JPH01148928A - Stress sensor - Google Patents

Stress sensor

Info

Publication number
JPH01148928A
JPH01148928A JP30786487A JP30786487A JPH01148928A JP H01148928 A JPH01148928 A JP H01148928A JP 30786487 A JP30786487 A JP 30786487A JP 30786487 A JP30786487 A JP 30786487A JP H01148928 A JPH01148928 A JP H01148928A
Authority
JP
Japan
Prior art keywords
thin film
magnetic
stress
inductance
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30786487A
Other languages
Japanese (ja)
Inventor
Shinya Tokuono
徳尾野 信也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP30786487A priority Critical patent/JPH01148928A/en
Publication of JPH01148928A publication Critical patent/JPH01148928A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To obtain a high sensitivity sensor having good response, by forming a coil using a superconductive membrane and detecting the change of the inductance thereof. CONSTITUTION:A ring-shape solenoid is formed by laminating Y-Ba-Cu oxide superconductive membranes 4a, 4b and an Fe-Co-Zr magnetic membrane 3 having magnetostriction on a Ti substrate 1. Tensile stress is applied to the substrate 1 in a left-and-right direction and the change of the inductance thereof is measured by a detection circuit 5 to obtain an output characteristic almost constant in the sensitivity to stress within a range equal to or less than the critical temp. and critical current of the superconductive membranes and having stable and good linearity. Since a current flows through a superconductor almost zero in DC resistance, it is unnecessary to form an insulating film on the substrate and, therefore, not only accuracy is enhanced but also a process becomes simple and manufacturing becomes easy.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁性薄膜を用いた応力センサに関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a stress sensor using a magnetic thin film.

従来の技術 従来より圧力やトルクや変位などの機械量を検出する素
子として、磁歪を有する合金の応力−磁気効果を用いた
センサが提案されている(例えば特開昭58−1952
39号公報、特開昭58−195240号公報、特開昭
59−61731号公報等)。
Conventional Technology Sensors using the stress-magnetic effect of magnetostrictive alloys have been proposed as elements for detecting mechanical quantities such as pressure, torque, and displacement (for example, in Japanese Patent Laid-Open No. 58-1952).
39, JP-A-58-195240, JP-A-59-61731, etc.).

この方法は、磁歪合金に加えられた応力による歪みが、
応力−磁気効果によって磁歪合金の透磁率を変化させる
ことを利用している。
In this method, the strain due to the stress applied to the magnetostrictive alloy is
It utilizes the fact that the magnetic permeability of a magnetostrictive alloy is changed by the stress-magnetic effect.

また磁歪を利用せず、歪みによる抵抗値の変化を利用し
たものとして歪みゲージがあった。
There is also a strain gauge that does not utilize magnetostriction but instead utilizes changes in resistance due to strain.

しかしながらこれらの方法には測定対象に応力検出素子
を接着しなければならない、素子のマイクロ化が困難で
あるなどの問題点があり、これを解決する方法として、
磁性薄膜にAI等の電導体薄膜を電極として積層した薄
膜インダクタと呼ばれる応用が考案されており、このよ
うな磁性薄膜の応力−磁気効果を利用した第3図のよう
な応力センサも提案されている(特願昭62−1794
72号)。
However, these methods have problems such as the need to adhere the stress detection element to the measurement target and the difficulty in making the element microscopic.
An application called a thin film inductor, in which a conductive thin film such as AI is laminated as an electrode on a magnetic thin film, has been devised, and a stress sensor as shown in Fig. 3, which utilizes the stress-magnetic effect of such a magnetic thin film, has also been proposed. (Patent application 1794, 1986)
No. 72).

この方法は磁性薄膜3と電極4を用いて基板上に平面状
の磁気回路を形成し、基板の歪みを磁性薄膜の応力−磁
気効果によって検出するというもので、前述のトルクセ
ンサ、歪みゲージ等のセンサに対して次のような特徴を
持っていた。
In this method, a planar magnetic circuit is formed on a substrate using a magnetic thin film 3 and an electrode 4, and the distortion of the substrate is detected by the stress-magnetic effect of the magnetic thin film. The sensor had the following characteristics.

■ 磁歪を有する磁性薄膜と薄膜電極を組み合わせて一
つの素子として応力センサを構成することにより、広範
囲の応力に対し高感度な出力の得られる応答性のよいセ
ンサが実現できる。
(2) By configuring a stress sensor as a single element by combining a magnetic thin film with magnetostriction and a thin film electrode, a highly responsive sensor that can provide output with high sensitivity to a wide range of stress can be realized.

■ 薄膜によるコイルとインダクタンス検出回路を同一
基板状に形成し1チツプ化することによりマイクロ化し
た応力検出素子が作製可能になる。
(2) By forming a thin film coil and an inductance detection circuit on the same substrate and integrating them into a single chip, it becomes possible to fabricate a microscopic stress detection element.

■ 基板上にセンサを薄膜として直接形成するため接着
の問題が生じない。
■ Since the sensor is directly formed as a thin film on the substrate, there are no adhesion problems.

発明が解決しようとする問題点 磁性薄膜を利用した応力センサは前述のような長所を持
つが、感度を上げるためにはコイルのインピーダンスの
うち抵抗Rに対するインダクタンスLの比率を上げなけ
ればならず、そのためにはインダクタンスを検出するた
めのコイルに流れる電流を大きくするか、コイルの巻回
数を多くする必要がある。
Problems to be Solved by the Invention A stress sensor using a magnetic thin film has the above-mentioned advantages, but in order to increase sensitivity it is necessary to increase the ratio of inductance L to resistance R of the impedance of the coil. To do this, it is necessary to increase the current flowing through the coil for detecting inductance, or to increase the number of turns of the coil.

ところが従来のセンサでは薄膜電極としてAtやNi−
Cr合金を用いていたため電気抵抗が太き(大電流を流
すためにはより大きな電圧をかける必要があり、またコ
イルの巻回数を多(すると、電極の導電距離が伸び、断
面積が小さくなるため抵抗が高(なり、結局大電圧をコ
イルの両端にかけなければならず、マイクロ化に限界が
あった。
However, in conventional sensors, At or Ni-
Because Cr alloy was used, the electrical resistance was high (in order to flow a large current, it was necessary to apply a larger voltage), and the number of turns of the coil was increased (which increased the conductive distance of the electrode and reduced the cross-sectional area). Therefore, the resistance was high, and a large voltage had to be applied to both ends of the coil, which limited miniaturization.

問題点を解決するための手段 インダクタンス検出用コイルを構成する薄膜電極を、超
伝導体薄膜によって形成する。
Means for Solving the Problems The thin film electrode constituting the inductance detection coil is formed of a superconductor thin film.

作用 コイルを形成する薄膜電極として超伝導体を使用するこ
とにより、電極の抵抗RをOとし、インピーダンス=イ
ンダクタンスとなる。このインダクタンスの変化を検出
することによって、応答性のよい高感度なセンサを実現
する。
By using a superconductor as the thin film electrode forming the working coil, the resistance R of the electrode is set to O, and impedance=inductance. By detecting this change in inductance, a highly sensitive sensor with good responsiveness can be realized.

実施例 以下に本発明による一実施例を図面を用いて説明する。Example An embodiment of the present invention will be described below with reference to the drawings.

実施例I Ti基板1に、下のような順序で磁性合金と超伝導体電
極の各薄膜を積層することにより、基板上に第1図(a
)および第1図(b)の断面図のような構成の薄膜のリ
ング状ソレノイドを形成した。
Example I By laminating thin films of a magnetic alloy and a superconductor electrode in the order shown below on a Ti substrate 1, the thin films shown in FIG.
) and a thin film ring-shaped solenoid having a structure as shown in the cross-sectional view of FIG. 1(b).

■ Y−Ba−Cu−0電極(超伝導膜)4a■ Fe
−Co−Zr薄膜(磁性合金膜)3■ Y−Ba−Cu
−0電極(超伝導膜)4bFe−Co−Zr磁性薄膜は
、直径100InI11の(Feez+o Co*、t
o)sz+o Zr1z+o合金(添え字は原子比を表
す)をターゲットとしてDCマグネトロンスパッタ法を
用い、Ar雰囲気中で次の成膜条件において作製した。
■ Y-Ba-Cu-0 electrode (superconducting film) 4a ■ Fe
-Co-Zr thin film (magnetic alloy film) 3■ Y-Ba-Cu
-0 electrode (superconducting film) 4bFe-Co-Zr magnetic thin film has a diameter of 100InI11 (Feez+o Co*, t
o) sz+o Zr1z+o alloy (subscripts represent atomic ratios) was used as a target and DC magnetron sputtering was used to produce the film under the following film forming conditions in an Ar atmosphere.

磁性薄膜スパッタ条件 到達真空度     : 5 X 10−”TorrA
r圧        : 5 X 10 ’Torrパ
ワー        :250W 基板温度      二〜20℃(水冷)ターゲット基
板間距離:  50n+g+この磁性薄膜をX線回折装
置で測定したところ、アモルファスであった。
Magnetic thin film sputtering conditions Achieved vacuum level: 5 x 10-”TorrA
r Pressure: 5 x 10' Torr Power: 250 W Substrate temperature: 2 to 20° C. (water cooling) Distance between target substrates: 50 n+g+ When this magnetic thin film was measured with an X-ray diffraction device, it was found to be amorphous.

また、Y−Ba−Cu酸化物超伝導薄膜は高周波スパッ
タ法で成膜した。
Further, the Y-Ba-Cu oxide superconducting thin film was formed by high frequency sputtering.

Y−Ba−Cu酸化物薄膜(以下MBC薄膜と呼ぶ)は
Y20G 、BaCO3、Cu0aをY B a 2C
u307の組成比となるように混合し900℃で6時間
焼成したものを粉砕し直径100鴫のターゲットとして
固めたものを次のような条件でスパッタして作製した。
Y-Ba-Cu oxide thin film (hereinafter referred to as MBC thin film) consists of Y20G, BaCO3, and Cu0a as YBa2C.
The mixture was mixed to have a composition ratio of u307, fired at 900° C. for 6 hours, pulverized, solidified as a target with a diameter of 100 mm, and sputtered under the following conditions.

超伝導薄膜スパッタ条件 到達真空度     : 5 X 10−6TorrA
r  圧                二 1  
X  1 0−’Torr02圧     :lX10
−’Torrパワー        :200W 基板温度      :400℃ ターゲット基板間距離=5011II11以上のように
積層膜を形成した後、熱処理を行いFe−Co−Zr薄
膜を軟磁性膜とした。
Superconducting thin film sputtering conditions Achieved vacuum level: 5 x 10-6 TorrA
r pressure 2 1
X 1 0-'Torr02 pressure: lX10
-'Torr power: 200 W Substrate temperature: 400° C. After forming a laminated film such that distance between target substrates = 5011II11 or more, heat treatment was performed to make the Fe-Co-Zr thin film into a soft magnetic film.

磁性薄膜の回りをYBC電極4a、4bが取り囲んで、
磁性薄1113を磁心としたコイルを構成している。
YBC electrodes 4a and 4b surround the magnetic thin film,
A coil is constructed with magnetic thin film 1113 as a magnetic core.

以上のようにしてコイルの形成されたTi基板1上にイ
ンダクタンスを検出する1チツプの検出回路5を設置し
た。
A one-chip detection circuit 5 for detecting inductance was installed on the Ti substrate 1 on which the coil was formed as described above.

この構造は磁性薄膜が閉磁路を構成するので磁束の漏れ
がな(、磁束が主に磁性薄膜3の面内を平行に通るとい
う特徴を持つ。
This structure has the characteristic that since the magnetic thin film forms a closed magnetic path, there is no leakage of magnetic flux (the magnetic flux mainly passes in parallel within the plane of the magnetic thin film 3).

このような構造の場合、コイルのインダクタンスしは簡
単に次式で表される。
In such a structure, the inductance of the coil is simply expressed by the following equation.

ここでμは磁性体の透磁率、nはコイルの巻回数、Sは
磁路の平均断面積、eは平均磁路長を表す。
Here, μ represents the magnetic permeability of the magnetic material, n represents the number of turns of the coil, S represents the average cross-sectional area of the magnetic path, and e represents the average magnetic path length.

磁性薄膜が閉磁路を構成していることから、この構造は
大きなインダクタンス値を持ち得る。また、一般に磁性
薄膜は面内に磁気異方性を持つことからこの構造の場合
、高いμ値が期待できる。
Since the magnetic thin film constitutes a closed magnetic path, this structure can have a large inductance value. Furthermore, since magnetic thin films generally have in-plane magnetic anisotropy, a high μ value can be expected with this structure.

さらに磁性薄膜の幅を大きくすることで断面積Sを、コ
イルの集積度を上げることによってnを上げることが簡
単にできるので、この構造は大きなインダクタンス値を
持つだけでなく、その絶対値を調節することが容易であ
り、その結果、高感度、高出力の応力センサを実現でき
る。
Furthermore, it is easy to increase the cross-sectional area S by increasing the width of the magnetic thin film, and to increase n by increasing the degree of integration of the coils, so this structure not only has a large inductance value, but also adjusts its absolute value. As a result, a stress sensor with high sensitivity and high output can be realized.

しかもコイルを構成する電極として超伝導薄膜を使用し
ているため計測されるインピーダンス値はほとんどイン
ダクタンス成分であり、このことによって極めて高い精
度のインダクタンス値を求めることが可能である。した
がってこのような応力センサは高精度の歪みの検出を必
要とする測定対象にも適している。
Furthermore, since a superconducting thin film is used as the electrodes constituting the coil, the measured impedance value is mostly an inductance component, which makes it possible to obtain an extremely highly accurate inductance value. Therefore, such stress sensors are also suitable for measuring objects that require highly accurate strain detection.

従来の磁性薄膜を応用したセンサでは、上記の■、■、
■の各工程の前後に5i02等の絶縁膜を形成してTi
基板と電極、および電極と磁性薄膜との絶縁性を確保す
る必要があったが、本発明では電極として超伝導薄膜を
使用しており、電流のほとんどが直流抵抗Oの超伝導体
を流れるため基板上に絶縁膜を形成する必要がない。し
たがって本発明は精度が高くなるだけではなく工程が簡
単になり作製が容易になる。
In conventional sensors that apply magnetic thin films, the above ■, ■,
An insulating film such as 5i02 is formed before and after each process of
It was necessary to ensure insulation between the substrate and the electrode, and between the electrode and the magnetic thin film, but in the present invention, a superconducting thin film is used as the electrode, and most of the current flows through the superconductor with a DC resistance of O. There is no need to form an insulating film on the substrate. Therefore, the present invention not only has high precision but also simplifies the process and facilitates manufacturing.

このTi基板1に、左右方向から引張応力を加えてその
インダクタンス変化を検出回路5で測定したところ第2
図に示すように、広範囲の力に対し安定した出力が得ら
れた(黒丸)。応力Fに対する感度(Δμ/ΔF)は、
超伝導薄膜の臨界温度以下、臨界電流以下で測定した場
合はぼ一定であり、直線性のよい出力特性を持つ。従来
例の出力(白丸)と比較するとばらつきが小さくなり精
度の上がっていることがわかる。
A tensile stress was applied to this Ti substrate 1 from the left and right directions, and the change in inductance was measured by the detection circuit 5.
As shown in the figure, stable output was obtained over a wide range of forces (black circles). The sensitivity to stress F (Δμ/ΔF) is
When measured below the critical temperature and critical current of superconducting thin films, it is almost constant and has good linear output characteristics. When compared with the output of the conventional example (white circles), it can be seen that the variation is smaller and the accuracy is improved.

実施例2 次に第二の実施例として第4図に示すように二層の磁性
薄膜の間に非磁性の絶縁膜をはさみ両端に磁性薄膜の結
合部を設けて閉磁路を構成するようにし、閉磁路の中を
鎖交する螺線型のMBC電極によってコイルを形成した
。磁性薄膜にはFe−Tb系合金を、非磁性絶縁膜には
フォトニースを用い、Ti基板上に磁性薄膜3a、MB
C電極4 a %絶縁膜2、YBC電極4b、磁性薄膜
3bの順で薄膜の応力センサを形成し、その横に実施例
1と同様にコイルのインダクタンスを検出する検出回路
5を薄膜の回路で形成した。このとき絶縁膜2の中心部
に穴かあ(ように工程を調整し、磁性膜3aと3bが結
合するとともにMBC電極4aと4bも結合できるよう
にした。
Example 2 Next, as a second example, as shown in FIG. 4, a non-magnetic insulating film is sandwiched between two layers of magnetic thin films, and magnetic thin film coupling parts are provided at both ends to form a closed magnetic circuit. A coil was formed by spiral MBC electrodes interlinked in a closed magnetic path. A Fe-Tb alloy was used for the magnetic thin film, and Photoneese was used for the non-magnetic insulating film.
A thin film stress sensor is formed in the order of C electrode 4 a % insulating film 2, YBC electrode 4b, and magnetic thin film 3b, and next to it, a detection circuit 5 for detecting the inductance of the coil is placed as a thin film circuit in the same manner as in Example 1. Formed. At this time, the process was adjusted so that a hole was made in the center of the insulating film 2, so that the magnetic films 3a and 3b could be combined together, and the MBC electrodes 4a and 4b could also be combined.

この構造も基本的には実施例1.と同じであり、インダ
クタンス値の算出に(1)式を適用できる。
This structure is also basically the same as in Example 1. The equation (1) can be applied to calculate the inductance value.

したがって実施例1と同様に磁路長eと磁路の断面積S
が一定なので、AI電極によるコイルの集積度を上げる
ことによってインダクタンス値を自由に高くすることが
できるのが特徴である。また、この構造は実施例1より
工程数が増えるが2回のMBC電極スパッタの工程にお
いて二つの電極の接点が一箇所ですむため、作製条件が
より簡単になるという利点も持つ。
Therefore, as in Example 1, the magnetic path length e and the cross-sectional area S of the magnetic path
is constant, so the inductance value can be freely increased by increasing the degree of integration of the coil using AI electrodes. Further, although this structure requires more steps than Example 1, it has the advantage that the manufacturing conditions are simpler because only one contact point between the two electrodes is required in the two MBC electrode sputtering steps.

このようなTi基板1に応力を加え、臨界温度以下、臨
界電流以下でそのインダクタンス値の変化を見たところ
、実施例1と同様の結果が得られた。
When stress was applied to such a Ti substrate 1 and the change in inductance value was observed below the critical temperature and below the critical current, the same results as in Example 1 were obtained.

この構造は、磁性薄膜3が形状異方性を持つため、特定
の方向の応力を検出することが可能である。したがって
この素子を適当に組み合わせることによって2次元の応
力センサを実現可能である。
In this structure, since the magnetic thin film 3 has shape anisotropy, stress in a specific direction can be detected. Therefore, a two-dimensional stress sensor can be realized by appropriately combining these elements.

以上に述べたように、磁歪を有する磁性体薄膜と超伝導
体薄膜電極を用いて基板上に薄膜の応力センサを形成す
ると、いずれの構造においても高感度かつ高精度で応答
性の良い応力センサが実現できる。
As mentioned above, if a thin film stress sensor is formed on a substrate using a magnetostrictive magnetic thin film and a superconducting thin film electrode, a stress sensor with high sensitivity, high precision, and good responsiveness can be obtained in either structure. can be realized.

しかも応力やトルクなどの測定対象が金属であった場合
、熱膨張係数の差が小さいため、その測定対象に直接ス
パッタすることによって従来のような取付、接着等の問
題点が生じない。
Moreover, when the object to be measured, such as stress or torque, is a metal, the difference in coefficient of thermal expansion is small, so direct sputtering to the object to be measured eliminates the problems of conventional attachment and adhesion.

したがってこれらの良好な特性を利用することによって
優れた応力センサを実現できることがわかる。
Therefore, it can be seen that an excellent stress sensor can be realized by utilizing these favorable characteristics.

発明の効果 本発明によれば、磁歪を有する磁性薄膜と薄膜電極を組
み合わせて一つの素子として構成した応力センサにおい
て、薄膜電極のうち超伝導体の部分は電気抵抗が0なの
で測定するインピーダンスのうちインダクタンス成分が
ほとんどであり、したがって高精度のインダクタンス検
出が可能になり高精度の応力センサが実現できる。また
、薄膜のコイルに電流を流すことによるジュール熱の発
生がないので薄膜のセンサの特性に影響を与えない。
Effects of the Invention According to the present invention, in a stress sensor configured as a single element by combining a magnetic thin film having magnetostriction and a thin film electrode, the superconductor portion of the thin film electrode has zero electrical resistance, so that part of the impedance to be measured is Most of the components are inductance, so highly accurate inductance detection is possible and a highly accurate stress sensor can be realized. Furthermore, since no Joule heat is generated due to the flow of current through the thin film coil, the characteristics of the thin film sensor are not affected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の一実施例による応力センサの構
造を示す斜視図、第1図(b)は第1図(a)の断面図
、第2図は第1図の基板に応力を加えた場合の出力曲線
図、第3図は従来の発明の実施例による応力センサの構
造を示す斜視図、第4図(a)及び(b)は各々、本発
明の他の実施例における応力センサの斜視図および断面
図である。 1・・・Ti基板、2・・・絶縁膜、3・・・Fe−C
o−Zr合金薄膜、Tb−Fe合金薄膜、4・・・YB
C超伝導電極薄膜、5・・・インダクタンス検出回路、
6・・・磁性薄膜結合部、7・・・Al電極、8・・・
結合部。 代理人の氏名 弁理士 中尾敏男 ほか1名A 10 第 2 図 θ    lθθ   200    Jθθ印友した
力 (k3J/cmす
FIG. 1(a) is a perspective view showing the structure of a stress sensor according to an embodiment of the present invention, FIG. 1(b) is a sectional view of FIG. 1(a), and FIG. An output curve diagram when stress is applied, FIG. 3 is a perspective view showing the structure of a stress sensor according to an embodiment of the conventional invention, and FIGS. 4(a) and (b) respectively show other embodiments of the present invention. FIG. 2 is a perspective view and a cross-sectional view of a stress sensor in FIG. 1... Ti substrate, 2... Insulating film, 3... Fe-C
o-Zr alloy thin film, Tb-Fe alloy thin film, 4...YB
C superconducting electrode thin film, 5... inductance detection circuit,
6... Magnetic thin film coupling part, 7... Al electrode, 8...
Joining part. Name of agent Patent attorney Toshio Nakao and 1 other person A 10 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 少なくとも1層の磁歪を有する磁性体薄膜と、前記磁性
体薄膜が磁気回路となるようにコイルを構成する薄膜電
極と、前記薄膜電極を取り囲むように形成された絶縁体
薄膜と、前記コイルのインダクタンスを検出する検出回
路とから成り、前記薄膜電極が超伝導体から成ることを
特徴とする応力センサ。
a magnetic thin film having at least one layer of magnetostriction; a thin film electrode forming a coil such that the magnetic thin film forms a magnetic circuit; an insulating thin film formed to surround the thin film electrode; and an inductance of the coil. 1. A stress sensor comprising a detection circuit for detecting , and wherein the thin film electrode is made of a superconductor.
JP30786487A 1987-12-04 1987-12-04 Stress sensor Pending JPH01148928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30786487A JPH01148928A (en) 1987-12-04 1987-12-04 Stress sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30786487A JPH01148928A (en) 1987-12-04 1987-12-04 Stress sensor

Publications (1)

Publication Number Publication Date
JPH01148928A true JPH01148928A (en) 1989-06-12

Family

ID=17974083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30786487A Pending JPH01148928A (en) 1987-12-04 1987-12-04 Stress sensor

Country Status (1)

Country Link
JP (1) JPH01148928A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183583A (en) * 1989-01-10 1990-07-18 Seiko Epson Corp Superconducting control element
EP0618628A1 (en) * 1993-03-31 1994-10-05 Matsushita Electric Industrial Co., Ltd. Mechanical sensor
WO2012176475A1 (en) * 2011-06-24 2012-12-27 国立大学法人金沢大学 Magnetostrictive power-generating thin film strip, method for producing same, and magnetostrictive power-generating module
WO2015182117A1 (en) * 2014-05-27 2015-12-03 パナソニックIpマネジメント株式会社 Force sensor and force detection device in which same is used
JP5866517B1 (en) * 2015-05-26 2016-02-17 パナソニックIpマネジメント株式会社 Force sensor and force detection device using the same
US9784627B2 (en) 2013-11-27 2017-10-10 Panasonic Intellectual Property Management Co., Ltd. Load sensor, load detector including load sensor, and method for detecting load

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183583A (en) * 1989-01-10 1990-07-18 Seiko Epson Corp Superconducting control element
EP0618628A1 (en) * 1993-03-31 1994-10-05 Matsushita Electric Industrial Co., Ltd. Mechanical sensor
US5502381A (en) * 1993-03-31 1996-03-26 Matsushita Electric Industrial Co., Ltd. Stress sensor using magnetostriction thin film
WO2012176475A1 (en) * 2011-06-24 2012-12-27 国立大学法人金沢大学 Magnetostrictive power-generating thin film strip, method for producing same, and magnetostrictive power-generating module
JPWO2012176475A1 (en) * 2011-06-24 2015-02-23 国立大学法人金沢大学 Magnetostrictive power generation thin film piece, manufacturing method thereof, and magnetostrictive power generation module
US9784627B2 (en) 2013-11-27 2017-10-10 Panasonic Intellectual Property Management Co., Ltd. Load sensor, load detector including load sensor, and method for detecting load
WO2015182117A1 (en) * 2014-05-27 2015-12-03 パナソニックIpマネジメント株式会社 Force sensor and force detection device in which same is used
JP2015224938A (en) * 2014-05-27 2015-12-14 パナソニックIpマネジメント株式会社 Force sensor and force detector using the same
JP5866517B1 (en) * 2015-05-26 2016-02-17 パナソニックIpマネジメント株式会社 Force sensor and force detection device using the same
JP2016218007A (en) * 2015-05-26 2016-12-22 パナソニックIpマネジメント株式会社 Force sensor and force detector using the same

Similar Documents

Publication Publication Date Title
CA1255922A (en) Strain gauge
KR100687513B1 (en) Thin-film magnetic field sensor
US6650112B2 (en) Magnetics impedance element having a thin film magnetics core
EP0506433A1 (en) Magnetoresistance effect element
KR920010551B1 (en) Distortion measuring method and apparatus
EP0989411A2 (en) Magneto-impedance effect element
CN106225959A (en) A kind of fexible film heat flow transducer and preparation method thereof
JPS63165725A (en) Strain gauge for pressure sensor
Rajanna et al. Pressure transducer with Au-Ni thin-film strain gauges
JP3466470B2 (en) Thin film magnetoresistive element
JPS6022726B2 (en) displacement detector
JPH01148928A (en) Stress sensor
EP0618628B1 (en) Mechanical sensor
JPH0223681A (en) Magnetoresistance effect element
EP0690296A2 (en) Magnetostrictive sensor
Chiriac et al. Magnetoelastic characterization of thin films dedicated to magnetomechanical microsensor applications
US4212688A (en) Alloy for magnetoresistive element and method of manufacturing the same
KR20050051655A (en) Magnetoresistance effect element and production method and application method therefor
JPH1197762A (en) Magnetoresistive element
JPS59226882A (en) Magnetic signal converting element
JP3969002B2 (en) Magnetic sensor
JPH01117379A (en) Stress sensor
US3533860A (en) Magnetostrictive material and elements
JP2020153668A (en) Composite sensor
JP3022094B2 (en) Magnetic sensor