WO2015181941A1 - リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2015181941A1
WO2015181941A1 PCT/JP2014/064367 JP2014064367W WO2015181941A1 WO 2015181941 A1 WO2015181941 A1 WO 2015181941A1 JP 2014064367 W JP2014064367 W JP 2014064367W WO 2015181941 A1 WO2015181941 A1 WO 2015181941A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
lithium ion
ion secondary
negative electrode
electrode active
Prior art date
Application number
PCT/JP2014/064367
Other languages
English (en)
French (fr)
Inventor
岡井 誠
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/064367 priority Critical patent/WO2015181941A1/ja
Publication of WO2015181941A1 publication Critical patent/WO2015181941A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium ion secondary battery and a lithium ion secondary battery.
  • Graphite-based carbon materials are widely used as negative electrode active materials of lithium ion secondary batteries.
  • the stoichiometric composition when lithium is charged into graphite is LiC 6 , and its theoretical capacity can be calculated to be 372 mAh / g.
  • the silicon when the silicon is filled with lithium ions, the stoichiometric composition is Li 15 Si 4 or Li 22 Si 5 , and its theoretical capacity can be calculated to be 3577 mAh / g or 4197 mAh / g.
  • silicon is an attractive material that can store 9.6 times or 11.3 times more lithium than graphite.
  • the silicon particles when the silicon particles are filled with lithium ions, the volume expands to about 3.1 times or about 4.1 times, so that the silicon particles are mechanically broken while repeating the lithium ion charging and discharging. The destruction of the silicon particles electrically isolates the broken fine silicon particles, and the formation of a new electrochemical covering layer on the fracture surface increases the irreversible capacity and significantly reduces the charge-discharge cycle characteristics.
  • Patent Document 1 describes an example in which a silicon nanowire is attached to the surface of a carbon substrate.
  • Patent Document 1 Although silicon nanowires are used as a main negative electrode active material, when the weight ratio of silicon nanowires is increased to increase electric capacity because of the low bulk density of silicon nanowires, electricity per unit volume can be obtained. There was a problem that capacity decreased.
  • An object of the present invention is to provide a negative electrode active material for a lithium ion secondary battery used in a lithium ion secondary battery having a large electric capacity per unit volume.
  • the negative electrode active material for lithium ion secondary batteries which has joined to the base material through the carbon layer, and the silicon nanowire has joined to the base material through the carbon layer.
  • FIG. 1 is a view schematically showing a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • the lithium ion secondary battery negative electrode active material 1000 has a structure in which silicon nanoparticles 102 and silicon nanowires 103 are simultaneously bonded to the surface of a base material 101.
  • the base material 101 may be any carbon material such as natural graphite, various types of artificial graphite, graphite whose surface is coated with amorphous carbon, carbon black, carbon nanotubes, and the like. It is also possible to cover the surface of the silicon nanoparticles 102 and / or the silicon nanowires 103 with a carbon-based (or containing) carbon coating layer.
  • a metal such as silicon or metal capable of inserting and extracting lithium or a compound containing them is used as a base material body, and the surface of the base material body is mainly composed of carbon. It is also possible to use a substrate covered with a carbon coating layer. Even when a carbon material is used as the base material 101, the base material that can occlude and release lithium is a main body, and the surface of the base body is covered with a carbon coating layer containing carbon as a main component. The surface is composed of a carbon layer.
  • the form of the silicon nanowire 103 is described with reference to FIG.
  • the silicon nanowire 103 is bonded to the surface of the substrate 101 via one end thereof.
  • the silicon nanowires 103 are bonded to the base material 101 via the carbon layer on the surface of the base material 101.
  • the silicon nanowires 103 are formed on the surface of the base material 101 by vapor deposition, the silicon nanowires 103, the carbon atoms on the surface of the base material 101, and the silicon atoms in the silicon nanowires 103 are chemically bonded. It is considered to be very strongly bonded to the surface of the substrate 101.
  • the diameter of the cross section of the silicon nanowire 103 is preferably 1 to 100 nm, more preferably 1 to 30 nm. If the diameter is smaller than 1 nm, the bonding strength with the substrate 101 is weak, and the possibility of peeling from the substrate 101 is high. Also, if the diameter is larger than 100 nm, it is likely to be broken due to mechanical strain associated with lithium ion loading and release. The diameter is preferably 30 nm or less in order not to destroy mechanical strain caused by high-speed charge and discharge.
  • the carbon covering layer 303 has a nanographene structure, it has an electrical conductivity of 1000 S / m or more, and the silicon nanowire 103 can be provided with the electrical conductivity. This makes it possible to improve particularly the charge and discharge characteristics at high speed. Also, even if the silicon nanowires 103 break for any reason and come off the substrate 101, it is possible to prevent electrical isolation and to significantly improve the life characteristics.
  • the thickness of the carbon coating layer 303 is preferably 0.5 to 100 nm. If it is larger than 0.5 nm, it is technically difficult to uniformly cover the surface of the silicon nanoparticles 102. In addition, when it is larger than 100 nm, the carbon covering layer 303 is likely to be peeled off from the surface of the silicon nanowire 103.
  • the silicon nanoparticles 102 are bonded to the surface of the substrate 101 through flat portions having a curvature smaller than the average curvature thereof.
  • the silicon nanoparticles 102 are bonded to the substrate 101 via the carbon layer on the surface of the substrate 101.
  • the silicon nanoparticles 102 since the silicon nanoparticles 102 are formed on the surface of the substrate 101 by vapor deposition, the silicon nanoparticles 102 consist of carbon atoms on the surface of the substrate 101 and silicon atoms in the silicon nanoparticles 102. It is considered to be very strongly bonded to the surface of the substrate 101 by chemical bonding.
  • the diameter of the silicon nanoparticles 102 needs to be 1 to 100 nm, more preferably 1 to 30 nm. If the diameter is smaller than 1 nm, the bonding strength with the substrate 101 is weak, and the possibility of peeling from the substrate 101 is high. Also, if the diameter is larger than 100 nm, it is likely to be broken due to mechanical strain associated with lithium ion loading and release. The diameter is preferably 30 nm or less in order not to destroy mechanical strain caused by high-speed charge and discharge.
  • the carbon coating layer 303 has a nanographene structure, it has an electrical conductivity of 1000 S / m or more, and the silicon nanoparticles 102 can be imparted with the electrical conductivity. This makes it possible to improve particularly the charge and discharge characteristics at high speed. Also, even if the silicon nanoparticles 102 are detached from the substrate 101 for any reason, it is possible to prevent electrical isolation and to significantly improve the life characteristics.
  • the thickness of the carbon coating layer 303 is preferably 0.5 to 100 nm. If it is smaller than 0.5 nm, it is technically difficult to uniformly cover the surface of the silicon nanoparticles 102. In addition, when the diameter is larger than 100 nm, the carbon covering layer 303 is likely to be peeled off from the surface of the silicon nanoparticle 102.
  • FIG. 6 shows silicon with respect to the entire weight of the negative electrode active material 1000 for a lithium ion secondary battery in which the silicon nanowires 103 and the silicon nanoparticles 102 are bonded to the surface of a carbon substrate when a carbon substrate is used as the substrate 101.
  • the weight ratio is 20% or more, particularly 40% or more, and further 80% to the lithium ion secondary battery negative electrode active material. It is desirable to contain% or more of silicon.
  • the silicon weight ratio dependency of the radius of the carbon substrate is calculated on the assumption that the silicon nanoparticles 102 are closely packed on the carbon substrate when the carbon substrate is used as the substrate 101.
  • r np [nm] is the radius of the silicon nanoparticle
  • D np is the true density of the silicon nanoparticle.
  • the total area C of the bonding surface of the silicon nanoparticles on the surface of the carbon substrate is expressed by equation (4).
  • equation (10) is obtained using equations (9) and (6).
  • the calculation results are shown in FIG.
  • the ordinate represents the radius of the carbon substrate when the carbon substrate is used as the substrate 101, and the abscissa represents the silicon weight ratio.
  • the radius of the silicon nanoparticles bound to the surface of the carbon substrate was calculated in three ways of 7.5 nm, 15.0 nm and 30.0 nm.
  • the radius of a typical silicon nanoparticle 102 is 15.0 nm, in which case the radius of the carbon substrate needs to be 3.0 ⁇ m or less in order to achieve a silicon weight ratio of 20% or more.
  • the radius of the carbon substrate it is technically difficult to reduce the radius of the carbon substrate to 1.0 ⁇ m or less, and even if it can be realized, the production cost is likely to increase significantly.
  • increasing the radius of the silicon nanoparticles 102 alleviates the requirement for reducing the radius of the carbon substrate.
  • the radius of the silicon nanoparticles 102 needs to be 50.0 nm or less, more preferably 15.0 nm or less, in order to prevent mechanical destruction associated with lithium ion loading and release.
  • the bulk density T s of the carbon substrate can be expressed by equation (13).
  • V s the porosity of the carbon substrate
  • D nw indicates the true density of silicon nanowires
  • V nw indicates the porosity of the silicon nanowires 103.
  • D np 2.33 ⁇ 10 3 [kg / m 3 ]
  • D s 2.2 ⁇ 10 3 [kg / m 3 ]
  • V s 0. 30 was used.
  • the calculation results are shown in FIG.
  • the vertical axis is relative bulk density
  • the horizontal axis is silicon weight ratio.
  • the porosity of the silicon nanowire 103 was calculated for three ways of 0.6, 0.7, and 0.8.
  • the actual measured value of the porosity of a typical silicon nanowire 103 is 0.7, in which case the relative bulk density is reduced to 80% or less in order to make the silicon weight ratio 20% or more.
  • the relative bulk density reduction tolerance depends on the battery design, but there is a practical limit to increasing the silicon weight ratio in the method of bonding the silicon nanowires 103 to the carbon substrate surface.
  • the base material 101, the silicon nanoparticles 102 formed on the surface of the base material 101, and the silicon nanowires 103 formed on the surface of the base material 101 The surface of the substrate 101 is formed of a carbon layer, the silicon nanoparticles 102 are bonded to the substrate 101 via the carbon layer, and the silicon nanowires 103 are on the substrate via the carbon layer.
  • the weight of silicon can be increased and the volume can be suppressed low, so a negative electrode active material for a lithium ion secondary battery used in a lithium ion secondary battery having a large electric capacity per unit volume Can be realized.
  • FIG. 9 is a schematic view of a thermal vapor deposition apparatus for forming carbon-coated silicon nanoparticles 102 and carbon-coated silicon nanowires 103 on the surface of a substrate.
  • liquid silicon tetrachloride As a silicon raw material, liquid silicon tetrachloride was introduced into the reactor by bubbling with hydrogen gas.
  • the vapor pressure of silicon tetrachloride at 20 ° C. is 30 kPa, and when bubbling is introduced, the amount of silicon tetrachloride introduced is 34%. Therefore, in order to introduce less amount of silicon tetrachloride, it is necessary to cool the silicon tetrachloride or to provide a separate line of hydrogen gas. In FIG. 9, a separate hydrogen line not bubbling was provided, joined with the bubbling line, and introduced into the reactor.
  • the procedure for growing the carbon-coated silicon nanoparticles 102 and the carbon-coated silicon nanowires 103 is as follows.
  • the reactor is made of quartz and has a diameter of 5 cm and a length of 40 cm.
  • the flow rate of the upper hydrogen line was changed to 160 mL / min, and the flow rate of the hydrogen line of the lower bubbling hydrogen line was set to 40 mL / min. Under this condition, 6.8% of silicon tetrachloride can be introduced.
  • the lower bubbling hydrogen line was closed, and the flow rate of the upper hydrogen line was changed to 200 mL / min and held at 1000 ° C. for 30 minutes. Thereby, it is possible to simultaneously produce the silicon nanoparticles 102 and the silicon nanowires 103 with a diameter of 30 nm on the surface of the base material 101.
  • the propylene gas line was closed, argon gas was flowed at a flow rate of 200 mL / min, and was kept for 30 minutes, and then naturally cooled.
  • the carbon coating layer 303 film thickness of 10 nm
  • formation of a natural oxide film on the surface of the silicon nanoparticle 102 and the silicon nanowire 103 is performed by continuously performing the preparation of the silicon nanoparticle 102 and the silicon nanowire 103 and the subsequent formation of the carbon covering layer 303.
  • FIG. 11 shows a scanning electron micrograph of a sample with a growth time of 30 minutes. It can be seen that the silicon nanoparticles 102 and the silicon nanowires 103 are mixed.
  • the weight ratio of all silicon, the weight ratio of silicon nanoparticles 102, and the weight ratio of silicon nanowires 103 are shown in Table 1 for samples in which the silicon nanoparticles 102 and the silicon nanowires 103 were formed on the base material 101 that is carbon.
  • the growth time of the sample 1 is 1 hour for the silicon nanoparticles 102 and the silicon nanowires 103, 2 hours for the sample 2, and 3 hours for the sample 3. It can be seen that the weight ratio of all the silicons increases and the ratio of the silicon nanowires 103 to all the silicons increases as the growth time becomes longer.
  • the weight ratio of total silicon was determined by heat treating the sample in air at 1200 ° C. for 2 hours, assuming that all the residue is silicon oxide.
  • the weight ratio of the silicon nanowire 103 is as follows: the sample is put in pure water and sonicated for 1 hour, then the filtrate filtered with a 5 ⁇ m filter is dried and then heat treated in air at 1200 ° C. for 2 hours It asked assuming that it was silicon.
  • the silicon-nan wire 103 detached by ultrasonication is separated, it is possible to measure the weight ratio of the silicon nanowires 103 by the above method.
  • the weight ratio of the silicon nanoparticles 102 was determined on the assumption that the sample remaining on the filter was heat treated in air at 1200 ° C. for 2 hours, and all the residue was silicon oxide.
  • the production of the silicon nanoparticles 102 and the silicon nanowires 103 and the subsequent production of the carbon covering layer 303 were continuously performed. After the silicon nanoparticles 102 and the silicon nanowires 103 are grown, they are once taken out into the air and then heat-treated in a reducing atmosphere to remove the native oxide film on the surfaces of the silicon nanoparticles 102 and the silicon nanowires 103, and subsequently the carbon covering layer. It is also possible to make 303. Productivity is improved by performing the growth of the silicon nanoparticles 102 and the silicon nanowires 103 and the preparation of the carbon coating layer 303 in separate reactors.
  • the weight ratio of the silicon nanoparticles 102 and the silicon nanowires 103 by changing the temperature at the time of growth of the silicon nanoparticles 102 and the silicon nanowires 103, the introduced amount of silicon tetrachloride, and the growth time.
  • the growth time of the carbon covering layer 303 it is possible to control the film thickness of the carbon covering layer 303.
  • various hydrocarbon gases such as acetylene gas, propane gas, and methane gas can be used for producing the carbon coating layer 303.
  • FIG. 12 is an internal structure of a lithium ion secondary battery according to an embodiment of the present invention.
  • 1201 is a positive electrode
  • 1202 is a separator
  • 1203 is a negative electrode
  • 1204 is a battery can
  • 1205 is a positive current collection tab
  • 1206 is a negative current collection tab
  • 1207 is an inner lid
  • 1208 is an internal pressure release valve
  • 1209 is a gasket
  • 1210 is a positive temperature coefficient (PTC) resistive element
  • 1211 is a battery cover.
  • the battery lid 1211 is an integrated component including an inner lid 1207, an internal pressure release valve 1208, a gasket 1209, and a positive temperature coefficient resistance element 1210.
  • the positive electrode 1201 can be manufactured by the following procedure. LiMn 2 O 4 is used as the positive electrode active material. To 85.0 wt% of the positive electrode active material, 7.0 wt% and 2.0 wt% of a graphite powder and acetylene black are added as a conductive material, respectively. Further, a solution dissolved in 6.0 wt% of polyvinylidene fluoride (hereinafter abbreviated as PVDF) and 1-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) as a binder is added and mixed by a planetary mixer. Further, the bubbles in the slurry are removed under vacuum to prepare a homogeneous positive electrode mixture slurry.
  • PVDF polyvinylidene fluoride
  • NMP 1-methyl-2-pyrrolidone
  • This slurry is uniformly and evenly applied on both sides of a 20 ⁇ m thick aluminum foil using a coater. After application, it is compression molded by a roll press so that the electrode density is 2.55 g / cm 3 . This is cut with a cutting machine to produce a positive electrode 1201 having a thickness of 100 ⁇ m, a length of 900 mm, and a width of 54 mm.
  • the negative electrode 1203 can be manufactured by the following procedure.
  • the negative electrode active material the negative electrode active material for lithium ion secondary batteries in the present invention can be used.
  • a solution of 5.0 wt% of PVDF dissolved in NMP as a binder is added to 95.0 wt% of the negative electrode active material. It is mixed with a planetary mixer, and bubbles in the slurry are removed under vacuum to prepare a homogeneous negative electrode mixture slurry. This slurry is uniformly and uniformly applied on both sides of a 10 ⁇ m-thick rolled copper foil with a coating machine. After application, the electrode is compression molded by a roll press to an electrode density of 1.3 g / cm 3 . This is cut with a cutting machine to produce a negative electrode 1203 having a thickness of 110 ⁇ m, a length of 950 mm, and a width of 56 mm.
  • the positive electrode current collecting tab 1205 and the negative electrode current collecting tab 1206 are ultrasonically welded to the positive electrode 1201 and the uncoated part (current collector plate exposed surface) of the negative electrode 1203 which can be manufactured as described above.
  • the positive electrode current collection tab 1205 may be an aluminum lead piece, and the negative electrode current collection tab 1206 may be a nickel lead piece.
  • a separator 1202 made of a porous polyethylene film with a thickness of 30 ⁇ m is inserted into the positive electrode 1201 and the negative electrode 1203, and the positive electrode 1201, the separator 1202, and the negative electrode 1203 are wound.
  • the wound body is housed in a battery can 1204, and the negative electrode current collecting tab 1206 is connected to the can bottom of the battery can 1204 by a resistance welder.
  • the positive electrode current collection tab 1205 is connected to the bottom surface of the inner lid 1207 by ultrasonic welding.
  • a non-aqueous electrolyte is injected.
  • the solvent of the electrolytic solution is, for example, composed of ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC), and there is a volume ratio of 1: 1: 1 or the like.
  • the electrolyte is LiPF 6 at a concentration of 1 mol / L (about 0.8 mol / kg). Such an electrolytic solution is dropped from above the wound body, and the battery lid 1211 is crimped and sealed in the battery can 1204, so that a lithium ion secondary battery can be obtained.

Abstract

 単位体積当たりの電気容量が大きいリチウムイオン二次電池に用いられるリチウムイオン二次電池用負極活物質を実現する。基材と、基材の表面に形成されたシリコンナノ粒子と、基材の表面に形成されたシリコンナノワイヤと、を有し、基材の表面は、炭素層で構成され、シリコンナノ粒子が、炭素層を介して、基材と接合しており、シリコンナノワイヤが、炭素層を介して、基材と接合しているリチウムイオン二次電池用負極活物質。

Description

リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池に関する。
 リチウムイオン二次電池の負極活物質として、黒鉛系の炭素材料が広く用いられている。黒鉛にリチウムイオンを充填した際の化学量論的組成は、LiC6であり、その理論容量は372mAh/gと算出できる。
 これに対して、シリコンにリチウムイオンを充填した際の化学量論的組成は、Li15Si4もしくはLi22Si5であり、その理論容量は3577mAh/gもしくは4197mAh/gと算出できる。このようにシリコンは黒鉛に比べて、9.6倍もしくは11.3倍のリチウムを貯蔵できる魅力的な材料である。しかしながら、シリコン粒子にリチウムイオンを充填すると、体積が3.1倍ないしは4.1倍程度に膨張するため、リチウムイオンの充填と放出を繰り返す間に、シリコン粒子が力学的に破壊する。シリコン粒子が破壊することにより、破壊した微細シリコン粒子が電気的に孤立し、また、破壊面に新しい電気化学的被覆層ができることにより、不可逆容量が増加し、充放電サイクル特性が著しく低下する。
 リチウムイオン二次電池の負極活物質としてシリコン粒子をナノワイヤ化ことにより、リチウムイオンの充填と放出に伴う機械的破壊を防ぐことができる。従来技術として、特許文献1には、炭素基材の表面に、シリコンナノワイヤを付着させた例が記載されている。
特表2012-527735号公報
 特許文献1には、シリコンナノワイヤを主な負極活物質として用いているが、シリコンナノワイヤのかさ密度が低いために、電気容量を増やすためにシリコンナノワイヤの重量比を増やすと、単位体積当たりの電気容量が、低下するという問題があった。
 本発明では、単位体積当たりの電気容量が大きいリチウムイオン二次電池に用いられるリチウムイオン二次電池用負極活物質を提供することを課題とする。
 上記課題を解決するための本発明の特徴は、例えば以下の通りである。
 基材と、基材の表面に形成されたシリコンナノ粒子と、基材の表面に形成されたシリコンナノワイヤと、を有し、基材の表面は、炭素層で構成され、シリコンナノ粒子が、炭素層を介して、基材と接合しており、シリコンナノワイヤが、炭素層を介して、基材と接合しているリチウムイオン二次電池用負極活物質。
 本発明により、単位体積当たりの電気容量が大きいリチウムイオン二次電池に用いられるリチウムイオン二次電池用負極活物質を実現することが可能である。上記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。
本発明の一実施形態に係る、負極活物質を模式的に表現した図である。 本発明の一実施形態に係る、シリコンナノワイヤの形態を模式的に表現した図である。 本発明の一実施形態に係る、シリコンナノワイヤの形態を模式的に表現した図である。 本発明の一実施形態に係る、シリコンナノ粒子の形態を模式的に表現した図である。 本発明の一実施形態に係る、シリコンナノ粒子の形態を模式的に表現した図である。 本発明の一実施形態に係る、電気容量とシリコン重量比の関係に関する計算結果である。 本発明の一実施形態に係る、炭素基材の半径とシリコン重量比の関係を計算した結果である。 本発明の一実施形態に係る、負極活物質の密度とシリコン重量比の関係を計算した結果である。 本発明の一実施形態に係る、負極活物質の作製装置の模式図である。 本発明の一実施例に掛かる、負極活物質の走査型電子顕微鏡写真である。 本発明の一実施例に掛かる、負極活物質の走査型電子顕微鏡写真である。 本発明の一実施形態に係る、リチウムイオン二次電池の内部構造である。
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本発明の第1の実施例について、図1を用いて説明する。図1は、本発明の一実施形態に係るリチウムイオン二次電池用負極活物質を模式的に表現した図である。
 リチウムイオン二次電池用負極活物質1000は、基材101の表面に、シリコンナノ粒子102と、シリコンナノワイヤ103が、同時に結合した構造である。基材101は、天然黒鉛、各種の人造黒鉛、表面をアモルファスカーボンで被覆した黒鉛、カーボンブラック、カーボンナノチューブ、等の如何なる炭素材料を用いることが可能である。また、シリコンナノ粒子102または/およびシリコンナノワイヤ103の表面を炭素を主成分とする(または炭素を含む)炭素被覆層で覆うことも可能である。
 また、基材101として炭素基材のかわりに、リチウムを吸蔵および放出できるシリコン、スス等の金属、あるいはそれらを含有する化合物を基材本体とし、その基材本体の表面を、炭素を主成分とする炭素被覆層で覆った基材を用いることも可能である。基材101に炭素材料を用いる場合でも、リチウムを吸蔵および放出できる基材を本体とし、その基材本体の表面を、炭素を主成分とする炭素被覆層で覆った場合でも、基材101の表面は炭素層で構成されている。
 シリコンナノワイヤ103の形態について、図2を用いて説明する。シリコンナノワイヤ103は、その一端を介して、基材101の表面に結合している。換言すれば、シリコンナノワイヤ103は、基材101表面の炭素層を介して、基材101に結合している。後述するように、シリコンナノワイヤ103は、気相成長法により基材101の表面に形成するため、シリコンナノワイヤ103、基材101表面の炭素原子と、シリコンナノワイヤ103中のシリコン原子の化学結合により、非常に強固に基材101の表面に結合していると考えられる。
 シリコンナノワイヤ103の断面の直径は、1~100nm、さらに望ましくは1~30nmであることが望ましい。直径が1nmより小さい場合は、基材101との接合力が弱く、基材101から剥離する可能性が高い。また、直径が100nmより大きい場合には、リチウムイオンの充填と放出に伴う機械的歪みにより、破壊する可能性が高い。高速の充放電による機械的歪みのも破壊しないためには、直径が30nm以下であること望ましい。
 図3に示すように、シリコンナノワイヤ103の表面に、炭素被覆層303を形成することも可能である。特に、炭素被覆層303が、ナノグラフェン構造を有する場合は、1000S/m以上の電気伝導性があり、シリコンナノワイヤ103に、電気伝導性を付与することが可能である。これにより、特に高速の充放電特性を改善することが可能である。また、シリコンナノワイヤ103が、何らかの理由で折れて、基材101からはずれた場合にも、電気的孤立を防ぎ、寿命特性を大幅に改善することが可能である。
 炭素被覆層303の厚みは、0.5~100nmであることが望ましい。0.5nmより大きい場合は、シリコンナノ粒子102の表面を均一に覆うことが技術的に困難である。また、100nmより大きくなると、炭素被覆層303がシリコンナノワイヤ103の表面から剥離する可能性が高くなる。
 次に、シリコンナノ粒子102の形態を図4を用いて説明する。シリコンナノ粒子102は、その平均曲率よりも小さい曲率を有する平坦部を介して、基材101の表面に結合している。換言すれば、シリコンナノ粒子102は、基材101表面の炭素層を介して、基材101に結合している。後述するように、シリコンナノ粒子102は、気相成長法により基材101の表面に形成するため、シリコンナノ粒子102は、基材101表面の炭素原子と、シリコンナノ粒子102中のシリコン原子の化学結合により、非常に強固に基材101の表面に結合していると考えられる。
 シリコンナノ粒子102の直径は、1?100nm、さらに望ましくは1~30nmであることが必要である。直径が1nmより小さい場合は、基材101との接合力が弱く、基材101から剥離する可能性が高い。また、直径が100nmより大きい場合には、リチウムイオンの充填と放出に伴う機械的歪みにより、破壊する可能性が高い。高速の充放電による機械的歪みのも破壊しないためには、直径が30nm以下であること望ましい。
 図5に示すように、シリコンナノ粒子102の表面に、炭素被覆層303を形成することも可能である。特に、炭素被覆層303が、ナノグラフェン構造を有する場合は、1000S/m以上の電気伝導性があり、シリコンナノ粒子102に、電気伝導性を付与することが可能である。これにより、特に高速の充放電特性を改善することが可能である。また、シリコンナノ粒子102が、何らかの理由で、基材101からはずれた場合にも、電気的孤立を防ぎ、寿命特性を大幅に改善することが可能である。
 炭素被覆層303の厚みは、0.5~100nmであることが望ましい。0.5nmより小さい場合は、シリコンナノ粒子102の表面を均一に覆うことが技術的に困難である。また、100nmより大きくなると、炭素被覆層303がシリコンナノ粒子102の表面から剥離する可能性が高くなる。
 図6は、基材101として炭素基材を用いた場合の炭素基材の表面に、シリコンナノワイヤ103およびシリコンナノ粒子102が結合したリチウムイオン二次電池用負極活物質1000に関して、全体重量に対するシリコンの重量比Si/(Si+C)に対する、負極電気容量の依存性を計算した結果である。炭素に対しては、リチウムイオンを充填した際の化学量論的組成を、LiC6と仮定し、その電気容量を372mAh/gとした。また、シリコンに対しては、リチウムイオンを充填した際の化学量論的組成を、Li15Si4と仮定し、その電気容量を3577mAh/gとした場合と、Li22Si5と仮定し、その電気容量を4197mAh/gとした場合について、計算した。
 正極電気容量とのバランスから、負極電気容量として、1000mAh/g以上を実現できれば、当面は十分な性能であると考えられる。図6の計算結果より、負極電気容量として、1000mAh/g以上を実現するためには、重量比でリチウムイオン二次電池用負極活物質に対して20%以上、特に40%以上、更には80%以上のシリコンを含有することが望ましい。
 上記では、基材として炭素材料を用いた場合を例として計算したが、炭素以外の基材本体を有する基材を用いた場合は、その基材の固有電気容量を用いて、同様の計算を行うことが出来る。
 シリコンナノ粒子102だけを用いて、負極活物質中のシリコン重量比を増やすためには、基材101の大きさを小さくして、基材101の表面積を大きくする必要がある。基材101として炭素基材を用いた場合の炭素基材上に、シリコンナノ粒子102が最密充填に結合した構造を想定して、炭素基材半径のシリコン重量比依存性を計算する。
 本計算において、炭素基材を球形、シリコンナノ粒子を半球と仮定する。また、本計算ではMKSA単位系を用い、それ以外の単位を用いた物理量については、その単位を角括弧内に示した。炭素基材重量1に結合したシリコン重量をxとすると、シリコン重量比Rは、(1)式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 (1)式を変形すると、xは(2)式で表される。
Figure JPOXMLDOC01-appb-M000002
 シリコン重量xの場合に、シリコンナノ粒子の個数Nは(3)式で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 ここでrnp[nm]はシリコンナノ粒子の半径、Dnpはシリコンナノ粒子の真密度である。シリコンナノ粒子の炭素基材表面での接合面の合計面積Cは、(4)式となる。
Figure JPOXMLDOC01-appb-M000004
 炭素基材の比表面積をS[m2/g]とし、シリコンナノ粒子が炭素基材表面に最密充填結合していると仮定すると、S[m2/g]とCとの関係は、(5)式で表すことができる。
Figure JPOXMLDOC01-appb-M000005
 (5)式に(4)式、さらに(3)式を代入して整理すると、(6)式となる。
Figure JPOXMLDOC01-appb-M000006
 炭素基材の半径をrs[nm]、真密度をDsとすると、S[m2/g]は(7)式となり、整理すると(8)式となる。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 (8)式を実験値と合わせるために、補正係数fを導入し、(9)式を得る。
Figure JPOXMLDOC01-appb-M000009
 さらに、(9)式と(6)式を用いて、(10)式を得る。
Figure JPOXMLDOC01-appb-M000010
 (10)式を用いて、炭素基材の半径をrs[nm]のシリコン重量比依存性を、シリコンナノ粒子の半径をパラメータとして計算した。ここで、Dnp、Ds、fとして、Dnp=2.33×103[kg/m3]、Ds=2.2×103[kg/m3]、f=25.6を用いた。
 計算結果を図7に示す。縦軸が基材101として炭素基材を用いた場合の炭素基材の半径、横軸がシリコン重量比である。炭素基材表面に結合するシリコンナノ粒子の半径が7.5nm、15.0nm、30.0nm、の3通りについて計算した。典型的なシリコンナノ粒子102の半径は15.0nmであり、その場合、シリコン重量比20%以上を実現するためには、炭素基材の半径を3.0μm以下にする必要がある。この計算では、シリコンナノ粒子102が炭素基材表面に、最密充填結合していると仮定しており、実際には、その半分以下にする必要がある。しかしながら、炭素基材の半径を1.0μm以下にするのは技術的に困難であり、実現できた場合にも、製造コストが大幅に増大する可能性が高い。また、シリコンナノ粒子102の半径を大きくすれば、炭素基材の半径縮小に対する要請は緩和される。しかしながら、リチウムイオンの充填および放出に伴う機械的破壊を防止するためには、シリコンナノ粒子102の半径は50.0nm以下、さらに望ましくは15.0nm以下にする必要がある。
 上記のように、炭素基材表面に、シリコンナノ粒子102を結合させる手法で、シリコン重量比を増大させるには、現実的な限界がある。
 これに対して、シリコンナノワイヤ103だけを用いて、負極活物質中のシリコン重量比を増やす場合には、かさ密度が減少するという問題がある。かさ密度が減少すると、単位容量あたりのパワー、あるいは電力が低下する。基材101として炭素基材を用いた場合の炭素基材上に、シリコンナノワイヤ103が結合した構造を想定して、相対かさ密度のシリコン重量比依存性依存性を計算する。
 本計算ではMKSA単位系を用い、それ以外の単位を用いた物理量については、その単位を角括弧内に示した。炭素基材重量1に結合したシリコン重量をxとすると、シリコン重量比Rは、(11)式で表すことができる。
Figure JPOXMLDOC01-appb-M000011
 (1)式を変形すると、xは(12)式で表される。
Figure JPOXMLDOC01-appb-M000012
炭素基材のかさ密度Tsは(13)式で表すことができる。
Figure JPOXMLDOC01-appb-M000013
ここで、Dsは炭素基材の真密度、Vsは炭素基材の空隙率を示す。炭素基材表面にシリコンナノワイヤ103が結合した場合にも、炭素基材の空隙率Vsが変化しないと仮定すると、全体のかさ密度Ttotは、(14)式となる。
Figure JPOXMLDOC01-appb-M000014
ここで、Dnwはシリコンナノワイヤの真密度、Vnwはシリコンナノワイヤ103の空隙率を示す。(14)式と(13)式より、相対かさ密度Ttot/Tsは、(15)式で表すことができる。ここで、Dnp、Ds、Vsとして、Dnp=2.33×103[kg/m3]、Ds=2.2×103[kg/m3]、Vs=0.30を用いた。
Figure JPOXMLDOC01-appb-M000015
 計算結果を図8に示す。縦軸が相対かさ密度、横軸がシリコン重量比である。シリコンナノワイヤ103の空隙率が0.6、0.7、0.8の3通りについて計算した。典型的なシリコンナノワイヤ103の空隙率の実測値は0.7であり、その場合に、シリコン重量比を20%以上にするためには、相対かさ密度が80%以下に減少する。相対かさ密度低減の許容値は、電池設計に依存するが、炭素基材表面に、シリコンナノワイヤ103を結合させる手法で、シリコン重量比を増大させるには、現実的な限界がある。
 上記に対して、本発明の一実施形態のように、基材101と、基材101の表面に形成されたシリコンナノ粒子102と、基材101の表面に形成されたシリコンナノワイヤと103、を有し、基材101の表面は、炭素層で構成され、シリコンナノ粒子102が、炭素層を介して、基材101と接合しており、シリコンナノワイヤ103が、炭素層を介して、基材101と接合していることにより、シリコンの重量を増やし、なおかつ体積を低く抑えることができるので、単位体積当たりの電気容量が大きいリチウムイオン二次電池に用いられるリチウムイオン二次電池用負極活物質を実現できる。
 次に、シリコンナノ粒子102およびシリコンナノワイヤ103の作製方法について述べる。図9は、基材の表面に、炭素が被覆されたシリコンナノ粒子102および炭素が被覆されたシリコンナノワイヤ103を形成するための熱気相成長装置の概略図である。
 シリコン原料には、液体の四塩化シリコンを用い、水素ガスでバブリングすることにより、反応炉に導入した。四塩化シリコンの20℃における蒸気圧は30kPaであり、バブリング導入すると、四塩化シリコンの導入量は34%となる。そこで、それ以下の量の四塩化シリコンを導入するためには、四塩化シリコンを冷却するか、水素ガスの別ラインを設ける必要がある。図9では、バブリングしない水素ラインを別に設け、バブリングラインと合流して、反応炉に導入した。炭素が被覆されたシリコンナノ粒子102および炭素が被覆されたシリコンナノワイヤ103の成長の手順は、下記の通りである。
 サンプルボートに基材を入れて、反応炉の中央付近に設置する。反応炉は、石英製であり、直径が5cm、長さが40cmである。図9の上の水素ラインには、水素を200mL/minの流速で流し、下のバブリング水素ラインは閉じた状態で、成長炉を室温から1000℃まで、10℃/minでの速度で昇温した。
 次に、1000℃に達したところで、上の水素ラインの流量を160mL/minに変更し、下のバブリング水素ラインの水素ラインの流量を40mL/minに設定した。この条件により、6.8%の四塩化シリコンを導入することができる。1000℃で3時間成長した後、下のバブリング水素ラインを閉じ、上の水素ラインの流量を200mL/minに変更して、1000℃で30分間保持した。これにより、直径が30nmのシリコンナノ粒子102とシリコンナノワイヤ103を基材101表面に同時に作製することが可能である。
 その後、両水素ラインを閉じ、アルゴンガスを200mL/minの流速で流し、10℃/minの速度で降温し、800℃まで降温した。800℃に達したところで、プロピレンガスを10mL/minの流速で導入し、同時にアルゴンガスの流速を190mL/minにして、炭素被覆層303を1時間成長した。
 その後、プロピレンガスラインを閉じ、アルゴンガスを200mL/minの流速で流し、30分間保持した後、自然冷却した。これにより、シリコンナノ粒子102とシリコンナノワイヤ103の表面に、ナノグラフェン多層構造を有する炭素被覆層303(膜厚10nm)を作製することが可能である。このように、シリコンナノ粒子102とシリコンナノワイヤ103の作製と、それに続く炭素被覆層303の作製を、連続して行うことにより、シリコンナノ粒子102とシリコンナノワイヤ103表面への自然酸化膜の形成を防止し、自然酸化膜の還元除去プロセスが不要になる。
 上記方法により、黒鉛である基材101表面に、シリコンナノ粒子102およびシリコンナノワイヤ103を形成したサンプルの走査型電子顕微鏡写真を図10に示す。このように、シリコンナノ粒子102およびシリコンナノワイヤ103の成長時間が3時間の場合は、炭素である基材101表面にシリコンナノワイヤ103が大量に作製されるため、シリコンナノ粒子102が隠れて見えない。そこで、成長時間を30分で停止したサンプルを作製し、走査型電子顕微鏡で観察した。図11には、成長時間30分のサンプルの走査型電子顕微鏡写真を示す。シリコンナノ粒子102とシリコンナノワイヤ103が混在していることがわかる。
 炭素である基材101にシリコンナノ粒子102およびシリコンナノワイヤ103を作製したサンプルについて、全シリコンの重量比、シリコンナノ粒子102の重量比、シリコンナノワイヤ103の重量比を表1に示す。
Figure JPOXMLDOC01-appb-T000016
 サンプル1はシリコンナノ粒子102およびシリコンナノワイヤ103の成長時間が1時間、サンプル2は2時間、サンプル3は3時間である。成長時間が長くなるとともに、全シリコンの重量比が増加すること、また、全シリコンに対するシリコンナノワイヤ103の比率が多くなることがわかる。全シリコンの重量比は、サンプルを空気中1200℃で2時間熱処理し、残渣がすべて酸化シリコンであると仮定して求めた。シリコンナノワイヤ103の重量比は、サンプルを純水に入れて1時間超音波処理し、その後、5μmのフィルタで濾過したろ液を乾燥後、空気中1200℃で2時間熱処理し、残渣がすべて酸化シリコンであると仮定して求めた。ろ液中には、超音波処理により外れたシリコンナンワイヤ103が分離されるため、上記方法により、シリコンナノワイヤ103の重量比を測定することが可能である。シリコンナノ粒子102の重量比は、ろ紙上に残ったサンプルを空気中1200℃で2時間熱処理し、残渣がすべて酸化シリコンであると仮定して求めた。
 なお、図9では、シリコンナノ粒子102およびシリコンナノワイヤ103の表面酸化を防ぐために、シリコンナノ粒子102およびシリコンナノワイヤ103の作製と、それに続く炭素被覆層303の作製を、連続して行った。シリコンナノ粒子102およびシリコンナノワイヤ103を成長後、一度空気中に取出し、その後還元雰囲気で熱処理して、シリコンナノ粒子102およびシリコンナノワイヤ103の表面の自然酸化膜を取り除いた後に、引き続いて炭素被覆層303を作製することも可能である。シリコンナノ粒子102およびシリコンナノワイヤ103の成長と炭素被覆層303の作製を別々の反応炉で行うことにより、生産性が向上する。また、シリコンナノ粒子102およびシリコンナノワイヤ103の成長時の温度、四塩化シリコン導入量、成長時間を変えることにより、シリコンナノ粒子102とシリコンナノワイヤ103の重量比を変えることが可能である。また、炭素被覆層303の成長時間を変えることにより、炭素被覆層303の膜厚を制御することが可能である。また、炭素被覆層303の作製には、プロピレンガス以外に、アセチレンガス、プロパンガス、メタンガス等の種々の炭化水素ガスを用いることが可能である。
 図12は、本発明の一実施形態に係るリチウムイオン二次電池の内部構造である。図12で、1201は正極、1202はセパレータ、1203は負極、1204は電池缶、1205は正極集電タブ、1206は負極集電タブ、1207は内蓋、1208は内圧開放弁、1209はガスケット、1210は正温度係数(PTC; Positive temperature coefficient)抵抗素子、1211は電池蓋である。電池蓋1211は、内蓋1207、内圧開放弁1208、ガスケット1209、正温度係数抵抗素子1210からなる一体化部品である。
 例えば、正極1201は以下の手順により作製できる。正極活物質には、LiMn24を用いる。正極活物質の85.0wt%に、導電材として黒鉛粉末とアセチレンブラックをそれぞれ7.0wt%と2.0wt%を添加する。さらに、結着剤として6.0wt%のポリフッ化ビニリデン(以下、PVDFと略記)、1-メチル-2-ピロリドン(以下、NMPと略記)に溶解した溶液を加えて、プラネタリ-ミキサーで混合し、さらに真空下でスラリー中の気泡を除去して、均質な正極合剤スラリーを調製する。このスラリーを、塗布機を用いて厚さ20μmのアルミニウム箔の両面に均一かつ均等に塗布する。塗布後ロールプレス機により電極密度が2.55g/cm3になるように圧縮成形する。これを切断機で裁断し、厚さ100μm、長さ900mm、幅54mmの正極1201を作製する。
 例えば、負極1203は以下の手順により作製できる。負極活物質は、本発明におけるチウムイオン二次電池用負極活物質を用いることができる。その負極活物質の95.0wt%に、結着剤として5.0wt%のPVDFをNMPに溶解した溶液を加える。それをプラネタリ-ミキサーで混合し、真空下でスラリー中の気泡を除去して、均質な負極合剤スラリーを調製する。このスラリーを塗布機で厚さ10μmの圧延銅箔の両面に均一かつ均等に塗布する。塗布後、その電極をロールプレス機によって圧縮成形して、電極密度が1.3g/cm3とする。これを切断機で裁断し、厚さ110μm、長さ950mm、幅56mmの負極1203を作製する。
 上のように作製できる正極1201と、負極1203の未塗布部(集電板露出面)に、それぞれ正極集電タブ1205および負極集電タブ1206を超音波溶接する。正極集電タブ1205はアルミニウム製リード片とし、負極集電タブ1206にはニッケル製リード片を用いることができる。
 その後、厚み30μmの多孔性ポリエチレンフィルムからなるセパレータ1202を正極1201と負極1203に挿入し、正極1201、セパレータ1202、負極1203を捲回する。この捲回体を電池缶1204に収納し、負極集電タブ1206を電池缶1204の缶底に抵抗溶接機により接続する。正極集電タブ1205は、内蓋1207の底面に超音波溶接により接続する。
 上部の電池蓋1211を電池缶1204に取り付ける前に、非水電解液を注入する。電解液の溶媒は、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)からなり、体積比として1:1:1などがある。電解質は濃度1mol/L(約0.8mol/kg)のLiPF6である。このような電解液を捲回体の上から滴下し、電池蓋1211を電池缶1204に、かしめて密封し、リチウムイオン二次電池を得ることができる。
101 基材
102 シリコンナノ粒子
103 シリコンナノワイヤ
303 炭素被覆層
1000 リチウムイオン二次電池用負極活物質
1201 正極
1202 セパレータ
1203 負極
1204 電池缶
1205 正極集電タブ
1206 負極集電タブ
1207 内蓋
1208 圧力開放弁
1209 ガスケット、
1210 正温度係数抵抗素子
1211 電池蓋

Claims (9)

  1.  基材と、
     前記基材の表面に形成されたシリコンナノ粒子と、
     前記基材の表面に形成されたシリコンナノワイヤと、を有し、
     前記基材の表面は、炭素層で構成され、
     前記シリコンナノ粒子が、前記炭素層を介して、前記基材と接合しており、
     前記シリコンナノワイヤが、前記炭素層を介して、前記基材と接合しているリチウムイオン二次電池用負極活物質。
  2.  請求項1において、
     前記基材は、基材本体を有し、
     前記基材本体の表面に前記炭素層が形成され、
     前記基材本体として、リチウムイオンを吸蔵および放出できる材料を含む化合物が用いられるリチウムイオン二次電池用負極活物質。
  3.  請求項1乃至2のいずれかにおいて、
     前記シリコンナノ粒子の直径が、1~100nmであるリチウムイオン二次電池用負極活物質。
  4.  請求項1乃至3のいずれかにおいて、
     前記シリコンナノワイヤの断面の直径が、1~100nmであるリチウムイオン二次電池用負極活物質。
  5.  請求項1乃至4のいずれかにおいて、
     前記シリコンナノ粒子または前記シリコンナノワイヤの表面が、炭素被膜層で覆われているリチウムイオン二次電池用負極活物質。
  6.  請求項5において、
     前記炭素被覆層が、ナノグラフェン構造を有するリチウムイオン二次電池用負極活物質。
  7.  請求項5乃至6のいずれかにおいて、
     前記炭素被覆層の膜厚が、0.5nm~100nmであるリチウムイオン二次電池用負極活物質。
  8.  請求項1乃至7のいずれかにおいて、
     前記シリコンナノ粒子と前記シリコンナノワイヤとの合計重量が、重量比で前記リチウムイオン二次電池用負極活物質に対して20wt%以上であるリチウムイオン二次電池用負極活物質。
  9.  請求項1乃至8のいずれかに記載のリチウムイオン二次電池負極活物質を含むリチウムイオン二次電池。
PCT/JP2014/064367 2014-05-30 2014-05-30 リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池 WO2015181941A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064367 WO2015181941A1 (ja) 2014-05-30 2014-05-30 リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064367 WO2015181941A1 (ja) 2014-05-30 2014-05-30 リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2015181941A1 true WO2015181941A1 (ja) 2015-12-03

Family

ID=54698318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064367 WO2015181941A1 (ja) 2014-05-30 2014-05-30 リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2015181941A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269827A (ja) * 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd 電気化学素子の電極材料およびその製造方法並びにそれを用いた電極極板および電気化学素子
JP2009181767A (ja) * 2008-01-30 2009-08-13 Tokai Carbon Co Ltd リチウム二次電池の負極材用複合炭素材料及びその製造方法
JP2012528463A (ja) * 2009-05-27 2012-11-12 アンプリウス、インコーポレイテッド 電池用電極に利用されるコアシェル型の高容量のナノワイヤ
JP2013065550A (ja) * 2011-09-02 2013-04-11 Semiconductor Energy Lab Co Ltd 蓄電装置の電極および蓄電装置
JP2013084601A (ja) * 2011-10-05 2013-05-09 Samsung Sdi Co Ltd 負極活物質及び該物質を採用したリチウム電池
WO2013183187A1 (ja) * 2012-06-06 2013-12-12 日本電気株式会社 負極活物質及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008269827A (ja) * 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd 電気化学素子の電極材料およびその製造方法並びにそれを用いた電極極板および電気化学素子
JP2009181767A (ja) * 2008-01-30 2009-08-13 Tokai Carbon Co Ltd リチウム二次電池の負極材用複合炭素材料及びその製造方法
JP2012528463A (ja) * 2009-05-27 2012-11-12 アンプリウス、インコーポレイテッド 電池用電極に利用されるコアシェル型の高容量のナノワイヤ
JP2013065550A (ja) * 2011-09-02 2013-04-11 Semiconductor Energy Lab Co Ltd 蓄電装置の電極および蓄電装置
JP2013084601A (ja) * 2011-10-05 2013-05-09 Samsung Sdi Co Ltd 負極活物質及び該物質を採用したリチウム電池
WO2013183187A1 (ja) * 2012-06-06 2013-12-12 日本電気株式会社 負極活物質及びその製造方法

Similar Documents

Publication Publication Date Title
JP6183361B2 (ja) 負極活物質及びその製造方法、並びにリチウム二次電池用負極及びリチウム二次電池
US9774033B2 (en) Process for producing silicon nanowires directly from silicon particles
JP6569398B2 (ja) リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
WO2016208314A1 (ja) リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
JP6120233B2 (ja) 多孔性ケイ素酸化物−炭素材複合体を含む負極活物、負極活物質の製造方法、負極およびリチウム二次電池
JP2017010645A (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP5971279B2 (ja) 電極材料の製造方法
Chen et al. In-situ grown SnS2 nanosheets on rGO as an advanced anode material for lithium and sodium ion batteries
JP6213980B2 (ja) 電気化学セル
TW201635621A (zh) 非水電解質二次電池用負極活性物質、非水電解質二次電池用負極、非水電解質二次電池及非水電解質二次電池用負極材料之製造方法
JP2019067579A (ja) リチウムイオン二次電池及びリチウムイオン二次電池用負極材料
JP2018113187A (ja) リチウムイオン二次電池用負極材料及びこれを用いたリチウムイオン二次電池
WO2012124525A1 (ja) 非水電解質二次電池及びその製造方法
JP2016143462A (ja) リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
JP4021652B2 (ja) リチウムイオン二次電池用正極板およびその製造方法、並びに該正極板を用いたリチウムイオン二次電池
WO2015029128A1 (ja) 負極活物質並びにこれを用いた負極合剤、負極及びリチウムイオン二次電池
JP6518685B2 (ja) リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
JP2018147772A (ja) リチウムイオン二次電池用負極材料及びリチウムイオン二次電池
JP2013232436A (ja) 自己支持形金属硫化物系2次元ナノ構造体の負極活物質及びその製造方法
WO2015068195A1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池
JP4053763B2 (ja) リチウムイオン二次電池
JP7465362B2 (ja) 陽極片及びその調製方法、該極片を用いる電池及び電子装置
JP6720762B2 (ja) リチウムイオン二次電池用負極材料、およびリチウムイオン二次電池
WO2015136684A1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池
WO2015181941A1 (ja) リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP