WO2015149349A1 - 参考信号的检测方法、接收方法、用户设备和基站 - Google Patents

参考信号的检测方法、接收方法、用户设备和基站 Download PDF

Info

Publication number
WO2015149349A1
WO2015149349A1 PCT/CN2014/074796 CN2014074796W WO2015149349A1 WO 2015149349 A1 WO2015149349 A1 WO 2015149349A1 CN 2014074796 W CN2014074796 W CN 2014074796W WO 2015149349 A1 WO2015149349 A1 WO 2015149349A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
frequency resource
frequency
resources
resource
Prior art date
Application number
PCT/CN2014/074796
Other languages
English (en)
French (fr)
Inventor
官磊
周永行
薛丽霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112016022740A priority Critical patent/BR112016022740A2/pt
Priority to EP14887781.4A priority patent/EP3119121B1/en
Priority to CN201480000665.0A priority patent/CN105284143B/zh
Priority to KR1020167030288A priority patent/KR20160138553A/ko
Priority to PCT/CN2014/074796 priority patent/WO2015149349A1/zh
Publication of WO2015149349A1 publication Critical patent/WO2015149349A1/zh
Priority to US15/285,229 priority patent/US10291374B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands

Definitions

  • Reference signal detection method reception method, user equipment, and base station
  • Embodiments of the present invention relate to the field of communications technologies, and more particularly, to a method for detecting a reference signal, a receiving method, a user equipment, and a base station. Background technique
  • LTE Long Term Evolution
  • OFDM Orthogonal Frequency Division Multiplexing
  • the transmission of the service in the LTE system is based on the scheduling of the base station.
  • the base station sends a control channel, and the control channel can carry scheduling information of the uplink or downlink data data channel, and the scheduling information includes control information such as resource allocation information and adjustment coding mode.
  • the user equipment (UE, User Equipment) performs downlink data channel reception or uplink data channel transmission according to scheduling information carried in the control channel.
  • the base station scheduling UE is performed by using a resource block (RB, Resource Block) as a granularity, and one resource block occupies the length of one subframe in the time domain, and the width of 12 OFDM subcarriers in the frequency domain, one subframe.
  • RB Resource Block
  • the case of a normal cyclic prefix (CP) includes 14 OFDM symbols, and for the case where an extended CP exists in one subframe, one subframe includes 12 OFDM symbols.
  • the UE In order to maintain the above service transmission and perform cell selection, reselection, addition, deletion or handover, the UE needs to perform synchronization, channel state measurement and radio resource management measurement according to the reference signal sent by the base station.
  • the synchronization is further divided into initial coarse synchronization and time-frequency tracking fine synchronization.
  • the initial coarse synchronization is performed according to the Primary Synchronization Signal (PSS) and the Secondary Synchronization Signal (SSS) sent by the base station, and the time-frequency tracking is performed.
  • Fine synchronization is performed by a cell-specific reference signal (CRS) transmitted by a base station.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CRS cell-specific reference signal
  • Channel state measurements include channel measurements and interference measurements, which can be measured based on CRS or Channel State Information-Reference Signal (CSI-RS).
  • CRS Channel State Information-Reference Signal
  • Radio resource management measurements include reference signal received power (RSRP, Reference Signal Received Power), Reference Signal Received Quality (RSRQ) and Received Signal Strength Indicator (RSSI) are currently measured by CRS or RCRS.
  • the RSRP represents the average power of the CRS transmitted by the measured cell included in the CRS resource unit of the target measured cell;
  • the RSSI represents the average power of all signals on the OFDM symbol where the CRS of the measured cell is located, including the signal power of the local cell, The average power of all signals such as the signal power of the same-frequency neighboring cell and the signal power and thermal noise leaked to the local band in different frequency bands;
  • RSRQ is obtained by the ratio of RSRP to RSSI, and the RSRP and RSSI measurements of the RSRQ are determined to be in the same resource.
  • the CRS in the block is performed on the OFDM symbol.
  • the RRM measurement may also include a Signal to Interference plus Noise Ratio (SINR) measurement, such as by a ratio of RSRP and neighboring interference measurements.
  • SINR Signal to Interference plus Noise Ratio
  • Each subframe of the CRS in the LTE system is transmitted.
  • a new carrier type (NCT, New Carrier Type) or another state of the current carrier type may be introduced, one of which is that the CRS is reduced to, for example, 5 subframes, and the CRS may be called a reduced CRS ( RCRS, Reduced CRS).
  • the subsequent evolved LTE system requires high power efficiency of the base station, and in the future network topology evolution, the operator will deploy a large number of heterogeneous networks.
  • a mainstream deployment scenario is that a large number of small cells are deployed in a macro cell range.
  • the macro cell mainly provides coverage and real-time data services
  • the small cell mainly provides high-rate data services
  • the macro cell and the small cell can use the same or Different frequency points are deployed, but the deployment scenarios are based on different frequency points.
  • the above reference signals such as PSS, SSS, CRS/RCRS, and CSI-RS need to be transmitted even if there is no service transmission, and these transmission periods are short.
  • the reference signal (PSS/SSS/RCRS transmission period is 5 subframes, the CRS transmission period is 1 subframe, and the CSI-RS transmission period is the shortest is 5 subframes).
  • the transmission will cause serious inter-cell interference; in addition, the network density There may be no UEs being served in a large number of small cells, that is, only some of the small cells in the above-mentioned small cells are served in a part of the small cell.
  • a potential solution is to turn off the small cells that do not serve the UE, that is, PSS, SSS, CRS/RCRS, and CSI-RS, and control channels and data channels are not sent to completely shut down the small cell to achieve energy saving. And reduce the effect of inter-cell interference, and enable small cells with serving UEs to provide more efficient services.
  • the UE cannot discover or detect the deployment of the small cell in time and perform Radio Resource Management (RRM) on the small cell.
  • RRM Radio Resource Management
  • the network side does not know when to open the small cell, nor can it decide whether to enable or configure the small cell according to the measurement result of the small cell reported by the UE. Summary of the invention
  • the embodiments of the present invention provide a method for detecting a reference signal, a receiving method, a user equipment, and a base station, which can improve cell discovery and measurement performance.
  • a user equipment including: a determining unit, configured to determine configuration information of a reference signal, where the configuration information includes information about a first candidate time-frequency resource and a second candidate time-frequency resource;
  • the first candidate time-frequency resource includes a first part of the time-frequency resource and the second part of the time-frequency resource, where the first part of the time-frequency resource is the first part of the first quiet time-frequency resource, and the second part of the time-frequency resource is the first part
  • the second part of the time-frequency resource includes a third part of the time-frequency resource and the fourth part of the time-frequency resource, where the third part of the time-frequency resource is the first time-frequency resource
  • the third part of the resource, the fourth part of the time-frequency resource is the fourth part of the second quiet time-frequency resource; wherein the first part of the resource, the second part of the resource, and the third part of the resource
  • the detecting unit is configured to detect the reference signal according to the configuration information.
  • the detecting unit is configured to determine, according to the received power of the reference signal detected on the first part of the time-frequency resource, a reference signal received power RSRP of the current cell. Or determining, according to the first part of the time-frequency resource and the received power of the reference signal detected on the second part of the time-frequency resource, the RSRP of the current cell; according to the second part of the time-frequency resource or the second part
  • the total received power on the first resource to which the time-frequency resource belongs determines the received signal strength indicator RSSI of the current cell; wherein the first resource is in an orthogonal frequency division multiplexing OFDM symbol, a time slot, a subframe, and a subframe set. Any one of: determining a reference signal reception quality RSRQ of the current cell according to the RSRP and the RSSI.
  • the configuration information that is determined by the determining unit further includes information about a third candidate time-frequency resource, where the third candidate time-frequency resource includes a fifth part of the time-frequency resource and the sixth part of the time-frequency resource, wherein the fifth part of the time-frequency resource completely overlaps with the first part of the resource, and the sixth part of the time-frequency resource does not overlap with the second part of the resource.
  • the sixth part of the time-frequency resource does not overlap with the third part of the resource, the sixth part of the time-frequency resource does not overlap with the fourth part of the resource, and the sixth part of the time-frequency resource is the third silent time-frequency resource.
  • the first candidate time-frequency resource, the second candidate time-frequency resource, the first silent time-frequency resource, and the second silent time The frequency resources belong to the time-frequency resource pool of the channel state information reference signal CSI-RS, or the time-frequency resource pool of the cell-specific reference signal CRS, or the time-frequency resource pool of the primary synchronization signal PSS, or the time-frequency resource of the secondary synchronization signal SSS. Pool.
  • the first part time-frequency resource and the second part time-frequency resource are at different times, and the third part time-frequency resource and The fourth part of the time-frequency resource is at different times; or the first part of the time-frequency resource and the second part of the time-frequency resource are at the same time, the third part of the time-frequency resource and the fourth part of the time-frequency resource At the same time and the frequency domain subcarriers are adjacent.
  • the configuration information determined by the determining unit further includes information of at least one candidate sequence, where the candidate sequence includes a frequency domain scrambling code and / or time domain orthogonal code.
  • the frequency domain scrambling code corresponding to the first partial time-frequency resource and the frequency domain scrambling code corresponding to the second partial time-frequency resource are the same And the time domain orthogonal code corresponding to the first partial time-frequency resource is different from the time domain orthogonal code corresponding to the second partial time-frequency resource; or the frequency domain scrambling code corresponding to the first partial time-frequency resource and the The frequency-domain scrambling code corresponding to the second part of the time-frequency resource is different, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource is the same as the time-domain orthogonal code corresponding to the second part of the time-frequency resource.
  • the determining unit is specifically configured to acquire the pre-configured configuration information, where the determining unit is further configured to acquire, sent by the network side device
  • the auxiliary signaling is used to indicate the information of the fourth candidate time-frequency resource, where the fourth candidate time-frequency resource includes the first partial time-frequency resource and the fourth partial time-frequency resource.
  • a base station including: a determining unit, configured to determine a sending resource of a reference signal, where a sending resource of the reference signal is selected from configuration information of the reference signal, where the configuration information includes Information of the first candidate time-frequency resource and the second candidate time-frequency resource; wherein the first candidate time-frequency resource includes a first partial time-frequency resource and a second partial time-frequency resource, and the first partial time-frequency resource is the first The first part of the resources in the time-frequency resource, the second part of the time-frequency resource is the second part of the second quiet time-frequency resource; the second candidate time-frequency resource includes the third part of the time-frequency resource and the fourth Part of the time-frequency resource, the third part of the time-frequency resource is the first silent time a third part of the resource, the fourth part of the time-frequency resource is the fourth part of the second quiet time-frequency resource; wherein the first part of the resource, the second part of the resource, the third part And the sending unit is configured to send the reference signal according to the
  • the configuration information further includes information about a third candidate time-frequency resource, where the third candidate time-frequency resource includes a fifth part time-frequency resource and a sixth part a frequency resource, the fifth part of the time-frequency resource completely overlapping the first part of the resource, the sixth part of the time-frequency resource and the second part of the resource do not overlap, the sixth part of the time-frequency resource and the first
  • the third part of the resource does not overlap
  • the sixth part of the time-frequency resource does not overlap with the fourth part of the resource
  • the sixth part of the time-frequency resource is part of the third silent time-frequency resource.
  • the frequency resources belong to the time-frequency resource pool of the channel state information reference signal CSI-RS, or the time-frequency resource pool of the cell-specific reference signal CRS, or the time-frequency resource pool of the primary synchronization signal PSS, or the time-frequency resource of the secondary synchronization signal SSS. Pool.
  • the first part time-frequency resource and the second part time-frequency resource are at different times, and the third part time-frequency resource and The fourth part of the time-frequency resource is at different times; or the first part of the time-frequency resource and the second part of the time-frequency resource are at the same time, the third part of the time-frequency resource and the fourth part of the time-frequency resource At the same time and the frequency domain subcarriers are adjacent.
  • the configuration information further includes information of at least one candidate sequence, where the candidate sequence includes a frequency domain scrambling code and/or time i or positive Cross code.
  • the frequency domain scrambling code corresponding to the first partial time-frequency resource is the same as the frequency domain scrambling code corresponding to the second partial time-frequency resource
  • the configuration information is pre-configured, and the sending unit is further configured to send auxiliary signaling, where the auxiliary signaling is Information for indicating a fourth candidate time-frequency resource, where the fourth candidate time-frequency resource includes the first partial time-frequency resource and the fourth partial time-frequency resource.
  • a third aspect provides a method for detecting a reference signal, including: determining configuration information of a reference signal, where the configuration information includes information of a first candidate time-frequency resource and a second candidate time-frequency resource; wherein, the first The candidate time-frequency resource includes a first part of the time-frequency resource and the second part of the time-frequency resource, where the first part of the time-frequency resource is the first part of the first quiet time-frequency resource, and the second part of the time-frequency resource is the second part of the resource.
  • the second candidate time-frequency resource includes a third part of the time-frequency resource and the fourth part of the time-frequency resource, where the third part of the time-frequency resource is in the first quiet time-frequency resource
  • the third part of the resource, the fourth part of the time-frequency resource is the fourth part of the second quiet time-frequency resource; wherein, the first part of the resource, the second part of the resource, the third part of the resource and the The fourth part of the resources do not overlap each other; the reference signal is detected according to the configuration information.
  • the detecting, by the configuration information, the reference signal includes: determining, according to the received power of the reference signal detected on the first part of the time-frequency resource
  • the reference signal of the current cell receives the power RSRP, or determines the RSRP of the current cell according to the received power of the first part of the time-frequency resource and the second part of the time-frequency resource; according to the second part of the time-frequency
  • the total received power on the resource or the second resource to which the second part of the time-frequency resource belongs determines the received signal strength indicator RSSI of the current cell; where the first resource is an OFDM symbol, Any one of a slot, a subframe, and a subframe set; determining a reference signal reception quality RSRQ of the current cell according to the RSRP and the RSSI.
  • the configuration information further includes information about a third candidate time-frequency resource, where the third candidate time-frequency resource includes a fifth-part time-frequency And the sixth part of the time-frequency resource, the fifth part of the time-frequency resource completely overlapping the first part of the resource, the sixth part of the time-frequency resource and the second part of the resource do not overlap, the sixth part
  • the frequency resource does not overlap with the third part of the resource
  • the sixth part of the time-frequency resource does not overlap with the fourth part of the resource
  • the sixth part of the time-frequency resource is part of the third quiet time-frequency resource.
  • the first candidate time-frequency resource, the second candidate time-frequency resource, the first silent time-frequency resource, and the second silent time The frequency resources belong to the time-frequency resource pool of the channel state information reference signal CSI-RS, or the cell-specific The time-frequency resource pool of the reference signal CRS, or the time-frequency resource pool of the primary synchronization signal PSS, or the time-frequency resource pool of the secondary synchronization signal SSS.
  • the first part time-frequency resource and the second part time-frequency resource are at different times, and the third part time-frequency resource and The fourth part of the time-frequency resource is at different times; or the first part of the time-frequency resource and the second part of the time-frequency resource are at the same time, the third part of the time-frequency resource and the fourth part of the time-frequency resource At the same time and the frequency domain subcarriers are adjacent.
  • the configuration information further includes information of at least one candidate sequence, where the candidate sequence includes a frequency domain scrambling code and/or a time domain orthogonal code.
  • the frequency domain scrambling code corresponding to the first part time-frequency resource is the same as the frequency domain scrambling code corresponding to the second part time-frequency resource
  • the time domain orthogonal code corresponding to the first partial time-frequency resource is different from the time domain orthogonal code corresponding to the second partial time-frequency resource; or the frequency domain scrambling code corresponding to the first partial time-frequency resource and the The frequency-domain scrambling code corresponding to the second part of the time-frequency resource is different, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource is the same as the time-domain orthogonal code corresponding to the second part of the time-frequency resource.
  • the determining the configuration information of the reference signal includes: acquiring the pre-configured configuration information, where the method further includes: acquiring the network side The auxiliary signaling is sent by the device, where the auxiliary signaling is used to indicate the information of the fourth candidate time-frequency resource, and the fourth candidate time-frequency resource includes the first partial time-frequency resource and the fourth partial time-frequency resource.
  • a fourth aspect a method for transmitting a reference signal, including: determining a transmission resource of a reference signal, where a transmission resource of the reference signal is selected from configuration information of the reference signal, where the configuration information includes Information about a candidate time-frequency resource and a second candidate time-frequency resource, where the first candidate time-frequency resource includes a first partial time-frequency resource and a second partial time-frequency resource, where the first partial time-frequency resource is the first silence a first part of the resources in the time-frequency resource, the second part of the time-frequency resource is the second part of the second quiet time-frequency resource; the second candidate time-frequency resource includes the third part of the time-frequency resource and the fourth part The time-frequency resource, the third part of the time-frequency resource is the third part of the first quiet time-frequency resource, and the fourth part of the time-frequency resource is the fourth part of the second quiet time-frequency resource;
  • the first partial resource, the second partial resource, the third partial resource, and the fourth partial resource do not overlap each other; and are sent according to the sending resource
  • the configuration information further includes information about a third candidate time-frequency resource, where the third candidate time-frequency resource includes a fifth part time-frequency resource and a sixth part a frequency resource, the fifth part of the time-frequency resource completely overlapping the first part of the resource, the sixth part of the time-frequency resource and the second part of the resource do not overlap, the sixth part of the time-frequency resource and the first The third part of the resource does not overlap, and the sixth part of the time-frequency resource does not overlap with the fourth part of the resource, and the sixth part of the time-frequency resource is part of the third silent time-frequency resource.
  • the frequency resources belong to the time-frequency resource pool of the channel state information reference signal CSI-RS, or the time-frequency resource pool of the cell-specific reference signal CRS, or the time-frequency resource pool of the primary synchronization signal PSS, or the time-frequency resource of the secondary synchronization signal SSS. Pool.
  • the first part time-frequency resource and the second part time-frequency resource are at different times, and the third part time-frequency resource and The fourth part of the time-frequency resource is at different times; or the first part of the time-frequency resource and the second part of the time-frequency resource are at the same time, the third part of the time-frequency resource and the fourth part of the time-frequency resource At the same time and the frequency domain subcarriers are adjacent.
  • the configuration information further includes information of at least one candidate sequence, where the candidate sequence includes a frequency domain scrambling code and/or a time domain orthogonal code.
  • the frequency domain scrambling code corresponding to the first partial time-frequency resource is the same as the frequency domain scrambling code corresponding to the second partial time-frequency resource
  • the time domain orthogonal code corresponding to the first partial time-frequency resource is different from the time domain orthogonal code corresponding to the second partial time-frequency resource; or the frequency domain scrambling code corresponding to the first partial time-frequency resource and the The frequency-domain scrambling code corresponding to the second part of the time-frequency resource is different, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource is the same as the time-domain orthogonal code corresponding to the second part of the time-frequency resource.
  • the configuration information is pre-configured, the method further includes: sending auxiliary signaling, where the auxiliary signaling is used to indicate The information of the four candidate time-frequency resources, where the fourth candidate time-frequency resource includes the first partial time-frequency resource and the fourth partial time-frequency resource.
  • some resource combinations are selected as candidates from different silent time-frequency resources.
  • Time-frequency resources, and some of the resources occupied by different candidate time-frequency resources do not overlap each other.
  • the design of the reference signal can meet the requirements of discovering reference signals and improve cell discovery and measurement performance.
  • 1 is a wireless communication system in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a base station in accordance with an embodiment of the present invention.
  • Figure 4 is a schematic diagram of the CSI-RS silent pattern.
  • Figure 5 is a schematic diagram of the CSI-RS silent pattern.
  • Figure 6 is a schematic illustration of a reference signal pattern in accordance with one embodiment of the present invention.
  • Figure 7 is a schematic illustration of a reference signal pattern in accordance with another embodiment of the present invention.
  • Figure 8 is a schematic illustration of a reference signal pattern in accordance with another embodiment of the present invention.
  • Figure 9 is a schematic illustration of a reference signal pattern in accordance with another embodiment of the present invention.
  • Figure 10 is a schematic illustration of a reference signal pattern in accordance with another embodiment of the present invention.
  • FIG. 11 is a flow chart of a method of detecting a reference signal according to an embodiment of the present invention.
  • Figure 12 is a flow chart showing a method of transmitting a reference signal according to an embodiment of the present invention.
  • Figure 13 is a block diagram of a user equipment in accordance with another embodiment of the present invention.
  • FIG. 14 is a block diagram of a base station in accordance with another embodiment of the present invention. detailed description
  • DRS Discovery Reference Signal
  • the DRS includes the following features: a) The DRS transmission period is long, for example, the order of magnitude is 100 milliseconds or even seconds, which can achieve a longer measurement period of the UE and improve the power efficiency of the network side device;
  • a plurality of adjacent small cells (such as a plurality of small cells in a small cell cluster) transmit respective DRSs in the same short time window (such as in the same one subframe), such that the UE is
  • the short-term measurement can be used to discover multiple small cells in the vicinity, and the RRM measurement results of the multiple small cells can be obtained at the same time, which can save the power consumption of the UE;
  • DRSs sent by multiple small cells may preferably perform interference coordination with each other, for example, by using different time-frequency code resources. To send.
  • the DRS in this specification is merely an exemplary name, and the specific names of the reference signals in the embodiments of the present invention are not limited.
  • a component can be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and a computing device can be a component.
  • One or more components can reside within a process and/or execution thread, and the components can be located on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on data having one or more data packets (eg, from two components interacting with another component between a local system, a distributed system, and/or a network, such as an Internet that interacts with other systems via signals)
  • the signals communicate via local and/or remote processes.
  • An access terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, a user device, or a UE (User Equipment, User equipment).
  • the access terminal can be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), with wireless communication.
  • the base station can be used to communicate with a mobile device, and the base station can be GSM (Global System of Mobile communication) or BTS (Base Transceiver Station) in CDMA (Code Division Multiple Access), or WCDMA (Wideband Code Division Multiple Access) NB (NodeB, base station), which may also be an eNB or an eNodeB (Evolutional Node B) in LTE (Long Term Evolution), or a relay station or an access point, or in a future 5G network.
  • GSM Global System of Mobile communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • NodeB base station
  • the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
  • the computer readable medium may include, but is not limited to, a magnetic storage device (eg, a hard disk, a floppy disk, or a magnetic tape), and an optical disk (eg, a CD (Compact Disk), a DVD (Digital Versatile Disk) Etc.), smart cards and flash memory devices (1", EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drives, etc.
  • various storage media described herein May represent one or more devices and/or other machine readable media for storing information.
  • the term "machine readable medium” may include, but is not limited to, a wireless channel and the ability to store, contain, and/or carry instructions and/or data.
  • Various other media may include, but is not limited to, a wireless channel and the ability to store, contain, and/or carry instructions and/or data.
  • System 100 includes a base station 102, which may include multiple antenna groups.
  • one antenna group may include antennas 104 and 106
  • another antenna group may include antennas 108 and 110
  • additional groups may include antennas 112 and 114.
  • Base station 102 can additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which can include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • a transmitter chain and a receiver chain as will be understood by those of ordinary skill in the art, which can include multiple components associated with signal transmission and reception (e.g., processor, modulator, multiplexer, demodulation) , demultiplexer or antenna, etc.).
  • Base station 102 can be associated with one or more access terminals (e.g., access terminal 116 and access terminal)
  • base station 102 can communicate with substantially any number of access terminals similar to access terminals 116 and 122.
  • Access terminals 116 and 122 can be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other for communicating over wireless communication system 100. Suitable for equipment.
  • access terminal 116 is in communication with antennas 112 and 114, with antennas 112 and 114 Information is transmitted to the access terminal 116 over the forward link 118 and received from the access terminal 116 over the reverse link 120.
  • access terminal 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to access terminal 122 over forward link 124 and receive information from access terminal 122 over reverse link 126.
  • the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link 126. Different frequency bands used.
  • forward link 118 and reverse link 120 can use a common frequency band, and forward link 124 and reverse link 126 can use a common frequency band.
  • Each set of antennas and/or regions designed for communication is referred to as a sector of base station 102.
  • the antenna group can be designed to communicate with access terminals in sectors of the coverage area of base station 102.
  • the transmit antennas of base station 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124 for access terminals 116 and 122.
  • the base station 102 transmits to the randomly dispersed access terminals 116 and 122 in the relevant coverage area by using the single antenna to transmit to all of its access terminals, the mobile devices in the adjacent cells are subject to Less interference.
  • base station 102, access terminal 116, and/or access terminal 122 may be transmitting wireless communication devices and/or receiving wireless communication devices.
  • the transmitting wireless communication device can have (e.g., generate, obtain, store in memory, etc.) a reference signal to be transmitted to the receiving wireless communication device, the receiving wireless communication device can detect and receive the reference signal.
  • the transmission of the reference signal may be the base station 102, and the receiving wireless communication device of the reference signal may be the access terminal 116 and/or the access terminal 122.
  • FIG. 2 is a schematic block diagram of a user equipment according to an embodiment of the present invention.
  • An example of user equipment 20 of FIG. 2 is access terminal 116 or access terminal 122 of FIG.
  • the user equipment 20 includes a determining unit 21 and a detecting unit 22.
  • the determining unit 21 is operative to determine configuration information of the reference signal, the configuration information including information of the first candidate time-frequency resource and the second candidate time-frequency resource.
  • the first candidate time-frequency resource may include a first part of the time-frequency resource and a second part of the time-frequency resource, where the first part of the time-frequency resource is the first part of the first silent (Mute) time-frequency resource, and the second part of the time-frequency resource is The second part of the second quiet time-frequency resource.
  • the second candidate time-frequency resource may include a third part of the time-frequency resource and a fourth part of the time-frequency resource, wherein the third part of the time-frequency resource is the third part of the first quiet time-frequency resource, and the fourth part of the time-frequency resource is The fourth part of the second quiet time-frequency resource.
  • the first part of the resource, the second part of the resource, the third part of the resource, and the fourth part of the resource do not overlap each other.
  • Detection unit 22 can be operative to detect a reference signal based on the configuration information.
  • a part of resource combinations are selected as candidate time-frequency resources from different quiet time-frequency resources, and some resources occupied by different candidate time-frequency resources do not overlap each other, and the reference signal is designed to meet the discovery reference signal. Demand, improve cell discovery and measurement performance.
  • one of the neighboring cells may use the first candidate time-frequency resource to transmit the reference signal, and another neighboring cell may use the second candidate time-frequency resource.
  • the reference signal is transmitted such that the reference signals transmitted by the two neighboring cells are time-frequency shifted from each other to avoid interference between the reference signals transmitted from each other.
  • the neighboring other cells only need to silence the first quiet time-frequency resource and the second quiet time-frequency resource to prevent the reference signals of the two neighboring cells from being interfered, and the quieting overhead is small.
  • the configuration information is used to indicate candidate time-frequency resources.
  • the configuration information may include information such as REs, subcarriers, subframes, time slots, or OFDM symbols occupied by candidate time-frequency resources, or include some or all of the information. Combination of information, etc.
  • the embodiment of the present invention does not limit the specific configuration of the configuration information, as long as the configuration information can indicate the candidate time-frequency resources.
  • the detecting unit 22 may determine the RSRP of the current cell according to the received power of the reference signal detected on the first part of the time-frequency resource, or according to the first part of the time-frequency resource and the second The received power of the reference signal detected on the partial time-frequency resource determines the RSRP of the current cell.
  • the detecting unit 22 may determine the RSSI of the current cell according to the total received power on the second part of the time-frequency resource or the second resource to which the second part of the time-frequency resource belongs, where the first resource is an OFDM symbol, a time slot, and a sub-resource. Any of a set of frames and subframes.
  • the detecting unit 22 can determine the RSRQ of the current cell according to the RSRP and the RSSI. In this way, the reference signal can be silenced between multiple cells to achieve signal measurement and drying. A compromise between disturbance measurements.
  • the embodiment of the present invention can be extended to more types of candidate time-frequency resource configurations.
  • the configuration information determined by the determining unit 21 may further include information of the third candidate time-frequency resource.
  • the third candidate time-frequency resource includes a fifth part time-frequency resource and a sixth part time-frequency resource, and the fifth part time-frequency resource completely overlaps with the first part of the resource, and the sixth part of the time-frequency resource and the second part of the resource are not
  • the sixth part of the time-frequency resource does not overlap with the third part of the resource
  • the sixth part of the time-frequency resource does not overlap with the fourth part of the resource
  • the sixth part of the time-frequency resource is the third silent time-frequency Some resources in the resource.
  • the first candidate time-frequency resource, the second candidate time-frequency resource, the quiet time-frequency resource, and the second quiet time-frequency resource may all belong to a time-frequency resource pool of the CSI-RS, or a CRS.
  • the reference signal of the embodiment of the present invention can be designed based on the resource pattern of the existing reference signal, for example, the resource of the existing reference signal can be reused.
  • embodiments of the present invention are not limited thereto, and for example, a newly designed reference signal may be employed.
  • the first part of the time-frequency resource and the second part of the time-frequency resource are at different times, and the third part of the time-frequency resource and the fourth part of the time-frequency resource are at different times.
  • the first part of the time-frequency resource and the second part of the time-frequency resource are at the same time, and the third part of the time-frequency resource and the fourth part of the time-frequency resource are adjacent at the same time and the frequency domain sub-carriers. This ensures that the accuracy of the timing estimate is more accurate.
  • the configuration information determined by the determining unit 21 may further include information of at least one candidate sequence, where the candidate sequence includes a frequency domain scrambling code and/or a time domain orthogonal code.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource is the same as the frequency domain scrambling code corresponding to the second part of the time-frequency resource, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource The time-domain orthogonal codes corresponding to the two partial time-frequency resources are different.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource is different from the frequency domain scrambling code corresponding to the second part of the time-frequency resource, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource and the time-frequency resource corresponding to the second part of the time-frequency resource i or orthogonal code is the same.
  • the determining unit 21 may acquire pre-configured configuration information.
  • the configuration information may be specified by a standard, or may be set in advance by the transmitting and receiving ends, which facilitates generation and detection of reference signals.
  • the determining unit 21 may further obtain the auxiliary signaling sent by the network side device, where the auxiliary signaling is used to indicate information of the fourth candidate time-frequency resource, and the fourth candidate time-frequency resource includes the first part. Time-frequency resources and fourth-part time-frequency resources.
  • the network side can use the auxiliary signaling to rewrite the pre-configured candidate time-frequency resources, and can generate and detect the reference signal more flexibly.
  • FIG. 3 is a block diagram of a base station in accordance with an embodiment of the present invention.
  • An example of base station 30 of Figure 3 is base station 102 of Figure 1 .
  • the base station 30 includes a determining unit 31 and a transmitting unit 32.
  • the determining unit 31 is configured to determine a transmission resource of the reference signal, where the transmission resource of the reference signal is selected from configuration information of the reference signal, where the configuration information includes information of the first candidate time-frequency resource and the second candidate time-frequency resource.
  • the first candidate time-frequency resource includes a first part of the time-frequency resource and the second part of the time-frequency resource, the first part of the time-frequency resource is the first part of the first quiet time-frequency resource, and the second part of the time-frequency resource is the second time-frequency of the second time.
  • the second part of the resource is the first part of the time-frequency resource and the second part of the time-frequency resource.
  • the second candidate time-frequency resource includes a third part of the time-frequency resource and the fourth part of the time-frequency resource, the third part of the time-frequency resource is the third part of the first quiet time-frequency resource, and the fourth part of the time-frequency resource is the second part.
  • the fourth part of the resource in the quiet time-frequency resource is the third part of the time-frequency resource and the fourth part of the time-frequency resource.
  • the first part of resources, the second part of resources, the third part of resources and the fourth part of resources do not overlap each other.
  • the transmitting unit 32 is operative to transmit the reference signal according to the transmission resource of the reference signal.
  • a part of resource combinations are selected as candidate time-frequency resources from different quiet time-frequency resources, and some resources occupied by different candidate time-frequency resources do not overlap each other, and the reference signal is designed to meet the discovery reference signal. Demand, improve cell discovery and measurement performance.
  • one of the neighboring cells may use the first candidate time-frequency resource to transmit the reference signal, and another neighboring cell may use the second candidate time-frequency resource.
  • the reference signal is transmitted such that the reference signals transmitted by the two neighboring cells are time-frequency shifted from each other to avoid interference between the reference signals transmitted from each other.
  • the neighboring cells may need to be silent for a lot of time and frequency, resulting in increased silent overhead. Plus.
  • the neighboring other cells only need to silence the first quiet time-frequency resource and the second quiet time-frequency resource to prevent the reference signals of the two neighboring cells from being interfered, and the silent overhead is small.
  • the configuration information may further include information about a third candidate time-frequency resource, where the third candidate time-frequency resource includes a fifth part time-frequency resource and a sixth part time-frequency resource, and the fifth part time-frequency The resource overlaps with the first part of the resource.
  • the sixth part of the time-frequency resource does not overlap with the second part of the resource.
  • the sixth part of the time-frequency resource does not overlap with the third part of the resource.
  • the sixth part of the time-frequency resource does not overlap with the fourth part of the resource.
  • the sixth part of the time-frequency resource is part of the third quiet time-frequency resource.
  • the first candidate time-frequency resource, the second candidate time-frequency resource, the quiet time-frequency resource, and the second quiet time-frequency resource may all belong to a time-frequency resource pool of the CSI-RS, or a CRS.
  • the reference signal of the embodiment of the present invention can be designed based on the resource pattern of the existing reference signal, for example, the resource of the existing reference signal can be reused.
  • embodiments of the present invention are not limited thereto, and for example, a newly designed reference signal may be employed.
  • the first part of the time-frequency resource and the second part of the time-frequency resource are at different times, and the third part of the time-frequency resource and the fourth part of the time-frequency resource are at different times.
  • the first part of the time-frequency resource and the second part of the time-frequency resource are at the same time, and the third part of the time-frequency resource and the fourth part of the time-frequency resource are adjacent at the same time and the frequency domain sub-carriers. This ensures that the accuracy of the timing estimate is more accurate.
  • the configuration information may further include information of at least one candidate sequence, where the candidate sequence includes a frequency domain scrambling code and/or a time domain orthogonal code.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource is the same as the frequency domain scrambling code corresponding to the second part of the time-frequency resource, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource
  • the time-domain orthogonal codes corresponding to the two partial time-frequency resources are different.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource is different from the frequency domain scrambling code corresponding to the second part of the time-frequency resource, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource and the time-frequency resource corresponding to the second part of the time-frequency resource
  • the domain orthogonal codes are the same.
  • the reference signal sequences transmitted by the two cells are orthogonal to each other without interference, and the detection performance can be improved.
  • the configuration information may be pre-configured, for example, the configuration
  • the setting information can be specified by the standard, or set by the transmitting and receiving ends in advance, which facilitates the generation and detection of the reference signal.
  • the sending unit 32 may further send auxiliary signaling, where the auxiliary signaling is used to indicate information of the fourth candidate time-frequency resource, and the fourth candidate time-frequency resource includes a first partial time-frequency resource and a fourth partial time-frequency resource.
  • the network side can use the auxiliary signaling to rewrite the pre-configured candidate time-frequency resources, and can generate and detect the reference signal more flexibly.
  • the reference signal (hereinafter may be referred to as DRS) of the embodiment of the present invention is designed based on the RE pattern of the CSI-RS, but the name of the reference signal and the resource on which the reference signal is based on the embodiment of the present invention
  • the pool is not restricted.
  • different small cells use different REs or RE combinations in one subframe, so that time-frequency resources are staggered to avoid mutual interference between DRSs of each other.
  • the existing CSI-RS muting scheme can be combined to further reduce the interference of the data scheduling of the neighboring cell to the DRS of the local cell, so as to further improve the cell discovery and RRM measurement performance.
  • One of the uses of CSI-RS silence in existing systems is to make the CSI-RS channel measurement of the measured cell accurate. Specifically, the CSI-RS of the measured cell is sent on some REs, and the neighboring cell of the measured cell does not send any signal on the REs in the same location, so that the UE served by the tested cell uses the above-mentioned The channel measurement of the CSI-RS to the measured cell is more accurate because the RE of the CSI-RS is not interfered by the signal transmitted by the neighboring cell.
  • the silent mode in the existing system is shown in FIG. 4, and it can be seen that there are a total of 10 silent patterns in FIG. 4, and each silent pattern includes 4 REs having the same value as identified in FIG. 4, and the 4 REs constitute a minimum silence. unit.
  • the specific silent style configuration is flexible. For example, you can configure only one of the styles, or you can configure multiple styles.
  • both RSRQ or SINR measurements include neighbor interference components.
  • a cluster of small cells includes 10 small cells, and the respective DRSs respectively use different silent patterns in FIG. 4, that is, cell 0 uses pattern 0, cell 1 uses pattern 1, and so on.
  • the CSI-RS silence scheme is combined to improve the accuracy of cell discovery and RRM measurements, two problems can result.
  • One is that on some symbols, such as symbols 9 and 10, no interference is measured, because Silence is used for neighboring cells; second, the silence overhead is very large.
  • the CSI-RS locations other than the 4 REs of the DRS transmitted by the local cell the cell needs to be silent, that is, cannot be transmitted. Any signal, such as shown in Figure 5. Only the case of cell 0 and cell 2 is shown in FIG. 5, and other cells are similar.
  • the subject of the detection reference signal is a UE, and the UE may be in a Radio Resource Control (RRC) connection state or an RRC idle state.
  • RRC Radio Resource Control
  • the UE needs to perform RRM measurement, such as RSRP, RSSI, RSRQ or SINR measurement.
  • the reference signal for RRM measurement needs to be detected before RRM measurement.
  • the UE may perform RRM measurement on the local cell (such as the cell to which the current connection state of the UE is connected or the cell in which the idle state is camped), or may be a neighboring cell, including a neighboring cell with the same frequency as the local cell or an inter-frequency with the local cell. Neighboring community. In particular, before the RRM measurement is performed on the neighboring cell, the neighboring cell to be tested needs to be detected or discovered first.
  • the reference signal for the cell discovery and the reference signal for the RRM measurement may be the same reference signal or a different reference signal, which is not limited in the embodiment of the present invention.
  • it can be used for cell discovery and RRM measurement of a cell by using CSI-RS or CRS or other reference signals, or by using a synchronization signal such as PSS/SSS or other reference signals for cell discovery, and based on CRS or CSI-
  • the RS or other reference signal is used for RRM measurement of the cell.
  • the reference signal in the method is used for at least RRM measurement, and can also be used for cell discovery.
  • the reference signal in the method may be extended to be used for other purposes, such as for CSI measurement, quasi-co-location, time-frequency synchronization, etc., and the specific use of the reference signal is not limited in the embodiment of the present invention. .
  • the reference signal may be designed based on a resource pattern of an existing reference signal in the current LTE system, such as at least one of CSI-RS, CRS, PSS, and SSS in the current LTE system, or other new design.
  • the reference signal such as the resource pattern, is different from the existing reference signal described above.
  • the reference signal also has a silence mechanism, that is, other cells do not send any signal on the RE of the cell that transmits the reference signal.
  • the sending period of the discovery reference signal is longer than the sending period of the current existing reference signal, for example, longer than the CRS that needs to be sent every subframe and the PSS and SSS that need to be sent every five subframes, generally the reference signal
  • the transmission period is at least tens of subframes, or even hundreds of thousands of subframes.
  • the reference signal is designed based on the CSI-RS resource pattern as an example, and the description of the other reference signals is similar, and is not limited.
  • the UE determines configuration information of the reference signal to be detected.
  • the configuration information may be pre-configured, that is, it may be acquired without receiving signaling on the network side, or may be obtained by receiving auxiliary signaling on the network side, for example, receiving. Broadcast signal or RRC proprietary signaling sent by the base station side.
  • the configuration information includes at least one first candidate time-frequency resource and at least one second candidate time-frequency resource, where the two resources may be resources within a certain bandwidth and at a certain time, such as a time-frequency resource within a 10 MHz bandwidth, time The time resource of the period of 100 subframes.
  • the foregoing candidate time-frequency resources further include specific resource patterns in the bandwidth and time, such as which resource patterns can be occupied in one resource block.
  • the resource pattern in one resource block is shown in the figure, and the resource patterns in the other resource blocks in the above bandwidth and in the time resource are the same.
  • the first candidate time-frequency resource includes a first partial time-frequency resource and a second partial time-frequency resource, where the first partial time-frequency resource belongs to the first part of the first quiet time-frequency resource.
  • the second part of the time-frequency resource belongs to the second part of the second silent time-frequency resource.
  • the four REs whose value is 0 in FIG. 6 are the first quiet time-frequency resources
  • the four REs whose value is 2 are the second silent time-frequency resources, which can be seen from the above two silent time-frequency resources.
  • Each of the resources is taken out to form a candidate time-frequency resource (the first part and the second part of the time-frequency resource constitute the first candidate time-frequency resource), and each part is taken out to form another candidate time-frequency resource ( The third part and the fourth part of the time-frequency resource constitute a second candidate time-frequency resource), wherein the first part, the second part, the third part and the fourth part of the time-frequency resources do not overlap each other.
  • the reference signal may be detected according to the configuration information.
  • Figure 6 is a schematic illustration of a reference signal pattern in accordance with one embodiment of the present invention. Referring to FIG. 6 as an example, if the configuration information includes the information of the first candidate time-frequency resource and the second candidate time-frequency resource, the UE needs to separately detect the reference signal on the two candidate resources.
  • the first candidate time-frequency resource may include the upper two REs of the first quiet time-frequency resource (ie, the first partial time-frequency resource) and the upper two REs of the second silent time-frequency resource (ie, the second partial time) Frequency resources).
  • the second candidate time-frequency resource may include the following two REs of the first quiet time-frequency resource (ie, the third partial time-frequency resource) and the next two REs of the second silent time-frequency resource (ie, the fourth-part time-frequency resource).
  • the two neighboring cells in the vicinity of the UE need to be measured, then one of the neighboring cells may use the first candidate time-frequency resource to transmit the reference signal 1, and the other neighboring cell may use the second candidate time-frequency resource.
  • Send reference signal 2 the reference signals transmitted by the two neighboring cells are time-frequency shifted from each other to avoid interference between the reference signals transmitted from each other.
  • neighboring cells only need to silence the first quiet time-frequency resource and the second quiet time-frequency resource to prevent the reference signals of the two neighboring cells from being interfered, and the silent overhead is small; otherwise, if the silent time-frequency resource is not considered
  • the neighboring cell 1 may also silence the third and fourth partial time-frequency resources to avoid interference of the reference signal 2 sent by the neighboring cell 2; the neighboring cell 2 may also have the first part of the time-frequency resource and the second part The time-frequency resource is muted to avoid interference with the reference signal 1 transmitted by the neighboring cell 1.
  • the method can also refer to the uniform silence of signals between multiple cells to achieve a compromise between signal detection and interference measurement.
  • the UE may determine the RSRP of the current cell according to the received power of the reference signal detected on the first part of the time-frequency resource, or may determine the received power of the reference signal detected by the first part of the time-frequency resource and the second part of the time-frequency resource.
  • the RSRP of the current cell may be determined according to the received power of the reference signal detected on the first part of the time-frequency resource, or may determine the received power of the reference signal detected by the first part of the time-frequency resource and the second part of the time-frequency resource.
  • the UE may determine the RSSI of the current cell according to the total received power of the second resource to the second resource to which the second-part time-frequency resource belongs, where the first resource is an OFDM symbol, a time slot, Any of a set of subframes and subframes.
  • the UE can determine the RSRQ of the current cell according to RSRP and RSSI.
  • the UE can implement RRM measurements using the reference signals of embodiments of the present invention.
  • FIG. 7 is a schematic illustration of a reference signal pattern in accordance with another embodiment of the present invention. As shown in FIG. 7, there are 10 small cells in a small cell cluster in the vicinity, and reference signal resource patterns with candidate time-frequency resource numbers 0 to 9 in FIG. 7 are respectively used. The shaded part is the currently configured quiet resource pattern. It can be seen that the method can also achieve uniform silence of the reference signal between multiple cells, achieving a compromise between signal detection and interference measurement.
  • the UE may perform RRM measurement on the neighboring small cell. Specifically, as shown in FIG. 7, the UE may be based on the first part time-frequency resource (other cell silence time-frequency resource) in the candidate time-frequency resource 0, or according to the first part time-frequency resource and the second part in the candidate time-frequency resource 0. The received power of the reference signal detected on the time-frequency resource (other cells are not muted) determines the RSRP of the measured cell corresponding to the candidate time-frequency resource 0.
  • the base station can notify the UE of the quiet time-frequency resources of other cells, for example, notify the UE that the first part of the time-frequency resource 0 of the measured cell is a silent resource, and the second part of the resource is not a silent resource, then the UE can only Some resources are used for RSRP measurement, or the UE may also measure RSRP according to all time-frequency resources 0 (in this case, the second part of the resources may be interfered by the data of the neighboring cell). Specifically, the UE may determine, according to the total received power on the second part of the time-frequency resource of the candidate time-frequency resource 0, or according to the total received power of the first resource to which the second-part time-frequency resource of the candidate time-frequency resource 0 belongs.
  • the RSSI of the current cell wherein the first resource is any one of an OFDM symbol, a time slot, a subframe, and a subframe set.
  • the base station can notify the UE of the quiet time-frequency resources of other cells, for example, notify the UE that the first part of the time-frequency resource 0 of the measured cell is a silent resource, and the second part of the resource is not a silent resource, then the UE can The above method does the RSSI measurement.
  • the RSRQ can be determined by the RSRP and RSSI obtained above, for example, by determining the ratio of RSRP to RSSI.
  • the UE may detect the cell according to the reference signal on the quiet resource and measure the RSRP of the cell, and may determine the RSSI according to the signal on the non-silent resource, so that the UE detects/detects the performance of the cell and the interference measurement.
  • a compromise is made in both aspects, and RSRP and RSSI measurements can be made using only one reference signal, simplifying the design and making the silent overhead small.
  • Figure 8 is a schematic illustration of a reference signal pattern in accordance with another embodiment of the present invention. Compared with the embodiment of FIG. 6, in the embodiment of FIG. 8, the configuration information allows partial overlap of candidate time-frequency resources, which may include more information of candidate time-frequency resources.
  • the configuration information may further include at least one third candidate time-frequency resource, where the third candidate time-frequency resource includes a fifth-part time-frequency resource and a sixth-part time-frequency resource, and the fifth part of the time-frequency resource completely overlaps with the first part of the resource.
  • the sixth part of the time-frequency resource does not overlap with the second part of the resource.
  • the sixth part of the time-frequency resource does not overlap with the third part of the resource.
  • the sixth part of the time-frequency resource and the fourth part of the resource are not heavy.
  • the sixth part of the time-frequency resource is a part of the resources in the third silent time-frequency resource.
  • the four REs labeled 8 in FIG. 8 are the third quiet time-frequency resources, and a part of the third quiet time-frequency resource (the upper two REs) is the sixth partial time-frequency resource. .
  • the sixth part of the time-frequency resource and the fifth part of the first quiet time-frequency resource form a third candidate time-frequency resource, wherein the fifth part of the time-frequency resource completely overlaps with the first part of the resource (ie, the first silent time-frequency) The top two resources of the resource RE).
  • the sixth part of the time-frequency resource and the second part of the resource, the third part of the resource and the fourth part of the resource are completely non-overlapping, that is, the first candidate time-frequency resource and the third candidate time-frequency resource partially overlap. This can improve the multiplexing efficiency of time-frequency resources, that is, provide more reference signals of cells in the same resource pool.
  • the first part of the time-frequency resource and the second part of the time-frequency resource may be different at the same time, and the third part of the time-frequency resource and the fourth part of the time-frequency resource may be at different times.
  • the first part of the time-frequency resource and the second part of the time-frequency resource are at the same time, and the third part of the time-frequency resource and the fourth part of the time-frequency resource are adjacent at the same time and the frequency domain sub-carriers.
  • the different moments may be different symbols in the same subframe, different subframes in the same radio frame, different radio frames, and the like.
  • the first part of the time-frequency resource and the second part of the time-frequency resource are at different times, and the third part of the time-frequency resource and the fourth part of the time-frequency resource are at different times, and the different time is one.
  • Different symbols in the frame In this way, the separation accuracy of the frequency domain synchronization can be ensured by the separation of several symbols.
  • the two parts of the candidate time-frequency resources 8 or 9 are at the same time, and this example is the same symbol in one subframe, so that the accuracy of the timing estimation is more accurate.
  • the configuration information may further include at least one candidate sequence including a frequency domain scrambling code and/or a time i or an orthogonal code.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource may be the same as the frequency domain scrambling code corresponding to the second part of the time-frequency resource, but the time-domain orthogonal code corresponding to the first part of the time-frequency resource corresponds to the second part of the time-frequency resource
  • the time domain orthogonal codes are different.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource may be different from the frequency domain scrambling code corresponding to the second part of the time-frequency resource, but the time-domain orthogonal code corresponding to the first part of the time-frequency resource corresponds to the second part of the time-frequency resource
  • the time i or the orthogonal code is the same.
  • the foregoing configuration information may include at least one candidate sequence including a frequency domain scrambling code and a time domain orthogonal code, in addition to the candidate time-frequency resource.
  • a frequency domain pseudo-random sequence is generated from the frequency domain direction, which may be an m sequence or a Gold sequence, specifically
  • the Gold sequence can be calculated by the following formula:
  • the sequence generated by the above initialization formula can be an initialization sequence or a scrambling sequence.
  • the Walsh (Walsh) sequence may be used for spreading in the time domain, for example, ⁇ 1, 1 ⁇ or ⁇ 1, -1 ⁇ on consecutive two OFDM symbols. Perform orthogonal code spreading.
  • the first part of the two candidate time-frequency resources with the candidate time-frequency resource labels 0 and 8 overlaps completely (the number is 0), and the second part of the time-frequency resource is completely absent. Overlap, the labels are 2 and 4 respectively.
  • the candidate time-frequency resources with the two labels 0 and 8 respectively can be used as the above reference signals for the two cells respectively. At this time, there are two ways to distinguish the two. Community:
  • the first method is that two cells use different scrambling code sequences, that is, the initialization parameters of the above formula are different, and the time domain orthogonal codes can be the same, for example, using ⁇ 1, 1 ⁇ for spreading;
  • the second method is that the two cells use the same scrambling code sequence, that is, the initialization parameters of the above formula are the same, and the time domain orthogonal codes are different, for example, cell 1 uses ⁇ 1, 1 ⁇ for spreading, cell 2 Spread with ⁇ 1, -1 ⁇ .
  • the second method can provide orthogonal inter-cell reference signal sequence design, that is, the reference signal sequences transmitted by the two cells are completely orthogonal, that is, without any interference, and the detection performance is good.
  • Figure 10 is a schematic illustration of a reference signal pattern in accordance with another embodiment of the present invention.
  • a set of candidate time-frequency resources may be pre-configured, as indicated by reference numerals 0 to 9 in FIG. If there is no base station signaling to rewrite the pre-configured candidate time-frequency resources, then both the UE and the base station will use the pre-configured candidate time-frequency resources to receive and transmit the reference signals by default.
  • sending reference signals based on pre-configured candidate time-frequency resources may cause problems, for example, considering the dynamic or semi-static opening and closing of the neighboring cells, which may cause a certain period of time. Interference on some reference signal resources than on other reference signal resources The interference varies greatly, resulting in degraded cell discovery and RRM measurement performance.
  • the network side device may notify the UE of the current auxiliary configuration information by using auxiliary signaling, where the auxiliary configuration information indicates information of other candidate time-frequency resources except the pre-configured configuration information, such as the
  • the first configuration information includes at least one fourth candidate time-frequency resource, where the fourth candidate time-frequency resource includes a first partial time-frequency resource and a fourth partial time-frequency resource.
  • the first part of the time-frequency resource included in the fourth candidate time-frequency resource is a part of the time-frequency resource marked with 0 (the upper two REs marked with 0)
  • the fourth part of the time-frequency resource included in the fourth candidate time-frequency resource is a part of the time-frequency resource labeled 4 (the upper two REs labeled 4). It can be seen that the configuration of the fourth candidate time-frequency resource is not within the 10 candidate time-frequency resources of the pre-configured 0 to 9. In this way, the problem in the above scenario can be solved. For example, considering the dynamic or semi-static opening and closing of the neighboring cells, the interference on some reference signal resources in a certain time period is different from the interference on other reference signal resources. Large, resulting in cell discovery and RRM measurement performance degradation.
  • FIG. 11 is a flow chart of a method of detecting a reference signal according to an embodiment of the present invention. The method of Figure 11 is performed by the UE.
  • the first candidate time-frequency resource includes a first part of the time-frequency resource and the second part of the time-frequency resource, the first part of the time-frequency resource is the first part of the first quiet time-frequency resource, and the second part of the time-frequency resource is the second time-frequency of the second time.
  • the second part of the resource is the first part of the time-frequency resource and the second part of the time-frequency resource.
  • the second candidate time-frequency resource includes a third part of the time-frequency resource and the fourth part of the time-frequency resource, the third part of the time-frequency resource is the third part of the first quiet time-frequency resource, and the fourth part of the time-frequency resource is the second part.
  • the fourth part of the resource in the quiet time-frequency resource is the third part of the time-frequency resource and the fourth part of the time-frequency resource.
  • the first part of resources, the second part of resources, the third part of resources and the fourth part of resources do not overlap each other.
  • a part of resource combinations are selected as candidate time-frequency resources from different quiet time-frequency resources, and some resources occupied by different candidate time-frequency resources do not overlap each other, and the reference signal is designed to meet the discovery reference signal. Demand, improve cell discovery and measurement performance.
  • one of the neighboring cells may use the first candidate time-frequency resource to send the reference signal, and another neighboring cell may The reference signal is transmitted by using the second candidate time-frequency resource, such that the reference signals respectively transmitted by the two neighboring cells are time-frequency shifted from each other to avoid interference between the reference signals transmitted from each other.
  • the neighboring other cells only need to silence the first quiet time-frequency resource and the second quiet time-frequency resource to prevent the reference signals of the two neighboring cells from being interfered, and the quieting overhead is small.
  • the RSRP of the current cell may be determined according to the received power of the reference signal detected on the first part of the time-frequency resource, or according to the first part of the time-frequency resource and the second part of the time-frequency resource.
  • the received power of the detected reference signal determines the RSRP of the current cell.
  • the received signal strength indicator RSSI of the current cell may be determined according to the total received power of the second part of the time-frequency resource or the second resource to which the second part of the time-frequency resource belongs; wherein the first resource is an OFDM symbol, a time slot, and a sub-resource Any of a set of frames and subframes.
  • the RSRQ of the current cell can be determined according to RSRP and RSSI.
  • the reference signal can be quietly silenced among multiple cells, achieving a compromise between signal measurement and interference measurement.
  • the embodiment of the present invention can be extended to more types of candidate time-frequency resource configurations.
  • the configuration information may further include information of the third candidate time-frequency resource.
  • the third candidate time-frequency resource includes a fifth part time-frequency resource and a sixth part time-frequency resource, and the fifth part time-frequency resource completely overlaps with the first part of the resource, and the sixth part of the time-frequency resource does not overlap with the second part of the resource, sixth Part of the time-frequency resource does not overlap with the third part of the resource.
  • the sixth part of the time-frequency resource does not overlap with the fourth part of the resource.
  • the sixth part of the time-frequency resource is part of the third silent time-frequency resource.
  • the first candidate time-frequency resource, the second candidate time-frequency resource, the quiet time-frequency resource, and the second quiet time-frequency resource may all belong to a time-frequency resource pool of the CSI-RS, or a CRS.
  • the reference signal of the embodiment of the present invention can be designed based on the resource pattern of the existing reference signal, for example, the resource of the existing reference signal can be reused.
  • embodiments of the present invention are not limited thereto, and for example, a newly designed reference signal may be employed.
  • the first part of the time-frequency resource and the second part of the time-frequency resource At different times, the third part of the time-frequency resource and the fourth part of the time-frequency resource are at different times. In this way, the first part of the time-frequency resource and the second part of the time-frequency resource are at the same time, and the third part of the time-frequency resource and the fourth part of the time-frequency resource are adjacent at the same time and the frequency domain sub-carriers. This ensures that the accuracy of the timing estimation is more accurate.
  • the configuration information may further include information of at least one candidate sequence, where the candidate sequence includes a frequency domain scrambling code and/or a time domain orthogonal code.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource is the same as the frequency domain scrambling code corresponding to the second part of the time-frequency resource, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource
  • the time-domain orthogonal codes corresponding to the two partial time-frequency resources are different.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource is different from the frequency domain scrambling code corresponding to the second part of the time-frequency resource, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource and the time-frequency resource corresponding to the second part of the time-frequency resource
  • the domain orthogonal codes are the same.
  • the reference signal sequences transmitted by the two cells are orthogonal to each other without interference, and the detection performance can be improved.
  • pre-configured configuration information may be obtained.
  • the configuration information may be specified by the standard or set by the transmitting and receiving ends in advance, which facilitates the generation and detection of the reference signal.
  • the auxiliary signaling sent by the network side device may be acquired, where the auxiliary signaling is used to indicate information of the fourth candidate time-frequency resource, and the fourth candidate time-frequency resource includes the first partial time-frequency resource. And the fourth part of the time-frequency resources.
  • the network side can use the auxiliary signaling to rewrite the pre-configured candidate time-frequency resources, and can generate and detect the reference signal more flexibly.
  • Figure 12 is a flow chart showing a method of transmitting a reference signal according to an embodiment of the present invention. The method of Figure 12 is performed by a base station.
  • the first candidate time-frequency resource includes a first part of the time-frequency resource and the second part of the time-frequency resource, the first part of the time-frequency resource is the first part of the first quiet time-frequency resource, and the second part of the time-frequency resource is the second time-frequency of the second time.
  • the second part of the resource is the first part of the time-frequency resource and the second part of the time-frequency resource.
  • the second candidate time-frequency resource includes a third part of the time-frequency resource and the fourth part of the time-frequency resource, the third part of the time-frequency resource is the third part of the first quiet time-frequency resource, and the fourth part of the time-frequency resource is the The fourth part of the resource in the quiet time-frequency resource.
  • the first part of resources, the second part of resources, the third part of resources and the fourth part of resources do not overlap each other.
  • a part of resource combinations are selected as candidate time-frequency resources from different quiet time-frequency resources, and some resources occupied by different candidate time-frequency resources do not overlap each other, and the reference signal is designed to meet the discovery reference signal. Demand, improve cell discovery and measurement performance.
  • one of the neighboring cells may use the first candidate time-frequency resource to transmit the reference signal, and another neighboring cell may use the second candidate time-frequency resource.
  • the reference signal is transmitted such that the reference signals transmitted by the two neighboring cells are time-frequency shifted from each other to avoid interference between the reference signals transmitted from each other.
  • the neighboring other cells only need to silence the first quiet time-frequency resource and the second quiet time-frequency resource to prevent the reference signals of the two neighboring cells from being interfered, and the quieting overhead is small.
  • the configuration information may further include information about a third candidate time-frequency resource, where the third candidate time-frequency resource includes a fifth part time-frequency resource and a sixth part time-frequency resource, and the fifth part time-frequency The resource overlaps with the first part of the resource.
  • the sixth part of the time-frequency resource does not overlap with the second part of the resource.
  • the sixth part of the time-frequency resource does not overlap with the third part of the resource.
  • the sixth part of the time-frequency resource does not overlap with the fourth part of the resource.
  • the sixth part of the time-frequency resource is part of the third quiet time-frequency resource.
  • the first candidate time-frequency resource, the second candidate time-frequency resource, the quiet time-frequency resource, and the second quiet time-frequency resource may all belong to a time-frequency resource pool of the CSI-RS, or a CRS.
  • the reference signal of the embodiment of the present invention can be designed based on the resource pattern of the existing reference signal, for example, the resource of the existing reference signal can be reused.
  • embodiments of the present invention are not limited thereto, and for example, a newly designed reference signal may be employed.
  • the first part of the time-frequency resource and the second part of the time-frequency resource are at different times, and the third part of the time-frequency resource and the fourth part of the time-frequency resource are at different times.
  • the first part of the time-frequency resource and the second part of the time-frequency resource are at the same time, and the third part of the time-frequency resource and the fourth part of the time-frequency resource are adjacent at the same time and the frequency domain sub-carriers. This ensures that the accuracy of the timing estimation is more accurate.
  • the configuration information may further include information of at least one candidate sequence, where the candidate sequence includes a frequency domain scrambling code and/or a time domain orthogonal code.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource is the same as the frequency domain scrambling code corresponding to the second part of the time-frequency resource, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource
  • the time-domain orthogonal codes corresponding to the two partial time-frequency resources are different.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource is different from the frequency domain scrambling code corresponding to the second part of the time-frequency resource, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource and the time-frequency resource corresponding to the second part of the time-frequency resource
  • the domain orthogonal codes are the same.
  • the reference signal sequences transmitted by the two cells are orthogonal to each other without interference, and the detection performance can be improved.
  • the configuration information may be pre-configured.
  • the configuration information may be specified by a standard, or may be set in advance by the transmitting and receiving ends, thereby facilitating generation and detection of the reference signal.
  • the base station may further send auxiliary signaling, where the auxiliary signaling is used to indicate information of the fourth candidate time-frequency resource, and the fourth candidate time-frequency resource includes a first partial time-frequency resource and a fourth partial time-frequency resource.
  • the network side can use the auxiliary signaling to rewrite the pre-configured candidate time-frequency resources, and can generate and detect the reference signal more flexibly.
  • FIG. 13 is a block diagram of a user equipment in accordance with another embodiment of the present invention.
  • the user equipment 130 of FIG. 13 includes a processor 131, a memory 132, a receiving circuit 133, and a transmitting circuit 134.
  • the processor 131, the memory 132, the receiving circuit 133, and the transmitting circuit 134 are connected by a bus system 139.
  • the user equipment 130 may also include an antenna 135 or the like.
  • the processor 131 controls the operation of the user device 130.
  • Memory 132 can include read only memory and random access memory and provides instructions and data to processor 131. A portion of memory 132 may also include non-volatile random access memory (NVRAM).
  • transmit circuitry 134 and receive circuitry 133 can be coupled to antenna 135.
  • the various components of user equipment 130 are coupled together by a bus system 139, which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 139 in the figure.
  • Processor 131 may be an integrated circuit chip with signal processing capabilities. Above The processor 131 can be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component. The methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the processor 131 reads the information in the memory 132 and controls the various components of the user device 130 in conjunction with its hardware.
  • the method of Figure 11 can be implemented in user equipment 130 of Figure 13, and will not be described in detail to avoid redundancy.
  • the processor 131 may determine configuration information of the reference signal, where the configuration information includes information of the first candidate time-frequency resource and the second candidate time-frequency resource.
  • the first candidate time-frequency resource may include a first part of the time-frequency resource and a second part of the time-frequency resource, where the first part of the time-frequency resource is the first part of the first silent (Mute) time-frequency resource, and the second part of the time-frequency resource is The second part of the second quiet time-frequency resource.
  • the second candidate time-frequency resource may include a third part of the time-frequency resource and a fourth part of the time-frequency resource, wherein the third part of the time-frequency resource is the third part of the first quiet time-frequency resource, and the fourth part of the time-frequency resource is The fourth part of the second quiet time-frequency resource.
  • the first part of the resource, the second part of the resource, the third part of the resource, and the fourth part of the resource do not overlap each other.
  • the receiving circuit 133 can detect the reference signal based on the configuration information.
  • a part of resource combinations are selected as candidate time-frequency resources from different quiet time-frequency resources, and some resources occupied by different candidate time-frequency resources do not overlap each other, and the reference signal is designed to meet the discovery reference signal. Demand, improve cell discovery and measurement performance.
  • one of the neighboring cells may use the first candidate time-frequency resource to transmit the reference signal, and another neighboring cell may use the second candidate time-frequency resource.
  • the reference signal is transmitted such that the reference signals transmitted by the two neighboring cells are time-frequency shifted from each other to avoid interference between the reference signals transmitted from each other.
  • the processor 131 may determine, according to the received power of the reference signal detected on the first part of the time-frequency resource, the RSRP of the current cell, or according to the first part of the time-frequency resource and the second part of the time-frequency resource. The received power of the reference signal to determine the current cell
  • the processor 131 may determine the RSSI of the current cell according to the total received power of the second part of the time-frequency resource or the second resource to which the second part of the time-frequency resource belongs, where the first resource is an OFDM symbol, a time slot, and a subframe. And any of the sub-frame collections.
  • the processor 131 can determine the RSRQ of the current cell according to the RSRP and the RSSI.
  • the reference signal can be quietly silenced among multiple cells, achieving a compromise between signal measurement and interference measurement.
  • the embodiment of the present invention can be extended to more types of candidate time-frequency resource configurations.
  • the configuration information determined by the processor 131 may further include information of the third candidate time-frequency resource.
  • the third candidate time-frequency resource includes a fifth part time-frequency resource and a sixth part time-frequency resource, and the fifth part time-frequency resource completely overlaps with the first part of the resource, and the sixth part of the time-frequency resource does not overlap with the second part of the resource, sixth Part of the time-frequency resource does not overlap with the third part of the resource.
  • the sixth part of the time-frequency resource does not overlap with the fourth part of the resource.
  • the sixth part of the time-frequency resource is part of the third silent time-frequency resource.
  • the first candidate time-frequency resource, the second candidate time-frequency resource, the quiet time-frequency resource, and the second quiet time-frequency resource may all belong to a time-frequency resource pool of the CSI-RS, or a CRS.
  • the reference signal of the embodiment of the present invention can be designed based on the resource pattern of the existing reference signal, for example, the resource of the existing reference signal can be reused.
  • embodiments of the present invention are not limited thereto, and for example, a newly designed reference signal may be employed.
  • the first part of the time-frequency resource and the second part of the time-frequency resource are at different times, and the third part of the time-frequency resource and the fourth part of the time-frequency resource are at different times.
  • the first part of the time-frequency resource and the second part of the time-frequency resource are at the same time, and the third part of the time-frequency resource and the fourth part of the time-frequency resource are adjacent at the same time and the frequency domain sub-carriers. This ensures that the accuracy of the timing estimate is more accurate.
  • the configuration information determined by the processor 131 may further include One less candidate sequence information, the candidate sequence including a frequency domain scrambling code and/or a time domain orthogonal code.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource is the same as the frequency domain scrambling code corresponding to the second part of the time-frequency resource, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource
  • the time-domain orthogonal codes corresponding to the two partial time-frequency resources are different.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource is different from the frequency domain scrambling code corresponding to the second part of the time-frequency resource, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource and the time-frequency resource corresponding to the second part of the time-frequency resource
  • the domain orthogonal codes are the same.
  • the reference signal sequences transmitted by the two cells are orthogonal to each other without interference, and the detection performance can be improved.
  • the processor 131 may obtain pre-configured configuration information.
  • the configuration information may be specified by the standard or set by the transmitting and receiving ends in advance, which facilitates the generation and detection of the reference signal.
  • the processor 131 may further obtain the auxiliary signaling sent by the network side device, where the auxiliary signaling is used to indicate information of the fourth candidate time-frequency resource, and the fourth candidate time-frequency resource includes the first part. Time-frequency resources and fourth-part time-frequency resources.
  • the network side can use the auxiliary signaling to rewrite the pre-configured candidate time-frequency resources, and can generate and detect the reference signal more flexibly.
  • FIG 14 is a block diagram of a base station in accordance with another embodiment of the present invention.
  • the base station 140 of Figure 14 includes a processor
  • the processor 141 the memory 142, the receiving circuit 143, and the transmitting circuit 144 are connected by a bus system 149.
  • the base station 140 may further include an antenna 145 or the like.
  • the processor 141 controls the operation of the user device 140.
  • Memory 142 can include read only memory and random access memory and provides instructions and data to processor 141.
  • a portion of memory 142 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the transmitting circuit 144 and the receiving circuit 143 can be coupled to the antenna.
  • bus system 149 which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus system 149 in the figure.
  • Processor 141 may be an integrated circuit chip with signal processing capabilities.
  • the processor 141 described above may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware. Component.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention may be implemented or executed.
  • the general purpose processor can be a microprocessor or the processor can also be any What are the regular processors and so on.
  • the processor 141 reads the information in the memory 142 and controls the various components of the base station 140 in conjunction with its hardware.
  • the method of Figure 12 can be implemented in base station 140 of Figure 14, and will not be described in detail to avoid redundancy.
  • the processor 141 may determine a transmission resource of the reference signal, where the transmission resource of the reference signal is selected from configuration information of the reference signal, the configuration information including information of the first candidate time-frequency resource and the second candidate time-frequency resource.
  • the first candidate time-frequency resource includes a first part of the time-frequency resource and the second part of the time-frequency resource, the first part of the time-frequency resource is the first part of the first quiet time-frequency resource, and the second part of the time-frequency resource is the second time-frequency of the second time.
  • the second part of the resource is the first part of the time-frequency resource and the second part of the time-frequency resource.
  • the second candidate time-frequency resource includes a third part of the time-frequency resource and the fourth part of the time-frequency resource, the third part of the time-frequency resource is the third part of the first quiet time-frequency resource, and the fourth part of the time-frequency resource is the second part.
  • the fourth part of the resource in the quiet time-frequency resource is the third part of the time-frequency resource and the fourth part of the time-frequency resource.
  • the first part of resources, the second part of resources, the third part of resources and the fourth part of resources do not overlap each other.
  • Transmit circuitry 144 can be used to transmit a reference signal based on the transmission resources of the reference signal.
  • a part of resource combinations are selected as candidate time-frequency resources from different quiet time-frequency resources, and some resources occupied by different candidate time-frequency resources do not overlap each other, and the reference signal is designed to meet the discovery reference signal. Demand, improve cell discovery and measurement performance.
  • one of the neighboring cells may use the first candidate time-frequency resource to transmit the reference signal, and another neighboring cell may use the second candidate time-frequency resource.
  • the reference signal is transmitted such that the reference signals transmitted by the two neighboring cells are time-frequency shifted from each other to avoid interference between the reference signals transmitted from each other.
  • the neighboring other cells only need to silence the first quiet time-frequency resource and the second quiet time-frequency resource to prevent the reference signals of the two neighboring cells from being interfered, and the quieting overhead is small.
  • the configuration information may further include information about a third candidate time-frequency resource, where the third candidate time-frequency resource includes a fifth part time-frequency resource and a sixth part time-frequency resource, and the fifth part time-frequency The resource completely overlaps with the first part of the resource.
  • the sixth part is the time-frequency resource and the second part of the resource.
  • the sixth part of the time-frequency resource does not overlap with the third part of the resource.
  • the sixth part of the time-frequency resource does not overlap with the fourth part of the resource.
  • the sixth part of the time-frequency resource is part of the third silent time-frequency resource.
  • the first candidate time-frequency resource, the second candidate time-frequency resource, the quiet time-frequency resource, and the second quiet time-frequency resource may all belong to a time-frequency resource pool of the CSI-RS, or a CRS.
  • the reference signal of the embodiment of the present invention can be designed based on the resource pattern of the existing reference signal, for example, the resource of the existing reference signal can be reused.
  • embodiments of the present invention are not limited thereto, and for example, a newly designed reference signal may be employed.
  • the first part of the time-frequency resource and the second part of the time-frequency resource are at different times, and the third part of the time-frequency resource and the fourth part of the time-frequency resource are at different times.
  • the first part of the time-frequency resource and the second part of the time-frequency resource are at the same time, and the third part of the time-frequency resource and the fourth part of the time-frequency resource are adjacent at the same time and the frequency domain sub-carriers. This ensures that the accuracy of the timing estimate is more accurate.
  • the configuration information may further include information of at least one candidate sequence, where the candidate sequence includes a frequency domain scrambling code and/or a time domain orthogonal code.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource is the same as the frequency domain scrambling code corresponding to the second part of the time-frequency resource, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource
  • the time-domain orthogonal codes corresponding to the two partial time-frequency resources are different.
  • the frequency domain scrambling code corresponding to the first part of the time-frequency resource is different from the frequency domain scrambling code corresponding to the second part of the time-frequency resource, and the time-domain orthogonal code corresponding to the first part of the time-frequency resource and the time-frequency resource corresponding to the second part of the time-frequency resource
  • the domain orthogonal codes are the same.
  • the reference signal sequences transmitted by the two cells are orthogonal to each other without interference, and the detection performance can be improved.
  • the configuration information may be pre-configured.
  • the configuration information may be specified by a standard, or may be set in advance by the transmitting and receiving ends, thereby facilitating generation and detection of the reference signal.
  • the transmitting circuit 144 can also send auxiliary signaling, where the auxiliary signaling is used to indicate information of the fourth candidate time-frequency resource, and the fourth candidate time-frequency resource includes the first partial time-frequency resource and the fourth partial time-frequency resource.
  • the network side can use the auxiliary signaling to rewrite the pre-configured candidate time-frequency resources, which can be more Add flexibility and generate and detect reference signals.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct connection or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.
  • the medium to store the program code is: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供参考信号的检测方法、接收方法、用户设备和基站。该用户设备包括:确定单元,用于确定参考信号的配置信息,配置信息包括第一和第二候选时频资源的信息;其中,第一候选时频资源包括第一和第二部分时频资源,第一部分时频资源为第一静默时频资源中的第一部分资源,第二部分时频资源为第二静默时频资源中的第二部分资源;第二候选时频资源包括第三和第四部分时频资源,第三部分时频资源为第一静默时频资源中的第三部分资源,第四部分时频资源为第二静默时频资源中的第四部分资源;其中,第一、第二、第三和第四部分资源互不重叠;检测单元,用于根据配置信息检测参考信号。本发明实施例能够提高小区发现和测量性能。

Description

参考信号的检测方法、 接收方法、 用户设备和基站 技术领域
本发明实施例涉及通信技术领域, 并且更具体地, 涉及参考信号的检测 方法、 接收方法、 用户设备和基站。 背景技术
长期演进( LTE, Long Term Evolution )***基于正交频分复用( OFDM, Orthogonal Frequency Division Multiplexing )技术, 其时频资源被划分成时间 域维度上的 OFDM符号和频率域维度上的 OFDM子载波, 而最小的资源粒 度叫做一个资源单元( RE, Resource Element ),即表示时间域上的一个 OFDM 符号和频率域上的一个 OFDM子载波的时频格点。
LTE***中业务的传输是基于基站调度的, 一般是基站发送控制信道, 该控制信道可以承载上行或下行数据数据信道的调度信息, 该调度信息包括 比如资源分配信息, 调整编码方式等控制信息, 而用户设备 (UE, User Equipment )根据上述控制信道中承载的调度信息来进行下行数据信道的接 收或上行数据信道的发送。 其中, 基站调度 UE是以资源块(RB, Resource Block ) 为粒度来进行的, 一个资源块在时间域上占用一个子帧的长度, 频 率域上占 12个 OFDM子载波的宽度,一个子帧对于普通循环前缀 (CP, cyclic prefix)的情况包括 14个 OFDM符号, 而对于一个子帧中存在扩展 CP的情 况下, 一个子帧包括 12个 OFDM符号。
为了维持上述业务传输, 并进行小区选择、 重选、 添加、 删除或切换等 过程, UE需要根据基站发送的参考信号进行同步、 信道状态测量和无线资 源管理测量。
同步又分为初始粗同步和时频跟踪精同步,初始粗同步是根据基站发送 的主同步信号 (PSS, Primary Synchronization Signal )和辅同步信号 (SSS, Secondary Synchronization Signal )来完成的, 时频跟踪精同步是通过基站发 送的小区特定参考信号 (CRS, Cell-specific Reference Signal )来完成的。
信道状态测量包括信道测量和干扰测量, 可以基于 CRS 或信道状态信 息参考信号 (CSI-RS , Channel State Information-Reference Signal )来测量。
无线资源管理测量包括参考信号接收功率 (RSRP, Reference Signal Received Power ), 参考信号接收质量 (RSRQ, Reference Signal Received Quality )和接收信号强度指示(RSSI, Received Signal Strength Indicator )等 测量, 目前是通过 CRS或 RCRS来完成的。 其中, RSRP表示目标被测量小 区的 CRS资源单元上包含的该被测小区发送的 CRS的平均功率; RSSI表示 被测小区的 CRS所在的 OFDM符号上所有信号的平均功率, 包括本小区信 号功率、 同频邻小区信号功率、 异频段泄漏到本频段的信号功率和热噪声等 所有信号的平均功率; RSRQ是 居 RSRP与 RSSI的比值来获得, 且确定 RSRQ的 RSRP和 RSSI测量是在相同的资源块中的 CRS所在 OFDM符号上 进行的。 RRM测量还可以包括信干噪比 (SINR, Signal to Interference plus Noise Ratio )测量, 比如通过 RSRP和邻区的干扰测量的比值来确定。 CRS 在 LTE***中的每个子帧都会被发送。 后续可能会引入新载波类型 (NCT, New Carrier Type )或当前载波类型的另外一种状态,其中的一个特征是 CRS 被减少到例如 5个子帧发送一次,此时的 CRS可以叫做减少的 CRS( RCRS, Reduced CRS )。
后续演进的 LTE***对基站的功率效率要求较高,且将来的网络拓朴演 进中, 运营商会大量部署异构网络。 一个主流部署场景是一个宏小区的范围 内会部署大量的小小区, 其中宏小区主要提供覆盖和实时数据业务, 小小区 主要提供高速率的数据业务,且宏小区和小小区可以釆用相同或不同的频点 部署, 但以不同频点的部署场景为主。
在上述密集小小区的异构网络中, 如果所有小小区都处于开启状态, 即 使没有业务传输但上述参考信号如 PSS、 SSS、 CRS/RCRS和 CSI-RS也需要 发送, 这些发送周期较短的参考信号( PSS/SSS/RCRS发送周期为 5个子帧, CRS的发送周期为 1个子帧, CSI-RS发送周期最短是 5个子帧) 的发送会 造成小区间干扰严重; 此外, 网络的密集度可能会导致大量小小区范围内没 有 UE被服务, 即上述所有小小区某段时间内只有部分小小区范围内有 UE 被服务。这样,一个潜在的方案是把这些没有服务 UE的小小区关掉,即 PSS、 SSS、 CRS/RCRS和 CSI-RS, 控制信道和数据信道等都不发送, 来彻底关闭 该小小区, 达到节能和降低小区间干扰的作用, 且使得有服务 UE的小小区 可以提供更高效的服务。
但彻底关闭小小区也有局限性, 比如 UE无法及时发现或检测到该小小 区的部署并对该小小区做无线资源管理( RRM, Radio Resource Management ) 测量; 反过来说, 网络侧也不知道何时来开启该小小区, 也无法根据 UE上 报的对该小小区的测量结果来决定是否把该小小区开启并配置给该 UE。 发明内容
本发明实施例提供一种参考信号的检测方法、 接收方法、 用户设备和基 站, 能够提高小区发现和测量性能。
第一方面, 提供了一种用户设备, 包括: 确定单元, 用于确定参考信号 的配置信息, 所述配置信息包括第一候选时频资源和第二候选时频资源的信 息; 其中, 所述第一候选时频资源包括第一部分时频资源和第二部分时频资 源, 所述第一部分时频资源为第一静默时频资源中的第一部分资源, 所述第 二部分时频资源为第二静默时频资源中的第二部分资源; 所述第二候选时频 资源包括第三部分时频资源和第四部分时频资源, 所述第三部分时频资源为 第一静默时频资源中的第三部分资源, 所述第四部分时频资源为第二静默时 频资源中的第四部分资源; 其中, 所述第一部分资源、 所述第二部分资源、 所述第三部分资源和所述第四部分资源互不重叠; 检测单元, 用于根据所述 配置信息检测所述参考信号。
结合第一方面, 在第一方面的一个实现方式中, 所述检测单元具体用于 根据所述第一部分时频资源上检测到的所述参考信号的接收功率确定当前 小区的参考信号接收功率 RSRP, 或根据所述第一部分时频资源和第二部分 时频资源上检测到的所述参考信号的接收功率确定当前小区的 RSRP; 根据 所述第二部分时频资源上或所述第二部分时频资源所属的第一资源上的总 接收功率确定所述当前小区的接收信号强度指示 RSSI; 其中所述第一资源 为正交频分复用 OFDM符号、 时隙、 子帧和子帧集合中的任何一种; 根据 所述 RSRP和所述 RSSI确定所述当前小区的参考信号接收质量 RSRQ。
结合第一方面及其上述实现方式, 在第一方面的另一实现方式中, 所述 确定单元所确定的配置信息还包括第三候选时频资源的信息, 所述第三候选 时频资源包括第五部分时频资源和第六部分时频资源, 所述第五部分时频资 源与所述第一部分资源完全重叠, 所述第六部分时频资源与所述第二部分资 源不重叠, 所述第六部分时频资源与所述第三部分资源不重叠, 所述第六部 分时频资源与所述第四部分资源不重叠, 所述第六部分时频资源为第三静默 时频资源中的部分资源。 结合第一方面及其上述实现方式, 在第一方面的另一实现方式中, 所述 第一候选时频资源、 所述第二候选时频资源、 第一静默时频资源和第二静默 时频资源均属于信道状态信息参考信号 CSI-RS的时频资源池、 或小区特定 参考信号 CRS的时频资源池、 或主同步信号 PSS的时频资源池、 或辅同步 信号 SSS的时频资源池。
结合第一方面及其上述实现方式, 在第一方面的另一实现方式中, 所述 第一部分时频资源和所述第二部分时频资源在不同时刻, 所述第三部分时频 资源和所述第四部分时频资源在不同时刻; 或所述第一部分时频资源和所述 第二部分时频资源在相同时刻, 所述第三部分时频资源和所述第四部分时频 资源在相同时刻且频域子载波相邻。
结合第一方面及其上述实现方式, 在第一方面的另一实现方式中,, 所 述确定单元所确定的配置信息还包括至少一个候选序列的信息, 所述候选序 列包括频域扰码和 /或时域正交码。
结合第一方面及其上述实现方式, 在第一方面的另一实现方式中, 所述 第一部分时频资源对应的频域扰码和所述第二部分时频资源对应的频域扰 码相同, 所述第一部分时频资源对应的时域正交码和所述第二部分时频资源 对应的时域正交码不同; 或所述第一部分时频资源对应的频域扰码和所述第 二部分时频资源对应的频域扰码不同, 所述第一部分时频资源对应的时域正 交码和所述第二部分时频资源对应的时域正交码相同。
结合第一方面及其上述实现方式, 在第一方面的另一实现方式中, 所述 确定单元具体用于获取预先配置的所述配置信息, 所述确定单元还用于获取 网络侧设备发送的辅助信令, 所述辅助信令用于指示第四候选时频资源的信 息, 所述第四候选时频资源包括所述第一部分时频资源和所述第四部分时频 资源。
第二方面, 提供了一种基站, 包括: 确定单元, 用于确定参考信号的发 送资源, 其中所述参考信号的发送资源是从所述参考信号的配置信息中选取 的,所述配置信息包括第一候选时频资源和第二候选时频资源的信息;其中, 所述第一候选时频资源包括第一部分时频资源和第二部分时频资源, 所述第 一部分时频资源为第一静默时频资源中的第一部分资源, 所述第二部分时频 资源为第二静默时频资源中的第二部分资源; 所述第二候选时频资源包括第 三部分时频资源和第四部分时频资源, 所述第三部分时频资源为第一静默时 频资源中的第三部分资源, 所述第四部分时频资源为第二静默时频资源中的 第四部分资源; 其中, 所述第一部分资源、 所述第二部分资源、 所述第三部 分资源和所述第四部分资源互不重叠; 发送单元, 用于根据所述参考信号的 发送资源发送所述参考信号。
结合第二方面, 在第二方面的一个实现方式中, 所述配置信息还包括第 三候选时频资源的信息, 所述第三候选时频资源包括第五部分时频资源和第 六部分时频资源, 所述第五部分时频资源与所述第一部分资源完全重叠, 所 述第六部分时频资源与所述第二部分资源不重叠, 所述第六部分时频资源与 所述第三部分资源不重叠, 所述第六部分时频资源与所述第四部分资源不重 叠, 所述第六部分时频资源为第三静默时频资源中的部分资源。
结合第二方面及其上述实现方式, 在第二方面的另一实现方式中, 所述 第一候选时频资源、 所述第二候选时频资源、 第一静默时频资源和第二静默 时频资源均属于信道状态信息参考信号 CSI-RS的时频资源池、 或小区特定 参考信号 CRS的时频资源池、 或主同步信号 PSS的时频资源池、 或辅同步 信号 SSS的时频资源池。
结合第二方面及其上述实现方式, 在第二方面的另一实现方式中, 所述 第一部分时频资源和所述第二部分时频资源在不同时刻, 所述第三部分时频 资源和所述第四部分时频资源在不同时刻; 或所述第一部分时频资源和所述 第二部分时频资源在相同时刻, 所述第三部分时频资源和所述第四部分时频 资源在相同时刻且频域子载波相邻。
结合第二方面及其上述实现方式, 在第二方面的另一实现方式中, 所述 配置信息还包括至少一个候选序列的信息, 所述候选序列包括频域扰码和 / 或时 i或正交码。
结合第二方面及其上述实现方式, 在第二方面的另一实现方式中, 所述 第一部分时频资源对应的频域扰码和所述第二部分时频资源对应的频域扰 码相同, 所述第一部分时频资源对应的时域正交码和所述第二部分时频资源 对应的时域正交码不同; 或所述第一部分时频资源对应的频域扰码和所述第 二部分时频资源对应的频域扰码不同, 所述第一部分时频资源对应的时域正 交码和所述第二部分时频资源对应的时域正交码相同。
结合第二方面及其上述实现方式, 在第二方面的另一实现方式中, 所述 配置信息是预先配置的, 所述发送单元还用于发送辅助信令, 所述辅助信令 用于指示第四候选时频资源的信息, 所述第四候选时频资源包括所述第一部 分时频资源和所述第四部分时频资源。
第三方面, 提供了一种参考信号的检测方法, 包括: 确定参考信号的配 置信息, 所述配置信息包括第一候选时频资源和第二候选时频资源的信息; 其中, 所述第一候选时频资源包括第一部分时频资源和第二部分时频资源, 所述第一部分时频资源为第一静默时频资源中的第一部分资源, 所述第二部 分时频资源为第二静默时频资源中的第二部分资源; 所述第二候选时频资源 包括第三部分时频资源和第四部分时频资源, 所述第三部分时频资源为第一 静默时频资源中的第三部分资源, 所述第四部分时频资源为第二静默时频资 源中的第四部分资源; 其中, 所述第一部分资源、 所述第二部分资源、 所述 第三部分资源和所述第四部分资源互不重叠; 根据所述配置信息检测所述参 考信号。
结合第三方面, 在第三方面的一个实现方式中, 所述根据所述配置信息 检测所述参考信号, 包括: 根据所述第一部分时频资源上检测到的所述参考 信号的接收功率确定当前小区的参考信号接收功率 RSRP, 或根据所述第一 部分时频资源和第二部分时频资源上检测到的所述参考信号的接收功率确 定当前小区的 RSRP; 根据所述第二部分时频资源上或所述第二部分时频资 源所属的第一资源上的总接收功率确定所述当前小区的接收信号强度指示 RSSI; 其中所述第一资源为正交频分复用 OFDM符号、 时隙、 子帧和子帧 集合中的任何一种; 根据所述 RSRP和所述 RSSI确定所述当前小区的参考 信号接收质量 RSRQ。
结合第三方面及其上述实现方式, 在第三方面的另一实现方式中, 所述 配置信息还包括第三候选时频资源的信息, 所述第三候选时频资源包括第五 部分时频资源和第六部分时频资源, 所述第五部分时频资源与所述第一部分 资源完全重叠, 所述第六部分时频资源与所述第二部分资源不重叠, 所述第 六部分时频资源与所述第三部分资源不重叠, 所述第六部分时频资源与所述 第四部分资源不重叠, 所述第六部分时频资源为第三静默时频资源中的部分 资源。
结合第三方面及其上述实现方式, 在第三方面的另一实现方式中, 所述 第一候选时频资源、 所述第二候选时频资源、 第一静默时频资源和第二静默 时频资源均属于信道状态信息参考信号 CSI-RS的时频资源池、 或小区特定 参考信号 CRS的时频资源池、 或主同步信号 PSS的时频资源池、 或辅同步 信号 SSS的时频资源池。
结合第三方面及其上述实现方式, 在第三方面的另一实现方式中, 所述 第一部分时频资源和所述第二部分时频资源在不同时刻, 所述第三部分时频 资源和所述第四部分时频资源在不同时刻; 或所述第一部分时频资源和所述 第二部分时频资源在相同时刻, 所述第三部分时频资源和所述第四部分时频 资源在相同时刻且频域子载波相邻。
结合第三方面及其上述实现方式, 在第三方面的另一实现方式中, 所述 配置信息还包括至少一个候选序列的信息, 所述候选序列包括频域扰码和 / 或时域正交码。
结合第三方面及其上述实现方式, 在第三方面的另一实现方式中, 所述 第一部分时频资源对应的频域扰码和所述第二部分时频资源对应的频域扰 码相同, 所述第一部分时频资源对应的时域正交码和所述第二部分时频资源 对应的时域正交码不同; 或所述第一部分时频资源对应的频域扰码和所述第 二部分时频资源对应的频域扰码不同, 所述第一部分时频资源对应的时域正 交码和所述第二部分时频资源对应的时域正交码相同。
结合第三方面及其上述实现方式, 在第三方面的另一实现方式中, 所述 确定参考信号的配置信息, 包括: 获取预先配置的所述配置信息, 所述方法 还包括: 获取网络侧设备发送的辅助信令, 所述辅助信令用于指示第四候选 时频资源的信息, 所述第四候选时频资源包括所述第一部分时频资源和所述 第四部分时频资源。
第四方面, 提供了一种参考信号的发送方法, 包括: 确定参考信号的发 送资源, 其中所述参考信号的发送资源是从所述参考信号的配置信息中选取 的,所述配置信息包括第一候选时频资源和第二候选时频资源的信息;其中, 所述第一候选时频资源包括第一部分时频资源和第二部分时频资源, 所述第 一部分时频资源为第一静默时频资源中的第一部分资源, 所述第二部分时频 资源为第二静默时频资源中的第二部分资源; 所述第二候选时频资源包括第 三部分时频资源和第四部分时频资源, 所述第三部分时频资源为第一静默时 频资源中的第三部分资源, 所述第四部分时频资源为第二静默时频资源中的 第四部分资源; 其中, 所述第一部分资源、 所述第二部分资源、 所述第三部 分资源和所述第四部分资源互不重叠; 根据所述参考信号的发送资源发送所 述参考信号。
结合第四方面, 在第四方面的一个实现方式中, 所述配置信息还包括第 三候选时频资源的信息, 所述第三候选时频资源包括第五部分时频资源和第 六部分时频资源, 所述第五部分时频资源与所述第一部分资源完全重叠, 所 述第六部分时频资源与所述第二部分资源不重叠, 所述第六部分时频资源与 所述第三部分资源不重叠, 所述第六部分时频资源与所述第四部分资源不重 叠, 所述第六部分时频资源为第三静默时频资源中的部分资源。
结合第四方面及其上述实现方式, 在第四方面的另一实现方式中, 所述 第一候选时频资源、 所述第二候选时频资源、 第一静默时频资源和第二静默 时频资源均属于信道状态信息参考信号 CSI-RS的时频资源池、 或小区特定 参考信号 CRS的时频资源池、 或主同步信号 PSS的时频资源池、 或辅同步 信号 SSS的时频资源池。
结合第四方面及其上述实现方式, 在第四方面的另一实现方式中, 所述 第一部分时频资源和所述第二部分时频资源在不同时刻, 所述第三部分时频 资源和所述第四部分时频资源在不同时刻; 或所述第一部分时频资源和所述 第二部分时频资源在相同时刻, 所述第三部分时频资源和所述第四部分时频 资源在相同时刻且频域子载波相邻。
结合第四方面及其上述实现方式, 在第四方面的另一实现方式中, 所述 配置信息还包括至少一个候选序列的信息, 所述候选序列包括频域扰码和 / 或时域正交码。
结合第四方面及其上述实现方式, 在第四方面的另一实现方式中, 所述 第一部分时频资源对应的频域扰码和所述第二部分时频资源对应的频域扰 码相同, 所述第一部分时频资源对应的时域正交码和所述第二部分时频资源 对应的时域正交码不同; 或所述第一部分时频资源对应的频域扰码和所述第 二部分时频资源对应的频域扰码不同, 所述第一部分时频资源对应的时域正 交码和所述第二部分时频资源对应的时域正交码相同。
结合第四方面及其上述实现方式, 在第四方面的另一实现方式中, 所述 配置信息是预先配置的, 所述方法还包括: 发送辅助信令, 所述辅助信令用 于指示第四候选时频资源的信息, 所述第四候选时频资源包括所述第一部分 时频资源和所述第四部分时频资源。
本发明实施例分别从不同静默时频资源中选取部分资源组合作为候选 时频资源, 并且不同候选时频资源所占用的部分资源互不重叠, 这种参考信 号的设计方式能够满足发现参考信号的需求, 提高小区发现和测量性能。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明实施例的无线通信***。
图 2是本发明一个实施例的用户设备的示意框图。
图 3是本发明一个实施例的基站的框图。
图 4是 CSI-RS静默样式的示意图。
图 5是 CSI-RS静默样式的示意图。
图 6是本发明一个实施例的参考信号样式的示意图。
图 7是本发明另一实施例的参考信号样式的示意图。
图 8是本发明另一实施例的参考信号样式的示意图。
图 9是本发明另一实施例的参考信号样式的示意图。
图 10是本发明另一实施例的参考信号样式的示意图。
图 11是本发明一个实施例的参考信号的检测方法的流程图。
图 12是本发明一个实施例的参考信号的发送方法的流程图。
图 13是本发明另一实施例的用户设备的框图。
图 14是本发明另一实施例的基站的框图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
解决上述小区开关问题的一个方案是引入一种发现参考信号 (DRS, Discovery Reference Signal),该 DRS用于小区发现或检测,还可以用于 RRM 测量。 该 DRS包括如下特性: a ) DRS发送周期较长, 比如量级是百毫秒甚至秒级, 这样可以实现 UE 测量周期较长, 改善网络侧设备的功率效率;
b )相邻的多个小小区(比如一个小小区簇中的多个小小区)在相同的较短 时间窗内(比如在相同的一个子帧中)发送各自的 DRS, 这样的好处是 UE可 以通过一次较短时间的测量而发现周边多个小小区, 并同时拿到该多个小小 区的 RRM测量结果, 可以节省 UE的电量消耗;
c )基于 b ) 中要求多小小区同时发送 DRS的特征, 为了获得准确的小 区发现和 RRM测量性能,多个小小区发送的 DRS彼此最好可以做到干扰协 调, 比如通过不同时频码资源来发送。
基于上述基本特性的 DRS具体资源设计, 需要确定 DRS在子帧中占用 哪些资源单元 ( RE, Resource Element ), 即确定 DRS的资源配置。 这里应 注意, 本说明书中的 DRS仅仅是一种示例性的名称, 本发明实施例的参考 信号的具体名称不作限制。
在本说明书中使用的术语 "部件"、 "模块"、 "***"等用于表示计算机 相关的实体、 硬件、 固件、 硬件和软件的组合、 软件、 或执行中的软件。 例 如, 部件可以是但不限于, 在处理器上运行的进程、 处理器、 对象、 可执行 文件、 执行线程、 程序和 /或计算机。 通过图示, 在计算设备上运行的应用和 计算设备都可以是部件。一个或多个部件可驻留在进程和 /或执行线程中,部 件可位于一个计算机上和 /或分布在两个或更多个计算机之间。此外,这些部 件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如 才艮据具有一个或多个数据分组 (例如来自与本地***、 分布式***和 /或网络 间的另一部件交互的二个部件的数据, 例如通过信号与其它***交互的互联 网)的信号通过本地和 /或远程进程来通信。
此外, 结合接入终端描述了各个实施例。 接入终端也可以称为***、 用 户单元、 用户站、 移动站、 移动台、 远方站、 远程终端、 移动设备、 用户终 端、 终端、 无线通信设备、 用户代理、 用户装置或 UE ( User Equipment, 用 户设备)。 接入终端可以是蜂窝电话、 无绳电话、 SIP ( Session Initiation Protocol, 会话启动协议)电话、 WLL ( Wireless Local Loop, 无线本地环路) 站、 PDA ( Personal Digital Assistant, 个人数字处理)、 具有无线通信功能的 手持设备、 计算设备或连接到无线调制解调器的其它处理设备。 此外, 结合 基站描述了各个实施例。 基站可用于与移动设备通信, 基站可以是 GSM ( Global System of Mobile communication, 全球移动通讯 )或 CDMA ( Code Division Multiple Access, 码分多址)中的 BTS ( Base Transceiver Station, 基 站), 也可以是 WCDMA ( Wideband Code Division Multiple Access, 宽带码 分多址) 中的 NB ( NodeB , 基站), 还可以是 LTE ( Long Term Evolution, 长期演进) 中的 eNB或 eNodeB ( Evolutional Node B , 演进型基站), 或者 中继站或接入点, 或者未来 5G网络中的基站设备等。
此外, 本发明的各个方面或特征可以实现成方法、 装置或使用标准编程 和 /或工程技术的制品。 本申请中使用的术语 "制品"涵盖可从任何计算机可 读器件、 载体或介质访问的计算机程序。 例如, 计算机可读介质可以包括, 但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如, CD( Compact Disk, 压缩盘)、 DVD ( Digital Versatile Disk, 数字通用盘)等), 智能卡和 闪存器件 ( 1"列 口, EPROM ( Erasable Programmable Read-Only Memory, 可 擦写可编程只读存储器)、 卡、 棒或钥匙驱动器等)。 另外, 本文描述的各种 存储介质可代表用于存储信息的一个或多个设备和 /或其它机器可读介质。术 语 "机器可读介质"可包括但不限于, 无线信道和能够存储、 包含和 /或承载 指令和 /或数据的各种其它介质。
现在, 参照图 1, 示出根据本文所述的各个实施例的无线通信*** 100。 *** 100包括基站 102, 后者可包括多个天线组。 例如, 一个天线组可包括 天线 104和 106,另一个天线组可包括天线 108和 110,附加组可包括天线 112 和 114。
对于每个天线组示出了 2个天线, 然而可对于每个组使用更多或更少的 天线。 基站 102可附加地包括发射机链和接收机链, 本领域普通技术人员可 以理解, 它们均可包括与信号发送和接收相关的多个部件(例如处理器、 调 制器、 复用器、 解调器、 解复用器或天线等)。
基站 102可以与一个或多个接入终端 (例如接入终端 116和接入终端
122 )通信。 然而, 可以理解, 基站 102可以与类似于接入终端 116和 122 的基本上任意数目的接入终端通信。接入终端 116和 122可以是例如蜂窝电 话、 智能电话、 便携式电脑、 手持通信设备、 手持计算设备、 卫星无线电装 置、 全球定位***、 PDA和 /或用于在无线通信*** 100上通信的任意其它 适合设备。
如图 1所示,接入终端 116与天线 112和 114通信,其中天线 112和 114 通过前向链路 118向接入终端 116发送信息, 并通过反向链路 120从接入终 端 116接收信息。
此外, 接入终端 122与天线 104和 106通信, 其中天线 104和 106通过 前向链路 124向接入终端 122发送信息,并通过反向链路 126从接入终端 122 接收信息。
在 FDD ( Frequency Division Duplex, 频分双工) ***中, 例如, 前向 链路 118可利用与反向链路 120所使用的不同频带, 前向链路 124可利用与 反向链路 126所使用的不同频带。 此外, 在 TDD ( Time Division Duplex, 时 分双工) ***中, 前向链路 118和反向链路 120可使用共同频带, 前向链 路 124和反向链路 126可使用共同频带。
被设计用于通信的每组天线和 /或区域称为基站 102的扇区。例如,可将 天线组设计为与基站 102覆盖区域的扇区中的接入终端通信。
在通过前向链路 118和 124的通信中,基站 102的发射天线可利用波束 成形来改善针对接入终端 116和 122的前向链路 118和 124的信噪比。此外, 与基站通过单个天线向它所有的接入终端发送相比,在基站 102利用波束成 形向相关覆盖区域中随机分散的接入终端 116和 122发送时, 相邻小区中的 移动设备会受到较少的干扰。
在给定时间, 基站 102、 接入终端 116和 /或接入终端 122可以是发送无 线通信装置和 /或接收无线通信装置。 具体地, 发送无线通信装置可具有(例 如生成、获得、在存储器中保存等)要发送至接收无线通信装置的参考信号, 接收无线通信装置可检测和接收该参考信号。 一般情况下, 参考信号的发送 无线通信装置可以是基站 102, 参考信号的接收无线通信装置可以是接入终 端 116和 /或接入终端 122。
图 2是本发明一个实施例的用户设备的示意框图。 图 2的用户设备 20 的一个例子是图 1的接入终端 116或接入终端 122。
如图 2所示, 用户设备 20包括确定单元 21和检测单元 22。
确定单元 21可用于确定参考信号的配置信息, 该配置信息包括第一候 选时频资源和第二候选时频资源的信息。
第一候选时频资源可包括第一部分时频资源和第二部分时频资源, 其中 第一部分时频资源为第一静默(Mute )时频资源中的第一部分资源, 第二部 分时频资源为第二静默时频资源中的第二部分资源。 第二候选时频资源可包括第三部分时频资源和第四部分时频资源, 其中 第三部分时频资源为第一静默时频资源中的第三部分资源, 第四部分时频资 源为第二静默时频资源中的第四部分资源。
其中, 上述第一部分资源、 第二部分资源、 第三部分资源和第四部分资 源互不重叠。
检测单元 22可用于根据配置信息检测参考信号。
本发明实施例分别从不同静默时频资源中选取部分资源组合作为候选 时频资源, 并且不同候选时频资源所占用的部分资源互不重叠, 这种参考信 号的设计方式能够满足发现参考信号的需求, 提高小区发现和测量性能。
具体地, 假设用户设备周边有两个邻小区需要被测量, 那么其中一个邻 小区可以釆用上述第一候选时频资源来发送参考信号, 另一个邻小区可以釆 用第二候选时频资源来发送参考信号, 这样, 两个邻小区各自发送的参考信 号彼此时频错开, 以避开彼此发送的参考信号之间的干扰。
另外, 如果不考虑静默时频资源来设计候选时频资源, 要想完全规避参 考信号受到干扰, 可能周边小区需要静默的时频非常多, 导致静默的开销增 加。 本发明实施例中, 周边其他小区只需要静默上述第一静默时频资源和第 二静默时频资源就可以避免上述两个邻小区的参考信号受到干扰,静默开销 较小。
这里, 配置信息用于指示候选时频资源, 例如, 配置信息可包括候选时 频资源所占用的 RE、 子载波、 子帧、 时隙或 OFDM符号等信息, 或者包括 这些信息中的部分或全部信息的组合等。本发明实施例对配置信息的具体形 式不作限制, 只要配置信息能够指示候选时频资源即可。
可选地, 作为一个实施例, 检测单元 22在检测参考信号时, 可根据第 一部分时频资源上检测到的参考信号的接收功率确定当前小区的 RSRP, 或 根据第一部分时频资源和第二部分时频资源上检测到的参考信号的接收功 率确定当前小区的 RSRP。
另外, 检测单元 22可根据第二部分时频资源上或第二部分时频资源所 属的第一资源上的总接收功率确定当前小区的 RSSI; 其中上述第一资源为 OFDM符号、 时隙、 子帧和子帧集合中的任何一种。
并且, 检测单元 22可根据 RSRP和 RSSI确定当前小区的 RSRQ。 这样, 能够实现参考信号在多个小区间的均勾静默, 达到信号测量和干 扰测量的折中。
可选地, 作为另一实施例, 本发明实施例可扩展到更多种候选时频资源 配置的方式。 具体地, 确定单元 21 所确定的配置信息还可以包括第三候选 时频资源的信息。第三候选时频资源包括第五部分时频资源和第六部分时频 资源, 第五部分时频资源与第一部分资源完全重叠, 所述第六部分时频资源 与所述第二部分资源不重叠, 所述第六部分时频资源与所述第三部分资源不 重叠, 所述第六部分时频资源与所述第四部分资源不重叠, 第六部分时频资 源为第三静默时频资源中的部分资源。
按照此方式, 可以类似地配置更多种候选时频资源。
可选地, 作为另一实施例, 第一候选时频资源、 第二候选时频资源、 静 默时频资源和第二静默时频资源可以均属于 CSI-RS的时频资源池、 或 CRS 的时频资源池、 或 PSS的时频资源池、 或 SSS的时频资源池。
这样, 本发明实施例的参考信号可以基于已有参考信号的资源样式来设 计, 例如可重用已有参考信号的资源。 但本发明实施例不限于此, 例如也可 以釆用新设计的参考信号。
可选地, 作为另一实施例, 第一部分时频资源和所述第二部分时频资源 在不同时刻, 第三部分时频资源和第四部分时频资源在不同时刻。 这样, 通 或者, 第一部分时频资源和第二部分时频资源在相同时刻, 第三部分时 频资源和第四部分时频资源在相同时刻且频域子载波相邻。这样可以保证定 时估计的精度更准确。
可选地, 作为另一实施例, 确定单元 21所确定的配置信息还可以包括 至少一个候选序列的信息, 该候选序列包括频域扰码和 /或时域正交码。
可选地, 作为另一实施例, 第一部分时频资源对应的频域扰码和第二部 分时频资源对应的频域扰码相同, 第一部分时频资源对应的时域正交码和第 二部分时频资源对应的时域正交码不同。
或者, 第一部分时频资源对应的频域扰码和第二部分时频资源对应的频 域扰码不同, 第一部分时频资源对应的时域正交码和第二部分时频资源对应 的时 i或正交码相同。
这样, 两个小区发送的参考信号序列相互正交, 没有干扰, 能够提高检 测性能。 可选地, 作为另一实施例, 确定单元 21可获取预先配置的配置信息。 例如, 该配置信息可以由标准规定, 或者由收发两端事先协商设置, 这样便 于参考信号的生成和检测。
可选地, 作为另一实施例, 确定单元 21还可以获取网络侧设备发送的 辅助信令, 该辅助信令用于指示第四候选时频资源的信息, 第四候选时频资 源包括第一部分时频资源和第四部分时频资源。
这样, 网络侧可以使用辅助信令来改写预配置的候选时频资源, 能够更 加灵活地生成和检测参考信号。
图 3是本发明一个实施例的基站的框图。 图 3的基站 30的一个例子是 图 1的基站 102。 如图 3所示, 基站 30包括确定单元 31和发送单元 32。
确定单元 31可用于确定参考信号的发送资源, 其中参考信号的发送资 源是从参考信号的配置信息中选取的, 该配置信息包括第一候选时频资源和 第二候选时频资源的信息。
第一候选时频资源包括第一部分时频资源和第二部分时频资源, 第一部 分时频资源为第一静默时频资源中的第一部分资源, 第二部分时频资源为第 二静默时频资源中的第二部分资源。
第二候选时频资源包括第三部分时频资源和第四部分时频资源, 第三部 分时频资源为第一静默时频资源中的第三部分资源, 第四部分时频资源为第 二静默时频资源中的第四部分资源。
其中, 第一部分资源、 第二部分资源、 第三部分资源和第四部分资源互 不重叠。
发送单元 32可用于根据参考信号的发送资源发送参考信号。
本发明实施例分别从不同静默时频资源中选取部分资源组合作为候选 时频资源, 并且不同候选时频资源所占用的部分资源互不重叠, 这种参考信 号的设计方式能够满足发现参考信号的需求, 提高小区发现和测量性能。
具体地, 假设用户设备周边有两个邻小区需要被测量, 那么其中一个邻 小区可以釆用上述第一候选时频资源来发送参考信号, 另一个邻小区可以釆 用第二候选时频资源来发送参考信号, 这样, 两个邻小区各自发送的参考信 号彼此时频错开, 以避开彼此发送的参考信号之间的干扰。
另外, 如果不考虑静默时频资源来设计候选时频资源, 要想完全规避参 考信号受到干扰, 可能周边小区需要静默的时频非常多, 导致静默的开销增 加。 本发明实施例中, 周边其他小区只需要静默上述第一静默时频资源和第 二静默时频资源就可以避免上述两个邻小区的参考信号受到干扰,静默开销 较小。
可选地, 作为一个实施例, 该配置信息还可以包括第三候选时频资源的 信息, 第三候选时频资源包括第五部分时频资源和第六部分时频资源, 第五 部分时频资源与第一部分资源完全重叠, 第六部分时频资源与第二部分资源 不重叠, 第六部分时频资源与第三部分资源不重叠, 第六部分时频资源与第 四部分资源不重叠, 第六部分时频资源为第三静默时频资源中的部分资源。
按照此方式, 可以类似地配置更多种候选时频资源。
可选地, 作为另一实施例, 第一候选时频资源、 第二候选时频资源、 静 默时频资源和第二静默时频资源可以均属于 CSI-RS的时频资源池、 或 CRS 的时频资源池、 或 PSS的时频资源池、 或 SSS的时频资源池。
这样, 本发明实施例的参考信号可以基于已有参考信号的资源样式来设 计, 例如可重用已有参考信号的资源。 但本发明实施例不限于此, 例如也可 以釆用新设计的参考信号。
可选地, 作为另一实施例, 第一部分时频资源和所述第二部分时频资源 在不同时刻, 第三部分时频资源和第四部分时频资源在不同时刻。 这样, 通 或者, 第一部分时频资源和第二部分时频资源在相同时刻, 第三部分时 频资源和第四部分时频资源在相同时刻且频域子载波相邻。这样可以保证定 时估计的精度更准确。
可选地, 作为另一实施例, 该配置信息还可以包括至少一个候选序列的 信息, 该候选序列包括频域扰码和 /或时域正交码。
可选地, 作为另一实施例, 第一部分时频资源对应的频域扰码和第二部 分时频资源对应的频域扰码相同, 第一部分时频资源对应的时域正交码和第 二部分时频资源对应的时域正交码不同。 或者, 第一部分时频资源对应的频 域扰码和第二部分时频资源对应的频域扰码不同, 第一部分时频资源对应的 时域正交码和第二部分时频资源对应的时域正交码相同。
这样, 两个小区发送的参考信号序列相互正交, 没有干扰, 能够提高检 测性能。
可选地, 作为另一实施例, 该配置信息可以是预先配置的, 例如, 该配 置信息可以由标准规定, 或者由收发两端事先协商设置, 这样便于参考信号 的生成和检测。
发送单元 32还可以发送辅助信令, 该辅助信令用于指示第四候选时频 资源的信息, 第四候选时频资源包括第一部分时频资源和第四部分时频资 源。
这样, 网络侧可以使用辅助信令来改写预配置的候选时频资源, 能够更 加灵活地生成和检测参考信号。
下面结合具体例子,更加详细地描述本发明的实施例。在下面的例子中, 主要基于 CSI-RS的 RE样式来设计本发明实施例的参考信号 (下文中可以 称为 DRS ), 但本发明实施例对参考信号的名称和该参考信号所基于的资源 池不作限制。
例如, 不同的小小区釆用一个子帧内的不同 RE或 RE组合, 从而实现 时频资源错开, 以规避彼此的 DRS之间的相互干扰。
此外, 还可以结合现有的 CSI-RS静默的方案来进一步降低邻小区的数 据调度对本小区 DRS的干扰,以实现小区发现和 RRM测量性能的进一步提 升。现有***中的 CSI-RS静默的用途之一就是使得被测小区的 CSI-RS信道 测量准确。 具体地, 被测小区的 CSI-RS在某几个 RE上发送, 而被测小区 的邻小区在相同位置的这几个 RE上不发送任何信号, 这样保证被测小区服 务的 UE釆用上述 CSI-RS对被测小区的信道测量更为准确, 因为该 CSI-RS 的 RE上不会受到邻区发送的信号干扰。
现有***中的静默样式如图 4所示, 可以看到图 4中总共有 10个静默 样式, 每个静默样式包括图 4中标识的数值相同的 4个 RE, 该 4个 RE组 成最小静默单位。 具体的静默样式配置是灵活的, 比如可以只配置其中 1个 样式, 也可以配置其中多个样式。
但是, 结合上述 CSI-RS静默样式来设计 DRS还需要考虑 RRM测量中 的干扰测量问题, 比如 RSRQ或 SINR这两个测量量中都会包括邻区干扰成 分。
具体地, 4叚设一簇小小区包括 10个小小区, 各自的 DRS分别釆用图 4 中不同的静默样式, 即小区 0用样式 0, 小区 1用样式 1, 以此类推。 这样, 如果结合 CSI-RS静默方案来提高小区发现和 RRM测量的准确度, 会导致 两个问题。 其一是在某些符号上, 比如符号 9和 10, 测量不到任何干扰, 因 为相邻小区都釆用了静默; 其二是静默开销非常大, 可以看到, 除了本小区 发送的 DRS的 4个 RE之外的其他 CSI-RS位置, 本小区都需要静默, 即不 能传输任何信号, 例如图 5所示。 图 5中只画出了小区 0和小区 2的情况, 其他小区类似。
综上分析,如果基于 CSI-RS的 RE样式来设计 DRS,且结合 CSI-RS静 默来提高小区发现和测量性能, 干扰测量和静默开销的问题也需要考虑。
检测参考信号的主体为 UE,该 UE可以处于无线资源控制( RRC, Radio Resource Control )连接态或 RRC空闲态。 此时该 UE需要进行 RRM测量, 比如 RSRP、 RSSI、 RSRQ或 SINR测量。 而做 RRM测量之前需要先检测到 用于 RRM测量的参考信号。 该 UE可以对本小区(比如该 UE当前连接态所 连接的小区或空闲态所驻留的小区), 也可以是邻小区进行 RRM测量, 包括 与本小区同频的邻小区或与本小区异频的邻小区。 特别的, 对于邻小区进行 RRM测量之前, 还需要先检测或发现被测的该邻小区。
用于小区发现的参考信号和用于 RRM测量的参考信号可以是同一个参 考信号, 也可以是不同的参考信号, 本发明实施例不作限定。 比如可以通过 基于 CSI-RS或 CRS或其他的参考信号用于小区发现和小区的 RRM测量, 或者, 通过同步信号比如 PSS/SSS或其他的参考信号来进行小区发现, 而用 基于 CRS或 CSI-RS或其他的参考信号用于小区的 RRM测量。
可选地, 该方法中的参考信号至少用于 RRM测量, 还可以用于小区发 现。
可选地, 该方法中的参考信号还可以扩展到用于其他用途, 比如用于 CSI测量、 准共站 4叚设、 时频同步等, 本发明实施例对参考信号的具体用途 不做限定。
可选地,该参考信号可以基于当前 LTE***中的已有参考信号的资源样 式来设计, 比如当前 LTE***中的 CSI-RS、 CRS、 PSS和 SSS中至少一种, 也可以是其他新设计的参考信号, 比如资源样式不同于上述已有参考信号。
此外, 该参考信号还具备静默机制, 即其他小区在本小区发送该参考信 号的 RE上不发送任何信号。
可选地, 该发现参考信号的发送周期较当前已有参考信号的发送周期要 长,比如长于每子帧都需要发送的 CRS和每 5个子帧需要发送的 PSS和 SSS , 一般该参考信号的发送周期至少是几十个子帧, 甚至几百个上千个子帧。 下面以基于 CSI-RS的资源样式来设计上述参考信号为例, 进行说明, 其他参考信号的样式类似处理, 不做限定。
UE确定待检测的参考信号的配置信息, 具体的, 该配置信息可以预先 配置好, 即不需要接收网络侧的信令就可以获取, 也可以通过接收网络侧的 辅助信令来获取, 比如接收基站侧发送的广播信号或 RRC专有信令等。 该 配置信息包括至少一个第一候选时频资源和至少一个第二候选时频资源, 该 两个资源可以为某个带宽内和某个时间上的资源, 比如 10MHz带宽内的时 频资源, 时间上为周期 100个子帧的时间资源。 具体的, 上述候选时频资源 还包括上述带宽内和时间上的具体资源样式, 比如在一个资源块内可以占用 的哪些资源样式。
具体地, 如图 6所示, 图中所示了一个资源块内的资源样式, 上述带宽 内和时间资源内的其他资源块内的资源样式都是一样的。从图 6中可以看到, 该第一候选时频资源包括第一部分时频资源和第二部分时频资源, 所述第一 部分时频资源属于第一静默时频资源中的第一部分资源, 所述第二部分时频 资源属于第二静默时频资源中的第二部分资源。 具体的, 图 6中数值标识为 0的 4个 RE为第一静默时频资源, 数值标识为 2的 4个 RE为第二静默时 频资源, 可以看到, 从上述两个静默时频资源中各拿出一部分资源来组成了 一个候选时频资源(第一部分和第二部分时频资源组成了第一候选时频资 源), 各拿出另一个部分来组成了另一个候选时频资源 (第三部分和第四部分 时频资源组成了第二候选时频资源), 其中, 第一部分、 第二部分、 第三部 分和第四部分时频资源互不重叠。
UE确定了配置信息后, 就可以根据该配置信息来检测上述参考信号。 图 6是本发明一个实施例的参考信号样式的示意图。 以图 6为例进行说明, 4叚设配置信息中包括第一候选时频资源和第二候选时频资源的信息, 那么 UE就需要在这两个候选资源上分别检测上述参考信号。
具体地, 如图 6所示, 标号为 0的四个 RE属于第一静默时频资源, 标 号为 2的 RE属于第二静默时频资源。 在此情况下, 第一候选时频资源可包 括第一静默时频资源的上面两个 RE (即第一部分时频资源)和第二静默时 频资源的上面两个 RE (即第二部分时频资源)。 第二候选时频资源可包括第 一静默时频资源的下面两个 RE (即第三部分时频资源 )和第二静默时频资 源的下面两个 RE (即第四部分时频资源)。 4叚设该 UE周边有两个邻小区需要被测量, 那么其中一个邻小区可以釆 用上述第一候选时频资源来发送参考信号 1, 另一个邻小区可以釆用第二候 选时频资源来发送参考信号 2。 这样, 两个邻小区各自发送的参考信号彼此 时频错开, 以避开彼此发送的参考信号之间的干扰。 此外, 周边其他小区只 需要静默上述第一静默时频资源和第二静默时频资源就可以避免上述两个 邻小区的参考信号受到干扰, 静默开销较小; 反之, 如果不考虑静默时频资 源来设计候选时频资源, 要想完全规避参考信号受到干扰, 可能周边小区需 要静默的时频非常多, 导致静默的开销增加。 进一步地, 邻小区 1还可以对 第三和第四部分时频资源进行静默, 来避免对邻小区 2发送的参考信号 2的 干扰; 邻小区 2还可以对第一部分时频资源和第二部分时频资源进行静默, 来避免对邻小区 1发送的参考信号 1的干扰。
此外, 该方法还可以参考信号在多个小区间均匀的静默, 达到信号检测 和干扰测量的折中。比如,可以在多个小区之间比较容易选取某个静默样式, 使得周边每个小区的参考信号中都只有一半资源(比如第一部分时频资源)实 现了静默, 来提高信号检测的性能; 同时, 另一半资源(比如第二部分时频 资源)不做静默, 来在该资源上捕捉到邻小区的干扰, 使得干扰测量较为准 确。
例如, UE可根据第一部分时频资源上检测到的参考信号的接收功率确 定当前小区的 RSRP, 或可根据第一部分时频资源和第二部分时频资源上检 测到的参考信号的接收功率确定当前小区的 RSRP。
另外, UE可根据第二部分时频资源上或第二部分时频资源所属的第一 资源上的总接收功率确定所述当前小区的 RSSI;其中所述第一资源为 OFDM 符号、 时隙、 子帧和子帧集合中的任何一种。
而且, UE可根据 RSRP和 RSSI确定当前小区的 RSRQ。
这样, UE能利用本发明实施例的参考信号实现 RRM测量。
图 7是本发明另一实施例的参考信号样式的示意图。 如图 7所示, 4叚设 周边一个小小区簇中有 10个小小区, 分别釆用如图 7中候选时频资源标号 为 0至 9的参考信号资源样式。 阴影部分为当前配置的静默资源样式, 可以 看到, 该方法还可以实现参考信号在多个小区间均匀的静默, 达到信号检测 和干扰测量的折中。比如,可以在多个小区之间比较容易选取某个静默样式, 使得周边每个小区的参考信号中都只有一半资源(比如第一部分时频资源)实 现了静默, 来提高信号检测的性能; 同时, 另一半资源(比如第二部分时频 资源)不做静默, 来在该资源上捕捉到邻小区的干扰, 使得干扰测量较为准 确。
基于上述候选时频资源和静默时频资源的配置, UE 可以对周边小小区 进行 RRM测量。 具体的, 如图 7, UE可以根据候选时频资源 0中的第一部 分时频资源 (其他小区静默时频资源)上, 或根据候选时频资源 0中的第一部 分时频资源和第二部分时频资源 (其他小区不静默)上检测到的该参考信号的 接收功率确定该候选时频资源 0对应的被测小区的 RSRP。 之前, 基站可以 通知 UE其他小区的静默时频资源, 比如通知 UE该被测小区的时频资源 0 中的第一部分资源是静默资源, 第二部分资源不是静默资源, 那么 UE就可 以只根据第一部分资源做 RSRP测量, 或 UE也可以根据全部的时频资源 0 来测量 RSRP (此时在第二部分资源上可能会受到邻小区的数据干扰)。 再具 体的, UE可以根据候选时频资源 0的第二部分时频资源上的总接收功率, 或者根据候选时频资源 0的第二部分时频资源所属的第一资源上的总接收功 率确定所述当前小区的 RSSI; 其中所述第一资源为 OFDM符号, 时隙, 子 帧和子帧集合中的任何一种。 同理, 之前基站可以通知 UE其他小区的静默 时频资源, 比如通知 UE该被测小区的时频资源 0中的第一部分资源是静默 资源, 第二部分资源不是静默资源, 那么 UE就可以根据上述方法做 RSSI 测量。 最终, 可以通过上述得到的 RSRP和 RSSI来确定 RSRQ, 比如通过 RSRP与 RSSI的比值来确定 RSRQ。 基于该实施例, UE可以根据静默资源 上的参考信号来检测小区并测量该小区的 RSRP, 可以根据非静默资源上的 信号来确定 RSSI, 以使得 UE在小区发现 /检测的性能和干扰测量的两方面 取得折中, 同时只釆用一种参考信号就可以做 RSRP和 RSSI测量, 简化了 设计, 并使得静默开销较小。
图 8是本发明另一实施例的参考信号样式的示意图。与图 6的实施例相 比, 图 8的实施例中, 配置信息允许候选时频资源之间有部分重叠, 这样可 以包括更多种候选时频资源的信息。
具体地, 配置信息还可以包括至少一个第三候选时频资源, 第三候选时 频资源包括第五部分时频资源和第六部分时频资源, 第五部分时频资源与第 一部分资源完全重叠, 第六部分时频资源与第二部分资源不重叠, 第六部分 时频资源与第三部分资源不重叠, 第六部分时频资源与第四部分资源不重 叠, 第六部分时频资源为第三静默时频资源中的部分资源。
如图 8所示, 可以看到, 图 8中标号为 8的 4个 RE是第三静默时频资 源, 其中第三静默时频资源的一部分(上面两个 RE )是第六部分时频资源。 第六部分时频资源与第一静默时频资源中的第五部分时频资源组成了第三 候选时频资源, 其中第五部分时频资源与第一部分资源完全重叠(即第一静 默时频资源的上面两个 RE )。 第六部分时频资源与第二部分资源、 第三部分 资源和第四部分资源都完全不重叠, 即第一候选时频资源与第三候选时频资 源部分重叠。 这样可以提高时频资源的复用效率, 即在相同的资源池中可以 提供更多小区的参考信号。
另外, 如图 6-8所示, 第一部分时频资源和第二部分时频资源可以在不 同时刻, 第三部分时频资源和第四部分时频资源可以在不同时刻。 或者, 第 一部分时频资源和第二部分时频资源在相同时刻, 第三部分时频资源和第四 部分时频资源在相同时刻且频域子载波相邻。
具体地, 该不同的时刻可以是相同子帧中的不同符号、 相同无线帧中的 不同子帧、 不同无线帧等等。 如图 6或图 8所示, 第一部分时频资源和所述 第二部分时频资源在不同时刻, 第三部分时频资源和第四部分时频资源在不 同时刻, 该不同时刻为一个子帧中的不同符号。 这样, 通过几个符号上的分 隔可以保证频域同步的估计精度更准确。 或者, 如图 7所示, 候选时频资源 8或 9中的两部分时频资源在相同的时刻, 此例为一个子帧中的相同符号, 这样可以保证定时估计的精度更准确。
此外, 配置信息还可以包括至少一个候选序列, 该候选序列包括频域扰 码和 /或时 i或正交码。
这里, 第一部分时频资源对应的频域扰码可以和第二部分时频资源对应 的频域扰码相同,但第一部分时频资源对应的时域正交码和第二部分时频资 源对应的时域正交码不同。
或者, 第一部分时频资源对应的频域扰码可以和第二部分时频资源对应 的频域扰码不同,但第一部分时频资源对应的时域正交码和第二部分时频资 源对应的时 i或正交码相同。
具体地, 上述配置信息除了包括候选时频资源之外, 还可以包括至少一 个候选序列, 该候选序列包括频域扰码和时域正交码。 以 CSI-RS为例, 先 从频域方向生成频域伪随机序列, 具体可以为 m序列或 Gold序列, 具体以 Gold序列为例, 具体可以釆用如下公式计算:
rln (m) = ^=(l-2-c(2m)) + j'-^(l-2-c(2m + l)), m = 0,1,...,N - 1 其中, ws为时隙序号, Z为一个时隙内的 OFDM符号序号, 一个子帧包 括两个时隙, N为资源块总数。
上述公式的初始化序列为:
cimt = 21。 · (7 · ("s + 1) + , + 1) · (2 · + 1) + 2 · ',
其中, 为初始化参数。 可以看出, 上述初始化公式生成的序列可以 为初始化序列或扰码序列。
生成了上述频域扰码序列之后, 还可以在时域上用沃尔什(Walsh)序 列进行扩频, 比如在连续的两个 OFDM符号上用 {1, 1}或 {1, -1}进行正交 码扩频。
具体以图 9为例, 可以看出, 候选时频资源标号为 0和 8的两个候选时 频资源中的第一部分时频资源完全重叠 (标号为 0), 第二部分时频资源完全 不重叠, 标号分别为 2和 4, 此时这两个标号分别为 0和 8的候选时频资源 的可以分别给两个小区来用作上述参考信号, 此时有两种方法来区分这两个 小区:
第一种方法是, 两个小区釆用不同的扰码序列, 即上述公式的初始化参 数不同, 此时时域正交码可以相同, 比如釆用 {1, 1}进行扩频;
第二种方法是, 两个小区釆用相同的扰码序列, 即上述公式的初始化参 数相同, 此时时域正交码是不同的, 比如小区 1用 {1, 1}进行扩频, 小区 2 用 {1, -1}进行扩频。
第二种方法可以提供正交的小区间参考信号序列设计, 即两个小区发送 的参考信号序列完全正交, 即没有任何干扰, 检测性能较好。
图 10是本发明另一实施例的参考信号样式的示意图。图 10的实施例中, 可以预先配置一套候选时频资源, 如图 10中标号 0至 9所示。 如果没有基 站的信令进行改写这个预配置的候选时频资源, 那么 UE和基站都会默认用 这套预先配置的候选时频资源来接收和发送上述参考信号。
可选地, 在某些小小区部署场景下, 基于预先配置的候选时频资源来发 送参考信号会导致问题, 比如考虑到周边小区动态或半静态的开启和关闭, 会使得某个时间段内某些参考信号资源上的干扰比另一些参考信号资源上 的干扰相差很大, 造成小区发现和 RRM测量性能下降。
在此情况下, 网络侧设备 (如基站 ) 可以通过辅助信令来通知 UE当前 的辅助配置信息,该辅助配置信息表示除了预先配置的配置信息之外的其他 候选时频资源的信息, 比如该第一配置信息包括至少一个第四候选时频资 源, 该第四候选时频资源包括第一部分时频资源和第四部分时频资源。 具体 地,如图 10的椭圓形所圈中的 RE所示,第四候选时频资源包括的第一部分 时频资源为标号为 0的时频资源的一部分(标号为 0的上面两个 RE ), 第四 候选时频资源包括的第四部分时频资源为标号为 4的时频资源的一部分(标 号为 4的上面两个 RE )。 可以看到, 这个第四候选时频资源的配置不在上述 预先配置的 0至 9这 10个候选时频资源内。 这样, 可以解决上述场景下的 问题, 比如考虑到周边小区动态或半静态的开启和关闭, 会使得某个时间段 内某些参考信号资源上的干扰比另一些参考信号资源上的干扰相差很大,造 成小区发现和 RRM测量性能下降。
图 11是本发明一个实施例的参考信号的检测方法的流程图。 图 11的方 法由 UE执行。
1101, 确定参考信号的配置信息, 该配置信息包括第一候选时频资源和 第二候选时频资源的信息。
第一候选时频资源包括第一部分时频资源和第二部分时频资源, 第一部 分时频资源为第一静默时频资源中的第一部分资源, 第二部分时频资源为第 二静默时频资源中的第二部分资源。
第二候选时频资源包括第三部分时频资源和第四部分时频资源, 第三部 分时频资源为第一静默时频资源中的第三部分资源, 第四部分时频资源为第 二静默时频资源中的第四部分资源。
其中, 第一部分资源、 第二部分资源、 第三部分资源和第四部分资源互 不重叠。
1102, 根据配置信息检测参考信号。
本发明实施例分别从不同静默时频资源中选取部分资源组合作为候选 时频资源, 并且不同候选时频资源所占用的部分资源互不重叠, 这种参考信 号的设计方式能够满足发现参考信号的需求, 提高小区发现和测量性能。
具体地, 假设用户设备周边有两个邻小区需要被测量, 那么其中一个邻 小区可以釆用上述第一候选时频资源来发送参考信号, 另一个邻小区可以釆 用第二候选时频资源来发送参考信号, 这样, 两个邻小区各自发送的参考信 号彼此时频错开, 以避开彼此发送的参考信号之间的干扰。
另外, 如果不考虑静默时频资源来设计候选时频资源, 要想完全规避参 考信号受到干扰, 可能周边小区需要静默的时频非常多, 导致静默的开销增 加。 本发明实施例中, 周边其他小区只需要静默上述第一静默时频资源和第 二静默时频资源就可以避免上述两个邻小区的参考信号受到干扰,静默开销 较小。
可选地, 作为一个实施例, 在步骤 1102 中, 可根据第一部分时频资源 上检测到的参考信号的接收功率确定当前小区的 RSRP, 或根据第一部分时 频资源和第二部分时频资源上检测到的参考信号的接收功率确定当前小区 的 RSRP。
另外, 可根据第二部分时频资源上或第二部分时频资源所属的第一资源 上的总接收功率确定当前小区的接收信号强度指示 RSSI; 其中第一资源为 OFDM符号、 时隙、 子帧和子帧集合中的任何一种。
并且, 可根据 RSRP和 RSSI确定当前小区的 RSRQ。
这样, 能够实现参考信号在多个小区间的均勾静默, 达到信号测量和干 扰测量的折中。
可选地, 作为另一实施例, 本发明实施例可扩展到更多种候选时频资源 配置的方式。 具体地, 配置信息还可以包括第三候选时频资源的信息。 第三 候选时频资源包括第五部分时频资源和第六部分时频资源, 第五部分时频资 源与第一部分资源完全重叠, 第六部分时频资源与第二部分资源不重叠, 第 六部分时频资源与第三部分资源不重叠, 第六部分时频资源与第四部分资源 不重叠, 第六部分时频资源为第三静默时频资源中的部分资源。
按照此方式, 可以类似地配置更多种候选时频资源。
可选地, 作为另一实施例, 第一候选时频资源、 第二候选时频资源、 静 默时频资源和第二静默时频资源可以均属于 CSI-RS的时频资源池、 或 CRS 的时频资源池、 或 PSS的时频资源池、 或 SSS的时频资源池。
这样, 本发明实施例的参考信号可以基于已有参考信号的资源样式来设 计, 例如可重用已有参考信号的资源。 但本发明实施例不限于此, 例如也可 以釆用新设计的参考信号。
可选地, 作为另一实施例, 第一部分时频资源和所述第二部分时频资源 在不同时刻, 第三部分时频资源和第四部分时频资源在不同时刻。 这样, 通 或者, 第一部分时频资源和第二部分时频资源在相同时刻, 第三部分时 频资源和第四部分时频资源在相同时刻且频域子载波相邻。这样可以保证定 时估计的精度更准确。
可选地, 作为另一实施例, 配置信息还可以包括至少一个候选序列的信 息, 该候选序列包括频域扰码和 /或时域正交码。
可选地, 作为另一实施例, 第一部分时频资源对应的频域扰码和第二部 分时频资源对应的频域扰码相同, 第一部分时频资源对应的时域正交码和第 二部分时频资源对应的时域正交码不同。 或者, 第一部分时频资源对应的频 域扰码和第二部分时频资源对应的频域扰码不同, 第一部分时频资源对应的 时域正交码和第二部分时频资源对应的时域正交码相同。
这样, 两个小区发送的参考信号序列相互正交, 没有干扰, 能够提高检 测性能。
可选地, 作为另一实施例, 在步骤 1101 中, 可获取预先配置的配置信 息。 例如, 该配置信息可以由标准规定, 或者由收发两端事先协商设置, 这 样便于参考信号的生成和检测。
可选地, 作为另一实施例, 还可以获取网络侧设备发送的辅助信令, 该 辅助信令用于指示第四候选时频资源的信息, 第四候选时频资源包括第一部 分时频资源和第四部分时频资源。 这样, 网络侧可以使用辅助信令来改写预 配置的候选时频资源, 能够更加灵活地生成和检测参考信号。
图 12是本发明一个实施例的参考信号的发送方法的流程图。 图 12的方 法由基站执行。
1201 , 确定参考信号的发送资源, 其中参考信号的发送资源是从参考信 号的配置信息中选取的, 该配置信息包括第一候选时频资源和第二候选时频 资源的信息。
第一候选时频资源包括第一部分时频资源和第二部分时频资源, 第一部 分时频资源为第一静默时频资源中的第一部分资源, 第二部分时频资源为第 二静默时频资源中的第二部分资源。
第二候选时频资源包括第三部分时频资源和第四部分时频资源, 第三部 分时频资源为第一静默时频资源中的第三部分资源, 第四部分时频资源为第 二静默时频资源中的第四部分资源。
其中, 第一部分资源、 第二部分资源、 第三部分资源和第四部分资源互 不重叠。
1202, 根据参考信号的发送资源发送参考信号。
本发明实施例分别从不同静默时频资源中选取部分资源组合作为候选 时频资源, 并且不同候选时频资源所占用的部分资源互不重叠, 这种参考信 号的设计方式能够满足发现参考信号的需求, 提高小区发现和测量性能。
具体地, 假设用户设备周边有两个邻小区需要被测量, 那么其中一个邻 小区可以釆用上述第一候选时频资源来发送参考信号, 另一个邻小区可以釆 用第二候选时频资源来发送参考信号, 这样, 两个邻小区各自发送的参考信 号彼此时频错开, 以避开彼此发送的参考信号之间的干扰。
另外, 如果不考虑静默时频资源来设计候选时频资源, 要想完全规避参 考信号受到干扰, 可能周边小区需要静默的时频非常多, 导致静默的开销增 加。 本发明实施例中, 周边其他小区只需要静默上述第一静默时频资源和第 二静默时频资源就可以避免上述两个邻小区的参考信号受到干扰,静默开销 较小。
可选地, 作为一个实施例, 该配置信息还可以包括第三候选时频资源的 信息, 第三候选时频资源包括第五部分时频资源和第六部分时频资源, 第五 部分时频资源与第一部分资源完全重叠, 第六部分时频资源与第二部分资源 不重叠, 第六部分时频资源与第三部分资源不重叠, 第六部分时频资源与第 四部分资源不重叠, 第六部分时频资源为第三静默时频资源中的部分资源。
按照此方式, 可以类似地配置更多种候选时频资源。
可选地, 作为另一实施例, 第一候选时频资源、 第二候选时频资源、 静 默时频资源和第二静默时频资源可以均属于 CSI-RS的时频资源池、 或 CRS 的时频资源池、 或 PSS的时频资源池、 或 SSS的时频资源池。
这样, 本发明实施例的参考信号可以基于已有参考信号的资源样式来设 计, 例如可重用已有参考信号的资源。 但本发明实施例不限于此, 例如也可 以釆用新设计的参考信号。
可选地, 作为另一实施例, 第一部分时频资源和所述第二部分时频资源 在不同时刻, 第三部分时频资源和第四部分时频资源在不同时刻。 这样, 通 或者, 第一部分时频资源和第二部分时频资源在相同时刻, 第三部分时 频资源和第四部分时频资源在相同时刻且频域子载波相邻。这样可以保证定 时估计的精度更准确。
可选地, 作为另一实施例, 该配置信息还可以包括至少一个候选序列的 信息, 该候选序列包括频域扰码和 /或时域正交码。
可选地, 作为另一实施例, 第一部分时频资源对应的频域扰码和第二部 分时频资源对应的频域扰码相同, 第一部分时频资源对应的时域正交码和第 二部分时频资源对应的时域正交码不同。 或者, 第一部分时频资源对应的频 域扰码和第二部分时频资源对应的频域扰码不同, 第一部分时频资源对应的 时域正交码和第二部分时频资源对应的时域正交码相同。
这样, 两个小区发送的参考信号序列相互正交, 没有干扰, 能够提高检 测性能。
可选地, 作为另一实施例, 该配置信息可以是预先配置的, 例如, 该配 置信息可以由标准规定, 或者由收发两端事先协商设置, 这样便于参考信号 的生成和检测。
基站还可以发送辅助信令,该辅助信令用于指示第四候选时频资源的信 息, 第四候选时频资源包括第一部分时频资源和第四部分时频资源。 这样, 网络侧可以使用辅助信令来改写预配置的候选时频资源, 能够更加灵活地生 成和检测参考信号。
图 13是本发明另一实施例的用户设备的框图。 图 13的用户设备 130包 括处理器 131、 存储器 132、 接收电路 133和发射电路 134。 处理器 131、 存 储器 132、 接收电路 133和发射电路 134通过总线*** 139相连。
此外, 用户设备 130还可以包括天线 135等。 处理器 131控制用户设备 130的操作。 存储器 132可以包括只读存储器和随机存取存储器, 并向处理 器 131提供指令和数据。存储器 132的一部分还可以包括非易失性随机存取 存储器( NVRAM )。 具体的应用中, 发射电路 134和接收电路 133可以耦合 到天线 135。 用户设备 130的各个组件通过总线*** 139耦合在一起, 其中 总线*** 139除包括数据总线之外, 还可以包括电源总线、 控制总线和状态 信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线*** 139。
处理器 131可能是一种集成电路芯片, 具有信号的处理能力。 上述的处 理器 131可以是通用处理器、数字信号处理器( DSP )、专用集成电路( ASIC )、 现成可编程门阵列 (FPGA )或者其他可编程逻辑器件、 分立门或者晶体管 逻辑器件、 分立硬件组件。 可以实现或者执行本发明实施例中的公开的各方 法、 步骤及逻辑框图。 通用处理器可以是微处理器或者该处理器也可以是任 何常规的处理器等。 处理器 131读取存储器 132中的信息, 结合其硬件控制 用户设备 130的各个部件。
图 11的方法可以在图 13的用户设备 130中实现, 为避免重复, 不再详 细描述。
具体地, 处理器 131可确定参考信号的配置信息, 该配置信息包括第一 候选时频资源和第二候选时频资源的信息。
第一候选时频资源可包括第一部分时频资源和第二部分时频资源, 其中 第一部分时频资源为第一静默(Mute )时频资源中的第一部分资源, 第二部 分时频资源为第二静默时频资源中的第二部分资源。
第二候选时频资源可包括第三部分时频资源和第四部分时频资源, 其中 第三部分时频资源为第一静默时频资源中的第三部分资源, 第四部分时频资 源为第二静默时频资源中的第四部分资源。
其中, 上述第一部分资源、 第二部分资源、 第三部分资源和第四部分资 源互不重叠。
接收电路 133可根据配置信息检测参考信号。
本发明实施例分别从不同静默时频资源中选取部分资源组合作为候选 时频资源, 并且不同候选时频资源所占用的部分资源互不重叠, 这种参考信 号的设计方式能够满足发现参考信号的需求, 提高小区发现和测量性能。
具体地, 假设用户设备周边有两个邻小区需要被测量, 那么其中一个邻 小区可以釆用上述第一候选时频资源来发送参考信号, 另一个邻小区可以釆 用第二候选时频资源来发送参考信号, 这样, 两个邻小区各自发送的参考信 号彼此时频错开, 以避开彼此发送的参考信号之间的干扰。
另外, 如果不考虑静默时频资源来设计候选时频资源, 要想完全规避参 考信号受到干扰, 可能周边小区需要静默的时频非常多, 导致静默的开销增 加。 本发明实施例中, 周边其他小区只需要静默上述第一静默时频资源和第 二静默时频资源就可以避免上述两个邻小区的参考信号受到干扰,静默开销 较小。 可选地, 作为一个实施例, 处理器 131可根据第一部分时频资源上检测 到的参考信号的接收功率确定当前小区的 RSRP, 或根据第一部分时频资源 和第二部分时频资源上检测到的参考信号的接收功率确定当前小区的
RSRP。
另外, 处理器 131可根据第二部分时频资源上或第二部分时频资源所属 的第一资源上的总接收功率确定当前小区的 RSSI; 其中第一资源为 OFDM 符号、 时隙、 子帧和子帧集合中的任何一种。
并且, 处理器 131可才艮据 RSRP和 RSSI确定当前小区的 RSRQ。
这样, 能够实现参考信号在多个小区间的均勾静默, 达到信号测量和干 扰测量的折中。
可选地, 作为另一实施例, 本发明实施例可扩展到更多种候选时频资源 配置的方式。 具体地, 处理器 131所确定的配置信息还可以包括第三候选时 频资源的信息。 第三候选时频资源包括第五部分时频资源和第六部分时频资 源, 第五部分时频资源与第一部分资源完全重叠, 第六部分时频资源与第二 部分资源不重叠, 第六部分时频资源与第三部分资源不重叠, 第六部分时频 资源与第四部分资源不重叠, 第六部分时频资源为第三静默时频资源中的部 分资源。
按照此方式, 可以类似地配置更多种候选时频资源。
可选地, 作为另一实施例, 第一候选时频资源、 第二候选时频资源、 静 默时频资源和第二静默时频资源可以均属于 CSI-RS的时频资源池、 或 CRS 的时频资源池、 或 PSS的时频资源池、 或 SSS的时频资源池。
这样, 本发明实施例的参考信号可以基于已有参考信号的资源样式来设 计, 例如可重用已有参考信号的资源。 但本发明实施例不限于此, 例如也可 以釆用新设计的参考信号。
可选地, 作为另一实施例, 第一部分时频资源和所述第二部分时频资源 在不同时刻, 第三部分时频资源和第四部分时频资源在不同时刻。 这样, 通 或者, 第一部分时频资源和第二部分时频资源在相同时刻, 第三部分时 频资源和第四部分时频资源在相同时刻且频域子载波相邻。这样可以保证定 时估计的精度更准确。
可选地, 作为另一实施例, 处理器 131所确定的配置信息还可以包括至 少一个候选序列的信息, 该候选序列包括频域扰码和 /或时域正交码。
可选地, 作为另一实施例, 第一部分时频资源对应的频域扰码和第二部 分时频资源对应的频域扰码相同, 第一部分时频资源对应的时域正交码和第 二部分时频资源对应的时域正交码不同。 或者, 第一部分时频资源对应的频 域扰码和第二部分时频资源对应的频域扰码不同, 第一部分时频资源对应的 时域正交码和第二部分时频资源对应的时域正交码相同。
这样, 两个小区发送的参考信号序列相互正交, 没有干扰, 能够提高检 测性能。
可选地, 作为另一实施例, 处理器 131可获取预先配置的配置信息。 例 如, 该配置信息可以由标准规定, 或者由收发两端事先协商设置, 这样便于 参考信号的生成和检测。
可选地, 作为另一实施例, 处理器 131还可以获取网络侧设备发送的辅 助信令, 该辅助信令用于指示第四候选时频资源的信息, 第四候选时频资源 包括第一部分时频资源和第四部分时频资源。
这样, 网络侧可以使用辅助信令来改写预配置的候选时频资源, 能够更 加灵活地生成和检测参考信号。
图 14是本发明另一实施例的基站的框图。 图 14的基站 140包括处理器
141、 存储器 142、 接收电路 143和发射电路 144。 处理器 141、 存储器 142、 接收电路 143和发射电路 144通过总线*** 149相连。
此外, 基站 140还可以包括天线 145等。 处理器 141控制用户设备 140 的操作。存储器 142可以包括只读存储器和随机存取存储器,并向处理器 141 提供指令和数据。存储器 142的一部分还可以包括非易失性随机存取存储器 ( NVRAM )。具体的应用中,发射电路 144和接收电路 143可以辆合到天线
145。基站 140的各个组件通过总线*** 149耦合在一起,其中总线*** 149 除包括数据总线之外, 还可以包括电源总线、 控制总线和状态信号总线等。 但是为了清楚说明起见, 在图中将各种总线都标为总线*** 149。
处理器 141可能是一种集成电路芯片, 具有信号的处理能力。 上述的处 理器 141可以是通用处理器、数字信号处理器( DSP )、专用集成电路( ASIC )、 现成可编程门阵列 (FPGA )或者其他可编程逻辑器件、 分立门或者晶体管 逻辑器件、 分立硬件组件。 可以实现或者执行本发明实施例中的公开的各方 法、 步骤及逻辑框图。 通用处理器可以是微处理器或者该处理器也可以是任 何常规的处理器等。 处理器 141读取存储器 142中的信息, 结合其硬件控制 基站 140的各个部件。
图 12的方法可以在图 14的基站 140中实现, 为避免重复, 不再详细描 述。
处理器 141可确定参考信号的发送资源,其中参考信号的发送资源是从 参考信号的配置信息中选取的, 该配置信息包括第一候选时频资源和第二候 选时频资源的信息。
第一候选时频资源包括第一部分时频资源和第二部分时频资源, 第一部 分时频资源为第一静默时频资源中的第一部分资源, 第二部分时频资源为第 二静默时频资源中的第二部分资源。
第二候选时频资源包括第三部分时频资源和第四部分时频资源, 第三部 分时频资源为第一静默时频资源中的第三部分资源, 第四部分时频资源为第 二静默时频资源中的第四部分资源。
其中, 第一部分资源、 第二部分资源、 第三部分资源和第四部分资源互 不重叠。
发射电路 144可用于根据参考信号的发送资源发送参考信号。
本发明实施例分别从不同静默时频资源中选取部分资源组合作为候选 时频资源, 并且不同候选时频资源所占用的部分资源互不重叠, 这种参考信 号的设计方式能够满足发现参考信号的需求, 提高小区发现和测量性能。
具体地, 假设用户设备周边有两个邻小区需要被测量, 那么其中一个邻 小区可以釆用上述第一候选时频资源来发送参考信号, 另一个邻小区可以釆 用第二候选时频资源来发送参考信号, 这样, 两个邻小区各自发送的参考信 号彼此时频错开, 以避开彼此发送的参考信号之间的干扰。
另外, 如果不考虑静默时频资源来设计候选时频资源, 要想完全规避参 考信号受到干扰, 可能周边小区需要静默的时频非常多, 导致静默的开销增 加。 本发明实施例中, 周边其他小区只需要静默上述第一静默时频资源和第 二静默时频资源就可以避免上述两个邻小区的参考信号受到干扰,静默开销 较小。
可选地, 作为一个实施例, 该配置信息还可以包括第三候选时频资源的 信息, 第三候选时频资源包括第五部分时频资源和第六部分时频资源, 第五 部分时频资源与第一部分资源完全重叠, 第六部分时频资源与第二部分资源 不重叠, 第六部分时频资源与第三部分资源不重叠, 第六部分时频资源与第 四部分资源不重叠, 第六部分时频资源为第三静默时频资源中的部分资源。
按照此方式, 可以类似地配置更多种候选时频资源。
可选地, 作为另一实施例, 第一候选时频资源、 第二候选时频资源、 静 默时频资源和第二静默时频资源可以均属于 CSI-RS的时频资源池、 或 CRS 的时频资源池、 或 PSS的时频资源池、 或 SSS的时频资源池。
这样, 本发明实施例的参考信号可以基于已有参考信号的资源样式来设 计, 例如可重用已有参考信号的资源。 但本发明实施例不限于此, 例如也可 以釆用新设计的参考信号。
可选地, 作为另一实施例, 第一部分时频资源和所述第二部分时频资源 在不同时刻, 第三部分时频资源和第四部分时频资源在不同时刻。 这样, 通 或者, 第一部分时频资源和第二部分时频资源在相同时刻, 第三部分时 频资源和第四部分时频资源在相同时刻且频域子载波相邻。这样可以保证定 时估计的精度更准确。
可选地, 作为另一实施例, 该配置信息还可以包括至少一个候选序列的 信息, 该候选序列包括频域扰码和 /或时域正交码。
可选地, 作为另一实施例, 第一部分时频资源对应的频域扰码和第二部 分时频资源对应的频域扰码相同, 第一部分时频资源对应的时域正交码和第 二部分时频资源对应的时域正交码不同。 或者, 第一部分时频资源对应的频 域扰码和第二部分时频资源对应的频域扰码不同, 第一部分时频资源对应的 时域正交码和第二部分时频资源对应的时域正交码相同。
这样, 两个小区发送的参考信号序列相互正交, 没有干扰, 能够提高检 测性能。
可选地, 作为另一实施例, 该配置信息可以是预先配置的, 例如, 该配 置信息可以由标准规定, 或者由收发两端事先协商设置, 这样便于参考信号 的生成和检测。
发射电路 144还可以发送辅助信令, 该辅助信令用于指示第四候选时频 资源的信息, 第四候选时频资源包括第一部分时频资源和第四部分时频资 源。
这样, 网络侧可以使用辅助信令来改写预配置的候选时频资源, 能够更 加灵活地生成和检测参考信号。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的***、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的***、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 ***, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接辆合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应所述以权利要求的保护范围为准。

Claims

权利要求
1、 一种用户设备, 其特征在于, 包括:
确定单元, 用于确定参考信号的配置信息, 所述配置信息包括第一候选 时频资源和第二候选时频资源的信息; 其中,
所述第一候选时频资源包括第一部分时频资源和第二部分时频资源, 所 述第一部分时频资源为第一静默时频资源中的第一部分资源, 所述第二部分 时频资源为第二静默时频资源中的第二部分资源;
所述第二候选时频资源包括第三部分时频资源和第四部分时频资源, 所 述第三部分时频资源为第一静默时频资源中的第三部分资源, 所述第四部分 时频资源为第二静默时频资源中的第四部分资源;
其中, 所述第一部分资源、 所述第二部分资源、 所述第三部分资源和所 述第四部分资源互不重叠;
检测单元, 用于根据所述配置信息检测所述参考信号。
2、 如权利要求 1所述的用户设备, 其特征在于, 所述检测单元具体用 于
根据所述第一部分时频资源上检测到的所述参考信号的接收功率确定 当前小区的参考信号接收功率 RSRP, 或根据所述第一部分时频资源和第二 部分时频资源上检测到的所述参考信号的接收功率确定当前小区的 RSRP; 根据所述第二部分时频资源上或所述第二部分时频资源所属的第一资 源上的总接收功率确定所述当前小区的接收信号强度指示 RSSI; 其中所述 第一资源为正交频分复用 OFDM符号、 时隙、 子帧和子帧集合中的任何一 种;
根据所述 RSRP 和所述 RSSI确定所述当前小区的参考信号接收质量 RSRQ。
3、 如权利要求 1或 2所述的用户设备, 其特征在于, 所述确定单元所 确定的配置信息还包括第三候选时频资源的信息, 所述第三候选时频资源包 括第五部分时频资源和第六部分时频资源, 所述第五部分时频资源与所述第 一部分资源完全重叠, 所述第六部分时频资源与所述第二部分资源不重叠, 所述第六部分时频资源与所述第三部分资源不重叠, 所述第六部分时频资源 与所述第四部分资源不重叠, 所述第六部分时频资源为第三静默时频资源中 的部分资源。
4、 如权利要求 1-3任一项所述的用户设备, 其特征在于,
所述第一候选时频资源、 所述第二候选时频资源、 第一静默时频资源和 第二静默时频资源均属于信道状态信息参考信号 CSI-RS的时频资源池、 或 小区特定参考信号 CRS的时频资源池、 或主同步信号 PSS的时频资源池、 或辅同步信号 SSS的时频资源池。
5、 如权利要求 1-4任一项所述的用户设备, 其特征在于,
所述第一部分时频资源和所述第二部分时频资源在不同时刻, 所述第三 部分时频资源和所述第四部分时频资源在不同时刻; 或
所述第一部分时频资源和所述第二部分时频资源在相同时刻, 所述第三 部分时频资源和所述第四部分时频资源在相同时刻且频域子载波相邻。
6、 如权利要求 1-5 任一项所述的用户设备, 其特征在于, 所述确定单 元所确定的配置信息还包括至少一个候选序列的信息, 所述候选序列包括频 域扰码和 /或时域正交码。
7、 如权利要求 6所述的用户设备, 其特征在于,
所述第一部分时频资源对应的频域扰码和所述第二部分时频资源对应 的频域扰码相同, 所述第一部分时频资源对应的时域正交码和所述第二部分 时频资源对应的时域正交码不同; 或
所述第一部分时频资源对应的频域扰码和所述第二部分时频资源对应 的频域扰码不同, 所述第一部分时频资源对应的时域正交码和所述第二部分 时频资源对应的时域正交码相同。
8、 如权利要求 1-7任一项所述的用户设备, 其特征在于, 所述确定单 元具体用于获取预先配置的所述配置信息,
所述确定单元还用于获取网络侧设备发送的辅助信令, 所述辅助信令用 于指示第四候选时频资源的信息, 所述第四候选时频资源包括所述第一部分 时频资源和所述第四部分时频资源。
9、 一种基站, 其特征在于, 包括:
确定单元, 用于确定参考信号的发送资源, 其中所述参考信号的发送资 源是从所述参考信号的配置信息中选取的, 所述配置信息包括第一候选时频 资源和第二候选时频资源的信息; 其中,
所述第一候选时频资源包括第一部分时频资源和第二部分时频资源, 所 述第一部分时频资源为第一静默时频资源中的第一部分资源, 所述第二部分 时频资源为第二静默时频资源中的第二部分资源;
所述第二候选时频资源包括第三部分时频资源和第四部分时频资源, 所 述第三部分时频资源为第一静默时频资源中的第三部分资源, 所述第四部分 时频资源为第二静默时频资源中的第四部分资源;
其中, 所述第一部分资源、 所述第二部分资源、 所述第三部分资源和所 述第四部分资源互不重叠;
发送单元, 用于根据所述参考信号的发送资源发送所述参考信号。
10、 如权利要求 9所述的基站, 其特征在于, 所述配置信息还包括第三 候选时频资源的信息, 所述第三候选时频资源包括第五部分时频资源和第六 部分时频资源, 所述第五部分时频资源与所述第一部分资源完全重叠, 所述 第六部分时频资源与所述第二部分资源不重叠, 所述第六部分时频资源与所 述第三部分资源不重叠, 所述第六部分时频资源与所述第四部分资源不重 叠, 所述第六部分时频资源为第三静默时频资源中的部分资源。
11、 如权利要求 9或 10所述的基站, 其特征在于,
所述第一候选时频资源、 所述第二候选时频资源、 第一静默时频资源和 第二静默时频资源均属于信道状态信息参考信号 CSI-RS的时频资源池、 或 小区特定参考信号 CRS的时频资源池、 或主同步信号 PSS的时频资源池、 或辅同步信号 SSS的时频资源池。
12、 如权利要求 9-11任一项所述的基站, 其特征在于,
所述第一部分时频资源和所述第二部分时频资源在不同时刻, 所述第三 部分时频资源和所述第四部分时频资源在不同时刻; 或
所述第一部分时频资源和所述第二部分时频资源在相同时刻, 所述第三 部分时频资源和所述第四部分时频资源在相同时刻且频域子载波相邻。
13、 如权利要求 9-12任一项所述的基站, 其特征在于, 所述配置信息 还包括至少一个候选序列的信息,所述候选序列包括频域扰码和 /或时域正交 码。
14、 如权利要求 13所述的基站, 其特征在于,
所述第一部分时频资源对应的频域扰码和所述第二部分时频资源对应 的频域扰码相同, 所述第一部分时频资源对应的时域正交码和所述第二部分 时频资源对应的时域正交码不同; 或 所述第一部分时频资源对应的频域扰码和所述第二部分时频资源对应 的频域扰码不同, 所述第一部分时频资源对应的时域正交码和所述第二部分 时频资源对应的时域正交码相同。
15、 如权利要求 9-14任一项所述的基站, 其特征在于, 所述配置信息 是预先配置的, 所述发送单元还用于发送辅助信令, 所述辅助信令用于指示 第四候选时频资源的信息, 所述第四候选时频资源包括所述第一部分时频资 源和所述第四部分时频资源。
16、 一种参考信号的检测方法, 其特征在于, 包括:
确定参考信号的配置信息, 所述配置信息包括第一候选时频资源和第二 候选时频资源的信息; 其中,
所述第一候选时频资源包括第一部分时频资源和第二部分时频资源, 所 述第一部分时频资源为第一静默时频资源中的第一部分资源, 所述第二部分 时频资源为第二静默时频资源中的第二部分资源;
所述第二候选时频资源包括第三部分时频资源和第四部分时频资源, 所 述第三部分时频资源为第一静默时频资源中的第三部分资源, 所述第四部分 时频资源为第二静默时频资源中的第四部分资源;
其中, 所述第一部分资源、 所述第二部分资源、 所述第三部分资源和所 述第四部分资源互不重叠;
根据所述配置信息检测所述参考信号。
17、 如权利要求 16所述的方法, 其特征在于, 所述根据所述配置信息 检测所述参考信号, 包括:
根据所述第一部分时频资源上检测到的所述参考信号的接收功率确定 当前小区的参考信号接收功率 RSRP, 或根据所述第一部分时频资源和第二 部分时频资源上检测到的所述参考信号的接收功率确定当前小区的 RSRP; 根据所述第二部分时频资源上或所述第二部分时频资源所属的第一资 源上的总接收功率确定所述当前小区的接收信号强度指示 RSSI; 其中所述 第一资源为正交频分复用 OFDM符号、 时隙、 子帧和子帧集合中的任何一 种;
根据所述 RSRP 和所述 RSSI确定所述当前小区的参考信号接收质量 RSRQ。
18、 如权利要求 16或 17所述的方法, 其特征在于, 所述配置信息还包 括第三候选时频资源的信息, 所述第三候选时频资源包括第五部分时频资源 和第六部分时频资源, 所述第五部分时频资源与所述第一部分资源完全重 叠, 所述第六部分时频资源与所述第二部分资源不重叠, 所述第六部分时频 资源与所述第三部分资源不重叠, 所述第六部分时频资源与所述第四部分资 源不重叠, 所述第六部分时频资源为第三静默时频资源中的部分资源。
19、 如权利要求 16-18任一项所述的方法, 其特征在于,
所述第一候选时频资源、 所述第二候选时频资源、 第一静默时频资源和 第二静默时频资源均属于信道状态信息参考信号 CSI-RS的时频资源池、 或 小区特定参考信号 CRS的时频资源池、 或主同步信号 PSS的时频资源池、 或辅同步信号 SSS的时频资源池。
20、 如权利要求 16-19任一项所述的方法, 其特征在于,
所述第一部分时频资源和所述第二部分时频资源在不同时刻, 所述第三 部分时频资源和所述第四部分时频资源在不同时刻; 或
所述第一部分时频资源和所述第二部分时频资源在相同时刻, 所述第三 部分时频资源和所述第四部分时频资源在相同时刻且频域子载波相邻。
21、 如权利要求 16-20任一项所述的方法, 其特征在于, 所述配置信息 还包括至少一个候选序列的信息,所述候选序列包括频域扰码和 /或时域正交 码。
22、 如权利要求 21所述的方法, 其特征在于,
所述第一部分时频资源对应的频域扰码和所述第二部分时频资源对应 的频域扰码相同, 所述第一部分时频资源对应的时域正交码和所述第二部分 时频资源对应的时域正交码不同; 或
所述第一部分时频资源对应的频域扰码和所述第二部分时频资源对应 的频域扰码不同, 所述第一部分时频资源对应的时域正交码和所述第二部分 时频资源对应的时域正交码相同。
23、 如权利要求 16-22任一项所述的方法, 其特征在于, 所述确定参考 信号的配置信息, 包括: 获取预先配置的所述配置信息,
所述方法还包括: 获取网络侧设备发送的辅助信令, 所述辅助信令用于 指示第四候选时频资源的信息, 所述第四候选时频资源包括所述第一部分时 频资源和所述第四部分时频资源。
24、 一种参考信号的发送方法, 其特征在于, 包括: 确定参考信号的发送资源,其中所述参考信号的发送资源是从所述参考 信号的配置信息中选取的, 所述配置信息包括第一候选时频资源和第二候选 时频资源的信息; 其中,
所述第一候选时频资源包括第一部分时频资源和第二部分时频资源, 所 述第一部分时频资源为第一静默时频资源中的第一部分资源, 所述第二部分 时频资源为第二静默时频资源中的第二部分资源;
所述第二候选时频资源包括第三部分时频资源和第四部分时频资源, 所 述第三部分时频资源为第一静默时频资源中的第三部分资源, 所述第四部分 时频资源为第二静默时频资源中的第四部分资源;
其中, 所述第一部分资源、 所述第二部分资源、 所述第三部分资源和所 述第四部分资源互不重叠;
根据所述参考信号的发送资源发送所述参考信号。
25、 如权利要求 24所述的方法, 其特征在于, 所述配置信息还包括第 三候选时频资源的信息, 所述第三候选时频资源包括第五部分时频资源和第 六部分时频资源, 所述第五部分时频资源与所述第一部分资源完全重叠, 所 述第六部分时频资源与所述第二部分资源不重叠, 所述第六部分时频资源与 所述第三部分资源不重叠, 所述第六部分时频资源与所述第四部分资源不重 叠, 所述第六部分时频资源为第三静默时频资源中的部分资源。
26、 如权利要求 24或 25所述的方法, 其特征在于,
所述第一候选时频资源、 所述第二候选时频资源、 第一静默时频资源和 第二静默时频资源均属于信道状态信息参考信号 CSI-RS的时频资源池、 或 小区特定参考信号 CRS的时频资源池、 或主同步信号 PSS的时频资源池、 或辅同步信号 SSS的时频资源池。
27、 如权利要求 24-26任一项所述的方法, 其特征在于,
所述第一部分时频资源和所述第二部分时频资源在不同时刻, 所述第三 部分时频资源和所述第四部分时频资源在不同时刻; 或
所述第一部分时频资源和所述第二部分时频资源在相同时刻, 所述第三 部分时频资源和所述第四部分时频资源在相同时刻且频域子载波相邻。
28、 如权利要求 24-27任一项所述的方法, 其特征在于, 所述配置信息 还包括至少一个候选序列的信息,所述候选序列包括频域扰码和 /或时域正交 码。
29、 如权利要求 28所述的方法, 其特征在于,
所述第一部分时频资源对应的频域扰码和所述第二部分时频资源对应 的频域扰码相同, 所述第一部分时频资源对应的时域正交码和所述第二部分 时频资源对应的时域正交码不同; 或
所述第一部分时频资源对应的频域扰码和所述第二部分时频资源对应 的频域扰码不同, 所述第一部分时频资源对应的时域正交码和所述第二部分 时频资源对应的时域正交码相同。
30、 如权利要求 24-29任一项所述的方法, 其特征在于, 所述配置信息 是预先配置的, 所述方法还包括:
发送辅助信令, 所述辅助信令用于指示第四候选时频资源的信息, 所述 第四候选时频资源包括所述第一部分时频资源和所述第四部分时频资源。
PCT/CN2014/074796 2014-04-04 2014-04-04 参考信号的检测方法、接收方法、用户设备和基站 WO2015149349A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112016022740A BR112016022740A2 (pt) 2014-04-04 2014-04-04 Método de detecção de sinal de referência, método de envio de sinal de referência, equipamento de usuário e estação-base
EP14887781.4A EP3119121B1 (en) 2014-04-04 2014-04-04 Reference signal detection method, receiving method, user equipment and base station
CN201480000665.0A CN105284143B (zh) 2014-04-04 2014-04-04 参考信号的检测方法、接收方法、用户设备和基站
KR1020167030288A KR20160138553A (ko) 2014-04-04 2014-04-04 참조 신호 검출 방법과 수신 방법, 사용자 장비, 및 기지국
PCT/CN2014/074796 WO2015149349A1 (zh) 2014-04-04 2014-04-04 参考信号的检测方法、接收方法、用户设备和基站
US15/285,229 US10291374B2 (en) 2014-04-04 2016-10-04 Reference signal detection method and receiving method, user equipment, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/074796 WO2015149349A1 (zh) 2014-04-04 2014-04-04 参考信号的检测方法、接收方法、用户设备和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/285,229 Continuation US10291374B2 (en) 2014-04-04 2016-10-04 Reference signal detection method and receiving method, user equipment, and base station

Publications (1)

Publication Number Publication Date
WO2015149349A1 true WO2015149349A1 (zh) 2015-10-08

Family

ID=54239320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074796 WO2015149349A1 (zh) 2014-04-04 2014-04-04 参考信号的检测方法、接收方法、用户设备和基站

Country Status (6)

Country Link
US (1) US10291374B2 (zh)
EP (1) EP3119121B1 (zh)
KR (1) KR20160138553A (zh)
CN (1) CN105284143B (zh)
BR (1) BR112016022740A2 (zh)
WO (1) WO2015149349A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3512144A1 (en) * 2016-09-29 2019-07-17 Huawei Technologies Co., Ltd. Reference signal processing method, user equipment, and base station
CN111478739A (zh) * 2019-01-23 2020-07-31 ***通信有限公司研究院 获取邻区干扰值的方法、参考信号配置方法及装置
WO2021000725A1 (zh) * 2019-07-01 2021-01-07 华为技术有限公司 一种通信方法及装置
CN114051257A (zh) * 2016-09-21 2022-02-15 Oppo广东移动通信有限公司 传输信号的方法和装置
WO2024061113A1 (zh) * 2022-09-21 2024-03-28 华为技术有限公司 测量小区的方法与装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623539B (zh) * 2016-07-11 2020-05-22 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN107846726B (zh) * 2016-09-19 2019-08-09 上海朗帛通信技术有限公司 一种ue、基站中的发射功率调整的方法和装置
CN108173798B (zh) * 2016-12-07 2020-07-31 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
EP4138334A1 (en) 2017-03-24 2023-02-22 Apple Inc. Design of cell specific reference signal (crs) muting for even further enhanced machine type communication (efemtc)
CN118138209A (zh) * 2017-05-05 2024-06-04 华为技术有限公司 传输信号的方法和装置
US11489641B2 (en) * 2018-05-10 2022-11-01 Nokia Solutions And Networks Oy Method and device for measurement restriction
CN112040543B (zh) * 2019-06-04 2024-04-12 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN114450999A (zh) * 2019-09-30 2022-05-06 华为技术有限公司 信息处理及信息指示方法和装置
US11800405B2 (en) 2019-11-06 2023-10-24 Apple Inc. Systems and methods for cooperative communication using interfering signals
CN111901874A (zh) * 2020-04-13 2020-11-06 中兴通讯股份有限公司 一种参考信号资源的配置方法、装置、设备及储存介质
CN116939645A (zh) * 2022-03-31 2023-10-24 北京三星通信技术研究有限公司 通信方法、用户设备及基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102781030A (zh) * 2011-05-11 2012-11-14 中兴通讯股份有限公司 无线通信***中的载频信息测量方法及***
CN102883341A (zh) * 2011-07-11 2013-01-16 华为技术有限公司 信道信息的测量方法和相关装置
US20130053077A1 (en) * 2011-08-25 2013-02-28 Qualcomm Incorporated User equipment enhancements for cooperative multi-point communication
CN102958147A (zh) * 2011-08-18 2013-03-06 华为技术有限公司 上行功率控制的方法、用户设备和基站

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060187887A1 (en) * 2005-02-18 2006-08-24 Lg Electronics Inc. Wireless multiple access system for suppressing inter-cell interference
KR101619446B1 (ko) * 2008-12-02 2016-05-10 엘지전자 주식회사 하향링크 mimo시스템에 있어서 rs 전송 방법
CN101772130A (zh) * 2009-01-07 2010-07-07 中兴通讯股份有限公司 辅助检测信令发送方法
JP2013005288A (ja) * 2011-06-17 2013-01-07 Sony Corp 通信端末装置および方法、基地局装置、並びに、通信システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102781030A (zh) * 2011-05-11 2012-11-14 中兴通讯股份有限公司 无线通信***中的载频信息测量方法及***
CN102883341A (zh) * 2011-07-11 2013-01-16 华为技术有限公司 信道信息的测量方法和相关装置
CN102958147A (zh) * 2011-08-18 2013-03-06 华为技术有限公司 上行功率控制的方法、用户设备和基站
US20130053077A1 (en) * 2011-08-25 2013-02-28 Qualcomm Incorporated User equipment enhancements for cooperative multi-point communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3119121A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114051257A (zh) * 2016-09-21 2022-02-15 Oppo广东移动通信有限公司 传输信号的方法和装置
EP3512144A1 (en) * 2016-09-29 2019-07-17 Huawei Technologies Co., Ltd. Reference signal processing method, user equipment, and base station
EP3512144A4 (en) * 2016-09-29 2019-09-11 Huawei Technologies Co., Ltd. REFERENCE SIGNAL PROCESSING METHOD, USER EQUIPMENT, AND BASE STATION
CN111478739A (zh) * 2019-01-23 2020-07-31 ***通信有限公司研究院 获取邻区干扰值的方法、参考信号配置方法及装置
CN111478739B (zh) * 2019-01-23 2022-06-07 ***通信有限公司研究院 获取邻区干扰值的方法、参考信号配置方法及装置
WO2021000725A1 (zh) * 2019-07-01 2021-01-07 华为技术有限公司 一种通信方法及装置
WO2024061113A1 (zh) * 2022-09-21 2024-03-28 华为技术有限公司 测量小区的方法与装置

Also Published As

Publication number Publication date
EP3119121A4 (en) 2017-04-12
BR112016022740A2 (pt) 2017-08-15
US20170033907A1 (en) 2017-02-02
EP3119121A1 (en) 2017-01-18
KR20160138553A (ko) 2016-12-05
CN105284143A (zh) 2016-01-27
US10291374B2 (en) 2019-05-14
CN105284143B (zh) 2019-07-12
EP3119121B1 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
WO2015149349A1 (zh) 参考信号的检测方法、接收方法、用户设备和基站
TWI704818B (zh) Rrm測量方法及使用者設備
US10924984B2 (en) Device, network, and method for utilizing a downlink discovery reference signal
JP5855280B2 (ja) ユーザ装置および無線ネットワークノード、およびその方法
JP6790105B2 (ja) 認可支援アクセスにおける発見基準信号構成およびスクランブリング
JP5788454B2 (ja) マルチコンポーネント・キャリア・セルの識別
KR100974834B1 (ko) 광역 네트워크와 로컬 영역 피어투피어 네트워크 사이에서 대역폭을 공유하는 방법 및 장치
KR102446773B1 (ko) 무선 통신들에서 탐색 기준 신호들에 기초한 네트워크 식별
RU2760942C1 (ru) Пользовательский терминал и способ радиосвязи
TWI693840B (zh) 接收訊號強度指示測量之方法及其使用者設備
WO2013178102A1 (zh) 一种测量参数的指示方法及装置
JP2015502123A (ja) より少ない数の受信チェーンを使用した受信アンテナ選択/受信アンテナの組合せ
US9967809B2 (en) Method and apparatus for modified reference signal transmission for cell discovery
US9998986B2 (en) Method for transmitting communication signals in a wireless communication system
WO2018235208A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480000665.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014887781

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014887781

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167030288

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016022740

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016022740

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160930