WO2015162931A1 - Metal-coated resin particles and electroconductive adhesive in which same are used - Google Patents

Metal-coated resin particles and electroconductive adhesive in which same are used Download PDF

Info

Publication number
WO2015162931A1
WO2015162931A1 PCT/JP2015/002210 JP2015002210W WO2015162931A1 WO 2015162931 A1 WO2015162931 A1 WO 2015162931A1 JP 2015002210 W JP2015002210 W JP 2015002210W WO 2015162931 A1 WO2015162931 A1 WO 2015162931A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
resin particles
coated
resin
layer
Prior art date
Application number
PCT/JP2015/002210
Other languages
French (fr)
Japanese (ja)
Inventor
優美 十代田
雅之 登峠
恒彦 寺田
堀内 伸
中尾 幸道
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to CN201580021076.5A priority Critical patent/CN106233397B/en
Priority to KR1020167024105A priority patent/KR101941050B1/en
Publication of WO2015162931A1 publication Critical patent/WO2015162931A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations

Definitions

  • the present invention relates to metal-coated resin particles and a conductive adhesive using the same.
  • metal-coated resin particles blended in conductive adhesives used for electrode connection of printed wiring boards many particles of acrylic resin coated with noble metals such as gold via nickel layers are used. Yes.
  • the K value at 10% compression deformation is 50 to 250 kgf / mm 2 for the purpose of providing a conductive microsphere having moderate compression deformation and deformation recovery and excellent connection reliability.
  • a conductive fine particle is disclosed in which a conductive layer made of nickel-gold plating is provided on the surface of a microsphere having a high elastic modulus of 15 to 100%.
  • the type of metal in the metal layer and the coating method have been sought.
  • the pH is 7 in order to obtain conductive fine particles in which the metal and the resin are highly adhered. It has been proposed to coat using a low-resistance metal plating bath of more than 8 and less than 8, and it is described that copper ions or silver ions are preferable as the low-resistance metal ions.
  • Patent Document 4 discloses synthetic resin fine particles made of a copolymer obtained by polymerizing an acrylic acid monomer and a carboxyl monomer. In the embodiment, a silver-plated one or a gold-coated one by sputtering is shown.
  • the acrylate resin examples include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate.
  • the polystyrene resin examples include polystyrene, styrene-acrylic acid ester copolymer, styrene-butadiene block copolymer, styrene-isoprene block copolymer, and block polymers such as these water additives.
  • a composition that is cured by heat or light such as a curable resin composition obtained by a reaction with a monomer or oligomer having a glycidyl group and a curing agent such as isocyanate, may be used.
  • Metal coated resin particles were formed using the resin particles shown in Table 1, respectively.
  • the recovery rate after 30% compression deformation of the resin particles was measured in the following manner using a micro compression tester (manufactured by Shimadzu Corporation, MCT-510).
  • the used micro-compression tester compresses the particles 1 on the stage 2 with an indenter 3, electrically detects the compression load as electromagnetic force, and electrically converts the compression displacement as displacement by an operating transformer. It has been made so that it can be detected.
  • the stage 2 is made of a steel plate and has a smooth upper surface
  • the indenter 3 is made of stainless steel, has a truncated cone shape that converges downward, and the tip surface in contact with the particles has a circular and smooth surface.
  • FIG. 1A shows a state before the start of compression in which the indenter 3 holds the particles on the stage 2 with the minimum necessary force
  • FIG. 1B shows the state during compression
  • the particle 1 ′ Deformed by compression As indicated by the arrows in FIG.
  • the indenter 3 is lowered in a direction perpendicular to the upper surface of the stage 2 during compression and can be stopped at a predetermined position.
  • the distance X that the indenter 3 has moved from the state (a) to the state (b) is regarded as the amount of particle displacement.
  • the metal layers of Examples 1 to 3 and Comparative Examples 3 to 5 are single layers of Ag (Vickers hardness 26), and the metal layer of Example 4 is a single layer of Au (Vickers hardness 22). Is a layer.
  • Example 5 is a two-layer structure in which an Ag layer is provided as an outermost layer on a Cu layer (Vickers hardness 37), and Comparative Example 1 is a two-layer structure in which an Au layer is provided as an outermost layer on a Ni layer.
  • Comparative Example 2 has a two-layer structure in which an Ag layer is provided on the Ni layer as the outermost layer.

Abstract

Provided are metal-coated resin particles that comprise resin particles and a metal coating layer that covers at least some of the resin particles, wherein it is possible to obtain a high-reliability electrical connection after repeated compression. There are used metal-coated resin particles that have an average grain diameter of 1-100 μm and exhibit a recovery of at least 90% after 30% compressive deformation, the metal coating layer comprising a metal having a Vickers hardness of 100 or less and an average thickness of 20-150 nm.

Description

金属被覆樹脂粒子及びそれを用いた導電性接着剤Metal-coated resin particles and conductive adhesive using the same
 本発明は、金属被覆樹脂粒子及びそれを用いた導電性接着剤に関するものである。 The present invention relates to metal-coated resin particles and a conductive adhesive using the same.
 プリント配線基板の電極接続などに用いられる導電性接着剤に配合される金属被覆樹脂粒子として、アクリル系樹脂からなる樹脂粒子にニッケル層を介して金等の貴金属で被覆したものが多く使用されている。 As metal-coated resin particles blended in conductive adhesives used for electrode connection of printed wiring boards, many particles of acrylic resin coated with noble metals such as gold via nickel layers are used. Yes.
 例えば特許文献1では、適度の圧縮変形と変形回復性を有し,接続信頼性に優れた導電性微球体を提供することを目的として、10%圧縮変形におけるK値が50~250kgf/mm2、回復率15~100%という高い弾性率を有する微球体の表面にニッケル-金めっきからなる導電層を設けた導電性微粒子を開示している。 For example, in Patent Document 1, the K value at 10% compression deformation is 50 to 250 kgf / mm 2 for the purpose of providing a conductive microsphere having moderate compression deformation and deformation recovery and excellent connection reliability. In addition, a conductive fine particle is disclosed in which a conductive layer made of nickel-gold plating is provided on the surface of a microsphere having a high elastic modulus of 15 to 100%.
 また、特許文献2には、1~30μmの球状粒子にニッケル又はニッケル-金めっきが施された,導電性無電解めっき粉体が開示されている。 Patent Document 2 discloses a conductive electroless plating powder in which nickel particles or nickel-gold plating is applied to spherical particles of 1 to 30 μm.
 上記のようにニッケル層を用いるのは、樹脂粒子に対する金等の貴金属の密着性向上のためである。しかしながら、ニッケル層は非常に硬く、接着剤をプレスする際に割れやクラックを生じ易い。また、アクリル系樹脂粒子は、プレス等により変形した際に、粒子形状が回復する方向に生じる応力が強く、これが上記ニッケル層の存在と相俟って、樹脂粒子と金属層の密着力が経時的に低下する原因となる。従って、この密着力の低下が抵抗の上昇や断線の原因となり、安定的に導通を確保するのが困難になっている。 The reason for using the nickel layer as described above is to improve the adhesion of noble metals such as gold to the resin particles. However, the nickel layer is very hard and tends to crack or crack when the adhesive is pressed. In addition, when the acrylic resin particles are deformed by a press or the like, the stress generated in the direction of recovering the particle shape is strong, and this is coupled with the presence of the nickel layer, and the adhesion force between the resin particles and the metal layer is deteriorated over time. Cause a decline. Therefore, this decrease in the adhesion force causes an increase in resistance and disconnection, making it difficult to ensure continuity stably.
 これらの問題に対し、ニッケル層を使用せずに金属と樹脂との密着性を確保し、信頼性が高い電気接続が得られる金属被覆樹脂粒子が求められている。 In response to these problems, there is a need for metal-coated resin particles that ensure adhesion between a metal and a resin without using a nickel layer, and provide a highly reliable electrical connection.
 この課題の解決のために、一方では金属層の金属の種類や被覆方法が模索されており、例えば特許文献3には、金属と樹脂が高密着の導電性微粒子を得るために、pHが7を超え8未満の低抵抗金属メッキ浴を用いて被覆することを提案しており、低抵抗金属イオンとしては銅イオン又は銀イオンが好ましいことが記載されている。 In order to solve this problem, on the other hand, the type of metal in the metal layer and the coating method have been sought. For example, in Patent Document 3, the pH is 7 in order to obtain conductive fine particles in which the metal and the resin are highly adhered. It has been proposed to coat using a low-resistance metal plating bath of more than 8 and less than 8, and it is described that copper ions or silver ions are preferable as the low-resistance metal ions.
 他方では、樹脂粒子に対するアプローチもなされ、アクリル系樹脂以外の樹脂を用いた例として、特許文献4には、アクリル酸系モノマーとカルボキシル系モノマーを重合させた共重合体からなる合成樹脂微粒子が開示され、実施例ではこれに銀メッキを施したものやスパッタリングにより金を塗布したものが示されている。 On the other hand, an approach to resin particles has also been made, and as an example using a resin other than an acrylic resin, Patent Document 4 discloses synthetic resin fine particles made of a copolymer obtained by polymerizing an acrylic acid monomer and a carboxyl monomer. In the embodiment, a silver-plated one or a gold-coated one by sputtering is shown.
 また、特許文献5には、所定のガラス転移温度を有するポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂等からなるポリマー微粒子が銀等の導電性金属によって被覆された導電性微粒子が開示されている。 Patent Document 5 discloses conductive fine particles in which polymer fine particles made of polyurethane resin, polyester resin, polyamide resin, epoxy resin or the like having a predetermined glass transition temperature are coated with a conductive metal such as silver. .
 しかし、これらの金属被覆樹脂粒子においても、圧縮変形が繰り返されるに従い樹脂粒子と金属との密着性が低下し、導電性接着剤に使用した場合に信頼性が高い電気接続が得られるには至っていない。 However, even in these metal-coated resin particles, as the compression deformation is repeated, the adhesion between the resin particles and the metal decreases, and when used as a conductive adhesive, a highly reliable electrical connection can be obtained. Not in.
特許第3241276号公報Japanese Patent No. 3241276 特開平8-311655号公報JP-A-8-31655 特許第4347974号公報Japanese Patent No. 4347974 特開平10-259253号公報JP-A-10-259253 特開2006-12709号公報JP 2006-12709 A
 本発明は上記に鑑みてなされたものであり、導電性接着剤等に配合した場合に高い導電性を示し、繰り返し圧縮変形に対してより安定した導電性を有し、信頼性がより高い電気接続が得られる金属被覆樹脂粒子を提供することを目的とする。 The present invention has been made in view of the above, and exhibits high conductivity when blended with a conductive adhesive, etc., has more stable conductivity against repeated compression deformation, and has higher reliability. An object of the present invention is to provide metal-coated resin particles that can be connected.
 本発明の金属被覆樹脂粒子は、樹脂粒子と、この樹脂粒子の少なくとも一部を被覆する金属被覆層とからなる金属被覆樹脂粒子であって、樹脂粒子は、平均粒径が1~100μmであり、30%圧縮変形後の回復率が90%以上であり、金属被覆層は、ビッカース硬度が100以下の金属からなり、平均厚みが20~150nmであるものとする。 The metal-coated resin particle of the present invention is a metal-coated resin particle comprising a resin particle and a metal coating layer covering at least a part of the resin particle, and the resin particle has an average particle diameter of 1 to 100 μm. The recovery rate after 30% compression deformation is 90% or more, the metal coating layer is made of a metal having a Vickers hardness of 100 or less, and the average thickness is 20 to 150 nm.
 また、本発明の金属被覆樹脂粒子は、30%変位に必要な力が20mN以下であることが好ましい。 Further, the metal-coated resin particles of the present invention preferably have a force required for 30% displacement of 20 mN or less.
 上記樹脂粒子はウレタン系樹脂からなるものとすることができる。 The resin particles may be made of a urethane resin.
 上記金属被覆層は、金、銀、パラジウム、白金、及び銅からなる群から選択された1種又は2種以上の金属からなることが好ましい。 The metal coating layer is preferably made of one or more metals selected from the group consisting of gold, silver, palladium, platinum, and copper.
 本発明の導電性接着剤は、上記本発明の金属被覆樹脂粒子を樹脂成分100質量部に対して1~100質量部の割合で配合することにより得られる。 The conductive adhesive of the present invention can be obtained by blending the metal-coated resin particles of the present invention in a ratio of 1 to 100 parts by mass with respect to 100 parts by mass of the resin component.
 また、本発明のプリント配線板は、上記導電性接着剤を用いて電極を接続したものとする。 Also, the printed wiring board of the present invention is such that electrodes are connected using the conductive adhesive.
 本発明の金属被覆樹脂粒子は、上記のように、ニッケル層を使用せず、所定の回復率を有する樹脂粒子を所定のビッカース硬度を有する金属で被覆したことにより、信頼性が高い電気接続がより優れたものとなる。 As described above, the metal-coated resin particles of the present invention do not use a nickel layer, and the resin particles having a predetermined recovery rate are coated with a metal having a predetermined Vickers hardness. It will be better.
 従って、この金属被覆粒子を例えば電極接続用の異方導電性接着剤に使用した場合、接続における信頼性がより向上したプリント配線基板が得られる。 Therefore, when this metal-coated particle is used for, for example, an anisotropic conductive adhesive for electrode connection, a printed wiring board with improved connection reliability can be obtained.
微小圧縮試験機を用いた粒子の圧縮試験方法を示す模式図である。It is a schematic diagram which shows the compression test method of the particle | grains using a micro compression tester. 粒子に加えられた荷重と粒子の変位量との関係を示すグラフである。It is a graph which shows the relationship between the load applied to particle | grains, and the displacement amount of particle | grains. 金属被覆樹脂粒子の電気抵抗値測定方法を示す模式図である。It is a schematic diagram which shows the electrical resistance value measuring method of a metal covering resin particle. 接続抵抗の測定方法を示す平面図である。It is a top view which shows the measuring method of connection resistance.
 以下、本発明の実施の形態を、より具体的に説明する。 Hereinafter, embodiments of the present invention will be described more specifically.
 本発明で使用する樹脂粒子は、30%圧縮変形後の回復率が90%以上であることが好ましく、98%以上であることがより好ましい。このような回復率の高い樹脂粒子であると、圧縮と回復を繰り返しても回復率が低下せず、信頼性が高い電気接続が得られる。 The resin particles used in the present invention preferably have a recovery rate after 30% compression deformation of 90% or more, and more preferably 98% or more. When the resin particles have a high recovery rate, the recovery rate does not decrease even when compression and recovery are repeated, and a highly reliable electrical connection can be obtained.
 また、金属被覆樹脂粒子を異方導電性接着剤に使用した際に、小さいプレス圧で導通を得ることができ、信頼性の高い電気接続を有する導電性接着剤が得られる点から、本発明で使用する金属被覆樹脂粒子は、30%変位に必要な圧力が20mN以下であることが好ましく、10mN以下がより好ましい。 In addition, when the metal-coated resin particles are used for the anisotropic conductive adhesive, it is possible to obtain conduction with a small press pressure, and the conductive adhesive having highly reliable electrical connection can be obtained. In the metal-coated resin particles used in the above, the pressure required for 30% displacement is preferably 20 mN or less, more preferably 10 mN or less.
 従来使用されているアクリル系樹脂は、高い弾性と回復率を有するものの、変形に必要な応力が大きいため、通常10%以上の圧縮変形で塑性変形が生じ、それを超えて圧縮すると回復率は著しく低下する。またアクリル系樹脂は変形から回復する際に変形時と同等の応力が被接着面である電極にかかり、これが原因となって導電性粒子の周りで接着剤層と電極との剥離が起こり易くなると考えられる。本発明で用いる樹脂粒子は、30%圧縮変形後の回復率が高く、変形に必要な応力が小さいことにより、上記問題が解決し、金属被覆樹脂粒子の信頼性向上に寄与すると考えられる。 Conventionally used acrylic resin has high elasticity and recovery rate, but since the stress required for deformation is large, plastic deformation usually occurs in compression deformation of 10% or more, and if it is compressed beyond that, the recovery rate is It drops significantly. In addition, when the acrylic resin recovers from deformation, the same stress as that at the time of deformation is applied to the electrode that is the surface to be bonded, and this causes the adhesive layer and the electrode to easily peel around the conductive particles. Conceivable. It is considered that the resin particles used in the present invention have a high recovery rate after 30% compression deformation and a small stress necessary for deformation, thereby solving the above problems and contributing to the improvement of the reliability of the metal-coated resin particles.
 上記のような回復率を有する樹脂粒子としては、特に限定されないが、ウレタン系樹脂からなるものを好適に用いることができる。より具体的には、上記物性が得られやすい点から、例えば、特開2008-156610号公報に記載のポリエステルポリオール、ポリエーテルポリオール、ポリエーテルエステルポリオール、及びポリカーボネートポリオールからなる群より選ばれる少なくとも1種の高分子ポリオール(a)とジイソシアネート(b)とを必須成分としてなり、炭素-炭素2重結合を有するウレタン樹脂(A1)と、ウレタン結合を有さず数平均分子量が100~1000であって炭素-炭素2重結合を2個以上有する化合物(B)との架橋共重合体を含有することを特徴とする弾性樹脂粒子、ジイソシアネート3量体(h)を必須成分としてなり、炭素-炭素2重結合を有するウレタン樹脂(A2)と、ウレタン結合を有さず数平均分子量が100~1000であって炭素-炭素2重結合を2個以上有する化合物(B)との架橋共重合体を含有することを特徴とする弾性樹脂粒子等が挙げられる。市販されているものでは、大日精化工業株式会社製のダイミックビーズCM(商品名)が挙げられる。 The resin particles having a recovery rate as described above are not particularly limited, but those made of a urethane resin can be suitably used. More specifically, at least one selected from the group consisting of polyester polyols, polyether polyols, polyether ester polyols, and polycarbonate polyols described in JP-A No. 2008-156610, for example, from the viewpoint that the above physical properties are easily obtained. A polymer polyol (a) and a diisocyanate (b) as essential components, a urethane resin (A1) having a carbon-carbon double bond, and having no urethane bond and a number average molecular weight of 100 to 1,000. An elastic resin particle characterized by containing a cross-linked copolymer with a compound (B) having two or more carbon-carbon double bonds, the diisocyanate trimer (h) as an essential component, and carbon-carbon Urethane resin (A2) having a double bond and a number average molecular weight of 100 to 1 without urethane bond A 00 carbon - like elastic resin particles, characterized by containing a crosslinked copolymer of carbon double bonds of the compound having two or more (B). Examples of commercially available products include Dymic Beads CM (trade name) manufactured by Dainichi Seika Kogyo Co., Ltd.
 上記樹脂粒子の形状は限定されないが、異方導電性接着剤等に使用することを考慮すると球状であることが好ましい。また粒子の大きさは、同じく異方導電性接着剤用途を考慮すると、平均粒径で1~100μmが好ましく、10~30μmがより好ましい。 The shape of the resin particles is not limited, but is preferably spherical when considering use in an anisotropic conductive adhesive or the like. Further, the size of the particles is preferably 1 to 100 μm, more preferably 10 to 30 μm in terms of average particle size, considering the use of anisotropic conductive adhesive.
 次に、本発明で樹脂粒子の被覆に用いる金属層は、ビッカース硬度が100以下の柔らかい金属からなるのが好ましく、ビッカース硬度は50以下がより好ましく、さらに30以下が好ましい。 Next, the metal layer used for coating the resin particles in the present invention is preferably made of a soft metal having a Vickers hardness of 100 or less, more preferably 50 or less, and further preferably 30 or less.
 このようなビッカース硬度を有する金属の具体例としては、金(Au)(ビッカース硬度約22)、銀(Ag)(ビッカース硬度約26)、パラジウム(Pd)(ビッカース硬度約47)、白金(Pt)(ビッカース硬度約56)、銅(Cu)(ビッカース硬度約37)が挙げられ、これらの1種又2種以上の金属を使用することが好ましい。なお、2種以上の金属を用いる場合、それら2種以上の金属は合金であってもよく、単体金属どうしが層構造やマトリックス構造をなして混じり合っていてもよく、これらの組み合わせであってもよい。 Specific examples of metals having such Vickers hardness include gold (Au) (Vickers hardness of about 22), silver (Ag) (Vickers hardness of about 26), palladium (Pd) (Vickers hardness of about 47), platinum (Pt ) (Vickers hardness of about 56), copper (Cu) (Vickers hardness of about 37), and it is preferable to use one or more of these metals. When two or more kinds of metals are used, the two or more kinds of metals may be an alloy, or single metals may be mixed together in a layer structure or a matrix structure. Also good.
 金属層の厚みは、導電性と接続安定性及びコストを比較考量して、平均厚みで20~150nmが好ましく、50~100nmがより好ましい。 The thickness of the metal layer is preferably 20 to 150 nm, more preferably 50 to 100 nm in terms of average thickness, considering the conductivity, connection stability and cost.
 上記金属層は樹脂粒子の表面の少なくとも一部を被覆しているものとするが、異方導電性接着剤等に使用することを考慮すると、樹脂粒子の表面全体が被覆されていることが好ましい。 The metal layer covers at least a part of the surface of the resin particles, but it is preferable that the entire surface of the resin particles is coated in consideration of use in an anisotropic conductive adhesive or the like. .
 金属被覆の方法は特に限定されず、従来から使用されている方法を広く用いることができる。例としては、無電解メッキによる方法、電気メッキによる方法、真空蒸着、イオンプレーティング、イオンスパッタリング等の方法が挙げられるが、成膜が均一であることから中でも無電解めっきが好ましい。 The method of metal coating is not particularly limited, and a conventionally used method can be widely used. Examples include a method using electroless plating, a method using electroplating, a method such as vacuum deposition, ion plating, and ion sputtering. Among these, electroless plating is preferable because the film formation is uniform.
 なお、無電解めっきの好ましい態様としては、金属被覆層の均一形成と樹脂粒子表面との密着力向上のために、樹脂粒子にまず触媒層を設け、次いで金属層で被覆する。触媒層は、パラジウム(Pd)、白金(Pt)、金(Au)等により形成することができる。触媒層の厚みは1~100nmが好ましい。 As a preferred embodiment of electroless plating, a resin layer is first provided with a catalyst layer and then coated with a metal layer in order to uniformly form a metal coating layer and improve the adhesion between the resin particle surface. The catalyst layer can be formed of palladium (Pd), platinum (Pt), gold (Au), or the like. The thickness of the catalyst layer is preferably 1 to 100 nm.
 上記のように回復率の高い樹脂粒子を柔らかい金属で適度な厚みで被覆し、ニッケル層のような硬い層を有しないものとすることにより、接着剤の収縮・膨張に対して自由に追従するため、粒子を圧縮変形して回復させることを何度も繰り返しても金属の剥離が発生しない金属被覆樹脂粒子が得られる。従って、蒸着やインクジェットによる電極のように、薄くてもろい素材の電極に対してもそれを破壊することなく使用することができる。また、異方性導電膜(ACF)のような層間の距離(接着剤厚み)が均一に制限されるべき用途において、樹脂粒子がプレスに対して自由に変形するため、粒子径分布を厳密にそろえたものを使用する必要がないという利点も得られる。 By covering the resin particles with a high recovery rate as described above with a soft metal at an appropriate thickness and not having a hard layer such as a nickel layer, the adhesive particles can follow the shrinkage and expansion of the adhesive freely. Therefore, metal-coated resin particles that do not cause metal peeling even when the particles are compressed and deformed and recovered many times are obtained. Therefore, it can be used without destroying an electrode made of a fragile material, such as an electrode formed by vapor deposition or inkjet. Also, in applications where the distance between the layers (adhesive thickness) such as anisotropic conductive film (ACF) should be uniformly restricted, the resin particle is freely deformed with respect to the press, so the particle size distribution is strictly There is also an advantage that it is not necessary to use a complete set.
 本発明の金属被覆樹脂粒子は、従来使用されてきた導電性粒子に替えて、各種導電性接着剤等の種々の用途に用いることができる。導電性接着剤を構成する樹脂成分は接着対象に対して密着性を有するものであれば特に限定されず、同様の用途に使用されてきたものを広く用いることができる。例えば、熱硬化性樹脂では、エポキシ樹脂、フェノール樹脂及びメラミン樹脂等が挙げられ、熱可塑性樹脂では、ポリオレフィン系樹脂、アクリレート系樹脂、ポリスチレン系樹脂が挙げられる。ポリオレフィン系樹脂としては、例えば、ポリエチレン、エチレン-酢酸ビニル共重合体及びエチレン-(メタ)アクリル酸エステル共重合体等が挙げられる。アクリレート系樹脂としては、例えば、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート及びポリブチル(メタ)アクリレートが挙げられる。ポリスチレン系樹脂としては、例えば、ポリスチレン、スチレン-アクリル酸エステル共重合体、スチレン-ブタジエンブロック共重合体、スチレン-イソプレンブロック共重合体及びこれらの水添加物等のブロックポリマー等が挙げられる。さらに、グリシジル基を有するモノマーやオリゴマー及びイソシアネート等の硬化剤との反応により得られる硬化性樹脂組成物等の、熱や光によって硬化する組成物等も用いられる。また、例えば、特開2010-168510号(特許第4580021号)公報に記載の、ポリアミドエラストマー10~80重量部、ポリウレタンエラストマー10~80重量部、及びスチレン-イソブチレン-スチレンコポリマー10~80重量部からなり、ポリアミドエラストマー中にポリウレタンエラストマー及びスチレン-イソブチレン-スチレンコポリマーが分散した相分離構造を有する樹脂成分にも好適に用いられる。さらに、所定のガラス転移温度を有するフェノキシ樹脂と充填剤を必須成分として含有する金属部品用接着剤にも好適に用いることができる。 The metal-coated resin particles of the present invention can be used for various applications such as various conductive adhesives in place of conventionally used conductive particles. The resin component which comprises a conductive adhesive will not be specifically limited if it has adhesiveness with respect to adhesion | attachment object, The thing used for the same use can be widely used. For example, examples of the thermosetting resin include epoxy resins, phenol resins, and melamine resins, and examples of the thermoplastic resins include polyolefin resins, acrylate resins, and polystyrene resins. Examples of the polyolefin resin include polyethylene, ethylene-vinyl acetate copolymer, and ethylene- (meth) acrylic acid ester copolymer. Examples of the acrylate resin include polymethyl (meth) acrylate, polyethyl (meth) acrylate, and polybutyl (meth) acrylate. Examples of the polystyrene resin include polystyrene, styrene-acrylic acid ester copolymer, styrene-butadiene block copolymer, styrene-isoprene block copolymer, and block polymers such as these water additives. Furthermore, a composition that is cured by heat or light, such as a curable resin composition obtained by a reaction with a monomer or oligomer having a glycidyl group and a curing agent such as isocyanate, may be used. Further, for example, from 10 to 80 parts by weight of a polyamide elastomer, 10 to 80 parts by weight of a polyurethane elastomer, and 10 to 80 parts by weight of a styrene-isobutylene-styrene copolymer described in JP-A 2010-168510 (Patent No. 4580021). Thus, the resin component is suitably used for a resin component having a phase separation structure in which a polyurethane elastomer and a styrene-isobutylene-styrene copolymer are dispersed in a polyamide elastomer. Furthermore, it can be suitably used for an adhesive for metal parts containing a phenoxy resin having a predetermined glass transition temperature and a filler as essential components.
 上記導電性接着剤における金属被覆樹脂粒子の含有量は、その接着剤の用途等にもよるが、樹脂成分100質量部に対して1~100質量部の割合が好ましく、1~50質量部がより好ましい。 The content of the metal-coated resin particles in the conductive adhesive is preferably 1 to 100 parts by mass, preferably 1 to 50 parts by mass with respect to 100 parts by mass of the resin component, although it depends on the use of the adhesive. More preferred.
 本発明の導電性接着剤には、発明の目的に反しない範囲であれば、導電性接着剤に用いられるその他の添加物をさらに配合することもできる。そのような添加物の例としては、充填剤、酸化防止剤、消泡剤、増粘剤、粘着付与剤等が挙げられる。 In the conductive adhesive of the present invention, other additives used for the conductive adhesive can be further blended as long as it does not contradict the purpose of the invention. Examples of such additives include fillers, antioxidants, antifoaming agents, thickeners, tackifiers and the like.
 上記本発明の導電性接着剤の用途は特に限定されないが、プリント配線板において透明電極を接続するのに好適に用いられる。接着方法も特に限定されないが、具体例としては、まず基板上に導電性接着剤をスクリーン印刷し、基板ごと加熱して溶剤を揮発させ、固化した接着剤上に透明電極等の電子部品を載せて熱プレスする方法が挙げられる。 Although the use of the conductive adhesive of the present invention is not particularly limited, it is suitably used for connecting a transparent electrode on a printed wiring board. The bonding method is not particularly limited, but as a specific example, first, a conductive adhesive is screen-printed on the substrate, the entire substrate is heated to evaporate the solvent, and an electronic component such as a transparent electrode is placed on the solidified adhesive. And hot pressing.
 以下に本発明の実施例を示すが、本発明は以下の実施例によって限定されるものではない。なお、以下において配合割合等は、特にことわらない限り質量基準とする。 Examples of the present invention are shown below, but the present invention is not limited to the following examples. In the following, the blending ratio and the like are based on mass unless otherwise specified.
1.金属被覆樹脂粒子の調整及び評価
 表1に示した樹脂粒子をそれぞれ用いて金属被覆樹脂粒子を形成した。樹脂粒子の30%圧縮変形後の回復率は、微小圧縮試験機((株)島津製作所製、MCT-510)を用いて、以下の要領で測定した。
1. Preparation and Evaluation of Metal Coated Resin Particles Metal coated resin particles were formed using the resin particles shown in Table 1, respectively. The recovery rate after 30% compression deformation of the resin particles was measured in the following manner using a micro compression tester (manufactured by Shimadzu Corporation, MCT-510).
 使用した微小圧縮試験機は、図1に示すように、ステージ2上の粒子1を圧子3で圧縮し、圧縮荷重を電磁力として電気的に検出し、圧縮変位を作動トランスによる変位として電気的に検出できるようになされている。ステージ2は鋼板からなり上面が平滑な台であり、圧子3はステンレス製であり、下方に向かって収束する円錐台形状をなしており、粒子と接する先端面は円形で平滑な表面を有する。図1(a)は、ステージ2上の粒子を圧子3が必要最小限の力で押さえている圧縮開始前の状態を示し、(b)はこれらの圧縮中の状態を示し、粒子1’は圧縮により変形している。(b)に矢印で示したように、圧子3は圧縮中はステージ2の上面に対して垂直方向に下降して、所定の位置で停止できるようになされている。圧子3が(a)の状態から(b)の状態まで移動した距離Xを粒子の変位量とみなす。粒子の直径がRμmで、垂直方向にaμm圧縮したとき(X=aμm)の圧縮率は次式で表される。
 圧縮率(%)=(a/R)×100
As shown in FIG. 1, the used micro-compression tester compresses the particles 1 on the stage 2 with an indenter 3, electrically detects the compression load as electromagnetic force, and electrically converts the compression displacement as displacement by an operating transformer. It has been made so that it can be detected. The stage 2 is made of a steel plate and has a smooth upper surface, the indenter 3 is made of stainless steel, has a truncated cone shape that converges downward, and the tip surface in contact with the particles has a circular and smooth surface. FIG. 1A shows a state before the start of compression in which the indenter 3 holds the particles on the stage 2 with the minimum necessary force, FIG. 1B shows the state during compression, and the particle 1 ′ Deformed by compression. As indicated by the arrows in FIG. 5B, the indenter 3 is lowered in a direction perpendicular to the upper surface of the stage 2 during compression and can be stopped at a predetermined position. The distance X that the indenter 3 has moved from the state (a) to the state (b) is regarded as the amount of particle displacement. When the particle diameter is R μm and the particle is compressed by a μm in the vertical direction (X = a μm), the compression ratio is expressed by the following equation.
Compression rate (%) = (a / R) × 100
 粒子に加えられた荷重Pと粒子の変位量Xとの関係をグラフで示すと、図2のようになる。圧子3を下げて粒子の変位量Xが大きくなるにつれ、本グラフの実線によるプロットaのように粒子にかかる荷重が大きくなる。粒子を反転荷重値(目的とする変位量が30%であれば、30%に達したときの荷重値)まで圧縮した後、圧子3を上げて粒子の変位量Xを小さくしていくと、破線によるプロットbのようなグラフが得られる。 Fig. 2 is a graph showing the relationship between the load P applied to the particles and the displacement amount X of the particles. As the indenter 3 is lowered and the particle displacement amount X increases, the load applied to the particle increases as shown by a plot a by the solid line in this graph. After compressing the particles to the reversal load value (the load value when reaching 30% if the target displacement amount is 30%), the indenter 3 is raised and the particle displacement amount X is reduced. A graph like the plot b by the broken line is obtained.
 荷重が小さくなり、圧子3が自然に停止した時点(この時点での荷重値を「原点荷重値」とする。0.05g以上。)で測定を停止し、原点荷重値をとる点から反転の点までの変位量L1と、反転の点から原点荷重値をとる点までの変位量L2との比(L2/L1)を%で表した値を圧縮変形後の回復率とした。 The measurement stops when the load decreases and the indenter 3 stops naturally (the load value at this point is “origin load value”. 0.05 g or more). A value representing the ratio (L2 / L1) of the displacement amount L1 to the point and the displacement amount L2 from the reversal point to the point where the origin load value is obtained in% was taken as the recovery rate after compression deformation.
 なお、具体的な操作としては、ステージ2上に樹脂粒子1を散布し、その中から選択した1個の樹脂粒子1を、圧子3の直径50μmの円形の先端面で圧縮した。圧縮は一定負荷速度で行い、その圧縮速度はウレタンでは0.15mN/sec、アクリルでは10.4mN/secとした。最大応力は50-1960mN、測定温度は20℃とした。 As a specific operation, the resin particles 1 were sprayed on the stage 2, and one resin particle 1 selected from them was compressed by a circular tip surface of the indenter 3 having a diameter of 50 μm. Compression was performed at a constant load speed, and the compression speed was 0.15 mN / sec for urethane and 10.4 mN / sec for acrylic. The maximum stress was 50-1960 mN, and the measurement temperature was 20 ° C.
 上記樹脂粒子の表面に触媒としてのパラジウム層(平均厚さ:5nm)を、以下の方法により形成した。なお、ここに示すのは、平均粒子径20μmのウレタン粒子(ダイミックCM)1gに対する例であるが、粒子の種類や粒子径が異なってもこれに準じて行うことができる。 A palladium layer (average thickness: 5 nm) as a catalyst was formed on the surface of the resin particles by the following method. In addition, what is shown here is an example with respect to 1 g of urethane particles (Dymic CM) having an average particle diameter of 20 μm.
 塩化パラジウム(PdCl2)20mM(モル)及び塩化ナトリウム(NaCl)0.1M(モル)を含んだ水溶液1Lにスクロース10gを加え、攪拌しながら、水素化ホウ素ナトリウム(NaBH4)を滴下することにより、平均粒子径5nmのパラジウムナノコロイド液を得た。予め水酸化ナトリウム(NaOH)1M水溶液で洗浄した樹脂粒子を、トリメチルステアリルアンモニウムクロリド1%水溶液中に浸漬したのち、上記パラジウムナノコロイド液中に浸漬したのち乾燥することにより、粒子表面全体に亘って厚さのほぼ均一なパラジウム層が形成された。 By adding 10 g of sucrose to 1 L of an aqueous solution containing 20 mM (mol) of palladium chloride (PdCl 2 ) and 0.1 M (mol) of sodium chloride (NaCl), and adding sodium borohydride (NaBH 4 ) dropwise with stirring. A palladium nanocolloid solution having an average particle diameter of 5 nm was obtained. The resin particles previously washed with 1M aqueous solution of sodium hydroxide (NaOH) are immersed in a 1% aqueous solution of trimethylstearylammonium chloride, and then immersed in the palladium nanocolloid solution and then dried, so that the entire particle surface is covered. A palladium layer having a substantially uniform thickness was formed.
 次いで、このパラジウム層を有する樹脂粒子に、表1に示す金属層を無電解めっきによりそれぞれ形成して、金属被覆樹脂粒子を調製した。 Next, metal layers shown in Table 1 were formed on the resin particles having the palladium layer by electroless plating to prepare metal-coated resin particles.
 表1に示すように、実施例1~3、比較例3~5の金属層は、Ag(ビッカース硬度26)の単層であり、実施例4の金属層はAu(ビッカース硬度22)の単層である。実施例5はCu層(ビッカース硬度37)の上に最外層としてAg層を設けた二層構造であり、比較例1はNi層の上に最外層としてAu層を設けた二層構造であり、比較例2はNi層の上に最外層としてAg層を設けた二層構造である。 As shown in Table 1, the metal layers of Examples 1 to 3 and Comparative Examples 3 to 5 are single layers of Ag (Vickers hardness 26), and the metal layer of Example 4 is a single layer of Au (Vickers hardness 22). Is a layer. Example 5 is a two-layer structure in which an Ag layer is provided as an outermost layer on a Cu layer (Vickers hardness 37), and Comparative Example 1 is a two-layer structure in which an Au layer is provided as an outermost layer on a Ni layer. Comparative Example 2 has a two-layer structure in which an Ag layer is provided on the Ni layer as the outermost layer.
 上記金属のビッカース硬度は、JIS Z 2244:2009に準拠して測定した。 The Vickers hardness of the above metal was measured according to JIS Z 2244: 2009.
 また、金属層の平均厚みは、樹脂粒子に金属を被覆する前後の重量変化を測定してその差を金属層の重量とし、その重量を被着体である樹脂粒子の平均表面積で除することにより求めた。実施例では各微粒子の大きさを一定で、かつ金属被覆工程の材料ロスはないものと仮定し、金属被覆樹脂粒子の全重量をMとし、金属を被覆する前の樹脂粒子の全重量をM0とし、樹脂粒子の全表面積をAとし、被覆金属の比重をρとして、下記の式により金属層の平均厚みTを算出した。
 T=(M-M0)/ρA
The average thickness of the metal layer is determined by measuring the change in weight before and after coating the resin particles with metal, and taking the difference as the weight of the metal layer, and dividing that weight by the average surface area of the resin particles as the adherend. Determined by In the examples, it is assumed that the size of each fine particle is constant and that there is no material loss in the metal coating process. The total weight of the metal-coated resin particles is M, and the total weight of the resin particles before coating the metal is M. The average thickness T of the metal layer was calculated by the following formula, where 0 was the total surface area of the resin particles, A and the specific gravity of the coated metal was ρ.
T = (M−M 0 ) / ρA
 なお、樹脂粒子の全表面積の値としては、全樹脂粒子重量を樹脂粒子の平均粒子径から求められる粒子1個の重量で除した値に、同平均粒子径から求められる粒子1個の表面積を乗じた値を近似値として用いた。 In addition, as the value of the total surface area of the resin particles, the surface area of one particle obtained from the average particle diameter is obtained by dividing the total resin particle weight by the weight of one particle obtained from the average particle diameter of the resin particles. The multiplied value was used as an approximate value.
 得られた金属被覆樹脂粒子につき、30%変位に必要な力の測定、及び繰り返し圧縮試験(1,5,50,100サイクル圧縮後の電気抵抗値の測定)を以下の方法により行った。結果を表1に示す。 The obtained metal-coated resin particles were subjected to measurement of force required for 30% displacement and repeated compression test (measurement of electrical resistance value after 1, 5, 50, 100 cycle compression) by the following method. The results are shown in Table 1.
 金属被覆樹脂粒子の30%変位に必要な力は、上述した微小圧縮試験機及び条件を用いて各金属被覆樹脂粒子の変位量Xと荷重Pとの関係をそれぞれ調べ、上記式で求められる圧縮率が30%となる変位量X(aμm)における荷重を求めた。 The force required for 30% displacement of the metal-coated resin particles is determined by the above equation by examining the relationship between the displacement amount X and the load P of each metal-coated resin particle using the above-described micro compression tester and conditions. The load at the displacement amount X (a μm) at which the rate was 30% was determined.
 繰り返し圧縮試験は、上記と同じ微小圧縮試験機((株)島津製作所製、MCT-510)を用いて以下の要領で行った。すなわち各試料について、上記により求めた30%圧縮変形に必要な荷重を最大荷重とした負荷-除荷サイクルを100サイクルまで行い、1、5、50、及び100サイクルのときの金属被覆樹脂粒子の電気抵抗測定をそれぞれ測定温度20℃で行った。 The repeated compression test was performed in the following manner using the same micro compression tester as above (manufactured by Shimadzu Corporation, MCT-510). That is, with respect to each sample, the load-unloading cycle with the load required for 30% compression deformation obtained as described above as the maximum load was performed up to 100 cycles. Electrical resistance measurements were performed at a measurement temperature of 20 ° C., respectively.
 なお、圧縮は一定負荷速度で行い、負荷行程10秒、除荷行程10秒、最大荷重および最小荷重(原点荷重)の保持時間を1秒と設定した。また、金属被覆樹脂粒子の電気抵抗は、図3に示すように鋼板からなるステージ2とステンレス製の圧子の端面の間で電気回路を形成して、抵抗測定器4((株)エーディーシー製、7351E、直流方式)を用いて測定した。 The compression was performed at a constant load speed, and the holding time for the loading stroke 10 seconds, the unloading stroke 10 seconds, the maximum load and the minimum load (origin load) was set to 1 second. Further, the electric resistance of the metal-coated resin particles is obtained by forming an electric circuit between the stage 2 made of a steel plate and the end face of a stainless indenter as shown in FIG. 3, and the resistance measuring instrument 4 (manufactured by ADC Corporation). , 7351E, DC method).
2.導電性接着剤の調整及び評価
 上記により得られた金属被覆粒子を、熱可塑性樹脂成分に配合して導電性接着剤を調製した。使用した樹脂成分の詳細は次の通りであり、得られた導電性接着剤中1.5質量%とした。得られた導電性接着剤につき、次の方法で導電性を調べた。結果を表1に示す。
2. Preparation and evaluation of conductive adhesive The metal-coated particles obtained as described above were blended with a thermoplastic resin component to prepare a conductive adhesive. The details of the resin component used were as follows, and it was 1.5% by mass in the obtained conductive adhesive. About the obtained electroconductive adhesive agent, the electroconductivity was investigated with the following method. The results are shown in Table 1.
 樹脂:熱可塑性エラストマー(タツタ電線株式会社製「CBP-700」の樹脂成分)
 導電性(初期):図4に示すように、フレキシブルプリント基板(FPC)11とガラスエポキシ基板12とを導電性接着剤で接着したFPC/PTF試験用サンプルを作成し、低抵抗計(日置電機(株)製、直流方式3227ミリオームハイテスタ)を用いてフレキシブルプリント基板11の端末端子間(a-b、b-c、及びc-d間)の接続抵抗をそれぞれ測定し、平均値を求めた。
Resin: Thermoplastic elastomer (resin component of “CBP-700” manufactured by Tatsuta Electric Cable Co., Ltd.)
Conductivity (initial): As shown in FIG. 4, an FPC / PTF test sample in which a flexible printed circuit board (FPC) 11 and a glass epoxy board 12 are bonded with a conductive adhesive is prepared, and a low resistance meter (Hioki Electric) Measure the connection resistance between the terminal terminals (between bb, bc, and cd) of the flexible printed circuit board 11 using a DC method 3227 milliohm high tester manufactured by Co., Ltd., and obtain the average value. It was.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示された結果から分かるように、実施例の金属被覆樹脂粒子は繰り返し圧縮試験の各サイクルでの測定値にバラツキがなく安定しているのに対し、比較例のものはバラツキが大きく、比較例4及び5のように無限大となるものもあった。 As can be seen from the results shown in Table 1, the metal-coated resin particles of the examples are stable with no variation in the measured values in each cycle of the repeated compression test, whereas those of the comparative examples have large variations. Some of them were infinite as in Comparative Examples 4 and 5.
 また、本発明に係る金属被覆樹脂粒子を用いた実施例の導電性接着剤の初期導電性は、比較例のものと比べていずれも同等以上であり、特に実施例2,3,5のものは顕著に優れていた。実施例1の初期導電性は、比較例1~3,5とほぼ同等であるが、上記の通り繰り返し圧縮試験の結果が優れていることから、長期にわたる電気接続の信頼性が比較例より高いことが推認される。 In addition, the initial conductivity of the conductive adhesives of the examples using the metal-coated resin particles according to the present invention is equal to or higher than that of the comparative examples, and particularly those of the examples 2, 3, and 5. Was significantly better. The initial conductivity of Example 1 is almost the same as that of Comparative Examples 1 to 3 and 5. However, since the results of the repeated compression test are excellent as described above, the reliability of electrical connection over a long period is higher than that of Comparative Examples. It is inferred.
 1,1’……粒子
 2 ……ステージ
 3 ……圧子
 4 ……抵抗測定器
 11……フレキシブルプリント基板
 12……ガラスエポキシ基板
1, 1 '... Particle 2 ... Stage 3 ... Indenter 4 ... Resistance measuring instrument 11 ... Flexible printed circuit board 12 ... Glass epoxy board

Claims (6)

  1.  樹脂粒子と、この樹脂粒子の少なくとも一部を被覆する金属被覆層とからなる金属被覆樹脂粒子であって、
     前記樹脂粒子は、平均粒径が1~100μmであり、30%圧縮変形後の回復率が90%以上であり、
     前記金属被覆層は、ビッカース硬度が100以下の金属からなり、平均厚みが20~150nmである
     ことを特徴とする金属被覆樹脂粒子。
    Metal-coated resin particles comprising resin particles and a metal coating layer covering at least a part of the resin particles,
    The resin particles have an average particle size of 1 to 100 μm, a recovery rate after 30% compression deformation of 90% or more,
    The metal-coated resin particle, wherein the metal-coated layer is made of a metal having a Vickers hardness of 100 or less and has an average thickness of 20 to 150 nm.
  2.  30%変位に必要な力が20mN以下であることを特徴とする、請求項1に記載の金属被覆樹脂粒子。 The metal-coated resin particles according to claim 1, wherein a force required for 30% displacement is 20 mN or less.
  3.  前記樹脂粒子がウレタン系樹脂からなることを特徴とする、請求項1又は2に記載の金属被覆樹脂粒子。 The metal-coated resin particles according to claim 1 or 2, wherein the resin particles are made of a urethane-based resin.
  4.  前記金属被覆層が、金、銀、パラジウム、白金、及び銅からなる群から選択された1種又は2種以上の金属からなることを特徴とする、請求項1~3のいずれか1項に記載の金属被覆樹脂粒子。 4. The metal coating layer according to claim 1, wherein the metal coating layer is made of one or more metals selected from the group consisting of gold, silver, palladium, platinum, and copper. Metal-coated resin particles as described.
  5.  請求項1~4の何れか1項に記載の金属被覆樹脂粒子を樹脂成分100質量部に対して1~100質量部の割合で配合したことを特徴とする導電性接着剤。 A conductive adhesive comprising the metal-coated resin particles according to any one of claims 1 to 4 blended at a ratio of 1 to 100 parts by mass with respect to 100 parts by mass of the resin component.
  6.  請求項5に記載の導電性接着剤を用いて、電極を接続したことを特徴とするプリント配線板。 A printed wiring board, wherein electrodes are connected using the conductive adhesive according to claim 5.
PCT/JP2015/002210 2014-04-24 2015-04-23 Metal-coated resin particles and electroconductive adhesive in which same are used WO2015162931A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580021076.5A CN106233397B (en) 2014-04-24 2015-04-23 Metal covering resin particle and the conductive adhesive for using it
KR1020167024105A KR101941050B1 (en) 2014-04-24 2015-04-23 Metal-coated resin particles and electroconductive adhesive in which same are used

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-090474 2014-04-24
JP2014090474A JP6429228B2 (en) 2014-04-24 2014-04-24 Metal-coated resin particles and conductive adhesive using the same

Publications (1)

Publication Number Publication Date
WO2015162931A1 true WO2015162931A1 (en) 2015-10-29

Family

ID=54332105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002210 WO2015162931A1 (en) 2014-04-24 2015-04-23 Metal-coated resin particles and electroconductive adhesive in which same are used

Country Status (5)

Country Link
JP (1) JP6429228B2 (en)
KR (1) KR101941050B1 (en)
CN (1) CN106233397B (en)
TW (1) TWI611002B (en)
WO (1) WO2015162931A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629325B2 (en) 2016-06-30 2020-04-21 Tatsuta Electric Wire & Cable Co., Ltd. Silver chloride paste
US10873081B2 (en) 2016-06-30 2020-12-22 Tatsuta Electric Wire & Cable Co., Ltd. Electrode material
US11490846B2 (en) 2016-06-30 2022-11-08 Tatsuta Electric Wire & Cable Co., Ltd. Bioelectrode and method for producing bioelectrode

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6810452B2 (en) * 2016-11-14 2021-01-06 ナミックス株式会社 Metal coating particles and resin composition
JP2018120929A (en) * 2017-01-24 2018-08-02 トヨタ自動車株式会社 Semiconductor device and method of manufacturing the same
JP2018175127A (en) * 2017-04-07 2018-11-15 東海電気株式会社 Marker for body tube introduction and body tube introduction, as well as manufacturing method of them
JP2019179647A (en) * 2018-03-30 2019-10-17 デクセリアルズ株式会社 Conductive material, and manufacturing method of connection body
WO2023287222A1 (en) * 2021-07-16 2023-01-19 엑시노 주식회사 Method for preparing low-density plate-shaped conductive powder

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565143A (en) * 1995-05-05 1996-10-15 E. I. Du Pont De Nemours And Company Water-based silver-silver chloride compositions
JPH11339558A (en) * 1998-05-26 1999-12-10 Sekisui Chem Co Ltd Anisotropic conductive adhesive and conductive connection structural body
JP2004164874A (en) * 2002-11-08 2004-06-10 Osugi Kk Electroconductive fine particle for anisotropic electroconductive adhesive
JP2005036265A (en) * 2003-07-18 2005-02-10 Natoko Kk Electroconductive particles, electroconductive material and anisotropic electroconductive layer
JP2006012709A (en) * 2004-06-29 2006-01-12 Sanyo Chem Ind Ltd Conductive particulate
JP2008285631A (en) * 2007-05-21 2008-11-27 Sanyo Chem Ind Ltd Resin particle dispersion
WO2010013668A1 (en) * 2008-07-31 2010-02-04 積水化学工業株式会社 Polymer particle, conductive particle, anisotropic conductive material and connection structure
WO2011001910A1 (en) * 2009-06-30 2011-01-06 東海ゴム工業株式会社 Flexible conductive material and transducer
JP2011238433A (en) * 2010-05-10 2011-11-24 Sumitomo Electric Ind Ltd Film-shaped conductive adhesive, connection structure using the same and circuit board connection method
JP2012164484A (en) * 2011-02-04 2012-08-30 Nippon Shokubai Co Ltd Conductive fine particle
JP2013181131A (en) * 2012-03-02 2013-09-12 Dexerials Corp Circuit connection material, and method for producing real unit using the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2948038B2 (en) * 1992-12-18 1999-09-13 住友ベークライト株式会社 Anisotropic conductive film
JP3436327B2 (en) 1995-05-16 2003-08-11 日本化学工業株式会社 Conductive electroless plating powder
JP3241276B2 (en) 1995-10-30 2001-12-25 積水化学工業株式会社 Conductive microsphere and liquid crystal display device
JP3294146B2 (en) 1997-03-21 2002-06-24 早川ゴム株式会社 Metal-coated fine particles and conductive materials
JP4347974B2 (en) 2000-01-05 2009-10-21 積水化学工業株式会社 Method for producing conductive fine particles, anisotropic conductive adhesive, and conductive connection structure
JP5208483B2 (en) * 2006-11-29 2013-06-12 三洋化成工業株式会社 Elastic resin particles
JP2010033911A (en) * 2008-07-29 2010-02-12 Hiroshima Industrial Promotion Organization Conductive particle and conductive material
JP5535507B2 (en) * 2009-03-30 2014-07-02 国立大学法人京都大学 Conductive particles and manufacturing method thereof
KR101162890B1 (en) * 2010-03-17 2012-07-05 세키스이가가쿠 고교가부시키가이샤 Conductive particle, conductive particle manufacturing method, anisotropic conductive material, and connection structure
JP5497183B2 (en) * 2010-08-20 2014-05-21 三菱マテリアル株式会社 Silver-coated spherical resin, production method thereof, anisotropic conductive adhesive containing silver-coated spherical resin, anisotropic conductive film, and conductive spacer
JP5410387B2 (en) * 2010-08-31 2014-02-05 デクセリアルズ株式会社 Conductive particles, method for producing the same, anisotropic conductive film, joined body, and connection method
JP2012164454A (en) * 2011-02-04 2012-08-30 Sony Chemical & Information Device Corp Conductive particle and anisotropic conductive material using the same
JP5988512B2 (en) * 2014-10-15 2016-09-07 京楽産業.株式会社 Game machine
JP6187834B2 (en) * 2016-02-05 2017-08-30 株式会社サンセイアールアンドディ Game machine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5565143A (en) * 1995-05-05 1996-10-15 E. I. Du Pont De Nemours And Company Water-based silver-silver chloride compositions
JPH11339558A (en) * 1998-05-26 1999-12-10 Sekisui Chem Co Ltd Anisotropic conductive adhesive and conductive connection structural body
JP2004164874A (en) * 2002-11-08 2004-06-10 Osugi Kk Electroconductive fine particle for anisotropic electroconductive adhesive
JP2005036265A (en) * 2003-07-18 2005-02-10 Natoko Kk Electroconductive particles, electroconductive material and anisotropic electroconductive layer
JP2006012709A (en) * 2004-06-29 2006-01-12 Sanyo Chem Ind Ltd Conductive particulate
JP2008285631A (en) * 2007-05-21 2008-11-27 Sanyo Chem Ind Ltd Resin particle dispersion
WO2010013668A1 (en) * 2008-07-31 2010-02-04 積水化学工業株式会社 Polymer particle, conductive particle, anisotropic conductive material and connection structure
WO2011001910A1 (en) * 2009-06-30 2011-01-06 東海ゴム工業株式会社 Flexible conductive material and transducer
JP2011238433A (en) * 2010-05-10 2011-11-24 Sumitomo Electric Ind Ltd Film-shaped conductive adhesive, connection structure using the same and circuit board connection method
JP2012164484A (en) * 2011-02-04 2012-08-30 Nippon Shokubai Co Ltd Conductive fine particle
JP2013181131A (en) * 2012-03-02 2013-09-12 Dexerials Corp Circuit connection material, and method for producing real unit using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629325B2 (en) 2016-06-30 2020-04-21 Tatsuta Electric Wire & Cable Co., Ltd. Silver chloride paste
US10873081B2 (en) 2016-06-30 2020-12-22 Tatsuta Electric Wire & Cable Co., Ltd. Electrode material
US11490846B2 (en) 2016-06-30 2022-11-08 Tatsuta Electric Wire & Cable Co., Ltd. Bioelectrode and method for producing bioelectrode

Also Published As

Publication number Publication date
CN106233397B (en) 2019-04-09
CN106233397A (en) 2016-12-14
TW201606042A (en) 2016-02-16
TWI611002B (en) 2018-01-11
KR20160148515A (en) 2016-12-26
JP2015210883A (en) 2015-11-24
JP6429228B2 (en) 2018-11-28
KR101941050B1 (en) 2019-01-22

Similar Documents

Publication Publication Date Title
JP6429228B2 (en) Metal-coated resin particles and conductive adhesive using the same
JP7100088B2 (en) Conductive material
KR102114626B1 (en) Anisotropic conductive film, connection method, and assembly
JP3296306B2 (en) Anisotropic conductive adhesive and adhesive film
CN102120920A (en) Anisotropic conductive adhesive composite and film, and circuit connecting structure including the same
JP4950451B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
KR20110034606A (en) Conductive particle, anisotropic conductive film, joined body, and connecting method
US20150047878A1 (en) Electroconductive particle, circuit connecting material, mounting body, and method for manufacturing mounting body
TWI503394B (en) Anisotropic conductive film, joined structure, and method for producing joined structure
KR20230043820A (en) conductive adhesive
JP2008210908A (en) Method for mounting electronic component
JP6505423B2 (en) Method of manufacturing mounting body, and anisotropic conductive film
JP2004164874A (en) Electroconductive fine particle for anisotropic electroconductive adhesive
KR20230159702A (en) Conductive adhesive layer
JP2013004202A (en) Anisotropic conductive material and connection structure
KR101534841B1 (en) Bump-type conductive microspheres and an anisotropic conductive film comprising the same
JP6442628B2 (en) Anisotropic conductive film, and manufacturing method and bonded body of bonded body
JP2001214149A (en) Anisotropic electrically conductive adhesive
JP2018133331A (en) Anisotropic conductive connection structure, manufacturing method of anisotropic conductive connection structure, anisotropic conductive film, and anisotropic conductive paste
JPH08249922A (en) Coated particle
KR102545861B1 (en) Conductive material
JP2013093244A (en) Anisotropic conductive material and connection structure
JP2013093245A (en) Anisotropic conductive material and connection structure
JP6280017B2 (en) Anisotropic conductive film, connection method and joined body
JP5924896B2 (en) Manufacturing method of joined body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782654

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167024105

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782654

Country of ref document: EP

Kind code of ref document: A1