WO2015136684A1 - リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池 Download PDF

Info

Publication number
WO2015136684A1
WO2015136684A1 PCT/JP2014/056824 JP2014056824W WO2015136684A1 WO 2015136684 A1 WO2015136684 A1 WO 2015136684A1 JP 2014056824 W JP2014056824 W JP 2014056824W WO 2015136684 A1 WO2015136684 A1 WO 2015136684A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion secondary
negative electrode
active material
electrode active
Prior art date
Application number
PCT/JP2014/056824
Other languages
English (en)
French (fr)
Inventor
岡井 誠
京谷 隆
康人 干川
孝文 石井
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/056824 priority Critical patent/WO2015136684A1/ja
Publication of WO2015136684A1 publication Critical patent/WO2015136684A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium ion secondary battery, a method for producing a negative electrode active material for a lithium ion secondary battery, and a lithium ion secondary battery.
  • Graphite-based carbon materials are widely used as negative electrode active materials for lithium ion secondary batteries.
  • the stoichiometric composition when graphite is filled with lithium ions is LiC 6 , and its theoretical capacity can be calculated as 372 mAh / g.
  • the stoichiometric composition when silicon is filled with lithium ions is Li 22 Si 5 , and the theoretical capacity can be calculated as 4197 mAh / g.
  • silicon is an attractive material that can be filled with 11.3 times as much lithium as graphite.
  • Patent Document 1 describes an example of doping silicon nanowires.
  • Patent Document 1 only describes a conductive inner core wire (for example, to provide conductivity necessary for electron transfer) (which may or may not be doped). There is no description about the effect on the high-speed charge / discharge of the lithium ion secondary battery in the case where silicon nanowire is used as the negative electrode active material for the secondary battery and specific electrical conductivity or electrical conductivity is imparted.
  • An object of the present invention is to provide a negative electrode active material for a lithium ion secondary battery having a desired electric conductivity.
  • a negative electrode active material for a lithium ion secondary battery having a desired electrical conductivity can be provided.
  • 1 schematically illustrates the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • 1 schematically illustrates the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • It is a scanning electron micrograph of the impurity doped silicon nanowire which interrupted growth. It is a scanning electron micrograph of the impurity doped silicon nanowire grown on the graphite surface.
  • 2 is a transmission electron micrograph of impurity-doped silicon nanowires grown on a graphite surface.
  • 1 schematically illustrates the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • 1 schematically illustrates the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • 1 schematically illustrates the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention. It is a scanning electron micrograph of impurity-doped silicon nanowires coated with carbon. It is a scanning electron micrograph of impurity-doped silicon nanowires coated with carbon. It is a transmission electron micrograph of impurity-doped silicon nanowires coated with carbon. It is a transmission electron micrograph of impurity-doped silicon nanowires coated with carbon.
  • FIG. 1 shows a calculation model according to an embodiment of the present invention.
  • the silicon nanowire 110 exists in contact with the surface of the carbon substrate 100, and the applied voltage at the base of the silicon nanowire 110 is V.
  • the current I flows from the root toward the tip of the silicon nanowire 110, and the voltage drop at the tip of the silicon nanowire 110 is ⁇ V. It is assumed that the voltage drop amount ⁇ V is entirely due to the electric resistance of the silicon nanowire 110.
  • the voltage drop amount ⁇ V is given by Equation (1).
  • L is the length of the silicon nanowire 110
  • is the electrical resistivity of the silicon nanowire 110
  • R Si is the radius of the silicon nanowire 110
  • is the circumference.
  • the current I is given by Equation (2).
  • Equation (3) D is the density of silicon
  • R is the number of lithium that can be filled per silicon
  • F is the Faraday constant
  • x is the charging rate, that is, 1 / x hours.
  • M is the atomic weight of silicon.
  • R v is expressed by Equation (4).
  • Equation (5) The results calculated using Equation (5) are shown in FIG.
  • the electrical conductivity of non-doped silicon is about 0.001 S / m, it is desirable to improve the electrical conductivity by doping the silicon nanowire 110 in order to achieve the above electrical conductivity.
  • the length of the silicon nanowire 110 depends on the growth conditions, but is considered not to exceed 5 ⁇ m. Moreover, if the charging speed is assumed to be 10 C, it is considered sufficient for most applications. From the above, it is considered practically sufficient if the electrical conductivity of the silicon nanowire 110 is 10 S / m or more, particularly 100 S / m.
  • FIG. 3 schematically represents the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • the negative electrode active material 1000 is composed of impurity-doped silicon nanowires 200.
  • the diameter D si of the impurity-doped silicon nanowire 200 doped with impurities is 2 nm or more and 100 nm or less.
  • the diameter D si of the impurity-doped silicon nanowire 200 is less than 2 nm, it may be naturally oxidized in the atmosphere and become SiO 2 as a whole. In this case, it may not function as a negative electrode active material for a lithium ion secondary battery. There is.
  • the diameter D si of the impurity-doped silicon nanowire 200 is more than 100 nm, was destroyed by mechanical strain at the time of repeated charging and discharging of the lithium ion, there is a possibility that the electric capacity of the lithium ion secondary battery is depleted .
  • the diameter of the silicon nanowire sufficiently thin, such as 100 nm or less, it is possible to suppress the mechanical structural breakdown of silicon particles that occurs during repeated filling and releasing of lithium ions. And since the increase of the irreversible capacity resulting from structural destruction can be reduced significantly, the lifetime improvement of a lithium ion secondary battery is realizable.
  • the length of the impurity-doped silicon nanowire 200 is not limited, but a length of several microns to several tens of microns is considered optimal for the electrode manufacturing process.
  • High electrical conductivity can be imparted by doping silicon nanowires with impurities. Thereby, even when the silicon nanowire is broken in the middle or peeled off from the carbon substrate, electrical conduction with the current collector can be ensured and electrical isolation can be prevented. Due to this effect, the increase in irreversible capacity can be significantly reduced, and thus the life of the lithium ion secondary battery can be extended.
  • a dopant for the silicon nanowire a general dopant for a silicon substrate can be used. Among them, it is desirable to dope elements such as boron, phosphorus, arsenic, and nitrogen as dopants.
  • the doping amount is desirably 10 ⁇ 10 15 atoms / cm 3 or more, and the electric conductivity after doping is desirably 10 S / m or more, and particularly desirably 100 S / m or more. If the electrical conductivity is lower than that, it may not be possible to improve the fast charge / discharge characteristics.
  • a method of introducing ultrafine structures such as nanoparticles and nanowires is effective. This is because the specific surface area of the silicon material increases due to the introduction of the ultrafine structure, so lithium ions can be filled more quickly. This is because release is possible.
  • a method of imparting high electrical conductivity to the silicon material itself is effective. This is because the voltage drop inside the silicon material can be greatly reduced, and as a result, the diffusion rate of lithium ions in silicon can be increased.
  • FIG. 17 shows the internal structure of a lithium ion secondary battery according to an embodiment of the present invention.
  • 1401 is a positive electrode
  • 1402 is a separator
  • 1403 is a negative electrode
  • 1404 is a battery can
  • 1405 is a positive current collecting tab
  • 1406 is a negative current collecting tab
  • 1407 is an inner lid
  • 1408 is an internal pressure release valve
  • 1409 is a gasket
  • 1410 is a positive temperature coefficient (PTC) resistive element
  • 1411 is a battery lid.
  • the battery lid 1411 is an integrated part including an inner lid 1407, a pressure release valve 1408, a gasket 1409, and a positive temperature coefficient resistance element 1410.
  • the positive electrode 1401 is manufactured by the following procedure. LiMn 2 O 4 is used as the positive electrode active material. To 85.0 wt% of the positive electrode active material, 7.0 wt% and 2.0 wt% of graphite powder and acetylene black are added as conductive materials, respectively. Further, a solution dissolved in 6.0 wt% polyvinylidene fluoride (hereinafter abbreviated as PVDF) and 1-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) is added as a binder, and the mixture is mixed with a planetary mixer. Further, air bubbles in the slurry are removed under vacuum to prepare a homogeneous positive electrode mixture slurry.
  • PVDF polyvinylidene fluoride
  • NMP 1-methyl-2-pyrrolidone
  • This slurry is uniformly and evenly applied to both surfaces of an aluminum foil having a thickness of 20 ⁇ m using an applicator. After the application, compression molding is performed by a roll press so that the electrode density is 2.55 g / cm 3 . This is cut with a cutting machine to produce a positive electrode 1401 having a thickness of 100 ⁇ m, a length of 900 mm, and a width of 54 mm.
  • the negative electrode 1403 can be manufactured by the following procedure.
  • the negative electrode active material the negative electrode active material for a lithium ion secondary battery in one embodiment of the present invention can be used.
  • a solution prepared by dissolving 5.0 wt% PVDF as a binder in NMP is added to 95.0 wt% of the material. It is mixed with a planetary mixer, and bubbles in the slurry are removed under vacuum to prepare a homogeneous negative electrode mixture slurry.
  • This slurry is uniformly and evenly applied to both surfaces of a rolled copper foil having a thickness of 10 ⁇ m with an applicator.
  • the electrode is compression-molded by a roll press to make the electrode density 1.3 g / cm 3 . This is cut with a cutting machine to produce a negative electrode 1403 having a thickness of 110 ⁇ m, a length of 950 mm, and a width of 56 mm.
  • the positive electrode current collecting tab 1405 and the negative electrode current collecting tab 1406 are ultrasonically welded to the positive electrode 1401 produced as described above and the uncoated part (current collector exposed surface) of the negative electrode 1403, respectively.
  • the positive electrode current collecting tab 1405 can be an aluminum lead piece
  • the negative electrode current collecting tab 1406 can be a nickel lead piece.
  • a separator 1402 made of a porous polyethylene film having a thickness of 30 ⁇ m is inserted into the positive electrode 1401 and the negative electrode 1403, and the positive electrode 1401, the separator 1402, and the negative electrode 1403 are wound.
  • the wound body is accommodated in the battery can 1404, and the negative electrode current collecting tab 1406 is connected to the bottom of the battery can 1404 by a resistance welder.
  • the positive electrode current collecting tab 1405 is connected to the bottom surface of the inner lid 1407 by ultrasonic welding.
  • a non-aqueous electrolyte is injected.
  • the solvent of the electrolytic solution is composed of, for example, ethylene carbonate (EC), dimethyl carbonate (DMC), and diethyl carbonate (DEC), and the volume ratio is 1: 1: 1.
  • the electrolyte is LiPF 6 at a concentration of 1 mol / L (about 0.8 mol / kg). Such an electrolytic solution is dropped from above the electrode group, and the battery lid 1411 is caulked and sealed in the battery can 1404 to obtain a lithium ion secondary battery.
  • FIG. 4 schematically represents the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • the negative electrode active material 1000 is composed of impurity-doped silicon nanowires 200 and graphite 300.
  • impurity-doped silicon nanowires 200 were formed on the surface of graphite 300.
  • the impurity-doped silicon nanowire 200 is directly bonded to the surface of the graphite 300 and grows from the surface of the graphite 300.
  • FIG. 5 is a scanning electron micrograph of an impurity-doped silicon nanowire whose growth has been interrupted.
  • an infinite number of impurity-doped silicon nanoparticles having a diameter of several tens of nm were present on the surface of the graphite 300. From this fact, it can be inferred that silicon nanoparticles first grow on the surface of graphite 300 and the silicon nanoparticles grow into impurity-doped silicon nanowires 200.
  • FIG. 6 is a scanning electron micrograph of impurity-doped silicon nanowires grown on the graphite surface.
  • the impurity-doped silicon nanowires 200 can be manufactured very densely.
  • This sample was a composite material containing silicon and carbon, and the weight ratio of silicon measured by thermogravimetry was 23 wt%. The weight ratio of silicon can be adjusted by changing the growth conditions.
  • FIG. 7 is a transmission electron micrograph of the same sample. Since the diameter is 30 nm and the inside shows silicon lattice stripes, the silicon nanowire 200 is considered to have crystallinity, particularly a polycrystalline structure. When silicon nanowire 200 has crystallinity, the diffusion rate of lithium ions increases. As a result, the charging and discharging speed of lithium ions is fast, and the high-speed charge / discharge characteristics are improved. In addition, a natural oxide film layer of less than 3 nm exists on the surface of the impurity-doped silicon nanowire 200.
  • the impurity-doped silicon nanowire 200 is directly bonded to the surface of the graphite 300, and a chemical bond is formed between the silicon atom of the impurity-doped silicon nanowire 200 and the carbon atom on the surface of the graphite 300 at the bonding surface. It is conceivable that.
  • the graphite 300 used as the base material for the growth of the impurity-doped silicon nanowire 200 can use any kind and form of graphite such as artificial graphite, natural graphite, graphite oxide, and thermally expanded graphite. is there.
  • FIG. 8 schematically represents the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • the negative electrode active material 1000 is composed of impurity-doped silicon nanowires 200 and carbon nanotubes 400.
  • the present embodiment is different from the second embodiment in that carbon nanotubes 400 are used as a carbon base material and impurity-doped silicon nanowires 200 are grown on the surface thereof.
  • the carbon nanotube 400 was used as the base material for the growth of the impurity-doped silicon nanowire 200, but it is possible to use any form of carbon-based nanostructure such as carbon nanohorn, acetylene black, ketjen black, etc. It is.
  • FIG. 9 schematically represents the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • the impurity-doped silicon nanowire 200 is grown on the carbon substrate, and then the carbon substrate and the impurity-doped silicon nanowire 200 are separated, and only the impurity-doped silicon nanowire 200 is used as the negative electrode material.
  • the weight ratio of silicon to the total weight can be greatly increased, so that the electric capacity can be dramatically increased.
  • FIG. 10 schematically represents the structure of a negative electrode active material for a lithium ion secondary battery according to an embodiment of the present invention.
  • the negative electrode active material 1000 is composed of impurity-doped silicon nanowires 200 and an electrically conductive carbon thin film 500.
  • the negative electrode active material 1000 has a structure in which the surface of the impurity-doped silicon nanowire 200 is partially or entirely covered with the electrically conductive carbon thin film 500.
  • the electrically conductive carbon thin film 500 is formed on the surface of the impurity-doped silicon nanowire 200.
  • the electrically conductive carbon thin film 500 has a structure in which nanographene is laminated in multiple layers, and has an electrical conductivity of 1000 S / m or more.
  • electrical conductivity can be added to the impurity-doped silicon nanowire 200. Accordingly, even when the impurity-doped silicon nanowire 200 is broken in the middle or when the impurity-doped silicon nanowire 200 is peeled off from the electrically conductive carbon thin film 500, electrical conduction with the current collector is ensured and electrical isolation is achieved. Therefore, the irreversible capacity of the lithium ion secondary battery can be reduced.
  • the film thickness L c of the electrically conductive carbon thin film 500 is not less than 0.2 nm and not more than 100 nm. Thickness L c of electrically conductive carbon film 500, is less than 0.2 nm, the coating strength is inadequate, there is a possibility that peeling partially, in which case, to ensure a sufficient electrical conductivity It may not be possible.
  • the thickness L c of electrically conductive carbon film 500 if it exceeds 100 nm, it is difficult to the weight of silicon to the total weight 20 wt%, can not be able to consequently obtain a sufficient electric capacity There is sex.
  • FIG. 11 is a scanning electron micrograph of an impurity-doped silicon nanowire coated with carbon. In this way, the carbon-coated impurity-doped silicon nanowire 200 can be grown very densely.
  • FIG. 12 is an enlarged photograph of the same sample. It is considered that the surface of the carbon-doped impurity-doped silicon nanowire 200 is uniformly covered with the electrically conductive carbon thin film 500.
  • FIG. 13 is a transmission electron micrograph of carbon-coated impurity-doped silicon nanowires.
  • an impurity-doped silicon nanowire 200 having a lattice pattern can be observed.
  • an electrically conductive carbon thin film 500 having a nanographene multilayer structure oriented along the axial direction of the impurity-doped silicon nanowire 200 can be observed. Since the electrically conductive carbon thin film 500 is oriented along the axial direction of the impurity-doped silicon nana wire 200, the electrically conductive carbon thin film 500 becomes a strong film that is difficult to peel off.
  • the diameter of the impurity-doped silicon nanowire 200 was 18 nm, and the thickness of the electrically conductive carbon thin film 500 was 6.44-8.17 nm.
  • FIG. 14 shows a transmission electron micrograph of another sample.
  • FIG. 14 is a transmission electron micrograph of impurity-doped silicon nanowires coated with carbon.
  • the diameter of the impurity-doped silicon nanowire 200 was 18 nm, and the thickness of the electrically conductive carbon thin film 500 was 10 nm.
  • FIG. 15 is a schematic diagram of a thermal vapor deposition apparatus for forming impurity-doped silicon nanowires on the surface of a carbon substrate.
  • Liquid silicon tetrachloride was used as the silicon raw material, and was introduced into the reactor by bubbling with hydrogen gas (the bottom line on the left in FIG. 15).
  • the vapor pressure of silicon tetrachloride at 20 ° C. is 30 kPa, and when bubbling is introduced, the amount of silicon tetrachloride introduced is 34%. Therefore, when introducing a smaller amount of silicon tetrachloride, it is necessary to cool the silicon tetrachloride or to provide another hydrogen gas line (middle line on the left in FIG. 15). In this example, a hydrogen line that was not bubbled was provided separately, joined with the bubbling line, and introduced into the reactor.
  • a dopant line (the uppermost line on the left in FIG. 15) was provided, and an organic compound containing elements such as boron, phosphorus, arsenic, and nitrogen as dopants was introduced as a dopant raw material.
  • the organic compound was a gas, it was introduced by mixing with an inert gas such as argon. In the case of a liquid, it was introduced by bubbling with an inert gas such as argon.
  • boron-containing organic compounds include various boronic esters
  • phosphorus-containing organic compounds include various phosphonic esters
  • various phosphoric esters include various phosphites
  • nitrogen-containing organic compounds include various amines, various amides, various types It is possible to use imine and various nitriles.
  • the procedure for growing carbon-coated impurity-doped silicon nanowires is as follows. Put the carbon substrate in the sample boat and install it near the center of the reactor. As the carbon substrate, any form of carbon material such as graphite, thermally expanded graphite oxide, graphite oxide, carbon nanotube, carbon nanohorn, etc. can be used.
  • the reactor is made of quartz and has a diameter of 5 cm and a length of 40 cm. In the middle left hydrogen line of FIG. 15, hydrogen is allowed to flow at a flow rate of 200 mL / min, and the lower bubbling hydrogen line is closed, and the growth furnace is heated from room temperature to 1000 ° C. at a rate of 10 ° C./min. did.
  • the flow rate of the upper hydrogen line was changed to 100 mL / min, and the flow rate of the hydrogen line of the lower bubbling hydrogen line was set to 100 mL / min.
  • 17% silicon tetrachloride can be introduced.
  • a dopant raw material was introduced from the dopant line.
  • the dopant line and the lower bubbling hydrogen line were closed and the flow rate of the upper hydrogen line was changed to 200 mL / min and held at 1000 ° C. for 30 minutes. Thereby, it is possible to produce the impurity-doped silicon nanowire 200 having a diameter of 20 nm on the surface of the carbon substrate.
  • the diameter and growth weight of the impurity-doped silicon nanowire 200 can be changed by changing the temperature at the time of growth of the impurity-doped silicon nanowire 200, the amount of silicon tetrachloride introduced, and the growth time. Moreover, it is possible to change the doping amount to the impurity-doped silicon nanowire 200 by changing the introduction amount of the dopant raw material.
  • both hydrogen lines were closed, and argon gas (the argon line is not shown in FIG. 15) was flowed at a flow rate of 200 mL / min, the temperature was lowered at a rate of 10 ° C./min, and the temperature was lowered to 800 ° C.
  • propylene gas (the propylene line is not shown in FIG. 15) was introduced at a flow rate of 10 mL / min, and at the same time the argon gas flow rate was set to 190 mL / min, It grew for 1 hour.
  • the production of the impurity-doped silicon nanowire 200 and the subsequent production of the electrically conductive carbon thin film 500 were continuously performed. In this way, the production of the impurity-doped silicon nanowire 200 and the subsequent production of the electrically conductive carbon thin film 500 are continuously performed, thereby preventing the formation of a natural oxide film and eliminating the process of reducing and removing the natural oxide film. become.
  • the impurity-doped silicon nanowire 200 is grown, the impurity-doped silicon nanowire 200 is once taken out into the air and then heat-treated in a reducing atmosphere to remove the natural oxide film on the surface of the impurity-doped silicon nanowire 200, and then the electrically conductive carbon thin film 500 is produced. It is also possible. The productivity is improved by growing the impurity-doped silicon nanowires 200 and producing the electrically conductive carbon thin film 500 in separate reactors. Further, the diameter and growth weight of the impurity-doped silicon nanowire 200 can be changed by changing the temperature at the time of growth of the impurity-doped silicon nanowire 200, the amount of silicon tetrachloride introduced, and the growth time.
  • the film thickness of the electrically conductive carbon thin film 500 can be controlled.
  • various hydrocarbon gases such as acetylene gas, propane gas, and methane gas can be used for producing the electrically conductive carbon thin film 500.
  • FIG. 16 shows the calculation result of the dependence of the negative electrode capacitance on the weight ratio Si / (Si + C) of silicon with respect to the total weight of the composite material of silicon and carbon.
  • the stoichiometric composition when filled with lithium ions was assumed to be LiC 6 and its electric capacity was 372 mAh / g.
  • the stoichiometric composition when lithium ions are filled is assumed to be Li 15 Si 4, and the electric capacity is assumed to be 3577 mAh / g, and Li 22 Si 5 is assumed, It calculated about the case where the electric capacity was 4197 mAh / g.
  • the weight ratio is 20% or more, particularly 40% or more, more preferably 80%, with respect to the negative electrode active material for lithium ion secondary battery. It is desirable to contain more than% silicon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 シリコンナノワイヤを有するリチウムイオン二次電池用負極活物質であって、シリコンナノワイヤに不純物がドーピングされ、シリコンナノワイヤの電気伝導率は10S/m以上であるリチウムイオン二次電池用負極活物質を用いることにより、所望の電気伝導度が付与されたリチウムイオン二次電池用負極活物質を提供でき、当該リチウムイオン二次電池用負極活物質をリチウムイオン二次電池に適用することにより、リチウムイオン二次電池の特性を向上できる。

Description

リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池に関する。
 リチウムイオン二次電池の負極活物質として、黒鉛系の炭素材料が広く用いられている。黒鉛にリチウムイオンを充填した際の化学量論的組成は、LiC6であり、その理論容量は372mAh/gと算出できる。これに対して、シリコンにリチウムイオンを充填した際の化学量論的組成は、Li22Si5であり、その理論容量は4197mAh/gと算出できる。このように、シリコンは黒鉛に比べて、11.3倍のリチウムを充填できる魅力的な材料である。従来技術として、特許文献1にはシリコンナノワイヤにドーピングする例が記載されている。
特表2012-527735号公報
 特許文献1には、導電性内側コアワイヤ(例えば電子移動のために必要な導電性を与えるために)(ドーピングされていてもよく、されていなくてもよい)としか記載がなく、リチウムイオン二次電池用負極活物質にシリコンナノワイヤを用いた場合の具体的な電気伝導度または電気伝導度を付与した場合のリチウムイオン二次電池の高速充放電化に対する効果については、記載されていない。本発明では、所望の電気伝導度が付与されたリチウムイオン二次電池用負極活物質を提供することを目的とする。
 本発明の特徴は、例えば以下の通りである。
 シリコンナノワイヤを有するリチウムイオン二次電池用負極活物質であって、シリコンナノワイヤに不純物がドーピングされ、シリコンナノワイヤの電気伝導率は10S/m以上であるリチウムイオン二次電池用負極活物質。
 本発明により、所望の電気伝導度が付与されたリチウムイオン二次電池用負極活物質を提供できる。上記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。
本発明の一実施形態に係る計算モデルである。 本発明の一実施形態に係る計算モデルの計算結果である。 本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現したものである。 本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現したものである。 成長を中断した不純物ドープシリコンナノワイヤの走査型電子顕微鏡写真である。 黒鉛表面に成長した不純物ドープシリコンナノワイヤの走査型電子顕微鏡写真である。 黒鉛表面に成長した不純物ドープシリコンナノワイヤの透過型電子顕微鏡写真である。 本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現したものである。 本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現したものである。 本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現したものである。 炭素被覆した不純物ドープシリコンナノワイヤの走査型電子顕微鏡写真である。 炭素被覆した不純物ドープシリコンナノワイヤの走査型電子顕微鏡写真である。 炭素被覆した不純物ドープシリコンナノワイヤの透過型電子顕微鏡写真である。 炭素被覆した不純物ドープシリコンナノワイヤの透過型電子顕微鏡写真である。 炭素基材の表面に不純物ドープシリコンナノワイヤを形成するための熱気相成長装置の概略図である。 シリコンと炭素の複合材料に関して、全体重量に対するシリコンの重量比Si/(Si+C)に対する、負極電気容量の依存性を計算した結果である。 本発明の一実施形態に係るリチウムイオン二次電池の内部構造である。
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 本発明の数値的裏付けを、図1および図2を用いて説明する。
 図1に本発明の一実施形態に係る計算モデルを示す。炭素基材100の表面に接触して、シリコンナノワイヤ110が存在し、シリコンナノワイヤ110の根元における印加電圧をVとする。シリコンナノワイヤ110に電流Iが根元から先端に向かって流れ、シリコンナノワイヤ110の先端における電圧降下量をΔVとする。電圧降下量ΔVは、すべてシリコンナノワイヤ110の電気抵抗に起因すると仮定する。電圧降下量ΔVは、数式(1)により与えられる。
Figure JPOXMLDOC01-appb-M000001
 ここで、Lはシリコンナノワイヤ110の長さ、ρはシリコンナノワイヤ110の電気抵抗率、RSiはシリコンナノワイヤ110の半径、πは円周率である。また、電流Iは数式(2)で与えられる。
Figure JPOXMLDOC01-appb-M000002
 ここで、Dはシリコンの密度、Rはシリコン1個に対して充填できるリチウムの個数、Fはファラデー定数、xは充電速度、すなわち1/x時間で満充電すると仮定する。また、Mはシリコンの原子量である。数式(1)に数式(2)を代入すると、数式(3)となる。
Figure JPOXMLDOC01-appb-M000003
 また、シリコンナノワイヤ110の根元と先端での拡散速度の比をRvとすると、Rvは、数式(4)表される。
Figure JPOXMLDOC01-appb-M000004
 数式(4)に数式(3)を代入し、整理すると、数式(5)となる。
Figure JPOXMLDOC01-appb-M000005
 数式(5)により、シリコンナノワイヤ110に最大許容される電気抵抗率ρの充電速度x依存性を求めることができた。
 数式(5)を用いて計算した結果を図2に示す。数式(5)において、定数k=1.38×10-23(m2kgs-2-1)、T=300(K)、M=28.1×10-3(kgmol-1)、q=1.6×10-19(C)、D=2.33×103(kgm-3)、R=4.4、F=9.65×104(Cmol-1)、また、Rvを1.01とした。すなわち、根元と先端での拡散速度の差を1%以内と仮定した。
 L=1、3、5μmの場合に計算した結果を図2に示す。図2は、本発明の一実施形態に係る計算モデルの計算結果である。図2上図の縦軸を0-0.2の領域を拡大したものが、図2下図である。これにより、10Cの速度で充電する場合、L=1μmの場合は、シリコンナノワイヤの電気抵抗率を2.6Ωm以下にしなければいけないことがわかる。電気伝導率はその逆数で、0.38S/m以上にしなければならない。L=3μmの場合は、電気抵抗率を0.3Ωm以下(電気伝導率3.3S/m以上)に、L=5μmの場合は電気抵抗率0.1Ωm以下(電気伝導率10S/m以上)にしなければならない。
 ノンドープシリコンの電気伝導率は、0.001S/m程度であるため、上記の電気伝導率を実現するためには、シリコンナノワイヤ110にドーピングし、電気伝導性を向上させることが望ましい。シリコンナノワイヤ110の長さは、成長条件に依存するが、5μmをこえることはないと考えられる。また、充電速度は10Cを想定しておけば、大部分の用途には充分であると考えられる。以上より、シリコンナノワイヤ110の電気伝導率を10S/m以上、特に100S/mにすれば、実用上充分であると考えられる。下記されている気相成長法でシリコンナノワイヤ110にドーピングする場合は、ドーピング量として5×1018cm-3程度が限界となるので、シリコンナノワイヤ110の電気伝導率は10000S/m以下とすることが望ましい。
<不純物ドープシリコンナノワイヤ>
 本発明の一実施例について、図3を用いて説明する。図3は、本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現したものである。
 負極活物質1000は、不純物ドープシリコンナノワイヤ200で構成される。不純物をドープした不純物ドープシリコンナノワイヤ200の直径Dsiは、2nm以上、100nm以下である。不純物ドープシリコンナノワイヤ200の直径Dsiが2nm未満の場合、大気中で自然酸化されて全体がSiO2になる可能性があり、この場合、リチウムイオン二次電池用負極活物質として機能しない可能性がある。また、不純物ドープシリコンナノワイヤ200の直径Dsiが100nmを超える場合、リチウムイオンの充填および放出を繰返した際の機械的歪みにより破壊し、リチウムイオン二次電池の電気容量が激減する可能性がある。シリコンナノワイヤの直径を100nm以下と充分に細くすることにより、リチウムイオンの充填と放出を繰り返す間に起こるシリコン粒子の力学的な構造破壊を抑制できる。そして、構造破壊に起因する不可逆容量増加を大幅に低減できるため、リチウムイオン二次電池の長寿命化を実現できる。
 不純物ドープシリコンナノワイヤ200の長さに制限はないが、数ミクロンから数十ミクロンぐらいの長さが、電極作製プロセスに対して、最適であると考えられる。
 シリコンナノワイヤに不純物をドーピングすることにより、高電気伝導性を付与できる。これにより、シリコンナノワイヤが途中で折れた場合、あるいは炭素基材から剥離した場合にも、集電体との間の電気伝導を確保し、電気的孤立を防ぐことができる。この効果により、不可逆容量増加を大幅に低減できるため、リチウムイオン二次電池の長寿命化を実現できる。
 シリコンナノワイヤに対するドーパントとしては、シリコン基板に対する一般的なドーパントを用いることが可能である。その中で、ボロン、リン、ヒ素、窒素等の元素をドーパントとしてドープすることが望ましい。ドーピング量は、10×1015atom/cm3以上であることが望ましく、ドーピング後の電気伝導度は、10S/m以上、特に100S/m以上であることが望ましい。それ以下の電気伝導度では、高速充放電特性の改善が望めない場合がある。
 また、シリコン材料の高速充放電化を図るためには、ナノ粒子やナノワイヤ等の極微細構造を導入する方法が有効である。これは、極微細構造導入により、シリコン材料に比表面積が大きくなるため、より高速にリチウムイオンの充填?放出が可能となるからである。さらなる高速充放電化を図るためには、シリコン材料自身に高電気伝導性を付与する方法が有効である。これにより、シリコン材料内部での電圧降下を大幅に低減でき、結果としてリチウムイオンのシリコン内拡散速度を高速化できるためである。
 図17は、本発明の一実施形態に係るリチウムイオン二次電池の内部構造を示す。図17で、1401は正極、1402はセパレータ、1403は負極、1404は電池缶、1405は正極集電タブ、1406は負極集電タブ、1407は内蓋、1408は内圧開放弁、1409はガスケット、1410は正温度係数(PTC; Positive temperature coefficient)抵抗素子、1411は電池蓋である。電池蓋1411は、内蓋1407、圧力開放弁1408、ガスケット1409、正温度係数抵抗素子1410からなる一体化部品である。
 例えば、正極1401は以下の手順により作製される。正極活物質には、LiMn24を用いる。その正極活物質の85.0wt%に、導電材として黒鉛粉末とアセチレンブラックをそれぞれ7.0wt%と2.0wt%を添加する。さらに、結着剤として6.0wt%のポリフッ化ビニリデン(以下、PVDFと略記)、1-メチル-2-ピロリドン(以下、NMPと略記)に溶解した溶液を加えて、プラネタリ-ミキサーで混合し、さらに真空下でスラリー中の気泡を除去して、均質な正極合剤スラリーを調製する。このスラリーを、塗布機を用いて厚さ20μmのアルミニウム箔の両面に均一かつ均等に塗布する。塗布後ロールプレス機により電極密度が2.55g/cm3になるように圧縮成形する。これを切断機で裁断し、厚さ100μm、長さ900mm、幅54mmの正極1401を作製する。
 例えば、負極1403は以下の手順により作製できる。負極活物質は、本発明の一実施形態におけるチウムイオン二次電池用負極活物質を用いることができる。該材料の95.0wt%に、結着剤として5.0wt%のPVDFをNMPに溶解した溶液を加える。それをプラネタリ-ミキサーで混合し、真空下でスラリー中の気泡を除去して、均質な負極合剤スラリーを調製する。このスラリーを塗布機で厚さ10μmの圧延銅箔の両面に均一かつ均等に塗布する。塗布後、その電極をロールプレス機によって圧縮成形して、電極密度が1.3g/cm3とする。これを切断機で裁断し、厚さ110μm、長さ950mm、幅56mmの負極1403を作製する。
 上のように作製した正極1401と、負極1403の未塗布部(集電板露出面)に、それぞれ正極集電タブ1405および負極集電タブ1406を超音波溶接する。例えば、正極集電タブ1405はアルミニウム製リード片とし、負極集電タブ1406にはニッケル製リード片を用いることができる。その後、厚み30μmの多孔性ポリエチレンフィルムからなるセパレータ1402を正極1401と負極1403に挿入し、正極1401、セパレータ1402、負極1403を捲回する。この捲回体を電池缶1404に収納し、負極集電タブ1406を電池缶1404の缶底に抵抗溶接機により接続する。正極集電タブ1405は、内蓋1407の底面に超音波溶接により接続する。
 上部の電池蓋1411を電池缶1404に取り付ける前に、非水電解液を注入する。電解液の溶媒は、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)からなり、体積比は1:1:1である。電解質は濃度1mol/L(約0.8mol/kg)のLiPF6である。このような電解液を電極群の上から滴下し、電池蓋1411を電池缶1404に、かしめて密封し、リチウムイオン二次電池が得られる。
 次に、本発明の第2の実施例について、図4を用いて説明する。図4は、本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現したものである。負極活物質1000は、不純物ドープシリコンナノワイヤ200および黒鉛300で構成される。本実施例では、黒鉛300の表面に、不純物ドープシリコンナノワイヤ200を形成した。不純物ドープシリコンナノワイヤ200は、黒鉛300表面に直接結合しており、黒鉛300の表面から成長している。
 黒鉛300表面での不純物ドープシリコンナノワイヤ200の成長メカニズムを明確にするために、不純物ドープシリコンナノワイヤ200の成長の初期段階で成長を中断し、試料を取出して、走査型電子顕微鏡で観察した。図5は、成長を中断した不純物ドープシリコンナノワイヤの走査型電子顕微鏡写真である。その結果、黒鉛300の表面に、直径が数十nmの不純物ドープシリコンナノ粒子が無数に存在していた。この事実より、黒鉛300表面に、まずシリコンナノ粒子が成長し、そのシリコンナノ粒子が、不純物ドープシリコンナノワイヤ200へと成長すると推察できる。
 次に、本実施例について、図6および図7を用いて説明する。図6は、黒鉛表面に成長した不純物ドープシリコンナノワイヤの走査型電子顕微鏡写真である。このように、不純物ドープシリコンナノワイヤ200を非常に密に作製することが可能である。このサンプルは、シリコンと炭素を含む複合材料であり、熱重量測定法により測定したシリコンの重量比は、23wt%であった。シリコンの重量比は、成長条件を変えることにより、調整することが可能である。
 図7は、同じサンプルの透過型電子顕微鏡写真である。直径は30nmであり、内部はシリコンの格子縞がみえていることから、シリコンナノワイヤ200は結晶性を有する、特に、多結晶構造であると考えられる。シリコンナノワイヤ200が結晶性を有することにより、リチウムイオンの拡散速度が大きくなる。結果として、リチウムイオンの充填および放出速度が速く、高速充放電特性が向上する。また、不純物ドープシリコンナノワイヤ200の表面には、3nm弱の自然酸化膜層が存在している。
 不純物ドープシリコンナノワイヤ200は、黒鉛300表面に直接結合しており、その接合面では、不純物ドープシリコンナノワイヤ200のシリコン原子と、黒鉛300表面の炭素原子との間に、化学結合が形成されていると考えられる。
 本実施例において、不純物ドープシリコンナノワイヤ200成長のための基材として用いた黒鉛300は、人造黒鉛、天然黒鉛、酸化黒鉛、熱膨張酸化黒鉛等、あらゆる種類および形態の黒鉛を用いることが可能である。
 次に、本発明の第3の実施例について、図8を用いて説明する。図8は、本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現したものである。負極活物質1000は、不純物ドープシリコンナノワイヤ200およびカーボンナノチューブ400で構成される。本実施例では、炭素基材に、カーボンナノチューブ400を用い、その表面に不純物ドープシリコンナノワイヤ200を成長した点が、第2の実施例と異なる。
 本実施例において、不純物ドープシリコンナノワイヤ200成長のための基材として、カーボンナノチューブ400を用いたが、カーボンナノホーン、アセチレンブラック、ケッチェンブラック等、あらゆる形態のカーボン系ナノ構造体を用いることが可能である。
 次に、本発明の第4の実施例について、図9を用いて説明する。図9は、本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現したものである。本実施例では、まず炭素基材上に不純物ドープシリコンナノワイヤ200を成長し、その後、炭素基材と不純物ドープシリコンナノワイヤ200を分離し、不純物ドープシリコンナノワイヤ200だけを負極材料として用いた点が、第2の実施例および第3の実施例と異なる。これにより、全重量に対するシリコンの重量比を大幅に増大することができるため、電気容量を飛躍的に増やすことが可能である。
 次に、本発明の第5の実施例について、図10、図11、図12、図13および図14を用いて説明する。図10は、本発明の一実施形態に係るリチウムイオン二次電池用負極活物質の構造を模式的に表現したものである。負極活物質1000は、不純物ドープシリコンナノワイヤ200および電気伝導性炭素薄膜500で構成される。
 負極活物質1000は、不純物ドープシリコンナノワイヤ200の表面が、電気伝導性炭素薄膜500で部分的または全体に覆われた構造である。換言すると、不純物ドープシリコンナノワイヤ200の表面に電気伝導性炭素薄膜500が形成されている。
 電気伝導性炭素薄膜500は、ナノグラフェンが多層に積層した構造を有し、1000S/m以上の電気伝導度を有する。不純物ドープシリコンナノワイヤ200がナノグラフェン構造を有する電気伝導性炭素薄膜500で部分的または全体に被覆されることにより、不純物ドープシリコンナノワイヤ200に電気伝導性を付加することができる。これにより、不純物ドープシリコンナノワイヤ200が途中で折れた場合、あるいは不純物ドープシリコンナノワイヤ200が電気伝導性炭素薄膜500から剥離した場合にも、集電体との電気伝導を確保し、電気的孤立を防ぐことができるので、リチウムイオン二次電池の不可逆容量を低減できる。
 電気伝導性炭素薄膜500の膜厚Lcは、0.2nm以上、100nm以下である。電気伝導性炭素薄膜500の膜厚Lcが、0.2nm未満である場合、被覆強度が不十分で、部分的に剥がれる可能性があり、その場合には、十分な電気伝導性を確保することができない可能性がある。また、電気伝導性炭素薄膜500の膜厚Lcが、100nmを超える場合、全体の重量に対するシリコンの重量を20wt%にすることが困難であり、結果として十分な電気容量を得ることができない可能性がある。
 図11は、炭素被覆した不純物ドープシリコンナノワイヤの走査型電子顕微鏡写真である。このように、炭素被覆した不純物ドープシリコンナノワイヤ200を非常に密に成長することが可能である。図12は、同じサンプルの拡大写真である。炭素被覆した不純物ドープシリコンナノワイヤ200の表面が、電気伝導性炭素薄膜500で均一に覆われていると考えられる。
 図13は、炭素被覆した不純物ドープシリコンナノワイヤの透過型電子顕微鏡写真である。ワイヤの中央付近には、格子縞を有する不純物ドープシリコンナノワイヤ200を観察することができる。また、不純物ドープシリコンナナワイヤ200の表面には、不純物ドープシリコンナノワイヤ200の軸方向に沿って配向したナノグラフェン多層構造を有する電気伝導性炭素薄膜500を観察することができる。不純物ドープシリコンナナワイヤ200の軸方向に沿って電気伝導性炭素薄膜500が配向していることにより、電気伝導性炭素薄膜500が剥がれにくい強固な膜に成る。不純物ドープシリコンナノワイヤ200の直径は18nmであり、電気伝導性炭素薄膜500の膜厚は6.44-8.17nmであった。
 別のサンプルの透過型電子顕微鏡写真を図14に示す。図14は、炭素被覆した不純物ドープシリコンナノワイヤの透過型電子顕微鏡写真である。不純物ドープシリコンナノワイヤ200の直径は18nmであり、電気伝導性炭素薄膜500の膜厚は10nmであった。
 次に、本発明の第6の実施例について、図15を用いて説明する。図15は、炭素基材の表面に不純物ドープシリコンナノワイヤを形成するための熱気相成長装置の概略図である。
 シリコン原料には、液体の四塩化シリコンを用い、水素ガスでバブリング(図15左の一番下のライン)することにより、反応炉に導入した。四塩化シリコンの20℃における蒸気圧は30kPaであり、バブリング導入すると、四塩化シリコンの導入量は34%となる。そこで、それ以下の量の四塩化シリコンを導入する場合には、四塩化シリコンを冷却するか、水素ガスの別ライン(図15左の真ん中のライン)を設ける必要がある。本実施例では、バブリングしない水素ラインを別に設け、バブリングラインと合流して、反応炉に導入した。
 また、ドーパントライン(図15左の一番上のライン)を設け、ドーパントとなるボロン、リン、ヒ素、窒素等の元素を構成要素として含有する有機化合物を、ドーパント原料として導入した。上記の有機化合物が気体の場合は、アルゴン等の不活性ガスと混合して導入した。また、液体の場合は、アルゴン等の不活性ガスでバブリングすることにより導入した。例えば、ボロン含有有機化合物としては各種ボロン酸エステル、リン含有有機化合物としては、各種ホスホン酸エステル、各種リン酸エステル、各種亜リン酸エステル、窒素含有有機化合物としては、各種アミン、各種アミド、各種イミン、各種ニトリルを用いることが可能である。
 炭素被覆不純物ドープシリコンナノワイヤ成長の手順は、下記の通りである。サンプルボートに炭素基材を入れて、反応炉の中央付近に設置する。炭素基材には、黒鉛、熱膨張酸化黒鉛、酸化黒鉛、カーボンナノチューブ、カーボンナノホーン等、いかなる形態の炭素材料を用いることが可能である。反応炉は、石英製であり、直径が5cm、長さが40cmである。図15左真ん中の水素ラインには、水素を200mL/minの流速で流し、下のバブリング水素ラインは閉じた状態で、成長炉を室温から1000℃まで、10℃/minでの速度で昇温した。
 次に、1000℃に達したところで、上の水素ラインの流量を100mL/minに変更し、下のバブリング水素ラインの水素ラインの流量を100mL/minに設定した。この条件により、17%の四塩化シリコンを導入することができる。また、同時にドーパントラインから、ドーパント原料を導入した。1000℃で1時間成長した後、ドーパントラインおよび下のバブリング水素ラインを閉じ、上の水素ラインの流量を200mL/minに変更して、1000℃で30分間保持した。これにより、直径が20nmの不純物ドープシリコンナノワイヤ200を炭素基材表面に作製することが可能である。
 不純物ドープシリコンナノワイヤ200成長時の温度、四塩化シリコン導入量、成長時間をかえることにより、不純物ドープシリコンナノワイヤ200の直径および成長重量を変えることが可能である。また、ドーパント原料の導入量を変えることにより、不純物ドープシリコンナノワイヤ200へのドーピング量を変えることが可能である。
 また、不純物ドープシリコンナノワイヤ200の表面を、電気伝導性炭素薄膜500で被覆するためには、引続いて、以下の手順を行う。
 まず、両水素ラインを閉じ、アルゴンガス(図15にアルゴンラインは記載していない)を200mL/minの流速で流し、10℃/minの速度で降温し、800℃まで降温した。800℃に達したところで、プロピレンガス(図15にプロピレンラインは記載していない)を10mL/minの流速で導入し、同時にアルゴンガスの流速を190mL/minにして、電気伝導性炭素薄膜500を1時間成長した。その後、プロピレンガスラインを閉じ、アルゴンガスを200mL/minの流速で流し、30分間保持した後、自然冷却した。これにより、不純物ドープシリコンナノワイヤ200の表面に、ナノグラフェン多層構造を有する電気伝導性炭素薄膜500(膜厚10nm)を作製することが可能である。
 なお、本実施例では、不純物ドープシリコンナノワイヤ200の表面酸化を防ぐために、不純物ドープシリコンナノワイヤ200の作製と、それに続く電気伝導性炭素薄膜500の作製を、連続して行った。このように、不純物ドープシリコンナノワイヤ200の作製と、それに続く電気伝導性炭素薄膜500の作製を、連続して行うことにより、自然酸化膜の形成を防止し、自然酸化膜の還元除去プロセスが不要になる。
 不純物ドープシリコンナノワイヤ200を成長後、一度空気中に取出し、その後還元雰囲気で熱処理して、不純物ドープシリコンナノワイヤ200の表面の自然酸化膜を取り除いた後に、引き続いて電気伝導性炭素薄膜500を作製することも可能である。不純物ドープシリコンナノワイヤ200の成長と電気伝導性炭素薄膜500の作製を別々の反応炉で行うことにより、生産性が向上する。また、不純物ドープシリコンナノワイヤ200成長時の温度、四塩化シリコン導入量、成長時間をかえることにより、不純物ドープシリコンナノワイヤ200の直径および成長重量を変えることが可能である。また、電気伝導性炭素薄膜500の成長時間を変えることにより、電気伝導性炭素薄膜500の膜厚を制御することが可能である。また、電気伝導性炭素薄膜500作製には、プロピレンガス以外に、アセチレンガス、プロパンガス、メタンガス等の種々の炭化水素ガスを用いることが可能である。
 次に、本発明の第7の実施例について、図16を用いて説明する。図16は、シリコンと炭素の複合材料に関して、全体重量に対するシリコンの重量比Si/(Si+C)に対する、負極電気容量の依存性を計算した結果である。炭素に対しては、リチウムイオンを充填した際の化学量論的組成を、LiC6と仮定し、その電気容量を372mAh/gとした。また、シリコンに対しては、リチウムイオンを充填した際の化学量論的組成を、Li15Si4と仮定し、その電気容量を3577mAh/gとした場合と、Li22Si5と仮定し、その電気容量を4197mAh/gとした場合について、計算した。
 正極電気容量とのバランスから、負極電気容量として、1000mAh/g以上を実現できれば、当面は十分な性能であると考えられる。図16の計算結果より、負極電気容量として、1000mAh/g以上を実現するためには、重量比でリチウムイオン二次電池用負極活物質に対して20%以上、特に40%以上、更には80%以上のシリコンを含有することが望ましい。
100 炭素基材
110 シリコンナノワイヤ
200 不純物ドープシリコンナノワイヤ
300 黒鉛
400 カーボンナノチューブ
500 電気伝導性炭素薄膜
1000 負極活物質
1401 正極
1402 セパレータ
1403 負極
1404 電池缶
1405 正極集電タブ
1406 負極集電タブ
1407 内蓋
1408 圧力開放弁
1409 ガスケット
1410 正温度係数抵抗素子
1411 電池蓋

Claims (9)

  1.  シリコンナノワイヤを有するリチウムイオン二次電池用負極活物質であって、
     前記シリコンナノワイヤに不純物がドーピングされ、
     前記シリコンナノワイヤの電気伝導率は10S/m以上であるリチウムイオン二次電池用負極活物質。
  2.  請求項1において、
     前記シリコンナノワイヤの直径は、2nm以上、100nm以下であるリチウムイオン二次電池用負極活物質。
  3.  請求項1乃至2のいずれかにおいて、
     前記シリコンナノワイヤは、結晶性を有するリチウムイオン二次電池用負極活物質。
  4.  請求項1乃至3のいずれかにおいて、
     前記シリコンナノワイヤの表面に、ナノグラフェン構造を有する電気伝導性炭素薄膜が形成されるリチウムイオン二次電池用負極活物質。
  5.  請求項4において、
     前記電気伝導性炭素被覆層が、前記シリコンナノワイヤの表面に沿って配向しているリチウムイオン二次電池用負極活物質。
  6.  請求項4において、
     前記電気伝導性炭素被覆層の膜厚が、0.2nm以上100nm以下であるリチウムイオン二次電池用負極活物質。
  7.  請求項1乃至6のいずれかにおいて、
     前記シリコンナノワイヤの前記リチウムイオン二次電池用負極活物質に対する重量比が20%以上であるリチウムイオン二次電池用負極活物質。
  8.  請求項1乃至7のいずれかに記載のリチウムイオン二次電池用負極活物質を含むリチウムイオン二次電池。
  9.  シリコンナノワイヤを有するリチウムイオン二次電池用負極活物質の製造方法であって、 前記シリコンナノワイヤに不純物がドーピングされ、
     前記シリコンナノワイヤの電気伝導率は10S/m以上であり、
     前記シリコンナノワイヤの表面に、ナノグラフェン構造を有する電気伝導性炭素薄膜が形成され、
     前記シリコンナノワイヤを作製後、連続して前記シリコンナノワイヤの表面に前記炭素被覆層を作製したリチウムイオン二次電池用負極活物質の製造方法。
PCT/JP2014/056824 2014-03-14 2014-03-14 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池 WO2015136684A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056824 WO2015136684A1 (ja) 2014-03-14 2014-03-14 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056824 WO2015136684A1 (ja) 2014-03-14 2014-03-14 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2015136684A1 true WO2015136684A1 (ja) 2015-09-17

Family

ID=54071161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056824 WO2015136684A1 (ja) 2014-03-14 2014-03-14 リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2015136684A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021320A (ja) * 2014-07-14 2016-02-04 住友金属鉱山株式会社 非水電解質二次電池用負極活物質及びその製造方法
CN106532010A (zh) * 2016-12-21 2017-03-22 上海杉杉科技有限公司 一种硅‑氮化硅‑碳复合材料及制备方法及应用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526364A (ja) * 2009-05-07 2012-10-25 アンプリウス、インコーポレイテッド 再充電可能電池用のナノ構造を含む電極
JP2012527735A (ja) * 2009-05-19 2012-11-08 ナノシス・インク. 電池に応用するためのナノ構造材料
JP2013110112A (ja) * 2011-11-22 2013-06-06 Samsung Electronics Co Ltd 複合負極活物質、その製造方法及びそれを含むリチウム二次電池
JP2013521621A (ja) * 2010-03-03 2013-06-10 アンプリウス、インコーポレイテッド 活性材料を堆積させるためのテンプレート電極構造
JP2013531740A (ja) * 2010-04-06 2013-08-08 エヌディーエスユー リサーチ ファウンデーション 液体シラン系組成物およびシリコン系材料を生成するための方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526364A (ja) * 2009-05-07 2012-10-25 アンプリウス、インコーポレイテッド 再充電可能電池用のナノ構造を含む電極
JP2012527735A (ja) * 2009-05-19 2012-11-08 ナノシス・インク. 電池に応用するためのナノ構造材料
JP2013521621A (ja) * 2010-03-03 2013-06-10 アンプリウス、インコーポレイテッド 活性材料を堆積させるためのテンプレート電極構造
JP2013531740A (ja) * 2010-04-06 2013-08-08 エヌディーエスユー リサーチ ファウンデーション 液体シラン系組成物およびシリコン系材料を生成するための方法
JP2013110112A (ja) * 2011-11-22 2013-06-06 Samsung Electronics Co Ltd 複合負極活物質、その製造方法及びそれを含むリチウム二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016021320A (ja) * 2014-07-14 2016-02-04 住友金属鉱山株式会社 非水電解質二次電池用負極活物質及びその製造方法
CN106532010A (zh) * 2016-12-21 2017-03-22 上海杉杉科技有限公司 一种硅‑氮化硅‑碳复合材料及制备方法及应用方法

Similar Documents

Publication Publication Date Title
KR101913897B1 (ko) 이차전지용 양극활물질 및 이를 포함하는 이차전지
JP6196192B2 (ja) 負極活物質、負極活物質の製造方法、並びに、リチウムイオン二次電池
JP6352726B2 (ja) 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極電極の製造方法、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法
JP5484570B2 (ja) リチウム二次電池用負極活物質およびその製造方法
US11165056B2 (en) Method of producing an electrode material for a battery electrode
JP2018048070A (ja) 多孔性シリコン複合体クラスタ、それを利用した炭素複合体、並びにそれを含んだ、電極、リチウム電池、電界放出素子、バイオセンサ、半導体素子及び熱電素子
JP7228141B2 (ja) ナノ構造化材料及びその製造方法
JP2015111547A5 (ja)
JP6161015B2 (ja) リチウム二次電池用負極材、この製造方法及びこれを含むリチウム二次電池
KR101899701B1 (ko) 나노 실리콘 재료와 그 제조 방법 및 이차 전지의 부극
KR101321122B1 (ko) 리튬 이차전지용 실리콘계 음극 활물질, 그의 제조방법 및 그를 포함한 리튬 이차전지
KR101929413B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20180072112A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
JP2018113187A (ja) リチウムイオン二次電池用負極材料及びこれを用いたリチウムイオン二次電池
US9548491B2 (en) Positive electrode active material for rechargeable lithium battery, manufacturing method of same, and rechargeable lithium battery including same
KR101488483B1 (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 리튬 이차 전지
KR101568458B1 (ko) 이차전지용 음극활물질 및 그 제조 방법
WO2015136684A1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池
WO2015029128A1 (ja) 負極活物質並びにこれを用いた負極合剤、負極及びリチウムイオン二次電池
WO2015068195A1 (ja) リチウムイオン二次電池用負極活物質、リチウムイオン二次電池用負極活物質の製造方法、およびリチウムイオン二次電池
JP5531347B2 (ja) 自己支持形金属硫化物系2次元ナノ構造体の負極活物質及びその製造方法
JP2017084684A (ja) リチウムイオン二次電池用負極活物質、およびその製造方法、リチウムイオン二次電池
WO2016075798A1 (ja) リチウムイオン二次電池用負極活物質、およびリチウムイオン二次電池
JP2014235925A (ja) リチウムイオン二次電池
WO2015181940A1 (ja) リチウムイオン二次電池用負極活物質およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP