WO2015163258A1 - 強磁性金属ナノワイヤー分散液およびその製造方法 - Google Patents

強磁性金属ナノワイヤー分散液およびその製造方法 Download PDF

Info

Publication number
WO2015163258A1
WO2015163258A1 PCT/JP2015/061881 JP2015061881W WO2015163258A1 WO 2015163258 A1 WO2015163258 A1 WO 2015163258A1 JP 2015061881 W JP2015061881 W JP 2015061881W WO 2015163258 A1 WO2015163258 A1 WO 2015163258A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanowire
ferromagnetic metal
dispersion
nanowires
polymer compound
Prior art date
Application number
PCT/JP2015/061881
Other languages
English (en)
French (fr)
Inventor
裕孝 竹田
大西 早美
吉永 輝政
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to US15/305,514 priority Critical patent/US10522274B2/en
Priority to CN201580020292.8A priority patent/CN106233394A/zh
Priority to KR1020167029074A priority patent/KR102297023B1/ko
Priority to JP2016514905A priority patent/JP6616287B2/ja
Publication of WO2015163258A1 publication Critical patent/WO2015163258A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D101/00Coating compositions based on cellulose, modified cellulose, or cellulose derivatives
    • C09D101/08Cellulose derivatives
    • C09D101/26Cellulose ethers
    • C09D101/28Alkyl ethers
    • C09D101/286Alkyl ethers substituted with acid radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D139/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Coating compositions based on derivatives of such polymers
    • C09D139/04Homopolymers or copolymers of monomers containing heterocyclic rings having nitrogen as ring member
    • C09D139/06Homopolymers or copolymers of N-vinyl-pyrrolidones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0072Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0072Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
    • H01F1/0081Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures in a non-magnetic matrix, e.g. Fe-nanowires in a nanoporous membrane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/44Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids

Definitions

  • the present invention relates to a ferromagnetic metal nanowire dispersion and a method for producing the same.
  • a transparent conductive film has been widely used as a transparent electrode with the expansion of the solar cell market and the growing demand for touch panels due to the rapid spread of smartphones and tablet terminals.
  • a transparent conductive film is often used from the viewpoint of weight reduction, thinning and flexibility, and most of them are ITO films using indium tin oxide as a conductive layer.
  • the ITO film has a problem of color tone due to low light transmittance in the long wavelength region, and because ITO is a semiconductor, there is a limit to high conductivity, and since the conductive layer is ceramic, it is foldable. There was a problem. For this reason, there has been a demand for a flexible film having higher transmittance and higher conductivity.
  • Patent Documents 1 to 3 various transparent conductive films using metal nanomaterials such as carbon nanotubes, metal fine wires constituting a mesh structure, and silver nanowires have been proposed as next-generation transparent conductive films.
  • the conductivity of the carbon nanotubes as the conductive filler was inferior to that of metal materials, so the performance as a transparent conductive film was not satisfied.
  • the transparent conductive film which consists of a metal mesh structure has high electroconductivity, there existed problems, such as a metal fine wire being visible.
  • a transparent conductive film using metal nanowires can achieve both conductivity and transparency.
  • the metal nanowire used for the transparent conductive film silver is widely used from the viewpoint of conductivity.
  • silver has a high conductivity, it is a metal material that is very susceptible to ion migration, and thus has an adverse effect on the insulation between the film substrate and the wiring.
  • a nanostructure such as a nanowire, even a minute shape change causes a remarkable change in electrical characteristics. Therefore, the transparent conductive film using silver nanowires as a conductive material has a problem that the reliability of devices and the like is reduced.
  • Patent Documents 4 to 5 a method has been proposed in which the silver nanowire surface is coated with another metal material by plating or the like to impart ion migration resistance and improve stability.
  • Patent Documents 4 to 5 these methods involve plating and sulfidation on the surface of the obtained silver nanowire, and the process becomes complicated, and other metals are formed only on the surface, so there are problems with uniformity, durability, and conductivity. was there.
  • Patent Document 6 Since the metal nanowire is produced inside the carbon nanotube, the metal nanowire cannot be used alone, and further processing at a high temperature is necessary (Patent Document 6). There is a problem that only a relatively short nanowire can be obtained when the length of the wire is up to about 10 ⁇ m (Patent Documents 7 and 8).
  • Patent Documents 9 to 10 A method for obtaining a ferromagnetic metal nanowire having a long nanowire length has been proposed (Patent Documents 9 to 10).
  • the nanowires obtained by these methods are not supposed to be dispersed, the nanowires are long, but the nanowires are intertwined in a complicated manner and aggregated into a sheet or cotton form. .
  • the nanowire obtained by the method is suitable for use as a structure such as a battery electrode material, but it is difficult to defibrate while maintaining the nanowire shape, and the paint is used as a dispersion. And could not be applied to ink.
  • Patent Document 11 A method for obtaining a dispersed ferromagnetic metal nanowire is disclosed (Patent Document 11).
  • a dispersion liquid in which metal nanowires having a length of about 100 ⁇ m are dispersed in a solvent is obtained.
  • nanowires are likely to precipitate and agglomerate, and in order for the nanowire film obtained from the dispersion to have conductivity, plating with a noble metal is essential.
  • the nanowire fabrication method was inferior in productivity because of the template method.
  • This invention solves the said subject, and can provide the ferromagnetic metal nanowire dispersion liquid excellent in the dispersibility which can produce the ferromagnetic metal nanowire film
  • the gist of the present invention is as follows. (1) A ferromagnetic metal nanowire dispersion liquid comprising a ferromagnetic metal nanowire and a polymer compound. (2) The dispersion according to (1), which has a polymer compound layer on the surface of the ferromagnetic metal nanowire. (3) The ferromagnetic metal nanowire dispersion liquid according to (1) or (2), further comprising a dispersion medium selected from the group consisting of water, an organic solvent, and a mixture thereof. (4) The ferromagnetic metal nanowire dispersion liquid according to (3), wherein the dispersion medium is a reducing solvent or a solvent containing an antioxidant.
  • Manufacturing method (6)
  • the ferromagnetic metal nanowire dispersion liquid of the present invention is excellent in dispersibility and can provide a ferromagnetic metal nanowire film excellent in conductivity. Moreover, since the ferromagnetic metal nanowire dispersion liquid of this invention can maintain the outstanding dispersibility over a long period of time, it is excellent also in dispersion stability.
  • FIG. 2 is a scanning electron microscope image of a dried nickel nanowire dispersion liquid obtained in Example 1.
  • FIG. It is the transmission electron microscope image which imaged the phosphotungstic acid dyeing
  • the ferromagnetic metal nanowire dispersion of the present invention contains a ferromagnetic metal nanowire (hereinafter sometimes simply referred to as “nanowire”) and a polymer compound, and usually further contains a dispersion medium.
  • Examples of the ferromagnetic metal constituting the nanowire include iron, cobalt, nickel, gadolinium, and alloys containing these as main components.
  • nickel is preferable because of its high conductivity.
  • the shape of the ferromagnetic metal nanowire is not particularly limited, but the nanowire usually has a substantially linear shape as shown in FIG. 1, for example.
  • the dimensions of the ferromagnetic metal nanowire are usually about 10 to 200 nm in average diameter and about 1 to 100 ⁇ m in average length. In the present invention, the average diameter is more preferably 10 to 150 nm, and the average length is more preferably 5 to 50 ⁇ m.
  • the aspect ratio (average length / average diameter) of the ferromagnetic metal nanowires is preferably 40 to 200, particularly preferably 45 to 150, from the viewpoint of showing good light transmittance while the obtained coating film has good conductivity. .
  • the nanowire has fewer degradation sites where the ferromagnetic metal is oxidized or ionized.
  • the presence or absence of a ferromagnetic metal at a depth of about 10 nm from the surface of the nanowire can be determined by X-ray photoelectron spectroscopy. For example, in the case of nickel nanowires, in the X-ray photoelectron spectroscopy, as shown in FIG. 5 and FIG.
  • the presence of a ferromagnetic metal in the surface layer of the nanowire means that, for example, in the case of nickel, the portion where the tangential slope is 0 in the spectrum by X-ray photoelectron spectroscopy is 851. It means to exist in 5 to 853.5 eV.
  • the nanowire preferably has a polymer compound layer (film) on its surface from the viewpoint of dispersibility and coating film conductivity.
  • the average thickness of such a polymer compound layer is preferably less than 10 nm, more preferably 7 nm or less. If the polymer compound layer is less than 10 nm, the influence on the surface resistivity of the nanowire film after film formation can be suppressed, and the dispersibility of the nanowire can be ensured.
  • the average thickness of the polymer compound layer is usually about 1 nm or more. The presence and type of the polymer compound layer can be confirmed by the pyrolysis GC / MS (gas chromatography mass spectrometry).
  • the polymer compound layer can be dyed and observed with a transmission electron microscope to confirm its presence and thickness as shown in FIG. In the case where the polymer compound layer is not provided, the polymer compound layer cannot be confirmed as shown in FIG.
  • the nanowire has a polymer compound layer on the surface, it is preferable that the presence of the ferromagnetic metal can be confirmed from the surface of the layer to a depth of 10 nm.
  • the nanowire has a polymer compound layer on the surface, it is preferable that the presence of the ferromagnetic metal can be confirmed from the surface of the polymer compound layer of the nanowire to a depth of about 10 nm.
  • the polymer compound constituting the polymer compound layer is not particularly limited, but a combination with a dispersion medium described later is important.
  • a polymer having solubility in the dispersion medium is used as the polymer compound. That the polymer compound is soluble in the dispersion medium means that the polymer compound can be dissolved in the dispersion medium. If at least 0.1 part by mass of the polymer compound can be dissolved in 100 parts by mass of the dispersion medium at 25 ° C. Good. Even if the polymer compound is soluble in the dispersion medium, the polymer compound that once formed a layer on the nanowire surface does not elute into the dispersion medium in the dispersion liquid. Remains.
  • water solution such as carboxymethylcellulose sodium salt, polyacrylic acid, sodium polyacrylate, polyvinyl alcohol, polyethylene glycol, methylcellulose, hydroxyethylcellulose, polyacrylamide, polyvinylpyrrolidone, etc.
  • the high molecular compound is preferable.
  • a polymer compound that is soluble in alcohol such as polyvinyl alcohol, polyethylene glycol, methylcellulose, and polyvinylpyrrolidone is preferable.
  • polyvinyl pyrrolidone is more preferable because there are many solvent species exhibiting solubility.
  • the molecular weight of the polymer compound may be a molecular weight such that the viscosity of the reaction solution described later by a B-type viscometer falls within a specified range.
  • the dispersion medium is not particularly limited.
  • the dispersion medium is usually water, an organic solvent, and a mixture thereof.
  • the organic solvent include monoalcohols (especially saturated aliphatic monoalcohols) such as methanol, ethanol, isopropyl alcohol, normal propyl alcohol, butanol, pentanol, hexanol; polyols (especially saturated aliphatics) such as ethylene glycol and propylene glycol. Polyol); nitrile compounds such as acetonitrile; and ester compounds such as ethyl acetate and butyl acetate.
  • the dispersion medium is preferably water, a saturated aliphatic monoalcohol, a saturated aliphatic polyol, or a mixture thereof. From the viewpoints of low boiling point, odor and safety, isopropyl alcohol, normal propyl alcohol and the like are preferable.
  • the dispersion medium is preferably a solvent exhibiting reducibility or a solvent containing an antioxidant. This is because oxidation or ionization of the nanowire surface that occurs during storage of the dispersion is further prevented, and the nanowire surface layer is likely to contain a ferromagnetic metal. As a result, the coating film conductivity is further improved.
  • the solvent exhibiting reducibility is a solvent that exhibits reducibility upon heating and a solvent that exhibits reducibility even at room temperature (25 ° C).
  • a solvent exhibiting reducibility include, for example, polyols such as ethylene glycol and propylene glycol, particularly saturated aliphatic polyols, among the above-described dispersion media.
  • the solvent containing an antioxidant contains an antioxidant and a solvent.
  • the antioxidant is not particularly limited as long as it is used as a compound having an antioxidant action in the field of dispersion, for example, the same reducing agent used in the metal ion reduction treatment step described later is used. Is done.
  • hydroxylamines particularly diethylhydroxylamine
  • hydrazine hydrazine monohydrate
  • oxalic acid formic acid and the like
  • the solvent to which such an antioxidant is added is not particularly limited as long as it is a solvent that can dissolve the antioxidant among the above-described dispersion media. Examples of such a solvent include water, the above monoalcohol (particularly a saturated aliphatic monoalcohol), the above nitrile compound, the above ester compound, and a mixture thereof.
  • the concentration of the antioxidant in the dispersion is not particularly limited as long as the oxidation of the nanowire surface is suppressed.
  • the concentration differs depending on the kind of the antioxidant and cannot be generally defined, but is usually about 0.01 to 10% by mass with respect to the total amount of the dispersion.
  • the concentration is preferably 0.05 to 2% by mass.
  • the concentration is preferably 0.1 to 5% by mass.
  • the concentration is preferably 0.01 to 10% by mass.
  • the concentration is preferably 0.01 to 0.1% by mass.
  • the concentration of nanowires in the dispersion is not particularly limited, and can be adjusted to a concentration suitable for various film forming methods and applications.
  • the nanowire concentration is usually 0.1 to 5% by mass, preferably 0.1 to 2.0% by mass, based on the total amount of the dispersion. .
  • additives such as a binder resin, a wetting agent, and a leveling agent can be incorporated for film forming property and improvement thereof within a range not impairing the effects of the present invention.
  • the adhesion between the coated metal nanowires and the substrate can be maintained.
  • the binder resin may be dissolved in the dispersion medium or may be dispersed without being dissolved.
  • a binder resin that dissolves in the dispersion medium is used.
  • binder resin examples include, for example, polyacryloyl compounds such as polymethyl methacrylate, polyacrylate, and polyacrylonitrile; polyvinyl alcohol; polyester such as polyethylene terephthalate and polyethylene naphthalate; polycarbonate; epoxy; aliphatic such as polypropylene and polymethylpentane.
  • Polyolefins such as polynorbornene; celluloses such as nitrocellulose; silicone resins; polyacetates; chlorine-containing polymers such as polyvinyl chloride, chlorinated polyethylene, chlorinated polypropylene; polyfluorovinylidene, polytetrafluoroethylene, And fluorine-containing polymers such as polyhexafluoropropylene and fluoroolefin-hydrocarbon olefin copolymer.
  • Constent of binder resin is suitably selected in the range which does not impair the effect of the present invention.
  • the content of the binder resin is preferably 1: 0.01 to 1:10 as the mass ratio of the nanowire and the binder resin from the viewpoint of further improving the coating film conductivity.
  • the ferromagnetic metal nanowire dispersion liquid of the present invention can be produced, for example, by the following method. First, ferromagnetic metal nanowires are produced. The method for producing the ferromagnetic metal nanowire is not particularly limited. Preferably, the metal ion reduction process shown below is performed and a ferromagnetic metal nanowire is produced.
  • ferromagnetic metal ions are reduced in a solution of a polymer compound to produce a ferromagnetic metal nanowire.
  • the polymer compound used in this step the same polymer compound as that constituting the polymer compound layer that the nanowire may have on the surface is used.
  • the polymer compound acts like a template, and suppresses aggregation and fusion of the nanowires during production.
  • a polymer compound layer can be suitably formed on the ferromagnetic metal nanowire. As a result, the entanglement of the nanowires can be prevented and the dispersibility of the nanowires can be suppressed. Below, the detail of this process is shown.
  • a salt of a ferromagnetic metal in a solvent.
  • the ferromagnetic metal used in this step the same metal as the ferromagnetic metal constituting the nanowire is used.
  • Any ferromagnetic metal salt that is soluble in the solvent used and can supply ferromagnetic metal ions in a reducible state can be used. Examples include ferromagnetic metal chlorides, sulfates, nitrates, acetates, and the like. These salts may be hydrates or anhydrides.
  • the concentration of the ferromagnetic metal ion is not particularly limited as long as nanowires can be produced.
  • the concentration of the ferromagnetic metal ion is preferably 50 ⁇ mol / g or less, and more preferably 25 ⁇ mol / g or less, with respect to the total amount of the reaction solution. By setting the concentration of the ferromagnetic metal ion to 50 ⁇ mol / g or less, the template action of the polymer compound at the time of production can be effectively obtained.
  • the lower limit of the concentration of the ferromagnetic metal ion is not particularly limited, but the concentration is usually 1 ⁇ mol / g or more, particularly 10 ⁇ mol / g or more.
  • the reducing agent used for reducing the ferromagnetic metal ion is not particularly limited.
  • hydrazine, hydrazine monohydrate, ferrous chloride, hypophosphorous acid, borohydride, aminoboranes, lithium aluminum hydride, sulfites, hydroxylamines (eg, diethylhydroxylamine), zinc amalgam examples include diisobutylaluminum hydride, hydroiodic acid, ascorbic acid, oxalic acid, formic acid and the like.
  • hydrazine monohydrate is preferable from the viewpoint of reduction efficiency, safety, removability, and maintenance of properties of the ferromagnetic metal after reduction.
  • the concentration of the reducing agent in this step is not particularly limited as long as nanowires can be produced.
  • the concentration of the reducing agent is preferably about 0.5 to 5.0% by mass with respect to the total amount of the reaction solution, and the ferromagnetic metal ion can be suitably reduced at this concentration.
  • the reduction reaction it is preferable to apply an external pressure in order to grow nanowires in a linear shape having anisotropy.
  • the external pressure include liquid flow caused by stirring, gravity, magnetic force, and the like.
  • the magnetic force if a magnetic flux density of about 50 to 200 mT is applied to the center of the reaction solution, nanowires can be suitably obtained along the magnetic field direction.
  • a solvent for the reduction reaction water, a polar organic solvent, or a mixture thereof can be used.
  • the organic solvent having polarity include methanol, ethanol, isopropyl alcohol, normal propyl alcohol, butanol, pentanol, hexanol, ethylene glycol, and propylene glycol.
  • an organic solvent, particularly ethylene glycol is more preferable from the viewpoints of solubility, boiling point, viscosity and the like of the ferromagnetic metal salt and the polymer compound.
  • a complexing agent can also be added.
  • the complexing agent is added in order to facilitate the formation of nanowires by controlling the supply speed of the ferromagnetic metal ions by complexing with the ferromagnetic metal ions.
  • the complexing agent is not particularly limited, but a complexing constant with the ferromagnetic metal ion to be used is preferably higher.
  • a complexing constant with the ferromagnetic metal ion to be used is preferably higher.
  • citric acid ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, nitrilotriacetic acid, hydroxyethyliminodiacetic acid, hydroxyiminodisuccinic acid, aminotrimethylenephosphonic acid, hydroxyethanephosphone
  • the concentration is preferably 0.1 nmol / g or more.
  • the noble metal salt is a metal salt composed of any one of gold, silver, platinum, palladium, rhodium, iridium, ruthenium, and osmium.
  • Noble metal salts are highly reducible and are easily liquid phase reduced as nanoparticles. Therefore, by adding a noble metal salt to the reaction solution, nanoparticle nuclei with a size of several nanometers are generated, and the nanoparticle nuclei are used as a scaffold to facilitate the formation of ferromagnetic metal nanowires.
  • the noble metal salt include chloroplatinic acid, chloroauric acid, palladium chloride and the like. Among these, chloroplatinic acid is preferable because finer nanoparticles are uniformly formed by liquid phase reduction.
  • the concentration of the noble metal salt is not particularly limited. As described above, since the nanoparticle core generated from the noble metal salt serves as a scaffold for forming the nanowire, the higher the concentration, the smaller the nanowire diameter, and the lower the concentration, the thicker the nanowire diameter. . Usually, the concentration is preferably about 0.001 to 5 ⁇ mol / g.
  • the pH and temperature of the reduction reaction solution may be set to a pH and temperature at which the reducing agent can reduce the ferromagnetic metal ions.
  • the higher the temperature or the higher the pH the higher the reducing power of the reducing agent. Therefore, high temperature and high pH are preferred, but there is an applicable range depending on the type of solvent, reducing agent and ferromagnetic metal salt. is there.
  • the temperature is preferably 70 to 100 ° C. and the pH is preferably 10 to 12.
  • the reduction time of the reduction reaction is not particularly limited as long as nanowires with the above dimensions can be produced, and is, for example, 10 minutes to 5 hours.
  • the reaction solution preferably contains the above polymer compound.
  • concentration of the polymer compound varies depending on the structure and molecular weight of the polymer compound, but the viscosity of the reaction solution at the reaction temperature measured by a B-type viscometer is 20 mPa ⁇ s to 500 mPa ⁇ s, particularly 40 mPa ⁇ s to The concentration is preferably 400 mPa ⁇ s.
  • purification for the purpose of removing reducing agents and by-products can be performed.
  • the surface of the ferromagnetic metal nanowire has a polymer compound layer, the entanglement and aggregation of the nanowire can be suppressed.
  • a purification method in addition to filtration and centrifugation, which are general methods, a method of immersing a ferromagnetic metal nanowire dispersion liquid placed in an ultrafiltration membrane in a solvent, and a ferromagnetic metal nanoparticle using a magnet A method for recovering the wire can be mentioned. Moreover, even if these purification treatments are performed, the polymer compound layer on the nanowire surface does not peel off.
  • the ferromagnetic nanowire is preferably subjected to a reduction treatment before the dispersion treatment.
  • the ferromagnetic metal nanowire is subjected to the nanowire reduction treatment step shown below after the metal ion reduction treatment step and before the dispersion treatment step in the dispersion medium. Is preferred.
  • a ferromagnetic metal nanowire is reduced.
  • this reduction treatment it is possible to more sufficiently remove the site of deterioration caused by oxidation and ionization of the surface that occurs during the production and purification of the nanowire, and the nanowire surface layer is likely to contain a ferromagnetic metal.
  • the reduction treatment in this step is not particularly limited as long as the reduction treatment of the ferromagnetic metal nanowire is achieved.
  • the ferromagnetic metal nanowire is heated in a solvent exhibiting reducibility or a solvent containing a reducing agent. Even if such a reduction treatment is performed, the polymer compound layer on the nanowire surface does not peel off.
  • preferred solvents are polyols such as ethylene glycol and propylene glycol, particularly saturated aliphatic polyols.
  • hydroxylamines, hydrazine, hydrazine monohydrate, oxalic acid, formic acid and the like are used as preferable reducing agents.
  • the solvent to which such a reducing agent is added is not particularly limited as long as it is a solvent that can dissolve the reducing agent.
  • water and the above monoalcohol (particularly saturated aliphatic monoalcohol) are used as a preferred solvent.
  • the concentration of the reducing agent in the solvent containing the reducing agent is not particularly limited as long as the reduction of the nanowire surface is achieved.
  • the concentration is usually 0.01 to 10% by mass, preferably 0.05 to 5% by mass, based on the total amount of the reaction solution.
  • the concentration of nanowires in the reaction solution is not particularly limited as long as reduction of the nanowire surface is achieved.
  • the concentration is usually 0.01 to 10% by mass, preferably 0.1 to 5.0% by mass, based on the total amount of the reaction solution.
  • the heating temperature and heating time in this step are not particularly limited as long as the reduction of the nanowire surface is achieved.
  • the heating temperature is usually 70 to 200 ° C.
  • the heating time is usually 1 to 5 hours.
  • purification for the purpose of removing the reducing agent and by-products can be performed.
  • the purification method the same purification method described in the explanation of the metal ion reduction treatment step is used.
  • the nanowires collected and isolated in the metal ion reduction treatment step or the nanowires collected and isolated in the nanowire reduction treatment step are usually subjected to the following dispersion treatment step.
  • the dispersion containing nanowires obtained in the above steps is used as it is as the nanowire dispersion of the present invention. be able to.
  • ferromagnetic metal nanowires are dispersed in a dispersion medium.
  • the ferromagnetic metal nanowire dispersion liquid of the present invention is obtained.
  • This step is usually performed in an unheated state, for example, at room temperature (25 ° C.).
  • the dispersion medium the same dispersion medium described in the explanation of the ferromagnetic metal nanowire dispersion liquid is used.
  • the compounding amount of the nanowire may be an amount such that the nanowire concentration in the nanowire dispersion described in the description of the ferromagnetic metal nanowire dispersion is achieved.
  • the additive when the above-mentioned additive is contained in the ferromagnetic metal nanowire dispersion of the present invention, the additive may be contained in advance in the dispersion medium.
  • the ferromagnetic metal nanowire dispersion liquid of the present invention can usually be obtained by performing at least a metal ion reduction treatment step and a dispersion treatment step.
  • the ferromagnetic metal nanowire dispersion liquid of the present invention By obtaining the ferromagnetic metal nanowire dispersion liquid of the present invention through the steps according to the following preferred embodiment A or B, the ferromagnetic metal can be confirmed in the nanowire surface layer, and the coating film conductivity is more improved. Further improve.
  • Preferred embodiment A (I) a metal ion reduction treatment step; and (ii) a dispersion treatment step (in the step, a solvent exhibiting reducibility or a solvent containing an antioxidant is used as a dispersion medium).
  • Preferred embodiment B (I) a metal ion reduction treatment step; (Ii) Nanowire reduction treatment step; and (iii) Dispersion treatment step (in the step, a solvent other than a solvent containing a reducing solvent and an antioxidant is used as a dispersion medium).
  • the ferromagnetic metal nanowire dispersion liquid of the present invention By obtaining the ferromagnetic metal nanowire dispersion liquid of the present invention through the steps according to the following most preferred embodiments, the ferromagnetic metal can be confirmed in the nanowire surface layer, and the coating film conductivity is most improved. .
  • a metal ion reduction treatment step (I) a metal ion reduction treatment step; (Ii) Nanowire reduction treatment step; and (iii) Dispersion treatment step (in the step, a solvent exhibiting reducibility or a solvent containing an antioxidant is used as a dispersion medium).
  • the nanowire dispersion liquid of the present invention can be applied to a substrate and dried to form a film, wiring, etc., thereby obtaining a laminate.
  • a base material a glass substrate, a polyethylene terephthalate film, a polycarbonate film, a cycloolefin film, a polyimide film, a polyamide film, a ceramic sheet, a metal plate etc. are mentioned, for example.
  • the coating method is not particularly limited.
  • wire bar coater coating method film applicator coating method, spray coating method, gravure roll coating method, screen printing method, reverse roll coating method, lip coating method, air knife coating method, curtain flow coating.
  • Method dip coating method, die coating method, spray method, letterpress printing method, intaglio printing method, and ink jet method.
  • the ferromagnetic metal nanowire dispersion liquid of the present invention has a good wire dispersion state, the metal nanowires are formed on the substrate after coating without aggregation. For this reason, the coating film which shows favorable electroconductivity can be formed. Furthermore, by setting the aspect ratio of the nanowire within the above range, it is possible to form a coating film exhibiting high light transmittance while exhibiting better conductivity.
  • the nanowire dispersion liquid of the present invention can be subjected to post-treatment for the purpose of improving conductivity after coating.
  • post-treatment include a heat treatment for maintaining the coating film at a temperature higher than the temperature at which the polymer compound softens, a nanowire pressure-bonding process in which the coating film is pressed at a pressure of about 10 to 30 MPa, and removal of the polymer compound by a plasma cleaner. Processing.
  • the nanowire dispersion of the present invention is excellent in dispersion stability and is a dispersion suitable for wet coating. Moreover, the nanowire film obtained from the dispersion is excellent in conductivity, and can exhibit conductivity even in a state having a high light transmittance of 80% or more. Therefore, it can be used not only for conductive films and conductive paints, but also for touch panel electrodes, display electrodes, solar cell electrodes, transparent electromagnetic wave shields, transparent heaters, and the like.
  • the nanowire dispersion of the present invention is suitably used for nanomagnetic materials, anisotropic materials, magnetic films, etc. by utilizing the anisotropy, orientation, and magnetic field responsiveness of ferromagnetic metal nanowires. be able to.
  • Nanowires dried on a sample stage are photographed with a scanning electron microscope, and all the nanowire lengths in the field of view are measured. D10 value and D90 value were calculated. By photographing at 4000 to 6000 times, the length of about 200 nanowires per field of view can be measured.
  • Nanowires dried on a grid with a supporting film were photographed with a transmission electron microscope at a magnification of 600,000 times, and the maximum, minimum, and measurement points of the nanowire diameter in 10 fields of view were measured. Average values were measured.
  • Nanowires were collected from the nanowire dispersion by filtration, and the polymer compound layer was identified by instantaneous pyrolysis GC / MS at a heating temperature of 600 ° C.
  • the polymer compound layer is basically a kind of added polymer compound, although there may be differences such as a decrease in molecular weight.
  • Nanowires were collected from the nanowire dispersion by filtration and confirmed by X-ray photoelectron spectroscopy. For example, in the case of nickel, a 2p band narrow scan of nickel was performed, and the presence or absence of a peak of metallic nickel was determined. The region measurable by X-ray photoelectron spectroscopy is a layer from the surface to a depth of 10 nm. If a metal peak can be confirmed by measurement, it can be determined that a ferromagnetic metal is present in the surface layer of the nanowire.
  • a range of 10 10 ⁇ / sq or less is a practically problematic range, a range of 10 8 ⁇ / sq or less is a preferred range, a range of 10 6 ⁇ / sq or less is a more preferred range, and 10 4 ⁇ .
  • the range below / sq is a more preferable range, and the range below 10 3 ⁇ / sq is the most preferable range.
  • Light transmittance of nanowire film A nanowire film was prepared by the same method as in (7), and the light transmittance at a wavelength of 550 nm was measured using a slide glass as a blank value.
  • the light transmittance is preferably in the range of 70% or more, and more preferably in the range of 80% or more.
  • Haze value A nanowire film was prepared by the same method as in (7), and the haze value was measured from the transmitted light in all rays using the slide glass as a blank value.
  • the haze value is preferably in the range of 30% or less, more preferably in the range of 20% or less, and further preferably in the range of 10% or less.
  • Reaction was performed (metal-in reduction treatment step: reduction treatment A).
  • the concentration of nickel ions in the solution is 17 ⁇ mol / g
  • the concentration of the polymer compound is 4%
  • the concentration of platinum ions is 0.5 ⁇ mol / g
  • the concentration of trisodium citrate dihydrate is 3.3 nmol / g
  • pH 11 and the viscosity at the reaction temperature with a B-type viscometer was 240 mPa ⁇ s.
  • 100 g of the reaction solution was diluted 10 times with ethylene glycol, the nickel nanowire was forcibly precipitated by a magnet, and the supernatant was removed repeatedly. It was.
  • the X-ray photoelectron spectroscopy spectrum of this nanowire is shown in FIG.
  • the measurement conditions in FIG. 4 are as follows.
  • X-ray source Monochrome Al-K ⁇
  • X-ray output 200 W
  • photoelectron emission angle 75 °
  • pass energy 58.70 eV
  • charge shift correction C—H bond energy of C1s peak is corrected to 284.8 eV.
  • Reaction was performed (metal-in reduction treatment step: reduction treatment A).
  • the concentration of nickel ions in the solution is 17 ⁇ mol / g
  • the concentration of the polymer compound is 4%
  • the concentration of platinum ions is 0.5 ⁇ mol / g
  • the concentration of trisodium citrate dihydrate is 3.3 nmol / g
  • pH No. 11 the viscosity of the B-type viscometer at the reaction temperature was 360 mPa ⁇ s.
  • the obtained reaction solution was purified in the same manner as NiA, and nickel nanowires NiB were collected and isolated, and dried.
  • the concentration of nickel ions in the solution is 17 ⁇ mol / g, the concentration of the polymer compound is 4%, the concentration of platinum ions is 0.5 ⁇ mol / g, the concentration of trisodium citrate dihydrate is 3.3 nmol / g, pH No. 11 and the viscosity of the B-type viscometer at the reaction temperature was 360 mPa ⁇ s.
  • the obtained reaction solution was purified in the same manner as NiA, and nickel nanowire NiC was recovered and isolated, and dried.
  • the concentration of nickel ions in the solution is 17 ⁇ mol / g
  • the concentration of the polymer compound is 0%
  • the concentration of platinum ions is 0.5 ⁇ mol / g
  • the concentration of trisodium citrate dihydrate is 3.3 nmol / g
  • pH 11 the viscosity at the reaction temperature with a B-type viscometer was 5 mPa ⁇ s.
  • the ferromagnetic metal nanowire NiD aggregated in a sheet form after the reaction was recovered and isolated by suction filtration and dried.
  • the concentration of nickel ions in the solution is 24.8 ⁇ mol / g, the concentration of the polymer compound is 1%, the concentration of platinum ions is 0.5 ⁇ mol / g, and the concentration of trisodium citrate dihydrate is 12.6 nmol / g.
  • the pH was 11.5, and the viscosity with a B-type viscometer at the reaction temperature was 50 mPa ⁇ s.
  • 100 g of the reaction solution was diluted 10 times with pure water, nickel nanowires were forcibly precipitated by a magnet, and the supernatant was removed repeatedly. It was. After confirming that the pH of the supernatant liquid to be removed became 6.5 to 7.5 by repeating the operation four times, nickel nanowire NiE was collected and isolated, and dried.
  • Table 1 shows the dimensions and surface state of the fabricated nanowires.
  • Example 1 Nickel nanowire NiA 100mg and ethylene glycol 20g were mixed, and the reduction process was performed by heating at 150 degreeC for 3 hours (nanowire reduction process process: reduction process B).
  • Table 2 shows the concentration of nanowires in the reduction treatment B with respect to the total amount of the reaction solution. After heating, the nanowires were collected by suction filtration. The X-ray photoelectron spectroscopy spectrum of the collected nanowire is shown in FIG.
  • the measurement conditions in FIG. 5 are as follows. X-ray source: Monochrome Al-K ⁇ , X-ray output: 200 W, photoelectron emission angle: 75 °, pass energy: 58.70 eV, charge shift correction: C—H bond energy of C1s peak is corrected to 284.8 eV.
  • FIGS. 1 and 2 are photographs of the dried dispersion, and FIG. 6 shows the X-ray photoelectron spectroscopy spectrum of the nanowire.
  • the measurement conditions in FIG. 6 are as follows.
  • X-ray source Monochrome Al-K ⁇
  • X-ray output 200 W
  • photoelectron emission angle 75 °
  • pass energy 58.70 eV
  • charge shift correction C—H bond energy of C1s peak is corrected to 284.8 eV.
  • Example 2 The nanowires listed in Table 2 were used, and the nanowire concentration in the reduction treatment B and the nanowire concentration in the dispersion treatment, the type of solvent and reducing agent, and the type and concentration of antioxidant were changed as shown in Table 2.
  • a nanowire dispersion was obtained in the same manner as in Example 1 except that.
  • Example 10 NiA 100 mg was mixed with 100 mg of isopropanol containing hydrazine monohydrate, the amount of isopropanol was adjusted to 20 g in total, and stirred for 30 minutes in a nitrogen atmosphere to obtain a nanowire dispersion (dispersion treatment). ).
  • Table 2 shows the concentration of nanowires and antioxidants in the dispersion treatment with respect to the total amount of the dispersion.
  • Example 11 NiE 100 mg was mixed with pure water containing 20 mg of oxalic acid, the amount of pure water was adjusted to 20 g in total, and stirred for 30 minutes in a nitrogen atmosphere to obtain a nanowire dispersion (dispersion treatment).
  • Table 2 shows the concentration of nanowires and antioxidants in the dispersion treatment with respect to the total amount of the dispersion.
  • Example 12 NiE 100 mg was mixed with pure water containing 20 mg of oxalic acid, the amount of pure water was adjusted to 20 g in total, and stirred at 80 ° C. for 30 minutes in a nitrogen atmosphere to obtain a nanowire dispersion liquid (nano Wire reduction treatment process: reduction treatment B).
  • reduction treatment B nano Wire reduction treatment process
  • Table 2 shows the concentration of nanowires and antioxidants in the reduction treatment B relative to the total amount of the reaction solution.
  • Example 13 NiA (100 mg) was mixed with isopropanol, and the amount of isopropanol was adjusted to 20 g in total to obtain a nanowire dispersion.
  • reduction treatment B was not performed, and no antioxidant was used in the dispersion treatment.
  • Comparative Example 1 NiD (100 mg) was mixed with isopropanol, and the amount of isopropanol was adjusted to 20 g in total. Then, the dispersion process was performed with the ultrasonic homogenizer. This nanowire is photographed in FIG.
  • Comparative Example 2 A nanowire dispersion was obtained in the same manner as in Example 1 except that nanowire NiD was used.
  • Comparative Example 3 A nanowire dispersion was obtained in the same manner as in Example 10 except that nanowire NiD was used.
  • Comparative Example 4 A nanowire dispersion was obtained in the same manner as in Example 1 except that nanowire NiD was used and that no antioxidant was used in the dispersion treatment.
  • Table 2 shows the production conditions and evaluation results of the nanowire dispersion liquids obtained in Examples and Comparative Examples.
  • Each of the ferromagnetic metal nanowire dispersions of Examples 1 to 14 had a polymer compound layer on the nanowire surface, and was excellent in dispersibility.
  • the coating film manufactured from such a nanowire dispersion was excellent in conductivity and transparency.
  • nanowire dispersions finally obtained in Examples 1 to 12 contained an antioxidant or a solvent exhibiting reducibility, the dispersibility and the coating film conductivity were particularly excellent.
  • the nanowire dispersion of Comparative Example 1 was poor in dispersibility because it did not have a polymer compound layer on the nanowire surface.
  • the coating film obtained using such a nanowire dispersion was poor in conductivity.
  • the nanowire dispersion liquids of Comparative Examples 2 to 4 do not have a polymer compound layer on the nanowire surface, the nanowires are dispersed in a dispersion medium containing a reduction treatment (reduction treatment B) and / or an antioxidant. Even after the treatment, the dispersibility and the coating film conductivity were poor.
  • a reduction treatment reduction treatment B
  • an antioxidant Even after the treatment, the dispersibility and the coating film conductivity were poor.
  • the ferromagnetic metal nanowire dispersion of the present invention can be used not only for the production of conductive films and conductive paints, but also for the production of touch panel electrodes, display electrodes, solar cell electrodes, transparent electromagnetic wave shields, transparent heaters and the like.
  • the ferromagnetic metal nanowire dispersion liquid of the present invention utilizes the anisotropy, orientation, and magnetic field responsiveness of the ferromagnetic metal nanowire to produce nanomagnetic materials, anisotropic materials, magnetic films, etc. Can be suitably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Non-Insulated Conductors (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

 本発明は、導電性に優れた強磁性金属ナノワイヤー膜を作製できる、分散性に優れた強磁性金属ナノワイヤー分散液を提供する。本発明は、強磁性金属ナノワイヤーおよび高分子化合物を含むことを特徴とする強磁性金属ナノワイヤー分散液に関する。

Description

強磁性金属ナノワイヤー分散液およびその製造方法
 本発明は、強磁性金属ナノワイヤー分散液およびその製造方法に関するものである。
 近年、太陽電池の市場拡大、およびスマートフォンおよびタブレット端末等の急速な普及によるタッチパネルの需要拡大に伴い、透明電極として透明導電膜が広く用いられている。透明導電膜については、軽量化や薄膜化、フレキシブル化の観点から、透明導電フィルムが多く用いられるようになっており、現在はそのほとんどが、酸化インジウムスズを導電層として用いるITOフィルムである。
 しかしながら、ITOフィルムでは長波長領域の光線透過率が低いことに起因する色調の課題があり、またITOは半導体であるため高導電化に限界があること、導電層がセラミックであることから折り曲げ性に問題点があった。このため、より高透過率かつ高導電性を有するフレキシブルフィルムの要求があった。
 そこで、現在、次世代の透明導電フィルムとして、カーボンナノチューブ、メッシュ構造を構成する金属細線、銀ナノワイヤー等の金属ナノ材料を用いた透明導電フィルムが種々提案されている(特許文献1~3)。
 カーボンナノチューブを用いた場合、導電性フィラーとなるカーボンナノチューブの導電性が金属材料より劣ることから透明導電フィルムとしての性能を満足させるものではなかった。また金属メッシュ構造からなる透明導電フィルムは導電性が高いものの、金属細線が目視できてしまうなどの問題点があった。金属ナノワイヤーを用いた透明導電フィルムが導電性と透明性を両立させることが可能である。
 透明導電フィルムに用いられる金属ナノワイヤーとしては、導電性の観点から銀が広く用いられている。しかしながら、銀は導電性が高いものの、イオンマイグレーションを非常に起こしやすい金属材料であることから、フィルム基材や配線間の絶縁性に悪影響を及ぼした。またナノワイヤーのようなナノ構造体では、微小な形状変化でも、電気特性の顕著な変化を及ぼす。そのため、銀ナノワイヤーを導電材とする透明導電フィルムではデバイス等の信頼性低下につながるという問題点があった。
 そこで、銀ナノワイヤー表面をめっき等により他金属材料で被覆することによりイオンマイグレーション耐性を付与し、安定性を向上させる方法が提案されている(特許文献4~5)。しかしながらこれらの方法は、得られた銀ナノワイヤー表面をめっき処理や硫化処理しており、工程が煩雑になるほか、表面のみに他金属が形成されるため均一性、耐久性、導電性に問題があった。
 そのため、銀以外の金属材料からなるナノワイヤーについて、特に、安定性が高く、磁性材料としても用いることができる、ニッケルナノワイヤーおよびコバルトナノワイヤーに関する技術が提案されている(特許文献6~8)。
 しかしながら、これらの方法では、カーボンナノチューブ内部に金属ナノワイヤーを作製するため、金属ナノワイヤーを単独で用いることができず、さらに高温での処理が必要なこと(特許文献6)、得られたナノワイヤーの長さが10μm程度までと比較的短いナノワイヤーしか得られないこと(特許文献7、8)という問題点があった。
 ナノワイヤー長が長い強磁性体金属ナノワイヤーを得る方法が提案されている(特許文献9~10)。しかしながら、これらの方法で得られたナノワイヤーは分散液化されることを想定されていないため、ナノワイヤー長は長いもののナノワイヤー同士が複雑に絡み合い、シート状または綿状に凝集した状態となった。このため、当該方法で得られたナノワイヤーは、電池電極材料などのような構造物として使用するのに適しているが、ナノワイヤー形状を維持したまま解繊することが難しく、分散液として塗料やインクへ適用することは不可能であった。
 分散液化された強磁性体金属ナノワイヤーを得る方法が開示されている(特許文献11)。この方法では、100μm程度の長さの金属ナノワイヤーが溶媒中に分散した分散液が得られる。しかしながら、当該分散液においては、ナノワイヤーが沈殿凝集しやすく、さらに該当分散液から得られるナノワイヤー膜が導電性を有するためには、貴金属でのめっきが必須であった。またナノワイヤー作製方法がテンプレート方式のため、生産性に劣った。
特開2010-229288号 特開2012-59417号 特開2012-216535号 特開2013-151752号 特開2013-155440号 特開2004-269987号 特開2005-277182号 特許4374439号 特開2004-149871号 特開2011-58021号 特開2012-238592号
 本発明は、上記課題を解決するものであって、導電性に優れた強磁性金属ナノワイヤー膜を作製できる、分散性に優れた強磁性金属ナノワイヤー分散液およびその製造方法を提供することを目的とするものである。
 本発明の要旨は以下の通りである。
(1)強磁性金属ナノワイヤーおよび高分子化合物を含むことを特徴とする強磁性金属ナノワイヤー分散液。
(2)強磁性金属ナノワイヤーの表面に高分子化合物の層を有している、(1)に記載の分散液。
(3)水、有機溶媒およびこれらの混合物からなる群から選択される分散媒をさらに含む、(1)または(2)に記載の強磁性金属ナノワイヤー分散液。
(4)分散媒が還元性を示す溶媒または酸化防止剤を含む溶媒である、(3)に記載の強磁性金属ナノワイヤー分散液。
(5)高分子化合物の溶液中で強磁性金属イオンを還元し、強磁性金属ナノワイヤーを作製する工程を含む、(1)~(4)のいずれかに記載の強磁性金属ナノワイヤー分散液の製造方法。
(6)強磁性金属ナノワイヤーを還元処理する工程をさらに含む、(5)に記載の強磁性金属ナノワイヤー分散液の製造方法。
(7)強磁性金属ナノワイヤーを、分散媒へ分散させる工程をさらに含む、(5)または(6)に記載の強磁性金属ナノワイヤー分散液の製造方法。
(8)分散媒が還元性を示す溶媒または酸化防止剤を含む溶媒である、(7)に記載の強磁性金属ナノワイヤー分散液の製造方法。
(9)(1)~(4)のいずれかに記載の強磁性金属ナノワイヤー分散液から形成されることを特徴とする導電膜。
(10)基板上に(9)に記載の導電膜を形成させたことを特徴とする積層体。
 本発明の強磁性金属ナノワイヤー分散液は、分散性に優れており、さらに導電性に優れた強磁性金属ナノワイヤー膜を提供することがでる。また本発明の強磁性金属ナノワイヤー分散液は、優れた分散性を長期にわたって維持することができるので、分散安定性にも優れている。
実施例1で得られたニッケルナノワイヤー分散液の乾燥物の走査型電子顕微鏡画像である。 実施例1で得られたニッケルナノワイヤーをリンタングステン酸染色し撮影した透過型電子顕微鏡画像である。 比較例1で得られたニッケルナノワイヤーをリンタングステン酸染色し撮影した透過型電子顕微鏡画像である。 還元処理前のニッケルナノワイヤーのX線光電子分光法(ニッケル2pナローバンド)のスペクトルである。 還元処理後のニッケルナノワイヤーのX線光電子分光法(ニッケル2pナローバンド)のスペクトルである。 実施例1から得られたニッケルナノワイヤーのX線光電子分光法(ニッケル2pナローバンド)のスペクトルである。
[強磁性金属ナノワイヤー分散液]
 本発明の強磁性金属ナノワイヤー分散液は、強磁性金属ナノワイヤー(以下、単に「ナノワイヤー」ということがある)と高分子化合物を含有し、通常は分散媒をさらに含有する。
 ナノワイヤーを構成する強磁性金属としては、鉄、コバルト、ニッケル、ガドリニウム、およびこれらを主成分とする合金が挙げられる。中でも、ニッケルは、導電性が高いので好ましい。
 強磁性金属ナノワイヤーの形状は特に限定されないが、ナノワイヤーは通常、例えば図1に示すように全体として略線状を有している。強磁性金属ナノワイヤーの寸法は通常、平均直径が10~200nm、平均長が1~100μm程度である。本発明においては、平均直径は10~150nmであることがより好ましく、平均長は5~50μmであることがより好ましい。
 得られる塗膜が良好な導電性を有しつつ、良好な光線透過率を示す観点から、強磁性金属ナノワイヤーのアスペクト比(平均長/平均径)は40~200、特に45~150が好ましい。
 本発明においてナノワイヤーは、塗膜導電性のさらなる向上の観点から、強磁性金属が酸化またはイオン化した劣化部位が少ない方が好ましい。特にナノワイヤーの表面から深さ約10nmまでにおいて、劣化部位が少なく、すなわち強磁性金属の存在が確認できることが好ましい。ナノワイヤーの表面から深さ約10nmまでにおける強磁性金属の有無は、X線光電子分光法で判断することができる。例えば、ニッケルナノワイヤーの場合、X線光電子分光法において、図5および図6に示すように、852.7eV付近に出る金属ニッケルのピークが検出できれば、ナノワイヤーの表面から深さ約10nmまでに金属ニッケルが存在すると言える。また、表面に劣化部位が多い場合、図4のように852.7eV付近に金属ニッケルのピークが確認できない。
 ナノワイヤーの上記表面層において強磁性金属の存在が確認できる(すなわち強磁性金属が有る)とは、例えばニッケルの場合、X線光電子分光法によるスペクトルにおいて、接線の傾きが0となる部分が851.5~853.5eVに存在することを意味する。
 本発明においてナノワイヤーは、分散性および塗膜導電性の観点から、その表面に高分子化合物の層(皮膜)を有することが好ましい。このような高分子化合物層の平均厚みとしては、10nm未満が好ましく、さらに好ましくは7nm以下である。高分子化合物の層が10nm未満であれば、成膜後のナノワイヤー膜における表面抵抗率への影響を抑え、ナノワイヤーの分散性を担保できる。また、高分子化合物層の平均厚みは通常、1nm程度以上である。高分子化合物層は、熱分解GC/MS(ガスクロマトグラフィー質量分析法)により、高分子化合物層の有無と種類について、確認可能である。高分子化合物層は、染色処理を施し、透過型電子顕微鏡で観察することで、図2のようにその存在および厚みを確認することが可能である。高分子化合物層を有していない場合、染色処理を施しても、図3に示すように高分子化合物層は確認できない。ナノワイヤーが表面に高分子化合物層を有する場合、当該層表面から深さ10nmまでにおいて、強磁性金属の存在が確認できることが好ましい。ナノワイヤーが表面に高分子化合物層を有する場合、ナノワイヤーの高分子化合物層の表面から深さ約10nmまでにおいて、強磁性金属の存在が確認できることが好ましい。
 高分子化合物層を構成する高分子化合物は、特に限定されるものではないが、後述する分散媒との組み合わせが重要である。高分子化合物は、分散媒に対して溶解性を有する高分子を用いる。高分子化合物が分散媒に対して溶解性を有するとは、分散媒に溶解可能という意味であり、25℃の分散媒100質量部に対して少なくとも0.1質量部の高分子化合物が溶解できればよい。高分子化合物がたとえ分散媒に対して溶解性を有していても、ナノワイヤー表面に一旦、層を形成した高分子化合物は、分散液中、分散媒に溶出することなく、ナノワイヤー表面に残存する。
 例えば、水溶媒に強磁性金属ナノワイヤーを分散させる場合、カルボキシルメチルセルロールナトリウム塩、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルアルコール、ポリエチレングリコール、メチルセルロース、ヒドロキシエチルセルロース、ポリアクリルアミド、ポリビニルピロリドンなどの水溶性の高分子化合物が好ましい。
 また例えば、エタノールなどの極性を有する有機溶媒に強磁性金属ナノワイヤーを分散させる場合は、ポリビニルアルコール、ポリエチレングリコール、メチルセルロース、ポリビニルピロリドンなどのアルコールに溶解性を示す高分子化合物が好ましい。
 このような高分子化合物の中で、ポリビニルピロリドンは、溶解性を示す溶媒種が多いため、さらに好ましい。
 高分子化合物の分子量は、後述する反応溶液のB型粘度計による粘度が規定の範囲内になるような分子量であればよい。
 本発明において分散媒は、特に限定されない。分散媒は通常、水、有機溶媒およびこれらの混合物であってよい。有機溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、ノルマルプロピルアルコール、ブタノール、ペンタノール、ヘキサノールなどのモノアルコール(特に飽和脂肪族モノアルコール);エチレングリコール、プロピレングリコールなどのポリオール(特に飽和脂肪族ポリオール);アセトニトリルなどのニトリル化合物;酢酸エチル、酢酸ブチルなどのエステル化合物が挙げられる。分散性および塗膜導電性のさらなる向上の観点から、分散媒は、水、飽和脂肪族モノアルコール、飽和脂肪族ポリオール、およびこれらの混合物が好ましい。低沸点、臭気および安全性の観点からは、イソプロピルアルコール、ノルマルプロピルアルコールなどが好ましい。
 分散媒は還元性を示す溶媒または酸化防止剤を含む溶媒であることが好ましい。分散液の保管中に起こるナノワイヤー表面の酸化やイオン化がより一層、防止され、ナノワイヤー表面層に強磁性金属が含まれやすくなるためである。その結果として、塗膜導電性がより一層向上する。
 還元性を示す溶媒は、加熱により還元性を示す溶媒および室温(25℃)でも還元性を示す溶媒である。そのような還元性を示す溶媒としては、上記した分散媒のうち、例えば、エチレングリコール、プロピレングリコールなどのポリオール、特に飽和脂肪族ポリオールが挙げられる。
 酸化防止剤を含む溶媒は、酸化防止剤および溶媒を含むものである。酸化防止剤は分散液の分野で酸化防止作用のある化合物として使用されているものであれば特に限定されず、例えば、後述する金属イオン還元処理工程で使用される還元剤と同様のものが使用される。好ましい酸化防止剤として、ヒドロキシルアミン類(特にジエチルヒドロキシルアミン)、ヒドラジン、ヒドラジン一水和物、シュウ酸、ギ酸などが使用される。このような酸化防止剤が添加される溶媒としては、上記した分散媒のうち、当該酸化防止剤を溶解し得る溶媒であれば特に限定されない。そのような溶媒として、例えば、水、上記モノアルコール(特に飽和脂肪族モノアルコール)、上記ニトリル化合物、上記エステル化合物、およびこれらの混合物などが挙げられる。
 分散液中での酸化防止剤の濃度は、ナノワイヤー表面の酸化が抑制される限り特に限定されない。当該濃度は、酸化防止剤の種類によって異なるため、一概に規定できるものではないが、通常は、当該分散液の全量に対して、0.01~10質量%程度である。具体的には、例えば、酸化防止剤がヒドラジン一水和物であれば、その濃度は0.05~2質量%が好ましい。また例えば、酸化防止剤がヒドロキシルアミン類(特にジエチルヒドロキシルアミン)であれば、その濃度は0.1~5質量%が好ましい。また例えば、酸化防止剤がギ酸であれば、その濃度は0.01~10質量%が好ましい。また例えば、酸化防止剤がシュウ酸であれば、その濃度は0.01~0.1質量%が好ましい。
 分散液中でのナノワイヤーの濃度は、特に限定されず、各種成膜方法および各用途に適した濃度に調整することができる。例えば、湿式成膜をおこなう場合、当該ナノワイヤー濃度は、当該分散液の全量に対して、通常、0.1~5質量%であり、0.1~2.0質量%とすることが好ましい。
 本発明のナノワイヤー分散液には、本発明の効果を損なわない範囲において、成膜性およびその改善のため、バインダー樹脂、濡れ剤、レベリング剤などの添加剤を含有させることができる。
 バインダー樹脂を含有させることにより、塗工後の金属ナノワイヤーと基材との密着性を保持することができる。バインダー樹脂は、分散媒に溶解するものであっても、溶解することなく分散するものであってもよい。好ましくは分散媒に溶解するバインダー樹脂を用いる。
 バインダー樹脂の具体例として、例えば、ポリメチルメタクリレート、ポリアクリレート、ポリアクリロニトリル等のポリアクリロイル化合物;ポリビニルアルコール;ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリカーボネート;エポキシ;ポリプロピレン、ポリメチルペンタン等の脂肪族ポリオレフィン;ポリノルボルネン等の脂環式オレフィン;ニトロセルロース等のセルロース類;シリコーン樹脂;ポリアセテート;ポリ塩化ビニル、塩素化ポリエチレン、塩素化ポリプロピレン等の含塩素ポリマー;ポリフルオロビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、フルオロオレフィン-ヒドロカーボンオレフィン共重合ポリマー等の含フッ素ポリマー等が挙げられる。バインダー樹脂の含有量は、本発明の効果を損なわない範囲で適宜選択される。バインダー樹脂の含有量は、塗膜導電性のさらなる向上の観点から、ナノワイヤーとバインダー樹脂の質量比として1:0.01~1:10が好ましい。
[強磁性金属ナノワイヤー分散液の製造方法]
 本発明の強磁性金属ナノワイヤー分散液は、例えば、以下の方法により製造することができる。まず、強磁性金属ナノワイヤーを作製する。強磁性金属ナノワイヤーの作製方法としては、特に限定されない。好ましくは、以下に示す金属イオン還元処理工程を行い、強磁性金属ナノワイヤーを作製する。
・金属イオン還元処理工程
 本工程では、高分子化合物の溶液中で強磁性金属イオンを還元し、強磁性金属ナノワイヤーを作製する。本工程で使用される高分子化合物は、ナノワイヤーが表面に有し得る高分子化合物層を構成する上記高分子化合物と同様のものが使用される。高分子化合物を含む状態で強磁性金属ナノワイヤーを作製することにより、高分子化合物がテンプレート的に作用し、作製時のナノワイヤーの凝集および融着を抑制する。さらに、強磁性金属ナノワイヤーに高分子化合物層を好適に形成できる。その結果、ナノワイヤーの絡み合いを防ぎ、ナノワイヤーの分散性低下を抑制することができる。以下に、本工程の詳細を示す。
 強磁性金属イオンを還元するためには、強磁性金属の塩を溶媒に溶解させることが好ましい。本工程で使用される強磁性金属は、ナノワイヤーを構成する上記強磁性金属と同様の金属が使用される。強磁性金属塩としては、使用する溶媒に可溶であり、還元可能な状態で強磁性金属イオンを供給できるものであればよい。例えば、強磁性金属の塩化物、硫酸塩、硝酸塩、酢酸塩などが挙げられる。これらの塩は、水和物でも、無水物でもよい。
 強磁性金属イオンの濃度は、ナノワイヤーが作製され得る限り、特に限定されない。強磁性金属イオンの濃度は、反応溶液全量に対して例えば、50μmol/g以下が好ましく、さらに25μmol/g以下が好ましい。強磁性金属イオンの濃度を、50μmol/g以下にすることにより、作製時における高分子化合物のテンプレート的作用を効果的に得ることができる。強磁性金属イオンの濃度の下限値は特に限定されないが、当該濃度は通常、1μmol/g以上、特に10μmol/g以上である。
 強磁性金属イオンを還元するために使用する還元剤は特に限定されない。例えば、ヒドラジン、ヒドラジン一水和物、塩化第一鉄、次亜リン酸、水素化ホウ素塩、アミノボラン類、水素化アルミニウムリチウム、亜硫酸塩、ヒドロキシルアミン類(例えば、ジエチルヒドロキシルアミン)、亜鉛アマルガム、水素化ジイソブチルアルミニウム、ヨウ化水素酸、アスコルビン酸、シュウ酸、ギ酸などが挙げられる。これらの中で、還元効率、安全性、除去性、還元後の強磁性金属の特性維持などから、ヒドラジン一水和物が好ましい。
 本工程における還元剤の濃度は、ナノワイヤーが作製され得る限り、特に限定されない。還元剤の濃度は、反応溶液全量に対して、好ましくは0.5~5.0質量%程度であり、この濃度で好適に強磁性金属イオンを還元することが可能である。
 還元反応は、異方性を有する線状にナノワイヤーを成長させるために、外圧をかけるのが好ましい。外圧としては、撹拌などによる液体の流れ、重力、磁力などが挙げられる。これらの中で、制御のしやすさから、磁力をかけて、還元反応を行うのが好ましい。磁力としては、反応溶液中心に50~200mT程度の磁束密度がかかれば、磁場方向に沿って、ナノワイヤーを好適に得ることが可能である。
 還元反応の溶媒としては、水、極性を有する有機溶媒またはこれらの混合物などを用いることができる。極性を有する有機溶媒とは、例えば、メタノール、エタノール、イソプロピルアルコール、ノルマルプロピルアルコール、ブタノール、ペンタノール、ヘキサノール、エチレングリコール、プロピレングリコールなどが挙げられる。これらの中で、強磁性金属塩および高分子化合物の溶解性、沸点、粘度等の観点から、有機溶媒、特にエチレングリコールがさらに好ましい。
 還元反応において、錯化剤の添加を行うこともできる。錯化剤の添加は、強磁性金属イオンと錯形成を行うことで、強磁性金属イオンの供給速度を制御し、ナノワイヤーの形成を容易にするために行う。
 錯化剤としては、特に限定されないが、使用する強磁性金属イオンとの錯形成定数が高い方が好ましい。例えば、クエン酸、エチレンジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、ニトリロ三酢酸、ヒドロキシエチルイミノ二酢酸、ヒドロキシイミノジコハク酸、アミノトリメチレンホスホン酸、ヒドロキシエタンホスホン酸酒石酸、コハク酸、アジピン酸、マレイン酸などが挙げられる。これらは、ナトリウムなどと塩を形成していてもよい。錯化剤を用いる場合、その濃度は、0.1nmol/g以上とすることが好ましい。
 還元反応において、核形成剤となる貴金属塩を添加するのが好ましい。貴金属塩とは、金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウムのいずれかから成る金属塩である。貴金属塩は還元性が高く、ナノ粒子として液相還元され易い。そのため、貴金属塩を反応溶液に添加することにより、数nmサイズのナノ粒子核が生成し、そのナノ粒子核を足場とし、強磁性金属ナノワイヤーの形成を容易にする。貴金属塩としては、塩化白金酸、塩化金酸、塩化パラジウムなどが挙げられる。これらの中で、塩化白金酸は液相還元により、より微細なナノ粒子が均一に生成するため、好ましい。
 貴金属塩の濃度としては、特に限定されない。上記のように、貴金属塩から生成するナノ粒子核がナノワイヤーの形成の足場となるため、その濃度が高いほど、ナノワイヤーの径が細くなり、濃度が低いほど、ナノワイヤーの径は太くなる。通常、その濃度は0.001~5μmol/g程度とすることが好ましい。
 還元反応溶液のpHおよび温度は、還元剤が強磁性金属イオンを還元できるpH、温度に設定すればよい。一般的に、温度が高い、あるいはpHが高いほど、還元剤の還元力は高くなるため、高温、高pHが好ましいが、溶媒、還元剤、強磁性金属塩の種類により、適応可能な範囲がある。例えば、エチレングリコール中または水溶媒中でヒドラジン一水和物を使い還元反応を行う場合、その温度は70℃から100℃、pHは10から12とすることが好ましい。
 還元反応の還元時間は、上記寸法のナノワイヤーが作製され得る限り特に限定されず、例えば10分~5時間である。
 還元反応において、反応溶液は上記の高分子化合物を含むことが好ましい。高分子化合物の濃度は、高分子化合物の構造、分子量などにより、その適域が異なるが、反応温度における反応溶液のB型粘度計による粘度が20mPa・s~500mPa・s、特に40mPa・s~400mPa・sとなるような濃度とすることが好ましい。これにより、好適な高分子化合物層を有した強磁性金属ナノワイヤーを作製することができ、ナノワイヤーの凝集および融着を抑制できる。
 本工程においては、強磁性金属ナノワイヤーを作製した後、還元剤や副生物の除去を目的とした精製を行うことができる。この時、強磁性金属ナノワイヤーの表面に高分子化合物層を有していると、ナノワイヤーの絡み合いおよび凝集を抑制することができる。精製方法としては、一般的な方法である、ろ過、遠心分離以外にも、限外ろ過膜に入れた強磁性金属ナノワイヤー分散液を溶媒に浸漬する方法、および磁石を使用し強磁性金属ナノワイヤーを回収する方法が挙げられる。また、これらの精製処理を実施しても、ナノワイヤー表面の高分子化合物層は剥がれ落ちない。
 本発明においては、強磁性ナノワイヤーを、分散処理の前に、還元処理することが好ましい。詳しくは塗膜導電性のさらなる向上の観点から、金属イオン還元処理工程の後、分散媒への分散処理工程の前に、強磁性金属ナノワイヤーを、以下に示すナノワイヤー還元処理工程に供することが好ましい。
・ナノワイヤー還元処理工程
 本工程では、強磁性金属ナノワイヤーを還元処理する。この還元処理により、ナノワイヤーの作製および精製中に起こる表面の酸化やイオン化による劣化部位をより一層十分に除去することができ、ナノワイヤー表面層に強磁性金属が含まれやすくなる。
 本工程の還元処理としては、強磁性金属ナノワイヤーの還元処理が達成される限り特に限定されない。例えば、還元性を示す溶媒中または還元剤を含む溶媒中、強磁性金属ナノワイヤーを加熱する。このような還元処理を実施しても、ナノワイヤー表面の高分子化合物層は剥がれ落ちない。
 本工程で使用される還元性を示す溶媒または還元剤を含む溶媒はそれぞれ、強磁性金属ナノワイヤー分散液の説明で記載した同様の、還元性を示す溶媒または酸化防止剤を含む溶媒が使用される。
 本工程における還元性を示す溶媒について、好ましい溶媒は、エチレングリコール、プロピレングリコールなどのポリオール、特に飽和脂肪族ポリオールである。
 本工程における還元剤を含む溶媒について、好ましい還元剤として、ヒドロキシルアミン類、ヒドラジン、ヒドラジン一水和物、シュウ酸、ギ酸などが使用される。このような還元剤が添加される溶媒としては、当該還元剤を溶解し得る溶媒であれば特に限定されない。好ましい溶媒として、水、上記モノアルコール(特に飽和脂肪族モノアルコール)が使用される。
 還元剤を含む溶媒中での還元剤の濃度は、ナノワイヤー表面の還元が達成される限り特に限定されない。当該濃度は、反応溶液全量に対して、通常0.01~10質量%であり、好ましくは0.05~5質量%である。
 反応溶液中でのナノワイヤー濃度は、ナノワイヤー表面の還元が達成される限り特に限定されない。当該濃度は、反応溶液全量に対して、通常0.01~10質量%であり、好ましくは0.1~5.0質量%である。
 本工程における加熱温度および加熱時間は、ナノワイヤー表面の還元が達成される限り特に限定されない。当該加熱温度は通常、70~200℃である。当該加熱時間は通常、1~5時間である。
 本工程においては、強磁性金属ナノワイヤーを還元処理した後、還元剤や副生物の除去を目的とした精製を行うことができる。精製方法は、金属イオン還元処理工程の説明で記載した同様の精製方法が使用される。
 本発明においては通常、金属イオン還元処理工程で回収および単離されたナノワイヤーまたはナノワイヤー還元処理工程で回収および単離されたナノワイヤーを、以下に示す分散処理工程に供する。上記各工程でナノワイヤーを回収および単離しない場合は、必ずしも分散処理工程を行う必要はなく、上記各工程で得られたナノワイヤーを含む分散液をそのまま本発明のナノワイヤー分散液として使用することができる。
・分散処理工程
 本工程では、強磁性金属ナノワイヤーを分散媒へ分散させる。これにより、本発明の強磁性金属ナノワイヤー分散液を得る。本工程は通常、非加熱の状態、例えば室温(25℃)で行う。分散媒は、強磁性金属ナノワイヤー分散液の説明で記載した同様の分散媒が使用される。ナノワイヤーの配合量は、強磁性金属ナノワイヤー分散液の説明で記載したナノワイヤー分散液中のナノワイヤー濃度が達成されるような量であればよい。
 本発明の強磁性金属ナノワイヤー分散液に、上記した添加剤を含有させる場合、添加剤は、分散媒に予め含有させればよい。
・特定の実施態様
 本発明の強磁性金属ナノワイヤー分散液は通常、少なくとも金属イオン還元処理工程および分散処理工程を行うことにより、得ることができる。
 本発明の強磁性金属ナノワイヤー分散液を、以下の好ましい実施態様AまたはBに係る工程を経て得ることにより、ナノワイヤー表面層において強磁性金属が確認できるようになり、塗膜導電性がより一層向上する。
 好ましい実施態様A:
(i)金属イオン還元処理工程;および
(ii)分散処理工程(当該工程中、分散媒として還元性を示す溶媒または酸化防止剤を含む溶媒を使用する)。
 好ましい実施態様B:
(i)金属イオン還元処理工程; 
(ii)ナノワイヤー還元処理工程;および
(iii)分散処理工程(当該工程中、分散媒として還元性を示す溶媒および酸化防止剤を含む溶媒以外の溶媒を使用する)。
 本発明の強磁性金属ナノワイヤー分散液を、以下の最も好ましい実施態様に係る工程を経て得ることにより、ナノワイヤー表面層において強磁性金属が確認できるようになり、塗膜導電性が最も向上する。
 最も好ましい実施態様:
(i)金属イオン還元処理工程; 
(ii)ナノワイヤー還元処理工程;および
(iii)分散処理工程(当該工程中、分散媒として還元性を示す溶媒または酸化防止剤を含む溶媒を使用する)。
[使用方法および用途]
 本発明のナノワイヤー分散液は、基材に塗布し、乾燥することにより、膜、配線などを形成し、積層体を得ることができる。基材としては、例えば、ガラス基板、ポリエチレンテレフタレートフィルム、ポリカーボネートフィルム、シクロオレフィンフィルム、ポリイミドフィルム、ポリアミドフィルム、セラミックシート、金属板などが挙げられる。
 塗布方法は特に限定されないが、例えば、ワイヤーバーコーター塗布法、フィルムアプリケーター塗布法、スプレー塗布法、グラビアロールコーティング法、スクリーン印刷法、リバースロールコーティング法、リップコーティング法、エアナイフコーティング法、カーテンフローコーティング法、浸漬コーティング法、ダイコート法、スプレー法、凸版印刷法、凹版印刷法、インクジェット法が挙げられる。
 本発明の強磁性金属ナノワイヤー分散液は、ワイヤー分散状態が良好であるため塗工後の基材上で金属ナノワイヤーが凝集なく成膜される。このため良好な導電性を示す塗膜を形成することができる。さらに、ナノワイヤーのアスペクト比を前記範囲内とすることにより、より良好な導電性を示しながら高い光線透過率を示す塗膜を形成することができる。
 本発明のナノワイヤー分散液は塗布後、導電性の向上などを目的とした後処理を施すことができる。前記後処理としては、例えば、塗膜を高分子化合物が軟化する温度以上で保持する熱処理、塗膜を10~30MPa程度の圧力でプレスするナノワイヤーの圧着処理、プラズマクリーナーによる高分子化合物の除去処理が挙げられる。
 本発明のナノワイヤー分散液は、分散安定性に優れており、湿式塗布に適した分散液である。また、分散液から得られるナノワイヤー膜は、導電性に優れており、80%以上の高い光線透過率を有した状態でも導電性を発揮できる。そのため、導電膜、導電塗料のみならず、タッチパネル用電極、ディスプレイ用電極、太陽電池用電極、透明電磁波シールド、透明ヒーターなどに活用できる。また、本発明のナノワイヤー分散液は、強磁性金属ナノワイヤーが有する異方性、配向性、磁場応答性を活用することにより、ナノ磁性材料、異方性材料、磁性膜などに好適に用いることができる。
 次に、本発明を実施例によって説明するが、本発明はこれらの実施例によって限定されるものではない。
A.評価方法
 実施例および比較例で用いた評価方法は以下の通りである。
(1)ナノワイヤー長の測定
 試料台上で乾燥したナノワイヤーを、走査型電子顕微鏡にて撮影し、視野中のナノワイヤー長をすべて計測し、合計400本程度のナノワイヤー長から平均長、D10値、D90値を算出した。4000から6000倍で撮影することで、1視野あたり約200本程度のナノワイヤー長が計測可能である。
(2)ナノワイヤー径の測定
 支持膜付きグリッド上で乾燥したナノワイヤーを、透過型電子顕微鏡にて60万倍で撮影し、10視野中におけるナノワイヤー径の最大値、最小値、計測点の平均値を計測した。
(3)高分子化合物層の有無および厚み
 支持膜付きグリッドを使い、ナノワイヤー分散液からナノワイヤーを取り出し、5%リンタングステン酸染色を3分間施し、透過型電子顕微鏡にて60万倍で観察することで、高分子化合物層の有無を判断した。さらに、得られた画像から高分子化合物層の厚みを50箇所測定し、その平均値を高分子化合物層の厚みとした。
(4)高分子化合物層の同定
 ナノワイヤー分散液からナノワイヤーをろ過により回収し、加熱温度600℃で瞬間熱分解GC/MSにより、高分子化合物層の同定を行った。
 高分子化合物層は、分子量の低下等の違いはあると考えられるが、基本的には添加した高分子化合物種である。
(5)ナノワイヤー表面における強磁性金属の有無
 ナノワイヤー分散液からナノワイヤーをろ過により回収し、X線光電子分光法にて確認した。例えば、ニッケルの場合、ニッケルの2pバンドのナロースキャンを行い、金属ニッケルのピーク有無で判断した。
 X線光電子分光法にて測定可能な領域は表面から深さ10nmまでの層であり、測定にて金属のピークが確認できればナノワイヤーの当該表面層に強磁性金属が存在すると判断できる。
(6)ナノワイヤー分散液の分散性
 ナノワイヤー分散液を室温(25℃)下で30日間保管し、以下の基準で評価した。
 A:ナノワイヤーが凝集せず、良好な分散性が維持できた。
 B:ナノワイヤーの凝集粒が見られたが、分散性は実用上問題なかった。
 C:分散できなかった。
(7)ナノワイヤー膜の表面抵抗率
 (6)と同様の方法により保管したナノワイヤー分散液を用いた。
 アプリケーターを使い、ナノワイヤー分散液を、スライドガラス上に塗布し、窒素下100℃で1分間乾燥し、ナノワイヤー膜を得た。得られたナノワイヤー膜の表面抵抗率について、三菱化学アナリテック社製抵抗率計MCP-T610を用い、JIS K7194に準拠して、10Vの電圧を印加し測定した。
 表面抵抗率は、MCP-T610の測定可能領域を超える場合は10Ω/sq以上とした。1010Ω/sq以下の範囲が実用上問題のない範囲であり、10Ω/sq以下の範囲が好ましい範囲であり、10Ω/sq以下の範囲がより好ましい範囲であり、10Ω/sq以下の範囲がさらに好ましい範囲であり、10Ω/sq以下の範囲が最も好ましい範囲である。
(8)ナノワイヤー膜の光線透過率
 (7)と同様の方法によりナノワイヤー膜を作製し、スライドガラスをブランク値として、波長550nmにおける光線透過率を測定した。
 光線透過率は、70%以上の範囲が好ましい範囲であり、80%以上の範囲がより好ましい範囲である。
(9)ヘイズ値
 (7)と同様の方法によりナノワイヤー膜を作製し、スライドガラスをブランク値として、全光線における透過光からヘイズ値を測定した。
 ヘイズ値は、30%以下の範囲が好ましい範囲であり、20%以下の範囲がより好ましい範囲であり、10%以下の範囲がさらに好ましい範囲である。
B.材料
 実施例および比較例で用いた材料は以下のとおりである。
(1)高分子化合物
・ピッツコールK120L
 第一工業製薬社製ポリビニルピロリドン水溶液
・BS
 第一工業製薬社製カルボキシルメチルセルロースナトリウム塩
(2)溶媒、還元剤、酸化防止剤、強磁性金属塩、貴金属塩、錯化剤
 高分子化合物以外の材料に関しては、特級あるいは一級の試薬を使用した。
C.強磁性金属ナノワイヤーの作製方法
 実施例および比較例で用いた強磁性金属ナノワイヤーの作製方法は以下の通りである。
ナノワイヤーNiAの作製方法(本発明)
 エチレングリコール350gに、塩化ニッケル六水和物1.95g(8.24mmol)、クエン酸三ナトリウム二水和物0.245g(0.83mmol)を溶解した。さらに、水酸化ナトリウム1.60g、ピッツコールK120Lの乾燥物15.0g、0.054Mの塩化白金酸水溶液4.60gを順に溶解し、その後、全量で375gになるようにエチレングリコールを添加して、強磁性金属イオン溶液を作製した。
 一方、エチレングリコール100gに、水酸化ナトリウム0.50g、クエン酸三ナトリウム二水和物0.245g(0.83mmol)を溶解した。さらに、ピッツコールK120Lの乾燥物5.0g、ヒドラジン一水和物6.25gを順に溶解し、その後、全量で125gになるようにエチレングリコールを添加して、還元剤溶液を作製した。
 強磁性金属イオン溶液と還元剤溶液をいずれも90~95℃に加熱した後、温度を維持したまま混合し、反応溶液の中心に150mTの磁場を印加し、1時間30分間静置して還元反応を行った(金属イン還元処理工程:還元処理A)。溶液中のニッケルイオンの濃度は17μmol/g、高分子化合物の濃度は4%、白金イオンの濃度は0.5μmol/g、クエン酸三ナトリウム二水和物の濃度は3.3nmol/g、pHは11、反応温度におけるB型粘度計での粘度が240mPa・sであった。
 得られた反応液からナノワイヤーを精製および回収するため、反応液100gをエチレングリコールで10倍に希釈し、磁石により、ニッケルナノワイヤーを強制的に沈殿させ、上澄み液を除去する作業を繰り返し行った。作業を4回繰り返すことで、除去する上澄み液のpHが6.5~7.5になったのを確認後、ニッケルナノワイヤーNiAを回収および単離し、乾燥した。このナノワイヤーのX線光電子分光法スペクトルを図4に示す。図4の測定条件は以下の通りである。X線源:モノクロAl-Kα、X線出力:200W、光電子放出角度:75°、パスエネルギー:58.70eV、チャージシフト補正:C1sピークのC-H結合エネルギーを284.8eVに補正。
ナノワイヤーNiBの作製方法(本発明)
 エチレングリコール350gに、塩化ニッケル六水和物1.95g(8.24mmol)、クエン酸三ナトリウム二水和物0.245g(0.83mmol)を溶解した。さらに、水酸化ナトリウム1.60g、ピッツコールK120Lの乾燥物15.0g、0.054Mの塩化白金酸水溶液4.60gを順に溶解し、その後、全量で375gになるようにエチレングリコールを添加して、強磁性金属イオン溶液を作製した。
 一方、エチレングリコール100gに、水酸化ナトリウム0.50g、クエン酸三ナトリウム二水和物0.245g(0.83mmol)を溶解した。さらに、ピッツコールK120Lの乾燥物5.0g、ヒドラジン一水和物6.25gを順に溶解し、その後、全量で125gになるようにエチレングリコールを添加して、還元剤溶液を作製した。
 強磁性金属イオン溶液と還元剤溶液をいずれも80~85℃に加熱した後、温度を維持したまま混合し、反応溶液の中心に150mTの磁場を印加し、1時間30分間静置して還元反応を行った(金属イン還元処理工程:還元処理A)。溶液中のニッケルイオンの濃度は17μmol/g、高分子化合物の濃度は4%、白金イオンの濃度は0.5μmol/g、クエン酸三ナトリウム二水和物の濃度は3.3nmol/g、pHは11、反応温度におけるB型粘度計での粘度が360mPa・sであった。
 得られた反応液は、NiAと同様に精製し、ニッケルナノワイヤーNiBを回収および単離し、乾燥した。
ナノワイヤーNiCの作製方法(本発明)
 エチレングリコール350gに、塩化ニッケル六水和物1.95g(8.24mmol)、クエン酸三ナトリウム二水和物0.245g(0.83mmol)を溶解した。さらに、水酸化ナトリウム1.60g、ピッツコールK120Lの乾燥物15.0g、0.054Mの塩化白金酸水溶液4.60gを順に溶解し、その後、全量で375gになるようにエチレングリコールを添加して、強磁性金属イオン溶液を作製した。
 一方、エチレングリコール100gに、水酸化ナトリウム0.50g、クエン酸三ナトリウム二水和物0.245g(0.83mmol)を溶解した。さらに、ピッツコールK120Lの乾燥物5.0g、ヒドラジン一水和物6.25gを順に溶解し、その後、全量で125gになるようにエチレングリコールを添加して、還元剤溶液を作製した。
 強磁性金属イオン溶液と還元剤溶液をいずれも80~85℃に加熱した後、温度を維持したまま混合し、反応溶液の中心に150mTの磁場を印加し、20分間静置して還元反応を行った(金属イン還元処理工程:還元処理A)。溶液中のニッケルイオンの濃度は17μmol/g、高分子化合物の濃度は4%、白金イオンの濃度は0.5μmol/g、クエン酸三ナトリウム二水和物の濃度は3.3nmol/g、pHは11、反応温度におけるB型粘度計での粘度が360mPa・sであった。
 得られた反応液は、NiAと同様に精製し、ニッケルナノワイヤーNiCを回収および単離し、乾燥した。
ナノワイヤーNiDの作製方法(比較)
 エチレングリコール350gに、塩化ニッケル六水和物1.95g(8.24mmol)、クエン酸三ナトリウム二水和物0.245g(0.83mmol)を溶解した。さらに、水酸化ナトリウム1.60g、0.054Mの塩化白金酸水溶液4.60gを順に溶解し、その後、全量で375gになるようにエチレングリコールを添加して、強磁性金属イオン溶液を作製した。
 一方、エチレングリコール100gに、水酸化ナトリウム0.50g、クエン酸三ナトリウム二水和物0.245g(0.83mmol)を溶解した。さらに、ヒドラジン一水和物6.25gを順に溶解し、その後、全量で125gになるようにエチレングリコールを添加して、還元剤溶液を作製した。
 強磁性金属イオン溶液と還元剤溶液をいずれも80~85℃に加熱した後、温度を維持したまま混合し、反応溶液の中心に150mTの磁場を印加し、1時間30分間静置して還元反応を行った(金属イン還元処理工程:還元処理A)。溶液中のニッケルイオンの濃度は17μmol/g、高分子化合物の濃度は0%、白金イオンの濃度は0.5μmol/g、クエン酸三ナトリウム二水和物の濃度は3.3nmol/g、pHは11、反応温度におけるB型粘度計での粘度が5mPa・sであった。
 反応後のシート状に凝集した強磁性金属ナノワイヤーNiDを吸引ろ過により回収および単離し、乾燥した。
ナノワイヤーNiEの作製方法(本発明)
 純水50gに、塩化ニッケル六水和物0.59g(2.48mmol)、クエン酸三ナトリウム二水和物0.37g(1.26mmol)を溶解した。さらに、5%水酸化ナトリウム水溶液を滴下し、pHを11.5に調整した後、BS 1gを溶解した。溶解後、0.054Mの塩化白金酸水溶液0.93gを添加し、その後、全量で75gになるように水を追加し、強磁性金属イオン溶液を作製した。
 一方、純水20gに、5%水酸化ナトリウム40mg、ヒドラジン一水和物1.25gを添加し還元剤溶液を作製した。その後、全量で25gになるように純水を添加し、還元剤溶液を作製した。
 強磁性金属イオン溶液と還元剤溶液をいずれも80~85℃に加熱した後、温度を維持したまま混合し、反応溶液の中心に150mTの磁場を印加し、1時間静置して還元反応を行った(金属イン還元処理工程:還元処理A)。溶液中のニッケルイオンの濃度は24.8μmol/g、高分子化合物の濃度は1%、白金イオンの濃度は0.5μmol/g、クエン酸三ナトリウム二水和物の濃度は12.6nmol/g、pHは11.5、反応温度におけるB型粘度計での粘度が50mPa・sであった。
 得られた反応液からナノワイヤーを精製、回収するため、反応液100gを純水で10倍に希釈し、磁石により、ニッケルナノワイヤーを強制的に沈殿させ、上澄み液を除去する作業を繰り返し行った。作業を4回繰り返すことで、除去する上澄み液のpHが6.5~7.5になったのを確認後、ニッケルナノワイヤーNiEを回収および単離し、乾燥した。
 作製したナノワイヤーの寸法および表面状態を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例1
 ニッケルナノワイヤーNiA100mgとエチレングリコール20gを混合し、150℃で3時間加熱することにより、還元処理を行った(ナノワイヤー還元処理工程:還元処理B)。還元処理Bにおけるナノワイヤーの反応溶液全量に対する濃度を表2に示す。加熱後、吸引ろ過にてナノワイヤーを回収した。回収したナノワイヤーのX線光電子分光法スペクトルを図5に示す。図5の測定条件は以下の通りである。X線源:モノクロAl-Kα、X線出力:200W、光電子放出角度:75°、パスエネルギー:58.70eV、チャージシフト補正:C1sピークのC-H結合エネルギーを284.8eVに補正。回収したナノワイヤーを100mgのヒドラジン一水和物を含むイソプロパノールと混合し、全量で20gになるようにイソプロパノール量を調製し、ナノワイヤー分散液を得た(分散処理)。分散処理におけるナノワイヤーおよび酸化防止剤の分散液全量に対する濃度を表2に示す。この分散液を乾燥したものを撮影したのが図1および図2であり、ナノワイヤーのX線光電子分光法スペクトルを図6に示す。図6の測定条件は以下の通りである。X線源:モノクロAl-Kα、X線出力:200W、光電子放出角度:75°、パスエネルギー:58.70eV、チャージシフト補正:C1sピークのC-H結合エネルギーを284.8eVに補正。
実施例2~9
 表2に記載のナノワイヤーを用いたこと、および還元処理Bにおけるナノワイヤー濃度および分散処理におけるナノワイヤー濃度、溶媒の種類および還元剤、酸化防止剤の種類および濃度を表2に示すように変更したこと以外、実施例1と同様の方法により、ナノワイヤー分散液を得た。
実施例10
 NiA100mgを100mgのヒドラジン一水和物を含むイソプロパノールと混合し、全量で20gになるようにイソプロパノール量を調製し、窒素雰囲気下で30分間撹拌することで、ナノワイヤー分散液を得た(分散処理)。分散処理におけるナノワイヤーおよび酸化防止剤の分散液全量に対する濃度を表2に示す。
実施例11
 NiE100mgを20mgのシュウ酸を含む純水と混合し、全量で20gになるように純水量を調製し、窒素雰囲気下で30分間撹拌することで、ナノワイヤー分散液を得た(分散処理)。分散処理におけるナノワイヤーおよび酸化防止剤の分散液全量に対する濃度を表2に示す。
実施例12
 NiE100mgを20mgのシュウ酸を含む純水と混合し、全量で20gになるように純水量を調製し、窒素雰囲気下で80℃、30分間撹拌することで、ナノワイヤー分散液を得た(ナノワイヤー還元処理工程:還元処理B)。還元処理Bにおけるナノワイヤーおよび酸化防止剤の反応溶液全量に対する濃度を表2に示す。
実施例13
 NiA100mgをイソプロパノールと混合し、全量で20gになるようにイソプロパノール量を調製し、ナノワイヤー分散液を得た。本実施例では還元処理Bを行わず、分散処理において酸化防止剤は使用しなかった。
比較例1
 NiD100mgをイソプロパノールと混合し、全量で20gになるようにイソプロパノール量を調整した。その後、超音波ホモジナイザーにて分散処理を行った。このナノワイヤーを撮影したのが図3である。
比較例2
 ナノワイヤーNiDを用いたこと以外、実施例1と同様の方法により、ナノワイヤー分散液を得た。
比較例3
 ナノワイヤーNiDを用いたこと以外、実施例10と同様の方法により、ナノワイヤー分散液を得た。
比較例4
 ナノワイヤーNiDを用いたこと、および分散処理において酸化防止剤は使用しなかったこと以外、実施例1と同様の方法により、ナノワイヤー分散液を得た。
 実施例および比較例で得られたナノワイヤー分散液の製造条件および評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例1から14の強磁性金属ナノワイヤー分散液は、いずれもナノワイヤー表面に高分子化合物層を有しており、分散性に優れていた。このようなナノワイヤー分散液から製造された塗膜は導電性および透明性に優れていた。
 実施例1から12において最終的に得られたナノワイヤー分散液には酸化防止剤または還元性を示す溶媒が含まれているため、分散性および塗膜導電性が特に優れていた。
 比較例1のナノワイヤー分散液は、ナノワイヤー表面に高分子化合物層を有していないため、分散性に乏しかった。このようなナノワイヤー分散液を用いて得られた塗膜は導電性に乏しいものであった。
 比較例2から4のナノワイヤー分散液は、ナノワイヤー表面に高分子化合物層を有していないため、ナノワイヤーの還元処理(還元処理B)および/または酸化防止剤を含む分散媒への分散処理を行っても、分散性および塗膜導電性に乏しかった。
 本発明の強磁性金属ナノワイヤー分散液は、導電膜および導電塗料の製造のみならず、タッチパネル用電極、ディスプレイ用電極、太陽電池用電極、透明電磁波シールド、透明ヒーターなどの製造に活用できる。また、本発明の強磁性金属ナノワイヤー分散液は、強磁性金属ナノワイヤーが有する異方性、配向性、磁場応答性を活用して、ナノ磁性材料、異方性材料、磁性膜などの製造に好適に用いることができる。

Claims (10)

  1.  強磁性金属ナノワイヤーおよび高分子化合物を含むことを特徴とする強磁性金属ナノワイヤー分散液。
  2.  強磁性金属ナノワイヤーの表面に高分子化合物の層を有している、請求項1に記載の分散液。
  3.  水、有機溶媒およびこれらの混合物からなる群から選択される分散媒をさらに含む、請求項1または2に記載の強磁性金属ナノワイヤー分散液。
  4.  分散媒が還元性を示す溶媒または酸化防止剤を含む溶媒である、請求項3に記載の強磁性金属ナノワイヤー分散液。
  5.  高分子化合物の溶液中で強磁性金属イオンを還元し、強磁性金属ナノワイヤーを作製する工程を含む、請求項1~4のいずれかに記載の強磁性金属ナノワイヤー分散液の製造方法。
  6.  強磁性金属ナノワイヤーを還元処理する工程をさらに含む、請求項5に記載の強磁性金属ナノワイヤー分散液の製造方法。
  7.  強磁性金属ナノワイヤーを、水、有機溶媒およびこれらの混合物からなる群から選択される分散媒へ分散させる工程をさらに含む、請求項5または6に記載の強磁性金属ナノワイヤー分散液の製造方法。
  8.  分散媒が還元性を示す溶媒または酸化防止剤を含む溶媒である、請求項7に記載の強磁性金属ナノワイヤー分散液の製造方法。
  9.  請求項1~4のいずれかに記載の強磁性金属ナノワイヤー分散液から形成されることを特徴とする導電膜。
  10.  基板上に請求項9に記載の導電膜を形成させたことを特徴とする積層体。
PCT/JP2015/061881 2014-04-21 2015-04-17 強磁性金属ナノワイヤー分散液およびその製造方法 WO2015163258A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/305,514 US10522274B2 (en) 2014-04-21 2015-04-17 Ferromagnetic metal nanowire dispersion and method for manufacturing same
CN201580020292.8A CN106233394A (zh) 2014-04-21 2015-04-17 强磁性金属纳米线分散液及其制造方法
KR1020167029074A KR102297023B1 (ko) 2014-04-21 2015-04-17 강자성 금속 나노와이어 분산액 및 그의 제조 방법
JP2016514905A JP6616287B2 (ja) 2014-04-21 2015-04-17 強磁性金属ナノワイヤー分散液およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-087378 2014-04-21
JP2014087378 2014-04-21

Publications (1)

Publication Number Publication Date
WO2015163258A1 true WO2015163258A1 (ja) 2015-10-29

Family

ID=54332424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061881 WO2015163258A1 (ja) 2014-04-21 2015-04-17 強磁性金属ナノワイヤー分散液およびその製造方法

Country Status (6)

Country Link
US (1) US10522274B2 (ja)
JP (1) JP6616287B2 (ja)
KR (1) KR102297023B1 (ja)
CN (1) CN106233394A (ja)
TW (1) TWI664643B (ja)
WO (1) WO2015163258A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038898A1 (ja) * 2014-09-12 2016-03-17 出光興産株式会社 組成物
WO2017159537A1 (ja) * 2016-03-14 2017-09-21 ユニチカ株式会社 ナノワイヤーおよびその製造方法、ナノワイヤー分散液ならびに透明導電膜
JP2018150607A (ja) * 2017-03-14 2018-09-27 住友金属鉱山株式会社 ニッケル粉末の水スラリーとその製造方法
WO2019073833A1 (ja) 2017-10-13 2019-04-18 ユニチカ株式会社 ニッケルナノワイヤーを含有するペースト
KR20190051975A (ko) 2016-09-27 2019-05-15 유니티카 가부시끼가이샤 금속 나노와이어
WO2021024952A1 (ja) * 2019-08-06 2021-02-11 ユニチカ株式会社 めっき下地剤およびそれを用いた積層体
WO2021107136A1 (ja) * 2019-11-28 2021-06-03 ユニチカ株式会社 電磁波遮蔽材料
CN113426999A (zh) * 2021-07-14 2021-09-24 重庆邮电大学 一种核壳异质结构磁性纳米线及其制备方法与应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9776248B2 (en) * 2014-01-24 2017-10-03 United Technologies Corporation Method for synthesizing nanowires and nanofoam
CN107201600B (zh) * 2017-07-19 2019-07-05 清华大学深圳研究生院 一种无纺布及其制备方法
CN108172336A (zh) * 2017-12-26 2018-06-15 张家港康得新光电材料有限公司 导电透明薄膜的制程方法及其应用
JP2019128992A (ja) * 2018-01-22 2019-08-01 Dowaエレクトロニクス株式会社 銀ナノワイヤインクおよびその製造法
CN109732097B (zh) * 2018-12-14 2021-11-16 珠海启尼亚生物技术有限公司 一种用于生化分析的一维磁性纳米线的制备方法
CN114867755B (zh) * 2019-12-20 2024-02-06 株式会社力森诺科 聚合物组合物的制造方法
CN115213394A (zh) * 2022-07-25 2022-10-21 同济大学 一种强磁铁基金属纳米线及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250109A (ja) * 2009-04-16 2010-11-04 Fujifilm Corp ポジ型感光性組成物、並びに透明導電膜、表示素子及び集積型太陽電池
JP2012009239A (ja) * 2010-06-24 2012-01-12 Sumitomo Bakelite Co Ltd 導電膜の製造方法及び導電膜
JP2012238592A (ja) * 2011-04-28 2012-12-06 Fujifilm Corp 金属ナノワイヤを含有する分散液および導電膜
JP2013196918A (ja) * 2012-03-21 2013-09-30 Jnc Corp 透明導電膜の形成に用いられる塗膜形成用組成物
WO2013146509A1 (ja) * 2012-03-26 2013-10-03 富士フイルム株式会社 金属ナノワイヤ分散液の製造方法、金属ナノワイヤ分散液、金属ナノワイヤ分散液を用いて形成された導電性部材、及びその導電性部材を用いたタッチパネル、及び太陽電池
JP2014505963A (ja) * 2010-12-07 2014-03-06 ロディア オペレーションズ 導電性ナノ構造、そのようなナノ構造を作製するための方法、そのようなナノ構造を含有する導電性ポリマーフィルム、およびそのようなフィルムを含有する電子デバイス
WO2015068540A1 (ja) * 2013-11-06 2015-05-14 星光Pmc株式会社 分散安定性に優れる金属ナノワイヤ分散液、透明導電膜、透明導電体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4124432B2 (ja) 2002-10-31 2008-07-23 独立行政法人科学技術振興機構 ナノサイズの金属コバルト微粒子の電解析出方法
JP3747440B2 (ja) 2003-03-10 2006-02-22 独立行政法人科学技術振興機構 金属ナノワイヤーの製造方法
JP4374439B2 (ja) 2003-10-24 2009-12-02 国立大学法人京都大学 金属ナノチューブ製造装置および金属ナノチューブの製造方法
JP2005277182A (ja) 2004-03-25 2005-10-06 Sharp Corp ナノワイヤ及びその製造方法、半導体装置
CN102250506B (zh) 2005-08-12 2014-07-09 凯博瑞奥斯技术公司 基于纳米线的透明导体
KR100874709B1 (ko) * 2006-11-14 2008-12-18 광주과학기술원 영가 철 나노와이어의 합성방법 및 지하수처리 적용
US20100101832A1 (en) 2008-10-24 2010-04-29 Applied Materials, Inc. Compound magnetic nanowires for tco replacement
JP2010229288A (ja) 2009-03-27 2010-10-14 Toray Ind Inc 導電性フィルムおよびその製造方法
JP2011058021A (ja) 2009-09-07 2011-03-24 Kyoto Univ 強磁性金属ナノ構造体の生成方法、強磁性金属ナノファイバーおよびそれを用いたはんだ、ならびにシート材
WO2011077896A1 (ja) 2009-12-24 2011-06-30 富士フイルム株式会社 金属ナノワイヤー及びその製造方法、並びに透明導電体及びタッチパネル
JP2012059417A (ja) 2010-09-06 2012-03-22 Fujifilm Corp 透明導電フィルム、その製造方法、電子デバイス、及び、有機薄膜太陽電池
JP2012216535A (ja) 2011-03-31 2012-11-08 Mitsubishi Chemicals Corp 金属ナノワイヤー含有透明導電膜及びその塗布液
KR101334601B1 (ko) * 2011-10-11 2013-11-29 한국과학기술연구원 고직선성의 금속 나노선, 이의 제조방법 및 이를 포함하는 투명 전도막
JP2013151752A (ja) 2013-03-01 2013-08-08 Konica Minolta Inc 金属ナノワイヤの製造方法
JP2013155440A (ja) 2013-03-04 2013-08-15 Konica Minolta Inc 金属ナノワイヤの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010250109A (ja) * 2009-04-16 2010-11-04 Fujifilm Corp ポジ型感光性組成物、並びに透明導電膜、表示素子及び集積型太陽電池
JP2012009239A (ja) * 2010-06-24 2012-01-12 Sumitomo Bakelite Co Ltd 導電膜の製造方法及び導電膜
JP2014505963A (ja) * 2010-12-07 2014-03-06 ロディア オペレーションズ 導電性ナノ構造、そのようなナノ構造を作製するための方法、そのようなナノ構造を含有する導電性ポリマーフィルム、およびそのようなフィルムを含有する電子デバイス
JP2012238592A (ja) * 2011-04-28 2012-12-06 Fujifilm Corp 金属ナノワイヤを含有する分散液および導電膜
JP2013196918A (ja) * 2012-03-21 2013-09-30 Jnc Corp 透明導電膜の形成に用いられる塗膜形成用組成物
WO2013146509A1 (ja) * 2012-03-26 2013-10-03 富士フイルム株式会社 金属ナノワイヤ分散液の製造方法、金属ナノワイヤ分散液、金属ナノワイヤ分散液を用いて形成された導電性部材、及びその導電性部材を用いたタッチパネル、及び太陽電池
WO2015068540A1 (ja) * 2013-11-06 2015-05-14 星光Pmc株式会社 分散安定性に優れる金属ナノワイヤ分散液、透明導電膜、透明導電体

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038898A1 (ja) * 2014-09-12 2016-03-17 出光興産株式会社 組成物
CN108602119B (zh) * 2016-03-14 2020-09-01 尤尼吉可株式会社 纳米线及其制造方法、纳米线分散液以及透明导电膜
WO2017159537A1 (ja) * 2016-03-14 2017-09-21 ユニチカ株式会社 ナノワイヤーおよびその製造方法、ナノワイヤー分散液ならびに透明導電膜
JP6334076B2 (ja) * 2016-03-14 2018-05-30 ユニチカ株式会社 ナノワイヤーおよびその製造方法、ナノワイヤー分散液ならびに透明導電膜
JPWO2017159537A1 (ja) * 2016-03-14 2018-07-05 ユニチカ株式会社 ナノワイヤーおよびその製造方法、ナノワイヤー分散液ならびに透明導電膜
CN108602119A (zh) * 2016-03-14 2018-09-28 尤尼吉可株式会社 纳米线及其制造方法、纳米线分散液以及透明导电膜
KR20180121882A (ko) 2016-03-14 2018-11-09 유니티카 가부시끼가이샤 나노와이어 및 그의 제조 방법, 나노와이어 분산액, 및 투명 도전막
KR102277621B1 (ko) * 2016-03-14 2021-07-15 유니티카 가부시끼가이샤 나노와이어 및 그의 제조 방법, 나노와이어 분산액, 및 투명 도전막
KR20190051975A (ko) 2016-09-27 2019-05-15 유니티카 가부시끼가이샤 금속 나노와이어
JP2018150607A (ja) * 2017-03-14 2018-09-27 住友金属鉱山株式会社 ニッケル粉末の水スラリーとその製造方法
US10954396B2 (en) 2017-10-13 2021-03-23 Unitika Ltd. Paste containing nickel nanowires
WO2019073833A1 (ja) 2017-10-13 2019-04-18 ユニチカ株式会社 ニッケルナノワイヤーを含有するペースト
WO2021024952A1 (ja) * 2019-08-06 2021-02-11 ユニチカ株式会社 めっき下地剤およびそれを用いた積層体
JP7478447B2 (ja) 2019-08-06 2024-05-07 ユニチカ株式会社 めっき下地剤およびそれを用いた積層体
WO2021107136A1 (ja) * 2019-11-28 2021-06-03 ユニチカ株式会社 電磁波遮蔽材料
CN113426999A (zh) * 2021-07-14 2021-09-24 重庆邮电大学 一种核壳异质结构磁性纳米线及其制备方法与应用

Also Published As

Publication number Publication date
TWI664643B (zh) 2019-07-01
US10522274B2 (en) 2019-12-31
KR102297023B1 (ko) 2021-09-02
US20170047150A1 (en) 2017-02-16
KR20160146714A (ko) 2016-12-21
JP6616287B2 (ja) 2019-12-04
JPWO2015163258A1 (ja) 2017-04-13
CN106233394A (zh) 2016-12-14
TW201545172A (zh) 2015-12-01

Similar Documents

Publication Publication Date Title
JP6616287B2 (ja) 強磁性金属ナノワイヤー分散液およびその製造方法
JP5472889B2 (ja) 金属ナノワイヤ、及び金属ナノワイヤを含む透明導電体
JP2009129882A (ja) 透明導電膜、透明導電性フィルム及びフレキシブル透明面電極
JP5683256B2 (ja) 銀ナノワイヤの製造方法
JP2009129732A (ja) 金属ナノワイヤを用いた透明導電膜の製造方法及びそれを用いて製造された透明導電膜
JP5569607B2 (ja) 透明導電膜、透明導電性フィルム及びフレキシブル透明面電極
KR20090117827A (ko) 금속성 나노입자 조성물에 기초한 차폐 및 그의 장치 및 방법
CN204651018U (zh) 导电粒子、各向异性导电性粘接剂膜以及连接结构体
US20170213615A1 (en) Metal nanoparticle dispersion and metal coating film
JP2017527943A (ja) 導電性組成物
CN108602119B (zh) 纳米线及其制造方法、纳米线分散液以及透明导电膜
JP2010080442A (ja) 導電性基材およびその前駆体並びにその製造方法
JP6381992B2 (ja) ニッケルナノワイヤー分散液の製造方法
JP2016139597A (ja) 樹枝状銀コート銅粉の製造方法
KR101540030B1 (ko) Ag가 코팅된 그래핀나노플레이트 및 이의 제조방법
JP4485174B2 (ja) 複合金属微粒子分散液およびその製造方法
JP2017165993A (ja) 金属ナノワイヤーおよびその製造方法、金属ナノワイヤー分散液ならびに透明導電膜
JP2019178386A (ja) 合金粒子分散液及びその製造方法
JP2019178385A (ja) 合金粒子分散液の製造方法
TWI791829B (zh) 光燒結型組成物及使用其的導電膜的形成方法
KR101351259B1 (ko) 은 코팅 판상 산화 제1주석 분말 및 그 합성 방법
KR20160044356A (ko) 전도성 페이스트의 제조방법 및 이로부터 제조된 전도성 페이스트
JP5760912B2 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
JP5760913B2 (ja) 有機エレクトロルミネッセンス素子およびその製造方法
TWI553661B (zh) Silver powder and its use of conductive paste, conductive paint, conductive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15783520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514905

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167029074

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15305514

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15783520

Country of ref document: EP

Kind code of ref document: A1