurality of detection units 20. Whether or not the detection blocks 61 to 64 include the substrate 24 is arbitrary.
  • the detection blocks 61 to 64 each have a fan-shaped through hole 200 and an opening 201 in plan view. As shown in FIG. 40B, the through-hole 200 constitutes a circular closed region in plan view by abutting each opening 201 of the detection blocks 61 to 64 with each other. That is, when viewed from any one of the plurality of detection blocks 61 to 64, the other detection blocks also serve as the blocking member 7.
  • the detection blocks 61 to 64 are each provided with a convex portion 81 and a concave portion 82.
  • the convex portion 81 of the detection block 61 and the concave portion 82 of the detection block 64 constitute a restricting portion 8.
  • the convex portion 81 of the detection block 64 and the concave portion 82 of the detection block 63, the convex portion 81 of the detection block 63 and the concave portion 82 of the detection block 62, and the convex portion 81 of the detection block 62 and the concave portion 82 of the detection block 61 Respectively constitute the restricting portion 8.
  • the detection blocks 61 to 64 each have an opening 201 as in the force sensor 2 of Application Example 3. For this reason, in the force sensor 2 of this modification, the effect similar to the force sensor 2 of the application example 3 can be show
  • the force sensor 2 of the present modification does not include the connecting portion 9, but may include the connecting portion 9.
  • the force sensor 2 of the present modification may have a configuration in which the detection block 61 and the detection block 62, the detection block 62 and the detection block 63, and the detection block 63 and the detection block 64 are connected to each other by wires 91.
  • the connecting portion 9 may be a hinge 92 instead of the wire 91.
  • each of the detection blocks 61 to 64 includes a plurality of detection units 20, but may include only one detection unit 20.
  • the detection circuit 3 may individually process the output signals of the detection units 20 included in each of the detection blocks 61 to 64, or may process them integrally. .
  • At least one detection block among the plurality of detection blocks 61 to 63 may be replaced with the closing member 7.
  • the closing member 7 does not have a function of detecting a load, but has only a function of closing the opening 201 of the detection block 6.
  • the detection block 62 of the three detection blocks 61 to 63 may be replaced with the closing member 7.
  • At least one detection block among the plurality of detection blocks 61 to 64 may be replaced with the closing member 7.
  • the detection block 63 among the four detection blocks 61 to 64 may be replaced with the closing member 7.
  • the force sensor 2 of the application example 3 and the modification example 1 and the application example 4 and the modification examples 1 and 2 is, for example, between the detection block 6 and the blocking member 7 or between the plurality of detection blocks 61 to 64. You may attach to the volt
  • the coil device 50 has the following first feature.
  • the coil device 50 includes a core 4 formed in an annular shape surrounding the hollow portion 40 with a magnetic material, an electric circuit structure 51 having a bundle of a plurality of conducting wires 53, and both ends of the electric circuit structure 51. And a connection structure 52 electrically connected to the part.
  • the multiple conducting wires 53 are electrically insulated from each other.
  • the electric circuit structure 51 is hung on the core 4 through the hollow portion 40.
  • the connection structure 52 has a pair of terminals 551 and 552, and a plurality of conductors 53 are electrically connected in series between the pair of terminals 551 and 552, and the coil 5 is formed by the plurality of conductors 53. Is configured to do.
  • the coil device 50 may have the following second feature.
  • the electric circuit structure 51 is a cable in which a plurality of conductive wires 53 are covered with a covering member 513 having electrical insulation.
  • the coil device 50 may have the following third feature.
  • the electric circuit structure 51 is a flexible substrate in which a plurality of conductive wires 53 are formed on at least one surface of a base film 514 having electrical insulation and flexibility.
  • the coil device 50 may have the following fourth feature.
  • the electric circuit structure 51 is a structure in which a plurality of conductive wires 53 are formed on the surface of a molded body 515 having electrical insulation.
  • the coil device 50 may have the following fifth feature in addition to the second or third feature.
  • the coil device 50 further includes a binding member 56 that binds the electric circuit structure 51 between the core 4 and the connection structure 52.
  • the coil device 50 may have the following sixth feature in addition to any of the first to fifth features.
  • the core 4 has a mounting portion 41 having a smaller cross-sectional area than other portions in a part of the circumferential direction of the hollow portion 40, and the electric circuit structure 51 is hung on the mounting portion 41. Yes.
  • the force sensor 2 has the following seventh feature.
  • the force sensor 2 includes any one of the first to sixth coil devices 50.
  • a magnetic path M ⁇ b> 1 through which a magnetic flux generated by a current flowing between the pair of terminals 551 and 552 passes is formed along the circumferential direction of the hollow portion 40.
  • the core 4 has a load receiving portion 42 that receives a load on one surface in the intersecting direction intersecting the surface on which the magnetic path M1 is formed.
  • the force sensor 2 may have the following eighth feature in addition to the seventh feature.
  • the force sensor 2 further includes a first plate 21 and a second plate 22 disposed so as to sandwich the core 4 from both sides in the detection direction (cross direction), and an elastic body 23.
  • the elastic body 23 is formed of a material having a lower elastic modulus than the core 4 and positions between the first plate 21 and the second plate 22.
  • the force sensor 2 may have the following ninth feature in addition to the eighth feature.
  • the first plate 21, the second plate 22, the elastic body 23, and the coil device 50 constitute a detection block 6 (60 to 64).
  • the detection block 6 (60 to 64) has a through hole 200 penetrating in the crossing direction.
  • the coil device 50 is disposed around the through hole 200.
  • the detection block 6 (60 to 64) has an opening 201 that opens the through hole 200 to the outside in a direction along a plane orthogonal to the intersecting direction.
  • the force detection device 1 has the following tenth feature.
  • the force detection device 1 includes any one of the seventh to ninth force sensors 2 and a detection circuit 3 that detects a load based on a change in magnetic characteristics of the coil device 50.
  • the coil 5 is formed by a bundle of a plurality of conducting wires 53 that pass through the hollow portion 40 of the core 4. Therefore, when manufacturing the coil device 50, it is not necessary to pass the conductor wire through the hollow portion 40 of the core 4 many times as in the case of winding a single long conductor wire around the core 4. It is only necessary to pass the structure 51 once. As a result, there exists an advantage that manufacture of the coil apparatus 50 becomes easy.

Abstract

 Provided are an easily manufactured coil device, a power sensor in which said device is used, and a power-detecting device in which said device is used. A coil device (50) is provided with a core (4) annularly formed around a central part (40) in a magnetic unit, an electrical path structure (51) having a bundle of a plurality of conducting wires (53) that are electrically insulated from each other, and a connecting structure (52) electrically connected to both ends of the electrical path structure (51). The electrical path structure (51) is placed around the core (4) through the central part (40). The connecting structure (52) is configured so as to have a pair of terminals (551, 552), the plurality of conducting wires (53) being connected in series between the pair of terminals (551, 552), and a coil (5) being formed in the plurality of conducting wires (53).

Description

コイル装置、並びにそれを用いた力センサおよび力検知装置Coil device, and force sensor and force detection device using the same
 本発明は、一般にコイル装置、並びにそれを用いた力センサおよび力検知装置に関し、より詳細には、コアに導線が巻かれた構成のコイル装置、並びにそれを用いた力センサおよび力検知装置に関する。 The present invention generally relates to a coil device, and a force sensor and a force detection device using the coil device. More specifically, the present invention relates to a coil device having a configuration in which a lead wire is wound around a core, and a force sensor and a force detection device using the coil device. .
 従来、コイルを流れる電流によって磁化された磁性体の歪みに伴う透磁率の変化に基づいて、磁性体に加わる荷重を検知する磁歪式荷重センサが知られており、例えば日本国特許出願公開番号2004-226196(以下、文献1と称する)に開示されている。文献1記載の磁歪式荷重センサは、外部からの荷重を受ける強磁性体の荷重受け部と、荷重受け部の周囲に巻き回されるコイルと、荷重受け部およびコイルを収容する強磁性体のケースとから少なくとも構成されている。また、コイルは、荷重受け部の周囲に配置された樹脂から成るボビンに収納される。 2. Description of the Related Art Conventionally, a magnetostrictive load sensor that detects a load applied to a magnetic body based on a change in magnetic permeability accompanying strain of the magnetic body magnetized by a current flowing through a coil is known. For example, Japanese Patent Application Publication No. 2004 is published. -226196 (hereinafter referred to as Document 1). The magnetostrictive load sensor described in Document 1 includes a ferromagnetic load receiving portion that receives a load from the outside, a coil that is wound around the load receiving portion, and a ferromagnetic member that houses the load receiving portion and the coil. And at least a case. Further, the coil is housed in a bobbin made of resin disposed around the load receiving portion.
 荷重受け部は、ロッド形状であり、その高さ方向の中心軸を含む軸対称な領域は、貫通されて円柱形状の中空部をなしている。荷重受け部は、中空部にワイヤやケーブル等の棒状部材を密着して挿入することにより、棒状部材の軸方向に加わる荷重を受ける。 The load receiving portion has a rod shape, and an axially symmetric region including the central axis in the height direction is penetrated to form a cylindrical hollow portion. The load receiving portion receives a load applied in the axial direction of the rod-shaped member by inserting a rod-shaped member such as a wire or cable in close contact with the hollow portion.
 荷重受け部に荷重が加わると、逆磁歪効果によって荷重受け部の透磁率が変化して、コイルのインダクタンスを含む回路のインピーダンスが変化する。この磁歪式荷重センサは、このインピーダンス変化に伴うコイル両端の電圧変化を測定することで、荷重受け部の中空部に挿入される棒状部材の移動に起因する荷重を検出(検知)する。 When a load is applied to the load receiving portion, the magnetic permeability of the load receiving portion changes due to the inverse magnetostrictive effect, and the impedance of the circuit including the coil inductance changes. This magnetostrictive load sensor detects (detects) a load caused by the movement of a rod-shaped member inserted into the hollow portion of the load receiving portion by measuring a voltage change at both ends of the coil accompanying this impedance change.
 上述したような磁歪式荷重センサ(力センサ)では、磁性体およびコイルからなるコイル装置が必要であり、コイル装置の製造においては、磁性体に導線を巻き付けてコイルを形成する作業が必要である。しかし、磁性体の大きさや形状によっては磁性体に導線を巻き付ける作業は容易でなく、コイル装置の製造が容易でない、という問題がある。 In the magnetostrictive load sensor (force sensor) as described above, a coil device composed of a magnetic body and a coil is required. In manufacturing the coil device, an operation of forming a coil by winding a conductive wire around the magnetic body is necessary. . However, depending on the size and shape of the magnetic material, there is a problem that the work of winding the conductive wire around the magnetic material is not easy and the coil device is not easily manufactured.
 本発明は上記事由に鑑みてなされており、製造が容易なコイル装置、並びにそれを用いた力センサおよび力検知装置を提供することを目的とする。 The present invention has been made in view of the above reasons, and an object thereof is to provide a coil device that is easy to manufacture, and a force sensor and a force detection device using the coil device.
 本発明のコイル装置は、磁性体にて、中空部を囲む環状に形成されたコアと、互いに電気的に絶縁された複数本の導線の束を有し、前記中空部を通して前記コアに掛けられた電路構造体と、前記電路構造体の両端部に電気的に接続された接続構造体とを備え、前記接続構造体は、一対の端子を有し、前記一対の端子間において前記複数本の導線を電気的に直列に接続することにより、前記複数本の導線にてコイルを形成するように構成されていることを特徴とする。 The coil device of the present invention has a core formed in an annular shape surrounding a hollow portion and a bundle of a plurality of conductive wires electrically insulated from each other, and is hung on the core through the hollow portion. An electrical circuit structure, and a connection structure electrically connected to both ends of the electrical circuit structure, the connection structure having a pair of terminals, and the plurality of the plurality of wires between the pair of terminals. A coil is formed by the plurality of conductive wires by electrically connecting the conductive wires in series.
 本発明の力センサは、上記コイル装置を備え、前記コアには、前記一対の端子間を流れる電流によって生じる磁束が通る磁路が、前記中空部の周方向に沿って形成され、前記コアは、前記磁路が形成される面と交差する交差方向の一面に、荷重を受ける荷重受部を有することを特徴とする。 A force sensor according to the present invention includes the above coil device, and a magnetic path through which a magnetic flux generated by a current flowing between the pair of terminals passes is formed along the circumferential direction of the hollow portion. A load receiving portion for receiving a load is provided on one surface in the intersecting direction intersecting the surface on which the magnetic path is formed.
 本発明の力検知装置は、上記力センサと、前記コイル装置の磁気特性の変化に基づいて荷重を検知する検知回路とを備えることを特徴とする。 A force detection device according to the present invention includes the force sensor and a detection circuit that detects a load based on a change in magnetic characteristics of the coil device.
図1Aは、実施形態1に係るコイル装置の斜視図である。図1Bは、図1AのX-X断面図である。1A is a perspective view of a coil device according to Embodiment 1. FIG. 1B is a cross-sectional view taken along the line XX of FIG. 1A. 図2A,図2Bは、実施形態1に係るコイル装置の製造方法を示す斜視図である。2A and 2B are perspective views illustrating the method for manufacturing the coil device according to the first embodiment. 実施形態1の変形例1に係るコイル装置の斜視図である。It is a perspective view of the coil apparatus which concerns on the modification 1 of Embodiment 1. FIG. 図4Aは、実施形態2に係るコイル装置の斜視図である。図4Bは、図4AのX-X断面図である。4A is a perspective view of a coil device according to Embodiment 2. FIG. 4B is a cross-sectional view taken along the line XX of FIG. 4A. 実施形態2の変形例1に係るコイル装置の斜視図である。6 is a perspective view of a coil device according to a first modification of the second embodiment. FIG. 実施形態2の変形例2に係るコイル装置の斜視図である。It is a perspective view of the coil apparatus which concerns on the modification 2 of Embodiment 2. FIG. 実施形態3に係るコイル装置の斜視図である。It is a perspective view of the coil apparatus which concerns on Embodiment 3. FIG. 図8Aは、実施形態3に係るコイル装置の電路構造体および接続構造体のみを示す斜視図である。図8Bは、実施形態3に係るコイル装置の接続構造体を示す平面図である。FIG. 8A is a perspective view showing only the electric circuit structure and the connection structure of the coil device according to the third embodiment. FIG. 8B is a plan view illustrating the connection structure of the coil device according to the third embodiment. 図9Aは、実施形態3の変形例1に係るコイル装置の電路構造体および接続構造体のみを示す斜視図である。図9Bは、実施形態3の変形例1に係るコイル装置の接続構造体を示す平面図である。FIG. 9A is a perspective view showing only an electric circuit structure and a connection structure of a coil device according to Modification 1 of Embodiment 3. FIG. 9B is a plan view illustrating the connection structure of the coil device according to the first modification of the third embodiment. 図10Aは、適用例1に係る力センサおよび力検知装置を示す概略図である。図10Bは、適用例1に係る力センサの平面図である。図10Cは、適用例1に係る力センサの断面図である。10A is a schematic diagram illustrating a force sensor and a force detection device according to Application Example 1. FIG. FIG. 10B is a plan view of the force sensor according to the first application example. FIG. 10C is a cross-sectional view of the force sensor according to the first application example. 適用例1に係る力検知装置における検知回路の概略図である。10 is a schematic diagram of a detection circuit in a force detection device according to application example 1. FIG. 図12Aは、中空部を有するコアにおける開磁路の磁束分布を示す図である。図12Bは、中空部を有さないコアにおける開磁路の磁束分布を示す図である。FIG. 12A is a diagram illustrating a magnetic flux distribution of an open magnetic path in a core having a hollow portion. FIG. 12B is a diagram illustrating a magnetic flux distribution of an open magnetic path in a core that does not have a hollow portion. 適用例1に係る力センサにおいて、基板以外の構造体を用いた構成を示す断面図である。In the force sensor which concerns on the application example 1, it is sectional drawing which shows the structure using structures other than a board | substrate. 図14Aは、適用例2に係る力センサの断面図である。図14Bは、適用例2に係る力センサの平面図である。14A is a cross-sectional view of a force sensor according to Application Example 2. FIG. 14B is a plan view of the force sensor according to the application example 2. FIG. 図15Aは、適用例2に係る力センサにおける基板の一例を示す平面図である。図15Bは、適用例2に係る力センサにおける基板の他の一例を示す平面図である。FIG. 15A is a plan view illustrating an example of a substrate in the force sensor according to the application example 2. FIG. FIG. 15B is a plan view illustrating another example of the substrate in the force sensor according to the application example 2. 図16Aは、適用例2に係る力検知装置において、各検知部を検知回路に個別に接続した一例を示す概略図である。図16Bは、適用例2に係る力検知装置において、各検知部を検知回路に個別に接続した一例を示す概略図である。16A is a schematic diagram illustrating an example in which each detection unit is individually connected to a detection circuit in the force detection device according to Application Example 2. FIG. FIG. 16B is a schematic diagram illustrating an example in which each detection unit is individually connected to a detection circuit in the force detection device according to application example 2. 適用例2に係る力検知装置において、各検知部を検知回路に直列に接続した一例を示す概略図である。10 is a schematic diagram illustrating an example in which each detection unit is connected in series to a detection circuit in the force detection device according to Application Example 2. FIG. 適用例2に係る力センサの使用例を示す概略図である。10 is a schematic diagram illustrating a usage example of a force sensor according to Application Example 2. FIG. 図19Aは、適用例2に係る力センサにおける検知部の配置の一例を示す平面図である。図19Bは、適用例2に係る力センサにおける検知部の配置の一例を示す平面図である。FIG. 19A is a plan view illustrating an example of an arrangement of detection units in the force sensor according to the application example 2. FIG. FIG. 19B is a plan view illustrating an example of the arrangement of the detection units in the force sensor according to Application Example 2. 図20Aは、適用例2に係る力センサにおいて、正方形状の基板に検知部を配置した一例を示す平面図である。図20Bは、適用例2に係る力センサにおいて、平面視で半円環形状の基板に検知部を配置した一例を示す平面図である。図20Cは、適用例2に係る力センサにおいて、平面視で円環形状の基板に検知部を配置した一例を示す平面図である。FIG. 20A is a plan view illustrating an example in which a detection unit is arranged on a square substrate in the force sensor according to Application Example 2. FIG. 20B is a plan view illustrating an example in which the detection unit is arranged on a semi-annular substrate in plan view in the force sensor according to Application Example 2. FIG. FIG. 20C is a plan view illustrating an example in which the detection unit is arranged on an annular substrate in plan view in the force sensor according to the application example 2. 適用例2に係る力センサにおいて、絶縁体を配置した一例を示す断面図である。In the force sensor according to the application example 2, it is a cross-sectional view showing an example in which an insulator is arranged. 適用例2に係る力センサにおいて、コイルを基板に形成した一例を示す平面図である。In the force sensor which concerns on the application example 2, it is a top view which shows an example which formed the coil in the board | substrate. 適用例2に係る力センサにおいて、位置決め孔の代わりに凹部を設けた一例を示す断面図である。In the force sensor which concerns on the application example 2, it is sectional drawing which shows an example which provided the recessed part instead of the positioning hole. 適用例2に係る力センサにおいて、剛性体を配置した一例を示す断面図である。In the force sensor which concerns on the application example 2, it is sectional drawing which shows an example which has arrange | positioned the rigid body. 図25Aは、適用例2に係る力センサにおいて、基板以外の構造体を用いた構成を示す断面図である。図25Bは、適用例2に係る力センサにおいて、基板以外の構造体を用いた構成を示す平面図である。FIG. 25A is a cross-sectional view illustrating a configuration using a structure other than a substrate in the force sensor according to Application Example 2. FIG. 25B is a plan view illustrating a configuration using a structure other than a substrate in the force sensor according to the application example 2. 図26Aは、適用例2に係る力センサにおいて、基板以外の構造体を用いた他の構成を示す断面図である。図26Bは、適用例2に係る力センサにおいて、基板以外の構造体を用いた他の構成を示す平面図である。FIG. 26A is a cross-sectional view illustrating another configuration using a structure other than a substrate in the force sensor according to Application Example 2. FIG. 26B is a plan view showing another configuration using a structure other than the substrate in the force sensor according to the application example 2. 図27Aは、適用例3に係る力センサの平面図である。図27Bは、図27AのX-X断面図である。FIG. 27A is a plan view of a force sensor according to application example 3. FIG. 27B is a cross-sectional view taken along the line XX of FIG. 27A. 図28A,図28Bは、それぞれ適用例3に係る力センサの使用例を示す概略図である。FIG. 28A and FIG. 28B are schematic diagrams illustrating usage examples of the force sensor according to the application example 3, respectively. 図29A,図29Bは、それぞれ適用例3に係る力センサの閉塞部材を備えた構成の平面図である。FIG. 29A and FIG. 29B are plan views of a configuration including a force sensor blocking member according to Application Example 3, respectively. 図30A,図30Bは、それぞれ適用例3に係る力センサにおいて、弾性体に規制部を備えた構成の側面図である。FIG. 30A and FIG. 30B are side views of a configuration in which a restricting portion is provided on an elastic body in the force sensor according to Application Example 3, respectively. 図31A,図31Bは、それぞれ適用例3に係る力センサにおいて、第1プレートおよび第2プレートに規制部を備えた構成を示す側面図である。FIG. 31A and FIG. 31B are side views showing a configuration in which the first plate and the second plate are each provided with a restricting portion in the force sensor according to Application Example 3. 図32Aは、適用例3の変形例1に係る力センサの平面図である。図32Bは、図32AのX-X断面図である。32A is a plan view of a force sensor according to Modification 1 of Application Example 3. FIG. 32B is a cross-sectional view taken along the line XX of FIG. 32A. 図33A,図33Bは、それぞれ適用例3の変形例1に係る力センサの使用例を示す概略図である。33A and 33B are schematic diagrams illustrating usage examples of the force sensor according to Modification 1 of Application Example 3, respectively. 図34A,図34Bは、それぞれ適用例3の変形例1に係る力センサの閉塞部材を備えた構成の平面図である。FIG. 34A and FIG. 34B are plan views of a configuration including a force sensor closing member according to Modification 1 of Application Example 3, respectively. 図35Aは、適用例3に係る力センサにおいて、他の閉塞部材を備えた構成の平面図である。図35Bは、適用例3の変形例1に係る力センサにおいて、他の閉塞部材を備えた構成の平面図である。FIG. 35A is a plan view of a configuration in which the force sensor according to the application example 3 includes another closing member. FIG. 35B is a plan view of a configuration including another blocking member in the force sensor according to Modification 1 of Application Example 3; 図36A,図36Bは、それぞれ適用例4に係る力センサにおいて、連結部がワイヤである構成の平面図である。FIG. 36A and FIG. 36B are plan views of configurations in which the connecting portion is a wire in the force sensor according to Application Example 4, respectively. 図37Aは、適用例4に係る力センサにおいて、弾性体に規制部を備えた構成の側面図である。図37Bは、適用例4に係る力センサにおいて、第1プレートおよび第2プレートに規制部を備えた構成の側面図である。FIG. 37A is a side view of a configuration in which, in the force sensor according to the application example 4, the elastic body includes a restriction portion. FIG. 37B is a side view of a configuration in which the first plate and the second plate are provided with a restriction portion in the force sensor according to the fourth application example. 図38Aは、適用例4に係る力センサにおいて、連結部がヒンジである構成の平面図である。図38Bは、適用例4に係る力センサにおいて、連結部がヒンジである構成の側面図である。FIG. 38A is a plan view of a configuration in which the connecting portion is a hinge in the force sensor according to the fourth application example. FIG. 38B is a side view of a configuration in which the connecting portion is a hinge in the force sensor according to the fourth application example. 図39A,図39Bは、それぞれ適用例4の変形例1に係る力センサの平面図である。39A and 39B are plan views of a force sensor according to Modification 1 of Application Example 4, respectively. 図40A,図40Bは、それぞれ適用例4の変形例2に係る力センサの平面図である。40A and 40B are plan views of a force sensor according to Modification 2 of Application Example 4, respectively. 図41Aは、適用例4の変形例1に係る力センサにおいて、閉塞部材を備えた構成の平面図である。図41Bは、適用例4の変形例2に係る力センサにおいて、閉塞部材を備えた構成の平面図である。FIG. 41A is a plan view of a configuration including a blocking member in a force sensor according to Modification 1 of Application Example 4. FIG. FIG. 41B is a plan view of a configuration including a closing member in a force sensor according to Modification 2 of Application Example 4.
 以下では、本発明の実施形態に係るコイル装置、並びにそれを用いた力センサおよび力検知装置について説明する。まずはコイル装置について実施形態1~3にて説明し、さらにそれ(コイル装置)を用いた力センサおよび力検知装置について適用形態(適用例1~4)を示して説明する。ここでいう力センサおよび力検知装置は、コイル装置の磁性体の逆磁歪効果を利用して磁性体に加わる荷重を検知する力センサおよび力検知装置である。 Hereinafter, a coil device according to an embodiment of the present invention, and a force sensor and a force detection device using the coil device will be described. First, the coil device will be described in Embodiments 1 to 3, and a force sensor and a force detection device using the coil device will be described with application modes (Application Examples 1 to 4). A force sensor and a force detection device here are a force sensor and a force detection device which detect the load added to a magnetic body using the inverse magnetostriction effect of the magnetic body of a coil device.
 (実施形態1)
 (1.1)概要
 本実施形態のコイル装置50は、図1A,図1Bに示すように磁性体にて中空部40を囲む環状に形成されたコア4と、複数本の導線53の束を有する電路構造体51と、電路構造体51の両端部に電気的に接続された接続構造体52とを備える。複数本の導線53は互いに電気的に絶縁されている。電路構造体51は、中空部40を通してコア4に掛けられている。接続構造体52は、一対の端子551,552を有し、一対の端子551,552間において複数本の導線53を電気的に直列に接続して、複数本の導線53にてコイル5を形成するように構成されている。
(Embodiment 1)
(1.1) Outline As shown in FIGS. 1A and 1B, the coil device 50 according to the present embodiment includes a core 4 formed in an annular shape surrounding a hollow portion 40 with a magnetic material and a bundle of a plurality of conducting wires 53. The electric circuit structure 51 which has, and the connection structure 52 electrically connected to the both ends of the electric circuit structure 51 are provided. The multiple conducting wires 53 are electrically insulated from each other. The electric circuit structure 51 is hung on the core 4 through the hollow portion 40. The connection structure 52 has a pair of terminals 551 and 552, and a plurality of conductors 53 are electrically connected in series between the pair of terminals 551 and 552, and the coil 5 is formed by the plurality of conductors 53. Is configured to do.
 ここで、電路構造体51とコア4との関係は、電路構造体51が中空部40を通してコア4に掛けられていればよく、電路構造体51がコア4に接していてもよく、接していなくてもよい。電路構造体51が中空部40を通してコア4に掛けられている状態とは、電路構造体51が中空部40を通してコア4の一部を囲むようにコア4に取り付けられている状態を意味する。言い換えれば、電路構造体51は、コア4に対して幾重にも巻き付けられるのではなく、複数本の導線53からなるコイル5とコア4とが磁気的に結合する程度に、コア4の一部に緩く絡まるように設けられている。また、本実施形態における「端子」は、必ずしも、電線を接続するための部品として実体を有しなくてもよく、例えば電子部品のリードや、プリント基板に含まれる導体の一部であってもよい。 Here, the relationship between the electric circuit structure 51 and the core 4 suffices if the electric circuit structure 51 is hung on the core 4 through the hollow portion 40, and the electric circuit structure 51 may be in contact with or in contact with the core 4. It does not have to be. The state where the electric circuit structure 51 is hung on the core 4 through the hollow portion 40 means a state where the electric circuit structure 51 is attached to the core 4 so as to surround a part of the core 4 through the hollow portion 40. In other words, the electric circuit structure 51 is not wound around the core 4 several times, but is part of the core 4 to such an extent that the coil 5 composed of the plurality of conductive wires 53 and the core 4 are magnetically coupled. It is provided so as to be entangled loosely. In addition, the “terminal” in the present embodiment does not necessarily have an entity as a part for connecting an electric wire, for example, a lead of an electronic part or a part of a conductor included in a printed board. Good.
 すなわち、本実施形態のコイル装置50では、一本の長い導線をコア4に巻き付けてコイル5が形成されるのではなく、コア4の中空部40を通した複数本の導線53の束にてコイル5が形成されている。そのため、コイル装置50を製造するに際して、一本の長い導線をコア4に巻き付ける場合のようにコア4の中空部40に導線を何度も通す必要はなく、コア4の中空部40には複数本の導線53の束(電路構造体51)を一度通すだけでよい。その結果、コイル装置50の製造が容易になる、という利点がある。 That is, in the coil device 50 of the present embodiment, the coil 5 is not formed by winding a single long conducting wire around the core 4 but by a bundle of a plurality of conducting wires 53 that pass through the hollow portion 40 of the core 4. A coil 5 is formed. Therefore, when manufacturing the coil device 50, it is not necessary to pass the conductor wire through the hollow portion 40 of the core 4 many times as in the case of winding a single long conductor wire around the core 4. It is only necessary to pass the bundle of electric wires 53 (electric circuit structure 51) once. As a result, there exists an advantage that manufacture of the coil apparatus 50 becomes easy.
 このように構成されるコイル装置50は、後述する力センサ(および力検知装置)に限らず、例えば電流を計測するために用いられるCT(Current Transformer)センサなど、コア入りコイルとしての各種の用途に適用可能である。 The coil device 50 configured in this way is not limited to a force sensor (and a force detection device) to be described later, but various uses as a cored coil such as a CT (Current Transformer) sensor used to measure current, for example. It is applicable to.
 (1.2)具体的構成
 以下、本実施形態のコイル装置50について詳細に説明する。但し、以下に説明する構成は、本発明の一例に過ぎず、本発明は下記の実施形態に限定されることはなく、この実施形態以外であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。また、以下の説明では、コア4における中空部40の貫通方向(コア4の厚さ方向)を上下方向として説明するが、この方向はコイル装置50の使用形態を限定する趣旨ではない。
(1.2) Specific Configuration Hereinafter, the coil device 50 of the present embodiment will be described in detail. However, the configuration described below is only an example of the present invention, and the present invention is not limited to the following embodiment, and the technical idea according to the present invention is not deviated from this embodiment. Various changes can be made in accordance with the design or the like as long as they are not. Moreover, in the following description, although the penetration direction (thickness direction of the core 4) of the hollow part 40 in the core 4 will be described as the vertical direction, this direction is not intended to limit the use form of the coil device 50.
 本実施形態のコイル装置50は、図1Aに示すように、コア4と、電路構造体51と、接続構造体52とを備えている。 The coil device 50 according to the present embodiment includes a core 4, an electric circuit structure 51, and a connection structure 52 as shown in FIG. 1A.
 コア4は、例えばNi(ニッケル)-Zn(亜鉛)フェライト等の磁性体により形成されている。本実施形態のコイル装置50では、コア4は、上下方向を厚さ方向とする円盤形状に形成され、厚さ方向(上下方向)に貫通する円形状の中空部40が形成されている。言い換えれば、コア4は平面視で円環状に形成されており、中空部40を有するトロイダルコアである。なお、本実施形態のコイル装置50は、磁性体の逆磁歪効果を利用して磁性体に加わる荷重を検知する力センサに適用されるので、コア4は、コア4に荷重が加わると逆磁歪効果を奏する磁性体で形成される。逆磁歪効果とは、磁化されたコア4が荷重を加えられることで歪み、この歪みによりコア4の透磁率が変化する効果をいう。 The core 4 is made of a magnetic material such as Ni (nickel) -Zn (zinc) ferrite. In the coil device 50 of the present embodiment, the core 4 is formed in a disk shape with the vertical direction as the thickness direction, and the circular hollow portion 40 penetrating in the thickness direction (vertical direction) is formed. In other words, the core 4 is a toroidal core that is formed in an annular shape in plan view and has a hollow portion 40. In addition, since the coil apparatus 50 of this embodiment is applied to the force sensor which detects the load added to a magnetic body using the inverse magnetostriction effect of a magnetic body, the core 4 will be subjected to a reverse magnetostriction when a load is applied to the core 4. It is formed of a magnetic material that has an effect. The inverse magnetostriction effect is an effect in which the magnetized core 4 is distorted when a load is applied, and the permeability of the core 4 changes due to the distortion.
 コア4は、中空部40の周方向の一部に、他の部位よりも断面積の小さい取付部41を有しており、電路構造体51は、取付部41に掛けられている。すなわち、電路構造体51は、コア4の周方向の一部に設けられた取付部41に取り付けられている。取付部41は、コア4の他の部位(取付部41以外の部位)に比べて、断面積(中空部40の周方向に直交する断面の面積)が小さく、つまり細く形成されている。ここでは、取付部41は、コア4の厚さ方向(上下方向)およびコア4の径方向の両方について、コア4の他の部位よりも細く形成されている。このため、本実施形態のコイル装置50では、電路構造体51がコア4の厚さ方向の両面(上面および下面)から突出しないように、上下方向においてコア4の幅内に電路構造体51を収めることができる。さらに、電路構造体51がコア4から中空部40内に突出しないように、コア4の径方向においてコア4の幅内に電路構造体51を収めることができる。なお、取付部41を上記の寸法で設計するか否かは任意である。 The core 4 has a mounting part 41 having a smaller cross-sectional area than other parts in a part of the circumferential direction of the hollow part 40, and the electric circuit structure 51 is hung on the mounting part 41. That is, the electric circuit structure 51 is attached to the attachment portion 41 provided in a part of the core 4 in the circumferential direction. The mounting portion 41 has a smaller cross-sectional area (area of a cross section perpendicular to the circumferential direction of the hollow portion 40), that is, is thinner than other portions of the core 4 (portions other than the mounting portion 41). Here, the attachment portion 41 is formed to be thinner than other portions of the core 4 in both the thickness direction (vertical direction) of the core 4 and the radial direction of the core 4. For this reason, in the coil device 50 of the present embodiment, the electric circuit structure 51 is disposed within the width of the core 4 in the vertical direction so that the electric circuit structure 51 does not protrude from both surfaces (upper surface and lower surface) in the thickness direction of the core 4. Can fit. Furthermore, the electric circuit structure 51 can be accommodated within the width of the core 4 in the radial direction of the core 4 so that the electric circuit structure 51 does not protrude into the hollow portion 40 from the core 4. Note that whether or not the mounting portion 41 is designed with the above dimensions is arbitrary.
 電路構造体51は、図1Bに示すように、複数本の導線53が、電気絶縁性を有する被覆部材513で覆われたケーブルである。ここでは、一例として、ケーブル(電路構造体51)は、複数本の細線同軸ケーブルがジャケット(外皮)で覆われたフラット同軸ケーブルである。ここでいう細線同軸ケーブルは、極細の撚り線からなる中心導体(心線)が誘電体およびシールドで覆われた構造である。このフラット同軸ケーブルでは、複数本の中心導体の各々は導線53に相当し、誘電体およびジャケットが被覆部材513に相当する。なお、ここでは電路構造体51は導線53を6本有する、多芯(6芯)ケーブルである。これら6本の導線53を区別する場合には導線531~536として区別する。 As shown in FIG. 1B, the electric circuit structure 51 is a cable in which a plurality of conductive wires 53 are covered with a covering member 513 having electrical insulation. Here, as an example, the cable (electric circuit structure 51) is a flat coaxial cable in which a plurality of thin coaxial cables are covered with a jacket (skin). The thin coaxial cable here has a structure in which a central conductor (core wire) made of an extremely fine stranded wire is covered with a dielectric and a shield. In this flat coaxial cable, each of the plurality of central conductors corresponds to the conductive wire 53, and the dielectric and the jacket correspond to the covering member 513. Here, the electric circuit structure 51 is a multi-core (six-core) cable having six conductors 53. When distinguishing these six conducting wires 53, they are distinguished as conducting wires 531 to 536.
 図1Bの例では、電路構造体51は、複数本の導線53の長手方向に長い帯状に形成されている。そして、少なくとも電路構造体51の長手方向の両端部においては、複数本(ここでは6本)の導線531~536が電路構造体51の幅方向(短手方向)に沿って一列に並ぶように、複数本の細線同軸ケーブルが一体化されている。これにより、電路構造体51においては複数本の導線53の束が形成されている。電路構造体51の短手方向の寸法は、取付部41の寸法(中空部40の周方向における寸法)よりも小さい。このように構成される電路構造体51の長手方向の両端部は、接続構造体52に電気的に接続されている。 In the example of FIG. 1B, the electric circuit structure 51 is formed in a strip shape that is long in the longitudinal direction of the plurality of conductive wires 53. At least at both ends in the longitudinal direction of the electric circuit structure 51, a plurality of (here, six) conductors 531 to 536 are arranged in a line along the width direction (short direction) of the electric circuit structure 51. A plurality of thin coaxial cables are integrated. As a result, a bundle of a plurality of conducting wires 53 is formed in the electric circuit structure 51. The dimension of the electric circuit structure 51 in the short direction is smaller than the dimension of the mounting portion 41 (the dimension in the circumferential direction of the hollow portion 40). Both ends in the longitudinal direction of the electric circuit structure 51 configured as described above are electrically connected to the connection structure 52.
 なお、電路構造体51においては複数本の導線53が束ねられていればよく、電路構造体51の長手方向の両端部以外では、複数本の細線同軸ケーブル(複数本の導線53)はばらけるように設けられていてもよいし、一体化されていてもよい。本実施形態では、電路構造体51の長手方向の両端部以外で、複数本の細線同軸ケーブルがばらけるように設けられている。 In addition, in the electric circuit structure 51, the several conducting wire 53 should just be bundled, and a several thin coaxial cable (plural conducting wire 53) is scattered except the both ends of the longitudinal direction of the electric circuit structure 51. It may be provided so that it may be integrated. In the present embodiment, a plurality of thin coaxial cables are provided apart from both ends in the longitudinal direction of the electric circuit structure 51.
 電路構造体51は、長手方向の中央部がコア4の中空部40内に位置するようにコア4に通された状態で、中空部40からはみ出た部分がコア4の径方向に沿ってコア4の外方に向けて曲げられている。ここでは、電路構造体51のうち中空部40内に位置する部位を挿通部510とし、電路構造体51の長手方向における挿通部510の両側の部位を第1引出部511および第2引出部512とする。第1引出部511および第2引出部512は、挿通部510の両端縁から同じ向きに延長されており、上下方向(コア4の厚さ方向)において互いに対向する。これにより、電路構造体51は、挿通部510と第1引出部511と第2引出部512とで取付部41を囲むようにして、コア4に取り付けられる。 The electric circuit structure 51 has a portion protruding from the hollow portion 40 along the radial direction of the core 4 with the central portion in the longitudinal direction passing through the core 4 so as to be located in the hollow portion 40 of the core 4. 4 is bent outward. Here, the part located in the hollow portion 40 in the electric circuit structure 51 is defined as the insertion part 510, and the parts on both sides of the insertion part 510 in the longitudinal direction of the electric circuit structure 51 are the first extraction part 511 and the second extraction part 512. And The first lead portion 511 and the second lead portion 512 are extended in the same direction from both end edges of the insertion portion 510 and face each other in the vertical direction (the thickness direction of the core 4). Thereby, the electric circuit structure 51 is attached to the core 4 so as to surround the attachment portion 41 with the insertion portion 510, the first extraction portion 511, and the second extraction portion 512.
 なお、以下では、第1引出部511と第2引出部512との対向方向(上下方向)において、コア4から見て第1引出部511側を下方、第2引出部512側を上方として説明する。 In the following description, in the facing direction (vertical direction) of the first drawer portion 511 and the second drawer portion 512, the first drawer portion 511 side is viewed downward and the second drawer portion 512 side is viewed upward from the core 4. To do.
 接続構造体52は、本実施形態では電路構造体51の(長手方向の)両端部に電気的に接続されたコネクタ装置である。この接続構造体(コネクタ装置)52は、互いに機械的に結合されかつ電気的に接続される第1コネクタ521と第2コネクタ522とで構成されている。第1コネクタ521と第2コネクタ522とは着脱自在である。第1コネクタ521は、第1引出部511における挿通部510とは反対側の端部に電気的に接続されている。第2コネクタ522は、第2引出部512における挿通部510とは反対側の端部に電気的に接続されている。そのため、第1コネクタ521と第2コネクタ522とが互いに接続された状態では、電路構造体51の両端部同士が接続構造体52を介して機械的に結合されかつ電気的に接続されることになる。 The connection structure 52 is a connector device that is electrically connected to both ends (in the longitudinal direction) of the electric circuit structure 51 in this embodiment. The connection structure (connector device) 52 includes a first connector 521 and a second connector 522 that are mechanically coupled and electrically connected to each other. The first connector 521 and the second connector 522 are detachable. The first connector 521 is electrically connected to the end of the first lead portion 511 opposite to the insertion portion 510. The second connector 522 is electrically connected to the end of the second lead portion 512 opposite to the insertion portion 510. Therefore, in a state where the first connector 521 and the second connector 522 are connected to each other, both ends of the electric circuit structure 51 are mechanically coupled and electrically connected via the connection structure 52. Become.
 第1コネクタ521および第2コネクタ522の各々は複数の端子を有しており、複数の端子の各々には、電路構造体51の複数本の導線53が1本ずつ電気的に接続される。ここで、第1コネクタ521および第2コネクタ522の各々の端子数(コンタクト数)は、少なくとも電路構造体51の導線53の本数(ここでは6本)よりも1本多く設定されている。本実施形態では、第1コネクタ521および第2コネクタ522の各々の端子数は「7」である。これら複数の端子の各々には端子番号が割り当てられており、第1コネクタ521と第2コネクタ522とが互いに接続された状態では、同一の端子番号の端子同士が接続導体541~547を介して電気的に接続されることになる。ここで、接続導体541~547の各々は、第1コネクタ521と第2コネクタ522との間において、端子同士を電気的に接続するコンタクトからなる。以下では、接続導体541~547のうち、端子番号「n番」(nは自然数)の端子に接続される接続導体54nを、端子番号「n番」の接続導体54nという。 Each of the first connector 521 and the second connector 522 has a plurality of terminals, and a plurality of conductors 53 of the electric circuit structure 51 are electrically connected to each of the plurality of terminals one by one. Here, the number of terminals (the number of contacts) of each of the first connector 521 and the second connector 522 is set to be at least one more than the number (here, six) of the conductive wires 53 of the electric circuit structure 51. In the present embodiment, the number of terminals of each of the first connector 521 and the second connector 522 is “7”. Each of the plurality of terminals is assigned a terminal number. When the first connector 521 and the second connector 522 are connected to each other, the terminals having the same terminal number are connected via the connection conductors 541 to 547. It will be electrically connected. Here, each of the connection conductors 541 to 547 includes a contact for electrically connecting terminals between the first connector 521 and the second connector 522. Hereinafter, of the connection conductors 541 to 547, the connection conductor 54n connected to the terminal having the terminal number “n” (n is a natural number) is referred to as a connection conductor 54n having the terminal number “n”.
 電路構造体51は、第1コネクタ521と第2コネクタ522とで、導線53の接続される端子の端子番号が1つずつずれるように、接続構造体52に対して電気的に接続されている。図1Bの例では、第1コネクタ521において、「1番」の接続導体541に導線531が接続され、同様に、「2番」~「6番」の接続導体542~546に導線532~536が一対一に対応して接続されている。一方、第2コネクタ522においては、「2番」の接続導体542に導線531が接続され、同様に、「3番」~「7番」の接続導体543~547に導線532~536が一対一に対応して接続されている。 The electric circuit structure 51 is electrically connected to the connection structure 52 so that the terminal numbers of the terminals to which the conductive wires 53 are connected are shifted one by one between the first connector 521 and the second connector 522. . In the example of FIG. 1B, in the first connector 521, the conducting wire 531 is connected to the “No. 1” connection conductor 541, and similarly, the conducting wires 532 to 536 are connected to the “No. 2” to “No. 6” connection conductors 542 to 546. Are connected in a one-to-one correspondence. On the other hand, in the second connector 522, the conducting wire 531 is connected to the “second” connecting conductor 542, and similarly, the conducting wires 532 to 536 are one-to-one on the “third” to “seven” connecting conductors 543 to 547. Connected to correspond to.
 これにより、第1コネクタ521と第2コネクタ522とが接続された状態で、第2コネクタ522における「1番」の端子552と、第1コネクタ521における「7番」の端子551との間において、複数本の導線53が電気的に直列に接続されることになる。つまり、接続構造体52は、一対の端子551,552を有しており、一対の端子551,552間において複数本の導線53を電気的に直列に接続するように構成されている。 Thus, in a state where the first connector 521 and the second connector 522 are connected, between the “first” terminal 552 in the second connector 522 and the “seventh” terminal 551 in the first connector 521. The plurality of conductive wires 53 are electrically connected in series. That is, the connection structure 52 has a pair of terminals 551 and 552, and is configured to electrically connect a plurality of conductive wires 53 between the pair of terminals 551 and 552.
 具体的には、一対の端子551,552のうち一方の(第1の)端子552には、接続導体541を介して導線531の一端が電気的に接続され、導線531の他端には、接続導体542を介して導線532の一端が電気的に接続される。導線532の他端には、接続導体543を介して導線533の一端が電気的に接続され、導線533の他端には、接続導体544を介して導線534の一端が電気的に接続される。導線534の他端には、接続導体545を介して導線535の一端が電気的に接続され、導線535の他端には、接続導体546を介して導線536の一端が電気的に接続される。導線536の他端には、接続導体547を介して、一対の端子551,552のうち他方の(第2の)端子551が電気的に接続される。 Specifically, one end of the conducting wire 531 is electrically connected to one (first) terminal 552 of the pair of terminals 551 and 552 via the connecting conductor 541, and the other end of the conducting wire 531 is connected to the other end of the conducting wire 531. One end of the conducting wire 532 is electrically connected through the connection conductor 542. One end of a conducting wire 533 is electrically connected to the other end of the conducting wire 532 via a connecting conductor 543, and one end of the conducting wire 534 is electrically connected to the other end of the conducting wire 533 via a connecting conductor 544. . One end of a conducting wire 535 is electrically connected to the other end of the conducting wire 534 via a connecting conductor 545, and one end of a conducting wire 536 is electrically connected to the other end of the conducting wire 535 via a connecting conductor 546. . The other (second) terminal 551 of the pair of terminals 551 and 552 is electrically connected to the other end of the conducting wire 536 through a connection conductor 547.
 このように一対の端子551,552間において直列に接続された複数本の導線531~536は、コア4の取付部41の周囲に巻き回された1本の導線(巻線)と等価である。したがって、本実施形態の構成によれば、複数本の導線53は取付部41に取り付けられたコイル5を形成することになる。これにより、本実施形態のコイル装置50は、円環状のコア(トロイダルコア)4にコイル5が取り付けられたトロイダルコイルを構成する。ここで、導線53の本数がコイル5の巻数となるため、6本の導線53が設けられた本実施形態では、コイル5の巻数は「6」となる。 Thus, the plurality of conductive wires 531 to 536 connected in series between the pair of terminals 551 and 552 are equivalent to one conductive wire (winding) wound around the mounting portion 41 of the core 4. . Therefore, according to the configuration of the present embodiment, the plurality of conductive wires 53 form the coil 5 attached to the attachment portion 41. Thereby, the coil apparatus 50 of this embodiment comprises the toroidal coil with which the coil 5 was attached to the annular | circular shaped core (toroidal core) 4. FIG. Here, since the number of the conductive wires 53 is the number of turns of the coil 5, in the present embodiment in which the six conductive wires 53 are provided, the number of turns of the coil 5 is “6”.
 上述した構成のコイル装置50においては、一対の端子551,552がコイル5の両端に相当するため、一対の端子551,552を用いてコイル5を外部回路に電気的に接続することが可能である。例えば、一対の端子551,552に一対の接続用電線を接続することで、一対の接続用電線を介して、外部回路とコイル5との電気的な接続が実現可能である。 In the coil device 50 configured as described above, since the pair of terminals 551 and 552 correspond to both ends of the coil 5, the coil 5 can be electrically connected to an external circuit using the pair of terminals 551 and 552. is there. For example, by connecting a pair of connecting wires to the pair of terminals 551 and 552, an electrical connection between the external circuit and the coil 5 can be realized via the pair of connecting wires.
 (1.3)製造方法
 次に、上述したように構成されるコイル装置50の製造方法について、図2A,図2Bを参照して説明する。
(1.3) Manufacturing Method Next, a manufacturing method of the coil device 50 configured as described above will be described with reference to FIGS. 2A and 2B.
 まず、図2Aに示すように、両端部に接続構造体52(第1コネクタ521および第2コネクタ522)が接続された電路構造体51と、コア4とを用意する。図2Aにおいて、第1コネクタ521と第2コネクタ522との接続は解除されている。この状態で、第2コネクタ522をコア4の下方から中空部40に通すことにより、電路構造体51がコア4の中空部40を貫通した状態とする。このとき、電路構造体51がコア4のうち取付部41に掛けられるように、電路構造体51とコア4との位置関係が定められている。 First, as shown in FIG. 2A, an electric circuit structure 51 in which connection structures 52 (first connector 521 and second connector 522) are connected to both ends, and a core 4 are prepared. In FIG. 2A, the connection between the first connector 521 and the second connector 522 is released. In this state, by passing the second connector 522 through the hollow portion 40 from below the core 4, the electric circuit structure 51 passes through the hollow portion 40 of the core 4. At this time, the positional relationship between the electric circuit structure 51 and the core 4 is determined so that the electric circuit structure 51 is hung on the mounting portion 41 of the core 4.
 その後、図2Bに示すように、第1コネクタ521と第2コネクタ522とを互いに接続する。これにより、電路構造体51の両端部同士が機械的に結合されかつ電気的に接続されることになり、複数本の導線53によってコイル5が形成される。 Thereafter, as shown in FIG. 2B, the first connector 521 and the second connector 522 are connected to each other. Thereby, both ends of the electric circuit structure 51 are mechanically coupled and electrically connected, and the coil 5 is formed by the plurality of conductive wires 53.
 (1.4)効果
 以上説明した本実施形態のコイル装置50では、一本の長い導線をコア4に巻き付けてコイル5が形成されるのではなく、コア4の中空部40を通した複数本の導線53の束(電路構造体51)にてコイル5が形成されている。そのため、コイル装置50を製造するに際して、一本の長い導線をコア4に巻き付ける場合のようにコア4の中空部40に導線を何度も通す必要はなく、コア4の中空部40には複数本の導線53の束(電路構造体51)を一度通すだけでよい。その結果、コイル装置50の製造が容易になる、という利点がある。
(1.4) Effects In the coil device 50 of the present embodiment described above, a single long conducting wire is not wound around the core 4 to form the coil 5, but a plurality of wires that pass through the hollow portion 40 of the core 4. The coil 5 is formed of a bundle of conductive wires 53 (electric circuit structure 51). Therefore, when manufacturing the coil device 50, it is not necessary to pass the conductor wire through the hollow portion 40 of the core 4 many times as in the case of winding a single long conductor wire around the core 4. It is only necessary to pass the bundle of electric wires 53 (electric circuit structure 51) once. As a result, there exists an advantage that manufacture of the coil apparatus 50 becomes easy.
 すなわち、本実施形態の構成を適用することで、自動巻線機を用いた場合でも製造が困難なトロイダルコイルを手作業で簡単に製造することができる。とくに、比較的小型のコイル装置50であれば、コア4の中空部40に導線を何度も通すことは困難であるため、本実施形態の構成を適用することは有用である。 That is, by applying the configuration of the present embodiment, a toroidal coil that is difficult to manufacture even when an automatic winding machine is used can be easily manufactured manually. In particular, in the case of a relatively small coil device 50, it is difficult to pass the lead wire through the hollow portion 40 of the core 4 many times, so it is useful to apply the configuration of the present embodiment.
 さらに、このコイル装置50は、中空部40を有するコア4に対してコイル5が取り付けられた構成であるから、コイル5の通電時、コア4には中空部40の周方向に沿った磁路(磁気回路)が形成される。この磁路は、閉磁路である。したがって、このコイル装置50では、コア4から外部への磁束の漏れが生じ難いので、磁束の漏れを防ぐために強磁性体のケースを設ける必要がない。 Further, since the coil device 50 has a configuration in which the coil 5 is attached to the core 4 having the hollow portion 40, the magnetic path along the circumferential direction of the hollow portion 40 is provided in the core 4 when the coil 5 is energized. (Magnetic circuit) is formed. This magnetic path is a closed magnetic path. Therefore, in this coil device 50, since the leakage of the magnetic flux from the core 4 to the outside hardly occurs, it is not necessary to provide a ferromagnetic case to prevent the leakage of the magnetic flux.
 なお、本実施形態のように電路構造体(複数本の導線53)がコア4に緩く絡まるように取り付けられている場合、一本の長い導線をコア4に巻き付ける場合に比べて、コイル装置50の特性(インダクタンス等)の設計精度が低くなる可能性がある。ただし、後述する力センサのように、コイル装置50の特性の絶対値でなく、特性の変化(相対値)を利用する用途であれば、コイル装置50の特性の設計精度は比較的低くてもよく、本実施形態のコイル装置50で十分適用可能である。 In addition, when the electric circuit structure (the plurality of conducting wires 53) is attached so as to be loosely entangled with the core 4 as in the present embodiment, the coil device 50 is compared with the case where one long conducting wire is wound around the core 4. The design accuracy of the characteristics (inductance, etc.) may be lowered. However, if the application uses a change (relative value) of the characteristic instead of the absolute value of the characteristic of the coil device 50 as in a force sensor described later, the design accuracy of the characteristic of the coil device 50 may be relatively low. The coil device 50 of this embodiment is sufficiently applicable.
 また、本実施形態のように、電路構造体51は、複数本の導線53が、電気絶縁性を有する被覆部材513で覆われたケーブルであることが好ましい。この構成によれば、汎用のケーブルにて電路構造体51を実現できるため、コイル装置50の製造がさらに容易になる。しかも、ケーブルの芯数(心数)、つまり導線の本数によってコイル5の巻数を変更可能であり、芯数の異なるケーブルを用いることで、様々な巻数のコイルを実現することができる。 Further, as in the present embodiment, the electric circuit structure 51 is preferably a cable in which a plurality of conductive wires 53 are covered with a covering member 513 having electrical insulation. According to this configuration, since the electric circuit structure 51 can be realized by a general-purpose cable, the manufacturing of the coil device 50 is further facilitated. In addition, the number of turns of the coil 5 can be changed depending on the number of cores (number of cores) of the cable, that is, the number of conductive wires, and coils with various numbers of turns can be realized by using cables having different numbers of cores.
 また、本実施形態のように、コア4は、中空部40の周方向の一部に、他の部位よりも断面積の小さい取付部41を有し、電路構造体51は、取付部41に掛けられていることが好ましい。この構成によれば、電路構造体51がコア4の厚さ方向の両面(上面および下面)から突出しないように、コア4の厚さ方向の幅内に電路構造体51を収めることができる。さらに、電路構造体51がコア4から中空部40内に突出しないように、コア4の径方向においてコア4の幅内に電路構造体51を収めることができる。 Further, as in the present embodiment, the core 4 has a mounting portion 41 having a smaller cross-sectional area than other portions in a part of the circumferential direction of the hollow portion 40, and the electric circuit structure 51 is attached to the mounting portion 41. Preferably it is hung. According to this configuration, the electric circuit structure 51 can be contained within the width in the thickness direction of the core 4 so that the electric circuit structure 51 does not protrude from both surfaces (upper surface and lower surface) of the core 4 in the thickness direction. Furthermore, the electric circuit structure 51 can be accommodated within the width of the core 4 in the radial direction of the core 4 so that the electric circuit structure 51 does not protrude into the hollow portion 40 from the core 4.
 (1.5)変形例
 図3は、実施形態1の変形例1を示している。変形例1においては、コイル装置50は、コア4と接続構造体52との間において、電路構造体51を束ねる結束部材56をさらに備えている。図3の例では、結束部材56は帯状の粘着テープであって、中空部40の外側において、電路構造体51のうち第1引出部511と第2引出部512とを束ねている。結束部材56は、少なくとも上下方向における第1引出部511と第2引出部512との間隔を、コア4の厚さ寸法に比べて小さくするように第1引出部511と第2引出部512とを束ねていればよい。
(1.5) Modified Example FIG. 3 shows a first modified example of the first embodiment. In the first modification, the coil device 50 further includes a binding member 56 that binds the electric circuit structure 51 between the core 4 and the connection structure 52. In the example of FIG. 3, the binding member 56 is a band-shaped adhesive tape, and the first drawing portion 511 and the second drawing portion 512 of the electric circuit structure 51 are bundled outside the hollow portion 40. The binding member 56 includes a first drawing portion 511 and a second drawing portion 512 so that the distance between the first drawing portion 511 and the second drawing portion 512 in at least the vertical direction is smaller than the thickness dimension of the core 4. You just have to bundle.
 変形例1によれば、複数本の導線53を含む電路構造体51が、コア4近傍においてコア4の一部(取付部41)を囲むようなループを形成することになるので、複数本の導線53からなるコイル5とコア4との磁気的な結合度が向上する。ここで、結束部材56は、第1引出部511と第2引出部512とを密着させていることが好ましく、これによりコイル5とコア4との磁気的な結合度がさらに向上する。また、結束部材56の位置は、コア4と接続構造体52との間であればよいが、コア4に近い方が好ましい。なお、結束部材56は、コア4と接続構造体52との間において電路構造体51を束ねる構成であればよく、粘着テープに限らず、例えば結束バンドやクリップなどであってもよい。さらに、結束部材56は、第1引出部511と第2引出部512とを接着する接着剤などでもよい。 According to the first modification, the electric circuit structure 51 including the plurality of conductive wires 53 forms a loop that surrounds a part of the core 4 (attachment portion 41) in the vicinity of the core 4. The degree of magnetic coupling between the coil 5 made of the conductive wire 53 and the core 4 is improved. Here, it is preferable that the binding member 56 has the first lead portion 511 and the second lead portion 512 in close contact with each other, thereby further improving the degree of magnetic coupling between the coil 5 and the core 4. Further, the position of the binding member 56 may be between the core 4 and the connection structure 52, but is preferably closer to the core 4. The binding member 56 only needs to be configured to bundle the electric circuit structure 51 between the core 4 and the connection structure 52, and is not limited to the adhesive tape, and may be, for example, a binding band or a clip. Further, the bundling member 56 may be an adhesive or the like that adheres the first drawing portion 511 and the second drawing portion 512.
 また、実施形態1の他の変形例を以下に列挙する。 Further, other modifications of the first embodiment are listed below.
 電路構造体51は、複数本の導線53が、電気絶縁性を有する被覆部材513で覆われたケーブルであればよく、フラット同軸ケーブルに限らず、例えば汎用のフラットケーブルや丸型ケーブルなどであってもよい。さらに、ケーブルの芯数、つまり導線53の本数も6本に限らず、5本以下または7本以上であってもよい。 The electric circuit structure 51 may be a cable in which a plurality of conductive wires 53 are covered with a covering member 513 having electrical insulation, and is not limited to a flat coaxial cable, but may be, for example, a general-purpose flat cable or a round cable. May be. Further, the number of cores of the cable, that is, the number of the conductive wires 53 is not limited to 6, and may be 5 or less or 7 or more.
 また、コイル装置50は、中空部40を有するコア4に電路構造体51が掛けられた構成であればよく、円環状のコア(トロイダルコア)4を採用したトロイダルコイルに限らず、例えば矩形状や三角形状、多角形状など、各種のコア4を採用可能である。 Moreover, the coil apparatus 50 should just be the structure by which the electric circuit structure 51 was hung on the core 4 which has the hollow part 40, and is not restricted to the toroidal coil which employ | adopted the annular core (toroidal core) 4, For example, rectangular shape Various cores 4 such as a triangular shape and a polygonal shape can be employed.
 また、複数本の導線53は、コア4に対して一重巻きとなる単層構造に限らず、複層構造であってもよい。具体的には、複数本の導線53が電路構造体51の幅方向だけでなく、電路構造体51の厚さ方向に複数層設けられたフラットケーブルを用いたり、電路構造体51をコア4に対して複数回掛け回したりすることにより、複層構造が実現される。電路構造体51をコア4に対して複数回掛け回す場合でも、一本の長い導線をコア4に巻き付けて、巻数が同じコイル5を形成する場合に比べれば、コイル装置50の製造が容易になる。 Further, the plurality of conductive wires 53 are not limited to a single layer structure wound around the core 4 but may have a multilayer structure. Specifically, a flat cable in which a plurality of conductive wires 53 are provided in a plurality of layers in the thickness direction of the electric circuit structure 51 as well as in the width direction of the electric circuit structure 51, or the electric circuit structure 51 is used as the core 4. On the other hand, a multi-layer structure is realized by multiple times. Even when the electric circuit structure 51 is hung around the core 4 a plurality of times, the coil device 50 can be easily manufactured as compared with the case where one long conducting wire is wound around the core 4 to form the coil 5 having the same number of turns. Become.
 また、実施形態1では、電路構造体51はコア4の中空部40内において所定の曲率半径で曲げられているが、この構成に限らず、挿通部510と、第1引出部511および第2引出部512の各々との境界部分で略直角に折り曲げられていてもよい。この場合、電路構造体51とコア4との間の隙間(ギャップ)を小さくすることができ、複数本の導線53からなるコイル5とコア4との磁気的な結合度が向上する。 In the first embodiment, the electric circuit structure 51 is bent with a predetermined radius of curvature in the hollow portion 40 of the core 4. However, the configuration is not limited to this, and the insertion portion 510, the first extraction portion 511, and the second It may be bent at a substantially right angle at a boundary portion with each of the drawing portions 512. In this case, a gap (gap) between the electric circuit structure 51 and the core 4 can be reduced, and the degree of magnetic coupling between the coil 5 formed of the plurality of conductive wires 53 and the core 4 is improved.
 また、接続構造体52は、本実施形態では第1コネクタ521と第2コネクタ522とからなるコネクタ装置であるが、この構成に限らず、例えば端子台やプリント基板などでもよい。接続構造体52がプリント基板からなる例については、実施形態2,3にて説明する。さらに、電路構造体51の両端部同士がリード線や半田を用いた空中配線により、直接的に接続されていてもよく、この場合にはリード線や半田が接続構造体52に相当する。 In addition, the connection structure 52 is a connector device including the first connector 521 and the second connector 522 in the present embodiment, but is not limited to this configuration, and may be a terminal block, a printed circuit board, or the like. Examples in which the connection structure 52 is formed of a printed circuit board will be described in Embodiments 2 and 3. Furthermore, both ends of the electric circuit structure 51 may be directly connected to each other by aerial wiring using a lead wire or solder. In this case, the lead wire or solder corresponds to the connection structure 52.
 (実施形態2)
 本実施形態のコイル装置50は、図4A,図4Bに示すように、電路構造体51がフレキシブル基板である点で、実施形態1のコイル装置50と相違する。フレキシブル基板は、複数本の導線53が電気絶縁性および可撓性を有するベースフィルム514の少なくとも一面に形成された構造である。また、本実施形態では、接続構造体52はプリント基板である。以下、実施形態1と同様の構成については、共通の符号を付して適宜説明を省略する。
(Embodiment 2)
As shown in FIGS. 4A and 4B, the coil device 50 according to the present embodiment is different from the coil device 50 according to the first embodiment in that the electric circuit structure 51 is a flexible substrate. The flexible substrate has a structure in which a plurality of conductive wires 53 are formed on at least one surface of a base film 514 having electrical insulation and flexibility. In the present embodiment, the connection structure 52 is a printed board. Hereinafter, the same configurations as those of the first embodiment are denoted by common reference numerals, and description thereof is omitted as appropriate.
 ここでいうフレキシブル基板には、フレキシブルプリント基板(FPC:Flexible Printed Circuits)およびフレキシブルフラットケーブル(FPC:Flexible Flat Cable)が含まれている。すなわち、フレキシブル基板は、ベースフィルム514の少なくとも一面に、金属箔(例えば銅箔)からなる複数本の導線53が形成された構成であり、全体として可撓性を有する基板であればよい。なお、図4A,図4Bの例では、複数本の導線53は、ベースフィルム514の一面にのみ形成されている。 Here, the flexible board includes a flexible printed board (FPC: Flexible Printed Circuits) and a flexible flat cable (FPC: Flexible Flat Cable). That is, the flexible substrate has a configuration in which a plurality of conductive wires 53 made of metal foil (for example, copper foil) is formed on at least one surface of the base film 514, and may be a substrate having flexibility as a whole. In the example of FIGS. 4A and 4B, the plurality of conductive wires 53 are formed only on one surface of the base film 514.
 接続構造体52としてのプリント基板は、ガラスエポキシ基板などのリジッド基板である。この接続構造体(プリント基板)52は、厚さ方向の各面に複数の端子を有しており、複数の端子の各々には、電路構造体51の複数本の導線53が1本ずつ電気的に接続される。ここで、端子はプリント基板の厚さ方向の各面に形成された接続用パッド(金属箔)からなる。プリント基板の厚さ方向の両面間において端子同士を電気的に接続する接続導体541~547は、ここではスルーホール導体からなる。 The printed circuit board as the connection structure 52 is a rigid board such as a glass epoxy board. This connection structure (printed circuit board) 52 has a plurality of terminals on each surface in the thickness direction, and each of the plurality of terminals is electrically connected with a plurality of conductive wires 53 of the electric circuit structure 51. Connected. Here, the terminal is composed of a connection pad (metal foil) formed on each surface in the thickness direction of the printed board. Here, the connection conductors 541 to 547 that electrically connect the terminals between both surfaces in the thickness direction of the printed circuit board are formed of through-hole conductors.
 本実施形態においても実施形態1と同様に、「1番」の接続導体541と、「7番」の接続導体547との間において、複数本の導線53が電気的に直列に接続されている。つまり、接続構造体52は、一対の端子551,552を有しており、一対の端子551,552間において複数本の導線53を電気的に直列に接続するように構成されている。本実施形態では、「7番」の接続導体547に接続された接続用パッドが端子551を構成し、「1番」の接続導体541に接続された接続用パッドが端子552を構成する。 Also in the present embodiment, as in the first embodiment, a plurality of conductive wires 53 are electrically connected in series between the “No. 1” connection conductor 541 and the “No. 7” connection conductor 547. . That is, the connection structure 52 has a pair of terminals 551 and 552, and is configured to electrically connect a plurality of conductive wires 53 between the pair of terminals 551 and 552. In this embodiment, the connection pad connected to the “No. 7” connection conductor 547 constitutes the terminal 551, and the connection pad connected to the “No. 1” connection conductor 541 constitutes the terminal 552.
 以上説明した本実施形態の構成によれば、フレキシブル基板にて電路構造体51を実現できるため、コイル装置50の製造が容易である。しかも、電路構造体51がケーブルからなる場合に比べて、電路構造体51の薄型化が可能であり、コイル装置50のさらなる小型化(薄型化)を実現することができる。 According to the configuration of the present embodiment described above, since the electric circuit structure 51 can be realized by a flexible substrate, the coil device 50 can be easily manufactured. And compared with the case where the electric circuit structure 51 consists of a cable, the electric circuit structure 51 can be reduced in thickness, and the coil apparatus 50 can be further reduced in size (thinner).
 また、接続構造体52はプリント基板であるから、接続構造体52がコネクタ装置である場合に比べて、接続構造体52の簡略化および薄型化を図ることができる。つまり、電路構造体51と接続構造体52との間の接続形態は半田接合などで実現できるので、簡単な構成でかつ上下方向の寸法も比較的小さく抑えることができる。 Further, since the connection structure 52 is a printed circuit board, the connection structure 52 can be simplified and thinned as compared with the case where the connection structure 52 is a connector device. That is, since the connection form between the electric circuit structure 51 and the connection structure 52 can be realized by solder bonding or the like, the dimensions in the vertical direction can be kept relatively small with a simple configuration.
 (2.1)変形例
 図5は、実施形態2の変形例1を示している。変形例1においては、電路構造体51の両端部は、接続構造体52の厚さ方向の一面(上面)に接続されている。変形例1では、接続構造体52の厚さ方向の一面上であってコア4と接続構造体52とが並ぶ方向(第1引出部511および第2引出部512の延長方向)において、電路構造体51の両端部が離間して配置されている。
(2.1) Modified Example FIG. 5 illustrates a first modified example of the second embodiment. In the first modification, both ends of the electric circuit structure 51 are connected to one surface (upper surface) in the thickness direction of the connection structure 52. In the first modification, the electric circuit structure is formed on one surface in the thickness direction of the connection structure 52 and in the direction in which the core 4 and the connection structure 52 are aligned (the extension direction of the first extraction portion 511 and the second extraction portion 512). The both ends of the body 51 are spaced apart.
 図6は、実施形態2の変形例2を示している。変形例2においては、変形例1と同様に、電路構造体51の両端部は、接続構造体52の厚さ方向の一面(上面)に接続されている。変形例2では、接続構造体52の厚さ方向の一面上であってコア4と接続構造体52とが並ぶ方向(第1引出部511および第2引出部512の延長方向)と直交する方向において、電路構造体51の両端部が離間して配置されている。 FIG. 6 shows a second modification of the second embodiment. In the second modification, as in the first modification, both ends of the electric circuit structure 51 are connected to one surface (upper surface) in the thickness direction of the connection structure 52. In the second modification, a direction that is on one surface in the thickness direction of the connection structure 52 and is orthogonal to the direction in which the core 4 and the connection structure 52 are arranged (extension direction of the first extraction portion 511 and the second extraction portion 512). , The both ends of the electric circuit structure 51 are spaced apart.
 なお、これら第1および変形例2では、端子はプリント基板の厚さ方向の一面に形成された接続用パッド(金属箔)からなる。プリント基板の厚さ方向の一面において端子同士を電気的に接続する接続導体は、プリント基板の厚さ方向の一面に形成された金属箔(例えば銅箔)からなる。つまり、接続構造体52は片面プリント基板からなる。このような構成の接続構造体52については、実施形態3にて詳述する。 In the first and second modifications, the terminal is composed of a connection pad (metal foil) formed on one surface in the thickness direction of the printed board. A connection conductor that electrically connects terminals on one surface in the thickness direction of the printed board is made of a metal foil (for example, copper foil) formed on one surface in the thickness direction of the printed board. That is, the connection structure 52 is composed of a single-sided printed board. The connection structure 52 having such a configuration will be described in detail in the third embodiment.
 その他の構成および機能は実施形態1と同様である。また、実施形態2で説明した構成(変形例を含む)は、実施形態1で説明した構成(変形例を含む)と適宜組み合わせて適用可能である。 Other configurations and functions are the same as those in the first embodiment. Further, the configuration (including the modification) described in the second embodiment can be applied in appropriate combination with the configuration (including the modification) described in the first embodiment.
 (実施形態3)
 本実施形態のコイル装置50は、図7および図8A,図8Bに示すように、電路構造体51が成形体515を有する構造である点で、実施形態2のコイル装置50と相違する。この電路構造体51は、複数本の導線53が、電気絶縁性を有する成形体515の表面に形成された構造である。以下、実施形態2と同様の構成については、共通の符号を付して適宜説明を省略する。
(Embodiment 3)
The coil device 50 according to the present embodiment is different from the coil device 50 according to the second embodiment in that the electric circuit structure 51 has a molded body 515 as shown in FIGS. 7, 8 </ b> A, and 8 </ b> B. The electric circuit structure 51 has a structure in which a plurality of conductive wires 53 are formed on the surface of a molded body 515 having electrical insulation. Hereinafter, the same configurations as those of the second embodiment are denoted by common reference numerals, and the description thereof is omitted as appropriate.
 本実施形態における電路構造体51は、樹脂やセラミックスからなる成形体515の表面に立体的に金属箔(例えば銅箔)にて複数本の導線53を形成した成形回路部品(MID:Molded Interconnect Devices)である。ここで、成形体515は、挿通部510と、第1引出部511および第2引出部512の各々とが略直交し、かつ第1引出部511と第2引出部512とが互いに平行となるように形成されている。これにより、成形体515は、接続構造体52としてのプリント基板の一面に実装された状態で、接続構造体52との間に空間を形成する。この空間には、コア4の一部(取付部41)が位置することになる。 In the present embodiment, the electric circuit structure 51 is a molded circuit component (MID: Molded Interconnect Devices) in which a plurality of conductive wires 53 are three-dimensionally formed of metal foil (for example, copper foil) on the surface of a molded body 515 made of resin or ceramic. ). Here, in the molded body 515, the insertion portion 510 and each of the first extraction portion 511 and the second extraction portion 512 are substantially orthogonal, and the first extraction portion 511 and the second extraction portion 512 are parallel to each other. It is formed as follows. Thus, the molded body 515 forms a space between the molded body 515 and the connection structure 52 in a state where the molded body 515 is mounted on one surface of the printed board as the connection structure 52. In this space, a part of the core 4 (attachment portion 41) is located.
 複数本の導線53(ここでは4本の導線531~534)は、図8Aに示すように、成形体515のうち中空部40の周方向に直交する一端面、つまり電路構造体51の幅方向の一端面に形成されている。 As shown in FIG. 8A, a plurality of conductive wires 53 (here, four conductive wires 531 to 534) are formed on one end surface of the molded body 515 orthogonal to the circumferential direction of the hollow portion 40, that is, in the width direction of the electric circuit structure 51. It is formed on one end face of.
 また、本実施形態の接続構造体52は、厚さ方向の一面に端子としての接続用パッド(金属箔)571~578が形成された片面プリント基板である。これら複数の接続用パッド571~578には、電路構造体51の両端部において、複数本の導線53が半田等により接続される。本実施形態では、接続導体541~543は、プリント基板の厚さ方向の一面に形成された金属箔(例えば銅箔)からなる。これら接続導体541~543は、電路構造体51の一端部に接続された接続用パッド571~574と、電路構造体51の他端部に接続された接続用パッド575~578とを電気的に接続する。 Further, the connection structure 52 of the present embodiment is a single-sided printed board in which connection pads (metal foils) 571 to 578 as terminals are formed on one surface in the thickness direction. A plurality of conductive wires 53 are connected to the plurality of connection pads 571 to 578 at both ends of the electric circuit structure 51 by solder or the like. In the present embodiment, the connection conductors 541 to 543 are made of metal foil (for example, copper foil) formed on one surface in the thickness direction of the printed board. The connection conductors 541 to 543 electrically connect the connection pads 571 to 574 connected to one end of the electric circuit structure 51 and the connection pads 575 to 578 connected to the other end of the electric circuit structure 51. Connecting.
 ここでは、導線534に電気的に接続された接続用パッド574が端子551を構成し、導線531に電気的に接続された接続用パッド575が端子552を構成する。接続導体541~543は、一対の端子551,552間において複数本の導線53が電気的に直列に接続されるように、接続用パッド571~573と接続用パッド576~578とを一対一で電気的に接続する。つまり、電路構造体51の一端部に接続された接続用パッド571~574と、電路構造体51の他端部に接続された接続用パッド575~578とは、1つずつずらして接続導体541~543にて接続される。 Here, the connection pad 574 electrically connected to the conductor 534 constitutes the terminal 551, and the connection pad 575 electrically connected to the conductor 531 constitutes the terminal 552. The connection conductors 541 to 543 have a one-to-one connection between the connection pads 571 to 573 and the connection pads 576 to 578 so that the plurality of conductive wires 53 are electrically connected in series between the pair of terminals 551 and 552. Connect electrically. That is, the connection pads 571 to 574 connected to one end of the electric circuit structure 51 and the connection pads 575 to 578 connected to the other end of the electric circuit structure 51 are shifted one by one from each other. To 543.
 以上説明した本実施形態の構成によれば、成形回路部品にて電路構造体51を実現できるため、コイル装置50の製造が容易である。しかも、電路構造体51がケーブルからなる場合に比べて、複数本の導線53間の間隔を狭めることが可能であり、導線53の本数を増やすことができる。 According to the configuration of the present embodiment described above, since the electric circuit structure 51 can be realized by the molded circuit component, the coil device 50 can be easily manufactured. In addition, as compared with the case where the electric circuit structure 51 is made of a cable, it is possible to reduce the interval between the plurality of conductive wires 53 and increase the number of the conductive wires 53.
 (3.1)変形例
 図9A,図9Bは、実施形態3の変形例を示している。本変形例においては、複数本の導線53(ここでは5本の導線531~535)は、成形体515の外周面に形成されている。つまり、複数本の導線53は、中空部40の周方向に沿って並ぶように配置されている。
(3.1) Modified Example FIGS. 9A and 9B illustrate a modified example of the third embodiment. In the present modification, a plurality of conductive wires 53 (here, five conductive wires 531 to 535) are formed on the outer peripheral surface of the molded body 515. That is, the multiple conducting wires 53 are arranged so as to be aligned along the circumferential direction of the hollow portion 40.
 接続構造体52において、接続導体541~544は、電路構造体51の一端部に接続された接続用パッド571~575と、電路構造体51の他端部に接続された接続用パッド576~580とを電気的に接続する。ここでは、導線535に電気的に接続された接続用パッド575が端子551を構成し、導線531に電気的に接続された接続用パッド576が端子552を構成する。接続導体541~544は、一対の端子551,552間において複数本の導線53が電気的に直列に接続されるように、接続用パッド571~574と接続用パッド577~580とを一対一で電気的に接続する。つまり、電路構造体51の一端部に接続された接続用パッド571~575と、電路構造体51の他端部に接続された接続用パッド576~580とは、1つずつずらして接続導体541~544にて接続される。 In the connection structure 52, the connection conductors 541 to 544 include connection pads 571 to 575 connected to one end of the electric circuit structure 51 and connection pads 576 to 580 connected to the other end of the electric circuit structure 51. And electrically connect. Here, the connection pad 575 electrically connected to the conductive wire 535 constitutes the terminal 551, and the connection pad 576 electrically connected to the conductive wire 531 constitutes the terminal 552. The connection conductors 541 to 544 have a one-to-one connection between the connection pads 571 to 574 and the connection pads 577 to 580 so that the plurality of conductive wires 53 are electrically connected in series between the pair of terminals 551 and 552. Connect electrically. That is, the connection pads 571 to 575 connected to one end of the electric circuit structure 51 and the connection pads 576 to 580 connected to the other end of the electric circuit structure 51 are shifted one by one from each other, and the connection conductor 541 is shifted. To 544.
 その他の構成および機能は実施形態2と同様である。また、実施形態3で説明した構成(変形例を含む)は、実施形態1で説明した構成(変形例を含む)と適宜組み合わせて適用可能である。 Other configurations and functions are the same as those in the second embodiment. Further, the configuration (including the modification) described in the third embodiment can be applied in appropriate combination with the configuration (including the modification) described in the first embodiment.
 (適用形態)
 以下、図10~図42を参照して、上記各実施形態で説明したコイル装置50を用いた力センサ2および力検知装置1について説明する。ここでいう力センサ2および力検知装置1は、コイル装置50の磁性体(コア4)の逆磁歪効果を利用して磁性体(コア4)に加わる荷重を検知する。
(Application form)
Hereinafter, the force sensor 2 and the force detection device 1 using the coil device 50 described in each of the above embodiments will be described with reference to FIGS. The force sensor 2 and the force detection device 1 here detect a load applied to the magnetic body (core 4) by using the inverse magnetostriction effect of the magnetic body (core 4) of the coil device 50.
 以下の適用例に示す力センサ2は、上記各実施形態で説明したコイル装置50を検知部20として備えている。この力センサ2において、コア4には、一対の端子551,552間を流れる電流によって生じる磁束が通る磁路M1(図10B参照)が、中空部40の周方向に沿って形成される。コア4は、磁路M1が形成される面と交差する交差方向(上下方向)の一面に、荷重を受ける荷重受部42(図10B参照)を有する。つまり、この力センサ2においては、磁路M1が形成される面と交差する「交差方向」が、荷重の検知方向となるので、以下では「交差方向」を「検知方向」ともいう。 The force sensor 2 shown in the following application example includes the coil device 50 described in each of the above embodiments as the detection unit 20. In the force sensor 2, a magnetic path M <b> 1 (see FIG. 10B) through which a magnetic flux generated by a current flowing between the pair of terminals 551 and 552 passes is formed in the core 4 along the circumferential direction of the hollow portion 40. The core 4 has a load receiving portion 42 (see FIG. 10B) that receives a load on one surface in the intersecting direction (vertical direction) intersecting the surface on which the magnetic path M1 is formed. That is, in this force sensor 2, since the “crossing direction” that intersects the surface on which the magnetic path M1 is formed becomes the load detection direction, the “crossing direction” is also referred to as “detection direction” below.
 また、以下の適用例に示す力センサ2は、検知方向(交差方向)の両側からコア4を挟むように配置される第1プレート21(図10C参照)および第2プレート22(図10C参照)と、弾性体23(図10C参照)とをさらに備える。弾性体23は、コア4よりも弾性率の低い材料で形成され、第1プレート21および第2プレート22の両者間を位置決めする。ただし、上記各実施形態で説明したコイル装置50を用いた力センサ2において、第1プレート、第2プレート、および弾性体23は必須の構成ではなく、適宜省略可能である。 Further, the force sensor 2 shown in the following application example includes a first plate 21 (see FIG. 10C) and a second plate 22 (see FIG. 10C) that are arranged so as to sandwich the core 4 from both sides in the detection direction (crossing direction). And an elastic body 23 (see FIG. 10C). The elastic body 23 is formed of a material having a lower elastic modulus than the core 4 and positions between the first plate 21 and the second plate 22. However, in the force sensor 2 using the coil device 50 described in the above embodiments, the first plate, the second plate, and the elastic body 23 are not essential components and can be omitted as appropriate.
 また、以下の適用例に示す力検知装置1(図10A参照)は、力センサ2と、検知回路3(図10A参照)とを備えている。検知回路3は、コイル5の磁気特性(インダクタンスまたはコンダクタンス)の変化に基づいて荷重を検知する。 Further, the force detection device 1 (see FIG. 10A) shown in the following application example includes a force sensor 2 and a detection circuit 3 (see FIG. 10A). The detection circuit 3 detects a load based on a change in the magnetic characteristics (inductance or conductance) of the coil 5.
 (適用例1)
 適用例1の力検知装置1は、図10Aに示すように、力センサ2と、検知回路3とを備えている。また、適用例1の力センサ2は、図10A~図10Cに示すように、検知部20と、第1プレート21と、第2プレート22と、弾性体23と、基板(構造体)24とを備えている。なお、図10Bでは、第2プレート22および弾性体23の図示を省略している。
(Application example 1)
The force detection device 1 of the application example 1 includes a force sensor 2 and a detection circuit 3 as illustrated in FIG. 10A. Further, as shown in FIGS. 10A to 10C, the force sensor 2 of the application example 1 includes a detection unit 20, a first plate 21, a second plate 22, an elastic body 23, a substrate (structure) 24, and the like. It has. In FIG. 10B, illustration of the second plate 22 and the elastic body 23 is omitted.
 検知部20は、図10Aに示すように、磁性体で形成されるコア4と、コア4と磁気的に結合するコイル5とを備える。すなわち、検知部20は、上記各実施形態で説明したコイル装置50にて構成されている。 As shown in FIG. 10A, the detection unit 20 includes a core 4 formed of a magnetic material and a coil 5 that is magnetically coupled to the core 4. That is, the detection unit 20 is configured by the coil device 50 described in the above embodiments.
 コア4の内部には、図10Bに示すように、コイル5の通電時に生じる磁束が通る。このため、コア4には、中空部40の周方向に沿った磁路(磁気回路)M1が形成される。この磁路M1は、閉磁路である。したがって、本適用例の力センサ2では、コア4から外部への磁束の漏れが生じ難いので、磁束の漏れを防ぐために強磁性体のケースを設ける必要がない。 The magnetic flux generated when the coil 5 is energized passes through the core 4 as shown in FIG. 10B. For this reason, a magnetic path (magnetic circuit) M <b> 1 along the circumferential direction of the hollow portion 40 is formed in the core 4. This magnetic path M1 is a closed magnetic path. Therefore, in the force sensor 2 of this application example, since the leakage of the magnetic flux from the core 4 to the outside hardly occurs, it is not necessary to provide a ferromagnetic case in order to prevent the leakage of the magnetic flux.
 第1プレート21および第2プレート22は、何れも例えば金属材料で形成される板状の部材である。第1プレート21は、図10Bに示すように、平面視で円形状に形成されている。また、第2プレート22は、第1プレート21と同様に平面視で円形状に形成されている。第1プレート21は、図10Cに示すように、コア4の下面に接する形でコア4の下側に配置される。また、第2プレート22は、図10Cに示すように、コア4の上面に接する形でコア4の上側に配置される。つまり、第1プレート21および第2プレート22は、上下方向(検知方向)の両側からコア4を挟むように配置される。 The first plate 21 and the second plate 22 are both plate-like members formed of, for example, a metal material. As shown in FIG. 10B, the first plate 21 is formed in a circular shape in plan view. Further, the second plate 22 is formed in a circular shape in a plan view like the first plate 21. As shown in FIG. 10C, the first plate 21 is disposed on the lower side of the core 4 so as to be in contact with the lower surface of the core 4. Moreover, the 2nd plate 22 is arrange | positioned at the upper side of the core 4 in the form which contact | connects the upper surface of the core 4, as shown to FIG. 10C. That is, the first plate 21 and the second plate 22 are arranged so as to sandwich the core 4 from both sides in the vertical direction (detection direction).
 なお、第1プレート21および第2プレート22の形状は、平面視で円形状に限定されず、例えば平面視で矩形状や円環形状であってもよい。また、第1プレート21および第2プレート22は、想定される荷重に耐え得る強度を有していればよい。さらに、第1プレート21および第2プレート22は金属材料で形成されていなくてもよく、例えばCFRP(Carbon-Fiber-Reinforced Plastic:炭素繊維強化プラスチック)等の樹脂材料で形成されていてもよい。 In addition, the shape of the 1st plate 21 and the 2nd plate 22 is not limited to circular shape by planar view, For example, rectangular shape and annular | circular shape may be sufficient by planar view. Moreover, the 1st plate 21 and the 2nd plate 22 should just have the intensity | strength which can endure the assumed load. Further, the first plate 21 and the second plate 22 may not be formed of a metal material, and may be formed of a resin material such as CFRP (Carbon-Fiber-Reinforced Plastic).
 弾性体23は、例えばエポキシ樹脂やシリコーン樹脂を主成分とする接着剤である。弾性体23は、第1プレート21の上面の外周縁と、第2プレート22の下面の外周縁とに接着することで、第1プレート21および第2プレート22を互いに結合する。弾性体23は、接着剤に限定されず、コア4を形成する材料よりも弾性率の低い材料で形成されていればよい。また、弾性体23は、第1プレート21および第2プレート22の両者間を位置決めする構成であればよい。 The elastic body 23 is an adhesive mainly composed of, for example, an epoxy resin or a silicone resin. The elastic body 23 bonds the first plate 21 and the second plate 22 to each other by adhering to the outer peripheral edge of the upper surface of the first plate 21 and the outer peripheral edge of the lower surface of the second plate 22. The elastic body 23 is not limited to the adhesive, and may be formed of a material having a lower elastic modulus than the material forming the core 4. Moreover, the elastic body 23 should just be the structure which positions between both the 1st plate 21 and the 2nd plate 22. FIG.
 基板24は、図10Cに示すように、第1プレート21および第2プレート22、並びに弾性体23で囲まれる空間内に収納されている。基板24は、その外周縁が弾性体23に接することで固定されている。また、基板24は、図10Cに示すように平面視で円環形状に形成されており、その中央部は、コア4の径寸法よりも僅かに大きい径寸法を有する平面視で円形状の位置決め孔240となっている。この位置決め孔240にコア4が嵌まり込むことで、コア4が所定の位置に位置決めされる。言い換えれば、基板(構造体)24は、第1プレート21および第2プレート22の間に配置され、検知部20を所定の位置に位置決めするための部材である。また、基板(構造体)24は、上下方向(検知方向)に貫通する位置決め孔240を有している。そして、コア4が、位置決め孔240の内側に配置される。なお、位置決め孔240の形状は、平面視で円形状に限定されず、例えば平面視で矩形状であってもよい。つまり、位置決め孔240は、コア4が嵌まり込む形状であればよい。 The substrate 24 is accommodated in a space surrounded by the first plate 21, the second plate 22, and the elastic body 23, as shown in FIG. 10C. The substrate 24 is fixed by the outer peripheral edge thereof being in contact with the elastic body 23. Further, the substrate 24 is formed in an annular shape in a plan view as shown in FIG. 10C, and its central portion has a circular positioning in a plan view having a diameter slightly larger than the diameter of the core 4. It is a hole 240. The core 4 is positioned at a predetermined position by fitting the core 4 into the positioning hole 240. In other words, the substrate (structure) 24 is a member that is disposed between the first plate 21 and the second plate 22 and positions the detection unit 20 at a predetermined position. The substrate (structure) 24 has a positioning hole 240 penetrating in the vertical direction (detection direction). The core 4 is disposed inside the positioning hole 240. The shape of the positioning hole 240 is not limited to a circular shape in a plan view, and may be a rectangular shape in a plan view, for example. That is, the positioning hole 240 may have a shape into which the core 4 is fitted.
 検知回路3は、図11に示すように、発振回路30と、周期計測回路31と、二乗回路32と、温度補償回路33と、信号処理回路34とを備えている。発振回路30は、コイル5を含む共振回路35の発振を維持するように構成されている。また、発振回路30は、共振回路35の共振周波数に対応する周波数で発振する発振信号を出力するように構成されている。周期計測回路31は、発振回路30から出力される発振信号の周期を計測し、計測した周期に対応する信号を出力するように構成されている。二乗回路32は、周期計測回路31から出力される信号の二乗値を演算して出力するように構成されている。温度補償回路33は、温度補償処理により、二乗回路32から出力される信号の温度変動を抑制するように構成されている。信号処理回路34は、温度補償回路33から出力される信号に基づいて、コア4に加わる荷重の変化を検知するように構成されている。 As shown in FIG. 11, the detection circuit 3 includes an oscillation circuit 30, a period measurement circuit 31, a square circuit 32, a temperature compensation circuit 33, and a signal processing circuit 34. The oscillation circuit 30 is configured to maintain the oscillation of the resonance circuit 35 including the coil 5. The oscillation circuit 30 is configured to output an oscillation signal that oscillates at a frequency corresponding to the resonance frequency of the resonance circuit 35. The period measurement circuit 31 is configured to measure the period of the oscillation signal output from the oscillation circuit 30 and output a signal corresponding to the measured period. The square circuit 32 is configured to calculate and output the square value of the signal output from the period measurement circuit 31. The temperature compensation circuit 33 is configured to suppress temperature fluctuation of the signal output from the squaring circuit 32 by temperature compensation processing. The signal processing circuit 34 is configured to detect a change in load applied to the core 4 based on a signal output from the temperature compensation circuit 33.
 共振回路35の等価回路は、図11に示すように、インダクタL1および抵抗R1の直列回路と、キャパシタC1との並列回路とで構成される。ここでは、インダクタL1のインダクタンスは、コイル5のインダクタンスと等価である。また、抵抗R1の抵抗値は、コイル5の巻線抵抗の抵抗値と等価である。また、キャパシタC1の容量値は、コイル5の寄生容量の容量値と等価である。なお、共振回路35は、コイル5と並列にキャパシタを電気的に接続することで構成してもよい。 As shown in FIG. 11, the equivalent circuit of the resonance circuit 35 includes a series circuit of an inductor L1 and a resistor R1 and a parallel circuit of a capacitor C1. Here, the inductance of the inductor L1 is equivalent to the inductance of the coil 5. Further, the resistance value of the resistor R1 is equivalent to the resistance value of the winding resistance of the coil 5. Further, the capacitance value of the capacitor C1 is equivalent to the capacitance value of the parasitic capacitance of the coil 5. The resonance circuit 35 may be configured by electrically connecting a capacitor in parallel with the coil 5.
 本適用例の力センサ2では、検知回路3は、基板24に電子部品を実装することで構成されている。言い換えれば、基板(構造体)24には、回路(検知回路3)が形成されている。つまり、本適用例の力検知装置1では、力センサ2と一体に検知回路3が設けられている。なお、検知回路3は基板24に設けられる必要はなく、基板24とは別体で設けられていてもよい。更に、検知回路3は、例えば力センサ2の外部の基板に設けられていてもよい。すなわち、本適用例の力検知装置1では、力センサ2と別体に検知回路3が設けられていてもよい。 In the force sensor 2 of this application example, the detection circuit 3 is configured by mounting electronic components on the substrate 24. In other words, a circuit (detection circuit 3) is formed on the substrate (structure) 24. That is, in the force detection device 1 of this application example, the detection circuit 3 is provided integrally with the force sensor 2. Note that the detection circuit 3 does not need to be provided on the substrate 24 and may be provided separately from the substrate 24. Further, the detection circuit 3 may be provided on a substrate outside the force sensor 2, for example. That is, in the force detection device 1 of this application example, the detection circuit 3 may be provided separately from the force sensor 2.
 以下、本適用例の力センサ2および力検知装置1の動作について説明する。先ず、外部の電源からコイル5に電流を供給することで、コア4が磁化され、磁路M1が形成される。ここでは、検知回路3の発振回路30がコイル5に電流を供給する。 Hereinafter, operations of the force sensor 2 and the force detection device 1 of the application example will be described. First, by supplying a current from an external power source to the coil 5, the core 4 is magnetized and the magnetic path M1 is formed. Here, the oscillation circuit 30 of the detection circuit 3 supplies a current to the coil 5.
 次に、第1プレート21の下面に上向きに荷重(図10Cに示す上向きの矢印参照)が加わると、弾性体23が撓むことにより第1プレート21が押し上げられ、第1プレート21を介してコア4に荷重が加わる。すると、逆磁歪効果により、荷重の大きさに応じてコア4の透磁率が変化するため、コイル5のインダクタンスが変化する。同様に、第2プレート22の上面に下向きに荷重(図10Cに示す下向きの矢印参照)が加わると、弾性体23が撓むことにより第2プレート22が押し下げられ、第2プレート22を介してコア4に荷重が加わる。このとき、コア4においては、磁路M1が形成される面と交差する検知方向の一面(ここでは上面)からなる荷重受部42(図10B参照)にて、荷重を受けることになる。この場合も、荷重の大きさに応じてコイル5のインダクタンスが変化する。つまり、本適用例の力センサ2では、コア4(検知部20)は、上下方向(検知方向)に沿う向きに第1プレート21および第2プレート22からかかる荷重を受けるように構成されている。 Next, when an upward load is applied to the lower surface of the first plate 21 (see the upward arrow shown in FIG. 10C), the first plate 21 is pushed up due to the elastic body 23 being bent, and the first plate 21 passes through the first plate 21. A load is applied to the core 4. Then, due to the inverse magnetostriction effect, the magnetic permeability of the core 4 changes according to the magnitude of the load, so that the inductance of the coil 5 changes. Similarly, when a downward load (see the downward arrow shown in FIG. 10C) is applied to the upper surface of the second plate 22, the second plate 22 is pushed down by the elastic body 23 being bent, and the second plate 22 passes through the second plate 22. A load is applied to the core 4. At this time, in the core 4, the load is received by the load receiving portion 42 (see FIG. 10B) composed of one surface (here, the upper surface) in the detection direction intersecting the surface on which the magnetic path M <b> 1 is formed. Also in this case, the inductance of the coil 5 changes according to the magnitude of the load. That is, in the force sensor 2 of this application example, the core 4 (detection unit 20) is configured to receive a load applied from the first plate 21 and the second plate 22 in a direction along the vertical direction (detection direction). .
 コイル5のインダクタンスが変化すると、コイル5を含む共振回路35の共振周波数が変化する。このため、発振回路30が共振回路35の共振周波数に対応する周波数の発振信号を出力し、周期計測回路31が発振信号の周期に対応する信号を出力する。ここで、発振信号の周期は、等価回路におけるインダクタL1のインダクタンスとキャパシタC1の容量値との積の平方根で表される。そして、二乗回路32が周期計測回路31の出力信号の二乗値を演算して出力するため、二乗回路32の出力信号は、コイル5のインダクタンスの変化に対して直線的に変化する。二乗回路32の出力信号は、温度補償回路33により温度変動分が補正される。そして、信号処理回路34は、温度補償回路33の出力信号に基づいてコイル5のインダクタンスを演算し、コイル5のインダクタンスの変化量からコア4に加わる荷重を演算する。つまり、検知回路3は、コイル5のインダクタンスの変化に基づいてコア4に加わる荷重を検知する。 When the inductance of the coil 5 changes, the resonance frequency of the resonance circuit 35 including the coil 5 changes. For this reason, the oscillation circuit 30 outputs an oscillation signal having a frequency corresponding to the resonance frequency of the resonance circuit 35, and the period measurement circuit 31 outputs a signal corresponding to the period of the oscillation signal. Here, the period of the oscillation signal is represented by the square root of the product of the inductance of the inductor L1 and the capacitance value of the capacitor C1 in the equivalent circuit. And since the square circuit 32 calculates and outputs the square value of the output signal of the period measurement circuit 31, the output signal of the square circuit 32 changes linearly with respect to the change of the inductance of the coil 5. The output signal of the square circuit 32 is corrected for temperature fluctuations by the temperature compensation circuit 33. The signal processing circuit 34 calculates the inductance of the coil 5 based on the output signal of the temperature compensation circuit 33, and calculates the load applied to the core 4 from the amount of change in the inductance of the coil 5. That is, the detection circuit 3 detects the load applied to the core 4 based on the change in the inductance of the coil 5.
 上述のように、本適用例の力センサ2は、第1プレート21と第2プレート22とで検知部20を挟み、第1プレート21および第2プレート22の両者間を弾性体23で位置決めした構成となっている。このため、本適用例の力センサ2では、第1プレート21および第2プレート22に起歪部を設ける加工が必要ではないので、第1プレート21および第2プレート22の厚さ方向の寸法を小さくすることができる。したがって、本適用例の力センサ2は、第1プレート21および第2プレート22の厚さ方向の寸法を小さくすることで、薄型化を図ることができる。また、本適用例の力センサ2は、弾性体23を備えている。このため、本適用例の力センサ2は、第1プレート21または第2プレート22に荷重が加わると、コア4に荷重が適正に伝わり易いので、荷重の検知精度を向上させることができる。 As described above, in the force sensor 2 of this application example, the detection unit 20 is sandwiched between the first plate 21 and the second plate 22, and the elastic body 23 positions between the first plate 21 and the second plate 22. It has a configuration. For this reason, in the force sensor 2 of this application example, it is not necessary to provide a strain-generating portion on the first plate 21 and the second plate 22, so the dimensions in the thickness direction of the first plate 21 and the second plate 22 are determined. Can be small. Therefore, the force sensor 2 of this application example can be thinned by reducing the dimension of the first plate 21 and the second plate 22 in the thickness direction. Further, the force sensor 2 of this application example includes an elastic body 23. For this reason, the force sensor 2 of this application example can improve the load detection accuracy because the load is easily transmitted to the core 4 when a load is applied to the first plate 21 or the second plate 22.
 また、本適用例の力センサ2では、コイル5の通電時に形成される磁路M1が閉磁路となるようにコイル5を設けているが、コイル5は、図12Aに示すように、導線をコア4の外周に沿って巻き付けることで構成されていてもよい。この構成では、コイル5の通電時に生じる磁束は、コア4の内側のみならずコア4の外側も通る磁路M2を形成する。つまり、この構成では、磁路M2は開磁路となる。この構成では、取付部41を設ける等してコア4を加工する必要がないので、コア4を製作し易いという利点がある。また、この構成では、コア4の外周に導線を巻き付けるだけでコイル5を製作することができるので、コイル5を製作し易いという利点がある。つまり、この構成では、コア4およびコイル5の設計が容易であることから、力センサ2の小型化や薄型化を図り易い。なお、導線をコア4の外周に沿って巻き付けることでコイル5を構成する場合は、図12Bに示すように、コア4は中空部40を有していなくてもよい。 Further, in the force sensor 2 of this application example, the coil 5 is provided so that the magnetic path M1 formed when the coil 5 is energized is a closed magnetic path. However, as shown in FIG. You may be comprised by winding along the outer periphery of the core 4. FIG. In this configuration, the magnetic flux generated when the coil 5 is energized forms a magnetic path M <b> 2 that passes not only inside the core 4 but also outside the core 4. That is, in this configuration, the magnetic path M2 is an open magnetic path. This configuration has an advantage that the core 4 is easy to manufacture because it is not necessary to process the core 4 by providing the attachment portion 41 or the like. In addition, this configuration has an advantage that the coil 5 can be easily manufactured because the coil 5 can be manufactured simply by winding a conducting wire around the outer periphery of the core 4. That is, in this configuration, the core 4 and the coil 5 can be easily designed, so that the force sensor 2 can be easily reduced in size and thickness. When the coil 5 is configured by winding a conducting wire along the outer periphery of the core 4, the core 4 may not have the hollow portion 40 as illustrated in FIG. 12B.
 また、本適用例の力センサ2では、基板24を用いてコア4を位置決めしているが、例えば図13に示すように、基板24以外の構造体27でコア4を位置決めする構成であってもよい。なお、この構成では、第1プレート21は、その中央部に平面視で円形状の通孔210が設けられている。同様に、この構成では、第2プレート22は、その中央部に平面視で円形状の通孔220が設けられている。これらの通孔210,220は、例えばボルトの締付軸力を検知する際に、ボルトの軸部をコア4の中空部40に通すために用いられる。また、これらの通孔210,220は、アンカー100(図18参照)の引張り力を検知する際に、アンカー100のテンドン(tendon)102A(図18参照)をコア4の中空部40に通すために用いられる。勿論、通孔210,220の形状は、平面視で円形状に限定されず、ボルトの軸部やテンドン102Aを通すことが可能な形状であればよい。 Further, in the force sensor 2 of this application example, the core 4 is positioned by using the substrate 24. However, as shown in FIG. 13, for example, the core 4 is positioned by a structure 27 other than the substrate 24. Also good. In this configuration, the first plate 21 is provided with a circular through-hole 210 in the center in a plan view. Similarly, in this configuration, the second plate 22 is provided with a circular through-hole 220 in the center in a plan view. These through holes 210 and 220 are used, for example, to pass the shaft portion of the bolt through the hollow portion 40 of the core 4 when detecting the tightening axial force of the bolt. Further, these through holes 210 and 220 pass the tendon 102A (see FIG. 18) of the anchor 100 through the hollow portion 40 of the core 4 when detecting the tensile force of the anchor 100 (see FIG. 18). Used for. Of course, the shape of the through- holes 210 and 220 is not limited to a circular shape in plan view, and may be any shape as long as it allows the shaft portion of the bolt and the tendon 102A to pass therethrough.
 構造体27は、例えば金属材料や樹脂材料によりシート状に形成され、第1プレート21および第2プレート22、並びに弾性体23で囲まれる空間内に収納されている。構造体27は、上記の空間の一部に弾性体23を充填することで固定されている。また、構造体27は、基板24と同様に平面視で円環形状に形成されており、その中央部は平面視で円環形状の位置決め孔270となっている。この位置決め孔270にコア4が嵌まり込むことで、コア4が所定の位置に位置決めされる。なお、位置決め孔270の形状は、平面視で円形状に限定されず、例えば平面視で矩形状であってもよい。つまり、位置決め孔270は、コア4が嵌まり込む形状であればよい。 The structural body 27 is formed in a sheet shape from, for example, a metal material or a resin material, and is housed in a space surrounded by the first plate 21, the second plate 22, and the elastic body 23. The structure 27 is fixed by filling the elastic body 23 in a part of the space. The structure 27 is formed in an annular shape in a plan view like the substrate 24, and a central portion thereof is an annular positioning hole 270 in the plan view. The core 4 is positioned at a predetermined position by fitting the core 4 into the positioning hole 270. The shape of the positioning hole 270 is not limited to a circular shape in a plan view, and may be a rectangular shape in a plan view, for example. That is, the positioning hole 270 only needs to have a shape into which the core 4 is fitted.
 この構成では、力センサ2は基板24を備えていない。つまり、検知回路3は、力センサ2の外部に配置されている。したがって、この構成では、構造体27に検知回路3などの回路を設計する必要がないことから、基板24と比較して構造体27の厚さ方向の寸法を小さくすることができるので、力センサ2の薄型化を図ることができる。 In this configuration, the force sensor 2 does not include the substrate 24. That is, the detection circuit 3 is disposed outside the force sensor 2. Therefore, in this configuration, since it is not necessary to design a circuit such as the detection circuit 3 in the structure 27, the dimension in the thickness direction of the structure 27 can be reduced as compared with the substrate 24. Therefore, the force sensor 2 can be reduced in thickness.
 なお、本適用例の力センサ2では、基板24や構造体27を備えるか否かは任意である。すなわち、本適用例の力センサ2は、第1プレート21および第2プレート22、並びに弾性体23によりコア4を位置決めする構造であれば、基板24や構造体27を設けなくてもよい。但し、基板24や構造体27を備える構成であれば、第1プレート21および第2プレート22を加工してコア4を位置決めするための構造を設ける必要がなく、第1プレート21および第2プレート22の厚さ寸法を小さくすることができるという利点がある。 In addition, in the force sensor 2 of this application example, whether or not the substrate 24 and the structure 27 are provided is arbitrary. That is, the force sensor 2 of this application example does not have to be provided with the substrate 24 and the structure 27 as long as the core 4 is positioned by the first plate 21 and the second plate 22 and the elastic body 23. However, if the configuration includes the substrate 24 and the structure 27, there is no need to provide a structure for positioning the core 4 by processing the first plate 21 and the second plate 22, and the first plate 21 and the second plate. There is an advantage that the thickness dimension of 22 can be reduced.
 また、本適用例の力検知装置1では、検知回路3は、二乗回路32および温度補償回路33を備えずに、周期計測回路31から出力される信号に基づいて信号処理回路34が荷重の変化を検知する構成であってもよい。また、図11に示す検知回路3の構成は一例であり、検知回路3は、コイル5の磁気特性(インダクタンスまたはコンダクタンス)の変化に基づいて荷重を検知する構成であれば、その他の構成であってもよい。 Further, in the force detection device 1 of this application example, the detection circuit 3 does not include the square circuit 32 and the temperature compensation circuit 33, and the signal processing circuit 34 changes the load based on the signal output from the period measurement circuit 31. The structure which detects this may be sufficient. Further, the configuration of the detection circuit 3 shown in FIG. 11 is an example, and the detection circuit 3 may be another configuration as long as it detects a load based on a change in magnetic characteristics (inductance or conductance) of the coil 5. May be.
 (適用例2)
 適用例2の力センサ2および力検知装置1は、例えばグラウンドアンカー(ground anchor)工法に用いられる。ここで、グラウンドアンカー工法について簡単に説明する。例えば地山の掘削や盛土等により法面が形成される場合、法面に設けられる構造物を安定させるために、グラウンドアンカー工法が一般的に用いられている。このグラウンドアンカー工法で使用するアンカーの引張り力を検知して監視するために、適用例1の力センサ2および力検知装置1を用いることが考えられる。
(Application example 2)
The force sensor 2 and the force detection device 1 of the application example 2 are used, for example, in a ground anchor method. Here, the ground anchor method will be briefly described. For example, when a slope is formed by excavation or embankment of a natural ground, a ground anchor method is generally used to stabilize a structure provided on the slope. In order to detect and monitor the tensile force of the anchor used in this ground anchor method, it is conceivable to use the force sensor 2 and the force detection device 1 of Application Example 1.
 ここで、アンカーのように大型の部材に適用例1の力センサ2を用いる場合、大型の部材に合わせて径寸法の大きいコア4を用いる必要がある。しかしながら、コア4の厚さ方向の寸法を大きくすることなくコア4の径寸法を大きくする加工は困難であり、適用例1の力センサ2では、コア4の厚さ方向の大型化を避けられない。そこで、大型の部材の荷重を検知する場合、力センサ2は、複数の検知部20を備えるのが好ましい。 Here, when the force sensor 2 of the application example 1 is used for a large member such as an anchor, it is necessary to use the core 4 having a large diameter according to the large member. However, it is difficult to increase the diameter of the core 4 without increasing the thickness of the core 4 in the thickness direction. In the force sensor 2 of Application Example 1, the core 4 can be prevented from being enlarged in the thickness direction. Absent. Therefore, when detecting the load of a large member, the force sensor 2 preferably includes a plurality of detection units 20.
 以下、複数の検知部20を備える本適用例の力センサ2および力検知装置1について図面を用いて説明する。なお、本適用例の力センサ2および力検知装置1において、適用例1と共通する構成要素については適宜説明を省略する。 Hereinafter, the force sensor 2 and the force detection device 1 of the application example including the plurality of detection units 20 will be described with reference to the drawings. In the force sensor 2 and the force detection device 1 of the application example, the description of the components common to the application example 1 is omitted as appropriate.
 本適用例の力センサ2は、図14A,図14Bに示すように、複数(ここでは、12個)の検知部20と、第1プレート21と、第2プレート22と、弾性体23と、基板(構造体)24とを備えている。また、複数の検知部20は、上下方向(検知方向)と直交する平面に沿って配置される。なお、図14Bでは、第2プレート22および弾性体23の図示を省略している。また、「直交」とは、完全な「直交」のみではなく、「ほぼ直交」を含む表現である。 As shown in FIGS. 14A and 14B, the force sensor 2 of this application example includes a plurality (here, 12) of detection units 20, a first plate 21, a second plate 22, an elastic body 23, And a substrate (structure) 24. Moreover, the some detection part 20 is arrange | positioned along the plane orthogonal to an up-down direction (detection direction). In FIG. 14B, the second plate 22 and the elastic body 23 are not shown. Further, “orthogonal” is an expression including “substantially orthogonal” as well as complete “orthogonal”.
 第1プレート21は、図14Bに示すように平面視で正方形状に形成されている。また、第2プレート22は、第1プレート21と同様に平面視で正方形状に形成されている。第1プレート21は、図14Aに示すように、複数(図示では2つ)のコア4の下面に接する形で複数のコア4の下側に配置される。また、第2プレート22は、図14Aに示すように、複数(図示では2つ)のコア4の上面に接する形で複数のコア4の上側に配置される。つまり、第1プレート21および第2プレート22は、上下方向(検知方向)の両側から複数のコア4を挟むように配置される。 The first plate 21 is formed in a square shape in plan view as shown in FIG. 14B. Further, the second plate 22 is formed in a square shape in plan view like the first plate 21. As shown in FIG. 14A, the first plate 21 is disposed below the plurality of cores 4 in contact with the lower surfaces of the plurality (two in the drawing) of the cores 4. Further, as shown in FIG. 14A, the second plate 22 is disposed on the upper side of the plurality of cores 4 so as to be in contact with the upper surfaces of the plurality (two in the drawing) of the cores 4. That is, the first plate 21 and the second plate 22 are arranged so as to sandwich the plurality of cores 4 from both sides in the vertical direction (detection direction).
 第1プレート21には、図14A,図14Bに示すように、その中央部を上下方向(検知方向)に貫通する平面視で円形状の通孔210が設けられている。また、第2プレート22には、図14Aに示すように、その中央部を上下方向(検知方向)に貫通する平面視で円形状の通孔220が設けられている。勿論、通孔210,220の形状は、平面視で円形状に限定されず、ボルトの軸部やテンドン102Aを通すことが可能な形状であればよい。 As shown in FIGS. 14A and 14B, the first plate 21 is provided with a circular through-hole 210 in a plan view that penetrates the central portion in the vertical direction (detection direction). Further, as shown in FIG. 14A, the second plate 22 is provided with a circular through hole 220 in a plan view that penetrates the central portion in the vertical direction (detection direction). Of course, the shape of the through- holes 210 and 220 is not limited to a circular shape in plan view, and may be any shape as long as it allows the shaft portion of the bolt and the tendon 102A to pass therethrough.
 なお、本適用例の力センサ2では、第1プレート21の中央部に通孔210を、第2プレート22の中央部に通孔220をそれぞれ設けているが、通孔210,220を設ける位置を限定する趣旨ではない。つまり、通孔210は、第1プレート21を上下方向(検知方向)に貫通する形で設けられていればよく、その位置は中央部に限定されない。同様に、通孔220は、第2プレート22を上下方向(検知方向)に貫通する形で設けられていればよく、その位置は中央部に限定されない。 In the force sensor 2 of this application example, the through hole 210 is provided in the central portion of the first plate 21 and the through hole 220 is provided in the central portion of the second plate 22, but the positions where the through holes 210 and 220 are provided. It is not intended to limit. That is, the through-hole 210 may be provided so as to penetrate the first plate 21 in the vertical direction (detection direction), and the position thereof is not limited to the central portion. Similarly, the through hole 220 may be provided so as to penetrate the second plate 22 in the vertical direction (detection direction), and the position thereof is not limited to the central portion.
 弾性体23は、図14Aに示すように、第1プレート21の上面の外周縁と、第2プレート22の下面の外周縁とに接着することで、第1プレート21および第2プレート22を互いに結合する。また、弾性体23は、図14Aに示すように、第1プレート21の上面における通孔210の周縁と、第2プレート22の下面における通孔220の周縁とに接着することで、第1プレート21および第2プレート22を互いに結合する。つまり、弾性体23は、第1プレート21および第2プレート22の両者間を位置決めする構成であればよい。 As shown in FIG. 14A, the elastic body 23 is bonded to the outer peripheral edge of the upper surface of the first plate 21 and the outer peripheral edge of the lower surface of the second plate 22, thereby connecting the first plate 21 and the second plate 22 to each other. Join. Further, as shown in FIG. 14A, the elastic body 23 is adhered to the periphery of the through hole 210 on the upper surface of the first plate 21 and the periphery of the through hole 220 on the lower surface of the second plate 22. 21 and the second plate 22 are coupled together. That is, the elastic body 23 may be configured to position between the first plate 21 and the second plate 22.
 基板24は、図14Aに示すように、第1プレート21および第2プレート22、並びに弾性体23で囲まれる空間内に収納されている。基板24は、図14Bに示すように平面視で正方形状に形成されている。また、基板24の中央部には、通孔210,220の径寸法よりも僅かに大きい径寸法(例えば、直径140mm)を有する平面視で円形状の通孔241が設けられている。この通孔241は、通孔210,220と同様に、ボルトの軸部やテンドン102Aを通すことが可能な形状であればよい。基板24は、その外周縁と、通孔241の内周縁とがそれぞれ弾性体23に接することで固定されている。 The substrate 24 is housed in a space surrounded by the first plate 21, the second plate 22, and the elastic body 23, as shown in FIG. 14A. The board | substrate 24 is formed in square shape by planar view, as shown to FIG. 14B. In addition, a circular through hole 241 is provided in a central portion of the substrate 24 in a plan view having a diameter (for example, a diameter of 140 mm) slightly larger than the diameter of the through holes 210 and 220. Similar to the through holes 210 and 220, the through hole 241 may have any shape that allows the shaft portion of the bolt and the tendon 102A to pass therethrough. The substrate 24 is fixed so that the outer peripheral edge thereof and the inner peripheral edge of the through hole 241 are in contact with the elastic body 23.
 また、基板24には、図14B,図15Aに示すように、通孔241の周囲に複数(図示では12個)の位置決め孔240が設けられている。各位置決め孔240は、平面視で円形状に形成され、通孔241の周方向に沿って等間隔に設けられている。なお、位置決め孔240の形状は、平面視で円形状に限定されず、例えば図15Bに示すように平面視で矩形状であってもよい。つまり、位置決め孔240は、コア4が嵌まり込む形状であればよい。 In addition, as shown in FIGS. 14B and 15A, the substrate 24 is provided with a plurality of (in the figure, 12) positioning holes 240 around the through hole 241. Each positioning hole 240 is formed in a circular shape in plan view, and is provided at equal intervals along the circumferential direction of the through hole 241. Note that the shape of the positioning hole 240 is not limited to a circular shape in a plan view, and may be a rectangular shape in a plan view as shown in FIG. 15B, for example. That is, the positioning hole 240 may have a shape into which the core 4 is fitted.
 本適用例の力センサ2では、図14Bに示すように、各位置決め孔240は、上下方向(検知方向)と直交する平面において、通孔241の中心を通る基準線B1に対して線対称となるように配置される。また、各位置決め孔240は、上下方向(検知方向)と直交する平面において、通孔241の中心を基準点B2として、基準点B2に対して点対称となるように配置されている。したがって、各位置決め孔240にそれぞれコア4を配置することで、各検知部20も基準線B1に対して線対称となるように配置され、且つ基準点B2に対して点対称となるように配置される。また、言い換えれば、複数の検知部20は、通孔210,220の周囲に配置されている。 In the force sensor 2 of this application example, as shown in FIG. 14B, each positioning hole 240 is line-symmetric with respect to a reference line B1 passing through the center of the through hole 241 in a plane orthogonal to the vertical direction (detection direction). It is arranged to become. Each positioning hole 240 is arranged to be point-symmetric with respect to the reference point B2 with the center of the through hole 241 as the reference point B2 on a plane orthogonal to the vertical direction (detection direction). Therefore, by arranging the core 4 in each positioning hole 240, each detection unit 20 is also arranged so as to be line-symmetric with respect to the reference line B1, and is arranged so as to be point-symmetric with respect to the reference point B2. Is done. In other words, the plurality of detection units 20 are arranged around the through holes 210 and 220.
 本適用例の力検知装置1では、図16Aに示すように、各検知部20が検知回路3に個別に電気的に接続されている。つまり、各コイル5の両端が、それぞれ検知回路3に個別に電気的に接続されている。検知回路3は、各検知部20の出力信号のレベルの合計値に基づいて演算することで、全てのコア4に加わる荷重(すなわち、力センサ2に加わる荷重)を検知することができる。 In the force detection device 1 of this application example, as shown in FIG. 16A, each detection unit 20 is electrically connected to the detection circuit 3 individually. That is, both ends of each coil 5 are individually electrically connected to the detection circuit 3. The detection circuit 3 can detect the load applied to all the cores 4 (that is, the load applied to the force sensor 2) by calculating based on the total value of the output signal levels of the detection units 20.
 また、検知回路3は、各検知部20の出力信号のレベルに基づいて検知部20毎に加わる荷重を演算することも可能である。この構成では、検知回路3は、各検知部20に加わる荷重を比較することで、第1プレート21または第2プレート22に加わる荷重の分布を検知することができる。つまり、この構成では、第1プレート21または第2プレート22に均一に荷重が加わっているか否かを検知することができる。 Also, the detection circuit 3 can calculate the load applied to each detection unit 20 based on the level of the output signal of each detection unit 20. In this configuration, the detection circuit 3 can detect the distribution of the load applied to the first plate 21 or the second plate 22 by comparing the load applied to each detection unit 20. That is, in this configuration, it is possible to detect whether a load is uniformly applied to the first plate 21 or the second plate 22.
 なお、この構成では、図16Bに示すように、検知回路3は、コイル5を備えていない検知部20がある場合でも荷重を検知することが可能である。したがって、この構成では、検知対象に応じて検知部20の個数を減らすことができ、製作コストの低減を図ることができる。 In this configuration, as shown in FIG. 16B, the detection circuit 3 can detect a load even when there is a detection unit 20 that does not include the coil 5. Therefore, in this configuration, the number of detection units 20 can be reduced according to the detection target, and the manufacturing cost can be reduced.
 また、本適用例の力検知装置1は、図17に示すように、各検知部20を検知回路3に直列に電気的に接続した構成であってもよい。つまり、各コイル5の直列回路の両端が、検知回路3に電気的に接続されている。この構成では、1つの検知部20の出力信号のレベルが微小であっても、全ての検知部20の出力信号のレベルの合計値に基づいて検知回路3が荷重を演算するので、荷重の検知精度が向上するという利点がある。また、この構成では、隣り合うコイル5の間で相互干渉が起こり難いという利点がある。 Further, the force detection device 1 of this application example may have a configuration in which each detection unit 20 is electrically connected in series to the detection circuit 3 as shown in FIG. That is, both ends of the series circuit of each coil 5 are electrically connected to the detection circuit 3. In this configuration, even if the level of the output signal of one detection unit 20 is very small, the detection circuit 3 calculates the load based on the total value of the levels of the output signals of all the detection units 20. There is an advantage that accuracy is improved. In addition, this configuration has an advantage that mutual interference hardly occurs between the adjacent coils 5.
 以下、本適用例の力センサ2および力検知装置1を用いて、グラウンドアンカー工法で用いられるアンカー100の引張り力を検知する実施例について図18を参照して説明する。なお、図18では、検知回路3の図示を省略している。アンカー100は、構造物A1からの引張り力を地盤に伝達するために用いられる。アンカー100は、引張り力を地盤に伝達させる機能を持つアンカー体と、アンカー100を構造物A1に結合するためのアンカー頭部101と、アンカー頭部101からの引張り力をアンカー体に伝える引張り部102とで構成される。 Hereinafter, an embodiment in which the tensile force of the anchor 100 used in the ground anchor method is detected using the force sensor 2 and the force detection device 1 according to this application example will be described with reference to FIG. In FIG. 18, the detection circuit 3 is not shown. The anchor 100 is used to transmit the tensile force from the structure A1 to the ground. The anchor 100 includes an anchor body having a function of transmitting a tensile force to the ground, an anchor head 101 for coupling the anchor 100 to the structure A1, and a tension portion that transmits the tensile force from the anchor head 101 to the anchor body. 102.
 アンカー頭部101は、定着具であるナット101Aと、構造物A1の上に配置される支圧板であるアンカープレート101Bとで構成されている。アンカープレート101Bには、テンドン102Aを通すことが可能な孔101Cが設けられている。引張り部102は、例えばPC(Prestressed Concrete)鋼撚り線で構成される棒状のテンドン102Aを備えている。テンドン102Aの長手方向の第1端には、アンカー体が機械的に接続されている。また、テンドン102Aの長手方向の第2端は、アンカープレート101Bの孔101C、および本適用例の力センサ2の通孔210,220,241に通された状態で、ナット101Aが締め付けられている。 The anchor head 101 includes a nut 101A that is a fixing tool and an anchor plate 101B that is a bearing plate disposed on the structure A1. The anchor plate 101B is provided with a hole 101C through which the tendon 102A can pass. The tension | pulling part 102 is equipped with the bar-shaped tendon 102A comprised, for example by PC (Prestressed Concrete) steel strand. An anchor body is mechanically connected to the first end in the longitudinal direction of the tendon 102A. Further, the second end in the longitudinal direction of the tendon 102A is tightened with the nut 101A while being passed through the hole 101C of the anchor plate 101B and the through holes 210, 220, and 241 of the force sensor 2 of this application example. .
 本適用例の力センサ2は、ナット101Aとアンカープレート101Bとで挟まれる形で配置されている。したがって、本適用例の力検知装置1は、ナット101Aが力センサ2の一面を押し下げる荷重を検知回路3が検知することで、アンカー100の引張り力を検知することができる。 The force sensor 2 of this application example is arranged in a form sandwiched between the nut 101A and the anchor plate 101B. Therefore, the force detection device 1 of this application example can detect the tensile force of the anchor 100 when the detection circuit 3 detects a load in which the nut 101A pushes down one surface of the force sensor 2.
 上述のように、本適用例の力センサ2および力検知装置1は、1つの検知部20ではなく複数の検知部20を用いて荷重を検知する構成となっている。したがって、本適用例の力センサ2および力検知装置1は、1つの検知部20のみを備える場合と比較して、各検知部20のコア4の径寸法を小さくすることができ、結果としてコア4の厚さ方向の寸法も小さくすることができる。したがって、本適用例の力センサ2および力検知装置1は、アンカー100のような大型の部材に用いる場合でも、薄型化を図ることができる。 As described above, the force sensor 2 and the force detection device 1 of this application example are configured to detect a load using a plurality of detection units 20 instead of a single detection unit 20. Therefore, the force sensor 2 and the force detection device 1 of this application example can reduce the diameter of the core 4 of each detection unit 20 as compared with the case where only one detection unit 20 is provided. The dimension in the thickness direction of 4 can also be reduced. Therefore, even when the force sensor 2 and the force detection device 1 of the application example are used for a large member such as the anchor 100, the thickness can be reduced.
 また、本適用例の力センサ2では、各コア4(すなわち、複数の検知部20の各々の有するコア4)は、厚さ方向の寸法(図14Aの‘T1’参照)が互いに等しくなっている。このため、本適用例の力センサ2は、各コア4の厚さ方向と直交する面が互いに揃うため、各コア4に均等に荷重がかかり易く、偏荷重が生じ難いという利点がある。なお、「等しく」とは、「同一」、若しくは「ほぼ同一」を含む表現である。したがって、製造上の誤差により各コア4の厚さ方向の寸法が互いに僅かに異なるのは、許容範囲内の誤差である。なお、各コア4の厚さ方向の寸法を互いに等しくするか否かは、任意である。 In the force sensor 2 of this application example, the cores 4 (that is, the cores 4 included in each of the plurality of detection units 20) have the same dimension in the thickness direction (see 'T1' in FIG. 14A). Yes. For this reason, the force sensor 2 of this application example has the advantage that the surfaces perpendicular to the thickness direction of the cores 4 are aligned with each other, and therefore, it is easy to apply a load evenly to the cores 4 and that an uneven load is not easily generated. “Equal” is an expression including “same” or “substantially identical”. Therefore, it is an error within an allowable range that the dimension in the thickness direction of each core 4 is slightly different from each other due to a manufacturing error. Note that whether or not the cores 4 have the same thickness in the thickness direction is arbitrary.
 また、本適用例の力センサ2では、図14Bに示すように、各検知部20を基準線B1に対して線対称となるように配置し、且つ基準点B2に対して点対称となるように配置している。このため、本適用例の力センサ2は、各コア4が上下方向(検知方向)と直交する平面(例えば、第1プレート21の下面や第2プレート22の上面に平行な面)において均等に配置される。したがって、本適用例の力センサ2では、各コア4に均等に荷重がかかり易く、偏荷重が生じ難いという利点がある。 Further, in the force sensor 2 of this application example, as shown in FIG. 14B, the detection units 20 are arranged so as to be symmetrical with respect to the reference line B1, and are symmetrical with respect to the reference point B2. Is arranged. For this reason, in the force sensor 2 of this application example, the respective cores 4 are evenly arranged on a plane perpendicular to the vertical direction (detection direction) (for example, a plane parallel to the lower surface of the first plate 21 and the upper surface of the second plate 22). Be placed. Therefore, the force sensor 2 of this application example has an advantage that a load is easily applied evenly to each core 4 and an uneven load is hardly generated.
 なお、本適用例の力センサ2では、例えば図19Aに示すように、基板24の対角線に沿って各検知部20が配置されていてもよい。この構成でも、各検知部20が基準線B1に対して線対称に配置され、且つ基準点B2に対して点対称に配置される。また、各検知部20は、基準線B1に対して線対称ではあるが、基準点B2に対しては点対称ではないように配置されていてもよい。更に、各検知部20は、基準線B1に対しては線対称ではないが、基準点B2に対して点対称となるように配置されていてもよい。 In the force sensor 2 of this application example, each detection unit 20 may be arranged along a diagonal line of the substrate 24 as illustrated in FIG. 19A, for example. Even in this configuration, the detection units 20 are arranged symmetrically with respect to the reference line B1 and are arranged symmetrically with respect to the reference point B2. Each detection unit 20 may be arranged so as to be not symmetrical with respect to the reference point B2 although it is symmetrical with respect to the reference line B1. Further, each detection unit 20 may be arranged so as to be point-symmetric with respect to the reference point B2, although it is not line-symmetric with respect to the reference line B1.
 その他、各検知部20は、例えば図19Bに示すように、複数の位置決め孔240の何れかに選択的に配置されていてもよい。言い換えれば、複数の検知部20は、複数の検知位置(ここでは、位置決め孔240)の中から選択された2以上の検知位置に1対1に対応して配置されていてもよい。また、各検知部20は、同じく図19Bに示すように、基準線B1および基準点B2の何れに対しても非対称に配置されていてもよい。なお、図19A,図19Bでは、それぞれ第2プレート22および弾性体23の図示を省略している。 In addition, as shown in FIG. 19B, for example, each detection unit 20 may be selectively disposed in any of the plurality of positioning holes 240. In other words, the plurality of detection units 20 may be arranged in a one-to-one correspondence with two or more detection positions selected from a plurality of detection positions (here, the positioning holes 240). Moreover, each detection part 20 may be arrange | positioned asymmetrically with respect to any of the reference line B1 and the reference point B2, similarly as shown to FIG. 19B. 19A and 19B, the second plate 22 and the elastic body 23 are not shown.
 また、本適用例の力センサ2では、第1プレート21に通孔210、第2プレート22に通孔220、基板24に通孔241がそれぞれ設けられているが、通孔210,220,241を設けるか否かは任意である。すなわち、本適用例の力センサ2は、例えば図20Aに示すように、通孔241を有さない平面視で正方形状の基板24に複数(図示では9個)の検知部20を配置した構成であってもよい。この構成では、第1プレート21および第2プレート22もそれぞれ通孔210,220を有していない。 Further, in the force sensor 2 of this application example, the first plate 21 is provided with the through hole 210, the second plate 22 is provided with the through hole 220, and the substrate 24 is provided with the through hole 241, but the through holes 210, 220, and 241 are provided. Whether or not is provided is arbitrary. That is, the force sensor 2 of this application example has a configuration in which a plurality (nine in the drawing) of detection units 20 are arranged on a square substrate 24 in a plan view without the through-hole 241 as shown in FIG. 20A, for example. It may be. In this configuration, the first plate 21 and the second plate 22 also do not have the through holes 210 and 220, respectively.
 また、本適用例の力センサ2は、平面視で正方形状の第1プレート21および第2プレート22、並びに基板24を備えているが、第1プレート21および第2プレート22、並びに基板24の形状を限定する趣旨ではない。すなわち、本適用例の力センサ2は、例えば図20Bに示すように、平面視で半円環形状の第1プレート21および第2プレート22、並びに基板24を備えていてもよい。その他、本適用例の力センサ2は、図20Cに示すように、平面視で円環形状の第1プレート21および第2プレート22、並びに基板24を備えていてもよい。なお、図20A~図20Cでは、それぞれ第2プレート22および弾性体23の図示を省略している。 The force sensor 2 of the application example includes the first plate 21 and the second plate 22 and the substrate 24 that are square in a plan view, but the first plate 21, the second plate 22, and the substrate 24 are It is not intended to limit the shape. That is, the force sensor 2 of this application example may include a first plate 21 and a second plate 22 and a substrate 24 that are semicircular in a plan view, as shown in FIG. 20B, for example. In addition, as shown in FIG. 20C, the force sensor 2 of this application example may include an annular first plate 21 and second plate 22 and a substrate 24 in plan view. 20A to 20C, the second plate 22 and the elastic body 23 are not shown.
 また、本適用例の力センサ2は、図21に示すように、第1プレート21および第2プレート22の少なくとも一方を含む外郭と基板24との間に配置されて、外郭と基板24との間を電気的に絶縁する絶縁体25を備えた構成であってもよい。図21に示す例では、外郭は第1プレート21である。絶縁体25は、例えば弾性および絶縁性を有する材料から成る接着剤である。この構成では、第1プレート21(または第2プレート22)と、検知回路3などの回路が設計された基板24との間の絶縁性を向上させることができる。特に、第1プレート21(または第2プレート22)が金属材料で形成されている場合に有効である。したがって、この構成では、第1プレート21(または第2プレート22)と基板24との間の絶縁距離を確保するためにスペーサを設ける必要がなく、また、スペーサを固定するためのボルトも不要となるので、力センサ2の大型化を回避することができる。 Further, as shown in FIG. 21, the force sensor 2 of this application example is disposed between the outer shell including at least one of the first plate 21 and the second plate 22 and the substrate 24, and The structure provided with the insulator 25 which electrically insulates between may be sufficient. In the example shown in FIG. 21, the outer shell is the first plate 21. The insulator 25 is an adhesive made of a material having elasticity and insulation, for example. In this configuration, the insulation between the first plate 21 (or the second plate 22) and the substrate 24 on which a circuit such as the detection circuit 3 is designed can be improved. This is particularly effective when the first plate 21 (or the second plate 22) is formed of a metal material. Therefore, in this configuration, it is not necessary to provide a spacer in order to secure an insulating distance between the first plate 21 (or the second plate 22) and the substrate 24, and a bolt for fixing the spacer is not necessary. Therefore, the enlargement of the force sensor 2 can be avoided.
 なお、絶縁体25は、絶縁性を有する材料で形成された絶縁シートであってもよいし、絶縁性を有する材料で形成されて基板24の一面に塗布されるコーティング剤であってもよい。また、第1プレート21と基板24との間、および第2プレート22と基板24との間の両方に絶縁体25を設けた構成であってもよい。つまり、第1プレート21と第2プレート22との両方が外郭であってもよい。なお、絶縁体25を設けるか否かは任意である。例えば、本適用例の力センサ2が、検知回路3などの回路が設計された基板24を備えない構成であれば、絶縁体25を設ける必要はない。 The insulator 25 may be an insulating sheet formed of an insulating material, or may be a coating agent formed of an insulating material and applied to one surface of the substrate 24. Moreover, the structure which provided the insulator 25 in both between the 1st plate 21 and the board | substrate 24 and between the 2nd plate 22 and the board | substrate 24 may be sufficient. That is, both the first plate 21 and the second plate 22 may be outlines. Note that whether or not the insulator 25 is provided is arbitrary. For example, if the force sensor 2 of this application example does not include the substrate 24 on which a circuit such as the detection circuit 3 is designed, the insulator 25 need not be provided.
 また、本適用例の力センサ2は、図22に示すように、基板24の位置決め孔240の周方向に沿って導体をパターン形成することでコイル5を設けた構成であってもよい。コイル5は、基板24の上面または下面の何れかに導体をパターン形成することで構成される。また、基板24が多層基板であれば、コイル5は、基板24の何れかの層に導体をパターン形成することで構成される。この構成では、基板24にコイル5が設けられているため、コア4に導線を巻き付ける必要がない。このため、コア4は、導線を巻き付けるために必要な厚さ寸法を有していなくてもよい。つまり、この構成は、コア4の薄型化を図ることができる。なお、この構成では、導線をコア4に巻き付ける必要がないため、中空部40を有さないコア4を用いているが、中空部40を有するコア4を用いてもよい。 Further, the force sensor 2 of this application example may have a configuration in which the coil 5 is provided by patterning a conductor along the circumferential direction of the positioning hole 240 of the substrate 24 as shown in FIG. The coil 5 is configured by patterning a conductor on either the upper surface or the lower surface of the substrate 24. If the substrate 24 is a multilayer substrate, the coil 5 is configured by patterning a conductor on any layer of the substrate 24. In this configuration, since the coil 5 is provided on the substrate 24, it is not necessary to wind a conducting wire around the core 4. For this reason, the core 4 does not need to have a thickness dimension required in order to wind a conducting wire. That is, this configuration can reduce the thickness of the core 4. In addition, in this structure, since it is not necessary to wind a conducting wire around the core 4, the core 4 which does not have the hollow part 40 is used, but the core 4 which has the hollow part 40 may be used.
 なお、本適用例の力センサ2は、基板24に位置決め孔240を設けた構成であるが、図23に示すように、位置決め孔240の代わりに凹部242を設けた構成であってもよい。凹部242は、図23に示すように、基板24の上面から下方に窪んだ形状に形成されている。なお、凹部242の形状は、コア4が嵌り込む形状であればよく、その開口が平面視で円形状であってもよいし他の形状であってもよい。この構成でも、凹部242の内側にコア4を配置することで、コア4を所定の位置に位置決めすることが可能である。なお、適用例1の力センサ2も、位置決め孔240の代わりに凹部242を基板24に設けた構成であってもよい。 The force sensor 2 of this application example has a configuration in which the positioning hole 240 is provided in the substrate 24, but may have a configuration in which a concave portion 242 is provided instead of the positioning hole 240 as shown in FIG. As shown in FIG. 23, the recess 242 is formed in a shape recessed downward from the upper surface of the substrate 24. In addition, the shape of the recessed part 242 should just be a shape in which the core 4 fits in, and the opening may be circular shape in planar view, and another shape may be sufficient as it. Even in this configuration, the core 4 can be positioned at a predetermined position by disposing the core 4 inside the recess 242. Note that the force sensor 2 of Application Example 1 may also have a configuration in which the concave portion 242 is provided in the substrate 24 instead of the positioning hole 240.
 また、本適用例の力センサ2は、図24に示すように、剛性体26を上下方向(検知方向)の両側から挟むように弾性体23を設けた構成であってもよい。剛性体26は、例えば金属材料などの弾性体23よりも剛性の高い材料で構成される。この構成では、剛性体26を備えない場合と比較して、荷重に対する弾性体23の強度を向上させることができる。なお、剛性体26の厚さ寸法は、コア4の厚さ寸法に応じて調整可能であるのが好ましい。また、図24に示す構成は、外側の弾性体23に剛性体26を設けた構成であるが、内側の弾性体23にも剛性体26を設けた構成であってもよい。 Further, as shown in FIG. 24, the force sensor 2 of this application example may have a configuration in which the elastic body 23 is provided so as to sandwich the rigid body 26 from both sides in the vertical direction (detection direction). The rigid body 26 is made of a material having higher rigidity than the elastic body 23 such as a metal material. In this configuration, the strength of the elastic body 23 with respect to the load can be improved as compared with the case where the rigid body 26 is not provided. The thickness of the rigid body 26 is preferably adjustable according to the thickness of the core 4. The configuration shown in FIG. 24 is a configuration in which a rigid body 26 is provided on the outer elastic body 23, but a configuration in which the rigid body 26 is also provided on the inner elastic body 23 may be used.
 更に、本適用例の力センサ2は、適用例1の力センサ2と同様に、基板24以外の構造体27でコア4を位置決めする構成であってもよい(図25A,図25B参照)。なお、図25Bでは、第2プレート22および弾性体23の図示を省略している。構造体27は、第1プレート21および第2プレート22、並びに弾性体23で囲まれる空間内に収納されている。構造体27は、上記の空間の一部に弾性体23を充填することで固定されている。 Furthermore, the force sensor 2 of this application example may have a configuration in which the core 4 is positioned by a structure 27 other than the substrate 24 as in the force sensor 2 of Application Example 1 (see FIGS. 25A and 25B). In addition, in FIG. 25B, illustration of the 2nd plate 22 and the elastic body 23 is abbreviate | omitted. The structure 27 is accommodated in a space surrounded by the first plate 21, the second plate 22, and the elastic body 23. The structure 27 is fixed by filling the elastic body 23 in a part of the space.
 構造体27は、基板24と同様に、平面視で正方形状に形成されている。構造体27の中央部には、図25Bに示すように、通孔210,220の径寸法よりも僅かに大きい径寸法(例えば、直径140mm)を有する平面視で円形状の通孔271が設けられている。この通孔271は、通孔210,220と同様に、ボルトの軸部やテンドン102Aを通すことが可能な形状であればよい。また、構造体27には、図25Bに示すように、通孔271の周囲に複数(図示では12個)の位置決め孔270が設けられている。各位置決め孔270は、平面視で円形状に形成され、通孔271の周方向に沿って等間隔に設けられている。なお、位置決め孔270の形状は、平面視で円形状に限定されず、例えば平面視で矩形状であってもよい。つまり、位置決め孔270は、コア4が嵌まり込む形状であればよい。 The structure 27 is formed in a square shape in plan view, like the substrate 24. As shown in FIG. 25B, a circular through hole 271 in a plan view having a diameter dimension (for example, a diameter of 140 mm) slightly larger than the diameter dimension of the through holes 210 and 220 is provided in the central portion of the structure 27. It has been. Similar to the through holes 210 and 220, the through hole 271 may have a shape that allows the shaft portion of the bolt and the tendon 102A to pass therethrough. In addition, as shown in FIG. 25B, the structure 27 is provided with a plurality of (12 in the drawing) positioning holes 270 around the through-hole 271. Each positioning hole 270 is formed in a circular shape in plan view, and is provided at equal intervals along the circumferential direction of the through hole 271. The shape of the positioning hole 270 is not limited to a circular shape in a plan view, and may be a rectangular shape in a plan view, for example. That is, the positioning hole 270 only needs to have a shape into which the core 4 is fitted.
 この構成では、適用例1の力センサ2と同様に、構造体27に検知回路3などの回路を設計する必要がないことから、基板24と比較して構造体27の厚さ方向の寸法を小さくすることができるので、力センサ2の薄型化を図ることができる。 In this configuration, similarly to the force sensor 2 of the application example 1, since it is not necessary to design a circuit such as the detection circuit 3 in the structure 27, the dimension in the thickness direction of the structure 27 is smaller than that of the substrate 24. Since it can be made small, the force sensor 2 can be made thin.
 更に、本適用例の力センサ2は、図26A,図26Bに示すように、構造体27を第1プレート21(または第2プレート22)に一体に形成した構成であってもよい。なお、図26Bでは、第2プレート22および弾性体23の図示を省略している。構造体27は、例えば溶接などの加工技術により、第1プレート21(または第2プレート22)と一体に形成される。この構成でも、力センサ2の薄型化を図ることができる。 Furthermore, as shown in FIGS. 26A and 26B, the force sensor 2 of this application example may have a structure in which the structure 27 is formed integrally with the first plate 21 (or the second plate 22). In FIG. 26B, the second plate 22 and the elastic body 23 are not shown. The structure 27 is formed integrally with the first plate 21 (or the second plate 22) by a processing technique such as welding. Even with this configuration, the force sensor 2 can be thinned.
 なお、本適用例の力センサ2では、適用例1の力センサ2と同様に、基板24や構造体27を備えるか否かは任意である。すなわち、本適用例の力センサ2は、第1プレート21および第2プレート22、並びに弾性体23によりコア4を位置決めする構造であれば、基板24や構造体27を設けなくてもよい。但し、基板24や構造体27を備える構成であれば、第1プレート21および第2プレート22を加工してコア4を位置決めするための構造を設ける必要がなく、第1プレート21および第2プレート22の厚さ寸法を小さくすることができるという利点がある。 In addition, in the force sensor 2 of this application example, whether the substrate 24 or the structure 27 is provided is arbitrary as in the case of the force sensor 2 of Application Example 1. That is, the force sensor 2 of this application example does not have to be provided with the substrate 24 and the structure 27 as long as the core 4 is positioned by the first plate 21 and the second plate 22 and the elastic body 23. However, if the configuration includes the substrate 24 and the structure 27, there is no need to provide a structure for positioning the core 4 by processing the first plate 21 and the second plate 22, and the first plate 21 and the second plate. There is an advantage that the thickness dimension of 22 can be reduced.
 (適用例3)
 以下、適用例3に係る力センサ2について詳細に説明する。ただし、以下では、適用例2の力センサ2と共通する構成要素については、適宜説明を省略する。
(Application example 3)
Hereinafter, the force sensor 2 according to Application Example 3 will be described in detail. However, in the following, description of components common to the force sensor 2 of Application Example 2 will be omitted as appropriate.
 適用例3の力センサ2は、図27A,図27Bに示すように、全体として平面視でU字状に形成されている。本適用例の力センサ2は、検知ブロック6を備えている。検知ブロック6は、第1プレート21、第2プレート22、弾性体23および複数(ここでは、9つ)の検知部20を備えて構成されている。本適用例の力センサ2では、検知ブロック6は基板(構造体)24をさらに備えているが、基板24を備えるか否かは任意である。 As shown in FIGS. 27A and 27B, the force sensor 2 of Application Example 3 is formed in a U shape as a whole in plan view. The force sensor 2 of this application example includes a detection block 6. The detection block 6 includes a first plate 21, a second plate 22, an elastic body 23, and a plurality of (here, nine) detection units 20. In the force sensor 2 of this application example, the detection block 6 further includes a substrate (structure) 24, but whether or not the substrate 24 is included is arbitrary.
 検知ブロック6は、その中央部に平面視で円形状の通孔200を有している。通孔200は、第1プレート21、第2プレート22および基板24を上下方向(検知方向)に貫通して設けられている。通孔200は、第1プレート21の通孔210、および第2プレート22の通孔220を上下方向につないだ孔である。言い換えれば、通孔210および通孔220は通孔200に相当する。通孔200は、適用例2の力センサ2と同様に、ボルトの軸部やアンカー100のテンドン102A(図28A参照)を挿入するために用いられる。勿論、通孔200の形状は、平面視で円形状に限定されず、ボルトの軸部やテンドン102Aを挿入することが可能な形状であればよい。 The detection block 6 has a circular through-hole 200 in the center in a plan view. The through hole 200 is provided so as to penetrate the first plate 21, the second plate 22, and the substrate 24 in the vertical direction (detection direction). The through hole 200 is a hole that connects the through hole 210 of the first plate 21 and the through hole 220 of the second plate 22 in the vertical direction. In other words, the through hole 210 and the through hole 220 correspond to the through hole 200. The through hole 200 is used for inserting the shaft portion of the bolt or the tendon 102A (see FIG. 28A) of the anchor 100 in the same manner as the force sensor 2 of the application example 2. Of course, the shape of the through hole 200 is not limited to a circular shape in plan view, and may be any shape as long as the shaft portion of the bolt or the tendon 102A can be inserted.
 複数の検知部20は、通孔200の周囲に配置されている。このため、例えばボルトの軸部を通孔200に通した状態で、ナットが各検知部20に対向し易い。したがって、ボルトを締め付ける場合に、ナットが力センサ2の一面を押し下げる荷重が各検知部20に伝わり易い。 The plurality of detection units 20 are arranged around the through hole 200. For this reason, for example, in a state where the shaft portion of the bolt is passed through the through hole 200, the nut easily faces each detection unit 20. Accordingly, when the bolt is tightened, the load by which the nut pushes down one surface of the force sensor 2 is easily transmitted to each detection unit 20.
 検知ブロック6は、開口201をさらに有している。開口201は、上下方向(検知方向)と直交する平面に沿った向き(すなわち、ボルトの軸部やテンドン102Aの径方向に沿った向き)に通孔200を外部に開放するように設けられている。開口201は、ボルトの軸部やテンドン102Aを径方向に沿った向きに通すことが可能な幅寸法(図27Aにおける左右方向の寸法)を有していればよい。 The detection block 6 further has an opening 201. The opening 201 is provided so as to open the through hole 200 to the outside in a direction along a plane orthogonal to the vertical direction (detection direction) (that is, a direction along the axial direction of the bolt or the radial direction of the tendon 102A). Yes. The opening 201 only needs to have a width dimension (a dimension in the left-right direction in FIG. 27A) that allows the shaft portion of the bolt and the tendon 102A to pass through in the radial direction.
 本適用例の力センサ2および力検知装置1は、例えば図28A,図28Bに示すように、アンカー100の引張り力を検知する際に用いることができる。なお、図28Aでは、検知回路3およびアンカープレート101Bの図示を省略している。 The force sensor 2 and the force detection device 1 of this application example can be used when detecting the tensile force of the anchor 100 as shown in FIGS. 28A and 28B, for example. In FIG. 28A, illustration of the detection circuit 3 and the anchor plate 101B is omitted.
 ここで、アンカー100が既に施工された状態において、本適用例の力センサ2をアンカー100に取り付ける場合を考える。この場合、検知ブロック6が開口201を有さない(すなわち、通孔200がテンドン102Aの径方向に沿った向きに閉じている)力センサ2では、アンカー100を構造物A1から取り外さなければ、通孔200にテンドン102Aを挿入することができない。つまり、検知ブロック6が開口を有さない力センサ2では、アンカー100を構造物A1から取り外さなければ力センサ2をアンカー100に取り付けることができない。 Here, consider a case where the force sensor 2 of this application example is attached to the anchor 100 in a state where the anchor 100 has already been constructed. In this case, in the force sensor 2 in which the detection block 6 does not have the opening 201 (that is, the through hole 200 is closed in a direction along the radial direction of the tendon 102A), the anchor 100 is not removed from the structure A1. The tendon 102A cannot be inserted into the through hole 200. That is, in the force sensor 2 in which the detection block 6 does not have an opening, the force sensor 2 cannot be attached to the anchor 100 unless the anchor 100 is removed from the structure A1.
 一方、本適用例の力センサ2では、検知ブロック6が開口201を有しているので、図28Bに示すように、テンドン102Aを、径方向に沿った向きから開口201を通すことで、通孔200に挿入することができる。このため、本適用例の力センサ2では、ナット101Aの締め付けを緩めてナット101Aと構造物A1との間の隙間に力センサ2を差し込むことにより、テンドン102Aを開口201から通孔200に挿入することができる。 On the other hand, in the force sensor 2 of this application example, since the detection block 6 has the opening 201, as shown in FIG. 28B, the tendon 102A is passed through the opening 201 from the direction along the radial direction. It can be inserted into the hole 200. For this reason, in the force sensor 2 of this application example, the tendon 102A is inserted into the through-hole 200 from the opening 201 by loosening the tightening of the nut 101A and inserting the force sensor 2 into the gap between the nut 101A and the structure A1. can do.
 つまり、本適用例の力センサ2は、アンカー100を構造物A1から取り外さなくても、アンカー100に取り付けることができるので、施工性を向上させることができる。勿論、ボルトに取り付ける場合でも、本適用例の力センサ2は、アンカー100に取り付ける場合と同様に、ボルトを取り外さなくても、ボルトに取り付けることができる。 That is, since the force sensor 2 of the application example can be attached to the anchor 100 without removing the anchor 100 from the structure A1, the workability can be improved. Of course, even when attached to the bolt, the force sensor 2 of this application example can be attached to the bolt without removing the bolt, as in the case of attaching to the anchor 100.
 ところで、本適用例の力センサ2は、図29A,図29Bに示すように、開口201を塞ぐ閉塞部材7をさらに備えていてもよい。閉塞部材7は、平面視で矩形状に形成されている。閉塞部材7は、検知ブロック6と同様に、第1プレート21、第2プレート22、弾性体23、基板24および複数(ここでは、4つ)の検知部20を備えて構成されている。なお、閉塞部材7が基板24を備えるか否かは任意である。 Incidentally, the force sensor 2 of this application example may further include a closing member 7 that closes the opening 201 as shown in FIGS. 29A and 29B. The blocking member 7 is formed in a rectangular shape in plan view. Similar to the detection block 6, the closing member 7 includes a first plate 21, a second plate 22, an elastic body 23, a substrate 24, and a plurality of (here, four) detection units 20. Note that whether or not the closing member 7 includes the substrate 24 is arbitrary.
 つまり、この構成において、閉塞部材7は、検知ブロック60でもある。言い換えれば、本適用例の力センサ2は、複数の検知ブロック6,60を備えていてもよい。そして、複数の検知ブロック6,60のうち少なくとも1つ(ここでは、検知ブロック60)が閉塞部材7を兼ねていてもよい。 That is, in this configuration, the closing member 7 is also the detection block 60. In other words, the force sensor 2 of this application example may include a plurality of detection blocks 6 and 60. In addition, at least one of the plurality of detection blocks 6, 60 (here, the detection block 60) may also serve as the closing member 7.
 検知ブロック6および閉塞部材7は、規制部8により上下方向(検知方向)への相対的な移動を規制されている。規制部8は、凸部81と、凹部82とで構成されている。凹部82は、検知ブロック6の開口201を挟んだ両端(図29Aにおける左右両端)にそれぞれ設けられている。凸部81は、閉塞部材7の長手方向(図29Aにおける左右方向)の両端にそれぞれ設けられている。 The relative movement in the vertical direction (detection direction) of the detection block 6 and the closing member 7 is restricted by the restriction unit 8. The restricting portion 8 includes a convex portion 81 and a concave portion 82. The recesses 82 are respectively provided at both ends (left and right ends in FIG. 29A) across the opening 201 of the detection block 6. The convex portions 81 are provided at both ends in the longitudinal direction of the closing member 7 (left and right direction in FIG. 29A).
 これら凸部81が対応する凹部82にそれぞれ嵌合することで、閉塞部材7が検知ブロック6の開口201を閉塞する。このため、本適用例の力センサ2では、通孔200に挿入されたボルトの軸部やテンドン102Aが、開口201を通して抜け難い。 The occlusion member 7 occludes the opening 201 of the detection block 6 by fitting these projections 81 into the corresponding recesses 82 respectively. For this reason, in the force sensor 2 of this application example, the shaft portion of the bolt inserted into the through hole 200 and the tendon 102 </ b> A are difficult to come out through the opening 201.
 また、規制部8により、検知ブロック6および閉塞部材7の上下方向(検知方向)への相対的な移動が規制される。このため、本適用例の力センサ2では、検知ブロック6および閉塞部材7が荷重を受けても、上下方向においてずれが生じ難い。 Moreover, the relative movement of the detection block 6 and the closing member 7 in the vertical direction (detection direction) is restricted by the restriction unit 8. For this reason, in the force sensor 2 of this application example, even if the detection block 6 and the closing member 7 receive a load, the vertical displacement is unlikely to occur.
 また、本適用例の力センサ2では、検知ブロック60が閉塞部材7を兼ねている。このため、本適用例の力センサ2では、荷重を検知する機能の他に、開口201を塞ぐ機能を検知ブロック60に持たせることができる。 Moreover, in the force sensor 2 of this application example, the detection block 60 also serves as the closing member 7. For this reason, in the force sensor 2 of this application example, in addition to the function of detecting the load, the detection block 60 can have a function of closing the opening 201.
 ここで、規制部8は、例えば図30A,図30Bに示すように、凸部81を閉塞部材7の弾性体23に、凹部82を検知ブロック6の弾性体23に設けることで構成されていてもよい。また、規制部8は、例えば図31A,図31Bに示すように、凸部81を閉塞部材7の第1プレート21および第2プレート22の各々に、凹部82を検知ブロック6の第1プレート21および第2プレート22の各々に設けることで構成されていてもよい。また、規制部8は、凸部81を検知ブロック6に、凹部82を閉塞部材7に設けることで構成されていてもよい。 Here, for example, as shown in FIG. 30A and FIG. 30B, the restricting portion 8 is configured by providing the convex portion 81 on the elastic body 23 of the closing member 7 and the concave portion 82 on the elastic body 23 of the detection block 6. Also good. Further, for example, as shown in FIG. 31A and FIG. 31B, the restricting portion 8 includes a convex portion 81 in each of the first plate 21 and the second plate 22 of the closing member 7 and a concave portion 82 in the first plate 21 of the detection block 6. And it may be configured by being provided on each of the second plates 22. Further, the restricting portion 8 may be configured by providing the convex portion 81 in the detection block 6 and the concave portion 82 in the closing member 7.
 (変形例1)
 適用例3の変形例1の力センサ2は、図32A,図32Bに示すように、全体として平面視でY字状に形成されている点で適用例3の力センサ2と異なっている。なお、本変形例の力センサ2では、検知ブロック6は7つの検知部20を備えている。
(Modification 1)
The force sensor 2 of the modification 1 of the application example 3 is different from the force sensor 2 of the application example 3 in that it is formed in a Y shape in plan view as a whole as shown in FIGS. 32A and 32B. In the force sensor 2 of this modification, the detection block 6 includes seven detection units 20.
 本変形例の力センサ2では、通孔200は、平面視で三角形状に形成されている。また、本変形例の力センサ2では、通孔200から開口201に向かうにつれて、幅寸法(図32Aにおける左右方向の寸法)が大きくなっている。このため、本変形例の力センサ2では、径寸法が互いに異なる種々のボルトの軸部やテンドン102Aを通孔200に挿入することが可能である。 In the force sensor 2 of this modification, the through hole 200 is formed in a triangular shape in plan view. Further, in the force sensor 2 of the present modification, the width dimension (the dimension in the left-right direction in FIG. 32A) increases from the through hole 200 toward the opening 201. For this reason, in the force sensor 2 of this modification, it is possible to insert into the through hole 200 the shaft part of various bolts and tendons 102A having different diameters.
 本変形例の力センサ2および力検知装置1は、例えば図33A,図33Bに示すように、アンカー100の引張り力を検知する際に用いることができる。なお、図33Aでは、検知回路3およびアンカープレート101Bの図示を省略している。 The force sensor 2 and the force detection device 1 of this modification can be used when detecting the tensile force of the anchor 100 as shown in FIGS. 33A and 33B, for example. In FIG. 33A, the detection circuit 3 and the anchor plate 101B are not shown.
 本変形例の力センサ2では、適用例3の力センサ2と同様に、検知ブロック6が開口201を有している。このため、本変形例の力センサ2は、適用例3の力センサ2と同様の効果を奏することができる。 In the force sensor 2 of this modification, the detection block 6 has an opening 201 as in the force sensor 2 of Application Example 3. For this reason, the force sensor 2 of this modification can produce the same effect as the force sensor 2 of the application example 3.
 また、本変形例の力センサ2は、適用例3の力センサ2と同様に、閉塞部材7(検知ブロック60)をさらに備えていてもよい(図34A,図34B参照)。なお、閉塞部材7は、5つの検知部20を備えている点で適用例3の力センサ2における閉塞部材7と異なっているが、その他の構成は同じである。 Further, the force sensor 2 of the present modification may further include a closing member 7 (detection block 60), similar to the force sensor 2 of Application Example 3 (see FIGS. 34A and 34B). The closing member 7 is different from the closing member 7 in the force sensor 2 of the application example 3 in that it includes five detection units 20, but the other configurations are the same.
 ところで、適用例3の力センサ2では、閉塞部材7は検知ブロック60であるが、他の構成であってもよい。例えば図35Aに示すように、閉塞部材7は、荷重を検知する機能を有さずに、検知ブロック6の開口201を塞ぐ機能のみを有する構成であってもよい。この場合、閉塞部材7は、例えば金属材料やCFRP等の樹脂材料により、コア4と同等の剛性をもつ構造で形成されるのが好ましい。変形例1の力センサ2でも同様に、閉塞部材7は、例えば図35Bに示すように、検知ブロック6の開口201を塞ぐ機能のみを有する構成であってもよい。 By the way, in the force sensor 2 of the application example 3, the closing member 7 is the detection block 60, but may have other configurations. For example, as illustrated in FIG. 35A, the closing member 7 may have a function of closing only the opening 201 of the detection block 6 without having a function of detecting a load. In this case, it is preferable that the closing member 7 is formed of a resin material such as a metal material or CFRP, and has a structure having rigidity equivalent to that of the core 4. Similarly, in the force sensor 2 of the first modification, the closing member 7 may have a configuration having only a function of closing the opening 201 of the detection block 6 as shown in FIG. 35B, for example.
 また、適用例3および変形例1の力センサ2では、検知ブロック6は複数の検知部20を備えているが、1つの検知部20のみを備えていてもよい。同様に、閉塞部材7は、検知ブロック6と同様の構成を備えている場合、1つの検知部20のみを備えていてもよい。 In the force sensor 2 of the application example 3 and the modification example 1, the detection block 6 includes a plurality of detection units 20, but may include only one detection unit 20. Similarly, when the blocking member 7 has the same configuration as the detection block 6, it may include only one detection unit 20.
 さらに、適用例3および変形例1の力検知装置1では、検知回路3は、検知ブロック6の備える検知部20の出力信号と、閉塞部材7の備える検知部20の出力信号とを個別に処理してもよいし、一体的に処理してもよい。 Further, in the force detection device 1 of the application example 3 and the modification example 1, the detection circuit 3 individually processes the output signal of the detection unit 20 included in the detection block 6 and the output signal of the detection unit 20 included in the blocking member 7. Alternatively, they may be processed integrally.
 (適用例4)
 以下、適用例4の力センサ2について説明する。ただし、以下では、適用例3の力センサ2と共通する構成要素については、適宜説明を省略する。本適用例の力センサ2は、図36A,図36Bに示すように、全体として平面視で正方形状に形成されている。本適用例の力センサ2は、2つの検知ブロック61,62で構成されている。
(Application example 4)
Hereinafter, the force sensor 2 of the application example 4 will be described. However, in the following, description of components common to the force sensor 2 of Application Example 3 is omitted as appropriate. As shown in FIGS. 36A and 36B, the force sensor 2 of this application example is formed in a square shape as a whole in plan view. The force sensor 2 of this application example includes two detection blocks 61 and 62.
 検知ブロック61,62は、いずれも平面視で矩形状に形成されている。検知ブロック61,62は、いずれも検知ブロック6と同様に、第1プレート21、第2プレート22、弾性体23、基板24および複数(ここでは、5つ)の検知部20を備えて構成されている。なお、検知ブロック61,62が基板24を備えるか否かは任意である。 The detection blocks 61 and 62 are both formed in a rectangular shape in plan view. As with the detection block 6, each of the detection blocks 61 and 62 includes the first plate 21, the second plate 22, the elastic body 23, the substrate 24, and a plurality of (here, five) detection units 20. ing. Whether or not the detection blocks 61 and 62 include the substrate 24 is arbitrary.
 検知ブロック61,62は、いずれも平面視で半円形状の通孔200と、開口201とを有している。通孔200は、図36Bに示すように、検知ブロック61,62の各々の開口201を互いに突き合わせることで、平面視で円形状の閉じた領域を構成する。つまり、検知ブロック61は、検知ブロック62から見て閉塞部材7を兼ねている。同様に、検知ブロック62は、検知ブロック61から見て閉塞部材7を兼ねている。以下では、検知ブロック62が閉塞部材7を兼ねていると仮定して説明する。 The detection blocks 61 and 62 each have a semicircular through hole 200 and an opening 201 in plan view. As shown in FIG. 36B, the through-hole 200 constitutes a circular closed region in plan view by abutting the openings 201 of the detection blocks 61 and 62 with each other. That is, the detection block 61 also serves as the blocking member 7 when viewed from the detection block 62. Similarly, the detection block 62 also serves as the blocking member 7 when viewed from the detection block 61. In the following description, it is assumed that the detection block 62 also serves as the closing member 7.
 検知ブロック61および検知ブロック62(閉塞部材7)は、規制部8により上下方向(検知方向)への相対的な移動を規制されている。規制部8は、検知ブロック61の第1角部(図36Aにおける右上の角部)に設けられた凹部82と、検知ブロック62の第1角部(図36Aにおける左上の角部)に設けられた凸部81とで構成されている。また、規制部8は、検知ブロック61の第2角部(図36Aにおける右下の角部)に設けられた凸部81と、検知ブロック62の第2角部(図36Aにおける左下の角部)に設けられた凹部82とで構成されている。 The relative movement of the detection block 61 and the detection block 62 (blocking member 7) in the vertical direction (detection direction) is restricted by the restriction unit 8. The restricting portion 8 is provided at the concave portion 82 provided at the first corner of the detection block 61 (upper right corner in FIG. 36A) and at the first corner of the detection block 62 (upper left corner in FIG. 36A). And a convex portion 81. Further, the restricting portion 8 includes a convex portion 81 provided at the second corner (the lower right corner in FIG. 36A) of the detection block 61 and a second corner (the lower left corner in FIG. 36A) of the detection block 62. ) Provided in the concave portion 82.
 規制部8は、例えば図37Aに示すように、凸部81および凹部82をそれぞれ弾性体23に設けることで構成されていてもよい。また、規制部8は、例えば図37Bに示すように、凸部81を第1プレート21および第2プレート22の各々に、凹部82を第1プレート21および第2プレート22の各々に設けることで構成されていてもよい。 For example, as shown in FIG. 37A, the restricting portion 8 may be configured by providing the elastic body 23 with a convex portion 81 and a concave portion 82. Further, as shown in FIG. 37B, for example, the restricting portion 8 is provided with a convex portion 81 in each of the first plate 21 and the second plate 22 and a concave portion 82 in each of the first plate 21 and the second plate 22. It may be configured.
 検知ブロック61と検知ブロック62(閉塞部材7)とは、連結部9により互いに連結されている。連結部9は、ワイヤ91で構成されている。ワイヤ91の両端のうち第1端は、検知ブロック61の長手方向の一端(図36Bにおける下端)に機械的に接続され、第2端は、検知ブロック62の長手方向の一端(図36Bにおける下端)に機械的に接続されている。 The detection block 61 and the detection block 62 (blocking member 7) are connected to each other by a connecting portion 9. The connecting portion 9 is composed of a wire 91. Of the both ends of the wire 91, the first end is mechanically connected to one end in the longitudinal direction of the detection block 61 (lower end in FIG. 36B), and the second end is one end in the longitudinal direction of the detection block 62 (lower end in FIG. 36B). ) Mechanically connected.
 本適用例の力センサ2では、適用例3の力センサ2と同様に、検知ブロック61,62がそれぞれ開口201を有している。このため、本適用例の力センサ2では、適用例3の力センサ2と同様の効果を奏することができる。 In the force sensor 2 of this application example, the detection blocks 61 and 62 each have an opening 201 as in the force sensor 2 of the application example 3. For this reason, in the force sensor 2 of this application example, the effect similar to the force sensor 2 of the application example 3 can be show | played.
 また、本適用例の力センサ2では、検知ブロック61と検知ブロック62(閉塞部材7)とがワイヤ91(連結部9)により互いに連結されているので、これらの部材がばらばらになることがない。つまり、本適用例の力センサ2では、検知ブロック61と検知ブロック62とを一体に扱うことができるので、施工現場にて何れか一方を紛失するということがなく、施工性を向上させることができる。 Moreover, in the force sensor 2 of this application example, since the detection block 61 and the detection block 62 (closing member 7) are connected to each other by the wire 91 (connecting portion 9), these members are not separated. . That is, in the force sensor 2 of this application example, since the detection block 61 and the detection block 62 can be handled integrally, one of them is not lost at the construction site, and the workability can be improved. it can.
 ところで、連結部9は、ワイヤ91に限定されず、他の構成であってもよい。例えば図38A,図38Bに示すように、連結部9はヒンジ92であってもよい。ヒンジ92は、第1腕部921と、第2腕部922と、ピン923と、一対の止め輪924とで構成されている。 By the way, the connecting portion 9 is not limited to the wire 91 and may have other configurations. For example, as shown in FIGS. 38A and 38B, the connecting portion 9 may be a hinge 92. The hinge 92 includes a first arm portion 921, a second arm portion 922, a pin 923, and a pair of retaining rings 924.
 第1腕部921は、検知ブロック61の第1プレート21から外向き(図38Aにおける下向き)に突出して設けられている。第2腕部922は、検知ブロック62の第2プレート22から外向き(図38Aにおける下向き)に突出して設けられている。第1腕部921および第2腕部922は、上下方向(検知方向)において互いに重なり合っている。 The first arm portion 921 is provided so as to protrude outward from the first plate 21 of the detection block 61 (downward in FIG. 38A). The second arm portion 922 is provided to protrude outward (downward in FIG. 38A) from the second plate 22 of the detection block 62. The first arm portion 921 and the second arm portion 922 overlap each other in the vertical direction (detection direction).
 第1腕部921および第2腕部922は、いずれも平面視で円形状の孔を有している。これらの孔には、上下方向(検知方向)に長尺な丸棒状のピン923が挿入されている。ピン923は、一対の止め輪924により抜け止めされている。 Both the first arm portion 921 and the second arm portion 922 have circular holes in plan view. In these holes, round bar-like pins 923 elongated in the vertical direction (detection direction) are inserted. The pin 923 is prevented from coming off by a pair of retaining rings 924.
 この構成では、検知ブロック61および検知ブロック62(閉塞部材7)は、ヒンジ92により互いに連結されている。そして、検知ブロック61,62は、何れもピン923を軸として回転可能である。つまり、この構成では、検知ブロック61、62を回転させることで、検知ブロック61,62の各々の通孔200を外部に開放させた状態と、通孔200を閉じた状態とを択一的に切り替えることができる。 In this configuration, the detection block 61 and the detection block 62 (the closing member 7) are connected to each other by the hinge 92. The detection blocks 61 and 62 can rotate about the pin 923 as an axis. That is, in this configuration, by rotating the detection blocks 61 and 62, the state in which the through holes 200 of the detection blocks 61 and 62 are opened to the outside and the state in which the through holes 200 are closed are alternatively selected. Can be switched.
 また、この構成では、ヒンジ92は規制部8としても機能する。つまり、第1プレート21および第2プレート22は、上下方向(検知方向)において一対の止め輪924により挟まれているため、ヒンジ92の一対の止め輪924により上下方向の相対的な移動が規制されている。 In this configuration, the hinge 92 also functions as the restricting portion 8. That is, since the first plate 21 and the second plate 22 are sandwiched between the pair of retaining rings 924 in the vertical direction (detection direction), the relative movement in the vertical direction is restricted by the pair of retaining rings 924 of the hinge 92. Has been.
 図38A,図38Bに示す構成では、規制部8は、凸部81および凹部82の代わりに、一対の突片83,84と、留め具85とで構成されている。突片83は、検知ブロック61の第1角部から外向き(図38Aにおける上向き)に突出して設けられている。突片84は、検知ブロック62の第1角部から外向き(図38Aにおける上向き)に突出して設けられている。留め具85は、例えば針金により構成されている。突片83,84は、図38Aに示すように、検知ブロック61,62を互いに突き合わせた状態で、留め具85により固定される。 38A and 38B, the restricting portion 8 includes a pair of projecting pieces 83 and 84 and a fastener 85 instead of the convex portion 81 and the concave portion 82. The projecting piece 83 is provided to project outward (upward in FIG. 38A) from the first corner of the detection block 61. The projecting piece 84 is provided so as to project outward (upward in FIG. 38A) from the first corner of the detection block 62. The fastener 85 is made of a wire, for example. As shown in FIG. 38A, the projecting pieces 83 and 84 are fixed by a fastener 85 in a state where the detection blocks 61 and 62 are abutted with each other.
 つまり、この構成では、規制部8は、通孔200を閉じた状態で検知ブロック61および検知ブロック62(閉塞部材7)を保持する機能を有している。このため、この構成では、力センサ2がボルトやアンカー100から外れ難い。 That is, in this configuration, the restricting unit 8 has a function of holding the detection block 61 and the detection block 62 (the closing member 7) in a state where the through hole 200 is closed. For this reason, in this configuration, the force sensor 2 is unlikely to be detached from the bolt or the anchor 100.
 ところで、本適用例の力センサ2は連結部9を備えているが、連結部9を備えるか否かは任意である。つまり、本適用例の力センサ2では、検知ブロック61,62が機械的に分離されていてもよい。 By the way, although the force sensor 2 of this application example includes the connecting portion 9, whether or not to include the connecting portion 9 is arbitrary. That is, in the force sensor 2 of this application example, the detection blocks 61 and 62 may be mechanically separated.
 また、本適用例の力センサ2では、検知ブロック61,62はそれぞれ複数の検知部20を備えているが、1つの検知部20のみを備えていてもよい。 Further, in the force sensor 2 of this application example, each of the detection blocks 61 and 62 includes a plurality of detection units 20, but may include only one detection unit 20.
 さらに、本適用例の力検知装置1では、検知回路3は、検知ブロック61の備える検知部20の出力信号と、検知ブロック62の備える検知部20の出力信号とを個別に処理してもよいし、一体的に処理してもよい。また、連結部9を通した電線により、検知ブロック61と検知ブロック62との間の電気的な接続を確保するようにしてもよい。 Further, in the force detection device 1 of this application example, the detection circuit 3 may individually process the output signal of the detection unit 20 included in the detection block 61 and the output signal of the detection unit 20 included in the detection block 62. However, they may be processed integrally. Further, an electrical connection between the detection block 61 and the detection block 62 may be ensured by an electric wire passing through the connecting portion 9.
 (変形例1)
 適用例4の変形例1の力センサ2は、図39A,図39Bに示すように、3つの検知ブロック61~63で構成されている点、および連結部9を備えていない点で適用例4の力センサ2と異なっている。なお、本変形例の力センサ2では、検知ブロック61,63がそれぞれ3つの検知部20を備えており、検知ブロック62が2つの検知部20を備えている。
(Modification 1)
As shown in FIGS. 39A and 39B, the force sensor 2 according to the first modification of the application example 4 includes the three detection blocks 61 to 63 and does not include the connecting portion 9. The force sensor 2 is different. In the force sensor 2 of this modification, the detection blocks 61 and 63 each include three detection units 20, and the detection block 62 includes two detection units 20.
 検知ブロック61~63は、いずれも検知ブロック6と同様に、第1プレート21、第2プレート22、弾性体23、基板24および複数の検知部20を備えて構成されている。なお、検知ブロック61~63が基板24を備えるか否かは任意である。 As with the detection block 6, each of the detection blocks 61 to 63 includes a first plate 21, a second plate 22, an elastic body 23, a substrate 24, and a plurality of detection units 20. Whether or not the detection blocks 61 to 63 include the substrate 24 is arbitrary.
 検知ブロック61~63は、いずれも平面視で扇形状の通孔200と、開口201とを有している。通孔200は、図39Bに示すように、検知ブロック61~63の各々の開口201を互いに突き合わせることで、平面視で円形状の閉じた領域を構成する。つまり、複数の検知ブロック61~63のうちの何れか1つの検知ブロックから見て、他の検知ブロックは閉塞部材7を兼ねている。 Each of the detection blocks 61 to 63 has a fan-shaped through hole 200 and an opening 201 in plan view. As shown in FIG. 39B, the through-hole 200 constitutes a circular closed region in plan view by abutting the openings 201 of the detection blocks 61 to 63 with each other. That is, as viewed from any one of the plurality of detection blocks 61 to 63, the other detection blocks also serve as the blocking member 7.
 検知ブロック61~63は、それぞれ凸部81および凹部82を備えている。図39Aに示すように、検知ブロック61の凸部81および検知ブロック63の凹部82は、規制部8を構成している。同様に、検知ブロック63の凸部81および検知ブロック62の凹部82と、検知ブロック62の凸部81および検知ブロック61の凹部82とは、それぞれ規制部8を構成している。 The detection blocks 61 to 63 are each provided with a convex portion 81 and a concave portion 82. As shown in FIG. 39A, the convex portion 81 of the detection block 61 and the concave portion 82 of the detection block 63 constitute a restricting portion 8. Similarly, the convex portion 81 of the detection block 63 and the concave portion 82 of the detection block 62, and the convex portion 81 of the detection block 62 and the concave portion 82 of the detection block 61 constitute the restricting portion 8.
 本変形例の力センサ2では、適用例3の力センサ2と同様に、検知ブロック61~63がそれぞれ開口201を有している。このため、本変形例の力センサ2では、適用例3の力センサ2と同様の効果を奏することができる。 In the force sensor 2 of the present modification, the detection blocks 61 to 63 each have an opening 201 as in the force sensor 2 of the application example 3. For this reason, in the force sensor 2 of this modification, the effect similar to the force sensor 2 of the application example 3 can be show | played.
 ここで、本変形例の力センサ2は連結部9を備えていないが、連結部9を備えていてもよい。例えば本変形例の力センサ2は、検知ブロック61および検知ブロック62と、検知ブロック62および検知ブロック63とがそれぞれワイヤ91で互いに連結される構成であってもよい。また、連結部9は、ワイヤ91の代わりにヒンジ92であってもよい。 Here, the force sensor 2 of the present modification does not include the connecting portion 9, but may include the connecting portion 9. For example, the force sensor 2 of this modification may have a configuration in which the detection block 61 and the detection block 62, and the detection block 62 and the detection block 63 are connected to each other by wires 91. Further, the connecting portion 9 may be a hinge 92 instead of the wire 91.
 また、本変形例の力センサ2では、検知ブロック61~63はそれぞれ複数の検知部20を備えているが、1つの検知部20のみを備えていてもよい。 Further, in the force sensor 2 of the present modified example, each of the detection blocks 61 to 63 includes a plurality of detection units 20, but may include only one detection unit 20.
 さらに、本変形例の力検知装置1では、検知回路3は、検知ブロック61~63の各々が備える検知部20の出力信号を個別に処理してもよいし、一体的に処理してもよい。 Further, in the force detection device 1 of the present modification, the detection circuit 3 may individually process the output signals of the detection units 20 included in each of the detection blocks 61 to 63, or may process them integrally. .
 (変形例2)
 適用例4の変形例2の力センサ2は、図40A,図40Bに示すように、4つの検知ブロック61~64で構成されている点、および連結部9を備えていない点で適用例4の力センサ2と異なっている。なお、本変形例の力センサ2では、検知ブロック61~64がそれぞれ2つの検知部20を備えている。
(Modification 2)
As shown in FIGS. 40A and 40B, the force sensor 2 according to the second modification of the application example 4 is configured with four detection blocks 61 to 64 and does not include the connecting portion 9. The force sensor 2 is different. In the force sensor 2 of this modification, the detection blocks 61 to 64 each include two detection units 20.
 検知ブロック61~64は、いずれも検知ブロック6と同様に、第1プレート21、第2プレート22、弾性体23、基板24および複数の検知部20を備えて構成されている。なお、検知ブロック61~64が基板24を備えるか否かは任意である。 As with the detection block 6, each of the detection blocks 61 to 64 includes the first plate 21, the second plate 22, the elastic body 23, the substrate 24, and a plurality of detection units 20. Whether or not the detection blocks 61 to 64 include the substrate 24 is arbitrary.
 検知ブロック61~64は、いずれも平面視で扇形状の通孔200と、開口201とを有している。通孔200は、図40Bに示すように、検知ブロック61~64の各々の開口201を互いに突き合わせることで、平面視で円形状の閉じた領域を構成する。つまり、複数の検知ブロック61~64のうちの何れか1つの検知ブロックから見て、他の検知ブロックは閉塞部材7を兼ねている。 The detection blocks 61 to 64 each have a fan-shaped through hole 200 and an opening 201 in plan view. As shown in FIG. 40B, the through-hole 200 constitutes a circular closed region in plan view by abutting each opening 201 of the detection blocks 61 to 64 with each other. That is, when viewed from any one of the plurality of detection blocks 61 to 64, the other detection blocks also serve as the blocking member 7.
 検知ブロック61~64は、それぞれ凸部81および凹部82を備えている。図40Aに示すように、検知ブロック61の凸部81および検知ブロック64の凹部82は、規制部8を構成している。同様に、検知ブロック64の凸部81および検知ブロック63の凹部82と、検知ブロック63の凸部81および検知ブロック62の凹部82と、検知ブロック62の凸部81および検知ブロック61の凹部82とは、それぞれ規制部8を構成している。 The detection blocks 61 to 64 are each provided with a convex portion 81 and a concave portion 82. As shown in FIG. 40A, the convex portion 81 of the detection block 61 and the concave portion 82 of the detection block 64 constitute a restricting portion 8. Similarly, the convex portion 81 of the detection block 64 and the concave portion 82 of the detection block 63, the convex portion 81 of the detection block 63 and the concave portion 82 of the detection block 62, and the convex portion 81 of the detection block 62 and the concave portion 82 of the detection block 61 Respectively constitute the restricting portion 8.
 本変形例の力センサ2では、適用例3の力センサ2と同様に、検知ブロック61~64がそれぞれ開口201を有している。このため、本変形例の力センサ2では、適用例3の力センサ2と同様の効果を奏することができる。 In the force sensor 2 of this modification, the detection blocks 61 to 64 each have an opening 201 as in the force sensor 2 of Application Example 3. For this reason, in the force sensor 2 of this modification, the effect similar to the force sensor 2 of the application example 3 can be show | played.
 ここで、本変形例の力センサ2は連結部9を備えていないが、連結部9を備えていてもよい。例えば本変形例の力センサ2は、検知ブロック61および検知ブロック62と、検知ブロック62および検知ブロック63と、検知ブロック63および検知ブロック64とがそれぞれワイヤ91で互いに連結される構成であってもよい。また、連結部9は、ワイヤ91の代わりにヒンジ92であってもよい。 Here, the force sensor 2 of the present modification does not include the connecting portion 9, but may include the connecting portion 9. For example, the force sensor 2 of the present modification may have a configuration in which the detection block 61 and the detection block 62, the detection block 62 and the detection block 63, and the detection block 63 and the detection block 64 are connected to each other by wires 91. Good. Further, the connecting portion 9 may be a hinge 92 instead of the wire 91.
 また、本変形例の力センサ2では、検知ブロック61~64はそれぞれ複数の検知部20を備えているが、1つの検知部20のみを備えていてもよい。 Further, in the force sensor 2 of the present modification, each of the detection blocks 61 to 64 includes a plurality of detection units 20, but may include only one detection unit 20.
 さらに、本変形例の力検知装置1では、検知回路3は、検知ブロック61~64の各々が備える検知部20の出力信号を個別に処理してもよいし、一体的に処理してもよい。 Further, in the force detection device 1 of the present modification, the detection circuit 3 may individually process the output signals of the detection units 20 included in each of the detection blocks 61 to 64, or may process them integrally. .
 ところで、適用例4の変形例1の力センサ2において、複数の検知ブロック61~63のうち少なくとも1つの検知ブロックを閉塞部材7に置き換えてもよい。この閉塞部材7は、荷重を検知する機能を有さずに、単に検知ブロック6の開口201を塞ぐ機能のみを有する。例えば図41Aに示すように、3つの検知ブロック61~63のうち検知ブロック62を閉塞部材7に置き換えてもよい。 By the way, in the force sensor 2 of Modification 1 of Application Example 4, at least one detection block among the plurality of detection blocks 61 to 63 may be replaced with the closing member 7. The closing member 7 does not have a function of detecting a load, but has only a function of closing the opening 201 of the detection block 6. For example, as shown in FIG. 41A, the detection block 62 of the three detection blocks 61 to 63 may be replaced with the closing member 7.
 同様に、適用例4の変形例2の力センサ2において、複数の検知ブロック61~64のうち少なくとも1つの検知ブロックを閉塞部材7に置き換えてもよい。例えば図41Bに示すように、4つの検知ブロック61~64のうち検知ブロック63を閉塞部材7に置き換えてもよい。 Similarly, in the force sensor 2 of Modification 2 of Application Example 4, at least one detection block among the plurality of detection blocks 61 to 64 may be replaced with the closing member 7. For example, as shown in FIG. 41B, the detection block 63 among the four detection blocks 61 to 64 may be replaced with the closing member 7.
 なお、適用例3およびその変形例1、ならびに適用例4およびその変形例1,2の力センサ2は、たとえば検知ブロック6と閉塞部材7との間や、複数の検知ブロック61~64間に隙間を空けた状態で、ボルトやアンカー100に取り付けられてもよい。 Note that the force sensor 2 of the application example 3 and the modification example 1 and the application example 4 and the modification examples 1 and 2 is, for example, between the detection block 6 and the blocking member 7 or between the plurality of detection blocks 61 to 64. You may attach to the volt | bolt and the anchor 100 in the state which opened the clearance gap.
 以上述べたように、コイル装置50は、以下の第1の特徴を有する。 As described above, the coil device 50 has the following first feature.
 第1の特徴では、コイル装置50は、磁性体にて中空部40を囲む環状に形成されたコア4と、複数本の導線53の束を有する電路構造体51と、電路構造体51の両端部に電気的に接続された接続構造体52とを備える。複数本の導線53は互いに電気的に絶縁されている。電路構造体51は、中空部40を通してコア4に掛けられている。接続構造体52は、一対の端子551,552を有し、一対の端子551,552間において複数本の導線53を電気的に直列に接続して、複数本の導線53にてコイル5を形成するように構成されている。 In the first feature, the coil device 50 includes a core 4 formed in an annular shape surrounding the hollow portion 40 with a magnetic material, an electric circuit structure 51 having a bundle of a plurality of conducting wires 53, and both ends of the electric circuit structure 51. And a connection structure 52 electrically connected to the part. The multiple conducting wires 53 are electrically insulated from each other. The electric circuit structure 51 is hung on the core 4 through the hollow portion 40. The connection structure 52 has a pair of terminals 551 and 552, and a plurality of conductors 53 are electrically connected in series between the pair of terminals 551 and 552, and the coil 5 is formed by the plurality of conductors 53. Is configured to do.
 また、コイル装置50は、第1の特徴に加えて、以下の第2の特徴を有していてもよい。 In addition to the first feature, the coil device 50 may have the following second feature.
 第2の特徴では、電路構造体51は、複数本の導線53が、電気絶縁性を有する被覆部材513で覆われたケーブルである。 In the second feature, the electric circuit structure 51 is a cable in which a plurality of conductive wires 53 are covered with a covering member 513 having electrical insulation.
 また、コイル装置50は、第1の特徴に加えて、以下の第3の特徴を有していてもよい。 In addition to the first feature, the coil device 50 may have the following third feature.
 第3の特徴では、電路構造体51は、複数本の導線53が、電気絶縁性および可撓性を有するベースフィルム514の少なくとも一面に形成されたフレキシブル基板である。 In the third feature, the electric circuit structure 51 is a flexible substrate in which a plurality of conductive wires 53 are formed on at least one surface of a base film 514 having electrical insulation and flexibility.
 また、コイル装置50は、第1の特徴に加えて、以下の第4の特徴を有していてもよい。 In addition to the first feature, the coil device 50 may have the following fourth feature.
 第4の特徴では、電路構造体51は、複数本の導線53が、電気絶縁性を有する成形体515の表面に形成された構造である。 In the fourth feature, the electric circuit structure 51 is a structure in which a plurality of conductive wires 53 are formed on the surface of a molded body 515 having electrical insulation.
 また、コイル装置50は、第2または第3の特徴に加えて、以下の第5の特徴を有していてもよい。 Further, the coil device 50 may have the following fifth feature in addition to the second or third feature.
 第5の特徴では、コイル装置50は、コア4と接続構造体52との間において、電路構造体51を束ねる結束部材56をさらに備える。 In the fifth feature, the coil device 50 further includes a binding member 56 that binds the electric circuit structure 51 between the core 4 and the connection structure 52.
 また、コイル装置50は、第1乃至5の何れかの特徴に加えて、以下の第6の特徴を有していてもよい。 The coil device 50 may have the following sixth feature in addition to any of the first to fifth features.
 第6の特徴では、コア4は、中空部40の周方向の一部に、他の部位よりも断面積の小さい取付部41を有し、電路構造体51は、取付部41に掛けられている。 In the sixth feature, the core 4 has a mounting portion 41 having a smaller cross-sectional area than other portions in a part of the circumferential direction of the hollow portion 40, and the electric circuit structure 51 is hung on the mounting portion 41. Yes.
 また、力センサ2は、以下の第7の特徴を有している。 The force sensor 2 has the following seventh feature.
 第7の特徴では、力センサ2は、第1~第6の何れかのコイル装置50を備えている。コア4には、一対の端子551,552間を流れる電流によって生じる磁束が通る磁路M1が、中空部40の周方向に沿って形成される。コア4は、磁路M1が形成される面と交差する交差方向の一面に、荷重を受ける荷重受部42を有する。 In the seventh feature, the force sensor 2 includes any one of the first to sixth coil devices 50. In the core 4, a magnetic path M <b> 1 through which a magnetic flux generated by a current flowing between the pair of terminals 551 and 552 passes is formed along the circumferential direction of the hollow portion 40. The core 4 has a load receiving portion 42 that receives a load on one surface in the intersecting direction intersecting the surface on which the magnetic path M1 is formed.
 また、力センサ2は、第7の特徴に加えて、以下の第8の特徴を有していてもよい。 Further, the force sensor 2 may have the following eighth feature in addition to the seventh feature.
 第8の特徴では、力センサ2は、検知方向(交差方向)の両側からコア4を挟むように配置される第1プレート21および第2プレート22と、弾性体23とをさらに備える。弾性体23は、コア4よりも弾性率の低い材料で形成され、第1プレート21および第2プレート22の両者間を位置決めする。 In the eighth feature, the force sensor 2 further includes a first plate 21 and a second plate 22 disposed so as to sandwich the core 4 from both sides in the detection direction (cross direction), and an elastic body 23. The elastic body 23 is formed of a material having a lower elastic modulus than the core 4 and positions between the first plate 21 and the second plate 22.
 また、力センサ2は、第8の特徴に加えて、以下の第9の特徴を有していてもよい。 Further, the force sensor 2 may have the following ninth feature in addition to the eighth feature.
 第9の特徴では、第1プレート21、第2プレート22、記弾性体23およびコイル装置50は、検知ブロック6(60~64)を構成する。検知ブロック6(60~64)は、交差方向に貫通する通孔200を有する。コイル装置50は、通孔200の周囲に配置される。検知ブロック6(60~64)は、交差方向と直交する平面に沿った向きに通孔200を外部に開放する開口201を有する。 In the ninth feature, the first plate 21, the second plate 22, the elastic body 23, and the coil device 50 constitute a detection block 6 (60 to 64). The detection block 6 (60 to 64) has a through hole 200 penetrating in the crossing direction. The coil device 50 is disposed around the through hole 200. The detection block 6 (60 to 64) has an opening 201 that opens the through hole 200 to the outside in a direction along a plane orthogonal to the intersecting direction.
 また、力検知装置1は、以下の第10の特徴を有している。 Moreover, the force detection device 1 has the following tenth feature.
 第10の特徴では、力検知装置1は、第7~第9の何れかの力センサ2と、コイル装置50の磁気特性の変化に基づいて荷重を検知する検知回路3とを備える。 In the tenth feature, the force detection device 1 includes any one of the seventh to ninth force sensors 2 and a detection circuit 3 that detects a load based on a change in magnetic characteristics of the coil device 50.
 上述したコイル装置50、力センサ2、および力検知装置1は、コア4の中空部40を通した複数本の導線53の束にてコイル5が形成される。そのため、コイル装置50を製造するに際して、一本の長い導線をコア4に巻き付ける場合のようにコア4の中空部40に導線を何度も通す必要はなく、コア4の中空部40には電路構造体51を一度通すだけでよい。その結果、コイル装置50の製造が容易になる、という利点がある。 In the coil device 50, the force sensor 2, and the force detection device 1 described above, the coil 5 is formed by a bundle of a plurality of conducting wires 53 that pass through the hollow portion 40 of the core 4. Therefore, when manufacturing the coil device 50, it is not necessary to pass the conductor wire through the hollow portion 40 of the core 4 many times as in the case of winding a single long conductor wire around the core 4. It is only necessary to pass the structure 51 once. As a result, there exists an advantage that manufacture of the coil apparatus 50 becomes easy.

Claims (10)

  1.  磁性体にて、中空部を囲む環状に形成されたコアと、
     互いに電気的に絶縁された複数本の導線の束を有し、前記中空部を通して前記コアに掛けられた電路構造体と、
     前記電路構造体の両端部に電気的に接続された接続構造体とを備え、
     前記接続構造体は、一対の端子を有し、前記一対の端子間において前記複数本の導線を電気的に直列に接続することにより、前記複数本の導線にてコイルを形成するように構成されていることを特徴とするコイル装置。
    In a magnetic body, a core formed in an annular shape surrounding the hollow portion;
    An electric circuit structure having a bundle of a plurality of conductive wires electrically insulated from each other and hung on the core through the hollow portion;
    A connection structure electrically connected to both ends of the electric circuit structure,
    The connection structure has a pair of terminals, and is configured to form a coil with the plurality of conductors by electrically connecting the plurality of conductors in series between the pair of terminals. A coil device characterized by that.
  2.  前記電路構造体は、前記複数本の導線が、電気絶縁性を有する被覆部材で覆われたケーブルであることを特徴とする請求項1記載のコイル装置。 The coil device according to claim 1, wherein the electric circuit structure is a cable in which the plurality of conductive wires are covered with a covering member having electrical insulation.
  3.  前記電路構造体は、前記複数本の導線が、電気絶縁性および可撓性を有するベースフィルムの少なくとも一面に形成されたフレキシブル基板であることを特徴とする請求項1記載のコイル装置。 The coil device according to claim 1, wherein the electric circuit structure is a flexible substrate in which the plurality of conductive wires are formed on at least one surface of a base film having electrical insulation and flexibility.
  4.  前記電路構造体は、前記複数本の導線が、電気絶縁性を有する成形体の表面に形成された構造であることを特徴とする請求項1記載のコイル装置。 The coil device according to claim 1, wherein the electric circuit structure has a structure in which the plurality of conductive wires are formed on a surface of a molded body having electrical insulation.
  5.  前記コアと前記接続構造体との間において、前記電路構造体を束ねる結束部材をさらに備えることを特徴とする請求項2または3に記載のコイル装置。 The coil device according to claim 2 or 3, further comprising a bundling member that bundles the electric circuit structure between the core and the connection structure.
  6.  前記コアは、前記中空部の周方向の一部に、他の部位よりも断面積の小さい取付部を有し、
     前記電路構造体は、前記取付部に掛けられていることを特徴とする請求項1乃至5の何れか1項に記載のコイル装置。
    The core has a mounting portion having a smaller cross-sectional area than the other part in a part of the circumferential direction of the hollow portion,
    The coil device according to claim 1, wherein the electric circuit structure is hung on the attachment portion.
  7.  請求項1乃至6の何れか1項に記載のコイル装置を備え、
     前記コアには、前記一対の端子間を流れる電流によって生じる磁束が通る磁路が、前記中空部の周方向に沿って形成され、
     前記コアは、前記磁路が形成される面と交差する交差方向の一面に、荷重を受ける荷重受部を有することを特徴とする力センサ。
    A coil device according to any one of claims 1 to 6, comprising:
    In the core, a magnetic path through which a magnetic flux generated by a current flowing between the pair of terminals passes is formed along a circumferential direction of the hollow portion,
    The core has a load receiving portion for receiving a load on one surface in an intersecting direction intersecting a surface on which the magnetic path is formed.
  8.  前記交差方向の両側から前記コアを挟むように配置される第1プレートおよび第2プレートと、
     前記コアよりも弾性率の低い材料で形成され、前記第1プレートおよび前記第2プレートの両者間を位置決めする弾性体とをさらに備えることを特徴とする請求項7記載の力センサ。
    A first plate and a second plate arranged so as to sandwich the core from both sides in the intersecting direction;
    The force sensor according to claim 7, further comprising: an elastic body that is formed of a material having a lower elastic modulus than the core and positions between the first plate and the second plate.
  9.  前記第1プレート、前記第2プレート、前記弾性体および前記コイル装置は、検知ブロックを構成し、
     前記検知ブロックは、前記交差方向に貫通する通孔を有し、
     前記コイル装置は、前記通孔の周囲に配置され、
     前記検知ブロックは、前記交差方向と直交する平面に沿った向きに前記通孔を外部に開放する開口を有することを特徴とする請求項8記載の力センサ。
    The first plate, the second plate, the elastic body, and the coil device constitute a detection block,
    The detection block has a through hole penetrating in the intersecting direction,
    The coil device is disposed around the through hole,
    9. The force sensor according to claim 8, wherein the detection block has an opening that opens the through hole to the outside in a direction along a plane orthogonal to the intersecting direction.
  10.  前記請求項7乃至9の何れか1項に記載の力センサと、前記コイル装置の磁気特性の変化に基づいて荷重を検知する検知回路とを備えることを特徴とする力検知装置。 A force detection device comprising: the force sensor according to any one of claims 7 to 9; and a detection circuit that detects a load based on a change in magnetic characteristics of the coil device.
PCT/JP2015/002645 2014-05-27 2015-05-26 Coil device, power sensor in which said device is used, and power-detecting device in which said device is used WO2015182118A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-109415 2014-05-27
JP2014109415A JP5866515B2 (en) 2014-05-27 2014-05-27 Force sensor and force detection device using the same

Publications (1)

Publication Number Publication Date
WO2015182118A1 true WO2015182118A1 (en) 2015-12-03

Family

ID=54698465

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/002645 WO2015182118A1 (en) 2014-05-27 2015-05-26 Coil device, power sensor in which said device is used, and power-detecting device in which said device is used
PCT/JP2015/002644 WO2015182117A1 (en) 2014-05-27 2015-05-26 Force sensor and force detection device in which same is used

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002644 WO2015182117A1 (en) 2014-05-27 2015-05-26 Force sensor and force detection device in which same is used

Country Status (2)

Country Link
JP (1) JP5866515B2 (en)
WO (2) WO2015182118A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028179A (en) * 2015-07-27 2017-02-02 日置電機株式会社 Electrical component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6893895B2 (en) * 2018-04-04 2021-06-23 Nissha株式会社 Tile sensor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3299382A (en) * 1963-04-19 1967-01-17 Matsushita Electric Ind Co Ltd Variable magnetostrictive inductance devices
US3717039A (en) * 1969-08-04 1973-02-20 Int Technical Ind Method and means for amplifying the stress and strain in a stress-sensitive component
JPS5065863A (en) * 1973-10-17 1975-06-03
JPS61100117U (en) * 1984-12-05 1986-06-26
JPH01311236A (en) * 1988-06-09 1989-12-15 Sankyo Seiki Mfg Co Ltd Amorphous stress sensor
JPH0425212U (en) * 1990-06-21 1992-02-28
JPH0631111U (en) * 1992-09-24 1994-04-22 株式会社トーキン Substrate type noise filter
JPH10106871A (en) * 1996-09-27 1998-04-24 Toko Denki Kk Current transformer
JP2006162511A (en) * 2004-12-09 2006-06-22 Akebono Brake Ind Co Ltd System for detecting ground anchor tensile force
JP2012065453A (en) * 2010-09-16 2012-03-29 Toyota Central R&D Labs Inc Reactor for two or more phase converter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1001611B (en) * 1972-11-15 1976-04-30 Solentache Sa DYNAMOMETRIC DEVICE
JPS5719437U (en) * 1980-07-08 1982-02-01
JPH01148928A (en) * 1987-12-04 1989-06-12 Matsushita Electric Ind Co Ltd Stress sensor
JPH02259538A (en) * 1989-03-31 1990-10-22 Nippon Steel Corp Pressure sensor
JPH04231827A (en) * 1990-05-31 1992-08-20 Kistler Instr Ag Thin-disk-state force sensor
US5142906A (en) * 1990-07-09 1992-09-01 Westinghouse Electric Corp. Apparatus for measuring valve stem loads in a motor operated valve assembly
JP2000114616A (en) * 1998-10-09 2000-04-21 Sanyo Electric Co Ltd Magnetostriction detection type power sensor
JP4373816B2 (en) * 2004-03-05 2009-11-25 Tdk株式会社 Load measuring device
JP5016281B2 (en) * 2006-09-13 2012-09-05 曙ブレーキ工業株式会社 Ground anchor tension detecting device, tension detecting method and sensor plate mounting jig
JP3128065U (en) * 2006-10-12 2006-12-21 矢部 興一 Center-hole load transducer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3299382A (en) * 1963-04-19 1967-01-17 Matsushita Electric Ind Co Ltd Variable magnetostrictive inductance devices
US3717039A (en) * 1969-08-04 1973-02-20 Int Technical Ind Method and means for amplifying the stress and strain in a stress-sensitive component
JPS5065863A (en) * 1973-10-17 1975-06-03
JPS61100117U (en) * 1984-12-05 1986-06-26
JPH01311236A (en) * 1988-06-09 1989-12-15 Sankyo Seiki Mfg Co Ltd Amorphous stress sensor
JPH0425212U (en) * 1990-06-21 1992-02-28
JPH0631111U (en) * 1992-09-24 1994-04-22 株式会社トーキン Substrate type noise filter
JPH10106871A (en) * 1996-09-27 1998-04-24 Toko Denki Kk Current transformer
JP2006162511A (en) * 2004-12-09 2006-06-22 Akebono Brake Ind Co Ltd System for detecting ground anchor tensile force
JP2012065453A (en) * 2010-09-16 2012-03-29 Toyota Central R&D Labs Inc Reactor for two or more phase converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017028179A (en) * 2015-07-27 2017-02-02 日置電機株式会社 Electrical component

Also Published As

Publication number Publication date
JP5866515B2 (en) 2016-02-17
JP2015224938A (en) 2015-12-14
WO2015182117A1 (en) 2015-12-03

Similar Documents

Publication Publication Date Title
US9366700B2 (en) Current sensor
KR100421305B1 (en) Magnetic sensor having excitation coil including thin-film linear conductor sections formed on bobbin with detection coil wound thereon
EP2699064A2 (en) Planar based RF sensor technology
JP2016200552A (en) Torque sensor
US9784627B2 (en) Load sensor, load detector including load sensor, and method for detecting load
US20090295384A1 (en) Magnetic field sensor and electrical current sensor therewith
JP2015144160A (en) Antenna apparatus, antenna unit for non-contact power transmission, and electronic apparatus
KR20140010334A (en) Electromagnetic coil structure having a flat conductive track, magnetic core and magneto electronic angle sensor
JP3247666B2 (en) Flaw detection coil element and flaw detection coil
US8653810B2 (en) Flexible magnetostrictive sensor
WO2015182118A1 (en) Coil device, power sensor in which said device is used, and power-detecting device in which said device is used
EP3526615B1 (en) Electrical current transducer
JP2006196778A (en) Coil and current sensor using same
JP5866518B1 (en) Force sensor and force detection device
JP2009236803A (en) Magnet impedance sensor element
JP5866517B1 (en) Force sensor and force detection device using the same
JP6881204B2 (en) Single plate magnetic property tester
JP2017150979A (en) Current measurement device
JP4135882B2 (en) Magnetic flux sensor, magnetic flux detection method and current detection method
JP2004111831A (en) Air core coil
JP2017026373A (en) Torque sensor
JP7061421B2 (en) Magnetic sensor, sensor head and current sensor
JP2015225086A (en) Force sensor, force detector and application method thereof
JPH1194922A (en) Magnetic sensor
TWI675207B (en) Current sensing module for current sensor and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15800380

Country of ref document: EP

Kind code of ref document: A1