KR100874709B1 - 영가 철 나노와이어의 합성방법 및 지하수처리 적용 - Google Patents

영가 철 나노와이어의 합성방법 및 지하수처리 적용 Download PDF

Info

Publication number
KR100874709B1
KR100874709B1 KR1020060112218A KR20060112218A KR100874709B1 KR 100874709 B1 KR100874709 B1 KR 100874709B1 KR 1020060112218 A KR1020060112218 A KR 1020060112218A KR 20060112218 A KR20060112218 A KR 20060112218A KR 100874709 B1 KR100874709 B1 KR 100874709B1
Authority
KR
South Korea
Prior art keywords
inw
pvp
fecl
nanowires
present
Prior art date
Application number
KR1020060112218A
Other languages
English (en)
Other versions
KR20080043542A (ko
Inventor
최희철
랒 카넬 수실
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020060112218A priority Critical patent/KR100874709B1/ko
Priority to US11/889,416 priority patent/US20080173576A1/en
Publication of KR20080043542A publication Critical patent/KR20080043542A/ko
Application granted granted Critical
Publication of KR100874709B1 publication Critical patent/KR100874709B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

본 발명은 영가상태 철 나노와이어 (INW)의 손쉬운 용액-상(solution-phase) 제조공정에 관한 것으로서, 더욱 구체적으로는 환원제로써 수소화붕소나트륨를 첨가하여 폴리(비닐 피롤리돈)(PVP)와 혼합된 황산 제1철(ferrous sulfate)을 환원시키는 것을 포함하는 영가상태 철 나노와이어 (INW)의 제조방법에 관한 것이다.
본 발명에 따르면, 철 나노입자 (INP)의 생산을 위한 대안방법으로서 철 나노와이어 (INW)를 얻는 간단하고 효율적인 기법을 제공한다. 본 발명에 따라 제조된 INW는 비소, 크롬 (VI) 및 TCE와 같은 지하수 오염물질을 제거하기 위해 매우 효과적이다. 높은 반응성 INW을 제조하는 본 발명의 기법은 지하수 정화용 INW-기반 흡착제의 제조를 위하여 무한한 가능성을 가진다.

Description

영가 철 나노와이어의 합성방법 및 지하수처리 적용 {Method for synthesis of zerovalent iron nanowires and its application for groundwater treatment}
도 1은 본 발명에 따른 PVP-NZVI (검정), 상업적 NZVI (빨강), 및 PVP (파랑)의 UV-vis 분광을 나타낸다.
도 2는 본 발명에 따라 합성된 INW의 HR-TEM 이미지를 나타낸다.
도 3은 본 발명에 따른 PVP-NZVI 나노와이어 (a), NZVI (b) 및 PVP (c)의 X-RD 이미지를 나타낸다.
도 4는 본 발명에 따른 PVP중합체에서 준비된 나노와이어의 Mossbauer 스펙트럼이다.
도 5a는 pH (envelope plot)의 함수로서 INW에 대한 비소 (III)의 흡착력을 나타내는 그래프이다.
도 5b는 시간함수(kinetic plot)로 INW에 의한 Cr(VI)의 흡착능을 보여주는 그래프이다.
도 5c는 시간함수(kinetic plot)로 INW에 의한 TCE의 흡착능을 보여주는 그래프이다.
본 발명은 영가상태 철 나노와이어 (INW)의 손쉬운 용액-상(solution-phase) 제조공정에 관한 것으로서, 더욱 구체적으로는 환원제로써 수소화붕소나트륨를 첨가하여 폴리(비닐 피롤리돈)(PVP)와 혼합된 황산 제1철(ferrous sulfate)을 환원시키는 것을 포함하는 영가상태 철 나노와이어 (INW)의 제조방법에 관한 것이다.
비소 (As), 크롬 (Cr) 및 TCE와 같은 독성 요소들을 포함하는 다른 여러 오염물질에 의해 지하수의 오염이 매우 심각한 문제임에도 불구하고 지하수의 소비는 전세계에 걸쳐 빠르게 증가하고 있다. 지하수로부터 이러한 오염물질을 제거하기 위한 새로운 물질을 발명하는 것은 큰 관심대상이다. 영가철 (ZVI)는 지하수로부터 이러한 오염물질을 제거하는 데에 매우 효과적이다. 지하수의 오염물질을 제거하기 위한 나노 ZVI의 응용에 관한 문헌은 많이 있지만, 아직까지 환경정화분야에서 철 나노와아어 (INW)를 응용한 보고는 없었다. 따라서, 본 발명자는 혁신적인 나노물질인 INW를 처음으로 개발하여, 지하수로부터 다양한 오염물질들을 완전하게 제거하는데 사용하였다.
1차원적인 (1D) 나노구조 (와이어, 막대, 및 튜브)는 상호연결망 (interconnects)과 나노크기의 전자기기, 전자집적회로, 및 자동감지기로서의 그들의 사용 가능성 때문에 사용최근 몇 년간 다양한 분야에서 관심을 모으고 있다 (1). 반도체와 금속 나노와이어의 벌크 합성에 상당한 노력이 기울여 왔다 (2,3). 나노 크기 영가철은 높은 이동성을 가져 콜로이드 및 이동성 반응벽체 (mobile reactive barrier)로 사용될 수 있으며, 비소를 포함하는 지하수 정화에 큰 가능성 이 있다 (4). 나노와이어 응용에 대한 많은 문헌이 있지만, 아직까지 지하수 처리 분야에서 Fe0 나노와이어의 합성과 응용에 대한 보고는 없었다. 음용수의 주요한 근원 (source)의 하나인 지하수는 오염으로 인해 가장 중요한 환경문제의 대상이 되고 있다. 따라서, 새로운 흡착제 (adsorbents)를 개발하는 것이 절실히 필요하며, 이러한 흡착제는 오염감소능력을 가지는 동시에 흡착능력과 같은 이중특성을 가져야한다.
미국특허 7,056,455는 탄소(carbon) 나노와이어의 합성방법을 개시하고 있으나, 오염물질의 제거 효율에 대한 시험은 없다. 이에 비해, 본 발명자들은 간단하고 저렴하게 실험실에서 영가 철 나노와이어를 합성하는 방법을 제시하고, 비소, 크롬 및 TCE의 제거 효율이 높음을 확인하였다.
미국특허 7,018,549는 단일 촉매 나노입자로부터 균일한 길이의 다중 나노와이어의 조립방법을 개시하고 있으나, 트랜지스터, 디스플레이, 센서 등의 장치에 적합한 나노와이어만을 개발하였다. 이에 비해, 본 발명자들은 지하수 오염물질에 효과적으로 반응하는 영가 철 나노와이어의 간단하고 저렴한 합성방법을 제시하고 있다.
본 발명자들은 철 나노와이어 (INW) 합성의 새로운 방법을 처음으로 제시하고 있으며, 본 발명의 INW가 비소, 크롬 (VI) 및 TCE와 같은 다양한 지하수 오염물질들을 직접적으로 제거할 수 있음을 밝혔다. 본 발명의 결과는 비소, 크롬 (VI) 및 TCE (0.1 ~ 10 mg/L)와 같은 오염물질들이 낮은 INV (0.1 ~ 1 g/L) 농도에서 제 거될 수 있음을 보여준다. 이는 INW가 지하수에서 비소 제거용 흡착제와 크롬 (VI) 및 TCE 제거용 환원제로써 사용될 수 있음을 보여준다.
따라서, 본 발명의 주된 목적은 재료 과학, 공학 및 환경 분야에서 사용될 수 있는 새로운 물질인 나노크기의 INW를 개발하고 그 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 상기 INW의 이중특성인 환원력과 흡착능을 이용하여 비소, 크롬 (VI), 및 TCE와 같은 폭넓은 오염물질들의 정화를 위해 사용하는 용도를 제공하는 데 있다.
본 발명의 한 양태에 따르면, 본 발명은 중합체(polymer)를 물에 녹이고 FeCl3.6H2O (iron salt)를 첨가하여 중합체를 함유하는 FeCl3.6H2O 수용액을 준비하는 1단계 및 상기 FeCl3.6H2O 수용액을 교반(stirring)과 함께 수소화붕소나트륨 (sodium borohydride)에 의해 환원시키는 2단계를 포함하는 영가 철 나노와이어의 제조방법을 제공한다.
본 발명의 제조방법에 있어서, 상기 중합체는 나노와이어 합성의 반응매질로서 나노와이어의 형성을 가이드하는 역할을 할 수 있는 폴리비닐피롤리돈(PVP), 폴리에틸렌글리콜(PEG)과 같은 어떤 수용성 중합체도 사용될 수 있으나, 바람직하게는 PVP(Poly Vinyl Pyrrolidone)인 것을 특징으로 한다. 만약에 상기 중합체가 없 으면 나노와이어가 형성되지 않고 통상의 나노입자가 형성될 것이다.
본 발명의 제조방법에 있어서, 바람직하게는 상기 PVP는 0.3 내지 1 % 로 함유되어 있는 것을 특징으로 한다. 상기 수치범위 미만이면 나노와이어가 잘 형성되지 않으며 상기 수치범위 초과하면 반응에 지장을 줄 수 있다.
본 발명의 제조방법에 있어서, 바람직하게는 상기 1단계에서 준비된 FeCl3.6H2O 수용액을 초음파 처리(sonication)하는 단계를 더 포함하는 것을 특징으로 한다. 상기 초음파 처리에 의해 중합체 수용액중 반응물질이 더 잘분산되어 나노와이어를 더 효율적으로 제조할 수 있다. 또한, 초음파의 강도에 따라 나노와이어의 사이즈를 조절할 수 있다.
본 발명의 제조방법에 있어서, 상기 교반은 상기 FeCl3.6H2O 수용액과 수소화붕소나트륨을 혼합하여 환원반응을 돕는 역할을 할 수 있는 어떤 교반도 포함되나, 바람직하게는 마그네틱 교반 (magnetic stirring)인 것을 특징으로 한다.
본 발명의 제조방법에 있어서, 바람직하게는 상기 수소화붕소나트륨은 1.5 내지 3 M의 농도인 것을 특징으로 한다. 상기 수치범위 미만이면 환원이 잘 일어나지 않으며, 상기 수치범위 초과는 불필요하다.
본 발명의 제조방법에 있어서, 바람직하게는 상기 2단계에서 상기 FeCl3.6H2O 수용액은 N2 가스가 퍼징된(purged)것을 특징으로 한다. 여기서 N2 가스 퍼징(purge)이란 환원반응도중 가스를 밀어넣어 산소를 제거하는 것을 의미한다. 이로써 합성되는 나노와이어의 산화를 방지할 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은 본 발명의 제조방법에 따라 제조된 직경(diameter)이 1-10nm이고 길이가 10-1000 nm인 영가 철 나노와이어를 제공한다. 나노와이어의 크기는 중합체의 농도 및 초음파처리의 정도에 따라 조절될 수 있다.
본 발명의 다른 양태에 따르면, 본 발명은 본 발명의 영가 철 나노와이어를 포함하는 환경오염물질 제거용 조성물을 제공한다.
본 발명의 조성물에 있어서, 바람직하게는 상기 환경오염물질은 지하수의 독성 오염물질인 비소(As), 트리클로로에틸렌(TCE) 또는 크롬(Cr(VI))인 것을 특징으로 한다. 본 발명의 INW는 비소, 크롬 (VI) 및 TCE와 같은 넓은 범위의 오염물질의 정화에 적합한 환원능력과 흡착능력의 이중특성을 가진다.
지하수 처리 기법의 대단한 발전에도 불구하고, 여러 문제가 있다. 가장 중요한 이슈 (issue)는 지하수 정화에 대하여 환원제인 동시에 흡착제로써 작용하는 이중특성을 가진 새로운 철 나노물질을 개발하는 것이다. 지금까지, 재료 과학 및 공학의 분야, 특히 전자, 자성, 전기광학, 및 화학적 특징에서 INW의 응용에 대하여 거의 연구되지 못했다 (5). 본 발명자가 알고 있는 바로는, 지하수 정화에 대한 INW의 응용의 연구가 없었다. 따라서, 본 발명에서, 본 발명자는 지하수로부터 비소, 크롬 (VI) 및 TCE와 같은 다양한 오염물질들을 제거할 수 있는 실험실에서 INW를 합성하는 새로운 기술을 제공한다. INW는 이러한 오염물질 제거용으로 매우 효율적이며, 폭넓은 환경정화 응용에 큰 가능성을 가지고 있다.
본 발명에서는 뫼스바우어 분광 (Mossbauer Spectra), HR-TEM, 및 AAS와 같 은 다양한 기법들을 사용하여 새로 합성된 나노와이어(INW)의 1차원적인 구조 및 수처리 효율의 물리적, 화학적 특징을 조사하였다. 또한, 최초로, 상기 나노와이어 (INW)를 비소, TCE 및 크롬 (VI)과 같은 가장 유독한 다량의 지하수 오염원을 제거하기 위하여 지하수 처리에 사용하였다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
실시예 1: 영가철 나노와이어(INW)의 제조
PVP(6.5 g)를 탈이온수(1L)에 녹이고 FeCl3.6H2O(iron salt)를 첨가한 후 초음파 처리하여 0.5 % PVP를 포함하는 1 M FeCl3.6H2O 수용액을 준비하였다. 상기 1 M FeCl3.6H2O 수용액에 N2 가스를 연속적으로 퍼징(purged)하고, 마그네틱 교반 (magnetic stirring)과 함께 NaBH4 (2.1 M의 50 ml)를 주변온도(약 23 ℃)에서 분액깔대기를 이용하여 적가하여 상기 FeCl3.6H2O 수용액을 환원시킴으로써 INW 물질(PVP-NZVI)을 합성하였다.
실시예 2: INW의 UV-vis 분광 특성
실시예 1에서 제조된 PVP-NZVI, PVP 및 상업적인 TODA NZVI (1g/L)을 탈이온수에 분산시키고, 200-750 nm 파장에서 UV 스펙트로미터 (HP 8453 uv-visible spectrophotometer)를 사용하여 그들의 UV-vis 스펙트럼을 측정하였다. 도 1은 계 면활성제, PVP, PVP-NZVI 및 Toda-NZVI 생산물들의 UV-vis 분광을 보여준다. PVP (파랑)의 UV-vis 분광, PVP-NZVI (검정) 및 상업적 NZVI (빨강). 계면활성제의 존재하에 약한 초음파처리 (mild sonicaiton)는 PVP-NZVI가 충분한 흡광도를 가지도록 유도하여 최종적으로 물에서 모노(mono) 분산을 나타내었다. 계면활성제는 200 ~ 800nm 범위에서는 흡광도 피크를 나타내지 않았지만, Fe0와 결합한 후 246, 308 및 361 nm에서 피크가 나타났다. 이러한 피크들은 Toda사로부터 입수한 시판되는 순수 NZVI에서는 240, 306 및 361 nm에서 나타났다. 이러한 결과는 본 발명자가 수용성 PVP 폴리머 수용액에서 NZVI를 안정화시키고 가용성을 주는데 성공하였음을 명백하게 나타낸다.
실시예 3: INW의 형태학적 외관
실시예 1에서 제조된 INW의 형태학적 외관을 HR-TEM을 이용하여 측정하였다. HR-TEM는 300 KeV 가속(accelerated) 전압을 갖는 Philips CM 300상에서 수행하였다. 샘플은 INW의 수용액을 탄소 피복된 구리 그리드(grid)상에 적하하고 60℃의 진공 오븐에서 건조하여 제조하였다. 도 2는 실험실에서 합성된 철 나노와이어 (INW)의 HR-TEM 이미지이다. 합성된 INW의 90 % 이상은 직경이 1 ~ 10 nm 크기이내였다. 또한, INW는 폴리머에서 모노(mono)분산되어 있었으며, 길이가 ~10 - 1000 nm 크기를 가진다 (도 2). 도 2에서 검은 선은 INW이고 주변 매질은 PVP이다.
실시예 4: INW의 영가상태 확인
실시예 1에서 제조된 INW의 영가상태를 확인하기 위하여 PVP, NZVI 및 INW의 XRD 특징들을 연구하였다 (도 3). 상기 INW 물질을 Rigaku diffractrometer 및 단색(monochromatized) CuKα 라디에이션 (발전기 전압 = 40kV, 전류 = 40mA)을 사용하여 파워 X-선 회절(XRD)에 의해 특성화하였다. 회절스펙트럼(Diffractograms)은 0.02o 스텝 크기와 5 s per step 카운트 시간으로 5 내지 85o (2 theta) 범위에서 기록하였다. 도 3은 PVP 폴리머로부터 제조된 나노와이어의 X-RD 이미지이다. 10에서 40 2세타 (2 theta)(degree) 부근의 PVP에서는 무정형(amorphous) 상태였다. NZVI는 철산화물이 코팅된 Fe0을 가졌으며, 15 ~ 30 2세타(degree) 범위에서 철산화물의 피크가 있었다.
실시예 5: INW의 XPS 및 뫼스바우어 분광 (Mossbauer spectra)
실시예 1에서 제조된 영가철을 포함하는 나노와이어를 확인하기 위하여 XPS 및 뫼스바우어 분광 (Mossbauer spectra)을 사용하였다. 고상(solid state)의 샘플을 XPS 분석에 사용하였다. 스펙트럼은 Physical Electronics 5500/5600 ESCA 시스템상에서 얻었으며, 이 장치의 X-ray 소스는 각각 7o 및 65o 의 수용(acceptance)각과 이탈(take off)각을 갖는 단색(monochromatic) Al Kα 라디에이션 (1486.7 eV)이다. 샘플의 분석 면적의 직경은 800 μm이고 분석 깊이는 8 내지 10 nm이다. 요소들의 화학적 상태는 스펙트럼의 비선형 최소-스퀘어 피팅(fitting)으로 부터 Physical Electronics' 멀티팩 소프트웨어를 사용하여 결정하였고, 그 결과는 레퍼런스 데이터(결합 에너지)에 기초하여 존재하는 종들의 가장 근사치를 나타내었다. 뫼스바우어 분광(Mossbauer spectra)은 삼각 파형과 57Co (50 mCi) 소스를 갖는 스펙트로미터를 사용하여 4.2, 77 및 300 K에서 수행하였다. 하이퍼파인(hyperfine) 파라미터들 (IS, isomer shift; QS, quadrupolar splitting; FWHM, 중간높이에서 선(line) 폭; %, 각 성분비; 표준 편차: ±0.02 mm s-1 및 ±3%)은 MOSFIT 프로그램에서 최소-스퀘어 피팅 방법을 이용하여 준비(refine)하였다. 온도와 인가된 자기장의 함수로서 인시슈(in situ) 자화(magnetizations)는 각각 Faraday balance 및 Foner apparatus에 의해 얻었다. 탈수(dehydration) 연구를 위해, MIL-82 샘플을 cryofurnace에 넣고 25 에서 85°C로 점차적으로 가온하고 이 온도에서 몇시간 방치한 후 77K로 냉각하여 탈수된 상태의 Mossbauer 스펙트럼을 얻었다. INW를 구성하는 결정 도메인의 크기가 너무 작고 긴 거리 차수(order)가 없어서 XRD 같은 방법은 INW를 정확히 특성화하기에 비효율적이기 때문에, 100℃ 온도에서 관찰된 INW의 정확한 성질은 Mossbauer spectrometry로 결정하였다. 도 4는 PVP중합체에서 준비된 나노와이어의 Mossbauer 스펙트럼이다. 본 발명자는 뫼스바우어 분광으로부터 76 %의 Fe0와 24 %의 철산화물이 포함된 INW를 확인하였다 (도 4).
실시예 6: NIW에 대한 비소(III)의 흡착능 시험
실시예 1에서 제조된 NIW의 비표면적 (SBET)은 BET surface area analysis (ASAP 2020, Micrometritics)에 의해 측정하였다. 모든 총 비소(As)는 1μg L-1 As의 검출한계를 갖는 Hydride Generation Atomic Absorption Spectrophotometry (HGAAS; Perkin-Elmer 5100 PC)에 의해 분석되었다. 반응조건: 0.01 M NaCl에서 0.01 gL-1 INW 상에 흡착된 1mgL-1 As(III) NZVI, 반응시간: pH7에서 12h. INW에 대한 비소 (III) 흡착에서 pH의 영향은 도 5a에 나타내었다. 도 5a는 pH (envelope plot)의 함수로서 INW에 대한 비소 (III)의 흡착력을 나타내는 그래프이다. pH 3~ 7 범위에서는 제거 능력이 68 ~ 99.9 %였으며, pH 7 이하, pH 11 이상에서는 급격하게 감소하였다. pH-의존 양상은 표면에서 반발작용을 일으키고 순 (net) 비소 (III) 흡착을 감소시키는 흡착되는 물질과 흡착제 둘 다의 이온화로써 설명될 수 있다. pH 9.2 미만에서, H3AsO3는 흡착되는 과우점종 (predominant species) 또는 아마도 주요종 (major species)이다. pH가 9.2 이상일 때, H2AsO3 -가 비소 (III) 과우점종이 되며, NZVI 부식 생산물 표면은 정전기적 반발작용을 유발하는 음성 (Fe(III)-O-) 우점적으로 된다. 이와 유사하게, 본 발명자는 INW (0.1 ~ 1 g/L)가 중성 pH에서 고농도의 크롬 (VI) 및 TCE (0.1 내지 10 mg/L)를 완전하게 제거하는 데 효율적이라는 것을 밝혔다.
실시예 7: NIW에 의한 Cr 및 TCE 제거 시험
유사하게, Cr(VI) (0.25 mM)를 INW(0.1 g/L)로 반응시켰다. INW와 반응후 Cr(VI) 분액(aliquots)을 flame AAS (Perkin-Elmer 5100 PC)에 의해 분석하였다. 그 결과, 저농도의 INW를 사용하여 거의 100% of Cr(VI)가 제거되는 것을 확인하였다 (도 5b). 도 5b는 시간함수(kinetic plot)로 INW에 의한 Cr(VI)의 흡착능을 보 여주는 그래프이다. 반응조건은 pH7 및 0.01 M NaCl에서 0.01 g L-1 INW상에 흡착되는 0.25 mM Cr(VI)이다.
또한, 본 발명의 INW가 TCE 제거에 매우 유효하다는 것을 발견하였다. 용해 형태에서 TCE와 INW의 반응성을 조사하기 위해 배치(Batch) 테스트를 수행하였다. 각 샘플을 Teflon 라인 캡핑된 10 mL 유리병과 10mL serum 병을 이용하여 취하였다(scarified). 용해된 TCE와 분해시험을 위하여, 초기 TCE 농도는 20 mg/L이고 INW 농도는 1 g/L로 하였다. 대조군은 동일 조건에 INW 없이 수행하였다. 샘플을 혐기 챔버에서 병내로 주입하고 200 rpm에서 반응시켰다. 초기 pH는 7이고 제어되지 않았다. 샘플링 시간은 각각 0, 10, 20, 40 및 60 분이었다. chloride 농도 분석을 위해, 상청액을 0.2μm 시린지 필터를 이용하여 여과하고 이온 크로마토그래피 (ICS-2000, DIONEX)를 이용하여 분석하였다. TCE의 농도는 상청액으로부터 펜탄(pentane)으로 추출된 TCE를 가스 크로마토그래피 (HP5890)을 이용하여 분석하였다. 그 결과, 저농도의 INW (1g/L)를 사용하여 고농도의 TCE를 제거할 수 있음을 확인하였다 (도 5c). 도 5c는 시간함수(kinetic plot)로 INW에 의한 TCE의 흡착능을 보여주는 그래프이다. 반응조건은 pH7 및 0.01 M NaCl에서 1 g L-1 INW상에 흡착되는 20 mg L-1 TCE이다.
이상 설명한 바와 같이, 본 발명은 개별적인 철 나노와이어 (INW)를 얻는 간단한 기법을 제공한다. 본 발명은 또한 INP의 생산을 위한 가장 최선의 대안방법 중 하나이다. 이러한 방법으로 제조된 INW는 비소, 크롬 (VI) 및 TCE와 같은 지하수 오염물질을 제거하기 위해 매우 간단하며 효과적이다. 본 발명자는 폴리머로 혼합된 황산 제 1철의 환원으로 INW를 쉽게 얻을 수 있음을 보여주었다. 제조가 쉽기 때문에, 높은 반응성 INW을 제조하는 본 발명의 기법은 지하수 정화용 INW-기반 흡착제의 제조를 위하여 무한한 가능성을 가진다. INW가 실험실에서 간단하고 효율적인 방법으로 합성될 수 있기 때문에, 다방면에서 커다란 응용 가능성을 가진다. 본 발명에서는 INW가 지하수로부터 비소, 크롬 (VI), TCE 등의 제거를 위한 응용성과 다방면에서 큰 응용 가능성을 가짐을 증명하였다.
[참고문헌]
Figure 112006083211308-pat00001

Claims (9)

  1. 삭제
  2. 삭제
  3. 폴리비닐피롤리돈(PVP)을 물에 녹이고 FeCl3.6H2O 를 첨가하여 0.3 내지 1 % 폴리비닐피롤리돈(PVP)을 함유하는 FeCl3.6H2O 수용액을 준비하는 1단계 및 상기 FeCl3.6H2O 수용액을 교반(stirring)과 함께 수소화붕소나트륨 (sodium borohydride)에 의해 환원시키는 2단계를 포함하는 영가 철 나노와이어의 제조방법.
  4. 삭제
  5. 폴리비닐피롤리돈(PVP)을 물에 녹이고 FeCl3.6H2O 를 첨가하여 폴리비닐피롤리돈(PVP)을 함유하는 FeCl3.6H2O 수용액을 준비하는 1단계 및 상기 FeCl3.6H2O 수용액을 교반(stirring)과 함께 1.5 내지 3 M 수소화붕소나트륨 (sodium borohydride)에 의해 환원시키는 2단계를 포함하는 영가 철 나노와이어의 제조방법.
  6. 폴리비닐피롤리돈(PVP)을 물에 녹이고 FeCl3.6H2O 를 첨가하여 폴리비닐피롤리돈(PVP)을 함유하는 FeCl3.6H2O 수용액을 준비하는 1단계 및 상기 FeCl3.6H2O 수용액에 N2 가스를 퍼징하고(purged) 교반(stirring)과 함께 수소화붕소나트륨 (sodium borohydride)에 의해 FeCl3.6H2O 수용액을 환원시키는 2단계를 포함하는 영가 철 나노와이어의 제조방법.
  7. 제 3항, 제 5항 또는 제 6항 중 어느 한 항에 따라 제조된 직경(diameter)이 1-10nm이고 길이가 10-1000 nm인 영가 철 나노와이어.
  8. 제 7항에 따른 영가 철 나노와이어를 포함하는 환경오염물질의 제거용 조성물.
  9. 제 8항에 있어서, 상기 환경오염물질은 지하수의 독성 오염물질인 비소(As), 트리클로로에틸렌(TCE) 또는 크롬(Cr(VI))인 것을 특징으로 하는 조성물.
KR1020060112218A 2006-11-14 2006-11-14 영가 철 나노와이어의 합성방법 및 지하수처리 적용 KR100874709B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020060112218A KR100874709B1 (ko) 2006-11-14 2006-11-14 영가 철 나노와이어의 합성방법 및 지하수처리 적용
US11/889,416 US20080173576A1 (en) 2006-11-14 2007-08-13 Method of synthesizing zerovalent iron nanowires and application of the same to groundwater treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060112218A KR100874709B1 (ko) 2006-11-14 2006-11-14 영가 철 나노와이어의 합성방법 및 지하수처리 적용

Publications (2)

Publication Number Publication Date
KR20080043542A KR20080043542A (ko) 2008-05-19
KR100874709B1 true KR100874709B1 (ko) 2008-12-18

Family

ID=39640202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060112218A KR100874709B1 (ko) 2006-11-14 2006-11-14 영가 철 나노와이어의 합성방법 및 지하수처리 적용

Country Status (2)

Country Link
US (1) US20080173576A1 (ko)
KR (1) KR100874709B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101190285B1 (ko) 2012-03-14 2012-10-12 포항공과대학교 산학협력단 나노금속입자 제조장치

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2968583B1 (fr) * 2010-12-14 2013-01-04 Afitex Int Systeme et procede de captage de composes dans les sols
US8636843B2 (en) 2011-04-07 2014-01-28 Korea Institute Of Energy Research Single-crystal apatite nanowires sheathed in graphitic shells and synthesis method thereof
KR101306225B1 (ko) * 2011-06-14 2013-09-06 한국에너지기술연구원 바이오매스를 이용한 나노와이어 합성방식 및 그 물질
US10522274B2 (en) * 2014-04-21 2019-12-31 Unitika Ltd. Ferromagnetic metal nanowire dispersion and method for manufacturing same
CZ305438B6 (cs) * 2014-10-14 2015-09-16 Aqd- Envitest, S.R.O. Způsob odstraňování šestimocného chromu ze znečištěných podzemních vod
CN112279353B (zh) * 2017-12-28 2023-12-05 苏州科技大学 基于改性净水污泥负载纳米零价铁材料去除水中铬的方法
KR102022936B1 (ko) * 2018-12-28 2019-09-20 에이치플러스에코 주식회사 Pvp-va로 표면개질 된 나노영가철 제조방법
CN112795033B (zh) * 2020-12-30 2023-08-15 苏州中科先进技术研究院有限公司 一种负载纳米零价铁的多孔聚吡咯纳米薄膜及制备方法和应用
CN113979527A (zh) * 2021-10-26 2022-01-28 中国科学院南京土壤研究所 一种同步高效去除六价铬和三氯乙烯复合污染的方法
CN114433838A (zh) * 2021-12-10 2022-05-06 南开大学 一种高迁移性硫化纳米零价铁材料的制备方法
CN115287671B (zh) * 2022-06-29 2024-05-10 西南科技大学 一种用于电化学海水提铀的硫基氧化铁纳米线的制备及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050202244A1 (en) * 2003-08-13 2005-09-15 Peter Papagianakis Metal-treated particles for remediation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002307151A1 (en) * 2001-04-06 2002-10-21 Carnegie Mellon University A process for the preparation of nanostructured materials
US7018549B2 (en) * 2003-12-29 2006-03-28 Intel Corporation Method of fabricating multiple nanowires of uniform length from a single catalytic nanoparticle
US7749299B2 (en) * 2005-01-14 2010-07-06 Cabot Corporation Production of metal nanoparticles
US7824466B2 (en) * 2005-01-14 2010-11-02 Cabot Corporation Production of metal nanoparticles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050202244A1 (en) * 2003-08-13 2005-09-15 Peter Papagianakis Metal-treated particles for remediation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chemical Physics Letters (2003) vol. 380, pp.146-149.*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101190285B1 (ko) 2012-03-14 2012-10-12 포항공과대학교 산학협력단 나노금속입자 제조장치

Also Published As

Publication number Publication date
US20080173576A1 (en) 2008-07-24
KR20080043542A (ko) 2008-05-19

Similar Documents

Publication Publication Date Title
KR100874709B1 (ko) 영가 철 나노와이어의 합성방법 및 지하수처리 적용
Rajabi et al. Surface modified magnetic nanoparticles as efficient and green sorbents: synthesis, characterization, and application for the removal of anionic dye
Dong et al. Aging study on carboxymethyl cellulose-coated zero-valent iron nanoparticles in water: Chemical transformation and structural evolution
JP6494468B2 (ja) 磁性ナノ粒子を用いた水の浄化
Tarigh et al. Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of lead (II) and manganese (II) in various matrices
Tang et al. Magnetic nanoparticles interaction with humic acid: in the presence of surfactants
US11370022B2 (en) Method for the synthesis of a zero-valent metal micro- and nanoparticles in the presence of a noble metal
Chang et al. Molecular insights into the role of fulvic acid in cobalt sorption onto graphene oxide and reduced graphene oxide
Shadi et al. Efficient treatment of raw leachate using magnetic ore iron oxide nanoparticles Fe₂O₃ as nanoadsorbents
Tizro et al. Removal of cobalt ions from contaminated water using magnetite based nanocomposites: effects of various parameters on the removal efficiency
WO2008006220A1 (en) Chabazite type zeolite supported metallic nanodots
Inobeme et al. Recent advances in nanotechnology for remediation of heavy metals
Ghosh et al. Template-free synthesis of flower-shaped zero-valent iron nanoparticle: Role of hydroxyl group in controlling morphology and nitrate reduction
Pan et al. Manufactured nanoparticles and their sorption of organic chemicals
Kothavale et al. Removal of Cu (II) from aqueous solution using APTES-GA modified magnetic iron oxide nanoparticles: kinetic and isotherm study
Chu et al. Antimony removal by a magnetic TiO2/SiO2/Fe3O4 nanosphere and influence of model dissolved organic matter
Wei et al. Removal of uranium by biogenetic jarosite coupled with photoinduced reduction in the presence of oxalic acid: a low-cost remediation technology
Dubey et al. Synthesis of hematite/alginate beads nanocomposite and its application in organic dye removal
Htwe et al. Synthesis of chitosan-coated magnetite nanoparticles using co-precipitation method for copper (II) ions removal in aqueous solution
Li et al. High-performance FeOOH quantum dots: A novel one-pot microemulsion method for fast preparation and adsorption kinetics
WO2019081536A1 (en) COBALT METALLIC NANOPARTICLES WITHOUT COATING FOR THE EXTRACTION OF HEAVY METALS FROM WATER
Souza et al. Arsenic removal and fixation by iron (oxyhydr) oxides: What is new?
Tian et al. Pd-loaded magnetic mesoporous nanocomposites: A magnetically recoverable catalyst with effective enrichment and high activity for DDT and DDE removal under mild conditions
KR101046165B1 (ko) 자성중심 덴드리머, 이의 제조방법 및 이를 이용하여 오염물질을 분리하는 방법
Ogunsola et al. Carbon nanotubes for sustainable environmental remediation: A critical and comprehensive review

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121005

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130930

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee