WO2015155920A1 - フェライト系ステンレス箔およびその製造方法 - Google Patents

フェライト系ステンレス箔およびその製造方法 Download PDF

Info

Publication number
WO2015155920A1
WO2015155920A1 PCT/JP2015/000910 JP2015000910W WO2015155920A1 WO 2015155920 A1 WO2015155920 A1 WO 2015155920A1 JP 2015000910 W JP2015000910 W JP 2015000910W WO 2015155920 A1 WO2015155920 A1 WO 2015155920A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
foil
annealing
stainless steel
ferritic stainless
Prior art date
Application number
PCT/JP2015/000910
Other languages
English (en)
French (fr)
Inventor
映斗 水谷
光幸 藤澤
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020167030902A priority Critical patent/KR101898564B1/ko
Priority to JP2015527380A priority patent/JP5800116B1/ja
Priority to US15/302,386 priority patent/US10227674B2/en
Priority to CN201580018207.4A priority patent/CN106164315B/zh
Priority to EP15777096.7A priority patent/EP3130688B1/en
Publication of WO2015155920A1 publication Critical patent/WO2015155920A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a ferritic stainless steel foil excellent in Al 2 O 3 whisker forming ability and a method for producing the same.
  • the present invention relates to a ferritic stainless steel foil suitable for a material for a catalyst carrier for an exhaust gas purifying apparatus mounted on an automobile, an agricultural machine, a construction machine, an industrial machine, and the like, and a method for manufacturing the same.
  • Metal honeycombs using ceramic honeycombs and stainless steel foils are widely used as catalyst carriers used in exhaust gas purification devices for automobiles, agricultural machinery, construction machinery, industrial machinery and the like.
  • metal honeycombs can increase the porosity as compared with ceramic honeycombs, and are excellent in thermal shock characteristics and vibration resistance characteristics.
  • a metal honeycomb is a honeycomb structure in which flat stainless steel foils and corrugated stainless steel foils are alternately stacked to form a honeycomb structure.
  • a method of supporting the catalyst material on the surface of the stainless steel foil mainly the stainless steel foil is coated with ⁇ -Al 2 O 3 to form a washcoat layer, and catalyst materials such as Pt and Rh are supported on this washcoat layer. The method to do is adopted.
  • the stainless steel foil used as the material is also required to have excellent adhesion (catalyst coating adhesion) with the catalyst coating (wash coat).
  • the current metal honeycomb has a high Al content, as typified by 20 mass% Cr-5 mass% Al and 18 mass% Cr-3 mass% Al.
  • Ferritic stainless steel foil is used. When these foils are exposed to a high temperature, an ⁇ -Al 2 O 3- based Al oxide film is formed on the surface, which functions as a protective film, and thus exhibits excellent oxidation resistance.
  • these foils are subjected to a specific heat treatment to produce acicular fine crystals called ⁇ -Al 2 O 3 whiskers (hereinafter sometimes referred to simply as “whiskers”) on the surface, and the catalyst coating adhesion Can be improved.
  • Patent Document 1 discloses a whisker precursor oxide film by oxidizing an Al-containing ferritic stainless steel in a low oxygen atmosphere having an oxygen partial pressure of 0.75 Torr (99.99 Pa) or less to oxidize the steel surface.
  • a technique has been proposed in which whisker is grown on a whisker precursor oxide film by forming and then further oxidizing in an oxidizing atmosphere.
  • FIG. 1 C: 0.005%, Si: 0.15%, Mn: 0.15%, P: 0.03%, S: 0.002%, Cr: 20.0%, Ni: 0.15%, Al: 5.4%, Cu: A ferritic stainless steel foil containing 0.1%, N: 0.005%, the balance consisting of Fe and inevitable impurities is heat treated by holding at 900 ° C for 30 seconds in a vacuum of 2 x 10 -3 Pa, and then an oxidizing atmosphere The result of having observed the surface after performing the heat processing hold
  • whisker When whisker is generated in this manner, the surface area of the foil increases, and the contact area with the catalyst coating increases. Furthermore, since the whisker has a needle shape or a plate shape, it has an anchor effect on the catalyst coating layer. Therefore, the catalyst coating adhesion of the ferritic stainless steel foil is improved by generating whiskers on the surface.
  • the above-described conventional technique requires an oxidation heat treatment for a long time of about 24 hours in order to grow a sufficiently long whisker on the entire surface of the foil, resulting in an increase in manufacturing cost.
  • a method of solving this problem and generating whisker in a shorter time there is known a method of promoting whisker generation by preliminary treatment.
  • Patent Document 2 proposes a method of performing a blast treatment as a preliminary treatment prior to an oxidation heat treatment for growing whiskers.
  • Patent Document 2 describes that whisker can be easily and effectively formed on the foil surface by subjecting the Al-containing ferritic stainless steel foil to a blast treatment to provide a surface-treated layer.
  • Patent Document 3 ferritic stainless steel containing 10 to 30% Cr and 6 to 20% Al is subjected to a preliminary heat treatment in an air atmosphere at 400 to 600 ° C. to form ⁇ -Al 2 on the steel surface.
  • a method of growing whiskers by forming O 3 and then heating to 850 to 975 ° C. has been proposed.
  • Patent Document 3 describes that when pre-heat treatment is performed to form ⁇ -Al 2 O 3 on the steel surface, a high aspect ratio whisker is uniformly formed on the steel surface by the subsequent heat treatment.
  • JP-A-57-71898 JP 62-149862 A Japanese Patent Laid-Open No. 3-50199
  • the technique proposed in Patent Document 2 that is, the technique of performing the blast process as a preliminary process, adds a further process to the normal foil rolling process, and the problem of an increase in manufacturing cost cannot be solved.
  • the Al content of the ferritic stainless steel needs to be 6 to 20%. In practice, if the Al content is not set to 7.5% or more, sufficient whisker forming ability is obtained. It does not appear (see Examples in Patent Document 3). As described above, ferritic stainless steel containing a large amount of Al causes various problems such as the embrittlement (decrease in toughness) of the steel and the production of the foil becomes difficult.
  • An object of the present invention is to solve the above-mentioned problems and to provide a ferritic stainless steel foil excellent in whisker forming ability and a method for producing the same.
  • the present inventors diligently studied various factors affecting the whisker forming ability of the Al-containing ferritic stainless steel foil. As a result, it was found that there is a correlation between the crystal orientation on the foil surface and the whisker forming ability. As a result of further investigation, it has been found that crystal grains having a specific crystal orientation are excellent in whisker generating ability. Specifically, it has been found that the whisker growth rate from ⁇ 111 ⁇ crystal grains on the foil surface is faster than the growth rate from other crystal grains.
  • FIG. 4 shows the result of three-dimensional shape measurement performed on the same field of view as the laser microscope image of FIG. 2 using the same laser microscope.
  • the dark black contrast portion is a portion where whiskers are generated.
  • EBSD electron beam backscatter diffraction
  • the ⁇ 111 ⁇ crystal grain region has a darker black contrast indicating the formation of whiskers than the other regions. From this result, it can be understood that whiskers grow preferentially in ⁇ 111 ⁇ crystal grains on the foil surface.
  • the ⁇ 111 ⁇ crystal grains in the center of the field of view have a surface that is higher in the vertical direction than the other crystal grains, and the whisker growth rate is faster than the other crystal grains. I can confirm.
  • ⁇ 111 ⁇ crystal grains are excellent in whisker generation ability.
  • ⁇ 111 ⁇ crystal grains are excellent in crystal lattice matching with ⁇ -Al 2 O 3 whiskers generated on the surface, It is considered that ⁇ -Al 2 O 3 whiskers are preferentially easy to grow.
  • the present inventors examined a method for increasing the ratio (area ratio) of ⁇ 111 ⁇ crystal grains on the surface of the Al-containing ferritic stainless steel foil.
  • a stainless steel foil is hot-rolled to a slab to form a hot-rolled steel sheet, which is then annealed and then cold-rolled or warm-rolled (hereinafter simply referred to as cold-rolling) Manufactured by annealing a cold-rolled steel sheet obtained by rolling.
  • cold rolling and annealing are often repeated by being limited by the capability of the cold rolling mill.
  • the annealing performed between cold rolling and cold rolling is distinguished from intermediate annealing, and the last annealing is distinguished from finish annealing. For example, when cold rolling and annealing are performed twice, the name is cold rolling-intermediate annealing-cold rolling-finish annealing.
  • the present inventors manufacture foils under various rolling conditions and annealing conditions (intermediate annealing and finish annealing), and manufacturing conditions necessary for increasing the area ratio of ⁇ 111 ⁇ grains on the foil surface investigated.
  • annealing conditions intermediate annealing and finish annealing
  • the present inventors examined an optimal steel composition for increasing the area ratio of ⁇ 111 ⁇ crystal grains on the foil surface.
  • the C content is suppressed to 0.050% or less, preferably 0.020% or less in mass%, and a steel composition is added to which one or more selected from Ti, Nb, V, Zr, and Hf is added.
  • C was precipitated as carbides with these elements (one or more selected from Ti, Nb, V, Zr, and Hf), and it became clear that the development of ⁇ 111 ⁇ recrystallization orientation could be promoted. .
  • the whisker formation rate of the foil is further improved, and heat treatment (oxidizing atmosphere) is achieved compared to the conventional case. It was ascertained that whisker having a sufficient length could be obtained on the foil surface even when the time of the heat treatment for holding at high temperature was greatly shortened.
  • the ⁇ 111 ⁇ grain accumulation rate is high when recrystallized by annealing.
  • the area ratio of ⁇ 111 ⁇ crystal grains on the foil surface can be 50% or more.
  • the heat treatment for the formation of whiskers heat treatment to keep at high temperature in an oxidizing atmosphere
  • the present inventors performed finish annealing under various conditions and observed the foil surface, and investigated the influence of the surface properties of the foil after finish annealing on the whisker generation ability in the whisker generation heat treatment.
  • the thickness of the oxide layer formed on the surface of the foil after finish annealing affects the whisker forming ability, and if the thickness of the oxide layer exceeds 0.1 ⁇ m, the adverse effect on the whisker forming ability becomes obvious. Obtained knowledge.
  • the thickness of the oxide layer on the foil surface can be suppressed to 0.1 ⁇ m or less by optimizing the atmosphere (vacuum degree, dew point, etc.) particularly during finish annealing.
  • the present invention is based on the above findings, and the gist of the present invention is as follows.
  • C 0.050% or less
  • Si 2.00% or less
  • Mn 0.50% or less
  • S 0.010% or less
  • P 0.050% or less
  • Cr 15.0% or more and 30.0% or less
  • Al 2.5% More than 6.5%
  • N 0.050% or less
  • Ti 0.01% or more and 0.50% or less
  • Nb 0.01% or more and 0.20% or less
  • V 0.01% or more and 0.20% or less
  • Zr 0.005% or more and 0.200% 1 or more selected from the following and Hf: 0.005% or more and 0.200% or less, with the balance being composed of Fe and inevitable impurities
  • the proportion of ⁇ 111 ⁇ crystal grains on the foil surface is the area ratio Ferritic stainless steel foil with a thickness of 50% or more and an oxide layer thickness of 0.1 ⁇ m or less on the foil surface.
  • ⁇ 111 ⁇ crystal grains are crystal grains whose deviation between the vertical direction of the foil surface and the ⁇ 111 ⁇ plane of the crystal grains is within ⁇ 15 °.
  • Ferritic stainless steel foil containing one or more selected from the group consisting of 1% or more and 4.00% or less in a total range of 6.0% or less.
  • the final rolling reduction of the cold rolling is not less than 50% and not more than 95%, and the finish annealing in the annealing is any one of N 2 , H 2 , He, Ar, CO, CO 2 Ferrite that stays in a low-oxygen atmosphere with a dew point of -20 ° C or less or a vacuum with a pressure of 1Pa or less for 3 seconds to 25 hours in a temperature range of 800 ° C to 1100 ° C. Of manufacturing stainless steel foil.
  • the final reduction ratio is the reduction ratio of the cold rolling that is performed last.
  • the finish annealing is the annealing performed last.
  • a ferritic stainless steel foil capable of whisker growth in a short time that is, a ferritic stainless steel foil excellent in whisker generating ability, without being accompanied by a decrease in foil characteristics and an increase in manufacturing cost.
  • the ferritic stainless steel foil of the present invention is suitable for automobile and motorcycle catalyst carriers and outer cylinder materials of these catalyst carriers, automobile and motorcycle muffler piping members, heating appliances and combustion appliance exhaust pipe members. Furthermore, it may be used as a material for a catalyst carrier for an exhaust gas purification device of agricultural machinery such as a tractor or a combiner, a construction machine such as a bulldozer or an excavator, or as a material for a catalyst carrier for a plant exhaust gas purification device. It is not limited to.
  • FIG. 1 is a diagram illustrating an example of observation results of Al 2 O 3 whiskers generated on the surface of a ferritic stainless steel foil using a scanning electron microscope.
  • FIG. 2 is a diagram showing an example of the result of observing the surface of a ferritic stainless steel foil that has been heat-treated at 900 ° C. for 8 hours with a laser microscope.
  • FIG. 3 is a diagram showing the results of measuring grain boundaries and their orientations using electron beam backscatter diffraction (EBSD) on the foil surface after heat treatment having the same field of view as the laser microscope image of FIG.
  • FIG. 4 is a diagram showing the results of three-dimensional shape measurement for the same field of view as the laser microscope image of FIG.
  • EBSD electron beam backscatter diffraction
  • the ferritic stainless steel foil of the present invention is a foil material made of ferritic stainless steel and has a thickness of 200 ⁇ m or less.
  • the C content is set to 0.050% or less. Further, when the C content is further reduced to 0.020% or less, the solid solution C in the steel decreases and the area ratio of ⁇ 111 ⁇ crystal grains on the foil surface increases. Therefore, the C content is preferably 0.020% or less. However, in order to make the C content less than 0.003%, it takes time for refining, which is not preferable in production.
  • Si 2.00% or less
  • Si is an element effective for improving the oxidation resistance of steel, and in order to obtain the effect, the Si content is preferably set to 0.10% or more. However, if the Si content exceeds 2.00%, the toughness of the hot-rolled sheet is lowered, making it difficult to manufacture the foil. Therefore, the Si content is 2.00% or less. Preferably it is 1.00% or less, More preferably, it is less than 0.20%. However, in order to reduce the Si content to less than 0.03%, it is impossible to refining by a normal method, and refining takes time and cost, which is not preferable in production.
  • the Mn content is 0.50% or less. Preferably it is 0.20% or less. More preferably, it is less than 0.10%. However, in order to make the Mn content less than 0.03%, refining cannot be performed by a normal method, and refining takes time and cost, which is not preferable in production.
  • the S content is 0.010% or less.
  • the S content is 0.010% or less.
  • it is 0.0030% or less, More preferably, it is 0.0010% or less.
  • the P content is 0.050% or less.
  • the P content is 0.030% or less.
  • Cr 15.0% to 30.0% Cr is an indispensable element for ensuring the oxidation resistance and strength of the foil. In order to exhibit such an effect, the Cr content needs to be 15.0% or more. However, if the Cr content exceeds 30.0%, the toughness of slabs, hot-rolled sheets, cold-rolled sheets, etc. is lowered, making it difficult to produce foil. Therefore, the Cr content is in the range of 15.0% to 30.0%. In consideration of the balance between the manufacturing cost and high temperature characteristics of the foil, the Cr content is preferably in the range of 17.0% to 25.0%, more preferably in the range of 18.0 to 22.0%.
  • Al 2.5% to 6.5%
  • Al is the most important element in the present invention.
  • the Al content needs to be 2.5% or more.
  • the Al content needs to be 2.5% or more.
  • the Al content is in the range of 2.5% to 6.5%.
  • the Al content is preferably in the range of 3.0% to 6.0%, more preferably in the range of 4.0% to less than 6.0%. More preferably, it is 5.8% or less.
  • the N content is 0.050% or less.
  • the N content is 0.030% or less.
  • refining takes time, which is not preferable in production.
  • the ferritic stainless steel foil of the present invention is intended to improve productivity by increasing the area ratio of ⁇ 111 ⁇ grains on the foil surface, promoting whisker growth, and improving oxidation resistance and toughness. Contains one or more selected from V, Zr and Hf.
  • Ti 0.01% or more and 0.50% or less
  • Ti is an element that fixes C and N in steel and increases the area ratio of ⁇ 111 ⁇ grains on the foil surface.
  • Ti is also an element that promotes the growth of whiskers.
  • Ti is an element that improves the adhesion between the Al oxide film formed on the foil surface and the ground iron.
  • Nb 0.01% or more and 0.20% or less
  • Nb is an element that fixes C and N in steel and increases the area ratio of ⁇ 111 ⁇ grains on the foil surface.
  • Nb is also an element that promotes the growth of whiskers. Such an effect can be obtained by setting the Nb content to 0.01% or more.
  • Nb since Nb is easily oxidized, if its content exceeds 0.20%, a large amount of Nb oxide is mixed in the Al oxide film formed on the foil surface. When a large amount of Nb oxide is mixed in this way, the oxidation resistance of the foil decreases. Therefore, when Nb is contained, the content is made 0.01% to 0.20%. Preferably it is 0.05 to 0.10% of range.
  • V 0.01% or more and 0.20% or less
  • V is an element that fixes C and N in steel and increases the area ratio of ⁇ 111 ⁇ grains on the foil surface.
  • V is also an element that promotes the growth of whiskers. Such an effect can be obtained by setting the V content to 0.01% or more.
  • V since V is easily oxidized, if its content exceeds 0.20%, a large amount of V oxide is mixed in the Al oxide film formed on the surface of the foil. When a large amount of V oxide is mixed in this way, the oxidation resistance of the foil decreases. Therefore, when it contains V, the content is made 0.01% or more and 0.20% or less. Preferably it is 0.05 to 0.10% of range.
  • Zr 0.005% or more and 0.200% or less
  • Zr is an element that combines with C and N in the steel to increase the area ratio of ⁇ 111 ⁇ grains on the foil surface.
  • Zr is also an element that promotes the growth of whiskers.
  • Zr is an element that concentrates at the grain boundary in the Al oxide film formed on the foil surface, increases the oxidation resistance and strength at high temperature, and improves the shape stability of the foil. These effects can be obtained by setting the Zr content to 0.005% or more.
  • the Zr content exceeds 0.200%, an intermetallic compound is formed with Fe and the like, and the oxidation resistance of the foil is lowered. Therefore, when it contains Zr, the content is made 0.005% or more and 0.200% or less. Preferably it is 0.010% or more and 0.050% or less of range.
  • Hf 0.005% or more and 0.200% or less
  • Hf is an element that combines with C and N in the steel to increase the area ratio of ⁇ 111 ⁇ grains on the foil surface.
  • Hf is also an element that promotes the growth of whiskers.
  • Hf has the effect of improving the adhesion between the Al oxide film formed on the foil surface and the ground iron, and reduces the growth rate of the Al oxide film to suppress the reduction of Al in the steel. It also has the effect of improving oxidation resistance.
  • the Hf content exceeds 0.200%, it is mixed as HfO 2 in the Al oxide film to form an oxygen diffusion path, and on the contrary, the oxidation is accelerated and the reduction of Al in the steel is accelerated. Therefore, when it contains Hf, the content is made 0.005% or more and 0.200% or less. Preferably it is 0.010% or more and 0.100% or less of range.
  • Ni 0.01% or more and 0.50% or less
  • Cu 0.01% or more and 1.00% or less
  • Mo 0.01, as necessary, in addition to the basic components described above.
  • % Or more and 4.00% or less and W: 0.01% or more and 4.00% or less can be contained within a total range of 6.0% or less.
  • Ni has an effect of improving the brazing property when assembling the foil into a desired catalyst support structure.
  • the Ni content is preferably 0.01% or more.
  • Ni is an austenite stabilizing element, if the Ni content exceeds 0.50%, an austenite structure may be formed when Al or Cr in the foil is consumed by oxidation during high-temperature oxidation. When the austenite structure is generated, the thermal expansion coefficient increases, and defects such as foil constriction and breakage occur. Therefore, when it contains Ni, it is preferable to make the content into the range of 0.01% or more and 0.50% or less. Further, it is more preferably 0.05% or more and 0.30% or less, and further preferably 0.10% or more and 0.20% or less.
  • Cu 0.01% or more and 1.00% or less Cu has an effect of increasing the high temperature strength of the foil. In order to acquire this effect, it is preferable to make Cu content 0.01% or more. However, if the Cu content exceeds 1.00%, the toughness of the hot-rolled sheet may be reduced, making it difficult to manufacture the foil. Therefore, when it contains Cu, it is preferable to make the content into 0.01% or more and 1.00% or less of range. More preferably, it is 0.01% or more and 0.50% or less of range.
  • Mo 0.01% or more and 4.00% or less Mo has an effect of increasing the high temperature strength of the foil.
  • the Mo content is preferably 0.01% or more.
  • the Mo content exceeds 4.00%, the toughness of the hot-rolled sheet and cold-rolled sheet may decrease, making it difficult to manufacture the foil. Therefore, when it contains Mo, it is preferable to make the content into 0.01% or more and 4.00% or less. More preferably, it is 1.50% or more and 2.50% or less of range.
  • W 0.01% or more and 4.00% or less W has an effect of increasing the high temperature strength of the foil.
  • the W content is preferably 0.01% or more.
  • the toughness of the hot-rolled sheet and the cold-rolled sheet may be reduced, making it difficult to manufacture the foil. Therefore, when it contains W, it is preferable to make the content into 0.01% or more and 4.00% or less. More preferably, it is 1.50% or more and 2.50% or less of range.
  • Total content of Ni, Cu, Mo, and W 6.0% or less
  • the total content is preferably in the range of 6.0% or less. If the total content of these elements exceeds 6.0%, the toughness of the hot-rolled sheet and cold-rolled sheet may be significantly reduced, making it difficult to produce the foil.
  • the total content of these elements is more preferably 4.0% or less.
  • the ferritic stainless steel foil of the present invention contains at least one selected from Ca: 0.0005% to 0.0200%, Mg: 0.0002% to 0.0200% and REM: 0.010% to 0.200% as necessary. Can be contained.
  • Ca 0.0005% or more and 0.0200% or less Ca has an effect of improving the adhesion between the Al oxide film formed on the foil surface and the ground iron.
  • the Ca content is preferably 0.0005% or more.
  • the Ca content exceeds 0.0200%, the oxidation rate increases and the oxidation resistance of the foil may decrease. Therefore, when it contains Ca, it is preferable to make the content into 0.0005% or more and 0.0200% or less of range. Moreover, it is more preferable to set it as 0.0020% or more and 0.0100% or less of range.
  • Mg 0.0002% or more and 0.0200% or less Mg, like Ca, has an effect of improving the adhesion between the Al oxide film formed on the foil surface and the ground iron.
  • the Mg content is preferably 0.0002% or more.
  • the Mg content exceeds 0.0200%, the oxidation rate increases and the oxidation resistance of the foil may decrease. Therefore, when it contains Mg, it is preferable to make the content into the range of 0.0002% or more and 0.0200% or less. Moreover, it is more preferable to set it as 0.0020% or more and 0.0100% or less of range.
  • REM 0.010% or more and 0.200% or less REM is a general term for Sc, Y, and lanthanoid elements (elements with atomic numbers from 57 to 71, such as La, Ce, Pr, Nd, and Sm). The total amount of elements.
  • REM has the effect of remarkably improving the oxidation resistance of the foil by improving the adhesion of the Al oxide film formed on the foil surface and reducing the growth rate (oxidation rate) of the Al oxide film.
  • the REM content is preferably 0.010% or more.
  • the REM content exceeds 0.200%, these elements are concentrated at the grain boundaries during the production of the foil, and are melted during high-temperature heating to form a hot rolled steel strip (hot rolled sheet). Can cause surface defects. Therefore, when it contains REM, it is preferable to make the content into the range of 0.010% or more and 0.200% or less. More preferably, it is 0.030% or more and 0.100% or less of range.
  • the other elements (remainder) included in the ferritic stainless steel foil of the present invention are Fe and inevitable impurities.
  • unavoidable impurities include Zn and Sn, and the content of these elements is preferably 0.1% or less.
  • the ferritic stainless steel foil of the present invention is characterized in that the ratio of ⁇ 111 ⁇ crystal grains on the foil surface is 50% or more in area ratio, and the thickness of the oxide layer on the foil surface is 0.1 ⁇ m or less. . These conditions are extremely important for imparting desired whisker forming ability to the ferritic stainless steel foil.
  • the whisker generation ability means the ease of whisker growth when performing a heat treatment for whisker generation, that is, a heat treatment for generating whisker on the foil surface (a heat treatment that maintains a high temperature in an oxidizing atmosphere).
  • the percentage of ⁇ 111 ⁇ crystal grains on the foil surface 50% or more in area ratio
  • the ratio of the ⁇ 111 ⁇ crystal grains on the foil surface is set to 50% or more in order to sufficiently exhibit the effect of improving the whisker forming ability.
  • the area ratio is preferably 60% or more, and more preferably 70% or more.
  • the ⁇ 111 ⁇ crystal grain means a crystal grain whose deviation between the vertical direction of the foil surface and the ⁇ 111 ⁇ plane of the crystal grain is within ⁇ 15 °.
  • Thickness of oxide layer on the foil surface 0.1 ⁇ m or less If an oxide layer with a thickness of more than 0.1 ⁇ m exists on the foil surface before the whisker generation heat treatment, this oxide layer prevents whisker growth. Even if a whisker-generating heat treatment is performed at a high temperature of 800 to 1000 ° C. for a predetermined time, whiskers are hardly generated. Therefore, in the present invention, the thickness of the oxide layer on the foil surface is limited to 0.1 ⁇ m or less for the purpose of imparting excellent whisker forming ability to the foil. Preferably, it is 0.03 ⁇ m or less.
  • the oxide layer that can be formed on the surface of the ferritic stainless steel foil of the present invention is an Al oxide layer, Fe oxide layer, Cr oxide layer, or Si oxide layer.
  • GDS glow discharge emission spectrometry
  • the point where the Al detection intensity is ((intensity at the maximum point + detection intensity at a certain region) x 0.5)
  • the surface side from the interface is defined as the Al oxide layer.
  • To determine the thickness of the Al oxide layer use a sample with a known Al oxide layer in advance to investigate the relationship between the sputtering time and the analytical thickness, and reach the Al oxide layer-base iron interface. It may be converted from the sputtering time up to. The same measurement may be performed for oxide layers of other elements such as Fe and Cr. Of the Al oxide layer, Fe oxide layer, Cr oxide layer, and Si oxide layer thus determined, the thickest layer is defined as the thickness of the oxide layer on the foil surface.
  • a ferrite-based stainless steel foil excellent in whisker forming ability can be obtained by defining the composition and surface properties (structure and thickness of the oxide layer) of the foil. Therefore, by using the foil material of the present invention, it becomes possible to produce whiskers having a thickness that conventionally required oxidation treatment for about 24 hours by oxidation treatment for about 12 hours.
  • the ferritic stainless steel foil of the present invention is manufactured, for example, by hot rolling a steel slab having the above component composition, performing at least one cold rolling and at least one annealing.
  • the final rolling reduction of cold rolling is 50% or more and 95% or less, and the finish annealing in annealing contains one or more of N 2 , H 2 , He, Ar, CO, CO 2 and dew point.
  • the final reduction ratio is the reduction ratio of the cold rolling that is performed last.
  • the finish annealing is the annealing performed last.
  • a stainless steel containing the above-mentioned component composition is melted in a converter or electric furnace, secondarily refined with VOD or AOD, and then subjected to ingot-bundling rolling method or continuous casting method with a thickness of 200 ⁇
  • a steel slab of about 300mm Use a steel slab of about 300mm.
  • the cast slab is placed in a heating furnace, heated to 1150 ° C to 1250 ° C, and then subjected to a hot rolling process to obtain a hot rolled sheet having a thickness of about 2 to 4 mm.
  • this hot-rolled sheet may be subjected to hot-rolled sheet annealing at 800 ° C. to 1050 ° C., in order to improve the area ratio of ⁇ 111 ⁇ crystal grains on the surface of the final foil material, hot-rolled sheet annealing is performed. It is preferable to omit it.
  • the non-uniform structure formed by hot rolling is sufficiently destroyed at the initial stage of cold rolling, and It is important to introduce a large amount of processing strain before rolling to the final product thickness.
  • the hot-rolled sheet obtained as described above is subjected to shot blasting, pickling, mechanical polishing, etc. to remove the surface scale, and by repeatedly performing cold rolling and annealing treatment, for example, a plurality of times, a foil thickness of 200 ⁇ m or less Stainless steel foil.
  • the rolling reduction from the end of hot rolling to the intermediate annealing is set to 50% or more and 95% or less. Preferably they are 60% or more and 95% or less. Thereby, the non-uniform structure formed by hot rolling is sufficiently destroyed, and the area ratio of ⁇ 111 ⁇ crystal grains on the surface of the final foil material can be improved.
  • the rolling reduction from the final intermediate annealing process to rolling to a desired foil thickness that is, the final rolling is performed to roll to the desired final foil thickness.
  • the rolling reduction (final rolling reduction) of cold rolling is 50% to 95%, preferably 60% to 95%.
  • the final rolling reduction is 50% or more and 95% or less, a large amount of processing strain can be introduced. More preferably, it is 70% or more and 95% or less.
  • the finish annealing which will be described later, is applied to the foil material in which the processing strain is sufficiently accumulated in this way, recrystallization is promoted, so that the area ratio occupied by ⁇ 111 ⁇ crystal grains on the final foil material surface is further increased.
  • the said intermediate annealing on the conditions made to retain for 30 second or more and 5 minutes or less in the temperature range of 700 degreeC or more and 1000 degrees C or less in a reducing atmosphere.
  • the thickness of the foil can be adjusted according to the use of the foil.
  • the thickness of the foil when used as a material for a catalyst carrier for an exhaust gas purifying apparatus that particularly requires vibration resistance and durability, the thickness of the foil is preferably more than 100 ⁇ m and 200 ⁇ m or less.
  • the thickness of the foil when used as a material for a catalyst carrier for an exhaust gas purification apparatus that requires a particularly high cell density and low back pressure, the thickness of the foil is preferably about 25 ⁇ m to 100 ⁇ m.
  • a final product (ferritic stainless steel foil) is obtained by performing finish annealing and recrystallization. Finish annealing is performed in a low-oxygen atmosphere or in a vacuum under the condition of staying in a temperature range of 800 ° C. to 1100 ° C. for a period of 3 seconds to 25 hours.
  • the annealing atmosphere of finish annealing is any of N 2 , H 2 , He, Ar, CO, CO 2
  • a low oxygen atmosphere containing at least one kind and having a dew point of ⁇ 20 ° C. or lower, preferably ⁇ 30 ° C. or lower, or a vacuum of 1 Pa or lower is used.
  • the annealing temperature of finish annealing is less than 800 ° C, recrystallization may not be promoted sufficiently.
  • the annealing temperature exceeds 1100 ° C. the whisker formation promoting effect is saturated, leading to an increase in cost, and the proof stress of the foil is lowered to cause breakage in the production line.
  • the annealing time for finish annealing is less than 3 seconds, recrystallization may be incomplete.
  • the annealing time exceeds 25 hours the whisker production promoting effect is saturated, leading to an increase in cost.
  • a bonding process such as brazing or diffusion bonding may be performed.
  • heat treatment is performed at 800 ° C. to 1200 ° C. in a low-oxygen atmosphere or in vacuum. Therefore, finish annealing may be performed by adjusting the conditions of this heat treatment.
  • the ferritic stainless steel foil obtained as described above is heat-treated in an oxidizing atmosphere for 4 to 12 hours in the temperature range of 850 to 950 ° C. And the catalyst support
  • the conditions for the heat treatment (whisker generation heat treatment) for generating whisker on the surface of the ferritic stainless steel foil of the present invention are not particularly limited.
  • the temperature range of 800 ° C. to 1000 ° C. is 1 hour to 25 hours. It is preferable to make it the conditions to retain for the following.
  • the oxidizing atmosphere refers to an atmosphere having an oxygen concentration of about 1% or more and 25% or less at vol.%.
  • the heat treatment temperature of the whisker generation heat treatment is less than 800 ° C. or more than 1000 ° C.
  • phases other than ⁇ -Al 2 O 3 may be generated and may not be formed into a whisker shape.
  • whisker growth may be insufficient if the heat treatment time of the whisker generation heat treatment (the time for staying in a temperature range of 800 ° C. or higher and 1000 ° C. or lower) is less than 30 seconds.
  • Heat treatment for over 25 hours saturates the whisker formation promoting effect and leads to cost increase.
  • the heat treatment temperature is preferably 850 ° C. or higher and 950 ° C.
  • the heat treatment time is preferably 4 hours or longer and 12 hours or shorter. Since the ferritic stainless steel foil of the present invention has an excellent whisker generating ability, whiskers are sufficiently generated on the foil surface even when the heat treatment time is significantly shortened compared to the conventional (about 24 hours).
  • generation heat treatment process is provided in the manufacturing process.
  • This step may be before or after forming and joining the ferritic stainless steel foil into a predetermined shape (for example, honeycomb shape). That is, whisker generation heat treatment may be performed on the ferritic stainless steel foil before forming into a predetermined shape, or after forming and joining the ferritic stainless steel foil into a predetermined shape (for example, honeycomb shape), the whisker generation heat treatment is performed. Also good.
  • Example 1 30 kg of steel having chemical components shown in Table 1 was melted in a vacuum melting furnace. The obtained steel ingot was heated to 1200 ° C. and then hot-rolled in a temperature range from 900 ° C. to 1200 ° C. to obtain a hot-rolled sheet having a thickness of 3 mm. Next, the hot-rolled sheet was subjected to only pickling without being annealed, and a cold-rolled sheet having a thickness of 0.2 mm was formed by cold rolling (first time). The cold-rolled sheet was subjected to intermediate annealing and cold-rolled (second time) again to obtain a 50 ⁇ m-thick foil.
  • the final reduction ratio of this foil (the reduction ratio until rolling to the final foil thickness of 50 ⁇ m after intermediate annealing) is 75%.
  • the annealing conditions for the intermediate annealing are as follows: atmosphere gas: N 2 gas, annealing temperature: 900 ° C (however, in Table 1, steel No. 2 and cold rolled sheets of 10 to 14 are 950 ° C), residence time at annealing temperature : 1 minute.
  • atmosphere gas N 2 gas
  • annealing temperature 900 ° C
  • steel No. 2 and cold rolled sheets of 10 to 14 are 950 ° C
  • residence time at annealing temperature 1 minute.
  • steel No. 23 with an Al content of 8.9% and steel No. 24 with a Cr content of 36.5% can produce hot-rolled sheets due to cracks in the steel ingot during hot rolling. There wasn't.
  • steel No. 23 with an Al content of 8.9% and steel No. 24 with a Cr content of 36.5% can produce hot-rolled sheets due to cracks in the
  • Steel No. 21 in Table 1 does not contain any of Ti, Nb, V, Zr, and Hf
  • Steel No. 22 is a comparative example with an Al content of 1.1%.
  • the 50 ⁇ m thick foil obtained as described above was subjected to finish annealing.
  • the annealing conditions for finish annealing were as follows: 25 vol% H 2 +75 vol% N 2 atmosphere with dew point of ⁇ 35 ° C., annealing temperature: 900 ° C. (However, in Table 1, steel No. 2 and 10-14 foils are 950 ° C.) ), Residence time at annealing temperature: 1 minute.
  • the thickness of the oxide layer on the foil surface was measured.
  • the thickness of the oxide layer was determined by the method using the glow discharge emission spectrometry (GDS) described above. As a result of the measurement, it was confirmed that the thickness of the oxide layer on the surface of each foil was 0.01 ⁇ m or less.
  • the crystal orientation of the foil surface was measured and evaluated for the foil after finish annealing. Further, the foil after finish annealing was subjected to a whisker generation heat treatment that was held at 925 ° C. for 12 hours in the atmosphere, the thickness of the whisker on the foil surface was measured, and the whisker generation ability of the foil was evaluated.
  • whisker generation heat treatment that was held at 925 ° C. for 12 hours in the atmosphere
  • Electron backscatter diffraction was used to measure the crystal orientation on the foil surface.
  • a test piece of 15 mm ⁇ 15 mm was cut out from the foil after the finish annealing, and the crystal orientation of the foil surface was measured in an area of 1 mm in the direction perpendicular to the rolling and 3 mm in the rolling direction using EBSD.
  • the crystal orientation of the foil surface is “very good ( ⁇ )” when the proportion of ⁇ 111 ⁇ crystal grains is 70% or more in area ratio, and the ratio of ⁇ 111 ⁇ crystal grains is 50% or more in area ratio 70
  • the case where it is less than 50% was evaluated as “good ( ⁇ )”, and the case where the proportion of ⁇ 111 ⁇ crystal grains was less than 50% in area ratio was evaluated as “bad” (x).
  • ⁇ 111 ⁇ crystal grains refer to crystal grains whose deviation between the vertical direction of the foil surface and the ⁇ 111 ⁇ plane of the crystal grains is within ⁇ 15 °.
  • Whisker formation ability The foil after finish annealing is cut and a 20mm wide x 30mm long test piece is collected and subjected to heat treatment in the atmosphere at an annealing temperature of 925 ° C and a residence time at the annealing temperature of 12 hours. did. After completion of the heat treatment, first, the surface of the test piece was observed with a scanning electron microscope (SEM) to confirm the presence or absence of whisker formation. Next, for the test piece in which the formation of whisker was recognized, the test piece was cut and embedded in the resin so that a cross section parallel to the width direction of the test piece was exposed, and the exposed cross section was polished and observed using SEM. Then, the production thickness of the produced whisker was measured.
  • SEM scanning electron microscope
  • the thickness of whisker formation (distance from the foil surface to the tip of the whisker) was measured at 10 points every 0.1 mm, and the average value of 10 points was taken as the average whisker production thickness.
  • the whisker production capacity is “very good ( ⁇ )” when the average whisker production thickness is 0.50 ⁇ m or more, “good” when the average whisker production thickness is 0.50 ⁇ m or more, and less than 0.25 ⁇ m. It was evaluated as “bad ( ⁇ )”.
  • the above evaluation results are shown in Table 2.
  • the foils (A to S) of the invention examples are excellent in the ability to form whiskers.
  • whiskers were not generated even though the proportion of ⁇ 111 ⁇ crystal grains was 50% or more in area ratio.
  • Example 2 Using the steel No.1, 6, 11 and 19 hot-rolled sheets of thickness 3 mm manufactured in Example 1, the production conditions (presence of hot-rolled sheet annealing, final rolling reduction of cold rolling, annealing atmosphere of finish annealing ) was investigated on the crystal orientation of the foil surface and the thickness of the oxide layer.
  • the hot-rolled sheet was pickled and then subjected to (first) cold rolling-intermediate annealing- (second) cold rolling in order to obtain a 50 ⁇ m thick foil.
  • the scale is removed by pickling, and then (first) cold rolling-intermediate annealing-(second) cold rolling are sequentially performed. To give a 50 ⁇ m thick foil.
  • the scale is removed by pickling and (first) cold rolling-intermediate annealing-(second) cold Rolling-intermediate annealing- (third) cold rolling was sequentially applied to form a 50 ⁇ m thick foil.
  • the annealing conditions for the hot-rolled sheet annealing were an annealing temperature of 900 ° C. or 950 ° C. and an annealing time (residence time at the annealing temperature) of 1 minute.
  • the plate thickness at the time of the final intermediate annealing is set to five levels of 0.5 mm, 0.3 mm, 0.1 mm, 0.09 mm and 0.08 mm, and the rolling reduction from the final intermediate annealing to the final foil thickness (final rolling reduction) was changed to a final foil thickness (50 ⁇ m).
  • Intermediate annealing conditions are: atmosphere gas: N 2 gas, annealing temperature: 900 ° C for steel No.1, No.6 and No.19, 950 ° C for steel No.11, residence time at annealing temperature: 1 minute did.
  • Table 3 shows the presence / absence of hot-rolled sheet annealing of each hot-rolled sheet, the sheet thickness during intermediate annealing, and the final reduction ratio.
  • the 50 ⁇ m thick foil obtained as described above was subjected to finish annealing.
  • Table 3 shows the annealing conditions for the finish annealing (annealing temperature, residence time at the annealing temperature, annealing atmosphere).
  • the thickness of the oxide layer on the surface of the foil was measured for the foil after finish annealing.
  • the crystal orientation of the foil surface was measured and evaluated.
  • the foil after finish annealing was subjected to a whisker generation heat treatment that was held at 925 ° C. for 12 hours in the atmosphere, and the average whisker generation thickness on the foil surface was measured to evaluate the whisker generation ability of the foil.
  • the same method as Example 1 was used for the oxide layer thickness measurement of the foil surface, crystal orientation measurement and evaluation, average whisker production thickness measurement, and whisker production ability evaluation. Table 3 shows these measurement and evaluation results.
  • the proportion of ⁇ 111 ⁇ crystal grains in the foil surface is 50% or more in area ratio, and the thickness of the oxide layer on the foil surface is 0.1 ⁇ m or less, It turns out that it is excellent in the ability to produce whiskers.
  • foil groups (AA, AB and AD groups, AF, AG and AI groups, AK, AL and AM groups, AO, AP and AQ with the same steel and the same finish annealing conditions but different final reduction ratios.
  • whisker forming ability is compared in the group of No. 1), it can be seen that the higher the final rolling reduction, the higher the area ratio of ⁇ 111 ⁇ crystal grains on the foil surface, and the better the whisker forming ability.
  • the foils BA, BB and BC of the comparative examples had a low final rolling reduction, the area ratio of ⁇ 111 ⁇ crystal grains on the foil surface was less than 50%, and sufficient whiskers were not generated.
  • the comparative foils BD to BI had an area ratio of ⁇ 111 ⁇ crystal grains of 50% or more on the foil surface, but a thick oxide layer exceeding 0.1 ⁇ m thick was formed during the final annealing. Even if heat treatment was performed, sufficient whisker was not generated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

ウイスカ生成能に優れたフェライト系ステンレス箔を提供する。 質量%で、C:0.050%以下、Si:2.00%以下、Mn:0.50%以下、S:0.010%以下、P:0.050%以下、Cr:15.0%以上30.0%以下、Al:2.5%以上6.5%以下およびN:0.050%以下を含有し、更に、Ti:0.01%以上0.50%以下、Nb:0.01%以上0.20%以下、V:0.01%以上0.20%以下、Zr:0.005%以上0.200%以下およびHf:0.005%以上0.200%以下のうちから選ばれる1種以上を含有し、残部がFeおよび不可避的不純物からなる組成とし、箔表面において{111}結晶粒(箔表面の垂直方向と結晶粒の{111}面とのずれが±15°以内の結晶粒)の占める割合を面積率で50%以上とし、箔表面の酸化物層の厚さを0.1μm以下とすることで、ウイスカ生成能に優れたフェライト系ステンレス箔とする。

Description

フェライト系ステンレス箔およびその製造方法
 本発明は、Al2O3ウイスカ生成能に優れたフェライト系ステンレス箔およびその製造方法に関する。特に自動車、農業機械、建築機械、産業機械等に搭載される排ガス浄化装置用触媒担体の素材に好適なフェライト系ステンレス箔およびその製造方法に関する。
 自動車や農業機械、建築機械、産業機械等の排ガス浄化装置に用いられる触媒担体として、セラミックスハニカムとステンレス箔を用いたメタルハニカムが普及している。これらのうち、メタルハニカムは、セラミックスハニカムに比べて開孔率を大きく取ることができるうえ、耐熱衝撃特性や耐振動特性に優れていることから、近年使用される割合が増加している。
 メタルハニカムは、例えば、平坦なステンレス箔と波状に加工されたステンレス箔とを交互に積み重ねてハニカム構造としたもので、ステンレス箔の表面に触媒物質を担持した後、排ガス浄化装置に用いられる。ステンレス箔の表面に触媒物質を担持する方法としては、主にステンレス箔にγ-Al2O3をコーティングしてウォッシュコート層を形成し、このウォッシュコート層にPtおよびRh等の触媒物資を担持する方法が採用されている。
 メタルハニカムは、高温の排ガスに晒されるため、その素材となるステンレス箔には優れた耐酸化性が要求される。更に、メタルハニカムの素材となるステンレス箔は、触媒塗装(ウォッシュコート)との密着性(触媒塗装密着性)に優れていることも要求される。
 このような要求特性を満足するために、現行のメタルハニカムには、主に20質量%Cr-5質量%Al系や18質量%Cr-3質量%Al系などに代表される、高Al含有フェライト系ステンレス箔が用いられている。これらの箔は、高温に曝されると、その表面にα-Al2O3主体のAl酸化皮膜を生成し、これが保護皮膜として機能するため、優れた耐酸化性を発揮する。また、これらの箔は、特定の熱処理を施すことにより、γ-Al2O3ウイスカ(以下、単にウイスカという場合もある)と呼ばれる針状の微細結晶を表面に生成させて、触媒塗装密着性を向上させることができる。例えば、特許文献1には、Al含有フェライト系ステンレス鋼を、酸素分圧が0.75Torr(99.99Pa)以下の低酸素雰囲気中で加熱することで鋼表面を酸化してウイスカ前駆体酸化物フィルムを形成し、その後、酸化雰囲気中で更に酸化してウイスカ前駆体酸化物フィルム上にウイスカを成長させる技術が提案されている。
 図1に、質量%で、C:0.005%、Si:0.15%、Mn:0.15%、P:0.03%、S:0.002%、Cr:20.0%、Ni:0.15%、Al:5.4%、Cu:0.1%、N:0.005%を含有し、残部がFeおよび不可避不純物からなるフェライト系ステンレス箔を、2×10-3Paの真空中、900℃で30秒間保持する熱処理を施したのち、酸化雰囲気中900℃で24時間保持する熱処理を施した後の表面を走査型電子顕微鏡で観察した結果を示す。図1から、箔の表面に針状もしくは板状のウイスカが生成していることが確認できる。このようにウイスカが生成すると、箔の表面積が大きくなるため、触媒塗装との接触面積が増加する。更に、ウイスカは、その形状が針状または板状であることから、触媒塗装層に対してアンカー効果も有する。それゆえ、表面にウイスカを生成させることにより、フェライト系ステンレス箔の触媒塗装密着性が向上する。
 しかし、上記の従来技術では、箔表面の全面に充分な長さのウイスカを成長させるために24時間程度の長時間にわたる酸化熱処理を必要とし、製造コストの増加を招いていた。この問題を解決し、より短時間でウイスカを生成させる方法としては、予備処理によってウイスカ生成を促進する方法が知られている。
 例えば、特許文献2には、ウイスカを成長させるための酸化熱処理に先立ち、予備処理としてブラスト処理を施す方法が提案されている。そして、特許文献2には、Al含有フェライト系ステンレス鋼箔に、ブラスト処理を施して表面加工層を付与することにより、箔表面にウイスカを容易かつ効果的に形成できると記載されている。
 また、特許文献3には、10~30%Cr、6~20%Alを含むフェライト系ステンレス鋼に、大気雰囲気中で400~600℃に加熱する予備熱処理を施して鋼表面にθ-Al2O3を形成し、その後、850~975℃に加熱することによりウイスカを成長させる方法が提案されている。そして、特許文献3には、予備熱処理を施して鋼表面にθ-Al2O3を形成すると、その後の熱処理で鋼表面に高アスペクト比のウイスカが均一に生成すると記載されている。
特開昭57-71898号公報 特開昭62-149862号公報 特開平3-50199号公報
 しかし、特許文献2に提案された技術、すなわち予備処理としてブラスト処理を施す技術では、通常の箔圧延工程に更なる工程追加がなされており、製造コストの増加という問題は解決できていない。また、特許文献3に提案された技術では、フェライト系ステンレス鋼のAl含有量を6~20%とする必要があり、実際にはAl含有量を7.5%以上としなければ充分なウイスカ生成能が発現しない(特許文献3の実施例参照)。このようにAlを多く含むフェライト系ステンレス鋼では、鋼の脆化(靭性低下)が著しくなり、箔の製造が困難となる等、様々な支障をきたす。
 以上の理由により、Al含有フェライト系ステンレス箔に関し、鋼特性の劣化や製造コストの増加を伴うことなくウイスカの生成速度を向上させる手法が望まれていた。
 本発明の目的は、上記課題を解決し、ウイスカ生成能に優れたフェライト系ステンレス箔およびその製造方法を提供することにある。
 本発明者らは、上記課題を解決すべく、Al含有フェライト系ステンレス箔のウイスカ生成能に影響を及ぼす各種要因について鋭意検討した。その結果、箔表面における結晶方位とウイスカ生成能との間に相関関係があることを突き止めた。そして、更に検討を進めた結果、特定の結晶方位を有する結晶粒が、ウイスカ生成能に優れることを見出した。具体的には、箔表面における{111}結晶粒からのウイスカ成長速度が、他の結晶粒からの成長速度に比べて速いことを見出した。
 箔表面における結晶方位とウイスカ生成能との相関関係を確認するに至った基礎実験について、以下に説明する。
 質量%で、C:0.005%、Si:0.15%、Mn:0.15%、P:0.03%、S:0.002%、Cr:20.0%、Ni:0.15%、Al:5.4%、Cu:0.1%、N:0.005%を含有し残部がFeおよび不可避不純物であるフェライト系ステンレス箔に、2×10-3Paの真空中、900℃で30秒間保持する熱処理を施したのち、900℃で8時間保持する熱処理を施した。次いで、熱処理後の箔表面を、レーザー顕微鏡(キーエンス社製VK-X100)で観察した。観察結果(レーザー顕微鏡像)を図2に示す。また、図2のレーザー顕微鏡像と同じ視野の熱処理後の箔表面について、電子線後方散乱回折法(EBSD)を用いて結晶粒界およびその方位を測定した。この測定結果から得られた結晶粒界を図3中に点線で示す。更に、同レーザー顕微鏡を用いて、図2のレーザー顕微鏡像と同一視野について3次元形状測定を実施した結果を、図4に示す。
 図2および図3中、黒色のコントラストの濃い部分は、ウイスカが生成している部分である。電子線後方散乱回折法(EBSD)による測定の結果、図3中、矢印で表示した結晶粒が{111}結晶粒であり、その他の結晶粒は{111}結晶粒以外であることが確認された。ここで、箔表面の垂直方向と結晶粒の{111}面とのずれが±15°以内の結晶粒を、{111}結晶粒と定義する。
 図2および図3に示すように、{111}結晶粒の領域は、他の領域に比べてウイスカの生成を示す黒色のコントラストが濃くなっている。この結果から、箔表面の{111}結晶粒において、ウイスカが優先的に成長していることが理解できる。また、図4に示すように、視野中央部の{111}結晶粒は、表面が他の結晶粒より垂直方向に高くなっており、他の結晶粒に比べてウイスカの成長速度が速いことが確認できる。なお、{111}結晶粒がウイスカ生成能力に優れる理由は定かではないが、{111}結晶粒は、その表面に生成するγ-Al2O3ウイスカとの結晶格子整合性に優れており、γ-Al2O3ウイスカが優先的に成長し易くなっているものと考えられる。
 以上の実験結果から、箔のウイスカ生成能を向上させるためには、箔表面における{111}結晶粒の生成割合を向上させればよいことが明らかになった。そして、本発明者らが更に綿密な調査を行った結果、短時間の熱処理でウイスカを生成させる効果を得るためには、箔表面において{111}結晶粒が占める割合を面積率で50%以上とする必要があるという知見を得た。
 次に、本発明者らは、Al含有フェライト系ステンレス箔に関し、箔表面における{111}結晶粒の割合(面積率)を高める方法について検討した。
 一般的に、ステンレス箔は、スラブに熱間圧延を施して熱延鋼板とし、その熱延鋼板を焼鈍し、次いで冷間圧延もしくは温間圧延(以下、単に冷間圧延という)し、冷間圧延によって得られた冷延鋼板に焼鈍を施すことにより製造される。なお、この場合、冷間圧延機の能力に制約されて、冷間圧延と焼鈍を繰り返して行うことが多い。以下、冷間圧延と冷間圧延の間に行われる焼鈍を中間焼鈍、最後の焼鈍を仕上焼鈍と区別する。例えば、冷間圧延と焼鈍を2回ずつ行う場合、冷間圧延-中間焼鈍-冷間圧延-仕上焼鈍という名称になる。
 そこで、本発明者らは、様々な圧延条件および焼鈍(中間焼鈍および仕上焼鈍)条件にて箔を製造し、箔表面の{111}結晶粒の面積率を増加させるうえで必要となる製造条件を調査した。その結果、{111}結晶粒の面積を増加させるためには、最終製品厚に圧延するまでに多量の加工歪を導入することが重要であるとの知見を得た。
 また、本発明者らは、箔表面における{111}結晶粒の面積率を増加させるのに最適な鋼組成について検討した。その結果、C含有量を質量%で0.050%以下、好ましくは0.020%以下に抑制し、且つ、Ti、Nb、V、Zr、Hfのうちから選ばれる1種以上を所定量添加した鋼組成とし、Cをこれらの元素(Ti、Nb、V、Zr、Hfのうちから選ばれる1種以上)との炭化物として析出させることで、{111}再結晶方位の発達を促進できることが明らかになった。更に、Ti、Nb、V、Zr、Hfのうちから選ばれる1種以上を所定量添加した鋼組成とすることで、箔のウイスカ生成速度がより一層向上し、従来に比べて熱処理(酸化雰囲気中で高温保持する熱処理)の時間を大幅に短縮した場合であっても箔表面に充分な長さのウイスカが得られることを突き止めた。
 以上のように、鋼組成を最適化し、且つ多量に加工歪を導入した冷間圧延後の箔に、焼鈍を施すと、焼鈍により再結晶させた際の{111}結晶粒の集積率が高くなり、箔表面における{111}結晶粒の面積率を50%以上とすることができる。そして、仕上焼鈍後の箔にウイスカ生成のための熱処理(酸化雰囲気中で高温保持する熱処理)を施す際、ウイスカが優先的に成長し易い{111}結晶粒が50%以上の面積率で存在する場合には、ウイスカ生成熱処理の短時間化が期待できる。
 しかし、仕上焼鈍条件によっては、期待したウイスカ生成効果が得られない場合があることが判明した。そこで、本発明者らは、様々な条件で仕上焼鈍を施して箔表面を観察し、仕上焼鈍後の箔の表面性状がウイスカ生成熱処理でのウイスカ生成能に及ぼす影響について調査した。その結果、仕上焼鈍後の箔表面に形成された酸化物層の厚さがウイスカ生成能を左右し、この酸化物層の厚さが0.1μmを超えるとウイスカ生成能に対する悪影響が顕在化するという知見を得た。また、特に仕上焼鈍時の雰囲気(真空度や露点等)を最適化することで、箔表面の酸化物層の厚さを0.1μm以下に抑制可能であることを突き止めた。
 本発明は、上記の知見に立脚するものであり、その要旨構成は次のとおりである。
[1]質量%で、C:0.050%以下、Si:2.00%以下、Mn:0.50%以下、S:0.010%以下、P:0.050%以下、Cr:15.0%以上30.0%以下、Al:2.5%以上6.5%以下およびN:0.050%以下を含有し、更に、Ti:0.01%以上0.50%以下、Nb:0.01%以上0.20%以下、V:0.01%以上0.20%以下、Zr:0.005%以上0.200%以下およびHf:0.005%以上0.200%以下のうちから選ばれる1種以上を含有し、残部がFeおよび不可避的不純物からなる組成を有し、箔表面において{111}結晶粒の占める割合が面積率で50%以上であり、箔表面の酸化物層の厚さが0.1μm以下である、フェライト系ステンレス箔。但し、{111}結晶粒は、箔表面の垂直方向と結晶粒の{111}面とのずれが±15°以内の結晶粒である。
[2]前記[1]において、前記組成に加えて更に、質量%で、Ni:0.01%以上0.50%以下、Cu:0.01%以上1.00%以下、Mo:0.01%以上4.00%以下およびW:0.01%以上4.00%以下のうちから選ばれる1種以上を合計で6.0%以下の範囲で含有する、フェライト系ステンレス箔。
[3]前記[1]または[2]において、前記組成に加えて更に、質量%で、Ca:0.0005%以上0.0200%以下、Mg:0.0002%以上0.0200%以下およびREM:0.010%以上0.200%以下のうちから選ばれる1種以上を含有する、フェライト系ステンレス箔。
[4]前記[1]~[3]のいずれかに記載の鋼スラブを熱間圧延し、1回以上の冷間圧延、1回以上の焼鈍を行い、フェライト系ステンレス箔を製造する方法であって、前記冷間圧延の最終圧下率は、50%以上95%以下であり、前記焼鈍における仕上焼鈍は、N2、H2、He、Ar、CO、CO2のうちのいずれか1種以上を含有し露点が-20℃以下である低酸素雰囲気、または、圧力が1Pa以下である真空中で、800℃以上1100℃以下の温度域で3秒以上25時間以下の間滞留する、フェライト系ステンレス箔の製造方法。
なお、最終圧下率とは、最後に行われる冷間圧延の圧下率である。また、仕上焼鈍とは、最後に行われる焼鈍である。
 本発明によると、箔特性の低下や製造コストの増加を伴うことなく、短時間でウイスカ成長が可能なフェライト系ステンレス箔、すなわちウイスカ生成能に優れたフェライト系ステンレス箔を得ることができる。
 本発明のフェライト系ステンレス箔は、自動車、二輪車の触媒担体およびこれら触媒担体の外筒材、自動車や二輪車のマフラー配管用部材、暖房器具や燃焼器具の排気管用部材などに好適である。更に、トラクターやコンバインなどの農業機械、ブルドーザーやショベルカーなどの建設機械の排ガス浄化装置用触媒担体のほか、工場排ガスの浄化装置用触媒担体などの素材として用いてもよいが、特にこれらの用途に限定されるものではない。
図1は、フェライト系ステンレス箔の表面に生成したAl2O3ウイスカの走査型電子顕微鏡による観察結果の一例を示す図である。 図2は、900℃で8時間保持する熱処理を施したフェライト系ステンレス箔表面を、レーザー顕微鏡で観察した結果の一例を示す図である。 図3は、図2のレーザー顕微鏡像と同じ視野の熱処理後箔表面について、電子線後方散乱回折法(EBSD)を用いて結晶粒界およびその方位を測定した結果を示す図である。 図4は、図2のレーザー顕微鏡像と同一視野について3次元形状測定した結果を示す図である。
 以下、本発明について具体的に説明する。
なお、本発明のフェライト系ステンレス箔は、フェライト系ステンレス鋼からなる箔材であり、その厚さは200μm以下である。
 まず、本発明フェライト系ステンレス箔の成分組成の限定理由について説明する。なお、以下の成分組成を表す「%」は、特に断らない限り「質量%」を意味するものとする。
 C:0.050%以下
 C含有量が0.050%を超えると、スラブや熱延板、冷延板などの靭性が低下し、箔の製造が困難になるため、C含有量は0.050%以下とする。また、C含有量を更に低減して0.020%以下にすると、鋼中の固溶Cが減少して箔表面における{111}結晶粒の面積率が増大する。したがって、C含有量は0.020%以下とすることが好ましい。但し、C含有量を0.003%未満にするためには精錬に時間がかかり、製造上好ましくない。
 Si:2.00%以下
 Siは、鋼の耐酸化性の向上に有効な元素であり、その効果を得るためにはSi含有量を0.10%以上とすることが好ましい。しかし、Si含有量が2.00%を超えると、熱延板の靭性が低下し、箔の製造が困難になる。したがってSi含有量は2.00%以下とする。好ましくは1.00%以下、より好ましくは0.20%未満である。但し、Si含有量を0.03%未満にするためには通常の方法では精錬できなくなり、精錬に時間と費用がかかり製造上好ましくない。
 Mn:0.50%以下
 Mn含有量が0.50%を超えると、箔の耐酸化性が低下する。したがって、Mn含有量は0.50%以下とする。好ましくは0.20%以下である。更に好ましくは0.10%未満である。但し、Mn含有量を0.03%未満にするためには通常の方法では精錬できなくなり、精錬に時間と費用がかかり製造上好ましくない。
 S:0.010%以下
 S含有量が0.010%を超えると、箔の表面に生成するAl酸化皮膜と地鉄との密着性や高温での耐酸化性が低下する。したがって、S含有量は0.010%以下とする。好ましくは0.0030%以下、より好ましくは0.0010%以下ある。
 P:0.050%以下
 P含有量が0.050%を超えると、箔の表面に生成するAl酸化皮膜と地鉄との密着性が低下する。また、箔の高温での耐酸化性も低下する。したがって、P含有量は0.050%以下とする。好ましくは0.030%以下である。
 Cr:15.0%以上30.0%以下
 Crは、箔の耐酸化性および強度を確保するうえで必要不可欠な元素である。このような効果を発現するためには、Cr含有量を15.0%以上とする必要がある。しかし、Cr含有量が30.0%を超えると、スラブや熱延板、冷延板などの靭性が低下し、箔の製造が困難になる。したがって、Cr含有量は15.0%以上30.0%以下の範囲とする。なお、箔の製造コストと高温特性とのバランスを考慮すると、Cr含有量は17.0%以上25.0%以下の範囲とすることが好ましく、18.0以上22.0%以下の範囲とすることがより好ましい。
 Al:2.5%以上6.5%以下
 Alは、本発明において最も重要な元素である。箔表面にAl2O3ウイスカを生成させるためには、Al含有量を2.5%以上とする必要がある。また、箔の耐酸化性を確保する観点からも、Al含有量を2.5%以上とする必要がある。一方、Al含有量が6.5%を超えると、熱延板の靭性が低下し、箔の製造が困難になる。したがって、Al含有量は2.5%以上6.5%以下の範囲とする。なお、箔の製造性と耐酸化性とのバランスを考慮すると、Al含有量は3.0%以上6.0%以下の範囲とすることが好ましく、4.0%以上6.0%未満の範囲とすることがより好ましい。さらに好ましくは、5.8%以下である。
 N:0.050%以下
 N含有量が0.050%を超えると、熱延板の靱性の低下により、箔の製造が困難となる。したがって、N含有量は0.050%以下とする。好ましくは0.030%以下である。しかし、N含有量を0.003%未満にするためには精錬に時間がかかり、製造上好ましくない。
 Ti:0.01%以上0.50%以下、Nb:0.01%以上0.20%以下、V:0.01%以上0.20%以下、Zr:0.005%以上0.200%以下およびHf:0.005%以上0.200%以下のうちから選ばれる1種以上
 本発明のフェライト系ステンレス箔は、箔表面における{111}結晶粒の面積率の増大、ウイスカ成長の促進、耐酸化性および靭性の改善による製造性の向上を目的として、Ti、Nb、V、ZrおよびHfのうちから選ばれる1種以上を含有する。
 Ti:0.01%以上0.50%以下
 Tiは、鋼中のC、Nを固定し、箔表面における{111}結晶粒の面積率を増大させる元素である。また、Tiは、ウイスカの成長を促進する元素でもある。更に、Tiは、箔表面に生成するAl酸化皮膜と地鉄との密着性を向上させる元素でもある。これらの効果はTi含有量を0.01%以上とすることにより得られる。一方、Tiは酸化され易いため、その含有量が0.50%を超えると、箔表面に生成するAl酸化皮膜中にTi酸化物が多量に混入する。このようにTi酸化物が多量に混入すると、箔の耐酸化性が低下する。したがって、Tiを含有する場合は、その含有量を0.01%以上0.50%以下の範囲とする。好ましくは、0.05%以上0.30%以下の範囲である。
 Nb:0.01%以上0.20%以下
 Nbは、鋼中のCおよびNを固定し、箔表面における{111}結晶粒の面積率を増大させる元素である。また、Nbは、ウイスカの成長を促進する元素でもある。このような効果は、Nb含有量を0.01%以上とすることにより得られる。一方、Nbは酸化され易いため、その含有量が0.20%を超えると、箔表面に生成するAl酸化皮膜中にNb酸化物が多量に混入する。このようにNb酸化物が多量に混入すると、箔の耐酸化性が低下する。したがって、Nbを含有する場合は、その含有量を0.01%以上0.20%以下の範囲とする。好ましくは0.05%以上0.10%以下の範囲である。
 V:0.01%以上0.20%以下
 Vは、鋼中のCおよびNを固定し、箔表面における{111}結晶粒の面積率を増大させる元素である。また、Vは、ウイスカの成長を促進する元素でもある。このような効果は、V含有量を0.01%以上とすることにより得られる。一方、Vは酸化され易いため、その含有量が0.20%を超えると、箔の表面に生成するAl酸化皮膜中にV酸化物が多量に混入する。このようにV酸化物が多量に混入すると、箔の耐酸化性が低下する。したがって、Vを含有する場合は、その含有量を0.01%以上0.20%以下の範囲とする。好ましくは0.05%以上0.10%以下の範囲である。
 Zr:0.005%以上0.200%以下
 Zrは、鋼中のCおよびNと結合し、箔表面における{111}結晶粒の面積率を増大させる元素である。また、Zrは、ウイスカの成長を促進する元素でもある。更に、Zrは、箔表面に生成するAl酸化皮膜中において粒界に濃化し、耐酸化性や高温での強度を高め、箔の形状安定性を向上させる元素でもある。これらの効果は、Zr含有量を0.005%以上とすることにより得られる。一方、Zr含有量が0.200%を超えると、Feなどと金属間化合物を形成し、箔の耐酸化性を低下させる。したがって、Zrを含有する場合は、その含有量を0.005%以上0.200%以下の範囲とする。好ましくは0.010%以上0.050%以下の範囲である。
 Hf:0.005%以上0.200%以下
 Hfは、鋼中のCおよびNと結合し、箔表面における{111}結晶粒の面積率を増大させる元素である。また、Hfは、ウイスカの成長を促進する元素でもある。更に、Hfは、箔表面に生成するAl酸化皮膜と地鉄との密着性を向上させる効果を有するとともに、Al酸化皮膜の成長速度を低下させて鋼中Alの減少を抑制するため、箔の耐酸化性を向上させる効果も有する。これらの効果は、Hf含有量を0.005%以上とすることにより得られる。一方、Hf含有量が0.200%を超えると、上記Al酸化皮膜中にHfO2として混入して酸素の拡散経路となり、かえって酸化を加速させて鋼中Alの減少を速める。したがって、Hfを含有する場合には、その含有量を0.005%以上0.200%以下の範囲とする。好ましくは0.010%以上0.100%以下の範囲である。
 以上が本発明フェライト系ステンレス箔の基本成分であるが、本発明では上記基本成分に加えて、必要に応じてNi:0.01%以上0.50%以下、Cu:0.01%以上1.00%以下、Mo:0.01%以上4.00%以下およびW:0.01%以上4.00%以下のうちから選ばれる1種以上を合計で6.0%以下の範囲で含有することができる。
 Ni:0.01%以上0.50%以下
 Niは、箔を所望の触媒担体構造に組み立てる際のロウ付け性を向上する効果がある。このような効果を得るためにはNi含有量を0.01%以上とすることが好ましい。しかし、Niはオーステナイト安定化元素であるため、Ni含有量が0.50%を超えると、高温酸化時に箔中のAlやCrが酸化で消費した時に、オーステナイト組織が生成するおそれがある。オーステナイト組織が生成すると、熱膨張係数が増加し、箔の括れや破断などの不具合が発生する。したがって、Niを含有する場合には、その含有量を0.01%以上0.50%以下の範囲とすることが好ましい。また、0.05%以上0.30%以下の範囲とすることがより好ましく、0.10%以上0.20%以下の範囲とすることがより一層好ましい。
 Cu:0.01%以上1.00%以下
 Cuは、箔の高温強度を増大させる効果を有する。この効果を得るためには、Cu含有量を0.01%以上にすることが好ましい。しかし、Cu含有量が1.00%を超えると、熱延板の靭性が低下して箔の製造が困難になる場合がある。したがって、Cuを含有する場合は、その含有量を0.01%以上1.00%以下の範囲とすることが好ましい。より好ましくは0.01%以上0.50%以下の範囲である。
 Mo:0.01%以上4.00%以下
 Moは、箔の高温強度を増大させる効果を有する。この効果を得るためには、Mo含有量を0.01%以上にすることが好ましい。しかし、Mo含有量が4.00%を超えると、熱延板および冷延板の靭性が低下して箔の製造が困難になる場合がある。したがって、Moを含有する場合は、その含有量を0.01%以上4.00%以下の範囲とすることが好ましい。より好ましくは1.50%以上2.50%以下の範囲である。
 W:0.01%以上4.00%以下
 Wは、箔の高温強度を増大させる効果を有する。この効果を得るためには、W含有量を0.01%以上にすることが好ましい。しかし、W含有量が4.00%を超えると、熱延板および冷延板の靭性が低下して箔の製造が困難になる場合がある。したがって、Wを含有する場合は、その含有量を0.01%以上4.00%以下の範囲とすることが好ましい。より好ましくは1.50%以上2.50%以下の範囲である。
 Ni、Cu、Mo、Wの合計含有量:6.0%以下
 Ni、Cu、Mo、Wのうちから選ばれる1種以上を含有する場合は、合計含有量を6.0%以下の範囲とすることが好ましい。これらの元素の合計含有量が6.0%を超えると、熱延板および冷延板の靭性が大幅に低下して箔の製造が困難になる場合がある。なお、これらの元素の合計含有量は、4.0%以下とすることがより好ましい。
 また、本発明のフェライト系ステンレス箔は、必要に応じてCa:0.0005%以上0.0200%以下、Mg:0.0002%以上0.0200%以下およびREM:0.010%以上0.200%以下のうちから選ばれる1種以上を含有することができる。
 Ca:0.0005%以上0.0200%以下
 Caは、箔表面に生成するAl酸化皮膜と地鉄との密着性を向上させる効果を有する。このような効果を得るためには、Ca含有量を0.0005%以上とすることが好ましい。一方、Ca含有量が0.0200%を超えると、酸化速度が増大して箔の耐酸化性が低下するおそれがある。したがって、Caを含有する場合には、その含有量を0.0005%以上0.0200%以下の範囲とすることが好ましい。また、0.0020%以上0.0100%以下の範囲とすることがより好ましい。
 Mg:0.0002%以上0.0200%以下
 Mgは、Caと同様に、箔表面に生成するAl酸化皮膜と地鉄との密着性を向上させる効果を有する。このような効果を得るためには、Mg含有量を0.0002%以上とすることが好ましい。一方、Mg含有量が0.0200%を超えると酸化速度が増大して箔の耐酸化性が低下するおそれがある。したがって、Mgを含有する場合には、その含有量を0.0002%以上0.0200%以下の範囲とすることが好ましい。また、0.0020%以上0.0100%以下の範囲とすることがより好ましい。
 REM:0.010%以上0.200%以下
 REMとは、Sc、Yおよびランタノイド系元素(La、Ce、Pr、Nd、Smなど、原子番号57~71までの元素)の総称であり、REM含有量はこれらの元素の総量である。一般に、REMは、箔表面に生成するAl酸化皮膜の密着性を改善するとともに、Al酸化皮膜の成長速度(酸化速度)を低減させて、箔の耐酸化性を顕著に向上させる効果を有する。このような効果を得るためには、REM含有量を0.010%以上とすることが好ましい。しかし、REM含有量が0.200%を超えると、箔の製造時、これらの元素が結晶粒界に濃化して、高温加熱時に溶融して箔の素材となる熱延鋼帯(熱延板)の表面欠陥の要因となり得る。したがって、REMを含有する場合には、その含有量を0.010%以上0.200%以下の範囲とすることが好ましい。より好ましくは0.030%以上0.100%以下の範囲である。
 本発明のフェライト系ステンレス箔に含まれる上記以外の元素(残部)は、Feおよび不可避的不純物である。不可避的不純物としては、Zn、Sn等を例示することができ、これらの元素の含有量は、それぞれ0.1%以下であることが好ましい。
 次に、本発明フェライト系ステンレス箔の表面性状(組織および酸化物層の厚さ)について説明する。
 本発明のフェライト系ステンレス箔は、箔表面における{111}結晶粒の占める割合が面積率で50%以上であり、箔表面の酸化物層の厚さが0.1μm以下であることを特徴とする。これらの条件は、フェライト系ステンレス箔に所望のウイスカ生成能を付与するうえで、極めて重要となる。なお、ウイスカ生成能とは、ウイスカ生成の熱処理、すなわち箔表面にウイスカを生成させるための熱処理(酸化雰囲気中で高温保持する熱処理)を施す際の、ウイスカの成長のし易さを意味する。
 箔表面において{111}結晶粒の占める割合:面積率で50%以上
 先述のとおり、箔にウイスカ生成熱処理を施す際、{111}結晶粒が形成された箔表面では、他の結晶粒が形成された箔表面に比べて、ウイスカ成長速度が速くなる。したがって、箔のウイスカ生成能の向上には、箔表面における{111}結晶粒の占める割合を高めることが極めて有効となる。そこで、本発明では、ウイスカ生成能の向上効果を充分に発現させる目的で、箔表面における{111}結晶粒の占める割合を、面積率で50%以上とする。更に優れたウイスカ生成能を得るためには、上記面積率を60%以上とすることが好ましく、70%以上とすることがより好ましい。
なお、上記{111}結晶粒は、箔表面の垂直方向と結晶粒の{111}面とのずれが±15°以内の結晶粒を意味する。
 箔表面の酸化物層の厚さ:0.1μm以下
 ウイスカ生成熱処理前の箔表面に厚さ0.1μm超の酸化物層が存在すると、この酸化物層がウイスカの成長を妨げるため、例えば酸化雰囲気中800~1000℃の高温で所定時間保持するようなウイスカ生成熱処理を施しても、ウイスカが殆ど生成しなくなる。したがって、本発明においては、箔に優れたウイスカ生成能を付与する目的で、箔表面の酸化物層の厚さを0.1μm以下に制限する。好ましくは0.03μm以下である。
 本発明のフェライト系ステンレス箔の箔表面に生成し得る酸化物層は、Al酸化物層やFe酸化物層、Cr酸化物層、Si酸化物層である。
 これらの酸化物層の存在は、グロー放電発光分析法(GDS)などの既知の表面分析装置によって確認することができる。一例として、Al酸化物層を、GDSによる深さ方向分析で測定する方法について説明する。箔表面にAl酸化物層が生成している場合、Alの検出強度は最表面(酸化物層の表面)から深さ方向に分析が進行するにつれて上昇し、極大値をとった後、酸化物層と地鉄との界面に近づくにつれて減少する。更に、界面以降も分析が進行するにつれてAlの検出強度は減少し、箔内部(地鉄部)ではAlの検出強度はほぼ一定値をとる。Al濃度(検出強度)が一定値をとったら、Alの検出強度が「(極大点での強度+一定領域での検出強度)×0.5」となる点をAl酸化物層-地鉄の界面と定め、界面より表面側をAl酸化物層と定める。Al酸化物層の厚みを求めるためには、事前にAl酸化物層が既知のサンプルを用いて、スパッタ時間と分析厚の関係を調査しておき、Al酸化物層-地鉄界面に到達するまでのスパッタ時間から換算すればよい。FeやCrなど、他の元素の酸化物層についても同様に測定すればよい。このようにして求めたAl酸化物層、Fe酸化物層、Cr酸化物層およびSi酸化物層のうち、最も厚いものを箔表面の酸化物層の厚さとする。
 以上のように、本発明によると、箔の組成および表面性状(組織および酸化物層の厚さ)を規定することで、ウイスカ生成能に優れたフェライト系ステンレス箔が得られる。したがって、本発明の箔材を用いることで、従来24時間程度の酸化処理を要していた厚みのウイスカを、12時間程度の酸化処理で生成させることが可能となる。
 次に、本発明のフェライト系ステンレス箔の好ましい製造方法について説明する。
 本発明のフェライト系ステンレス箔は、例えば、上記成分組成からなる鋼スラブを熱間圧延し、1回以上の冷間圧延、1回以上の焼鈍を行い製造される。冷間圧延の最終圧下率は、50%以上95%以下であり、焼鈍における仕上焼鈍は、N2、H2、He、Ar、CO、CO2のうちのいずれか1種以上を含有し露点が-20℃以下である低酸素雰囲気、または、圧力が1Pa以下である真空中で、800℃以上1100℃以下の温度域で3秒以上25時間以下の間滞留する。なお、最終圧下率とは、最後に行われる冷間圧延の圧下率である。また、仕上焼鈍とは、最後に行われる焼鈍である。
 本発明のフェライト系ステンレス箔の製造には、通常のステンレス鋼製造設備を用いることができる。例えば、前述の成分組成を含有するステンレス鋼を、転炉や電気炉などで溶製し、VODやAODで二次精錬した後、造塊-分塊圧延法や連続鋳造法で板厚200~300mm程度の鋼スラブとする。鋳造後のスラブを加熱炉に装入し、1150℃~1250℃に加熱した後、熱間圧延工程に供し、板厚2~4mm程度の熱延板とする。この熱延板に対して800℃~1050℃で熱延板焼鈍を行っても良いが、最終箔材の表面での{111}結晶粒の面積率を向上させるためには熱延板焼鈍を省略することが好ましい。
 先述のとおり、最終箔材の表面での{111}結晶粒の面積率を向上させるためには、熱間圧延で形成された不均一な組織を冷間圧延初期に充分に破壊すること、および最終製品厚に圧延するまでに多量の加工歪を導入することが重要となる。最終製品厚に圧延するまでに多量の加工歪を導入するためには、熱間圧延工程の後に、熱延板焼鈍を実施せずに冷間圧延を実施することが好ましい。また、熱延板の板厚を増加させることも、多量の加工歪を導入するうえで有効となる。
 以上のようにして得られた熱延板に、ショットブラスト、酸洗、機械研磨などを施して表面スケールを除去し、冷間圧延と焼鈍処理を例えば複数回繰り返し行うことで、箔厚200μm以下のステンレス箔とする。
 冷間圧延工程で中間焼鈍を実施する場合には、熱延終了後から中間焼鈍までの圧下率を50%以上95%以上以下とする。好ましくは60%以上95%以下である。これにより、熱間圧延で形成された不均一な組織が充分に破壊され、最終箔材の表面での{111}結晶粒の面積率を向上させることができる。
 また、冷間圧延工程で中間焼鈍を実施する場合には、最終の中間焼鈍工程から所望の箔厚に圧延するまでの圧下率、すなわち、所望の最終箔厚に圧延するために最後に行われる冷間圧延の圧下率(最終圧下率)を50%以上95%以下、好ましくは60%以上95%以下とする。最終圧下率を50%以上95%以下とすることで多量の加工歪を導入することが可能となる。より好ましくは、70%以上95%以下である。このように加工歪が充分に蓄積された箔材に後述する仕上焼鈍を施すと、再結晶が促進されるため、最終箔材表面の{111}結晶粒の占める面積率がより一層増加する。
 なお、上記中間焼鈍は、還元雰囲気において700℃以上1000℃以下の温度域で30秒以上5分以下の間滞留させる条件で行うことが好ましい。
 箔の厚みは、箔の用途に応じて調整することができる。例えば、特に耐振動特性や耐久性が要求されるような排ガス浄化装置用触媒担体の素材として用いる場合は、箔の厚みを概ね100μm超200μm以下とすることが好ましい。一方、特に高いセル密度や低背圧が必要とされる排ガス浄化装置用触媒担体の素材として用いる場合は、箔の厚みを概ね25μm以上100μm以下とすることが好ましい。
 以上のようにして所望の箔厚に圧延した後、仕上焼鈍を施して再結晶させることにより、最終製品(フェライト系ステンレス箔)とする。
仕上焼鈍は、低酸素雰囲気中または真空中で、800℃以上1100℃以下の温度域に3秒以上25時間以下の時間滞留させる条件で実施する。
 仕上焼鈍後の箔表面の酸化物層を0.1μm以下の厚さに抑制するためには、仕上焼鈍の焼鈍雰囲気を、N2、H2、He、Ar、CO、CO2のうちのいずれか1種以上を含有し露点が-20℃以下、好ましくは-30℃以下の低酸素雰囲気、または圧力が1Pa以下の真空とする。
 仕上焼鈍の焼鈍温度が800℃未満では、再結晶が充分に促進しない場合がある。一方、上記焼鈍温度が1100℃を超えると、ウイスカ生成促進効果が飽和してコストアップにつながるばかりか、箔の耐力が低下して製造ライン内での破断を招く。好ましくは800℃以上1000℃以下、さらに好ましくは850℃以上950℃以下である。また、仕上焼鈍の焼鈍時間(800℃以上1100℃以下の温度域に滞留させる時間)が、3秒未満では再結晶が不完全となるおそれがある。一方、上記焼鈍時間が25時間を超えると、ウイスカ生成促進効果が飽和しコストアップにつながる。好ましくは30秒以上25時間以下である。
 なお、フェライト系ステンレス箔をメタルハニカムに成形するために、ロウ付けや拡散接合などの接合処理が行われる場合がある。ロウ付けや拡散接合では低酸素雰囲気中または真空中で800℃~1200℃に保持する熱処理を行うので、この熱処理の条件を調整して仕上焼鈍としても良い。
 以上の方法で製造することで、通常のステンレス箔の製造工程に新たな工程を追加することなく、ウイスカ生成能に優れたフェライト系ステンレス箔を得ることができる。
 以上により得られたフェライト系ステンレス箔に対して、酸化雰囲気中、850~950℃の温度域で4~12時間の間滞留させる熱処理を行う。そして、該熱処理後のフェライト系ステンレス箔を用いて排ガス浄化装置用触媒担体を製造することができる。
 本発明のフェライト系ステンレス箔の表面にウイスカを生成させる熱処理(ウイスカ生成熱処理)の条件は特に限定されないが、例えば、酸化雰囲気化中、800℃以上1000℃以下の温度域で1時間以上25時間以下の間滞留させる条件とすることが好ましい。なお、酸化雰囲気とは、酸素濃度がvol.%で1%以上25%以下程度の雰囲気を指す。
 ウイスカ生成熱処理の熱処理温度が800℃未満または1000℃超になると、γ-Al2O3以外の相が生成してウイスカ形状に生成しない場合がある。また、ウイスカ生成熱処理の熱処理時間(800℃以上1000℃以下の温度域に滞留させる時間)が30秒未満ではウイスカの成長が不充分となる場合がある。25時間を超える熱処理はウイスカ生成促進効果が飽和しコストアップにつながる。熱処理時間を短縮して製造コストを低減する観点からは、熱処理温度を850℃以上950℃以下とし、熱処理時間を4時間以上12時間以下とすることが好ましい。本発明のフェライト系ステンレス箔は、優れたウイスカ生成能を有するため、熱処理時間を従来(約24時間)より大幅に短縮した場合であっても、箔表面にウイスカが充分に生成する。
 なお、本発明のフェライト系ステンレス箔を用いて排ガス浄化装置用触媒担体を製造する場合には、その製造工程に上記ウイスカ生成熱処理工程を設ける。この工程は、フェライト系ステンレス箔を所定の形状(例えばハニカム形状)に成形・接合する前であっても後であってもよい。すなわち、所定の形状に成形する前のフェライト系ステンレス箔にウイスカ生成熱処理を施してもよいし、フェライト系ステンレス箔を所定の形状(例えばハニカム形状)に成形・接合した後にウイスカ生成熱処理を施してもよい。
<実施例1>
 表1に示す化学成分の鋼30kgを真空溶解炉で溶解した。得られた鋼塊を、1200℃に加熱後、900℃以上1200℃以下の温度域で熱間圧延を施して3mm厚の熱延板とした。次いで、熱延板に対して焼鈍せずに酸洗のみを施し、(1回目の)冷間圧延により0.2mm厚の冷延板とした。この冷延板に対して中間焼鈍を施し、再び冷間圧延(2回目)を施して50μm厚の箔とした。この箔の最終圧下率(中間焼鈍後、最終箔厚である50μmまで圧延するまでの圧下率)は75%である。上記中間焼鈍の焼鈍条件は、雰囲気ガス:N2ガス、焼鈍温度:900℃(但し、表1中、鋼No.2および10~14の冷延板は950℃)、焼鈍温度での滞留時間:1分とした。なお、表1中、Al含有量が8.9%の鋼No.23と、Cr含有量が36.5%の鋼No.24は、熱間圧延中に鋼塊に割れが生じ、熱延板を製造できなかった。
表1中、C含有量が0.065%の鋼No.20は、冷間圧延中に鋼板に割れが生じ、箔を製造できなかった。また、表1中の鋼No.21は、Ti、Nb、V、Zr、Hfのいずれかが添加されておらず、鋼No.22は、Al含有量が、1.1%の比較例である。
Figure JPOXMLDOC01-appb-T000001
 以上のようにして得られた50μm厚の箔に対し、仕上焼鈍を施した。仕上焼鈍の焼鈍条件は、露点が-35℃の25vol%H2+75 vol%N2雰囲気中、焼鈍温度:900℃(但し、表1中、鋼No.2および10~14の箔は950℃)、焼鈍温度での滞留時間:1分とした。
 仕上焼鈍後の箔について、箔表面の酸化物層の厚さを測定した。酸化物層の厚さは、前記のグロー放電発光分析法(GDS)を用いる方法で求めた。測定の結果、いずれの箔も、表面の酸化物層の厚さは0.01μm以下であることが確認された。
 また、仕上焼鈍後の箔について、箔表面の結晶方位を測定、評価した。更に、仕上焼鈍後の箔に対して、大気中、925℃で12時間保持するウイスカ生成熱処理を施し、箔表面のウイスカの厚みを測定し、箔のウイスカ生成能を評価した。各種測定、評価方法は、以下の通りである。
 (1)箔表面の結晶方位
 箔表面の結晶方位の測定には、電子線後方散乱回折法(EBSD)を用いた。仕上焼鈍後の箔から、15mm×15mmの試験片を切り出し、EBSDを用いて圧延直角方向1mm×圧延方向3mmの領域について、箔表面の結晶方位測定を実施した。
箔表面の結晶方位は、{111}結晶粒の占める割合が面積率で70%以上である場合を「極めて良好(◎)」、{111}結晶粒の占める割合が面積率で50%以上70%未満である場合を「良好(○)」、{111}結晶粒の占める割合が面積率で50%未満である場合を「不良(×)」と評価した。但し、{111}結晶粒とは、箔表面の垂直方向と、結晶粒の{111}面とのずれが±15°以内の結晶粒を指す。
 (2)ウイスカ生成能
 仕上焼鈍後の箔を切断して20mm幅×30mm長さの試験片を採取し、大気中で焼鈍温度:925℃、焼鈍温度での滞留時間:12時間の熱処理を施した。
熱処理終了後、まず、試験片の表面を走査型電子顕微鏡(SEM)で観察し、ウイスカ生成の有無を確認した。次いで、ウイスカの生成が認められた試験片について、試験片を切断して試験片の幅方向と平行な断面が露出するように樹脂に埋め込み、露出した断面を、研摩した後にSEMを用いて観察し、生成したウイスカの生成厚を測定した。
試験片の幅方向1mmの領域において0.1mmおきに10点でウイスカの生成厚(箔表面からウイスカ先端部までの距離)を測定し、10点の平均値を平均ウイスカ生成厚とした。ウイスカ生成能は、平均ウイスカ生成厚が0.50μm以上である場合を「極めて良好(◎)」、0.25μm以上0.50μm未満である場合を「良好(○)」、0.25μm未満である場合を「不良(×)」と評価した。
以上の評価結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、発明例の箔(A~S)は、ウイスカの生成能に優れていることがわかる。一方、成分が本発明範囲外である比較例の箔(U,V)は、{111}結晶粒の占める割合が面積率で50%以上であるにも拘わらず、ウイスカが生成しなかった。
<実施例2>
 実施例1で製作した鋼No.1、6、11および19の板厚3mmの熱延板を用い、製造条件(熱延板焼鈍の有無、冷間圧延の最終圧下率、仕上焼鈍の焼鈍雰囲気)が箔表面の結晶方位、酸化物層の厚さに及ぼす影響を調査した。
上記熱延板に、酸洗後、(1回目の)冷間圧延-中間焼鈍-(2回目の)冷間圧延を順次施して50μm厚の箔とした。
また、一部の熱延板については、熱延板焼鈍を施したのち、酸洗によりスケールを除去し、(1回目の)冷間圧延-中間焼鈍-(2回目の)冷間圧延を順次施して50μm厚の箔とした。
更に、一部の熱延板については、酸洗後に熱延板焼鈍を施したのち、酸洗によりスケールを除去し、(1回目の)冷間圧延-中間焼鈍-(2回目の)冷間圧延-中間焼鈍-(3回目の)冷間圧延を順次施して50μm厚の箔とした。
上記熱延板焼鈍の焼鈍条件は、焼鈍温度を900℃または950℃とし、焼鈍時間(焼鈍温度での滞留時間)を1分とした。
最後の中間焼鈍を実施する際の板厚を、0.5mm、0.3mm、0.1mm、0.09mmおよび0.08mmの5水準とし、最後の中間焼鈍後から最終箔厚までの圧下率(最終圧下率)を変化させて最終箔厚(50μm)にした。
中間焼鈍条件は、雰囲気ガス:N2ガス、焼鈍温度:鋼No.1、No.6およびNo.19は900℃、鋼No.11は950℃とし、焼鈍温度での滞留時間:1分とした。
各熱延板の熱延板焼鈍の有無、中間焼鈍時の板厚および最終圧下率を、表3に示す。
 以上のようにして得られた50μm厚箔に対して、仕上焼鈍を施した。仕上焼鈍の焼鈍条件(焼鈍温度、焼鈍温度での滞留時間、焼鈍雰囲気)を、表3に示す。
次いで、仕上焼鈍後の箔について、箔表面の酸化物層の厚さを測定した。また、仕上焼鈍後の箔について、箔表面の結晶方位を測定、評価した。更に、仕上焼鈍後の箔に対して、大気中、925℃で12時間保持するウイスカ生成熱処理を施し、箔表面の平均ウイスカ生成厚を測定し、箔のウイスカ生成能を評価した。
なお、箔表面の酸化物層厚さ測定、結晶方位測定および評価、平均ウイスカ生成厚測定およびウイスカ生成能評価には、実施例1と同じ手法を用いた。
これらの測定、評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、発明例の箔は、箔表面において{111}結晶粒の占める割合が面積率で50%以上、且つ、箔表面の酸化物層の厚さが0.1μm以下であり、ウイスカの生成能に優れていることがわかる。また、同一鋼および同一仕上焼鈍条件であるが最終圧下率が異なる箔のグループ(AA、ABおよびADのグループ、AF、AGおよびAIのグループ、AK、ALおよびAMのグループ、AO、APおよびAQのグループ)でウイスカ生成能を比較すると、最終圧下率が高くなるほど箔表面における{111}結晶粒の面積率が高くなってウイスカ生成能が向上していることが見て取れる。更に、同一鋼、同一最終圧下率および同一仕上焼鈍条件であるが熱延板焼鈍の有無が異なる箔同士(ABとAE、AGとAJ、ALとAN、APとAR)を比較すると、熱延板焼鈍を実施しない場合のほうが、熱延板焼鈍を実施した場合に比べて、箔表面における{111}結晶粒の面積率が高くなり、ウイスカ生成能も向上していることが見て取れる。
 一方、比較例の箔BA、BBおよびBCは、最終圧下率が低く、箔表面における{111}結晶粒の面積率が50%未満であり、充分なウイスカが生成しなかった。また、比較例の箔BD~BIは、箔表面における{111}結晶粒の面積率が50%以上であるものの、仕上焼鈍時に0.1μm厚を超える厚い酸化物層が生成したため、その後にウイスカ生成熱処理を行っても充分なウイスカが生成しなかった。
 本発明によれば、ウイスカ生成能に優れるステンレス箔を、通常のステンレス鋼生産設備を用いて効率よく製造することが可能となり、産業上極めて有効である。

Claims (4)

  1.  質量%で、C:0.050%以下、Si:2.00%以下、Mn:0.50%以下、S:0.010%以下、P:0.050%以下、Cr:15.0%以上30.0%以下、Al:2.5%以上6.5%以下およびN:0.050%以下を含有し、更に、Ti:0.01%以上0.50%以下、Nb:0.01%以上0.20%以下、V:0.01%以上0.20%以下、Zr:0.005%以上0.200%以下およびHf:0.005%以上0.200%以下のうちから選ばれる1種以上を含有し、残部がFeおよび不可避的不純物からなる組成を有し、箔表面において{111}結晶粒の占める割合が面積率で50%以上であり、箔表面の酸化物層の厚さが0.1μm以下である、フェライト系ステンレス箔。但し、{111}結晶粒は、箔表面の垂直方向と結晶粒の{111}面とのずれが±15°以内の結晶粒である。
  2.  前記組成に加えて更に、質量%で、Ni:0.01%以上0.50%以下、Cu:0.01%以上1.00%以下、Mo:0.01%以上4.00%以下およびW:0.01%以上4.00%以下のうちから選ばれる1種以上を合計で6.0%以下の範囲で含有する、請求項1に記載のフェライト系ステンレス箔。
  3.  前記組成に加えて更に、質量%で、Ca:0.0005%以上0.0200%以下、Mg:0.0002%以上0.0200%以下およびREM:0.010%以上0.200%以下のうちから選ばれる1種以上を含有する、請求項1または2に記載のフェライト系ステンレス箔。
  4.  請求項1~3のいずれか一項に記載の鋼スラブを熱間圧延し、1回以上の冷間圧延、1回以上の焼鈍を行い、フェライト系ステンレス箔を製造する方法であって、
    前記冷間圧延の最終圧下率は、50%以上95%以下であり、
    前記焼鈍における仕上焼鈍は、N2、H2、He、Ar、CO、CO2のうちのいずれか1種以上を含有し露点が-20℃以下である低酸素雰囲気、または、圧力が1Pa以下である真空中で、800℃以上1100℃以下の温度域で3秒以上25時間以下の間滞留する、フェライト系ステンレス箔の製造方法。
    なお、最終圧下率とは、最後に行われる冷間圧延の圧下率である。また、仕上焼鈍とは、最後に行われる焼鈍である。
PCT/JP2015/000910 2014-04-08 2015-02-24 フェライト系ステンレス箔およびその製造方法 WO2015155920A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167030902A KR101898564B1 (ko) 2014-04-08 2015-02-24 페라이트계 스테인리스박 및 그의 제조 방법
JP2015527380A JP5800116B1 (ja) 2014-04-08 2015-02-24 フェライト系ステンレス箔およびその製造方法
US15/302,386 US10227674B2 (en) 2014-04-08 2015-02-24 Ferritic stainless steel foil and method for producing the same
CN201580018207.4A CN106164315B (zh) 2014-04-08 2015-02-24 铁素体系不锈钢箔及其制造方法
EP15777096.7A EP3130688B1 (en) 2014-04-08 2015-02-24 Ferritic stainless-steel foil and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014079087 2014-04-08
JP2014-079087 2014-04-08

Publications (1)

Publication Number Publication Date
WO2015155920A1 true WO2015155920A1 (ja) 2015-10-15

Family

ID=54287514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000910 WO2015155920A1 (ja) 2014-04-08 2015-02-24 フェライト系ステンレス箔およびその製造方法

Country Status (6)

Country Link
US (1) US10227674B2 (ja)
EP (1) EP3130688B1 (ja)
JP (1) JP5800116B1 (ja)
KR (1) KR101898564B1 (ja)
CN (1) CN106164315B (ja)
WO (1) WO2015155920A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030125A1 (ja) * 2015-08-17 2017-02-23 新日鉄住金マテリアルズ株式会社 フェライト系ステンレス鋼箔
CN109844157A (zh) * 2016-10-17 2019-06-04 杰富意钢铁株式会社 不锈钢板和不锈钢箔

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI801538B (zh) * 2018-03-27 2023-05-11 日商日鐵不銹鋼股份有限公司 肥粒鐵系不鏽鋼及其製造方法、肥粒鐵系不鏽鋼板及其製造方法、以及燃料電池用構件
CN108660372A (zh) * 2018-04-17 2018-10-16 常熟市虹桥铸钢有限公司 一种双闸板
KR102598376B1 (ko) * 2018-09-13 2023-11-03 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 강판 및 그 제조 방법, 그리고, Al 계 도금 스테인리스 강판
KR20210109596A (ko) * 2019-02-19 2021-09-06 제이에프이 스틸 가부시키가이샤 페라이트계 스테인리스 강판 및 그 제조 방법, 그리고, Al 증착층이 부착된 스테인리스 강판
CN115747654B (zh) * 2022-11-23 2024-07-09 成都先进金属材料产业技术研究院股份有限公司 一种抗高温氧化铁素体不锈钢及其制造方法和应用
KR20240094683A (ko) * 2022-12-16 2024-06-25 주식회사 포스코 페라이트계 스테인리스강 및 그 제조방법
CN117187705B (zh) * 2023-10-27 2024-03-26 上海交通大学 一种低Cr且高强韧合金的热处理方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177437A (ja) * 1982-04-12 1983-10-18 アレゲニ−・ラドラム・スチ−ル・コ−ポレ−シヨン 鉄−クロム−アルミニウム合金および製品およびその製法
JPH0543984A (ja) * 1991-08-08 1993-02-23 Sumitomo Metal Mining Co Ltd 耐酸化性金属箔及びその製造方法
JPH07316746A (ja) * 1994-05-27 1995-12-05 Nippon Steel Corp 触媒メタル担体
WO2002002836A1 (fr) * 2000-06-30 2002-01-10 Kawasaki Steel Corporation Feuillard en alliage a base de fer-chrome-aluminium et son procede de production
JP2003105506A (ja) * 2001-07-26 2003-04-09 Kawasaki Steel Corp 耐酸化特性及び耐高温変形性に優れたFe−Cr−Al系合金箔及びその製造方法
JP2004269915A (ja) * 2003-03-05 2004-09-30 Jfe Steel Kk 接合時にしわよれのないAl含有高耐酸化性ステンレス箔および触媒担持体
JP2006009119A (ja) * 2004-06-29 2006-01-12 Jfe Steel Kk 耐カリウム腐食性に優れるステンレス鋼板とその製造方法およびNOx吸蔵触媒用担体
JP2011063833A (ja) * 2009-09-16 2011-03-31 Jfe Steel Corp 拡散接合しにくいステンレス箔およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318828A (en) * 1980-08-15 1982-03-09 General Motors Corporation Enhanced oxide whisker growth on cold-rolled aluminum-containing stainless steel foil
JPH0676653B2 (ja) 1985-12-24 1994-09-28 川崎製鉄株式会社 アルミニウム含有ステンレス鋼材表面のアルミナウイスカ−形成方法
JPH0350199A (ja) 1989-07-19 1991-03-04 Nippon Yakin Kogyo Co Ltd Fe‐Cr‐Al系フェライトステンレス鋼表面のアルミナウィスカー生成方法
JPH062075A (ja) 1992-06-19 1994-01-11 Kawasaki Steel Corp 耐酸化性に優れた高Al含有フェライト系ステンレス鋼板
JP4562280B2 (ja) * 2000-12-25 2010-10-13 日新製鋼株式会社 加工性に優れ面内異方性の小さいフェライト系ステンレス鋼及びその製造方法
JP3932020B2 (ja) * 2001-11-19 2007-06-20 日新製鋼株式会社 深絞り性に優れ面内異方性の小さいフェライト系ステンレス鋼及びその製造方法
WO2008062901A1 (fr) 2006-11-21 2008-05-29 Nippon Steel Corporation Tôle d'acier ayant un degré de compaction du plan {222} élevé et procédé pour la production de celle-ci
JP5274074B2 (ja) * 2008-03-28 2013-08-28 新日鐵住金ステンレス株式会社 耐酸化性に優れた耐熱性フェライト系ステンレス鋼板
JP5487783B2 (ja) * 2009-07-31 2014-05-07 Jfeスチール株式会社 ステンレス箔およびその製造方法
JP5771898B2 (ja) 2010-03-17 2015-09-02 株式会社ニコン 撮像素子及びカメラ
CN104870675B (zh) * 2012-12-17 2017-10-03 杰富意钢铁株式会社 不锈钢板及不锈钢箔
JP6392501B2 (ja) * 2013-05-10 2018-09-19 新日鐵住金ステンレス株式会社 絶縁性に優れた熱膨張係数の小さいステンレス製太陽電池用基板およびその製造方法
CN106795599B (zh) * 2014-08-29 2019-12-24 杰富意钢铁株式会社 铁素体系不锈钢箔及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58177437A (ja) * 1982-04-12 1983-10-18 アレゲニ−・ラドラム・スチ−ル・コ−ポレ−シヨン 鉄−クロム−アルミニウム合金および製品およびその製法
JPH0543984A (ja) * 1991-08-08 1993-02-23 Sumitomo Metal Mining Co Ltd 耐酸化性金属箔及びその製造方法
JPH07316746A (ja) * 1994-05-27 1995-12-05 Nippon Steel Corp 触媒メタル担体
WO2002002836A1 (fr) * 2000-06-30 2002-01-10 Kawasaki Steel Corporation Feuillard en alliage a base de fer-chrome-aluminium et son procede de production
JP2003105506A (ja) * 2001-07-26 2003-04-09 Kawasaki Steel Corp 耐酸化特性及び耐高温変形性に優れたFe−Cr−Al系合金箔及びその製造方法
JP2004269915A (ja) * 2003-03-05 2004-09-30 Jfe Steel Kk 接合時にしわよれのないAl含有高耐酸化性ステンレス箔および触媒担持体
JP2006009119A (ja) * 2004-06-29 2006-01-12 Jfe Steel Kk 耐カリウム腐食性に優れるステンレス鋼板とその製造方法およびNOx吸蔵触媒用担体
JP2011063833A (ja) * 2009-09-16 2011-03-31 Jfe Steel Corp 拡散接合しにくいステンレス箔およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017030125A1 (ja) * 2015-08-17 2017-02-23 新日鉄住金マテリアルズ株式会社 フェライト系ステンレス鋼箔
KR20170090473A (ko) * 2015-08-17 2017-08-07 신닛테츠스미킹 마테리알즈 가부시키가이샤 페라이트계 스테인레스강박
KR101967569B1 (ko) 2015-08-17 2019-04-09 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 페라이트계 스테인레스강박
US10844457B2 (en) 2015-08-17 2020-11-24 Nippon Steel Chemical & Material Co., Ltd. Ferritic stainless steel foil
CN109844157A (zh) * 2016-10-17 2019-06-04 杰富意钢铁株式会社 不锈钢板和不锈钢箔
US11008636B2 (en) 2016-10-17 2021-05-18 Jfe Steel Corporation Stainless steel sheet and stainless steel foil

Also Published As

Publication number Publication date
EP3130688A4 (en) 2017-04-12
JP5800116B1 (ja) 2015-10-28
KR20160142371A (ko) 2016-12-12
US10227674B2 (en) 2019-03-12
EP3130688A1 (en) 2017-02-15
KR101898564B1 (ko) 2018-09-13
CN106164315A (zh) 2016-11-23
JPWO2015155920A1 (ja) 2017-04-13
CN106164315B (zh) 2018-04-03
EP3130688B1 (en) 2021-02-17
US20170029916A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5800116B1 (ja) フェライト系ステンレス箔およびその製造方法
JP5700181B1 (ja) フェライト系ステンレス箔
ES2683843T3 (es) Lámina de acero para elementos de estampación en caliente y método de producción de la misma
US20190136361A1 (en) Cast product having alumina barrier layer
RU2578308C1 (ru) Фольга из ферритной нержавеющей стали
CN104968818B (zh) 耐热性优良的铁素体系不锈钢板
JP6385507B2 (ja) Nb含有フェライト系ステンレス鋼板およびその製造方法
US11767573B2 (en) Ferritic stainless steel sheet and method of producing same, and al or al alloy coated stainless steel sheet
US20240011136A1 (en) Stainless steel foil for catalyst support of exhaust gas purifier
JP6319537B1 (ja) ステンレス鋼板およびステンレス箔
JP7013302B2 (ja) 二次加工性及び耐高温酸化性に優れるAl含有フェライト系ステンレス鋼材および加工品
JP5874873B1 (ja) フェライト系ステンレス箔およびその製造方法
JP7013301B2 (ja) 二次加工性及び耐高温酸化性に優れるAl含有フェライト系ステンレス鋼材
JPH02254136A (ja) 製造性に優れた耐熱、耐酸化性Fe―Cr―A▲l▼系合金
JP7251996B2 (ja) Al含有フェライト系ステンレス鋼板及びその製造方法
US20220118740A1 (en) Ferritic stainless steel sheet and method of producing same, and al vapor deposited layer-equipped stainless steel sheet
JP2015078415A (ja) 高Al含有フェライト系ステンレス鋼板およびその製造方法ならびに高Al含有フェライト系ステンレス箔
US20220170144A1 (en) Al or al alloy-coated stainless steel sheet and method of manufacturing ferritic stainless steel sheet
JP2009046717A (ja) 高温における強度と耐酸化性に優れる合金箔

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015527380

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777096

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15302386

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167030902

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015777096

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015777096

Country of ref document: EP