WO2015169164A1 - 彩色tpu发泡材料、制备方法、用途以及利用该材料制备成型体、薄片、鞋材的方法 - Google Patents

彩色tpu发泡材料、制备方法、用途以及利用该材料制备成型体、薄片、鞋材的方法 Download PDF

Info

Publication number
WO2015169164A1
WO2015169164A1 PCT/CN2015/077763 CN2015077763W WO2015169164A1 WO 2015169164 A1 WO2015169164 A1 WO 2015169164A1 CN 2015077763 W CN2015077763 W CN 2015077763W WO 2015169164 A1 WO2015169164 A1 WO 2015169164A1
Authority
WO
WIPO (PCT)
Prior art keywords
tpu
particles
color
foamed
colored
Prior art date
Application number
PCT/CN2015/077763
Other languages
English (en)
French (fr)
Inventor
张小海
翟文涛
Original Assignee
晋江国盛鞋材有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晋江国盛鞋材有限公司 filed Critical 晋江国盛鞋材有限公司
Priority to US15/105,020 priority Critical patent/US10035894B2/en
Publication of WO2015169164A1 publication Critical patent/WO2015169164A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0004Use of compounding ingredients, the chemical constitution of which is unknown, broadly defined, or irrelevant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • C08K5/30Hydrazones; Semicarbazones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/39Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
    • C08K5/40Thiurams, i.e. compounds containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0066≥ 150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2410/00Soles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/044Micropores, i.e. average diameter being between 0,1 micrometer and 0,1 millimeter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/06Flexible foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Definitions

  • the invention relates to a method for preparing a low-density color thermoplastic polyurethane (TPU) foaming material by physical foaming of a high-pressure fluid, and heating the low-temperature, high-pressure fluid-impregnated color TPU resin for a short time to reduce the interface migration of the organic small molecule pigment, A color TPU foaming material in which the pigment is uniformly dispersed inside and outside the cell structure is obtained, and a pressure difference between the inside and the outside of the cell structure of the TPU foaming material is reduced by a high pressure gas carrying process, thereby suppressing uneven shrinkage of the color TPU foaming material.
  • the invention relates to a method for water vapor forming of TPU foamed particles and cutting and molding of TPU foamed sheets, so that the prepared colored TPU foaming materials are applied to the field of shoe materials.
  • the ethylene-vinyl acetate copolymer (EVA) polymer foam material has the characteristics of lightness, elasticity, and the like, and is used for making an insole, a midsole, and an outsole of sports shoes.
  • the color EVA foam material gives the sports shoes a rich color match and good design ability.
  • a process for preparing a colored EVA foamed shoe material has been disclosed. One method is to mix the pigment with EVA particles, auxiliaries, fillers, foaming agents, cross-linking agents, etc. at low temperature, open-cast, extrusion granulation, pelletizing in the mold, and/or secondary mold sizing. Thus, a color EVA foamed shoe material is prepared. Another method is to combine the pigment into the EVA foaming system and form a color EVA foamed shoe material, especially an EVA foam sandal, by an injection molding foaming process.
  • the EVA resin used to prepare the EVA foamed shoe material is thermoplastic and can be prepared into a desired shape by melt processing.
  • EVA resin requires chemical crosslinking when it is foamed.
  • the EVA foaming resin having a crosslinked structure is a macromolecule which cannot be melt processed, which causes the EVA resin to lose its melt recovery ability after foaming.
  • EVA resin foaming is usually carried out by means of chemical foaming.
  • the chemical foaming process produces toxic and harmful gases.
  • the decomposition of chemical foaming agents does not lead to environmentally unfriendly materials and unstable material properties.
  • Thermoplastic polyurethane (TPU) is widely used in shoe materials due to its high wear resistance, high elasticity, fatigue resistance and chemical resistance.
  • the color low-density foamed material prepared on the basis of TPU is expected to replace the EVA material foaming material in the field of high-performance shoe materials.
  • the prior art cannot prepare a TPU having a bright color and a uniform color distribution inside and outside the material, a density of 0.05-0.5 g/cm 3 , a uniform cell structure and a size of less than 100 ⁇ m, and a smooth surface without obvious shrinkage wrinkles. foaming material.
  • TPU foamed materials using chemical blowing agents Processes for preparing TPU foamed materials using chemical blowing agents are known.
  • a suitable pigment to the TPU chemical foaming system can impart various colors to the TPU foaming material, but has similar problems as the EVA resin foaming material, such as the problem that the preparation process is not environmentally friendly and requires chemical crosslinking.
  • the TPU foamed material prepared by using a chemical foaming agent has a problem that the cell structure is rough, the density is large, and the expansion ratio is low.
  • the patent document WO 2000/44821 A, WO 2004/108811 A discloses a method of preparing a TPU foamed material from expandable microspheres.
  • the method comprises mixing powder and granular TPU with expandable microspheres and melt processing to prepare a TPU foaming material.
  • the expandable microspheres used are binders coated with a low boiling point solvent (such as pentane) or wax or thermoplastic pellets.
  • the low boiling point solvent in the expandable microspheres is thermally decomposed into a gas core during the TPU process. Nuclear growth forms a cell structure.
  • the size of the expandable microspheres is generally 20-40 ⁇ m, which is not easily dispersed uniformly during the TPU melt mixing process, and the addition of the high content expandable microspheres tends to result in the formation of a non-uniform macroporous structure.
  • the TPU foamed material having a density of 0.3-1.0 g/cm 3 visible pits on the surface of the sample were observed, and at the same time, the foamed material had poor abrasion resistance.
  • the color TPU foaming material should be prepared by mixing the pigment into the expandable microsphere foaming TPU system, but the prepared low-density TPU foaming material also has too large cell size, concave on the surface of the sample, and poor wear resistance. The problem, secondly, the prepared low-density TPU foaming material has a problem that the color is not sufficiently bright.
  • Patent documents WO2005/066250A, WO2007/082838A, WO2010/136398A and CN103642200A describe a process for preparing a TPU foamed material by a suspension process using an organic solvent or an inert gas as a physical blowing agent.
  • the prepared TPU foaming material has small cells and uniform distribution, and the density can be as low as 0.1-0.5 g/cm 3 , which solves the problems in the preparation of the TPU foaming material by the expandable microsphere technology.
  • this method involves boiling the TPU particles in water at a temperature of 100-150 ° C for 0.5-10 hours.
  • the fact that the TPU resin, especially the polyester TPU resin, is easily hydrolyzed is a problem.
  • TPU resin Long-time boiling tends to cause chemistry of the TPU resin. Degradation and yellowing problems affect the performance and subsequent use of TPU foaming materials. More importantly, the pigments commonly used in TPU resins are mainly small organic molecules. The organic small molecular substances are prone to interfacial migration in the environment of high-pressure foaming agent plasticization and high-temperature boiled for a long time. Uneven distribution inside and outside and fading of the surface of the foamed material.
  • Patent document WO2007/082838A discloses a process for preparing TPU foamed particles by continuous extrusion granulation using a saturated aliphatic hydrocarbon as a blowing agent.
  • the blowing agent used has environmental problems and production safety problems.
  • organic small molecule pigments significantly plasticize the TPU matrix and reduce the viscosity and melt strength of the TPU melt is a problem, which makes the cell structure of the TPU foaming material difficult to control.
  • the fact that the TPU foamed material prepared by continuous extrusion foaming has a high open porosity is also a problem, resulting in a problem that the shrinkage rate of the TPU foamed particles is high in the steam forming process.
  • CO 2 high-pressure fluid is a cleaning fluid, inexpensive, environmentally friendly physical blowing agents, according to the needs
  • CO 2 high-pressure fluid may be a fluid-pressure gas, high pressure liquid fluid and supercritical fluid.
  • the supercritical state of CO 2 can be achieved under relatively mild conditions, such as a pressure of 7.31 MPa and a temperature of 31.0 °C.
  • Patent document WO 2002/4628 A describes a process for preparing a high density TPU foamed material using a high pressure fluid or a supercritical fluid as a blowing agent.
  • the TPU foaming material prepared by the method has a hardness of not less than 90 and a density of 0.5-1.0 g/cm 3 , and the prepared TPU foaming material is mainly used for polishing pads of semiconductor wafers, and is not suitable for buffering of sports shoes. Shoe material.
  • Patent document CN102229709A describes a process for preparing a TPU foamed material by a compression foaming process using supercritical CO 2 as a blowing agent.
  • the supercritical fluid used in the method has a pressure of 5-25 MPa, the supercritical fluid has a temperature of 100-250 ° C, and the supercritical fluid has a treatment time of 1-60 minutes.
  • This technology can prepare colored TPU foaming materials in principle, but the organic small molecule pigments have poor heat resistance, and interface migration and volatilization are easy to occur in a high temperature and high pressure environment, resulting in uneven dyeing of the foamed material.
  • the pressure required by this technology is too high, resulting in high equipment costs and production safety issues.
  • the technique does not use a dispersion medium, and the TPU particles are easily deformed under high temperature and high pressure, and the appearance becomes sticky, which makes the technique unsuitable for preparing TPU foamed particles having a smooth appearance and a spherical or ellipsoidal shape.
  • thermoplastic elastomer foamed material using a high pressure CO 2 fluid as a blowing agent.
  • the method uses a high pressure CO 2 fluid, a low temperature impregnated thermoplastic elastomer resin, and the thermoplastic elastomer is foamed by a water bath or steam heating.
  • thermoplastic elastomer foaming material size shrinkage as high as 40-50%). The occurrence of such severe shrinkage not only significantly increases the density of the thermoplastic elastomer foaming material, but also causes obvious wrinkles in the foamed skin and the overall dimensional instability of the foamed material, which seriously affects the subsequent foaming of the thermoplastic elastomer. use.
  • the object of the present invention is to provide a method for preparing a color TPU foaming material, which uses a clean, low-cost, environment-friendly high-pressure CO 2 fluid as a physical foaming agent, through continuous melt extrusion granulation/casting, high-pressure fluid impregnation, Dissolution balance, primary heating foaming, secondary heating foaming, pressure-carrying treatment, etc., preparation of small shrinkage, smooth outer surface, regular shape, cell structure is 100% closed cell, cell size is less than 100 ⁇ m, pigment is in the hair A color TPU foamed particle material and a color TPU foamed sheet material which are uniformly distributed inside and outside the foam material.
  • the foamed particle forming machine is used to form a bond between the foamed particles by steam heating to obtain a color TPU foamed particle molded body material, which has low density, low shrinkage, good appearance of the molded body, and beads. The interface is well bonded and so on.
  • the color TPU foamed sheet can be cut by a rubber sponge trowel. Since the prepared color TPU has small foaming size and uniform distribution of the pigment inside and outside the foamed material, the prepared color TPU slab has uniform texture and color distribution. Evenly.
  • the molding process can be used to plastically deform the color TPU foamed sheet by hot pressing to prepare a TPU foamed part with complicated shape.
  • the prepared color TPU foamed particle molded body, colored TPU foamed sheet, and color TPU foamed molded part can be applied to the field of sports shoes and shoes.
  • TPU is a type of thermoplastic elastomer material synthesized from polyisocyanate, polyester polyol or polyether polyol, chain extender, and the like.
  • polyisocyanates There are many varieties of polyisocyanates, but only two of them have the largest yield, namely diphenylmethane diisocyanate (MDI) and toluene diisocyanate (TDI).
  • MDI diphenylmethane diisocyanate
  • TDI toluene diisocyanate
  • polyols mainly including polyester polyols, polyether polyols, polycarbonate polyols, polyolefin polyols, polyacrylate polyols and the like.
  • a diol such as butanediol, ethylene glycol, propylene glycol or the like is a chain extender.
  • TPU resins available on the market, different hardness, different melt flow index, different chemical structures, different physical properties, etc.,
  • the so-called pigment is the substance that makes the substance color. Pigments display color because they reflect or absorb the color of visible light at certain wavelengths. Pigments are mainly classified into organic pigments and inorganic pigments. Inorganic pigments are generally mineral materials, and organic pigments are generally derived from plants, marine animals, or organically synthesized. It is known that TPU resins are mainly dyed using organic small molecule pigments. The processing temperature of the TPU resin is generally not lower than 180 ° C, which requires that the temperature resistance of the organic small molecule pigment generally exceeds 180 ° C. Inorganic pigments generally have high temperature resistance, but often contain heavy metals such as lead, mercury, chromium, and cadmium, and have environmental problems.
  • inorganic pigments have problems of insufficient dyeing.
  • Carbon black or organically modified carbon black is a black pigment commonly used in TPU resins. It does not contain heavy metals such as lead, mercury, chromium, and cadmium, and has no environmental problems.
  • Titanium dioxide or organically modified titanium dioxide is a white pigment commonly used in TPU resins. It does not contain heavy metals such as lead, mercury, chromium, and cadmium, and there are no environmental problems.
  • Organic pigments are generally small molecular substances, which are mainly present in the amorphous region of the polymer in the form of pigment molecules.
  • the size of the free volume of the polymer matrix, the characteristics of the pigment molecules, the degree of influence of the pigment on the water, etc. determine the organic The color migration behavior of the pigment.
  • An increase in temperature increases the size of the free volume of the polymer and increases the mobility of the pigment molecules, which are more susceptible to color migration at high ambient temperatures.
  • the high pressure fluid acts as a foaming agent for the TPU resin and has a strong plasticizing effect on the TPU matrix, which increases the mobility of the molecular chain of the TPU resin and also increases the ability of the organic pigment molecules to diffuse toward the interface.
  • Organic pigments generally tend to absorb water, and pigments in TPU resins are prone to interfacial migration in the case of boiling. The above reasons lead to a suspension process which is difficult to prepare a color TPU foam material having a uniform color distribution.
  • the research has found that pigment molecules do not undergo color migration in the presence of low temperature, high pressure fluid impregnation. It has been further found that the color TPU resin after low temperature and high pressure fluid immersion does not undergo significant color migration in a short time boiled or steamed cooking.
  • the color TPU foam material prepared by this method is inside and outside the cell structure. Has a uniform color distribution.
  • the TPU resin exists in a rubber state at a lower temperature, and the free volume size of the polymer is large.
  • the internal high-pressure fluid can rapidly diffuse out of the polymer matrix, and at the same time, the outside world The air begins to diffuse into the formed cell structure. Since the rate of outward diffusion of the high pressure fluid is much higher than the rate at which the outside air diffuses into the TPU cell structure, the pressure in the cell structure is lower than the atmospheric pressure outside the cell, forming a pressure difference.
  • the TPU resin is soft in the rubber matrix at normal temperature, and the TPU foaming material undergoes severe shrinkage and deformation under the action of the pressure difference, resulting in a large area of dent on the surface of the sample.
  • polymer foamed materials such as expandable polystyrene (EPS) and expanded polypropylene (EPP) to shrink during preparation. It is known to eliminate shrinkage of foamed materials by long-term curing and drying treatment. of.
  • EPS expandable polystyrene
  • EPP expanded polypropylene
  • the step of suppressing shrinkage of the TPU foaming material is generally carried out in a pressure tank or an autoclave. Due to the large volume of the pressure tank or autoclave, it is often easy to operate with high temperature air or high pressure nitrogen at room temperature. The study found that when the room temperature is 0 ⁇ 40 °C, the high pressure air load can effectively inhibit the uneven shrinkage of the TPU foaming material.
  • the object of the present invention is to provide a color TPU foaming material, especially a foaming material having a hardness of about A5 to 65, a density of 0.05 to 0.5 g/cm 3 and a cell size of less than 100 ⁇ m, which have a soft touch and good
  • the resilience, especially the color TPU foaming material, which has no wrinkles, is uniformly distributed inside and outside the foamed material, and can be applied to the shoe material.
  • the color TPU foaming material in the present invention comprises a color TPU foamed particulate material and a colored TPU foamed sheet material.
  • the pigment is a pigment of different chromaticity composed of three colors of red, yellow and blue, and a pigment of different chromaticity composed of red, yellow and blue having a fluorescent effect.
  • the pigment is an organic small molecule pigment and an inorganic pigment, preferably an organic small molecule pigment, wherein the organic small molecule pigment has a thermal stability higher than 180 °C.
  • the organic modified carbon black is preferably a pigment
  • titanium white powder is preferably a pigment
  • an organic modified carbon black is preferred.
  • the pigments have the same/near concentration in and out of the color TPU foam.
  • the content of the pigment in the TPU foaming material is 0.01 to 5 wt%, preferably 0.1 to 3 wt%, more preferably 0.2 to 2 wt%.
  • the invention relates to a method for preparing a color TPU foamed particle material, comprising the following steps:
  • the pigment is premixed with the TPU particles, and the pre-mixed particles are extruded through an extruder and granulated underwater to form colored TPU particles.
  • the color TPU particles are spherical and ellipsoidal, and the ratio of the major axis to the minor axis is 1 to 3, and the diameter of the minor axis is 0.5 to 5.0 mm.
  • the high pressure fluid is a CO 2 fluid.
  • the pressure of the high pressure fluid is 1 to 10 MPa
  • the temperature of the high pressure fluid is 0 to 60 ° C
  • the solubility of the high pressure fluid in the color TPU is 8 to 30 wt%.
  • the heating time of the water vapor is 1 to 60 s.
  • the pressure of the high-pressure air is 0.15 to 0.5 MPa, and the temperature of the high-pressure air is room temperature.
  • the pigment is premixed with the TPU particles, and the pre-mixed particles are granulated by an extruder and granulated underwater to form colored TPU particles.
  • TPU foaming particles B1 are heated in hot air to continue foaming to obtain colored TPU foaming particles B2', the hot air temperature is 100-140 ° C;
  • the colored TPU foaming particles B2' are placed in a closed container, and high-pressure air is introduced into the container to replace the high-pressure air in the outside and the high-pressure fluid in the colored TPU foaming particles, thereby obtaining a small degree of shrinkage and surface.
  • the color TPU particles are spherical and ellipsoidal, and the ratio of the major axis to the minor axis is 1 to 3, and the diameter of the minor axis is 0.5 to 5.0 mm.
  • the high pressure fluid is a CO 2 fluid.
  • the pressure of the high pressure fluid is 1 to 10 MPa
  • the temperature of the high pressure fluid is 0 to 60 ° C
  • the solubility of the high pressure fluid in the color TPU is 8 to 30 wt%.
  • the heating time of the water vapor is 1 to 60 s.
  • step 4 secondary foaming is performed by using hot air to obtain colored TPU foamed particles B2'.
  • the hot air treatment time is 1 to 60 s, and the hot air temperature is 100 to 140 °C.
  • the pressure of the high-pressure air or nitrogen is 0.15 to 0.5 MPa, and the temperature of the high-pressure air or nitrogen is room temperature.
  • the invention further relates to a method for preparing a colored TPU foamed particle shaped body.
  • EPS and EPP achieve foamed particle formation by means of water vapor, both of which can be carried out by a water vapor forming machine, which differ in that the latter requires a higher water vapor forming pressure than the former.
  • water vapor is a heating medium
  • EPS and EPP foamed particles are surface softened under water vapor heating, and the molecular chains on the surface of EPS and EPP foamed particles are interfacially diffused. Thereby, a bond is formed between the expanded particles.
  • Our research has found that it is possible to use EPP molding machine equipment to prepare colored TPU foamed particle molding materials.
  • the steam forming of colored TPU foamed particles comprises the following steps:
  • the colored TPU foamed particles are injected into a mold of an expanded particle molding machine, and a colored thermoplastic expanded particle molded body is obtained by steam heating treatment, cooling with cold water, drainage, air cooling, and demolding.
  • the water vapor heating time is 10 to 60 s, and the water vapor temperature is 120 to 149 ° C.
  • the color TPU foamed particle molding material may include one or more colors.
  • the colored TPU foaming material is a molded body material formed by steam forming of a mixture of TPU foaming particles of one or more colors, or a thermoplastic elastomer foaming particle composed of one or more colors.
  • the molded body material formed by steam forming is combined in a certain law.
  • the steam forming machine can realize a multi-hole and a single molding cycle, and the molding efficiency is high.
  • the color-rich and various forms of TPU foamed particle molding material can be prepared by steam forming technology, and the prepared material is suitable for preparing cushioning materials, and is particularly suitable for preparing sports shoes, casual shoes, sandals and slippers.
  • the color TPU foamed particle molding material has a hardness of about 5 to 65 and a density of 0.05 to 0.5 g/cm 3 .
  • the invention also relates to a method for preparing a color TPU foamed sheet material, comprising the following steps:
  • the color TPU foamed sheet has a thickness of 0.5 to 30 mm.
  • the hardness of the color TPU foamed sheet is Shao A5 ⁇ 65.
  • the cell structure of the colored TPU foamed sheet has a 100% closed cell structure and a cell size of less than 100 ⁇ m.
  • the high pressure fluid is a CO 2 fluid.
  • the high pressure fluid has a pressure of 1 to 10 MPa, the high pressure fluid has a temperature of 0 to 60 ° C, and the high pressure fluid has a solubility of 8 to 30 wt% in a color TPU sheet.
  • the heating time of the water bath is 1 to 60 s.
  • the pressure of the high-pressure air is 0.15 to 0.5 MPa, and the temperature of the high-pressure air is room temperature.
  • the invention further relates to a crepe sheet of a colored TPU foamed sheet.
  • the color TPU prepared by the invention has a cell structure of less than 100 ⁇ m and the pigment has a uniform dispersion inside and outside the foamed material, so that the obtained colored TPU foamed material has a good appearance and a uniform color distribution.
  • the color TPU foamed cymbal material is suitable for making insoles.
  • the color TPU foamed sheet has a thickness of 0.1 to 28 mm.
  • the invention further relates to compression molding of a colored TPU foamed sheet.
  • a process for shaping a foamed EVA by press molding involves plastic deformation of the EVA foam material under heat molding conditions and a cooling setting step to produce various types of shoe materials.
  • the color TPU foaming material is thermoplastic. Our research has found that the color TPU foaming material can be plastically deformed by heating and molding to make a shoe material.
  • the temperature of the press molding is 130 to 170 °C.
  • the method of the invention adopts the process of low temperature, high pressure CO 2 fluid impregnation and short time heating foaming, effectively prevents the interface migration of the pigment, and effectively suppresses the uneven shrinkage of the TPU foaming material by the technical means such as high pressure air carrying pressure, thereby A color TPU foaming material having a smooth surface and a small shrinkage mark with a small surface and a uniform expansion of the color inside the cell structure and having a small cell size is obtained.
  • the invention adopts high-pressure fluid as foaming agent, has environmental protection process, simple preparation process, strong operability and easy industrial production, and the prepared color TPU foamed particle molding material has low density, low shrinkage rate and good dimensional stability.
  • the color TPU foamed cymbal material has a smooth texture and uniform color distribution, and the obtained color TPU molded product has a clear and stable outer shape structure.
  • the color TPU foaming material prepared by the method of the invention not only has rich color matching, low density, soft touch, but also has the unique properties of TPU resin such as excellent resilience, low permanent deformation, excellent wear resistance and good Chemical stability, etc.
  • the colored TPU foamed material of the present invention can be used in the form of films, sheets, cushioning assemblies, soles, and other components for footwear.
  • a sole, an insole, and the like are preferred.
  • Example 1 is an optical schematic view of yellow TPU foamed particles prepared in Example 1.
  • Example 2 is an optical schematic view showing a cross section of the yellow TPU foamed particles prepared in Example 1.
  • Example 3 is a schematic electron micrograph of a cross section of the yellow TPU foamed particles prepared in Example 1.
  • Fig. 5 is an optical schematic view of the yellow TPU foamed particles prepared in Comparative Example 3.
  • Fig. 6 is an optical schematic view of a yellow TPU expanded particle shaped body prepared in Example 5.
  • Fig. 7 is an optical schematic view of a yellow/white mixed TPU expanded particle molded body prepared in Example 6.
  • Figure 8 is an optical schematic view of a color TPU foamed disc prepared in Embodiment 7.
  • the TPU particles (produced by Ningbo Jinsui Co., Ltd.) were dry-mixed with 1% by weight of yellow organic pigment (Yongkang Huang HR), extruded through an extruder, and granulated underwater to form an ellipsoid with a diameter of 2 mm and a length to diameter ratio of 1.5. Spherical TPU particles. The granules were placed in an autoclave, and the TPU particles were impregnated with a low temperature, high pressure CO 2 fluid to achieve a dissolution equilibrium of the high pressure CO 2 fluid in the TPU resin particles. The immersed TPU pellets are foamed in a water bath or steam to obtain yellow TPU foamed beads B1.
  • the TPU expanded particles B1 were placed at a temperature of room temperature in a high-pressure air to obtain a yellow TPU expanded particle B2.
  • Table 1 shows the relevant process parameters in Example 1. Studies have shown that the obtained yellow TPU foamed particles have a density of 0.18 g/cm 3 and a hardness of Shao A15. As shown in Fig. 1, the obtained yellow TPU foamed particles were in the form of a single ellipsoid, and the surface was smooth and no obvious shrinkage marks were found. As shown in Fig. 2, the obtained yellow TPU foamed particles had a 100% closed cell structure and an average cell size of 15 ⁇ m. As shown in Fig. 3, the interface cross section of the obtained yellow TPU foamed particles was also yellow, and the yellow pigment was uniformly distributed inside and outside the material.
  • the final operation of the yellow TPU foamed particles obtained in the same manner as in Example 1 except that the TPU foamed particles were not subjected to the pressure-carrying treatment was 0.45 g/cm 3 .
  • the surface of the prepared TPU foamed particles showed significant wrinkles and large-area depressions.
  • Color TPU foamed particles were prepared by the process of CN10229709A.
  • the yellow TPU particles were placed in an autoclave at a temperature of 120 ° C, and the TPU particles were impregnated with a high pressure CO 2 fluid having a pressure of 8 MPa for 1 h, 2 h, 3 h, 4 h, 6 h, and 12 h, respectively, and then rapidly depressurized to obtain TPU foam. material.
  • the obtained TPU foaming material was an irregular block or sheet, and it was not possible to distinguish a single TPU foaming particle, and it was observed that a large-sized cell structure appeared on the surface of the sample.
  • the irregular TPU foam obtained by immersion treatment in 1h, 2h, 3h and 4h was light yellow, and the density was 0.52, 0.54, 0.48, 0.45g/cm 3 respectively.
  • the regular TPU foam was dark yellow, indicating that the TPU resin may be chemically degraded, and the obtained TPU foam had a density of 0.61 g/cm 3 .
  • Color TPU foamed particles were prepared with reference to WO2005/066250, WO2007/082838, WO2010/136398.
  • the yellow TPU pellets and dispersant were placed in a stirred water bath autoclave, and the yellow TPU pellets were suspended in a water bath at a water bath temperature of 120 °C.
  • the 20 parts by weight of butane was used as a foaming agent, and the yellow TPU particles were respectively impregnated for 1 h, 2 h, 3 h, and 4 h under stirring, and then rapidly depressurized to obtain a TPU foamed particle material.
  • the TPU foaming particles obtained by the immersion treatment in 1h and 2h are all pale yellow with a color unevenness and the density is 0.20g/cm 3 ; the TPU foaming particles obtained after the immersion treatment for 3h and 4h are not colored.
  • a uniform dark yellow color indicates that the TPU resin may be chemically degraded, and the obtained TPU foam has a density of 0.18 g/cm 3 .
  • Color TPU foamed particles were prepared with reference to CN103642200A.
  • the yellow TPU particles and the dispersing agent were placed in a stirred water bath autoclave, and the yellow TPU particles were suspended in a water bath at a water bath temperature of 120 degrees.
  • the yellow TPU particles were respectively impregnated with a pressure of 8 MPa of high pressure CO 2 fluid blowing agent for 1 h, 2 h, 3 h, 4 h under stirring, and then rapidly depressurized to obtain a TPU foamed particle material.
  • the TPU foaming particles obtained by immersion treatment in 1h and 2h were light yellow with uneven color and the density was 0.47g/cm 3 ; the TPU foaming particles obtained after 3h and 4h immersion treatment were dark yellow with uneven color.
  • the TPU resin may undergo chemical degradation, and the obtained TPU foam has a density of 0.51 g/cm 3 .
  • TPU foamed particle materials are all yellow TPU foamed particle materials with a smooth surface and no obvious shrinkage.
  • the slit foamed particles were observed to have a uniform pigment distribution inside and outside the colored TPU foamed particles. The specific data is shown in Table 1.
  • TPU foaming materials are all yellow TPU foaming particle materials with smooth surface and no obvious shrinkage.
  • the slit foamed particles were observed to have a uniform pigment distribution inside and outside the colored TPU foamed particles.
  • the specific data is shown in Table 2.
  • the TPU foamed particles B1' are further subjected to hot air foaming for 30 s, the hot air temperature is 100-140 ° C, and B2' is obtained, and B3' is obtained after high-pressure air-carrying,
  • the other operations are the same as in the first embodiment.
  • the obtained TPU foamed particle materials are all yellow TPU foamed particle materials with a smooth surface and no obvious shrinkage.
  • the slit foamed particles were observed to have a uniform pigment distribution inside and outside the colored TPU foamed particles. The specific data is shown in Table 3.
  • the yellow TPU foamed particles B2 or B3' are injected into the shoe mold of the EPP foaming particle forming machine, the mold is closed, and the mold is heated by introducing steam into the mold, and the mold is cooled by cold water, drained, blown, and opened.
  • a yellow TPU foamed particle molded body sole is obtained.
  • the temperature of the water vapor is 138 degrees, and the heating time of the water vapor is 40 seconds.
  • the interface of the yellow TPU foamed particle molding material was well bonded, and the pigment was uniformly distributed on the surface of the molded body.
  • the test showed that the average density of the yellow TPU foamed particle molded sole was 0.29 g/cm 3 and the hardness was Shao A42.
  • TPU pellets manufactured by Dow Chemical Company, USA
  • 1 wt% of the pigment were dry-blended, extruded through an extruder, and molded into a color TPU sheet having a thickness of 2 mm, and cut into discs having a diameter of 20 mm.
  • the color TPU wafer was placed in an autoclave, and the TPU particles were impregnated with a low temperature, high pressure CO 2 fluid to achieve a dissolution equilibrium of the high pressure CO 2 fluid in the TPU resin particles.
  • the impregnated TPU pellets were foamed in a water bath to obtain yellow TPU foamed beads B1.
  • the TPU foamed disc B1 was placed at a temperature of room temperature in a high-pressure air to obtain a yellow TPU foamed disc B2.
  • the content of titanium dioxide was 3 wt%, and other process parameters were the same as in Example 1.
  • Figure 8 is an optical photograph of a color TPU foamed material prepared by adding titanium dioxide, carbon black, indigo, fast red, permanent yellow pigment, and fluorescent green. As shown in Fig. 8, the obtained TPU foamed materials had no obvious shrinkage marks. The slit foamed particles were observed to have a uniform pigment distribution inside and outside the colored TPU foamed particles. Table 4 shows the performance specifications of the color TPU wafer.
  • TPU foaming materials are all white TPU foamed particulate materials with a smooth surface and no obvious shrinkage.
  • the TPU foamed sheet obtained in Comparative Example 5 was darker in color than the TPU foamed sheet to which Titanium Dioxide was added in Example 7.
  • Example 7 The operation was the same as in Example 7 except that the thickness of the yellow TPU cast sheet was 15 mm.
  • the obtained yellow TPU foamed sheet had a thickness of 30 mm. Further, the obtained TPU foamed material has no obvious shrinkage marks, and the colored TPU foamed sheet has a uniform pigment distribution inside and outside.
  • a yellow TPU foamed sheet having a hardness of Shao A20 and a thickness of 30 mm was cut with a trowel for a rubber sponge to prepare ruthenium sheets having thicknesses of 0.2, 0.5, 1, 2, 5, and 10 mm, respectively.
  • the obtained yellow TPU foamed crepe has a uniform appearance color and a smooth and smooth texture.
  • a yellow TPU foamed sheet having a thickness of 8 mm was placed in a shoe mold at a temperature of 155 ° C, and the mold was hot pressed, water-cooled, and opened to obtain a yellow TPU foam insole.
  • the obtained yellow TPU foamed shoe material is bright and uniform in texture without obvious shrinkage marks.
  • a trapezoidal fluorescent cyan foamed sheet having a thickness of 10 mm and a thickness of 3 mm was placed in a shoe mold at a temperature of 175 ° C, and the mold was hot pressed, water-cooled, and opened to obtain a fluorescent blue TPU foaming sports midsole. .
  • the fluorescent blue TPU foamed shoe material has a bright color and uniform texture without obvious shrinkage marks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Inorganic Chemistry (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

本发明公开一种彩色TPU发泡材料、制备方法、用途以及利用该材料制备成型体、薄片、鞋材的方法,该彩色TPU发泡材料,由彩色发泡粒子或彩色发泡片材组成,所述彩色发泡粒子或彩色发泡片材中颜料的浓度为0.01~5wt%,所述颜料在彩色TPU发泡材料内外具有相同的浓度,所述彩色TPU发泡材料的硬度为邵A5-65、密度为0.05-0.5g/cm3、平均泡孔尺寸小于100μm。本发明具有颜色内外均匀度好、表面不存在褶皱等特点。

Description

彩色TPU发泡材料、制备方法、用途以及利用该材料制备成型体、薄片、鞋材的方法 技术领域
本发明涉及一种高压流体物理发泡制备低密度彩色热塑性聚氨酯(TPU)发泡材料的方法,通过短时间加热低温、高压流体浸渍后的彩色TPU树脂,降低有机小分子颜料的界面迁移,以获得颜料在泡孔结构内外均匀分散的彩色TPU发泡材料,以及一种通过高压气体载压工艺,降低TPU发泡材料泡孔结构内外的压力差,从而抑制彩色TPU发泡材料的不均匀收缩,以获得表面光洁、表皮没有明显褶皱的低密度彩色TPU发泡材料。本发明涉及TPU发泡粒子水蒸气成型和TPU发泡片材劈切、模压成型的方法,以使所制备的彩色TPU发泡材料应用于鞋材领域。
背景技术
乙烯-醋酸乙烯共聚物(EVA)类聚合物发泡材料具有轻质、弹性等特点而用于制作运动鞋的鞋垫、中底以及外底。彩色EVA发泡材料赋予运动鞋丰富的颜色搭配以及良好的设计能力。制备彩色EVA发泡鞋材的工艺已经公开。一种方法是把颜料与EVA颗粒、助剂、填料、发泡剂、交联剂等低温高混、开炼、挤出造粒,颗粒料在模具中加热发泡和/或二次模具定型,从而制备彩色EVA发泡鞋材。另一种方法是把颜料复合入EVA发泡体系,通过注塑发泡工艺一次成型成彩色EVA发泡鞋材,尤其是EVA发泡凉鞋。
用于制备EVA发泡鞋材的EVA树脂为热塑性,可以通过熔融加工的方式来制备成所需形状。不过,EVA树脂发泡时需要进行化学交联。具有交联结构的EVA发泡树脂是一个大分子,这种材料不能进行熔融加工,这导致EVA树脂在发泡后就丧失了熔融回收能力。另外,EVA树脂发泡通常采用化学发泡方式进行,化学发泡过程产生有毒有害气体,化学发泡剂分解不完全导致材料生产过程不环保,材料性能不稳定。
热塑性聚氨酯(TPU)拥有高耐磨、高弹性、抗疲劳、耐化学腐蚀等诸多优点而广泛应用于鞋材。以TPU为基材制备的彩色低密度发泡材料有望替代EVA材料发泡材料应用于高性能鞋材领域。
现有技术不能制备具有颜色鲜艳丰富的、颜色在材料内外分布均匀的、密度为0.05-0.5g/cm3的、泡孔结构均匀且尺寸小于100μm的、表面光洁而没有明显收缩皱褶的TPU发泡材料。
采用化学发泡剂制备TPU发泡材料的方法是已知的。在TPU化学发泡体系中加入合适的颜料可以赋予TPU发泡材料各种颜色,但与EVA树脂发泡材料存在相似的问题,如制备过程不环保和需要化学交联的问题等。除此之外,采用化学发泡剂制备的TPU发泡材料还存在泡孔结构粗糙、密度大、膨胀倍率低的问题。
为了消除该缺陷,专利文献WO2000/44821A、WO2004/108811A公开了可膨胀微球制备TPU发泡材料的方法。该方法将粉末、颗粒形式的TPU与可膨胀微球混合、熔融加工制备TPU发泡材料。所用的可膨胀微球是包裹有低沸点溶剂(如戊烷)的粘合剂或腊或热塑性塑料丸粒,可膨胀微球中的低沸点溶剂在TPU加工过程中热分解成气核,气核增长形成了泡孔结构。可膨胀微球的尺寸在一般为20-40μm,它在TPU熔融混合加工时不易均匀分散,高含量可膨胀微球的加入易于导致不均匀大孔结构的形成。对于密度为0.3-1.0g/cm3的TPU发泡材料,可以观察到样品表面出现可见的凹陷,同时,这种发泡材料的耐磨性能差。通过把颜料混入可膨胀微球发泡TPU体系,应可以制备彩色的TPU发泡材料,但所制备的低密度TPU发泡材料同样存在泡孔尺寸过大、样品表面出现凹陷、耐磨性能差的问题,其次,所制备的低密度TPU发泡材料存在颜色不够鲜艳的问题。
专利文献WO2005/066250A、WO2007/082838A、WO2010/136398A和CN103642200A描述了以有机溶剂或者惰性气体为物理发泡剂,通过悬浮工艺制备TPU发泡材料的方法。所制备TPU发泡材料的泡孔小且分布均匀,密度可以低至0.1-0.5g/cm3,这解决了可膨胀微球技术制备TPU发泡材料中存在的问题。不过,该方法涉及将TPU颗粒在温度为100-150℃的水中煮0.5-10小时,TPU树脂特别是聚酯型TPU树脂易于水解这一事实是个问题,长时间水煮易导致TPU树脂发生化学降解和黄变问题,影响了TPU发泡材料的性能和后续使用。更为重要的是,TPU树脂常用的颜料主要为有机小分子物质,有机小分子物质在高压发泡剂塑化、高温长时间水煮的环境下很容易发生界面迁移,存在颜料在发泡材料内外分布不均匀和发泡材料表面颜色褪色等问题。
专利文献WO2007/082838A公开了采用饱和的脂族烃为发泡剂,连续挤出水下造粒制备TPU发泡粒子的方法。所用的发泡剂存在环保问题和生产安全问题。其次,有机小分子颜料会显著增塑TPU基体,降低TPU熔体的粘度和熔体强度这一事实是个问题,导致TPU发泡材料的泡孔结构难于控制。另外,连续挤出发泡制备的TPU发泡材料存在开孔率高这一事实也是个问题,导致TPU发泡粒子在水蒸气成型过程出现收缩率高的问题。
高压流体如高压CO2流体是一种清洁、廉价、环境友好的物理发泡剂,根据需求,高压CO2流体可以为高压气体流体、高压液体流体和超临界流体。CO2的超临界状态可以在比较温和的条件下实现,如压力为7.31MPa,温度为31.0℃。
专利文献WO2002/4628A描述了以高压流体或者超临界流体为发泡剂制备高密度TPU发泡材料的方法。该方法制备的TPU发泡材料的硬度不低于90,密度为0.5-1.0g/cm3,所制备的TPU发泡材料主要用于半导体晶圆的抛光垫,而不适用于运动鞋的缓冲鞋材。
专利文献CN102229709A描述了以超临界CO2为发泡剂,采用模压发泡工艺制备TPU发泡材料的方法。该方法所用的超临界流体的压力为5-25MPa,超临界流体的温度为100-250℃,超临界流体的处理时间为1-60分钟。这种技术原理上可以制备彩色的TPU发泡材料,但是,有机小分子颜料耐热性能差,在高温、高压的环境下易于发生界面迁移和挥发,导致发泡材料存在染色不均匀问题。另外,该技术所需要的压力过高,导致设备成本高昂以及生产安全问题。其次,该技术没有使用分散介质,TPU颗粒在高温、高压下容易变形、外表变粘,导致该技术不适于制备外表光洁、形状为球形或者椭球形的TPU发泡粒子。
国际文献(JournalofAppliedPolymerScience,2010,116,1994.;JournalofAppliedPolymerScience,2013,128,2245.)报道了以高压CO2流体为发泡剂制备热塑弹性体发泡材料的方法。该方法采用高压CO2流体、低温浸渍热塑弹性体树脂,通过水浴或者水蒸气加热使热塑弹性体实现发泡。不过,热塑弹性体的自由体积尺寸大,高压CO2流体在热塑弹性体发泡时会快速逃逸出聚合物基体,又由于热塑弹性体的质地柔软,材料在发泡时易发生严重的收缩(尺寸收缩高达40-50%)。这种严重收缩的发生不但会显著增加热塑弹性体发泡材料的密度,也会导致发泡材料表皮出现明显褶皱以及发泡材料整体尺寸不稳定,严重影响热塑弹性体发泡材料的后续使用。
发明内容
本发明的目的是提供一种彩色TPU发泡材料的制备方法,选用清洁、廉价、环境友好的高压CO2流体为物理发泡剂,通过连续熔融挤出造粒/铸片、高压流体浸渍、溶解平衡、一次加热发泡、二次加热发泡、载压处理等工艺,制备收缩程度小、外表面光洁、外形规整、泡孔结构为100%闭孔、泡孔尺寸小于100μm、颜料在发泡材料内外分布均匀的彩色TPU发泡粒子材料和彩色TPU发泡片材材料。采用发泡粒子成型机,通过水蒸气加热使发泡粒子之间形成粘结,制得彩色TPU发泡粒子成型体材料,该成型体具有密度低、收缩程度低、成型体外观良好、珠粒界面粘结良好等特点。采用橡胶海绵劈刀,可以对彩色TPU发泡片材进行劈切,由于所制备的彩色TPU发泡尺寸小、颜料在发泡材料内外分布均匀,所制备的彩色TPU劈片质地均匀、颜色分布均匀。采用模压工艺,通过热压可以使彩色TPU发泡片材发生塑性变形,制备形状复杂的TPU发泡制件。所制备的彩色TPU发泡粒子成型体、彩色TPU发泡劈片、彩色TPU发泡模塑件可以应用于运动鞋鞋材领域。
TPU是由多异氰酸酯、聚酯多元醇或者聚醚多元醇、扩链剂等合成的一类热塑弹性体材料。多异氰酸酯的品种很多,但产量最大的只有两种,即二苯基甲烷二异氰酸酯(MDI)和甲苯二异氰酸酯(TDI)。多元醇的种类繁多,主要包括聚酯多元醇、聚醚多元醇、聚碳酸脂多元醇、聚烯烃多元醇、聚丙烯酸酯多元醇等。二醇如丁二醇、乙二醇、丙二醇等为扩链剂。目前,市场上可以提供的TPU树脂种类很多,不同硬度、不同熔融流动指数、不同化学结构、不同物性等等,这为制备合适的彩色TPU发泡材料提供了便利。
根据***,所谓颜料就是使物质染上颜色的物质。颜料之所以会显示颜色,在于它们能反射或者吸收某些波长的可见光的颜色。颜料主要分为有机颜料和无机颜料。无机颜料一般是矿物性物质,有机颜料一般取自植物、海洋动物、或者有机合成。TPU树脂主要使用有机小分子颜料来染色是已知的。TPU树脂的加工温度一般不低于180℃,这要求有机小分子颜料的耐温性一般要超过180℃。无机颜料一般具有很高的耐温性,但往往含有铅、汞、铬、镉等重金属,存在环保问题,其次无机颜料存在染色不够鲜亮的问题。碳黑或者有机修饰的碳黑是TPU树脂常用的黑色颜料,它不含有铅、汞、铬、镉等重金属,不存在环保问题。钛白粉或者有机修饰的钛白粉是TPU树脂常用的白色颜料,它不含有铅、汞、铬、镉等重金属,也不存在环保问题。
有机颜料一般为小分子物质,它主要以颜料分子的形式存在于聚合物非晶区域中,聚合物基体自由体积尺寸的大小、颜料分子的特性、颜料受水作用的影响程度等等决定了有机颜料的色迁移行为。温度升高会增加聚合物自由体积的尺寸和提高颜料分子的运动能力,有机颜料分子在高的环境温度下更易于发生颜色迁移。高压流体作为TPU树脂的发泡剂对TPU基体有强烈的塑化作用,这增加了TPU树脂分子链的活动能力,也增加了有机颜料分子向界面扩散的能力。有机颜料一般易于吸水,TPU树脂中的颜料在水煮的情况下易于发生界面迁移。上述原因导致悬浮工艺难于制备颜色分布均匀的彩色TPU发泡材料。
我们的研究发现,颜料分子在低温、高压流体浸渍的情况下不会发生颜色迁移。进一步地发现,低温、高压流体浸渍后的彩色TPU树脂在短时间水煮或者水蒸气蒸煮的情况下也不会发生明显的颜色迁移,这种方法制备的彩色TPU发泡材料在泡孔结构内外具有均匀的颜色分布。
TPU树脂在较低的温度下以橡胶态存在,聚合物的自由体积尺寸大,高压流体浸渍后的TPU在受热发泡时,内部的高压流体能够快速扩散出聚合物基体,与此同时,外界的空气开始扩散到所形成的泡孔结构中。由于高压流体向外扩散的速度远高于外界空气向TPU泡孔结构中扩散的速度,从而使泡孔结构中的压力低于泡孔外的大气压,形成压力差。TPU树脂在常温下处于橡胶态基体偏软,压力差的作用下引起TPU发泡材料发生严重地收缩变形,导致样品表面出现大面积的凹痕。聚合物发泡材料如可膨胀聚苯乙烯(EPS)、膨胀聚丙烯(EPP)在制备时发生收缩是常见的,通过长时间熟化、烘干处理的方法来消除发泡材料的收缩是已知的。不过,研究发现,TPU发泡材料表面一旦出现严重凹痕,长时间熟化、烘干处理的方法均不能有效消除TPU发泡材料的收缩痕。本研究惊奇的发现,通过向膨胀后还没有发生收缩的TPU材料中通入高压空气或者高压氮气的方法可以有效抑制TPU发泡材料的不均匀收缩,制得的TPU发泡材料表面光洁、没有明显的收缩痕。
抑制TPU发泡材料收缩的步骤一般在压力罐或者压力釜中进行。由于压力罐或者压力釜的体积大,采用温度为室温的高压空气或者高压氮气往往是便于操作的。研究发现,当室温为0~40℃时,高压空气载压均可以有效地抑制TPU发泡材料的不均匀收缩。
本发明的目的是提供彩色TPU发泡材料,尤其是发泡材料的硬度为邵A5~65,密度为0.05~0.5g/cm3,泡孔尺寸小于100μm的那些,它们具有柔软的触感和良好的回弹性,尤其是表观光洁没有褶皱、颜料在发泡材料内外分布均匀且可以应用于鞋材的彩色TPU发泡材料。
本发明中的彩色TPU发泡材料包括彩色TPU发泡粒子材料和彩色TPU发泡片材材料。
所述的颜料是含有红、黄、蓝三色构成的不同色度的颜料以及具有荧光效果的由红、黄、蓝三色构成的不同色度的颜料。
所述的颜料为有机小分子颜料和无机颜料,优选为有机小分子颜料,其中有机小分子颜料的热稳定性高于180℃。
所述的颜料为黑色时,优选碳黑做为颜料,如果必要,优选有机修饰的碳黑为颜料;所述的颜料为白色时,优选钛白粉为颜料,如果必要,优选有机修饰的碳黑为颜料。
所述的颜料在彩色TPU发泡材料内外具有相同/相近的浓度。
所述的颜料在TPU发泡材料中的含量为0.01~5wt%,优选为0.1~3wt%,更优选为0.2~2wt%。
本发明涉及一种彩色TPU发泡粒子材料的制备方法,包括以下步骤:
1)将颜料与TPU颗粒预混,再将预混后的颗粒经挤出机挤出、水下造粒制成彩色TPU颗粒。
2)将彩色TPU颗粒在高压流体中浸渍,使高压流体在彩色TPU基体中达到溶解平衡;
3)将高压流体溶解平衡后的彩色TPU颗粒置于水浴或者水蒸气中加热发泡,得到彩色TPU发泡粒子B1;
4)将彩色TPU发泡粒子B1置入封闭容器中,并向容器中通入高压空气或者高压氮气,使外界的高压空气或者氮气与彩色TPU发泡粒子中的高压流体发生置换,制得收缩均匀、表面光洁的彩色TPU发泡粒子B2;
所述的彩色TPU颗粒为球形和椭球形,长轴和短轴方向的比值为1~3,其中短轴的直径为0.5~5.0mm。
步骤2)中,所述的高压流体为CO2流体。所述的高压流体的压力为1~10MPa,所述高压流体的温度为0~60℃,所述高压流体在彩色TPU中的溶解度为8~30wt%。
步骤3)中,所述水蒸气的加热时间为1~60s。
由于空气中75%的成份为氮气,研究发现,在彩色TPU发泡材料中载入高压空气或者高压氮气具有相似的效果,考虑到操作成本,优选高压空气。步骤4)中,所述高压空气的压力为0.15~0.5MPa,高压空气的温度为室温。
为了得到膨胀倍率更高的彩色TPU发泡粒子材料,还可以通过二次加热发泡的方法来实施,包括如下步骤:
1)将颜料与TPU颗粒预混,再将预混后的颗粒经挤出机造粒、水下造粒制成彩色TPU颗粒。
2)将彩色TPU颗粒在高压流体中浸渍,使高压流体在彩色TPU基体中达到溶解平衡;
3)将高压流体溶解平衡后的彩色TPU颗粒置于水浴或者水蒸气下加热发泡,得到彩色TPU发泡粒子B1';
4)将TPU发泡粒子B1置于热空气中加热,使之继续发泡得到彩色TPU发泡粒子B2',该热空气的温度为100-140℃;
5)将彩色TPU发泡粒子B2'置入封闭容器中,并向容器中通入高压空气,使外界的高压空气与彩色TPU发泡粒子中的高压流体发生置换,制得收缩程度小、表面光洁的彩色TPU发泡粒子B3';
所述的彩色TPU颗粒为球形和椭球形,长轴和短轴方向的比值为1~3,其中短轴的直径为0.5~5.0mm。
步骤2)中,所述的高压流体为CO2流体。所述的高压流体的压力为1~10MPa,所述高压流体的温度为0~60℃,所述高压流体在彩色TPU中的溶解度为8~30wt%。
步骤3)中,所述水蒸气的加热时间为1~60s。
步骤4)中,采用热空气进行二次发泡,得到彩色TPU发泡粒子B2',所述热空气处理时间为1~60s,该热空气的温度为100-140℃。
由于空气中75%的成份为氮气,研究发现,在彩色TPU发泡材料中载入高压空气或者高压氮气具有相似的效果,考虑到操作成本,优选高压空气。步骤4)中,所述高压空气或者氮气的压力为0.15~0.5MPa,高压空气或者氮气的温度为室温。
本发明还涉及一种彩色TPU发泡粒子成型体的制备方法。
EPS、EPP通过水蒸气来实现发泡粒子成型是已知的,均可以通过水蒸气成型机来实施,它们的不同在于后者比前者需要更高的水蒸气成型压力。EPS、EPP发泡粒子材料采用水蒸气成型机成型时,水蒸气是加热介质,EPS、EPP发泡粒子在水蒸气加热下发生表面软化,EPS、EPP发泡粒子表面的分子链发生界面扩散,从而在发泡粒子间形成粘结。我们的研究发现,采用EPP的成型机设备来制备彩色TPU发泡粒子成型体材料是可能的。彩色TPU发泡粒子的水蒸气成型包括以下步骤:
1)将彩色TPU发泡粒子注入发泡粒子成型机的模具中,采用水蒸气加热处理、经冷水冷却、排水、风冷、脱模后制得彩色热塑性发泡粒子成型体。
我们的研究发现,彩色TPU发泡粒子经高温水蒸气短时间加热不会导致颜色迁移,所制备的彩色TPU发泡粒子成型体材料具有均匀的颜色。
所述的水蒸气加热时间为10~60s,所述的水蒸气温度为120~149℃。
为了达到良好的产品设计效果,彩色TPU发泡粒子成型体材料可以包括一种或者多种颜色。所述的彩色TPU发泡材料是由一种或者多种颜色的TPU发泡粒子混合物经水蒸气成型制成的成型体材料,或者是由一种或者多种颜色的热塑弹性体发泡粒子以某种规律结合经水蒸气成型制成的成型体材料。
水蒸气成型机可以实现一模多穴而且单次成型周期短,成型效率很高。
可以通过水蒸气成型技术制备颜色丰富的、形式多样的TPU发泡粒子成型体材料,所制备的材料适于制备缓冲材料,尤其适于制备运动鞋、休闲鞋、凉鞋以及拖鞋的鞋材。
所述的彩色TPU发泡粒子成型体材料的硬度为邵A5~65,密度为0.05~0.5g/cm3
本发明还涉及一种彩色TPU发泡片材材料的制备方法,包括以下步骤:
1)将颜料与TPU树脂颗粒预混,再将预混后的颗粒经挤出机挤出、流延或者模压制成彩色TPU片材。
2)将彩色TPU片材在高压流体中浸渍,使高压流体在彩色TPU片材中达到溶解平衡;
3)将高压流体溶解平衡后的彩色TPU片材置于水浴中加热发泡,得到彩色TPU发泡片材B1'';
4)将彩色TPU发泡片材B1''置入封闭容器中,并向容器中通入高压空气,使外界的高压气体与彩色TPU发泡片材中的高压流体发生置换,制得收缩程度小、表面没有明显凹痕的彩色TPU发泡片材B2''。
所述的彩色TPU发泡片材的厚度为0.5~30mm。
所述的彩色TPU发泡片材的硬度为邵A5~65。
所述的彩色TPU发泡片材的泡孔结构为100%的闭孔结构,泡孔尺寸小于100μm。
步骤2)中,所述的高压流体为CO2流体。所述的高压流体的压力为1~10MPa,所述高压流体的温度为0~60℃,所述高压流体在彩色TPU片材中的溶解度为8~30wt%。
步骤3)中,所述水浴的加热时间为1~60s。
步骤4)中,所述高压空气的压力为0.15~0.5MPa,高压空气的温度为室温。
本发明进一步涉及彩色TPU发泡片材的劈片。
采用海绵劈刀对海绵进行劈片的技术是已知的。我们的研究发现,彩色TPU发泡片材的硬度为邵A5~65,非常合适采用海绵劈刀对其进行劈片加工。本发明制备的彩色TPU的泡孔结构小于100μm而且颜料在发泡材料内外具有均匀的分散,从而使获得的彩色TPU发泡材料劈片具有良好的外观和均匀的颜色分布。彩色TPU发泡劈片材料适于制做鞋垫。
所述的彩色TPU发泡劈片厚度为0.1~28mm。
本发明进一步涉及彩色TPU发泡片材的模压成型。
采用模压成型对一次发泡后的EVA进行定型的工艺是已知的,这个过程涉及EVA发泡材料在受热模压的条件下发生塑性变形以及冷却定型步骤,从而制成各种款式的鞋材。彩色TPU发泡材料为热塑性,我们的研究发现,通过加热模压的方法可以让彩色TPU发泡材料发生塑性变形,制成鞋材。
所述的模压成型的温度为130~170℃。
本发明具有如下优点:
本发明方法采用低温、高压CO2流体浸渍、短时间加热发泡的工艺,有效防止颜料的界面迁移,通过高压空气载压等技术手段,有效地抑制了TPU发泡材料的不均匀收缩,从而得到表面光洁没有明显收缩痕的、颜色在泡孔结构内外分布均匀的、膨胀程度高的、泡孔尺寸小的彩色TPU发泡材料。
本发明采用高压流体为发泡剂,生产过程环保、制备工艺简单、可操作性强、易于工业化生产,制备的彩色TPU发泡粒子成型体材料密度低、收缩率低、尺寸稳定性好,制备的彩色TPU发泡劈片材料质地平整、颜色分布均匀,制得的彩色TPU模压制品具有清晰稳定的外形结构。
本发明方法制备的彩色TPU发泡材料不仅具有丰富的色彩搭配、低的密度、柔软的触感,还具有TPU树脂特有的属性如优异的回弹性、低的永久形变、优异的耐磨性和良好的化学稳定性等。
作为实例,本发明的彩色TPU发泡材料可以以膜、片材、缓冲组件、鞋底及其他鞋用部件的形式使用。根据本发明,优选鞋底和鞋垫等。
在下列实施例中更详细地说明本发明。
附图说明
图1为实施例1中制备的黄色TPU发泡粒子的光学示意图。
图2为实施例1中制备的黄色TPU发泡粒子断面的光学示意图。
图3为实施例1中制备的黄色TPU发泡粒子断面的电镜示意图。
图4为对比实施例1中制备的黄色TPU发泡粒子的光学示意图。
图5为对比实施例3中制备的黄色TPU发泡粒子的光学示意图。
图6为实施例5中制备的黄色TPU发泡粒子成形体的光学示意图。
图7为实施例6中制备的黄色/白色混合TPU发泡粒子成形体的光学示意图。
图8为实施理7中制备的彩色TPU发泡圆片的光学示意图。
具体实施方式
为了进一步解释本发明的技术方案,下面通过具体实施例来对本发明进行详细阐述。
实施例1
将TPU颗粒(宁波金穗公司生产)与1wt%的黄色有机颜料(永固黄HR)干混,经挤出机挤出、水下造粒制成直径为2mm、长径比为1.5的椭球形TPU颗粒。将颗粒放入高压釜中,采用低温、高压CO2流体浸渍TPU颗粒,使高压CO2流体在TPU树脂颗粒中达到溶解平衡。将浸渍后的TPU颗粒放入水浴或者水蒸气中发泡,得到黄色TPU发泡粒子B1。将TPU发泡粒子B1放入温度为室温、高压空气中载压,得到黄色TPU发泡粒子B2。表1为实施例1中相关的工艺参数。研究表明,所得到的黄色TPU发泡粒子的密度为0.18g/cm3,硬度为邵A15。如图1所示,得到的黄色TPU发泡粒子为单个椭球状,表面光洁、没有发现明显的收缩痕。如图2所示,得到的黄色TPU发泡粒子为100%的闭孔结构,平均泡孔尺寸为15微米。如图3所示,得到的黄色TPU发泡粒子的界面断面也为黄色,并且黄色颜料在材料内外均匀分布。
对比实施例1
除了没有将TPU发泡粒子进行载压处理,其它操作同实施例1,制得的黄色TPU发泡粒子的最终密度为0.45g/cm3。如图4所示,所制备的TPU发泡粒子表面出现明显皱褶和大面积的凹陷。
对比实施例2
参考CN10229709A的工艺制备彩色TPU发泡粒子。将黄色TPU颗粒放入温度为120℃的高压釜中,通过压力为8MPa的高压CO2流体,浸渍TPU颗粒分别为1h、2h、3h、4h、6h、12h,然后快速卸压得到TPU发泡材料。所得到的TPU发泡材料为不规整的块状或者片状,不能分辨出单个TPU发泡粒子,同时观察到大尺寸的泡孔结构出现在样品的表面。其中1h、2h、3h、4h浸渍处理发泡得到的不规则TPU发泡体为浅黄色,密度分别为0.52、0.54、0.48、0.45g/cm3;其中6h、12h浸渍处理发泡得到的不规则TPU发泡体为暗黄色,说明TPU树脂可能发生化学降解,所得到的TPU发泡体的密度为0.61g/cm3
对比实施例3
参考WO2005/066250、WO2007/082838、WO2010/136398制备彩色TPU发泡粒子。将黄色TPU颗粒、分散剂放入搅拌的水浴高压釜中,使黄色TPU颗粒悬浮在水浴中,水浴温度为120℃。通过20wt%的丁烷为发泡剂,在搅拌的状态下分别浸渍黄色TPU颗粒1h、2h、3h、4h,然后快速卸压得到TPU发泡粒子材料。如图5所示,其中1h和2h浸渍处理得到的TPU发泡粒子均为颜色不均匀的浅黄色,密度为0.20g/cm3;3h、4h浸渍处理后的得到TPU发泡粒子为颜色不均匀的暗黄色,说明TPU树脂可能发生化学降解,所得到的TPU发泡体的密度为0.18g/cm3
对比实施例4
参考CN103642200A制备彩色TPU发泡粒子。将黄色TPU颗粒、分散剂放入搅拌的水浴高压釜中,使黄色TPU颗粒悬浮在水浴中,水浴温度为120度。通过压力为8MPa的高压CO2流体发泡剂,在搅拌的状态下分别浸渍黄色TPU颗粒1h、2h、3h、4h,然后快速卸压得到TPU发泡粒子材料。其中1h和2h浸渍处理得到的TPU发泡粒子均为颜色不均匀的浅黄色,密度为0.47g/cm3;3h、4h浸渍处理后的得到TPU发泡粒子为颜色不均匀的暗黄色,说明TPU树脂可能发生化学降解,所得到的TPU发泡体的密度为0.51g/cm3
实施例2
除了改变TPU树脂的来源(从宁波金穗、烟台万华、美国陶氏化学公司、德国拜尔公司购置)、造粒尺寸和操作工艺条件,其他操作同实施例1。得到的TPU发泡粒子材料均为表面光洁、没有明显收缩的黄色TPU发泡粒子材料。切口发泡粒子可以观察到彩色TPU发泡粒子内外具有均匀的颜料分布。具体数据见表1。
实施例3
除了改变黄色有机颜料的含量为0.1、0.5、1、2、5wt%,其他操作同实施例1。得到的TPU发泡材料均为表面光洁、没有明显收缩的黄色TPU发泡粒子材料。切口发泡粒子可以观察到彩色TPU发泡粒子内外具有均匀的颜料分布。具体数据见表2。
实施例4
除了把颜料的含量提高到3wt%,把TPU发泡粒子B1'继续进行热空气发泡30s,该热空气的温度为100-140℃,得到B2',高压空气载压后的得到B3',其他操作同实施例1。得到的TPU发泡粒子材料均为表面光洁、没有明显收缩的黄色TPU发泡粒子材料。切口发泡粒子可以观察到彩色TPU发泡粒子内外具有均匀的颜料分布。具体数据见表3。
实施例5
将黄色TPU发泡粒子B2或者B3'注入EPP发泡粒子成型机的鞋模中,关闭模具,向模具中通入水蒸气对模具进行加热,对模具进行冷水冷却、排水、吹风,打开模具,制得黄色TPU发泡粒子成型体鞋底。其中水蒸气的温度为138度,水蒸气的加热时间为40s。如图6所示,黄色TPU发泡粒子成型体材料界面粘结良好,颜料在成型体表面分布均匀。测试表明:黄色TPU发泡粒子成型体鞋底的平均密度为0.29g/cm3,硬度为邵A42。
实施例6
将20wt%黄色TPU发泡粒子与80wt%的红白相间TPU发泡粒子注入EPP发泡粒子成型机的鞋模中,关闭模具,向模具中通入水蒸气对模具进行加热,对模具进行冷水冷却、排水、吹风,打开模具,制得黄色TPU发泡粒子成型体鞋底。其中,其中水蒸气的温度为145度,水蒸气的加热时间为10s。如图7所示,混合色TPU发泡粒子成型体材料界面粘结良好,颜料在TPU发泡粒子中没有发生明显迁移。测试表明:混合色TPU发泡粒子成型体鞋底的密度为0.36g/cm3,硬度为邵A45。
实施例7
将TPU颗粒(美国陶氏化学公司生产)、1wt%的颜料干混,经挤出机挤出、模压制成厚度为2mm的彩色TPU片材,裁切成直径为20mm的圆片。将彩色TPU圆片放入高压釜中,采用低温、高压CO2流体浸渍TPU颗粒,使高压CO2流体在TPU树脂颗粒中达到溶解平衡。将浸渍后的TPU颗粒放入水浴中发泡,得到黄色TPU发泡粒子B1。将TPU发泡圆片B1放入温度为室温、高压空气中载压,得到黄色TPU发泡圆片B2。除了改变颜料的颜色的种类,钛白粉的含量为3wt%,其他工艺参数同实施例1。图8所示为添加钛白粉、碳黑、酞箐蓝、耐晒大红、永固黄颜料、荧光青制得的彩色TPU发泡材料的光学照片。如图8所示,得到的TPU发泡材料均没有明显的收缩痕。切口发泡粒子可以观察到彩色TPU发泡粒子内外具有均匀的颜料分布。表4所示为彩色TPU圆片的性能指标。
对比实施例5
除了没有添加颜料,其他操作同实施例7。得到的TPU发泡材料均为表面光洁、没有明显收缩的白色TPU发泡粒子材料。同实施例7中添加钛白粉的TPU发泡片材相比,对比实施例5得到的TPU发泡片材的颜色偏暗。
实施例8
除了黄色TPU流延片的厚度为15mm,其他操作同实施例7。得到的黄色TPU发泡片材的厚度为30mm。进一步地,得到的TPU发泡材料没有明显的收缩痕,彩色TPU发泡片材内外具有均匀的颜料分布。
实施例9
采用橡胶海绵用的劈刀,对硬度为邵A20、厚度为30mm的黄色TPU发泡片材进行劈切,制备厚度分别为0.2、0.5、1、2、5、10mm的劈片。得到的黄色TPU发泡劈片外观颜色均匀,质地光滑平整。
实施例10
将厚度为8mm的黄色TPU发泡片材放入温度为155℃的鞋垫模具中,合并模具热压、水冷模具、开模,制得黄色TPU发泡鞋垫。制得的黄色TPU发泡鞋材色彩鲜艳、质地均匀,没有明显的收缩痕。
实施例11
将上厚度为10mm,下厚度为3mm的梯形荧光青色发泡片材放入温度为175℃鞋模具中,合并模具热压、水冷模具、开模,制得荧光青色TPU发泡运动鞋中底。制得的荧光青色TPU发泡鞋材色彩鲜艳、质地均匀,没有明显的收缩痕。
表1.彩色TPU发泡粒子的制备工艺参数和性能指标
实施例 颗粒尺寸 浸渍条件 发泡时间 载压条件 密度 硬度 泡孔尺寸 颜色深浅程度
实施例1 2mm,1.5 5MPa/0℃ 30s 0.20MPa 0.21g/cm3 邵A21 26μm 适中
实施例2 1mm,1.5 3MPa/50℃ 60s 0.15MPa 0.32g/cm3 邵A32 18μm 适中
0.5mm,1 1MPa/50℃ 60s 0.15MPa 0.5g/cm3 邵A64 6μm 适中
2mm,3 10MPa/0℃ 20s 0.40MPa 0.09g/cm3 邵A7 72μm 偏浅
3mm,1.5 5MPa/30℃ 10s 0.50MPa 0.35g/cm3 邵A37 20μm 适中
4mm,1.5 8MPa/60℃ 5s 0.20MPa 0.28g/cm3 邵A29 30μm 适中
5mm,1.2 10MPa/60℃ 30s 0.20MPa 0.18g/cm3 邵A16 40μm 适中
表2.不同黄色颜料含量彩色TPU发泡粒子的性能指标
颜料的含量 密度 硬度 平均泡孔尺寸 颜色深浅程度
0.1wt% 0.22g/cm3 邵A20 17μm 偏浅
0.5wt% 0.20g/cm3 邵A17 18μm 适中
1wt% 0.18g/cm3 邵A15 15μm 适中
2wt% 0.16g/cm3 邵A14 14μm 适中
5wt% 0.12g/cm3 邵A10 12μm 偏深
表3.热空气二次发泡与否对TPU发泡粒子性能参数的影响
热空气发泡与否 密度 硬度 平均泡孔尺寸 颜色深浅程度
实施例1,没有 0.18g/cm3 邵A15 15μm 适中
实施例4,有 0.07g/cm3 邵A6 78μm 适中
表4.采用不同种类颜料制成彩色TPU发泡片材的参数
颜料的色彩 密度 硬度 平均泡孔尺寸 颜色深浅程度
永固黄HR 0.18g/cm3 邵A15 15μm 适中
永固橙RL 0.20g/cm3 邵A17 20μm 适中
耐晒大红2R 0.16g/cm3 邵A15 18μm 适中
酞菁蓝BGS 0.17g/cm3 邵A13 17μm 适中
荧光青LP-9002 0.19g/cm3 邵A13 17μm 适中
碳黑 0.21g/cm3 邵A21 20μm 适中
钛白粉 0.25g/cm3 邵A25 22μm 均匀的白色
无颜料添加 0.20g/cm3 邵A17 20μm 白色,偏暗
上述实施例和图式并非限定本发明的产品形态和式样,任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应视为不脱离本发明的专利范畴。

Claims (16)

1.彩色TPU发泡材料,其特征在于,所述彩色TPU发泡材料由彩色发泡粒子或彩色发泡片材组成,所述彩色发泡粒子或彩色发泡片材中颜料的浓度为0.01~5wt%,所述颜料在彩色TPU发泡材料内外具有相同的浓度,所述彩色TPU发泡材料的硬度为邵A5-65、密度为0.05-0.5g/cm3、平均泡孔尺寸小于100μm。
2.如权利要求1所述的彩色TPU发泡材料,其特征在于,所述彩色发泡粒子为球形或者椭球形,其中长轴和短轴方向的比值为1~3,其中短轴的尺寸为0.5~5.0mm。
3.如权利要求1所述的彩色TPU发泡材料,其特征在于,所述发泡片材的厚度为0.5~30mm。
4.如权利要求1所述的一种彩色TPU发泡材料,其特征在于,所述彩色发泡粒子或彩色发泡片材中颜料的浓度为0.1~3wt%。
5.如权利要求1所述的彩色TPU发泡材料,其特征在于,所述彩色发泡粒子或彩色发泡片材中颜料的浓度为0.2~2wt%。
6.如权利要求1所述的彩色TPU发泡材料,其特征在于,所述颜料为有机小分子颜料,该有机小分子颜料的热稳定性高于180℃。
7.如权利要求1所述的彩色TPU发泡材料,其特征在于,所述颜料为无机颜料,所述无机颜料为碳黑或钛白粉。
8.一种制备如权利要求1至7任意一项彩色TPU发泡材料的方法,其特征在于,包括如下步骤:
①将颜料与TPU颗粒预混,再将预混后的颗粒经挤出机挤出、水下造粒制成彩色TPU颗粒;
②将彩色TPU颗粒在高压流体中浸渍,使高压流体在彩色TPU基体中达到溶解平衡,该高压流体的压力为1~10MPa,温度为0~60℃;
③将高压流体溶解平衡后的彩色TPU颗粒置于水浴或者水蒸气中加热发泡,得到彩色TPU发泡粒子B1;
④将彩色TPU发泡粒子B1置入封闭容器中,并向容器中通入高压空气或者高压氮气,使外界的高压空气或者高压氮气与彩色TPU发泡粒子中的高压流体发生置换,制得收缩均匀、表面光洁的彩色TPU发泡粒子B2,所述高压空气或者高压氮气的压力为0.15~0.5MPa,温度为室温。
9.一种制备如权利要求1至7任意一项彩色TPU发泡材料的方法,其特征在于,包括如下步骤:
①将颜料与TPU颗粒预混,再将预混后的颗粒经挤出机挤出、水下造粒制成彩色TPU颗粒;
②将彩色TPU颗粒在高压流体中浸渍,使高压流体在彩色TPU基体中达到溶解平衡,该高压流体的压力为1~10MPa,温度为0~60℃;
③将高压流体溶解平衡后的彩色TPU颗粒置于水浴或者水蒸气中加热发泡,得到彩色TPU发泡粒子B1';
④将TPU发泡粒子B1'置于热空气中加热,使之继续发泡得到TPU发泡粒子B2',该热空气的温度为100-140℃;
⑤将彩色TPU发泡粒子B2'置入封闭容器中,并向容器中通入高压空气或者高压氮气,使外界的高压空气或者高压氮气与彩色TPU发泡粒子中的高压流体发生置换,制得收缩均匀、表面光洁的彩色TPU发泡粒子B3',所述高压空气或者高压氮气的压力为0.15~0.5MPa,温度为室温。
10.一种制备如权利要求1至7任意一项彩色TPU发泡材料的方法,其特征在于,包括如下步骤:
①将颜料与TPU颗粒预混,再将预混后的颗粒经挤出机挤出、流延或者模压制成彩色TPU片材;
②将彩色TPU片材在高压流体中浸渍,使高压流体在彩色TPU片材中达到溶解平衡,该高压流体的压力为1~10MPa,温度为0~60℃;
③将高压流体溶解平衡后的彩色TPU片材置于水浴或者水蒸气中加热发泡,得到彩色TPU发泡片材B1'';
④将彩色TPU发泡片材B1''置入封闭容器中,并向容器中通入高压空气或者高压氮气,使外界的高压空气或者高压氮气与彩色TPU发泡片材中的高压流体发生置换,制得收缩均匀、表面没有明显凹痕的彩色TPU发泡片材B2'',所述高压空气或者高压氮气的压力为0.15~0.5MPa,温度为室温。
11.如权利要求8、9或10所述的方法,其特征在于,所述高压流体采用CO2流体,所述高压流体在彩色TPU中的溶解度为8~30wt%。
12.一种利用权利要求1至7任一项所述彩色TPU发泡粒子制备成型体的方法,其特征在于,包括如下步骤:
①将彩色TPU发泡粒子注入发泡粒子成型机模具中,采用水蒸气加热处理、经冷水冷却、排水、风冷、脱模后制得彩色TPU发泡粒子成型体;所述的水蒸气加热时间为5~60s,所述的水蒸气温度为130~149℃。
13.如权利要求12所述的方法,其特征在于,所述彩色TPU发泡粒子采用至少两种颜色进行混合。
14.一种利用权利要求1至7任一项所述彩色TPU发泡片材制备薄片的方法,其特征在于,包括如下步骤:
①利用海绵劈刀将彩色TPU发泡材料劈成薄片。
15.一种利用权利要求1至7任一项所述彩色TPU发泡片材制备鞋材的方法,其特征在于,包括如下步骤:
①通过模压成型的方式让彩色TPU发泡片材产生塑性变形制成鞋材,模压成型的温度为130~170℃。
16.一种如权利要求1至7任一项所述彩色TPU发泡材料的用途,其特征在于,所述彩色TPU发泡材料应用于鞋材、安全头盔、汽车保险杠内芯、自行车轮胎和运动器材缓冲垫子领域。
PCT/CN2015/077763 2014-05-09 2015-04-29 彩色tpu发泡材料、制备方法、用途以及利用该材料制备成型体、薄片、鞋材的方法 WO2015169164A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/105,020 US10035894B2 (en) 2014-05-09 2015-04-29 Coloured TPU foam material, preparation method and use thereof, as well as method for preparing shaped body, sheet and shoe material by using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410196699.3 2014-05-09
CN201410196699.3A CN103951965B (zh) 2014-05-09 2014-05-09 彩色tpu发泡材料、制备方法、用途以及利用该材料制备成型体、薄片、鞋材的方法

Publications (1)

Publication Number Publication Date
WO2015169164A1 true WO2015169164A1 (zh) 2015-11-12

Family

ID=51329331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077763 WO2015169164A1 (zh) 2014-05-09 2015-04-29 彩色tpu发泡材料、制备方法、用途以及利用该材料制备成型体、薄片、鞋材的方法

Country Status (3)

Country Link
US (1) US10035894B2 (zh)
CN (2) CN103951965B (zh)
WO (1) WO2015169164A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018003316A1 (ja) 2016-06-29 2018-01-04 株式会社ジェイエスピー 熱可塑性ポリウレタン発泡粒子成形体及びその製造方法、並びに熱可塑性ポリウレタン発泡粒子
US20190112444A1 (en) * 2016-03-31 2019-04-18 Jsp Corporation Thermoplastic polyurethane foam particles
CN115232350A (zh) * 2022-04-01 2022-10-25 莆田市百合鞋业有限公司 一种制备低后收缩弹性体泡沫的方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD953709S1 (en) 1985-08-29 2022-06-07 Puma SE Shoe
USD855953S1 (en) 2017-09-14 2019-08-13 Puma SE Shoe sole element
DE102013002519B4 (de) 2013-02-13 2016-08-18 Adidas Ag Herstellungsverfahren für Dämpfungselemente für Sportbekleidung
CN103951965B (zh) * 2014-05-09 2015-04-01 晋江国盛新材料科技有限公司 彩色tpu发泡材料、制备方法、用途以及利用该材料制备成型体、薄片、鞋材的方法
CN104177816A (zh) * 2014-08-06 2014-12-03 金善花 一次成型的双色、双密度鞋底大底和鞋底中底的原料配方及制作工艺
CN104194030B (zh) * 2014-08-08 2015-05-27 汕头市新力新材料科技有限公司 一种热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN104287520A (zh) * 2014-10-01 2015-01-21 大连华工创新科技股份有限公司 Tpu软泡床垫
CN105539013B (zh) * 2014-10-28 2018-05-29 晋江国盛新材料科技有限公司 一种热塑性聚氨酯低载荷轮胎
KR101592794B1 (ko) * 2014-12-12 2016-02-12 현대자동차주식회사 크래쉬패드
CN104974370B (zh) * 2015-01-19 2017-05-31 常州市顺祥新材料科技有限公司 一种热塑性聚氨酯珠粒的制备方法及该珠粒成型工艺
DE102015202013B4 (de) 2015-02-05 2019-05-09 Adidas Ag Verfahren zur Herstellung eines Kunststoffformteils, Kunststoffformteil und Schuh
EP3114953A1 (en) * 2015-07-08 2017-01-11 Eurosuole S.P.A. Method of molding a vulcanized foam rubber sole for footwear and related sole of vulcanized foam rubber for footwear
JP2017179254A (ja) * 2016-03-31 2017-10-05 株式会社ジェイエスピー 熱可塑性ポリウレタン発泡粒子及び熱可塑性ポリウレタン発泡粒子成形体
CN108841033A (zh) * 2016-05-19 2018-11-20 晋江国盛新材料科技有限公司 一种用染色tpu发泡珠粒制成成型体的方法
CN105820370B (zh) * 2016-05-19 2019-03-05 晋江国盛新材料科技有限公司 一种tpu发泡珠粒成型体的上色方法
CN105968403B (zh) * 2016-05-19 2017-09-29 晋江国盛新材料科技有限公司 一种通过共成型来制备彩色tpu成型体的方法
DE102016209044B4 (de) 2016-05-24 2019-08-29 Adidas Ag Sohlenform zum Herstellen einer Sohle und Anordnung einer Vielzahl von Sohlenformen
DE102016209045B4 (de) 2016-05-24 2022-05-25 Adidas Ag Verfahren und vorrichtung zum automatischen herstellen von schuhsohlen, sohlen und schuhe
DE102016209046B4 (de) 2016-05-24 2019-08-08 Adidas Ag Verfahren zur herstellung einer schuhsohle, schuhsohle, schuh und vorgefertigte tpu-gegenstände
CN106496628A (zh) * 2016-11-15 2017-03-15 浙江环龙新材料科技有限公司 一种热塑性聚氨酯发泡薄膜的制备方法
RU2759926C2 (ru) * 2016-11-16 2021-11-18 ХАНТСМЭН ИНТЕРНЭШНЛ ЭлЭлСи Способ окрашивания и вспенивания термопластичного полиуретана
DE102016223980B4 (de) 2016-12-01 2022-09-22 Adidas Ag Verfahren zur Herstellung eines Kunststoffformteils
US10441026B2 (en) * 2017-01-06 2019-10-15 Under Armour, Inc. Components for articles and methods of making components from embroidered beads
US11350695B2 (en) 2017-01-06 2022-06-07 Under Armour, Inc. Components for articles and methods of making components from embroidered beads
USD850766S1 (en) 2017-01-17 2019-06-11 Puma SE Shoe sole element
DE102017205830B4 (de) 2017-04-05 2020-09-24 Adidas Ag Verfahren für die Nachbehandlung einer Vielzahl einzelner expandierter Partikel für die Herstellung mindestens eines Teils eines gegossenen Sportartikels, Sportartikel und Sportschuh
CN107417936A (zh) * 2017-07-18 2017-12-01 晋江创赢新材料科技有限公司 一种原位染色tpu发泡珠粒的加工方法
CN107501592A (zh) * 2017-07-18 2017-12-22 晋江创赢新材料科技有限公司 一种彩色tpu发泡珠粒的制备方法
CN107599292A (zh) * 2017-08-25 2018-01-19 晋江创赢新材料科技有限公司 一种外表致密etpu减震中底的加工工艺
CN107373884A (zh) * 2017-08-25 2017-11-24 晋江创赢新材料科技有限公司 一种便于清洁的etpu减震中底及其成型工艺
EP4101887A1 (en) 2017-09-11 2022-12-14 Sekisui Plastics Co., Ltd. Thermoplastic elastomer composition, foam particle, and foam molded body
USD975417S1 (en) 2017-09-14 2023-01-17 Puma SE Shoe
CN107760008A (zh) * 2017-10-12 2018-03-06 广东华粘新材料研究有限公司 彩色聚氨酯材料的制作方法
CN109867946B (zh) * 2017-12-01 2021-06-29 万华化学集团股份有限公司 一种热塑性聚氨酯发泡粒子及其制备方法
CN110355970B (zh) * 2018-04-04 2021-11-09 东莞市元普塑胶科技有限公司 一种利用双螺杆设备一次性制得彩色tpu发泡颗粒的方法
CN112074205A (zh) * 2018-04-27 2020-12-11 彪马欧洲股份公司 尤其是运动鞋的鞋
CN109090763A (zh) * 2018-07-30 2018-12-28 茂泰(福建)鞋材有限公司 一种散开花式多彩etpu鞋底及其制作工艺
CN109517364A (zh) * 2018-11-26 2019-03-26 福建省晋江泉发骑士鞋业有限公司 一种彩色etpu鞋底及其制备方法
CN109762197B (zh) * 2018-12-17 2020-10-30 晋江国盛新材料科技有限公司 一种etpu发泡体的改进型成型方法
CN109836604B (zh) * 2019-03-07 2021-04-02 无锡道石新材料有限公司 一种低密度发泡tpu的快速制备方法
CN110150903B (zh) * 2019-06-12 2024-05-10 上海钧正网络科技有限公司 一种坐垫、车辆及沙发
CN110539442A (zh) * 2019-09-02 2019-12-06 厦门市锋特新材料科技有限公司 一种tpu颗粒发泡工艺
CN110524781A (zh) * 2019-09-02 2019-12-03 厦门市锋特新材料科技有限公司 一种tpu片材发泡工艺
CN110437530A (zh) * 2019-09-09 2019-11-12 泉州市晋远行塑料制品有限公司 一种带彩色颗粒的发泡胶料制品及其制成工艺
TWI725502B (zh) * 2019-10-05 2021-04-21 加久企業股份有限公司 Tpu發泡鞋底製程及其成品
CN111086121A (zh) * 2019-11-20 2020-05-01 晋江兴迅新材料科技有限公司 一种发光etpu爆米花鞋的制作工艺
CN113306039B (zh) * 2021-06-01 2022-03-22 中山大学 一种聚酯发泡珠粒及其半连续制备方法与水蒸气成型方法
CN115678086A (zh) * 2021-07-31 2023-02-03 华为技术有限公司 一种发泡材料及其制备方法和应用
CN114736418A (zh) * 2022-02-28 2022-07-12 福建恩迈特新材料有限公司 一种杂花式tpu发泡材料的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883143A (en) * 1998-06-18 1999-03-16 Bayer Aktiengesellschaft Method and device for the production of foam using carbon dioxide dissolved under pressure
CN1400986A (zh) * 2000-10-18 2003-03-05 三井化学株式会社 热塑性聚氨酯弹性体组合物的泡沫体及其制备方法
JP2004035669A (ja) * 2002-07-02 2004-02-05 Kuraray Co Ltd 熱可塑性ポリウレタン発泡体およびそれからなる研磨パッド
CN102127245A (zh) * 2011-01-19 2011-07-20 中国科学院宁波材料技术与工程研究所 一种生物可降解聚合物发泡粒子的制备方法
CN102229709A (zh) * 2011-05-16 2011-11-02 四川大学 无毒、无异味、可回收的环保型聚氨酯发泡型材及其制备方法
CN102241831A (zh) * 2011-04-28 2011-11-16 中国科学院宁波材料技术与工程研究所 生物降解聚合物发泡粒子成型体的制备方法
CN102241830A (zh) * 2011-04-28 2011-11-16 中国科学院宁波材料技术与工程研究所 一种生物降解聚合物发泡片材制品的制备方法
CN102276870A (zh) * 2011-04-28 2011-12-14 中国科学院宁波材料技术与工程研究所 生物降解聚合物硬质复合结构泡沫板材的制备方法
CN102702562A (zh) * 2012-05-24 2012-10-03 中国科学院宁波材料技术与工程研究所 一种热塑性聚酰亚胺发泡粒子及其成型体的制备方法
CN103951965A (zh) * 2014-05-09 2014-07-30 晋江国盛鞋材有限公司 彩色tpu发泡材料、制备方法、用途以及利用该材料制备成型体、薄片、鞋材的方法
CN104262940A (zh) * 2014-05-09 2015-01-07 晋江国盛鞋材有限公司 彩色tpu发泡材料、利用彩色tpu发泡材料制备鞋材的方法及用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102190775B (zh) * 2010-03-08 2014-12-17 拜耳材料科技(中国)有限公司 具有改进耐磨性能的聚氨酯及其制备方法和用途
CN103642200B (zh) * 2013-12-20 2016-01-06 山东美瑞新材料有限公司 一种发泡热塑性聚氨酯珠粒及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883143A (en) * 1998-06-18 1999-03-16 Bayer Aktiengesellschaft Method and device for the production of foam using carbon dioxide dissolved under pressure
CN1400986A (zh) * 2000-10-18 2003-03-05 三井化学株式会社 热塑性聚氨酯弹性体组合物的泡沫体及其制备方法
JP2004035669A (ja) * 2002-07-02 2004-02-05 Kuraray Co Ltd 熱可塑性ポリウレタン発泡体およびそれからなる研磨パッド
CN102127245A (zh) * 2011-01-19 2011-07-20 中国科学院宁波材料技术与工程研究所 一种生物可降解聚合物发泡粒子的制备方法
CN102241831A (zh) * 2011-04-28 2011-11-16 中国科学院宁波材料技术与工程研究所 生物降解聚合物发泡粒子成型体的制备方法
CN102241830A (zh) * 2011-04-28 2011-11-16 中国科学院宁波材料技术与工程研究所 一种生物降解聚合物发泡片材制品的制备方法
CN102276870A (zh) * 2011-04-28 2011-12-14 中国科学院宁波材料技术与工程研究所 生物降解聚合物硬质复合结构泡沫板材的制备方法
CN102229709A (zh) * 2011-05-16 2011-11-02 四川大学 无毒、无异味、可回收的环保型聚氨酯发泡型材及其制备方法
CN102702562A (zh) * 2012-05-24 2012-10-03 中国科学院宁波材料技术与工程研究所 一种热塑性聚酰亚胺发泡粒子及其成型体的制备方法
CN103951965A (zh) * 2014-05-09 2014-07-30 晋江国盛鞋材有限公司 彩色tpu发泡材料、制备方法、用途以及利用该材料制备成型体、薄片、鞋材的方法
CN104262940A (zh) * 2014-05-09 2015-01-07 晋江国盛鞋材有限公司 彩色tpu发泡材料、利用彩色tpu发泡材料制备鞋材的方法及用途

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190112444A1 (en) * 2016-03-31 2019-04-18 Jsp Corporation Thermoplastic polyurethane foam particles
EP3438174A4 (en) * 2016-03-31 2019-08-07 JSP Corporation PARTICLES OF THERMOPLASTIC POLYURETHANE FOAM
WO2018003316A1 (ja) 2016-06-29 2018-01-04 株式会社ジェイエスピー 熱可塑性ポリウレタン発泡粒子成形体及びその製造方法、並びに熱可塑性ポリウレタン発泡粒子
EP3480243A4 (en) * 2016-06-29 2020-01-08 JSP Corporation ARTICLE MOLDED IN THERMOPLASTIC POLYURETHANE FOAM PARTICLES AND PROCESS FOR PRODUCING SAID ARTICLE MOLDED IN THERMOPLASTIC POLYURETHANE FOAM PARTICLES, AND THERMOPLASTIC POLYURETHANE FOAM PARTICLES
CN115232350A (zh) * 2022-04-01 2022-10-25 莆田市百合鞋业有限公司 一种制备低后收缩弹性体泡沫的方法

Also Published As

Publication number Publication date
CN104830047A (zh) 2015-08-12
US20160311993A1 (en) 2016-10-27
CN103951965B (zh) 2015-04-01
CN103951965A (zh) 2014-07-30
CN104830047B (zh) 2017-10-24
US10035894B2 (en) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2015169164A1 (zh) 彩色tpu发泡材料、制备方法、用途以及利用该材料制备成型体、薄片、鞋材的方法
CN104262940B (zh) 彩色tpu发泡材料、利用彩色tpu发泡材料制备鞋材的方法及用途
TWI675868B (zh) 微波成型體及其製造方法
CN111393830A (zh) 一种彩色高弹发泡鞋中底材料及其制备方法
WO2020125577A1 (zh) 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN106009028B (zh) 一种彩色或双色tpu发泡珠粒粘结成型体的制备方法
KR102476210B1 (ko) 경화제
CN111019183B (zh) 一种微交联弹性体发泡材料、其制备方法和应用
CN111440423A (zh) 一种生物可降解发泡鞋中底材料及其制备方法
WO2018098807A1 (zh) 发泡结构体
CN107501821B (zh) 一种交联氯化聚氯乙烯泡沫材料及其制备方法
TWI752029B (zh) 熱塑性聚氨酯發泡粒子成形體及其製造方法與熱塑性聚氨酯發泡粒子
CN108864471A (zh) 一种采用染色制得tpu发泡珠粒制成成型体的方法
CN106147036A (zh) 一种可回收循环使用的发泡材料及其制造方法
CN102875886A (zh) 一种eva微胶囊发泡材料及其制备方法
CN105968403B (zh) 一种通过共成型来制备彩色tpu成型体的方法
CN104385479A (zh) 一种连续挤出发泡制备tpu发泡珠粒的方法
WO2021208506A1 (zh) 一种耐温型刻字膜及其制备方法
CN112552546B (zh) 一种绿色环保eva发泡材料及制备方法
CN105482101B (zh) 一种泡沫尼龙6的制备方法
CN107189405B (zh) 一种高耐磨橡塑共混发泡材料及其制备方法
JP3472811B2 (ja) 高分子成形体の着色方法
CN108485082A (zh) 一种汽车橡胶制品用橡胶及其制作工艺
CN1524674A (zh) 自结皮软质泡沫塑料印花地垫及其制造方法
JP7090749B2 (ja) 発泡熱可塑性ポリウレタンおよびそのマイクロ波成型体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15789468

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15105020

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15789468

Country of ref document: EP

Kind code of ref document: A1