WO2015152193A1 - Anti-static polyester film and method for producing same - Google Patents

Anti-static polyester film and method for producing same Download PDF

Info

Publication number
WO2015152193A1
WO2015152193A1 PCT/JP2015/060037 JP2015060037W WO2015152193A1 WO 2015152193 A1 WO2015152193 A1 WO 2015152193A1 JP 2015060037 W JP2015060037 W JP 2015060037W WO 2015152193 A1 WO2015152193 A1 WO 2015152193A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester film
antistatic
film
antistatic layer
polymer
Prior art date
Application number
PCT/JP2015/060037
Other languages
French (fr)
Japanese (ja)
Inventor
嘉己 上野
康平 田中
Original Assignee
ユニチカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニチカ株式会社 filed Critical ユニチカ株式会社
Priority to JP2016511906A priority Critical patent/JP6625048B2/en
Publication of WO2015152193A1 publication Critical patent/WO2015152193A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C09D201/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/21Anti-static
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a polyester film having excellent antistatic properties.
  • Polyester film is excellent in mechanical properties, heat resistance and transparency, and widely used in packaged food applications, and in base films and process films for industrial materials such as packaging materials, information storage materials, building materials, electronic materials, and printing materials. in use.
  • plastic films and their laminated films are prone to static electricity due to contact friction and peeling during processing and product use, so dust and small dust are likely to adhere.
  • a film used as a packaging material for foods and pharmaceuticals mixing of these deposits is not preferable.
  • the occurrence of static electricity may reduce the paper feed suitability and paper discharge suitability during printing. Accordingly, it is preferable to impart antistatic performance to the film.
  • Patent Documents 1 to 3 propose the use of a polymeric antistatic agent having a quaternary ammonium group and a carboxyl group in the side chain as an antistatic agent.
  • an object of the present invention is to provide an antistatic polyester film which is excellent in antistatic properties, suppresses a decrease in transparency due to heat treatment, and has higher quality coating film uniformity.
  • the present inventors have found that the above problem can be solved by forming an antistatic layer on a polyester film using a coating liquid in a specific dispersion state, and have reached the present invention.
  • the gist of the present invention is as follows.
  • the average value of the streak-like defects is 1.0 or less per 1 m of the film width.
  • the antistatic polyester film as described in (1). (3) The antistatic polyester film according to (1) or (2), wherein the surface specific resistance value at 23 ° C. and 50% RH is less than 1 ⁇ 10 12 ⁇ / ⁇ . (4) The antistatic polyester film as described in any one of (1) to (3), wherein the antistatic layer has a thickness of 0.05 to 0.5 ⁇ m. (5) The antistatic layer further contains a crosslinking agent (B), and the mass ratio (A / B) of the polymer (A) to the crosslinking agent (B) is 95/5 to 70/30.
  • the antistatic polyester film as described in any one of (1) to (4).
  • a method for producing the antistatic polyester film described in (1) above comprising as a main component a polymer (A) having a quaternary ammonium group and a carboxyl group in the side chain as a main component.
  • a method for producing an antistatic polyester film comprising forming an antistatic layer using a coating liquid having an average particle size of less than 300 nm.
  • the antistatic polyester film by which the transparency fall after heat processing was suppressed can be provided.
  • the antistatic layer which comprises an antistatic polyester film has the streak-like defect resulting from the coating method suppressed, and is more excellent in appearance. Since the antistatic polyester film of the present invention can sufficiently exhibit the antistatic performance, it can improve the yield and stabilize the quality when the resulting laminated film is used as a product. For this reason, it can be used as a protective film.
  • the antistatic polyester film of the present invention has an antistatic layer formed on at least one side of a polyester film as a substrate.
  • the polyester resin constituting the polyester film substrate is not particularly limited, and examples thereof include polyethylene terephthalate, polyethylene isophthalate, polytetramethylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), and polyethylene-2,6.
  • -Naphthalate is exemplified, and polyethylene terephthalate and polyethylene-2,6-naphthalate are preferable.
  • the polyester resin may be copolymerized with other components as necessary, and examples of the other components include a carboxylic acid component, a hydroxycarboxylic acid component, and an alcohol component.
  • carboxylic acid component include isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, dimer acid , Maleic anhydride, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, cyclohexanedicarboxylic acid, trimellitic acid, trimesic acid, and pyromellitic acid.
  • Examples of the hydroxycarboxylic acid component include 4-hydroxybenzoic acid, ⁇ -caprolactone, and lactic acid.
  • Examples of the alcohol component include ethylene glycol, diethylene glycol, 1,3-propanediol, neopentyl glycol, 1,6-hexanediol, cyclohexanedimethanol, triethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and bisphenol.
  • Examples include ethylene oxide adducts of A and bisphenol S, trimethylolpropane, glycerin, and pentaerythritol. Two or more of these copolymer components may be used in combination.
  • the polymerization method of the polyester resin is not particularly limited, and examples thereof include a transesterification method and a direct polymerization method.
  • the transesterification catalyst include Mg, Mn, Zn, Ca, Li, Ti oxides, and compounds such as acetate.
  • the polycondensation catalyst include compounds such as Sb, Ti, Ge oxides and acetates. Since the polyester resin after polymerization contains a monomer, an oligomer, a by-product acetaldehyde, and the like, solid-state polymerization may be performed at a temperature of 200 ° C. or higher under reduced pressure or through an inert gas flow.
  • additives such as an antioxidant, a heat stabilizer, an ultraviolet absorber, and an antistatic agent can be added as necessary.
  • Antioxidants include hindered phenol compounds, hindered amine compounds, etc.
  • thermal stabilizers include phosphorus compounds, etc.
  • UV absorbers include benzophenone compounds, benzotriazole compounds, etc. Is mentioned.
  • the intrinsic viscosity of the polyester resin is preferably 0.55 to 0.80, and more preferably 0.60 to 0.75.
  • the intrinsic viscosity of the polyester resin is less than 0.55, cutting is likely to occur during film formation, and it is difficult to stably produce a film, and the resulting film has low strength.
  • the intrinsic viscosity of the polyester resin exceeds 0.80, shear heat generation increases during the melt extrusion of the resin in the film production process, and the pyrolyzate and gelled product increase. As a result, the resulting film has increased surface defects, foreign matter, and surface rough protrusions. Further, the load on the extruder is increased, the production speed must be sacrificed, and the thickness control of the film becomes difficult.
  • the intrinsic viscosity is too high, the polymerization time and the polymerization process are long, which increases the cost.
  • the thickness of the polyester film substrate made of the polyester resin is not particularly limited, but is preferably 12 to 250 ⁇ m, more preferably 16 to 150 ⁇ m, and still more preferably 20 to 75 ⁇ m.
  • the polyester film substrate may be a single-layer substrate composed of one kind of layer, but in the present invention, it is preferably a substrate having a multilayer structure formed by laminating two or more kinds of layers.
  • the polyester film substrate has such a multilayer structure, the surface roughness of each surface can be controlled independently.
  • the antistatic layer formed on at least one side of the polyester film as a substrate is mainly composed of a polymer (A) having a quaternary ammonium group and a carboxyl group in the side chain.
  • the content of the polymer (A) in the antistatic layer is preferably 60 to 95% by mass, and more preferably 75 to 95% by mass.
  • the polymer (A) used in the present invention may be any polymer (ion conducting polymer) having electrostatic polarization relaxation properties, and the quaternary ammonium group in the polymer (A) has an electrostatic polarization property. Prompt electrostatic polarization relaxation due to ionic conductivity can be imparted.
  • the polymer (A) is preferably a polyacrylic copolymer having a quaternary ammonium group and a carboxyl group in the side chain.
  • the polyacrylic copolymer has significantly improved properties such as adhesion, durability, and heat resistance due to the crosslinking reaction with the crosslinking agent, and the antistatic effect that is effective for polyester film due to the electrostatic polarization relaxation performance of the polymer. Sex can be imparted.
  • examples of the monomer having a quaternary ammonium group include dimethylaminoethyl (meth) acrylate quaternized compounds having a counter ion of methyl sulfate or ethyl sulfate. It is done.
  • examples of the monomer having a carboxyl group include (meth) acrylic acid.
  • (meth) acrylic acid ester, styrene, and other vinyl derivatives are listed as other monomers.
  • the composition ratio of these monomers can be varied within a wide range, but the monomer having a quaternary ammonium group is preferably 15 to 50 mol% with respect to the total monomers of the copolymer,
  • the monomer having a carboxyl group is preferably 2 to 15 mol%, and the other monomer is preferably 35 to 83 mol%.
  • the copolymerization amount of the monomer having a quaternary ammonium group or the monomer having a carboxyl group exceeds this range, the coating liquid using the resulting polymer (A) has an increased viscosity, and the film becomes a film. The coatability of the coating may deteriorate.
  • an alkyl sulfate ion as a counter ion of a quaternary ammonium group.
  • an alkyl sulfate ion is used as a counter ion, the quaternary ammonium salt is hardly decomposed by Hoffman due to heat, and heat resistance can be imparted to the antistatic layer.
  • the antistatic polyester film is used as the surface layer film of the laminated film, the antistatic layer hardly deteriorates and can maintain heat resistance even when it is pressed at a high temperature.
  • the counter ion is methyl sulfate, the obtained antistatic polyester film has little increase in surface resistivity even when heated at 200 ° C.
  • Alkylsulfate ions are not decomposed like chlorine ions and do not generate chlorine gas, and even if an antistatic polyester film is used in contact with metal, it may have adverse effects such as corrosion of the metal. Absent. Further, in the production process of the antistatic polyester film, environmental pollution in the apparatus can be reduced, and a clean state can be maintained for a long time.
  • a copolymer of trimethylaminoethyl acrylate chloride whose counter ion is a chlorine ion as a monomer decomposes in 1 to 2 minutes when heated to 150 ° C. and generates chlorine gas, and is also antistatic. Performance may be degraded.
  • the antistatic layer mainly composed of the polymer (A) preferably contains a crosslinking agent (B).
  • the antistatic layer is improved in cohesiveness and adhesion.
  • crosslinking agent (B) an epoxy compound, a melamine compound, an isocyanate compound, a silane coupling agent, polyethyleneimine, polyvinyl alcohol, etc. are mentioned, for example, An epoxy compound and polyethyleneimine are especially preferable. In the present invention, it is more preferable to use two or more selected from these in combination.
  • a crosslinking agent (B) is water-soluble or water-dispersible so that it does not need to contain the organic solvent in the coating liquid used in order to form an antistatic layer.
  • the epoxy compound is preferably a bifunctional derivative such as diethylene glycol diglycidyl ether, glycerin diglycidyl ether or bisphenol A diglycidyl ether, or a trifunctional derivative such as trimethylolpropane triglycidyl ether.
  • a bifunctional derivative such as diethylene glycol diglycidyl ether, glycerin diglycidyl ether or bisphenol A diglycidyl ether
  • a trifunctional derivative such as trimethylolpropane triglycidyl ether.
  • Examples of the isocyanate compound include aromatic polyisocyanates such as toluene diisocyanate and diphenylmethane diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, cyclohexane diisocyanate, and butane diisocyanate, and derivatives thereof.
  • a blocked isocyanate compound is preferable in terms of enhancing stability.
  • Examples of the silane coupling agent include epoxy alkyl silanes and aminoalkyl silanes, and ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane and the like are preferable.
  • examples of the polyethyleneimine include highly polar and high density polyamines having a branched structure composed of primary, secondary, and tertiary amines.
  • examples of the water-soluble resin include a polyvinyl alcohol resin.
  • the polyvinyl alcohol resin preferably has a saponification degree of 89% or more and a molecular weight of 100 to 1,000.
  • the antistatic layer preferably also contains a catalyst for the crosslinking agent (B).
  • Catalysts include imidazole derivatives such as 2-methylimidazole and 2-ethyl-4-methylimidazole, epoxy ring-opening reaction catalysts such as polyamines and polyethyleneimine derivatives, melamine crosslinking catalysts such as paratoluenesulfonic acid, imidazole, and organic tin Examples include urethane crosslinking catalysts such as compounds.
  • the content of the catalyst is not particularly defined, but is preferably 5 to 30 parts by mass with respect to 100 parts by mass in total of the polymer (A) and the crosslinking agent (B), and 5 to 15 parts by mass. Is more preferable.
  • the mass ratio (A / B) of the polymer (A) and the crosslinking agent (B) is preferably 95/5 to 70/30, More preferably, it is 10 to 80/20.
  • the content of the crosslinking agent (B) is less than 5% by mass, the antistatic layer may be difficult to obtain a desired adhesion improving effect on the polyester film, and the content exceeds 30% by mass. In addition, the antistatic layer may deteriorate the antistatic performance.
  • the antistatic layer in this invention contains surfactant (C).
  • the antistatic layer can draw out the antistatic performance of the polymer (A) having electrostatic polarization relaxation to a higher degree, and in particular, without depending on humidity. Preventive property becomes stable.
  • the surfactant (C) is preferably of a low molecular ion conduction type, and specifically can be selected from general anionic surfactants, cationic surfactants, and nonionic surfactants.
  • Surfactant (C) is a quaternary ammonia because of its compatibility with the coating solution for forming the antistatic layer, the suitability for coating the coating solution, and the adhesion and blocking resistance between the resulting antistatic layer and the polyester film.
  • a compound having a nium salt and a compound having a sulfonate are preferable.
  • the content of the surfactant (C) is 1 to 15 parts by mass with respect to 100 parts by mass in total of the polymer (A) and the crosslinking agent (B).
  • the amount is 1 to 10 parts by mass.
  • the haze difference ( ⁇ Hz) before and after the heat treatment needs to be less than 1.0%, and less than 0.9% It is preferable that it is less than 0.8%.
  • the haze difference ( ⁇ Hz) exceeds 1.0%, the antistatic polyester film is impaired in transparency and becomes a problem in appearance.
  • the antistatic polyester film of the present invention is provided with antistatic properties by forming an antistatic layer on the polyester film using a coating liquid in a specific dispersion state, and the antistatic layer formed
  • the haze value does not increase after heat treatment, and appearance defects such as whitening can be reduced.
  • the antistatic polyester film of the present invention has a total of 10 points including a point 1 m from one end edge in the longitudinal direction of the film, a point 1 m from the other end edge, and a point equally divided by 9 between the two points. It is preferable that the average value of the streak-like defects observed at the full film width of the point is 1.0 or less per 1 m of the film width.
  • the edge is the edge of the film.
  • streaky defects can be counted by a method in which each point of the antistatic polyester film is irradiated from the surface of the antistatic layer using a high-intensity light source and visually observed in the width direction (TD). .
  • the streak defect means a coating stripe or coating unevenness generated in the longitudinal direction of the film.
  • the antistatic polyester film of the present invention preferably has a surface resistivity of less than 1 ⁇ 10 12 ⁇ / ⁇ at 23 ° C. and a relative humidity (RH) of 50%.
  • RH relative humidity
  • the thickness of the antistatic layer of the polyester film of the present invention is preferably 0.05 to 0.5 ⁇ m. If the thickness of the antistatic layer is less than 0.05 ⁇ m, the antistatic performance may not be exhibited, and if it exceeds 0.5 ⁇ m, the antistatic performance is saturated.
  • a sufficiently dried polyester resin is supplied to an extruder, fully plasticized, melted at a temperature showing fluidity, passed through a filter selected as necessary, and then passed through a T-die. Extrude into a shape. This sheet is brought into close contact with a cooling drum whose temperature is adjusted to a glass transition point (Tg) or less of the polyester resin to obtain an unstretched film.
  • Tg glass transition point
  • the obtained unstretched film is biaxially oriented by biaxial stretching.
  • the stretching method is not particularly limited, and examples thereof include a sequential biaxial stretching method and a simultaneous biaxial stretching method.
  • the antistatic polyester film of the present invention is produced by applying a coating solution for forming an antistatic layer during the production process of the polyester film, followed by drying, stretching and heat setting treatment together with the polyester film. Can do.
  • the coating solution is applied to an unstretched film, dried, and stretched about 2 to 4 times in the longitudinal and width directions within a temperature range of 50 ° C. higher than Tg to Tg of the polyester resin.
  • Biaxial stretching is performed to obtain a magnification.
  • preliminary longitudinal stretching of about 1 to 1.2 times may be performed prior to guiding to the simultaneous biaxial stretching machine.
  • an unstretched film is heated with a roll, infrared rays or the like and stretched in the longitudinal direction to obtain a longitudinally stretched film.
  • Stretching preferably uses a difference in peripheral speed of two or more rolls and is 2.5 to 4.0 times in a temperature range 40 ° C. higher than Tg to Tg of the polyester resin.
  • the longitudinally stretched film is continuously subjected to transverse stretching, heat setting, and thermal relaxation in the width direction to form a biaxially oriented film.
  • the transverse stretching starts at a temperature 40 ° C. higher than the Tg to Tg of the polyester resin, and the maximum temperature is preferably a temperature lower by (100 to 40) ° C.
  • the transverse stretching ratio is adjusted according to the required physical properties of the final polyester film, but it is preferably 3.5 times or more, more preferably 3.8 times or more, and more preferably 4.0 times or more. preferable.
  • the elastic modulus and dimensional stability of the polyester film can be increased.
  • the polyester film is cooled to Tg or less of the polyester film to obtain a polyester film having an antistatic layer formed thereon.
  • the polyester film base material which has a multilayer structure comprises each layer in the said manufacturing method, for example.
  • Polyester resin is melt-extruded separately, laminated and fused before solidification, then biaxially stretched and heat-set, or two or more layers are melt-extruded separately to form a film, either unstretched or stretched, both It is possible to manufacture by combining the methods of laminating and fusing. From the simplicity of the process, it is preferable to use a multilayer die and laminate and fuse before solidification. In addition, you may mix
  • the coating liquid used for forming the antistatic layer comprises a polymer (A), a crosslinking agent (B) or a surfactant (C) as necessary, water, etc. These media are included. You may contain well-known additives, such as an antifoamer, antioxidant, and a lubricant, as needed.
  • the coating liquid for forming the antistatic layer needs to have an average particle size of solid content of less than 300 nm, preferably less than 275 nm, and preferably less than 250 nm. More preferably, it is less than 225 nm. In addition, the lower limit of the average particle size of the solid content that can usually be achieved is 50 nm.
  • the antistatic polyester film obtained by forming an antistatic layer using a coating liquid having an average solid content particle size in the above range can be obtained by subjecting the base material to heat treatment at 150 ° C. for 1 hour. It is possible to suppress the precipitation of oligomer components from the polyester film, the haze value does not increase, the haze difference ⁇ Hz before and after the heat treatment can be made less than 1.0%, and appearance defects such as whitening are caused. Can be reduced. Moreover, by applying the coating liquid having an average particle size of the solid content within the above range, it is possible to suppress plate jam of the gravure roll and reduce streak-like defects.
  • the polymer (A) contained in the coating liquid has both a quaternary ammonium group and a carboxyl group in the side chain, a cationic group and an anionic group coexist in the molecule, and the particles associate with each other. It is easy to secondary agglomerate. Further, even when another ionic substance is added to the coating solution, the polymer (A) may be complexed and aggregated therewith.
  • the average particle size of the solid content contained in the coating liquid in the above range, it is possible to suppress plate grabbing of the gravure roll and the like, and to prevent the occurrence of coating stripes in the film longitudinal direction.
  • the coating liquid is preferably an aqueous solution or an aqueous dispersion from the viewpoint of safety and hygiene in the production process.
  • the solid concentration of the coating liquid is preferably 5 to 30% by mass, and more preferably 10 to 20% by mass from the viewpoint of coating workability.
  • the coating liquid can be prepared by mixing the polymer (A), if necessary, the crosslinking agent (B) or surfactant (C), water, etc., and uniformly dispersing the mixture.
  • the method for adjusting the average particle size of the solids present in the coating liquid to less than 300 nm is not particularly limited, but may be a predetermined average by ultrasonic treatment, high-speed dispersion treatment, high-pressure dispersion treatment, jet mill, bead mill, etc. The method of processing so that it may become a particle size is mentioned.
  • a general coating method can be used, for example, Mayer bar coat, air knife coat, reverse roll coat, reverse gravure roll coat, gravure roll. Examples of the method include coating, lip coating, and die coating.
  • the application amount of the coating liquid is preferably 1 to 10 g / m 2 .
  • the drying conditions after coating are preferably 50 to 90 ° C. and 10 to 60 seconds.
  • the antistatic polyester film of the present invention can be used as it is, but surface treatment such as corona discharge or ion blow may be performed on the surface where the antistatic layer is formed or non-formed.
  • the antistatic polyester film of the present invention has excellent antistatic properties, suppresses a decrease in transparency due to heat treatment, and is excellent in uniformity, heat resistance, and adhesion of the antistatic layer. Therefore, it can be used in various packaging and industrial applications by adhering printing ink, adhesive, photo-curing resin, binder and the like. In particular, since generation of oligomer components during heat treatment can be suppressed, it can be suitably used as information storage materials, building materials, printing materials, electronic materials, and the like. In addition, the antistatic polyester film of the present invention has excellent antistatic properties and improved appearance with few streak-like defects. Therefore, the electrical and electronic component fields have high antistatic performance requirements.
  • it can be suitably used as an antistatic polyester film for optical applications and design fields with a high degree of demand for appearance.
  • it can be suitably used as a material for various packaging and industrial applications.
  • a surface film such as a protective film can be used.
  • the haze value was measured using a haze meter (manufactured by Tokyo Denshoku) according to ASTM D1003-61. Note that there was no volatile matter from the adhesive tape itself.
  • the temperature is kept with the heavy release protective film applied to prevent contamination. Heat treatment was performed at 150 ° C. for 1 hour. Then, the haze value (T2) after heat processing was measured about the sample which peeled off the heavy peeling side protective film.
  • measurement is performed with 5 samples for each sampling location, and each sampling is performed by subtracting the average value (TM1) of the haze value (T1) before heat treatment from the average value (TM2) of the haze value (T2) after heat treatment.
  • TM1 average value of the haze value
  • T2 average value of the haze value
  • the appearance of the antistatic layer was evaluated by the following two methods.
  • the points to be evaluated are 9 points between the two points, a point 1 m from one end edge in the longitudinal direction of the film, a point 1 m from the other end edge, in the raw material of the antistatic polyester film.
  • a total of 10 spots are drawn, a straight line is drawn with a black oil-based pen in the width direction (TD) of the film at each point, and a portion showing streak-like interference intersecting the straight line or a streak-like defect with respect to the entire width of the film Observed.
  • Evaluation method B At each evaluation point of the antistatic polyester film, using a high-intensity LED flashlight (M7R type, 400 lumen manufactured by Redlenzer) from an oblique direction of about 10 to 45 ° with respect to the surface of the antistatic layer. The number of streak-like defects in the entire width of the film at each point was visually counted by applying light at a distance of 30 cm from the film. The number of streak-like defects per 1 m of film width at each point was calculated, and the average value at the 10 points was determined.
  • M7R type 400 lumen manufactured by Redlenzer
  • Crosslinking agent (B) Aqueous solution of crosslinking agent (B-1): Aqueous solution of polyethyleneimine (Nippon Shokubai P-1000, solid content concentration 30% by mass)
  • Crosslinking agent (B-2) Polyethyleneimine (Nippon Shokubai Co., Ltd.
  • Crosslinking agent (B-3) Epoxy compound (DIC-5 CR-5L, polyhydroxyalkane polyglycidyl ether, solid content 100% by mass)
  • Crosslinking agent (B-4) Epoxy compound (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd., epoxy silane coupling agent, solid content: 100% by mass)
  • -Aqueous solution of cross-linking agent (B-5) Aqueous solution of melamine compound (M-30WT, Changchun Plastics Co., Ltd., solid content concentration 80% by mass)
  • Surfactant (C) Surfactant (C-1): Acetylene glycol type (Nisshin Chemical Industry Olfin E1004, solid content: 100% by mass)
  • Surfactant (C-2) Acetylene glycol type (Surfinol 440 manufactured by Air Products, solid content: 100% by mass)
  • Example 1 (Preparation of coating solution) A propeller stirrer was prepared by adding 1.1 kg (solid content 0.3 kg) of an aqueous solution of a crosslinking agent (B-1) polyethyleneimine to 28.3 kg (solid content 8.5 kg) of the aqueous dispersion of polymer (A-1). And stirred vigorously. Next, 0.9 kg of the epoxy compound of the second cross-linking agent (B-3) and 0.8 kg of the acetylene glycol surfactant of the surfactant (C-1) were added and stirred for 60 minutes.
  • the mass ratio of the above components (solid content) constituting the coating liquid (polymer (A-1): crosslinking agent (B-1, polyethyleneimine): crosslinking agent (B-3, epoxy compound): interface
  • the active agent (C-1)) was 87.6: 3.1: 9.3: 8.2.
  • pure water was added to adjust the total solid content concentration to 12.7% by mass, and the mixture was further stirred for 30 minutes, and then stopped and degassed. Thereafter, an ultrasonic dispersion treatment was performed using an ultrasonic disperser (UH-600SR-1 type, manufactured by SMT Co., Ltd.) at 20 kHz so that the residence time was 5 minutes, thereby obtaining a coating solution.
  • the average particle size of the solid content in the coating solution was 127 nm.
  • Polyethylene terephthalate containing 0.07% by mass of amorphous silica particles having an average particle diameter of 2.3 ⁇ m is used as a resin for forming the resin layer A, and amorphous silica is used as a resin for forming the resin layer C.
  • Polyethylene terephthalate containing no particles was used. Each of these resins was put into two independent extruders I and II (screw diameters were extruder I: 50 mm, extruder II: 65 mm) and melted at 280 ° C.
  • an unstretched film having a total thickness of 600 ⁇ m.
  • the thickness ratio of each layer of the unstretched film was adjusted to 1/8/1.
  • antimony trioxide was used as a polymerization catalyst, and an intrinsic viscosity of 0.62, a glass transition temperature of 78 ° C., and a melting point of 255 ° C. were used.
  • the obtained unstretched film was stretched 3.5 times with a roll-type longitudinal stretching machine under the condition of 85 ° C.
  • the previously prepared coating solution was applied to the surface of the resin layer A of the longitudinally stretched film with a 120 mesh gravure roll so as to be 5 g / m 2, and then passed through a hot air drying oven at 50 ° C. for 20 seconds. I let you.
  • the end of the longitudinally stretched film coated with the coating solution and dried is continuously held by a clip of a flat stretching machine, stretched 4.5 times in width at 100 ° C, and then stretched horizontally.
  • the heat treatment was performed at 230 ° C. for 3 seconds with a direction relaxation rate of 3%, and then cooled and wound up.
  • the thickness of the obtained antistatic polyester film was 38 ⁇ m, and the thickness of the antistatic layer was about 0.15 ⁇ m. This film was evaluated for total haze, haze difference ⁇ Hz, appearance, and surface resistivity. The results are shown in Table 1.
  • Example 2 to 16 Comparative Examples 1 to 8 (Preparation of coating solution)
  • a coating solution was prepared in the same manner as in Example 1 except that the composition, total solid content concentration, dispersion method, and treatment time described in Tables 1 and 2 were used.
  • the coating liquid was dispersed under the condition of 10,000 rpm using a Filmix 56-50 type (manufactured by Tokushu Kika Kogyo Co., Ltd.).
  • a polyester film substrate was produced in the same manner as in Example 1 except that the laminated configuration of the polyester film substrate was changed to the configurations shown in Tables 1 and 2.
  • a resin for forming the resin layer B polyethylene terephthalate containing 0.03% by mass of amorphous silica particles having an average particle diameter of 2.3 ⁇ m was used.
  • the laminate in which the layer configuration was two types and two layers was adjusted such that the thickness ratio of each layer (resin layer B / resin layer A) was 4/6.
  • an antistatic layer was formed in the same manner as in Example 1 except that the polyester film layer surfaces shown in Tables 1 and 2 were made to have the thicknesses shown in Tables 1 and 2.
  • Tables 1 and 2 show the average particle size of the solid content in the prepared coating liquid and various performance evaluation results of the obtained antistatic polyester film.
  • the antistatic polyester films of the examples had a haze difference ⁇ Hz of less than 1.0% before and after the heat treatment when heat-treated at a temperature of 150 ° C. for 1 hour, and suppressed a decrease in transparency due to the heat treatment. It was what was done.
  • the antistatic layer was excellent in appearance with no streak-like defects even when a high-intensity light source was used.
  • the antistatic polyester film of the comparative example in which the antistatic layer is formed using the coating liquid having a large average particle size of the solid content has a haze difference ⁇ Hz of 1.0% or more before and after the heat treatment.
  • a high-intensity light source was used, streaky defects were generated in the antistatic layer and the appearance was poor.
  • Comparative Example 5 using a coating liquid with a low solid content concentration the surface resistivity was high and the antistatic performance was inferior compared to Example 5 using a coating liquid with the same solid content concentration. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)

Abstract

An anti-static polyester film obtained by forming an anti-static layer on at least one surface of a polyester film, said anti-static polyester film characterized in that the anti-static layer contains mainly a polymer (A) having a quaternary ammonium group and a carboxyl group in a side chain thereof, and when the anti-static polyester film is subjected to a heat treatment for one hour at a temperature of 150°C, the difference in haze (ΔHz) before and after heat treatment is less than 1.0%.

Description

帯電防止性ポリエステルフィルムおよびその製造方法Antistatic polyester film and method for producing the same
 本発明は、帯電防止性に優れたポリエステルフィルムに関する。 The present invention relates to a polyester film having excellent antistatic properties.
 ポリエステルフィルムは、機械的特性、耐熱性および透明性に優れ、包装食品用途に、また包装材料、情報記憶材料、建築材料、電子材料、印刷材料などの工業材料のベースフィルムや工程フィルム用途に広く使用されている。 Polyester film is excellent in mechanical properties, heat resistance and transparency, and widely used in packaged food applications, and in base films and process films for industrial materials such as packaging materials, information storage materials, building materials, electronic materials, and printing materials. in use.
 一般的に、プラスチックフィルムやその積層フィルムは、加工工程や製品使用時における接触摩擦や剥離によって、静電気が発生しやすく、そのためチリや小さなゴミが付着しやすい。特に食品類、医薬品の包装材料として利用するフィルムにおいては、これらの付着物の混入は好ましくない。また、静電気の発生は、印刷する際の給紙適性や排紙適性を低下させることがある。したがって、フィルムには、帯電防止性能を付与しておくことが好ましい。 Generally, plastic films and their laminated films are prone to static electricity due to contact friction and peeling during processing and product use, so dust and small dust are likely to adhere. In particular, in a film used as a packaging material for foods and pharmaceuticals, mixing of these deposits is not preferable. In addition, the occurrence of static electricity may reduce the paper feed suitability and paper discharge suitability during printing. Accordingly, it is preferable to impart antistatic performance to the film.
 従来、プラスチックフィルムの帯電防止方法としては、イオン化エアーにより電荷を中和させる方法や、フィルムに帯電防止剤を含有させたり、塗布する方法が、代表的なものとして知られている。例えば、特許文献1~3には、帯電防止剤として、側鎖に4級アンモニウム基とカルボキシル基とを有する高分子系帯電防止剤を使用することが提案されている。 Conventionally, as an antistatic method for a plastic film, a method for neutralizing charges with ionized air and a method for adding or applying an antistatic agent to the film are known as typical ones. For example, Patent Documents 1 to 3 propose the use of a polymeric antistatic agent having a quaternary ammonium group and a carboxyl group in the side chain as an antistatic agent.
特開平07-252456号公報Japanese Patent Application Laid-Open No. 07-252456 特開2003-226866号公報JP 2003-226866 A 特開2006-160883号公報JP 2006-160883 A
 しかしながら、近年、情報記憶材料や電子材料などの光学用途では、より高品位のフィルムが要求されているが、前記帯電防止性ポリエステルフィルムは、熱処理工程を経ると、白化して透明性が低下することがあった。また、前記用途では、塗工方法に起因する塗膜の外観が問題になることもあった。
 すなわち、本発明は、帯電防止性に優れるとともに、熱処理による透明性の低下が抑制され、より高品位の塗膜均一性を有する帯電防止性ポリエステルフィルムを提供することを目的とする。
However, in recent years, higher quality films are required for optical applications such as information storage materials and electronic materials, but the antistatic polyester film is whitened and becomes less transparent after a heat treatment step. There was a thing. Moreover, in the said use, the external appearance of the coating film resulting from a coating method may become a problem.
That is, an object of the present invention is to provide an antistatic polyester film which is excellent in antistatic properties, suppresses a decrease in transparency due to heat treatment, and has higher quality coating film uniformity.
 本発明者らは、鋭意研究を重ねた結果、特定の分散状態の塗工液を用いてポリエステルフィルムに帯電防止層を形成することによって、前記課題が解決できることを見出し、本発明に到達した。 As a result of intensive studies, the present inventors have found that the above problem can be solved by forming an antistatic layer on a polyester film using a coating liquid in a specific dispersion state, and have reached the present invention.
 すなわち、本発明の要旨は下記の通りである。
(1)ポリエステルフィルムの少なくとも片面に帯電防止層が形成された帯電防止性ポリエステルフィルムであって、前記帯電防止層が4級アンモニウム基とカルボキシル基とを側鎖に有する重合体(A)を主成分とし、温度150℃で1時間熱処理を行なった際の、熱処理前後でのヘーズ差△Hzが1.0%未満であることを特徴とする帯電防止性ポリエステルフィルム。
(2)フィルムの長手方向の片端縁から1mの地点と、他端縁から1mの地点と、前記2地点の間を9等分した地点の合計10地点において、各地点のフィルム全幅で観察されるスジ状欠点の平均値が、フィルム幅1mあたり1.0個以下であることを特徴とする(1)記載の帯電防止性ポリエステルフィルム。
(3)23℃、50%RHにおける表面固有抵抗値が1×1012Ω/□未満であることを特徴とする(1)または(2)記載の帯電防止性ポリエステルフィルム。
(4)帯電防止層の厚さが0.05~0.5μmであることを特徴とする(1)~(3)のいずれかに記載の帯電防止性ポリエステルフィルム。
(5)帯電防止層が、さらに架橋剤(B)を含有し、重合体(A)と架橋剤(B)の質量比(A/B)が、95/5~70/30であることを特徴とする(1)~(4)のいずれかに記載の帯電防止性ポリエステルフィルム。
(6)上記(1)記載の帯電防止性ポリエステルフィルムを製造するための方法であって、4級アンモニウム基とカルボキシル基とを側鎖に有する重合体(A)を主成分とし、含有する固形分の平均粒径が300nm未満である塗工液を用いて帯電防止層を形成することを特徴とする帯電防止性ポリエステルフィルムの製造方法。
That is, the gist of the present invention is as follows.
(1) An antistatic polyester film having an antistatic layer formed on at least one surface of a polyester film, wherein the antistatic layer mainly comprises a polymer (A) having a quaternary ammonium group and a carboxyl group in the side chain. An antistatic polyester film having a haze difference ΔHz before and after heat treatment of less than 1.0% when heat-treated at 150 ° C. for 1 hour as a component.
(2) At a total of 10 points, a point 1 m from one end edge of the film in the longitudinal direction, a point 1 m from the other end edge, and a point that equally divides between the two points, the film is observed at the full width of each point. The average value of the streak-like defects is 1.0 or less per 1 m of the film width. The antistatic polyester film as described in (1).
(3) The antistatic polyester film according to (1) or (2), wherein the surface specific resistance value at 23 ° C. and 50% RH is less than 1 × 10 12 Ω / □.
(4) The antistatic polyester film as described in any one of (1) to (3), wherein the antistatic layer has a thickness of 0.05 to 0.5 μm.
(5) The antistatic layer further contains a crosslinking agent (B), and the mass ratio (A / B) of the polymer (A) to the crosslinking agent (B) is 95/5 to 70/30. The antistatic polyester film as described in any one of (1) to (4).
(6) A method for producing the antistatic polyester film described in (1) above, comprising as a main component a polymer (A) having a quaternary ammonium group and a carboxyl group in the side chain as a main component. A method for producing an antistatic polyester film, comprising forming an antistatic layer using a coating liquid having an average particle size of less than 300 nm.
 本発明によれば、帯電防止性に優れるとともに、熱処理後の透明性低下が抑制された帯電防止性ポリエステルフィルムを提供することができる。また、帯電防止性ポリエステルフィルムを構成する帯電防止層は、塗工方法に起因するスジ状欠点が抑制されたものであり、より外観に優れている。
 本発明の帯電防止性ポリエステルフィルムは、帯電防止性能を十分に発揮させることができるため、得られる積層フィルムを製品とする場合の歩留まりを向上し、品質を安定化することができる。このため、保護フィルムなどとして使用することができる。
ADVANTAGE OF THE INVENTION According to this invention, while being excellent in antistatic property, the antistatic polyester film by which the transparency fall after heat processing was suppressed can be provided. Moreover, the antistatic layer which comprises an antistatic polyester film has the streak-like defect resulting from the coating method suppressed, and is more excellent in appearance.
Since the antistatic polyester film of the present invention can sufficiently exhibit the antistatic performance, it can improve the yield and stabilize the quality when the resulting laminated film is used as a product. For this reason, it can be used as a protective film.
 本発明の帯電防止性ポリエステルフィルムは、基材としてのポリエステルフィルムの少なくとも片面に帯電防止層が形成されたものである。
 ポリエステルフィルム基材を構成するポリエステル樹脂としては、特に限定はされないが、例えば、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリテトラメチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-ナフタレートが挙げられ、ポリエチレンテレフタレートやポリエチレン-2,6-ナフタレートが好ましい。
The antistatic polyester film of the present invention has an antistatic layer formed on at least one side of a polyester film as a substrate.
The polyester resin constituting the polyester film substrate is not particularly limited, and examples thereof include polyethylene terephthalate, polyethylene isophthalate, polytetramethylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), and polyethylene-2,6. -Naphthalate is exemplified, and polyethylene terephthalate and polyethylene-2,6-naphthalate are preferable.
 ポリエステル樹脂には、必要に応じて、他の成分を共重合してもよく、他の成分としては、カルボン酸成分、ヒドロキシカルボン酸成分、アルコール成分が挙げられる。
 カルボン酸成分としては、例えば、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、5-ナトリウムスルホイソフタル酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカン二酸、ダイマー酸、無水マレイン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、メサコン酸、シクロヘキサンジカルボン酸、トリメリット酸、トリメシン酸、ピロメリット酸が挙げられる。
 ヒドロキシカルボン酸成分としては、例えば、4-ヒドロキシ安息香酸、ε-カプロラクトン、乳酸が挙げられる。
 アルコール成分としては、例えば、エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ビスフェノールAやビスフェノールSのエチレンオキシド付加体、トリメチロールプロパン、グリセリン、ペンタエリスリトールが挙げられる。
 これらの共重合成分は2種以上併用してもよい。
The polyester resin may be copolymerized with other components as necessary, and examples of the other components include a carboxylic acid component, a hydroxycarboxylic acid component, and an alcohol component.
Examples of the carboxylic acid component include isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, dimer acid , Maleic anhydride, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, cyclohexanedicarboxylic acid, trimellitic acid, trimesic acid, and pyromellitic acid.
Examples of the hydroxycarboxylic acid component include 4-hydroxybenzoic acid, ε-caprolactone, and lactic acid.
Examples of the alcohol component include ethylene glycol, diethylene glycol, 1,3-propanediol, neopentyl glycol, 1,6-hexanediol, cyclohexanedimethanol, triethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and bisphenol. Examples include ethylene oxide adducts of A and bisphenol S, trimethylolpropane, glycerin, and pentaerythritol.
Two or more of these copolymer components may be used in combination.
 ポリエステル樹脂の重合方法は特に限定されず、例えば、エステル交換法、直接重合法等が挙げられる。エステル交換触媒としては、Mg、Mn、Zn、Ca、Li、Tiの酸化物、酢酸塩等の化合物が挙げられる。また、重縮合触媒としては、Sb、Ti、Geの酸化物、酢酸塩等の化合物が挙げられる。
 重合後のポリエステル樹脂は、モノマーやオリゴマー、副生成物のアセトアルデヒド等を含有しているため、減圧もしくは不活性ガス流通下、200℃以上の温度で固相重合してもよい。
The polymerization method of the polyester resin is not particularly limited, and examples thereof include a transesterification method and a direct polymerization method. Examples of the transesterification catalyst include Mg, Mn, Zn, Ca, Li, Ti oxides, and compounds such as acetate. Examples of the polycondensation catalyst include compounds such as Sb, Ti, Ge oxides and acetates.
Since the polyester resin after polymerization contains a monomer, an oligomer, a by-product acetaldehyde, and the like, solid-state polymerization may be performed at a temperature of 200 ° C. or higher under reduced pressure or through an inert gas flow.
 ポリエステル樹脂の重合においては必要に応じ、添加剤、例えば、酸化防止剤、熱安定剤、紫外線吸収剤、帯電防止剤等を添加することができる。酸化防止剤としては、ヒンダードフェノール系化合物、ヒンダードアミン系化合物等が挙げられ、熱安定剤としては、リン系化合物等が挙げられ、紫外線吸収剤としては、ベンゾフェノン系化合物、ベンゾトリアゾール系の化合物等が挙げられる。 In the polymerization of the polyester resin, additives such as an antioxidant, a heat stabilizer, an ultraviolet absorber, and an antistatic agent can be added as necessary. Antioxidants include hindered phenol compounds, hindered amine compounds, etc., thermal stabilizers include phosphorus compounds, etc., UV absorbers include benzophenone compounds, benzotriazole compounds, etc. Is mentioned.
 ポリエステル樹脂の固有粘度は、0.55~0.80であることが好ましく、0.60~0.75であることがより好ましい。
 ポリエステル樹脂の固有粘度が0.55未満であると、製膜時に切断が起こり易く、安定的にフィルムを生産するのが困難であり、また、得られるフィルムは強度が低いものとなる。
 一方、ポリエステル樹脂の固有粘度が0.80を超えると、フィルム生産工程における樹脂の溶融押出時に、剪断発熱が大きくなり、熱分解物やゲル化物が増加する。その結果、得られるフィルムは、表面欠点、異物、表面粗大突起が増加したものとなる。また、押出機にかかる負荷が大きくなり、生産速度を犠牲にせざるを得なかったり、フィルムの厚み制御も難しくなる等、生産性が低下する。また、あまりに固有粘度の高いものは、重合時間や重合プロセスが長く、コストを押し上げる要因ともなる。
The intrinsic viscosity of the polyester resin is preferably 0.55 to 0.80, and more preferably 0.60 to 0.75.
When the intrinsic viscosity of the polyester resin is less than 0.55, cutting is likely to occur during film formation, and it is difficult to stably produce a film, and the resulting film has low strength.
On the other hand, when the intrinsic viscosity of the polyester resin exceeds 0.80, shear heat generation increases during the melt extrusion of the resin in the film production process, and the pyrolyzate and gelled product increase. As a result, the resulting film has increased surface defects, foreign matter, and surface rough protrusions. Further, the load on the extruder is increased, the production speed must be sacrificed, and the thickness control of the film becomes difficult. In addition, if the intrinsic viscosity is too high, the polymerization time and the polymerization process are long, which increases the cost.
 上記ポリエステル樹脂からなるポリエステルフィルム基材の厚みは、特に限定されないが、12~250μmであることが好ましく、16~150μmであることがより好ましく、20~75μmであることがさらに好ましい。 The thickness of the polyester film substrate made of the polyester resin is not particularly limited, but is preferably 12 to 250 μm, more preferably 16 to 150 μm, and still more preferably 20 to 75 μm.
 ポリエステルフィルム基材は、1種の層からなる単層の基材でもよいが、本発明においては、2種以上の層を積層してなる多層構造を有する基材であることが好ましい。ポリエステルフィルム基材がこのような多層構造であると、それぞれの面の表面粗さを独立に制御することができる。 The polyester film substrate may be a single-layer substrate composed of one kind of layer, but in the present invention, it is preferably a substrate having a multilayer structure formed by laminating two or more kinds of layers. When the polyester film substrate has such a multilayer structure, the surface roughness of each surface can be controlled independently.
 本発明の帯電防止性ポリエステルフィルムにおいて、基材としてのポリエステルフィルムの少なくとも片面に形成された帯電防止層は、4級アンモニウム基とカルボキシル基とを側鎖に有する重合体(A)を主体とするものであり、帯電防止層における重合体(A)の含有量は、60~95質量%であることが好ましく、75~95質量%であることがより好ましい。 In the antistatic polyester film of the present invention, the antistatic layer formed on at least one side of the polyester film as a substrate is mainly composed of a polymer (A) having a quaternary ammonium group and a carboxyl group in the side chain. The content of the polymer (A) in the antistatic layer is preferably 60 to 95% by mass, and more preferably 75 to 95% by mass.
 本発明で用いる重合体(A)としては、静電分極緩和性を有する高分子(イオン伝導高分子)であればよく、重合体(A)中の4級アンモニウム基は、静電分極性とイオン導電性による速やかな静電分極緩和性を付与することができる。
 重合体(A)は、4級アンモンニウム基とカルボキシル基とを側鎖に有するポリアクリル共重合体であることが好ましい。ポリアクリル共重合体は、架橋剤との架橋反応により、接着性、耐久性、耐熱性などの特性が著しく向上するとともに、重合体の静電分極緩和性能により、ポリエステルフィルムに効果的な帯電防止性を付与することができる。
 ポリアクリル共重合体を構成する単量体の具体例として、4級アンモニウム基を有する単量体としては、対イオンがメチルサルフェートまたはエチルサルフェートのジメチルアミノエチル(メタ)アクリレート4級化物などが挙げられる。カルボキシル基を有する単量体としては(メタ)アクリル酸が挙げられる。さらに、その他の単量体として(メタ)アクリル酸エステル、スチレン、その他のビニル誘導体が挙げられる。
 これらの単量体の組成比は広い範囲で変えることができるが、4級アンモニウム基を有する単量体は、共重合体の全単量体に対して15~50mol%であることが好ましく、カルボキシル基を有する単量体は、2~15mol%であることが好ましく、その他の単量体は、35~83mol%であることが好ましい。4級アンモニウム基を有する単量体やカルボキシル基を有する単量体の共重合量がこの範囲を超えると、得られる重合体(A)を用いた塗工液は、粘度が上昇し、フィルムへの塗工性が低下することがある。
The polymer (A) used in the present invention may be any polymer (ion conducting polymer) having electrostatic polarization relaxation properties, and the quaternary ammonium group in the polymer (A) has an electrostatic polarization property. Prompt electrostatic polarization relaxation due to ionic conductivity can be imparted.
The polymer (A) is preferably a polyacrylic copolymer having a quaternary ammonium group and a carboxyl group in the side chain. The polyacrylic copolymer has significantly improved properties such as adhesion, durability, and heat resistance due to the crosslinking reaction with the crosslinking agent, and the antistatic effect that is effective for polyester film due to the electrostatic polarization relaxation performance of the polymer. Sex can be imparted.
As a specific example of the monomer constituting the polyacrylic copolymer, examples of the monomer having a quaternary ammonium group include dimethylaminoethyl (meth) acrylate quaternized compounds having a counter ion of methyl sulfate or ethyl sulfate. It is done. Examples of the monomer having a carboxyl group include (meth) acrylic acid. Furthermore, (meth) acrylic acid ester, styrene, and other vinyl derivatives are listed as other monomers.
The composition ratio of these monomers can be varied within a wide range, but the monomer having a quaternary ammonium group is preferably 15 to 50 mol% with respect to the total monomers of the copolymer, The monomer having a carboxyl group is preferably 2 to 15 mol%, and the other monomer is preferably 35 to 83 mol%. When the copolymerization amount of the monomer having a quaternary ammonium group or the monomer having a carboxyl group exceeds this range, the coating liquid using the resulting polymer (A) has an increased viscosity, and the film becomes a film. The coatability of the coating may deteriorate.
 本発明において、4級アンモニウム基の対イオンとしてアルキルサルフェートイオンを使用することが好ましい。対イオンとしてアルキルサルフェートイオンを使用すると、4級アンモニウム塩が熱によってホフマン分解しにくくなり、帯電防止層に耐熱性を付与することができる。具体的には、帯電防止性ポリエステルフィルムを積層フィルムの表層フィルムとして使用するために、高温でプレス加工しても、帯電防止層は劣化しにくく、耐熱性を保つことができる。対イオンがメチルサルフェートであると、得られた帯電防止性ポリエステルフィルムは、200℃で1分間加熱しても表面固有抵抗値の上昇は少なく、帯電防止性能も維持される。
 またアルキルサルフェートイオンは、塩素イオンのように分解して塩素ガスが発生することがなく、帯電防止性ポリエステルフィルムを金属に接触させて使用しても、金属を腐食するなどの悪影響を及ぼすことがない。また、帯電防止性ポリエステルフィルムの製造工程において、装置内の環境汚染を低減し、長期にわたってクリーンな状態を保つことができる。
 一方、例えば、対イオンが塩素イオンであるトリメチルアミノエチルアクリレート・クロライドを単量体とする共重合体は、150℃に加熱すると1~2分で分解して塩素ガスを発生し、また帯電防止性能が劣化することがある。
In the present invention, it is preferable to use an alkyl sulfate ion as a counter ion of a quaternary ammonium group. When an alkyl sulfate ion is used as a counter ion, the quaternary ammonium salt is hardly decomposed by Hoffman due to heat, and heat resistance can be imparted to the antistatic layer. Specifically, since the antistatic polyester film is used as the surface layer film of the laminated film, the antistatic layer hardly deteriorates and can maintain heat resistance even when it is pressed at a high temperature. When the counter ion is methyl sulfate, the obtained antistatic polyester film has little increase in surface resistivity even when heated at 200 ° C. for 1 minute, and the antistatic performance is maintained.
Alkylsulfate ions are not decomposed like chlorine ions and do not generate chlorine gas, and even if an antistatic polyester film is used in contact with metal, it may have adverse effects such as corrosion of the metal. Absent. Further, in the production process of the antistatic polyester film, environmental pollution in the apparatus can be reduced, and a clean state can be maintained for a long time.
On the other hand, for example, a copolymer of trimethylaminoethyl acrylate chloride whose counter ion is a chlorine ion as a monomer decomposes in 1 to 2 minutes when heated to 150 ° C. and generates chlorine gas, and is also antistatic. Performance may be degraded.
 本発明において、重合体(A)を主成分とする帯電防止層は、架橋剤(B)を含有することが好ましい。架橋剤(B)を含有することにより、帯電防止層は、凝集性や密着性が向上する。 In the present invention, the antistatic layer mainly composed of the polymer (A) preferably contains a crosslinking agent (B). By containing the crosslinking agent (B), the antistatic layer is improved in cohesiveness and adhesion.
 架橋剤(B)としては、例えば、エポキシ化合物、メラミン化合物、イソシアネート化合物、シランカップリング剤、ポリエチレンイミン、ポリビニルアルコールなどが挙げられ、中でもエポキシ化合物、ポリエチレンイミンが好ましい。
 本発明においてはこれらから選ばれる2種類以上を併用することがさらに好ましい。架橋剤が1種類であると塗膜の凝集性、密着性が不十分となることがあり、帯電防止性ポリエステルフィルムを熱プレスした際に、帯電防止層が相手材に移行してしまうことがある。
 なお、架橋剤(B)は、帯電防止層を形成するために用いる塗工液に有機溶剤を含有させなくてすむように、水溶性または水分散性であることが好ましい。
As a crosslinking agent (B), an epoxy compound, a melamine compound, an isocyanate compound, a silane coupling agent, polyethyleneimine, polyvinyl alcohol, etc. are mentioned, for example, An epoxy compound and polyethyleneimine are especially preferable.
In the present invention, it is more preferable to use two or more selected from these in combination. When one type of crosslinking agent is used, the cohesiveness and adhesion of the coating film may be insufficient, and when the antistatic polyester film is hot-pressed, the antistatic layer may be transferred to the counterpart material. is there.
In addition, it is preferable that a crosslinking agent (B) is water-soluble or water-dispersible so that it does not need to contain the organic solvent in the coating liquid used in order to form an antistatic layer.
 エポキシ化合物としては、ジエチレングリコールジグリシジールエーテル、グリセリンジグリシジールエーテル、ビスフェノールAジグリシジールエーテルなどの2官能誘導体、トリメチロールプロパントリグリシジールエーテルなどの3官能誘導体などが好ましい。なおエポキシ化合物は、原料にエピクロヒドリンを使用する関係から塩素イオンの残留が避けられないので、可能な限り塩素イオンを除去したものが望ましい。
 メラミン化合物としては、トリメチロールメラミン、ヘキサメチロールメラミン、トリスメトキシメチルメラミン、ヘキサキスメトキシメチルメラミンなどが好ましい。
 イソシアネート化合物としては、トルエンジイソシアネートやジフェニルメタンジイソシアネートなどの芳香族ポリイソシアネートや、ヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、ブタンジイソシアネートなどの脂肪族ポリイソシアネートおよびこれらの誘導体が挙げられ、反応性を調整し塗工液の安定性を高める点でブロックイソシアネート化合物が好ましい。
 シランカップリング剤としては、エポキシアルキルシラン、アミノアルキルシラン類が挙げられ、γ-グリシドキシプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン等が好ましい。
 ポリエチレンイミンとしては、一級、二級、三級アミンからなる枝分かれ構造を有する高極性、高密度ポリアミンが挙げられる。
 そのほかに水溶性樹脂としてポリビニルアルコール樹脂などが挙げられ、ポリビニルアルコール樹脂はケン化度が89%以上、分子量が100~1000であるものが好ましい。
The epoxy compound is preferably a bifunctional derivative such as diethylene glycol diglycidyl ether, glycerin diglycidyl ether or bisphenol A diglycidyl ether, or a trifunctional derivative such as trimethylolpropane triglycidyl ether. In addition, since the residual of a chlorine ion is unavoidable from the relationship which uses epichlorohydrin for a raw material, the epoxy compound from which the chlorine ion was removed as much as possible is desirable.
As the melamine compound, trimethylol melamine, hexamethylol melamine, trismethoxymethyl melamine, hexakismethoxymethyl melamine and the like are preferable.
Examples of the isocyanate compound include aromatic polyisocyanates such as toluene diisocyanate and diphenylmethane diisocyanate, aliphatic polyisocyanates such as hexamethylene diisocyanate, cyclohexane diisocyanate, and butane diisocyanate, and derivatives thereof. A blocked isocyanate compound is preferable in terms of enhancing stability.
Examples of the silane coupling agent include epoxy alkyl silanes and aminoalkyl silanes, and γ-glycidoxypropyltrimethoxysilane, γ- (2-aminoethyl) aminopropyltrimethoxysilane and the like are preferable.
Examples of the polyethyleneimine include highly polar and high density polyamines having a branched structure composed of primary, secondary, and tertiary amines.
In addition, examples of the water-soluble resin include a polyvinyl alcohol resin. The polyvinyl alcohol resin preferably has a saponification degree of 89% or more and a molecular weight of 100 to 1,000.
 帯電防止層が架橋剤(B)を含有する場合、帯電防止層は、架橋剤(B)の触媒も含有することが好ましい。触媒としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾールなどのイミダゾール誘導体、ポリアミン、ポリエチレンイミン誘導体などのエポキシ開環反応触媒、パラトルエンスルホン酸などのメラミン架橋用触媒、イミダゾール、有機錫化合物などのウレタン架橋用触媒等が挙げられる。触媒の含有量は特に規定されないが、重合体(A)と架橋剤(B)との合計100質量部に対して、5~30質量部であることが好ましく、5~15質量部であることがより好ましい。 When the antistatic layer contains a crosslinking agent (B), the antistatic layer preferably also contains a catalyst for the crosslinking agent (B). Catalysts include imidazole derivatives such as 2-methylimidazole and 2-ethyl-4-methylimidazole, epoxy ring-opening reaction catalysts such as polyamines and polyethyleneimine derivatives, melamine crosslinking catalysts such as paratoluenesulfonic acid, imidazole, and organic tin Examples include urethane crosslinking catalysts such as compounds. The content of the catalyst is not particularly defined, but is preferably 5 to 30 parts by mass with respect to 100 parts by mass in total of the polymer (A) and the crosslinking agent (B), and 5 to 15 parts by mass. Is more preferable.
 帯電防止層が架橋剤(B)を含有する場合、重合体(A)と架橋剤(B)の質量比(A/B)は、95/5~70/30であることが好ましく、90/10~80/20であることがより好ましい。架橋剤(B)の含有量が5質量%未満であると、帯電防止層は、ポリエステルフィルムに対して所望の密着性向上効果を得にくくなることがあり、また含有量が30質量%を超えると、帯電防止層は、帯電防止性能が低下することがある。 When the antistatic layer contains a crosslinking agent (B), the mass ratio (A / B) of the polymer (A) and the crosslinking agent (B) is preferably 95/5 to 70/30, More preferably, it is 10 to 80/20. When the content of the crosslinking agent (B) is less than 5% by mass, the antistatic layer may be difficult to obtain a desired adhesion improving effect on the polyester film, and the content exceeds 30% by mass. In addition, the antistatic layer may deteriorate the antistatic performance.
 また、本発明における帯電防止層は、界面活性剤(C)を含有することが好ましい。界面活性剤(C)を含有することにより、帯電防止層は、静電分極緩和性を有する重合体(A)の帯電防止性能がより高度に引き出され、特に、湿度に依存することなく、帯電防止性が安定したものとなる。
 界面活性剤(C)は、低分子イオン伝導タイプであることが好ましく、具体的には、一般的なアニオン系界面活性剤、カチオン系界面剤、ノニオン系界面活性剤から選択することができる。界面活性剤(C)は、帯電防止層形成用塗工液における相溶性、塗工液の塗工適性、また得られる帯電防止層とポリエステルフィルムとの接着性や耐ブロッキング性から、4級アンモンニウム塩を有する化合物、スルホン酸塩を有する化合物が好ましい。
 帯電防止層が界面活性剤(C)を含有する場合、界面活性剤(C)の含有量は、重合体(A)と架橋剤(B)合計100質量部に対して、1~15質量部であることが好ましく、1~10質量部であることがより好ましい。
Moreover, it is preferable that the antistatic layer in this invention contains surfactant (C). By containing the surfactant (C), the antistatic layer can draw out the antistatic performance of the polymer (A) having electrostatic polarization relaxation to a higher degree, and in particular, without depending on humidity. Preventive property becomes stable.
The surfactant (C) is preferably of a low molecular ion conduction type, and specifically can be selected from general anionic surfactants, cationic surfactants, and nonionic surfactants. Surfactant (C) is a quaternary ammonia because of its compatibility with the coating solution for forming the antistatic layer, the suitability for coating the coating solution, and the adhesion and blocking resistance between the resulting antistatic layer and the polyester film. A compound having a nium salt and a compound having a sulfonate are preferable.
When the antistatic layer contains the surfactant (C), the content of the surfactant (C) is 1 to 15 parts by mass with respect to 100 parts by mass in total of the polymer (A) and the crosslinking agent (B). Preferably, the amount is 1 to 10 parts by mass.
 本発明の帯電防止性ポリエステルフィルムは、温度150℃で1時間熱処理を行った際、熱処理前後のヘーズ差(△Hz)が1.0%未満であることが必要であり、0.9%未満であることが好ましく、0.8%未満であることがより好ましい。帯電防止性ポリエステルフィルムは、ヘーズ差(△Hz)が1.0%を超えると、透明性が損ねられ、外観上問題になる。帯電防止性ポリエステルフィルムのヘーズ値が、熱処理により上昇する理由として、種々の要因が考えられるが、主な理由は、基材として用いたポリエステルフィルムから、オリゴマー成分が析出するためと考えられる。
 本発明の帯電防止性ポリエステルフィルムは、特定の分散状態の塗工液を用いて、ポリエステルフィルム上に帯電防止層を形成することによって、帯電防止性が付与されるとともに、形成された帯電防止層がポリエステルフィルムからのオリゴマー成分の析出を抑制することができるため、熱処理後にヘーズ値が高くならず、白化等の外観不良を低減することができるものとみられる。
When the antistatic polyester film of the present invention is heat-treated at a temperature of 150 ° C. for 1 hour, the haze difference (ΔHz) before and after the heat treatment needs to be less than 1.0%, and less than 0.9% It is preferable that it is less than 0.8%. When the haze difference (ΔHz) exceeds 1.0%, the antistatic polyester film is impaired in transparency and becomes a problem in appearance. Although various factors can be considered as the reason why the haze value of the antistatic polyester film is increased by the heat treatment, the main reason is considered to be that the oligomer component is precipitated from the polyester film used as the substrate.
The antistatic polyester film of the present invention is provided with antistatic properties by forming an antistatic layer on the polyester film using a coating liquid in a specific dispersion state, and the antistatic layer formed However, since precipitation of the oligomer component from the polyester film can be suppressed, the haze value does not increase after heat treatment, and appearance defects such as whitening can be reduced.
 本発明の帯電防止性ポリエステルフィルムは、フィルムの長手方向の片端縁から1mの地点と、他端縁から1mの地点と、前記2地点の間を9等分した地点の合計10地点において、各地点のフィルム全幅で観察されるスジ状欠点の平均値が、フィルム幅1mあたり1.0個以下であることが好ましい。端縁とはフィルムの縁辺のことである。
 スジ状欠点は、後述するように、高輝度光源を用いて、帯電防止性ポリエステルフィルムの各地点を帯電防止層面より照射し、幅方向(TD)へ目視で観察する方法で計数することができる。なお、本発明において、スジ状欠点とは、フィルムの長手方向に発生しているコートスジやコートムラのことをいう。
The antistatic polyester film of the present invention has a total of 10 points including a point 1 m from one end edge in the longitudinal direction of the film, a point 1 m from the other end edge, and a point equally divided by 9 between the two points. It is preferable that the average value of the streak-like defects observed at the full film width of the point is 1.0 or less per 1 m of the film width. The edge is the edge of the film.
As will be described later, streaky defects can be counted by a method in which each point of the antistatic polyester film is irradiated from the surface of the antistatic layer using a high-intensity light source and visually observed in the width direction (TD). . In the present invention, the streak defect means a coating stripe or coating unevenness generated in the longitudinal direction of the film.
 本発明の帯電防止性ポリエステルフィルムは、表面固有抵抗値が、23℃、相対湿度(RH)50%において、1×1012Ω/□未満であることが好ましい。帯電防止性ポリエステルフィルムは、表面固有抵抗値が1×1012Ω/□を超えると、帯電防止性能が不十分である。
 なお、帯電防止性能の観点から、本発明のポリエステルフィルムの帯電防止層の厚さは、0.05~0.5μmであることが好ましい。帯電防止層の厚さが0.05μm未満であると帯電防止性能が発現しないことがあり、0.5μmを超えると帯電防止性能が飽和する。
The antistatic polyester film of the present invention preferably has a surface resistivity of less than 1 × 10 12 Ω / □ at 23 ° C. and a relative humidity (RH) of 50%. When the surface resistivity value exceeds 1 × 10 12 Ω / □, the antistatic polyester film has insufficient antistatic performance.
From the viewpoint of antistatic performance, the thickness of the antistatic layer of the polyester film of the present invention is preferably 0.05 to 0.5 μm. If the thickness of the antistatic layer is less than 0.05 μm, the antistatic performance may not be exhibited, and if it exceeds 0.5 μm, the antistatic performance is saturated.
 次に本発明の帯電防止性ポリエステルフィルムの製造方法の一例を説明する。
 まず、十分に乾燥されたポリエステル樹脂を、押出機に供給し、十分に可塑化され、流動性を示す温度以上で溶融し、必要に応じて選ばれたフィルターを通過させ、その後Tダイを通じてシート状に押出す。このシートをポリエステル樹脂のガラス転移点(Tg)以下に温度調節した冷却ドラム上に密着させて未延伸フィルムを得る。
 得られた未延伸フィルムは、二軸延伸することによって二軸配向させる。延伸方法は、特に限定はされないが、逐次二軸延伸法や同時二軸延伸法が挙げられる。
 本発明の帯電防止性ポリエステルフィルムは、上記ポリエステルフィルムの製造工程中に、帯電防止層を形成するための塗工液を塗布し、ポリエステルフィルムと共に乾燥、延伸および熱固定処理することによって製造することができる。
Next, an example of the manufacturing method of the antistatic polyester film of this invention is demonstrated.
First, a sufficiently dried polyester resin is supplied to an extruder, fully plasticized, melted at a temperature showing fluidity, passed through a filter selected as necessary, and then passed through a T-die. Extrude into a shape. This sheet is brought into close contact with a cooling drum whose temperature is adjusted to a glass transition point (Tg) or less of the polyester resin to obtain an unstretched film.
The obtained unstretched film is biaxially oriented by biaxial stretching. The stretching method is not particularly limited, and examples thereof include a sequential biaxial stretching method and a simultaneous biaxial stretching method.
The antistatic polyester film of the present invention is produced by applying a coating solution for forming an antistatic layer during the production process of the polyester film, followed by drying, stretching and heat setting treatment together with the polyester film. Can do.
 同時二軸延伸法では、未延伸フィルムに前記塗工液を塗布、乾燥したのち、ポリエステル樹脂のTg~Tgより50℃高い温度の範囲で、長手および幅方向にそれぞれ2~4倍程度の延伸倍率となるよう二軸延伸する。同時二軸延伸機に導く前に、1~1.2倍程度の予備縦延伸を施しておいてもよい。 In the simultaneous biaxial stretching method, the coating solution is applied to an unstretched film, dried, and stretched about 2 to 4 times in the longitudinal and width directions within a temperature range of 50 ° C. higher than Tg to Tg of the polyester resin. Biaxial stretching is performed to obtain a magnification. Prior to guiding to the simultaneous biaxial stretching machine, preliminary longitudinal stretching of about 1 to 1.2 times may be performed.
 また、逐次二軸延伸法では、未延伸フィルムをロール、赤外線等で加熱し、長手方向に延伸して縦延伸フィルムを得る。延伸は2個以上のロール周速差を利用し、ポリエステル樹脂のTg~Tgより40℃高い温度の範囲で2.5~4.0倍とするのが好ましい。
 縦延伸フィルムは続いて連続的に、幅方向に横延伸、熱固定、熱弛緩の処理を順次施して二軸配向フィルムとする。横延伸はポリエステル樹脂のTg~Tgより40℃高い温度で開始し、最高温度はポリエステル樹脂の融点(Tm)より(100~40)℃低い温度であることが好ましい。横延伸の倍率は最終的なポリエステルフィルムの要求物性に応じて調整されるが、3.5倍以上、さらには3.8倍以上とするのが好ましく、4.0倍以上とするのがより好ましい。
 長手方向と幅方向に延伸後、さらに、長手方向および/または幅方向に再延伸することにより、ポリエステルフィルムの弾性率を高めたり寸法安定性を高めたりすることもできる。
 上記逐次二軸延伸法で帯電防止性ポリエステルフィルムを製造する場合には、未延伸フィルムに塗工液を塗布してから縦延伸、横延伸する方法と、縦延伸フィルムに塗工液を塗布し、横延伸する方法とがある。本発明においては、後者の方法を用いることで、簡便に、操業性を妨げることなく帯電防止性ポリエステルフィルムを製造することができる。
In the sequential biaxial stretching method, an unstretched film is heated with a roll, infrared rays or the like and stretched in the longitudinal direction to obtain a longitudinally stretched film. Stretching preferably uses a difference in peripheral speed of two or more rolls and is 2.5 to 4.0 times in a temperature range 40 ° C. higher than Tg to Tg of the polyester resin.
Subsequently, the longitudinally stretched film is continuously subjected to transverse stretching, heat setting, and thermal relaxation in the width direction to form a biaxially oriented film. The transverse stretching starts at a temperature 40 ° C. higher than the Tg to Tg of the polyester resin, and the maximum temperature is preferably a temperature lower by (100 to 40) ° C. than the melting point (Tm) of the polyester resin. The transverse stretching ratio is adjusted according to the required physical properties of the final polyester film, but it is preferably 3.5 times or more, more preferably 3.8 times or more, and more preferably 4.0 times or more. preferable.
By stretching in the longitudinal direction and / or the width direction after stretching in the longitudinal direction and the width direction, the elastic modulus and dimensional stability of the polyester film can be increased.
When producing an antistatic polyester film by the sequential biaxial stretching method, a method of applying a coating solution to an unstretched film and then longitudinally and transversely stretching, and a method of applying a coating solution to a longitudinally stretched film And a method of transverse stretching. In the present invention, by using the latter method, an antistatic polyester film can be easily produced without impeding operability.
 延伸に続き、ポリエステル樹脂のTmより(50~100)℃低い温度で数秒間の熱固定処理を行い、熱固定処理と同時にフィルム幅方向に2~10%の弛緩することが好ましい。熱固定処理後、ポリエステルフィルムのTg以下に冷却して、帯電防止層が形成されたポリエステルフィルムを得る。 Following stretching, it is preferable to perform heat setting treatment for several seconds at a temperature (50 to 100) ° C. lower than Tm of the polyester resin, and to relax by 2 to 10% in the film width direction simultaneously with the heat setting treatment. After the heat setting treatment, the polyester film is cooled to Tg or less of the polyester film to obtain a polyester film having an antistatic layer formed thereon.
 上記製造方法によると、ポリエステルフィルム基材として、1種の層からなる単層のものが得られるが、多層構造を有するポリエステルフィルム基材は、例えば、上記製造方法において、それぞれの層を構成するポリエステル樹脂を別々に溶融押出し、固化前に積層融着させた後、二軸延伸、熱固定する方法や、2種以上の層を別々に溶融押出してフィルム化し、未延伸状態または延伸後、両者を積層融着させる方法などを組合わせて製造することができる。プロセスの簡便性から、複層ダイスを用い、固化前に積層融着させることが好ましい。
 なお、ポリエステルフィルム基材には、本発明の効果を防げない範囲で、必要に応じて酸化防止剤、滑剤等の添加剤を配合しておいてもよい。
According to the said manufacturing method, the thing of a single layer which consists of 1 type of layer is obtained as a polyester film base material, However, The polyester film base material which has a multilayer structure comprises each layer in the said manufacturing method, for example. Polyester resin is melt-extruded separately, laminated and fused before solidification, then biaxially stretched and heat-set, or two or more layers are melt-extruded separately to form a film, either unstretched or stretched, both It is possible to manufacture by combining the methods of laminating and fusing. From the simplicity of the process, it is preferable to use a multilayer die and laminate and fuse before solidification.
In addition, you may mix | blend additives, such as antioxidant and a lubricant, with a polyester film base material as needed in the range which cannot prevent the effect of this invention.
 上記ポリエステルフィルムの製造工程において、帯電防止層を形成するために使用する塗工液は、重合体(A)と、必要に応じて架橋剤(B)や界面活性剤(C)と、水等の媒体を含有するものである。必要に応じて、さらに消泡剤、酸化防止剤、滑剤等の公知の添加剤を含有してもよい。
 本発明において、帯電防止層を形成するための塗工液は、含有する固形分の平均粒径が300nm未満であることが必要であり、275nm未満であることが好ましく、250nm未満であることがより好ましく、225nm未満であることがさらに好ましい。また、通常達成できる固形分の平均粒径の下限は、50nmである。
 固形分の平均粒径が上記範囲である塗工液を使用して帯電防止層を形成することによって、得られる帯電防止性ポリエステルフィルムは、温度150℃で1時間熱処理を行なっても、基材のポリエステルフィルムからのオリゴマー成分の析出を抑制することができ、ヘーズ値が高くならず、熱処理前後でのヘーズ差△Hzを1.0%未満とすることが可能となり、白化等の外観不良を低減することができる。
 また、固形分の平均粒径が上記範囲である塗工液を使用して塗布することによって、グラビアロールの版づまり等を抑制でき、スジ状欠点を低減することができる。塗工液が含有する重合体(A)は、4級アンモニウム基とカルボキシル基の両方を側鎖に有するため、分子内にカチオン性基とアニオン性基が共存しており、粒子同士が会合しやすく二次凝集しやすいものである。また、塗工液に他のイオン性物質を加えた場合でも、重合体(A)は、それと複合し凝集することがある。塗工液が含有する固形分の平均粒径を上記範囲とすることにより、上記グラビアロールの版づまり等を抑制することができ、フィルム長手方向のコートスジの発生を抑えることができる。
In the production process of the polyester film, the coating liquid used for forming the antistatic layer comprises a polymer (A), a crosslinking agent (B) or a surfactant (C) as necessary, water, etc. These media are included. You may contain well-known additives, such as an antifoamer, antioxidant, and a lubricant, as needed.
In the present invention, the coating liquid for forming the antistatic layer needs to have an average particle size of solid content of less than 300 nm, preferably less than 275 nm, and preferably less than 250 nm. More preferably, it is less than 225 nm. In addition, the lower limit of the average particle size of the solid content that can usually be achieved is 50 nm.
The antistatic polyester film obtained by forming an antistatic layer using a coating liquid having an average solid content particle size in the above range can be obtained by subjecting the base material to heat treatment at 150 ° C. for 1 hour. It is possible to suppress the precipitation of oligomer components from the polyester film, the haze value does not increase, the haze difference ΔHz before and after the heat treatment can be made less than 1.0%, and appearance defects such as whitening are caused. Can be reduced.
Moreover, by applying the coating liquid having an average particle size of the solid content within the above range, it is possible to suppress plate jam of the gravure roll and reduce streak-like defects. Since the polymer (A) contained in the coating liquid has both a quaternary ammonium group and a carboxyl group in the side chain, a cationic group and an anionic group coexist in the molecule, and the particles associate with each other. It is easy to secondary agglomerate. Further, even when another ionic substance is added to the coating solution, the polymer (A) may be complexed and aggregated therewith. By setting the average particle size of the solid content contained in the coating liquid in the above range, it is possible to suppress plate grabbing of the gravure roll and the like, and to prevent the occurrence of coating stripes in the film longitudinal direction.
 塗工液は、生産工程での安全性、衛生性の観点から、水溶液または水性分散体であることが好ましい。また、塗工液の固形分濃度は、5~30質量%であることが好ましく、塗工作業性から、10~20質量%であることがさらに好ましい。 The coating liquid is preferably an aqueous solution or an aqueous dispersion from the viewpoint of safety and hygiene in the production process. The solid concentration of the coating liquid is preferably 5 to 30% by mass, and more preferably 10 to 20% by mass from the viewpoint of coating workability.
 塗工液は、重合体(A)と、必要に応じて架橋剤(B)や界面活性剤(C)と、水等を混合し、均一分散して調製することができる。塗工液に存在する固形分の平均粒径を300nm未満に調整する方法としては、特に限定はされないが、超音波処理や高速分散処理、高圧分散処理、ジェットミル、ビーズミルなどで、所定の平均粒径となるように処理する方法が挙げられる。
 塗工液を、未延伸フィルムや縦延伸フィルムに塗工する方法は、一般的な塗工方法が可能であり、例えばメイヤーバーコート、エアーナイフコート、リバースロールコート、リバースグラビアロールコート、グラビアロールコート、リップコート、ダイコートなどの方法が挙げられる。塗工液塗布量は、1~10g/mが好ましい。塗工後の乾燥条件は、50~90℃、10~60秒であることが好ましい。
The coating liquid can be prepared by mixing the polymer (A), if necessary, the crosslinking agent (B) or surfactant (C), water, etc., and uniformly dispersing the mixture. The method for adjusting the average particle size of the solids present in the coating liquid to less than 300 nm is not particularly limited, but may be a predetermined average by ultrasonic treatment, high-speed dispersion treatment, high-pressure dispersion treatment, jet mill, bead mill, etc. The method of processing so that it may become a particle size is mentioned.
As a method of applying the coating liquid to an unstretched film or a longitudinally stretched film, a general coating method can be used, for example, Mayer bar coat, air knife coat, reverse roll coat, reverse gravure roll coat, gravure roll. Examples of the method include coating, lip coating, and die coating. The application amount of the coating liquid is preferably 1 to 10 g / m 2 . The drying conditions after coating are preferably 50 to 90 ° C. and 10 to 60 seconds.
 本発明の帯電防止性ポリエステルフィルムはそのまま使用することもできるが、帯電防止層の形成面もしくは非形成面に、表面処理としてコロナ放電やイオンブローなどの表面処理を行ってもよい。 The antistatic polyester film of the present invention can be used as it is, but surface treatment such as corona discharge or ion blow may be performed on the surface where the antistatic layer is formed or non-formed.
 本発明の帯電防止性ポリエステルフィルムは、帯電防止性に優れるとともに、熱処理による透明性低下が抑制されており、また帯電防止層の均一性、耐熱性、密着性に優れる。したがって、印刷インキ、接着剤、光硬化樹脂、バインダー等を密着させて、各種包装、工業用途で使用ができる。とりわけ、熱処理時のオリゴマー成分の発生を抑制することができるため、情報記憶材料、建築材料、印刷材料、電子材料等として好適に使用することが可能である。また、本発明の帯電防止性ポリエステルフィルムは、帯電防止性に優れるともに、スジ状欠点の発生も少ない外観性を向上させたものであるため、帯電防止性能の要求度が高い電気、電子部品分野、外観の要求度の高い光学用途や意匠性分野などの帯電防止性ポリエステルフィルムとして好適に使用することができる。他にもこのような特性を生かして、各種包装、工業用途での資材として好適に用いることができる。また、保護フィルムなど表層フィルムでも使用できる。 The antistatic polyester film of the present invention has excellent antistatic properties, suppresses a decrease in transparency due to heat treatment, and is excellent in uniformity, heat resistance, and adhesion of the antistatic layer. Therefore, it can be used in various packaging and industrial applications by adhering printing ink, adhesive, photo-curing resin, binder and the like. In particular, since generation of oligomer components during heat treatment can be suppressed, it can be suitably used as information storage materials, building materials, printing materials, electronic materials, and the like. In addition, the antistatic polyester film of the present invention has excellent antistatic properties and improved appearance with few streak-like defects. Therefore, the electrical and electronic component fields have high antistatic performance requirements. In addition, it can be suitably used as an antistatic polyester film for optical applications and design fields with a high degree of demand for appearance. In addition, taking advantage of such characteristics, it can be suitably used as a material for various packaging and industrial applications. Further, a surface film such as a protective film can be used.
 本発明を実施例により具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
 各特性の測定、評価は下記の方法によっておこなった。
(1)塗工液における固形分の平均粒径
 粒度分布測定装置(日機装社製マイクロトラックUPA150型、MODELNo.9340)を用い、数平均粒子径を求めた。
EXAMPLES The present invention will be specifically described with reference to examples, but the present invention is not limited to only these examples.
Each characteristic was measured and evaluated by the following methods.
(1) Average particle size of solid content in coating liquid The number average particle size was determined using a particle size distribution measuring device (Microtrack UPA150 type, MODEL No. 9340 manufactured by Nikkiso Co., Ltd.).
(2)全ヘーズおよびヘーズ差△Hz
 4000mm幅の帯電防止性ポリエステルフィルム原反において、原反の左端から500mm、2000mm、3500mmの3箇所より測定試料を採取した。
 帯電防止層の非形成面からのオリゴマー等の析出を抑制して、帯電防止層形成面におけるヘーズ差(△Hz)の測定を正確に行うために、帯電防止性ポリエステルフィルムの帯電防止層の非形成面に、基材レス両面粘着テープ(日東電工社製光学用透明粘着シート「LUCIACS」CS9621T)の軽剥離保護フィルム側の粘着面を貼付し、その後重剥離側の保護フィルムを剥がした試料について、熱処理前のヘーズ値(T1)を測定した。ヘーズ値の測定は、ASTM D1003-61に準じて、ヘーズメーター(東京電色社製)を用いておこなった。なお、粘着テープ自体からの揮発物は全くないものとした。
 また、帯電防止性ポリエステルフィルムの帯電防止層の非形成面に、基材レス両面粘着テープの軽剥離保護フィルムの粘着面を貼付した後、汚染を防ぐために重剥離保護フィルムを貼ったままで、温度150℃で1時間熱処理を行なった。その後、重剥離側の保護フィルムを剥がした試料について、熱処理後のヘーズ値(T2)を測定した。なお、測定は各採取箇所についてそれぞれ5試料で行い、熱処理後のヘーズ値(T2)の平均値(TM2)から、熱処理前のヘーズ値(T1)の平均値(TM1)を減じて、各採取箇所における熱処理前後でのヘーズ差(△Hz)を算出した。
(2) Total haze and haze difference ΔHz
Measurement samples were collected from three locations of 500 mm, 2000 mm, and 3500 mm from the left end of the original fabric of a 4000 mm width antistatic polyester film.
In order to accurately measure the haze difference (ΔHz) on the antistatic layer forming surface while suppressing the precipitation of oligomers and the like from the nonstatic surface of the antistatic layer, the antistatic layer of the antistatic polyester film is not About the sample where the adhesive surface on the light release protective film side of the baseless double-sided adhesive tape (Nitto Denko Corporation optical transparent adhesive sheet “LUCIACS” CS9621T) is pasted on the forming surface, and then the protective film on the heavy release side is peeled off The haze value (T1) before heat treatment was measured. The haze value was measured using a haze meter (manufactured by Tokyo Denshoku) according to ASTM D1003-61. Note that there was no volatile matter from the adhesive tape itself.
In addition, after applying the adhesive surface of the light release protective film of the baseless double-sided adhesive tape to the non-forming surface of the antistatic layer of the antistatic polyester film, the temperature is kept with the heavy release protective film applied to prevent contamination. Heat treatment was performed at 150 ° C. for 1 hour. Then, the haze value (T2) after heat processing was measured about the sample which peeled off the heavy peeling side protective film. In addition, measurement is performed with 5 samples for each sampling location, and each sampling is performed by subtracting the average value (TM1) of the haze value (T1) before heat treatment from the average value (TM2) of the haze value (T2) after heat treatment. The haze difference (ΔHz) before and after the heat treatment at the location was calculated.
(3)帯電防止層の外観評価(スジ状の干渉の有無、スジ状欠点の個数)
 帯電防止層の外観を、下記2種の方法で評価した。いずれの手法においても評価する地点は、帯電防止性ポリエステルフィルム原反における、フィルムの長手方向の片端縁から1mの地点と、他端縁から1mの地点と、前記2地点の間を9等分した地点の合計10地点とし、各地点のフィルムの幅方向(TD)に黒色油性ペンで直線を引き、直線上を交差するスジ状の干渉を示す部分やスジ状欠点を、フィルム全幅に対して観察した。
(評価方法A)
 帯電防止性ポリエステルフィルムの各評価地点において、帯電防止層の表面に対して5~45°の角度から、蛍光灯の白色光線(100ルーメン)を当てて、各地点のフィルム全幅におけるスジ状の干渉を示す部分の有無を目視で調べた。前記10地点すべてにおいて、スジ状の干渉を示す部分がない場合を「〇」と評価し、1地点にでもスジ状の干渉を示す部分がある場合を「×」と評価した。
(評価方法B)
 帯電防止性ポリエステルフィルムの各評価箇所において、帯電防止層の表面に対して約10~45°の斜めの方向から、高輝度のLED懐中電灯(レッドレンザー社製M7R型、400ルーメン)を用いて、フィルムから30cm離して光を当てることにより、各地点のフィルム全幅におけるスジ状欠点の個数を目視で計数した。各地点におけるフィルム幅1mあたりのスジ状欠点の個数を算出し、前記10地点の平均値を求めた。
(3) Appearance evaluation of antistatic layer (existence of streak-like interference, number of streaky defects)
The appearance of the antistatic layer was evaluated by the following two methods. In any of the methods, the points to be evaluated are 9 points between the two points, a point 1 m from one end edge in the longitudinal direction of the film, a point 1 m from the other end edge, in the raw material of the antistatic polyester film. A total of 10 spots are drawn, a straight line is drawn with a black oil-based pen in the width direction (TD) of the film at each point, and a portion showing streak-like interference intersecting the straight line or a streak-like defect with respect to the entire width of the film Observed.
(Evaluation method A)
At each evaluation point of the antistatic polyester film, a white light beam (100 lumens) of a fluorescent lamp is applied at an angle of 5 to 45 ° with respect to the surface of the antistatic layer to cause streak-like interference in the entire width of the film at each point. The presence or absence of a portion showing was visually examined. The case where there was no portion showing streak-like interference at all the ten points was evaluated as “◯”, and the case where there was a portion showing streak-like interference at one point was evaluated as “x”.
(Evaluation method B)
At each evaluation point of the antistatic polyester film, using a high-intensity LED flashlight (M7R type, 400 lumen manufactured by Redlenzer) from an oblique direction of about 10 to 45 ° with respect to the surface of the antistatic layer. The number of streak-like defects in the entire width of the film at each point was visually counted by applying light at a distance of 30 cm from the film. The number of streak-like defects per 1 m of film width at each point was calculated, and the average value at the 10 points was determined.
(4)表面固有抵抗
 帯電防止性ポリエステルフィルムを温度23℃、相対湿度50%で3時間放置調湿後、同温度、同湿度において、高抵抗計測定器(ダイアインスツルメンツ社製HT-260)を用いて、印加電圧500V-10秒後の帯電防止層の表面固有抵抗値(Ω/□)を測定した。
(4) Surface resistivity After the antistatic polyester film is allowed to stand for 3 hours at a temperature of 23 ° C. and a relative humidity of 50%, a high resistance meter (HT-260 manufactured by Dia Instruments Co., Ltd.) is used at the same temperature and humidity. The surface resistivity value (Ω / □) of the antistatic layer after an applied voltage of 500 V for 10 seconds was measured.
 塗工液を調製する原料として、下記のものを使用した。
(1)重合体(A)
・重合体(A-1)の水性分散体:メチルメタクリレート/エチルアクリレート/アクリル酸/ジメチルアミノエチルメタクリレートのメチルサルフェート4級化物を、45/5/5/45のmol比で共重合したもの、固形分濃度30質量%
・重合体(A-2)の水性分散体:メチルメタクリレート/エチルアクリレート/アクリル酸/ジメチルアミノエチルメタクリレートのメチルサルフェート4級化物を、40/5/10/45のmol比で共重合したもの、固形分濃度30質量%
・重合体(A-3)の水性分散体:メチルメタクリレート/ブチルアクリレート/メタクリル酸/ジメチルアミノエチルメタクリレートのメチルサルフェート4級化物を、40/5/10/45のmol比で共重合したもの、固形分濃度30質量%
The following were used as raw materials for preparing the coating solution.
(1) Polymer (A)
-Aqueous dispersion of polymer (A-1): a copolymer of methyl methacrylate / ethyl acrylate / acrylic acid / methyl sulfate quaternized methyl sulfate in a molar ratio of 45/5/5/45, Solid content concentration 30% by mass
-Aqueous dispersion of polymer (A-2): a copolymer of methyl methacrylate / ethyl acrylate / acrylic acid / methyl sulfate quaternized product of methyl sulfate in a molar ratio of 40/5/10/45, Solid content concentration 30% by mass
-Aqueous dispersion of polymer (A-3): a copolymer of methyl methacrylate / butyl acrylate / methacrylic acid / dimethyl aminomethyl methacrylate methyl sulfate quaternized at a molar ratio of 40/5/10/45, Solid content concentration 30% by mass
(2)架橋剤(B)
・架橋剤(B-1)の水溶液:ポリエチレンイミンの水溶液(日本触媒社製P-1000、固形分濃度30質量%)
・架橋剤(B-2):ポリエチレンイミン(日本触媒社製SP-200、分子量約10000、固形分100質量%)
・架橋剤(B-3):エポキシ化合物(DIC社製CR-5L、ポリヒドロキシアルカンポリグリシジルエーテル、固形分100質量%)
・架橋剤(B-4):エポキシ化合物(信越化学工業社製KBM-403、エポキシ系シランカップリング剤、固形分100質量%)
・架橋剤(B-5)の水溶液:メラミン化合物の水溶液(長春人造樹脂廠股ふん有限公司(Chang Chun Plastics. Co., Ltd.)製M-30WT、固形分濃度80質量%)
(2) Crosslinking agent (B)
-Aqueous solution of crosslinking agent (B-1): Aqueous solution of polyethyleneimine (Nippon Shokubai P-1000, solid content concentration 30% by mass)
Crosslinking agent (B-2): Polyethyleneimine (Nippon Shokubai Co., Ltd. SP-200, molecular weight of about 10,000, solid content of 100% by mass)
Crosslinking agent (B-3): Epoxy compound (DIC-5 CR-5L, polyhydroxyalkane polyglycidyl ether, solid content 100% by mass)
Crosslinking agent (B-4): Epoxy compound (KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd., epoxy silane coupling agent, solid content: 100% by mass)
-Aqueous solution of cross-linking agent (B-5): Aqueous solution of melamine compound (M-30WT, Changchun Plastics Co., Ltd., solid content concentration 80% by mass)
(3)界面活性剤(C)
・界面活性剤(C-1):アセチレングリコール系(日信化学工業社製オルフィンE1004、固形分100質量%)
・界面活性剤(C-2):アセチレングリコール系(エアープロダクツ社製サーフィノール440、固形分100質量%)
(3) Surfactant (C)
Surfactant (C-1): Acetylene glycol type (Nisshin Chemical Industry Olfin E1004, solid content: 100% by mass)
Surfactant (C-2): Acetylene glycol type (Surfinol 440 manufactured by Air Products, solid content: 100% by mass)
実施例1
(塗工液の調製)
 重合体(A-1)の水性分散体28.3kg(固形分8.5kg)に、架橋剤(B-1)ポリエチレンイミンの水溶液1.1kg(固形分0.3kg)を加えて、プロペラ攪拌機で強く撹拌した。次に、2種目の架橋剤(B-3)のエポキシ化合物0.9kgと、界面活性剤(C-1)のアセチレングリコール系界面活性剤0.8kgを添加し、60分間撹拌した。なお、塗工液を構成する上記各成分(固形分)の質量比(重合体(A-1):架橋剤(B-1、ポリエチレンイミン):架橋剤(B-3、エポキシ化合物):界面活性剤(C-1))は、87.6:3.1:9.3:8.2であった。
 次いで純水を添加して、総固形分濃度を12.7質量%に調整し、さらに30分撹拌後、停止し脱泡した。
 その後、超音波分散機(エスエムテー社製、UH-600SR-1型)を用いて20kHzで滞留時間が5分間になるように超音波分散処理することにより、塗工液を得た。塗工液における固形分の平均粒径は127nmであった。
Example 1
(Preparation of coating solution)
A propeller stirrer was prepared by adding 1.1 kg (solid content 0.3 kg) of an aqueous solution of a crosslinking agent (B-1) polyethyleneimine to 28.3 kg (solid content 8.5 kg) of the aqueous dispersion of polymer (A-1). And stirred vigorously. Next, 0.9 kg of the epoxy compound of the second cross-linking agent (B-3) and 0.8 kg of the acetylene glycol surfactant of the surfactant (C-1) were added and stirred for 60 minutes. The mass ratio of the above components (solid content) constituting the coating liquid (polymer (A-1): crosslinking agent (B-1, polyethyleneimine): crosslinking agent (B-3, epoxy compound): interface The active agent (C-1)) was 87.6: 3.1: 9.3: 8.2.
Subsequently, pure water was added to adjust the total solid content concentration to 12.7% by mass, and the mixture was further stirred for 30 minutes, and then stopped and degassed.
Thereafter, an ultrasonic dispersion treatment was performed using an ultrasonic disperser (UH-600SR-1 type, manufactured by SMT Co., Ltd.) at 20 kHz so that the residence time was 5 minutes, thereby obtaining a coating solution. The average particle size of the solid content in the coating solution was 127 nm.
(ポリエステルフィルム基材の製造と帯電防止層の形成)
 樹脂層Aを形成するための樹脂として、平均粒径2.3μmの無定形シリカ粒子を0.07質量%含有するポリエチレンテレフタレートを用い、また樹脂層Cを形成するための樹脂として、無定形シリカ粒子を含有しないポリエチレンテレフタレートを用いた。これらの樹脂を、それぞれ、2台の独立した押出機Iおよび押出機II(スクリュー径は押出機I:50mm、押出機II:65mm)に投入して、280℃で溶融後、それぞれの溶融体を、Tダイの出口に至る前で層状に合流積層させ、2種3層である積層物をTダイ出口より押出し、急冷固化して、総厚みが600μmである未延伸フィルムを得た。前記未延伸フィルムの各層の厚み比(樹脂層A/樹脂層C/樹脂層A)が1/8/1となるよう調整した。樹脂層A、Cに用いたポリエチレンテレフタレートはいずれも重合触媒として三酸化アンチモンを用い、固有粘度0.62、ガラス転移温度78℃、融点255℃であるものを使用した。
 得られた未延伸フィルムをロール式縦延伸機で85℃の条件下、3.5倍に延伸した。
 次いで、縦延伸フィルムの樹脂層A表面に、先に調製した塗工液を、120メッシュのグラビアロールで、5g/mとなるように塗布したのち、50℃の熱風乾燥炉に20秒通過させた。
 その後、塗工液を塗布、乾燥させた縦延伸フィルムの端部を連続的にフラット式延伸機のクリップに把持させ、100℃の条件下、横4.5倍に延伸を施し、その後、横方向の弛緩率を3%として、230℃で3秒間熱処理した後、冷却し巻き取った。
 得られた帯電防止性ポリエステルフィルムの厚さは38μmであり、帯電防止層の厚さはおよそ0.15μmであった。このフィルムについて、全ヘーズおよびヘーズ差△Hz、外観、表面固有抵抗の評価を行った。その結果を表1に示す。
(Manufacture of polyester film substrate and formation of antistatic layer)
Polyethylene terephthalate containing 0.07% by mass of amorphous silica particles having an average particle diameter of 2.3 μm is used as a resin for forming the resin layer A, and amorphous silica is used as a resin for forming the resin layer C. Polyethylene terephthalate containing no particles was used. Each of these resins was put into two independent extruders I and II (screw diameters were extruder I: 50 mm, extruder II: 65 mm) and melted at 280 ° C. Before reaching the outlet of the T-die, and a laminate of two types and three layers was extruded from the outlet of the T-die and rapidly cooled and solidified to obtain an unstretched film having a total thickness of 600 μm. The thickness ratio of each layer of the unstretched film (resin layer A / resin layer C / resin layer A) was adjusted to 1/8/1. As the polyethylene terephthalate used for the resin layers A and C, antimony trioxide was used as a polymerization catalyst, and an intrinsic viscosity of 0.62, a glass transition temperature of 78 ° C., and a melting point of 255 ° C. were used.
The obtained unstretched film was stretched 3.5 times with a roll-type longitudinal stretching machine under the condition of 85 ° C.
Next, the previously prepared coating solution was applied to the surface of the resin layer A of the longitudinally stretched film with a 120 mesh gravure roll so as to be 5 g / m 2, and then passed through a hot air drying oven at 50 ° C. for 20 seconds. I let you.
Thereafter, the end of the longitudinally stretched film coated with the coating solution and dried is continuously held by a clip of a flat stretching machine, stretched 4.5 times in width at 100 ° C, and then stretched horizontally. The heat treatment was performed at 230 ° C. for 3 seconds with a direction relaxation rate of 3%, and then cooled and wound up.
The thickness of the obtained antistatic polyester film was 38 μm, and the thickness of the antistatic layer was about 0.15 μm. This film was evaluated for total haze, haze difference ΔHz, appearance, and surface resistivity. The results are shown in Table 1.
実施例2~16、比較例1~8
(塗工液の調製)
 表1、2に記載された組成、総固形分濃度、分散方法、処理時間とした以外は実施例1と同様にして、塗工液を調製した。なお、分散方法として超音波分散に代えて高速攪拌する場合は、フィルミックス56-50型(特殊機化工業社製)を用いて10000rpmの条件で塗工液を分散させた。
Examples 2 to 16, Comparative Examples 1 to 8
(Preparation of coating solution)
A coating solution was prepared in the same manner as in Example 1 except that the composition, total solid content concentration, dispersion method, and treatment time described in Tables 1 and 2 were used. When stirring at high speed instead of ultrasonic dispersion as a dispersion method, the coating liquid was dispersed under the condition of 10,000 rpm using a Filmix 56-50 type (manufactured by Tokushu Kika Kogyo Co., Ltd.).
(ポリエステルフィルム基材の製造と帯電防止層の形成)
 ポリエステルフィルム基材の積層構成を、表1、2に記載の構成に変更した以外は、実施例1と同様にして、ポリエステルフィルム基材を製造した。なお、樹脂層Bを形成するための樹脂として、平均粒径2.3μmの無定形シリカ粒子を0.03質量%含有するポリエチレンテレフタレートを用いた。また層構成が2種2層である積層物は、各層の厚み比(樹脂層B/樹脂層A)が4/6となるように調整した。
 次いで、表1、2に記載のポリエステルフィルム層面に、表1、2に記載の厚さになるようにした以外は、実施例1と同様にして、帯電防止層を形成した。
(Manufacture of polyester film substrate and formation of antistatic layer)
A polyester film substrate was produced in the same manner as in Example 1 except that the laminated configuration of the polyester film substrate was changed to the configurations shown in Tables 1 and 2. In addition, as a resin for forming the resin layer B, polyethylene terephthalate containing 0.03% by mass of amorphous silica particles having an average particle diameter of 2.3 μm was used. In addition, the laminate in which the layer configuration was two types and two layers was adjusted such that the thickness ratio of each layer (resin layer B / resin layer A) was 4/6.
Subsequently, an antistatic layer was formed in the same manner as in Example 1 except that the polyester film layer surfaces shown in Tables 1 and 2 were made to have the thicknesses shown in Tables 1 and 2.
 調製した塗工液における固形分の平均粒径、また得られた帯電防止性ポリエステルフィルムの各種性能評価結果を表1、2に示す。 Tables 1 and 2 show the average particle size of the solid content in the prepared coating liquid and various performance evaluation results of the obtained antistatic polyester film.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例の帯電防止性ポリエステルフィルムは、温度150℃で1時間熱処理を行なった際の、熱処理前後でのヘーズ差△Hzがいずれも1.0%未満であり、熱処理による透明性の低下が抑制されたものであった。また帯電防止層には、高輝度光源を用いた場合であってもスジ状欠点が認められず、外観に優れたものであった。 The antistatic polyester films of the examples had a haze difference ΔHz of less than 1.0% before and after the heat treatment when heat-treated at a temperature of 150 ° C. for 1 hour, and suppressed a decrease in transparency due to the heat treatment. It was what was done. The antistatic layer was excellent in appearance with no streak-like defects even when a high-intensity light source was used.
 一方、固形分の平均粒径が大きい塗工液を用いて帯電防止層が形成された比較例の帯電防止性ポリエステルフィルムは、熱処理前後でのヘーズ差ΔHzが1.0%以上であり、熱処理による透明性の低下がみられ、また、高輝度光源を用いた場合、帯電防止層にスジ状欠点が発生しており、外観に劣るものであった。固形分濃度が低い塗工液を用いた比較例5では、同じ固形分濃度の塗工液を用いた実施例5と比較すると、表面固有抵抗値が高く、帯電防止性能が劣るものであった。
 
 
On the other hand, the antistatic polyester film of the comparative example in which the antistatic layer is formed using the coating liquid having a large average particle size of the solid content has a haze difference ΔHz of 1.0% or more before and after the heat treatment. In addition, when a high-intensity light source was used, streaky defects were generated in the antistatic layer and the appearance was poor. In Comparative Example 5 using a coating liquid with a low solid content concentration, the surface resistivity was high and the antistatic performance was inferior compared to Example 5 using a coating liquid with the same solid content concentration. .

Claims (6)

  1.  ポリエステルフィルムの少なくとも片面に帯電防止層が形成された帯電防止性ポリエステルフィルムであって、前記帯電防止層が4級アンモニウム基とカルボキシル基とを側鎖に有する重合体(A)を主成分とし、温度150℃で1時間熱処理を行なった際の、熱処理前後でのヘーズ差△Hzが1.0%未満であることを特徴とする帯電防止性ポリエステルフィルム。 An antistatic polyester film having an antistatic layer formed on at least one side of the polyester film, the antistatic layer comprising as a main component a polymer (A) having a quaternary ammonium group and a carboxyl group in the side chain; An antistatic polyester film, wherein a haze difference ΔHz before and after heat treatment is less than 1.0% when heat treatment is performed at a temperature of 150 ° C. for 1 hour.
  2.  フィルムの長手方向の片端縁から1mの地点と、他端縁から1mの地点と、前記2地点の間を9等分した地点の合計10地点において、各地点のフィルム全幅で観察されるスジ状欠点の平均値が、フィルム幅1mあたり1.0個以下であることを特徴とする請求項1記載の帯電防止性ポリエステルフィルム。 A streak-like shape observed at the full width of the film at a total of 10 points: a point 1 m from one edge in the longitudinal direction of the film, a point 1 m from the other edge, and a point obtained by dividing the distance between the two points into nine equal parts. The antistatic polyester film according to claim 1, wherein the average value of defects is 1.0 or less per 1 m of film width.
  3.  23℃、50%RHにおける表面固有抵抗値が1×1012Ω/□未満であることを特徴とする請求項1または2記載の帯電防止性ポリエステルフィルム。 3. The antistatic polyester film according to claim 1, wherein the surface specific resistance value at 23 ° C. and 50% RH is less than 1 × 10 12 Ω / □.
  4.  帯電防止層の厚さが0.05~0.5μmであることを特徴とする請求項1~3のいずれかに記載の帯電防止性ポリエステルフィルム。 4. The antistatic polyester film according to claim 1, wherein the antistatic layer has a thickness of 0.05 to 0.5 μm.
  5.  帯電防止層が、さらに架橋剤(B)を含有し、重合体(A)と架橋剤(B)の質量比(A/B)が、95/5~70/30であることを特徴とする請求項1~4のいずれかに記載の帯電防止性ポリエステルフィルム。 The antistatic layer further contains a crosslinking agent (B), and the mass ratio (A / B) of the polymer (A) to the crosslinking agent (B) is 95/5 to 70/30. The antistatic polyester film according to any one of claims 1 to 4.
  6.  請求項1記載の帯電防止性ポリエステルフィルムを製造するための方法であって、4級アンモニウム基とカルボキシル基とを側鎖に有する重合体(A)を主成分とし、含有する固形分の平均粒径が300nm未満である塗工液を用いて帯電防止層を形成することを特徴とする帯電防止性ポリエステルフィルムの製造方法。
     
     
    A method for producing an antistatic polyester film according to claim 1, comprising a polymer (A) having a quaternary ammonium group and a carboxyl group in the side chain as a main component, and containing an average particle of solid content A method for producing an antistatic polyester film, comprising forming an antistatic layer using a coating solution having a diameter of less than 300 nm.

PCT/JP2015/060037 2014-03-31 2015-03-31 Anti-static polyester film and method for producing same WO2015152193A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016511906A JP6625048B2 (en) 2014-03-31 2015-03-31 Method for producing antistatic polyester film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-073769 2014-03-31
JP2014073769 2014-03-31

Publications (1)

Publication Number Publication Date
WO2015152193A1 true WO2015152193A1 (en) 2015-10-08

Family

ID=54240514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060037 WO2015152193A1 (en) 2014-03-31 2015-03-31 Anti-static polyester film and method for producing same

Country Status (3)

Country Link
JP (1) JP6625048B2 (en)
TW (1) TW201540818A (en)
WO (1) WO2015152193A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179023A (en) * 2016-03-29 2017-10-05 三菱ケミカル株式会社 Laminate polyester film
JP2018051921A (en) * 2016-09-29 2018-04-05 ユニチカ株式会社 Antistatic polyester film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220104181A (en) * 2019-11-20 2022-07-26 도요보 가부시키가이샤 laminated film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673214A (en) * 1992-08-26 1994-03-15 Toray Ind Inc Laminated polyester film
JPH11300918A (en) * 1998-04-24 1999-11-02 Toray Ind Inc Easily adhesive polyester film
JP2004195775A (en) * 2002-12-18 2004-07-15 Toray Ind Inc Polyester film
JP2005178313A (en) * 2003-12-24 2005-07-07 Toyobo Co Ltd Laminated polyester film and its manufacturing method
JP2006160883A (en) * 2004-12-07 2006-06-22 Unitika Ltd Bondable polyester film
JP2013006299A (en) * 2011-06-23 2013-01-10 Unitika Ltd Antistatic film
JP2013006300A (en) * 2011-06-23 2013-01-10 Unitika Ltd Antistatic film
JP2013071445A (en) * 2011-09-29 2013-04-22 Unitika Ltd Antistatic polyester film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673214A (en) * 1992-08-26 1994-03-15 Toray Ind Inc Laminated polyester film
JPH11300918A (en) * 1998-04-24 1999-11-02 Toray Ind Inc Easily adhesive polyester film
JP2004195775A (en) * 2002-12-18 2004-07-15 Toray Ind Inc Polyester film
JP2005178313A (en) * 2003-12-24 2005-07-07 Toyobo Co Ltd Laminated polyester film and its manufacturing method
JP2006160883A (en) * 2004-12-07 2006-06-22 Unitika Ltd Bondable polyester film
JP2013006299A (en) * 2011-06-23 2013-01-10 Unitika Ltd Antistatic film
JP2013006300A (en) * 2011-06-23 2013-01-10 Unitika Ltd Antistatic film
JP2013071445A (en) * 2011-09-29 2013-04-22 Unitika Ltd Antistatic polyester film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179023A (en) * 2016-03-29 2017-10-05 三菱ケミカル株式会社 Laminate polyester film
JP2018051921A (en) * 2016-09-29 2018-04-05 ユニチカ株式会社 Antistatic polyester film

Also Published As

Publication number Publication date
TW201540818A (en) 2015-11-01
JP6625048B2 (en) 2019-12-25
JPWO2015152193A1 (en) 2017-04-13

Similar Documents

Publication Publication Date Title
KR102322398B1 (en) Mold release film and production method for same
JP5774857B2 (en) Slippery polyester film and method for producing the same
KR101077822B1 (en) Anti-static polyester film improved coating defect and manufacturing method thereof
JP5697808B2 (en) Release film and manufacturing method thereof
JP7276508B2 (en) Biaxially oriented polyester film and its manufacturing method
CN110892010B (en) Recording paper and method for manufacturing same
JP2015189014A (en) release film
JP6625048B2 (en) Method for producing antistatic polyester film
JP2022168190A (en) laminate
JP2007298963A (en) White polyester film for liquid crystal reflector, and surface light source using the film
JP2011140562A (en) Polyester film
JP2005105255A (en) Biaxially oriented polyester film
JP2016186072A (en) Antistatic polyester film, and production method thereof
JP4951158B2 (en) Laminated polyester film
KR102081075B1 (en) Manufacturing method of anti-static polyester film and protective film for polarizing plate using polyester film manufactured thereby
JP4941767B2 (en) Laminated polyester film
JP2015027735A (en) Mold release polyester film
JP2015016677A (en) Release polyester film
JP5645883B2 (en) Laminated polyester film
JP6846788B2 (en) Antistatic polyester film
JP2015016676A (en) Release polyester film
JP2013039764A (en) Recyclable polyester film
JP2008303232A (en) Polyester film
JP2007106782A (en) Method for producing biaxially oriented polyester film
JP2013071445A (en) Antistatic polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016511906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15773656

Country of ref document: EP

Kind code of ref document: A1