WO2021000725A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021000725A1
WO2021000725A1 PCT/CN2020/096339 CN2020096339W WO2021000725A1 WO 2021000725 A1 WO2021000725 A1 WO 2021000725A1 CN 2020096339 W CN2020096339 W CN 2020096339W WO 2021000725 A1 WO2021000725 A1 WO 2021000725A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
information
time
frequency resource
terminal device
Prior art date
Application number
PCT/CN2020/096339
Other languages
English (en)
French (fr)
Inventor
胡丹
李胜钰
官磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021000725A1 publication Critical patent/WO2021000725A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • enhanced mobile broadband eMBB
  • ultra-reliable and low-latency communication communication URLLC
  • massive machine type communication mMTC
  • the uplink cancellation (UL canceration) mechanism can be used to ensure the reliability and low latency of URLLC transmission.
  • the uplink cancellation mechanism means that the terminal device that needs to transmit the URLLC service sends a scheduling request to the network device.
  • the network equipment must schedule appropriate time-frequency resources for it as soon as possible to meet the delay requirements of the service.
  • the network device may have scheduled the current time-frequency resources to one or more other terminal devices for eMBB transmission. If the two services are transmitted at the same time, the URLLC service will be interfered by the eMBB service, resulting in a serious decrease in reliability.
  • the network equipment needs to reschedule these time-frequency resources to the high-priority URLLC service transmission.
  • the network device first sends indication information 1 to the eMBB UE, and the indication information 1 is used to indicate the time-frequency resource that the network device is about to schedule for URLLC transmission.
  • the eMBB UE receives the indication information 1, it suspends the uplink data being sent or cancels the uplink data to be sent on the corresponding time-frequency resource.
  • Solution 2 When the network device schedules eMBB transmission on the scheduling-free time-frequency resources, a power control mechanism is adopted to ensure the reliability and low delay of URLLC service transmission.
  • the network device can be configured with free/configured grant resources.
  • the URLLC UE When the URLLC UE has uplink data to transmit, it can directly perform uplink transmission on the pre-configured scheduling-free time-frequency resources.
  • the power control mechanism means that the network device sends indication information 2 to the URLLC UE without scheduling, and the indication information 2 is used to instruct the network device to schedule eMBB transmission on the time-frequency resource on the scheduling-free time-frequency resource.
  • the scheduling-free URLLC UE receives the indication information 2, if it intends to perform uplink transmission on the indicated time-frequency resource, the transmission power needs to be increased to ensure the reliability of URLLC transmission to a certain extent.
  • the network device needs to send instruction information in two formats to instruct different types of terminal devices to perform corresponding operations. Therefore, the system complexity is high and the communication efficiency is reduced.
  • the embodiments of the present application provide a communication method and device, which can reduce system complexity and improve communication efficiency.
  • an embodiment of the present application provides a communication method.
  • the method includes: receiving first indication information, where the first indication information is used to indicate a first time-frequency resource; the first indication information includes first information; The first information is used to indicate whether the terminal device is silently transmitting uplink data on the first time-frequency resource; when it is determined according to the first information that the terminal device is silently transmitting uplink data on the first time-frequency resource, silent on the first time-frequency resource Uplink data transmission.
  • different functions can be indicated through indication information in one format, which simplifies system design, saves signaling overhead, improves communication efficiency, and can prevent terminal equipment from performing incorrect operations.
  • N orthogonal frequency division multiplexing OFDM symbols After that, the uplink data transmission is stopped on the first time-frequency resource, and the subcarrier interval of the uplink data transmission is 30 kHz. Among them, N is a positive number. Based on this optional implementation manner, it is possible to stop uplink data transmission on the first time-frequency resource in time.
  • N is not less than 2.
  • N is 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, or 7, etc.
  • N1 is the number of symbols or time length predefined by the standard
  • N2 is the number of symbols or time length configured by high-level signaling.
  • N1 can be 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, or 7, etc.
  • N2 can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, etc.
  • the subcarrier spacing of the uplink data transmission may also be greater than or less than 30 kHz.
  • the sub-carrier spacing of the uplink data transmission may also be 15 kHz, 60 kHz, or 120 kHz.
  • N is not less than 1.
  • N is 1, 1.5, 2, 2.5, or 3.5.
  • N1 is the number of symbols or time length predefined by the standard
  • N2 is the number of symbols or time length configured by high-level signaling.
  • N1 can be 1, 1.5, 2, 2.5, or 3.5
  • N2 can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, etc.
  • N is not less than 3.
  • N is 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5 or 14, etc. .
  • N1 is the number of symbols or time length predefined by the standard
  • N2 is the number of symbols or time length configured by high-level signaling.
  • N1 can be 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, or 14.
  • N2 can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, etc.
  • N is not less than 4.
  • N is 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5 or 28 and so on.
  • N1 is the number of symbols or time length predefined by the standard
  • N2 is the number of symbols or time length configured by high-level signaling.
  • N1 can be 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15 , 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5 Or 28 etc.
  • N2 can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, etc.
  • second indication information may also be received, where the second indication information is used to instruct the terminal device to detect the first indication information.
  • the terminal device does not receive the second indication information, it does not need to detect the first indication information.
  • the terminal device can detect the first indication information only after receiving the second indication information, and there is no need to always detect the first indication information, which is beneficial to saving power consumption of the terminal device.
  • a specific implementation manner of receiving the first indication information is: receiving the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the first indication information can act on multiple terminal devices, and the terminal device can successfully receive the first indication information.
  • the first information is in the first information domain of the first indication information.
  • the terminal device can first interpret only the first information in the first information domain. If the terminal device determines based on the first information that the first indication information does not act on itself, the terminal device does not need to continue to interpret the first time-frequency resource indicated by the first indication information, which is beneficial to save power consumption of the terminal device.
  • the position of the first bit of the first information field in the first indication information is configured by radio resource control RRC signaling.
  • RRC signaling By using the RRC signaling to configure the position of the first information field in the first indication information, the terminal device can accurately determine the first information field, thereby reading the first information from the first information field.
  • the load size of the first indication information may also be configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the load size of the first indication information, the terminal device can determine the search space where the first indication information is located, and accurately detect all bits of the first indication information.
  • the cell on which the first indication information functions is configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the cell that the first indication information serves, the terminal equipment under the cell that belongs to the first indication information can detect the first indication information, and the terminal equipment under the cell that does not belong to the first indication information can detect the first indication information.
  • the first indication information may not be detected.
  • an embodiment of the present application provides a communication method, the method comprising: receiving first indication information, the first indication information is used to indicate a first time-frequency resource, the first indication information includes first information, the The first information is used to instruct the terminal device whether to adjust the transmission power when performing uplink transmission on the time-frequency resource that overlaps the first time-frequency resource; to determine the second time-frequency resource, which is used to send uplink data; when According to the first information, it is determined that the terminal device adjusts the transmission power when performing uplink transmission on the time-frequency resource overlapping with the first time-frequency resource, and when the first time-frequency resource overlaps with the second time-frequency resource, the second time-frequency resource is The uplink data is transmitted on the resource at the first transmission power determined by the first power control parameter; wherein the first transmission power is greater than the second transmission power determined by the second power control parameter.
  • the terminal device when it is determined according to the first information that the terminal device does not adjust the transmission power when performing uplink transmission on the time-frequency resource overlapping with the first time-frequency resource, stop interpreting the first indication information except for the first instruction information. Information other than information. Based on this optional implementation manner, it is beneficial to avoid terminal equipment from performing incorrect operations.
  • the transmission power is adjusted, and the first time-frequency resource and the second time-frequency resource are When the resources do not overlap at all, the uplink data is transmitted at the second transmission power on the second time-frequency resource.
  • second indication information may also be received, where the second indication information is used to instruct the terminal device to detect the first indication information.
  • the terminal device does not receive the second indication information, it does not need to detect the first indication information.
  • the terminal device detects the first indication information after receiving the second indication information, and does not need to always detect the first indication information, which is beneficial to saving power consumption of the terminal device.
  • a specific implementation manner of receiving the first indication information is: receiving the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the first indication information can act on multiple terminal devices, and the terminal device can successfully receive the first indication information.
  • the first information is in the first information domain of the first indication information.
  • the terminal device can first interpret only the first information in the first information domain. If the terminal device determines based on the first information that the first indication information does not act on itself, the terminal device does not need to continue to interpret the first time-frequency resource indicated by the first indication information, which is beneficial to save power consumption of the terminal device.
  • the position of the first bit of the first information field in the first indication information is configured by radio resource control RRC signaling.
  • RRC signaling By using the RRC signaling to configure the position of the first information field in the first indication information, the terminal device can accurately determine the first information field, thereby reading the first information from the first information field.
  • the load size of the first indication information may also be configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the load size of the first indication information, the terminal device can determine the search space where the first indication information is located, and accurately detect all bits of the first indication information.
  • the cell on which the first indication information functions is configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the cell that the first indication information serves, the terminal equipment under the cell that belongs to the first indication information can detect the first indication information, and the terminal equipment under the cell that does not belong to the first indication information can detect the first indication information.
  • the first indication information may not be detected.
  • an embodiment of the present application provides a communication method, the method comprising: sending first indication information, where the first indication information is used to indicate a first time-frequency resource, and the first indication information includes first information; where , The first information is used to indicate that the first terminal device is silently transmitting uplink data on the first time-frequency resource; or, the first information is used to indicate that the second terminal device is in a time-frequency resource that overlaps the first time-frequency resource Adjust the transmission power during uplink transmission.
  • different functions can be indicated by one format of indication information, which simplifies system design, saves signaling overhead, improves communication efficiency, and helps avoid terminal equipment from performing misoperations.
  • second indication information may also be sent, where the second indication information is used to instruct the first terminal device or the second terminal device to detect the first indication information.
  • the terminal device can detect the first indication information only after receiving the second indication information, and there is no need to always detect the first indication information, which is beneficial to save power consumption of the terminal device.
  • a specific implementation manner for sending the first indication information is: sending the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the first indication information can act on multiple terminal devices, which is beneficial for the terminal device to successfully receive the first indication information.
  • the first information is in the first information domain of the first indication information.
  • the terminal device can first interpret only the first information in the first information domain. If the terminal device determines based on the first information that the first indication information does not act on itself, the terminal device does not need to continue to interpret the first time-frequency resource indicated by the first indication information, which is beneficial to save power consumption of the terminal device.
  • the position of the first bit of the first information field in the first indication information is configured by radio resource control RRC signaling.
  • RRC signaling By using the RRC signaling to configure the position of the first information field in the first indication information, the terminal device can accurately determine the first information field, thereby reading the first information from the first information field.
  • the load size of the first indication information may also be configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the load size of the first indication information, the terminal device can determine the search space where the first indication information is located, and accurately detect all bits of the first indication information.
  • the cell on which the first indication information functions is configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the cell that the first indication information serves, the terminal equipment under the cell that belongs to the first indication information can detect the first indication information, and the terminal equipment under the cell that does not belong to the first indication information can detect the first indication information.
  • the first indication information may not be detected.
  • an embodiment of the present application provides a communication method.
  • the method includes: receiving first indication information, where the first indication information is used to indicate the power control parameters adopted by each of the M scheduling-free configurations,
  • the M is an integer greater than 1; when uplink data is transmitted in at least one of the M scheduling-free configurations, the transmission power of the uplink data is adjusted according to the power control parameter indicated by the first indication information; the adjusted transmission power is used Transmit upstream data.
  • the first indication information indicates whether each of the M scheduling-free configurations increases the transmission power of uplink data transmission. Based on this optional implementation manner, it is beneficial to save transmission bits.
  • a specific implementation manner of receiving the first indication information is: receiving the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the first indication information can act on multiple terminal devices, and the terminal device can successfully receive the first indication information.
  • second indication information may also be received, where the second indication information is used to instruct the terminal device to detect the first indication information.
  • the terminal device does not receive the second indication information, it does not need to detect the first indication information.
  • the terminal device can detect the first indication information only after receiving the second indication information, and there is no need to always detect the first indication information, which is beneficial to save power consumption of the terminal device.
  • the load size of the first indication information may also be configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the load size of the first indication information, the terminal device can determine the search space where the first indication information is located, and accurately detect all bits of the first indication information.
  • the cell on which the first indication information functions is configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the cell that the first indication information serves, the terminal equipment under the cell that belongs to the first indication information can detect the first indication information, and the terminal equipment under the cell that does not belong to the first indication information can detect the first indication information.
  • the first indication information may not be detected.
  • an embodiment of the present application provides a communication method, the method comprising: sending first indication information, where the first indication information is used to indicate the power control parameters adopted by each of the M scheduling-free configurations, M is an integer greater than 1; receiving uplink data for adjusting transmission power according to the power control parameter on at least one scheduling-free configuration resource in the M scheduling-free configurations.
  • sending first indication information where the first indication information is used to indicate the power control parameters adopted by each of the M scheduling-free configurations, M is an integer greater than 1
  • M is an integer greater than 1
  • the first indication information indicates whether each of the M scheduling-free configurations increases the transmission power of uplink data transmission. Based on this optional implementation manner, it is beneficial to save transmission bits.
  • a specific implementation manner for sending the first indication information is: sending the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the first indication information can act on multiple terminal devices, which is beneficial for the terminal device to successfully receive the first indication information.
  • the M scheduling-free configurations are scheduling-free configurations in which the scheduling-free time-frequency resources and the time-frequency resources of the first terminal device overlap.
  • second indication information may also be sent, where the second indication information is used to instruct the terminal device to detect the first indication information.
  • the terminal device can detect the first indication information only after receiving the second indication information, and there is no need to always detect the first indication information, which is beneficial to save power consumption of the terminal device.
  • the load size of the first indication information may also be configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the load size of the first indication information, the terminal device can determine the search space where the first indication information is located, and accurately detect all bits of the first indication information.
  • the cell on which the first indication information functions is configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the cell that the first indication information serves, the terminal equipment under the cell that belongs to the first indication information can detect the first indication information, and the terminal equipment under the cell that does not belong to the first indication information can detect the first indication information.
  • the first indication information may not be detected.
  • an embodiment of the present application provides a communication method, the method includes: receiving first indication information, a first type of information field of the first indication information is used to indicate a first time-frequency resource, and the first indication information
  • the second type of information field in is used to indicate a second time-frequency resource; wherein the first type of information field includes first information, and the first information is used to instruct the terminal device to silently transmit uplink data on the first time-frequency resource;
  • the second type of information field includes second information, which is used to indicate that the terminal device does not mute uplink data transmission on the second time-frequency resource; and mute the uplink data transmission on the first time-frequency resource.
  • second indication information may also be received, where the second indication information is used to instruct the terminal device to detect the first indication information.
  • the terminal device does not receive the second indication information, it does not need to detect the first indication information.
  • the terminal device can detect the first indication information only after receiving the second indication information, and there is no need to always detect the first indication information, which is beneficial to save power consumption of the terminal device.
  • a specific implementation manner of receiving the first indication information is: receiving the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the first indication information can act on multiple terminal devices, and the terminal device can successfully receive the first indication information.
  • the position of the first bit of the first information in the first type of information field is configured by radio resource control RRC signaling, and the first bit of the second information is in the second type of information.
  • the position in the domain is configured by RRC signaling.
  • the uplink data transmission is stopped on the first time-frequency resource.
  • the subcarrier spacing is 30kHz. Among them, N is a positive number. Based on this optional implementation manner, it is possible to stop uplink data transmission on the first time-frequency resource in time.
  • N is not less than 2.
  • N is 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, or 7, etc.
  • N1 is the number of symbols or time length predefined by the standard
  • N2 is the number of symbols or time length configured by high-level signaling.
  • N1 can be 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, or 7, etc.
  • N2 can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, etc.
  • the subcarrier spacing of the uplink data transmission may also be greater than or less than 30 kHz.
  • the sub-carrier spacing of the uplink data transmission may also be 15 kHz, 60 kHz, or 120 kHz.
  • the sub-carrier interval of the uplink data transmission is 15 kHz, 60 kHz or 120 kHz, the values of N, N1 and N2 can be referred to the relevant description in the first aspect above, which will not be repeated here.
  • the load size of the first indication information may also be configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the load size of the first indication information, the terminal device can determine the search space where the first indication information is located, and accurately detect all bits of the first indication information.
  • the cell on which the first indication information functions is configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the cell that the first indication information serves, the terminal equipment under the cell that belongs to the first indication information can detect the first indication information, and the terminal equipment under the cell that does not belong to the first indication information can detect the first indication information.
  • the first indication information may not be detected.
  • an embodiment of the present application provides a communication method, the method includes: receiving first indication information, a first type information field of the first indication information is used to indicate a first time-frequency resource, and the first indication information
  • the second type of information field is used to indicate the second time-frequency resource; wherein, the first type of information field includes first information, and the first information is used to indicate the time-frequency overlap of the terminal device with the first time-frequency resource
  • the transmission power is not adjusted during uplink transmission on the resource;
  • the second type of information field includes second information, which is used to instruct the terminal device to perform uplink transmission on the time-frequency resource overlapping with the second time-frequency resource Adjust the transmission power at the time; determine the third time-frequency resource, the third time-frequency resource is used to send uplink data; when the second time-frequency resource overlaps the third time-frequency resource, on the third time-frequency resource
  • the uplink data is transmitted at the first transmission power determined by the first power control parameter; wherein the first transmission power is greater than the second transmission power determined by the second power control
  • the uplink data is transmitted at the second transmission power on the third time-frequency resource.
  • second indication information may also be received, where the second indication information is used to instruct the terminal device to detect the first indication information.
  • the terminal device does not receive the second indication information, it does not need to detect the first indication information.
  • the terminal device can detect the first indication information only after receiving the second indication information, and there is no need to always detect the first indication information, which is beneficial to save power consumption of the terminal device.
  • a specific implementation manner of receiving the first indication information is: receiving the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the first indication information can act on multiple terminal devices, and the terminal device can successfully receive the first indication information.
  • the position of the first bit of the first information in the first type of information field is configured by radio resource control RRC signaling, and the first bit of the second information is in the second type of information.
  • the position in the domain is configured by RRC signaling.
  • the load size of the first indication information may also be configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the load size of the first indication information, the terminal device can determine the search space where the first indication information is located, and accurately detect all bits of the first indication information.
  • the cell on which the first indication information functions is configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the cell that the first indication information serves, the terminal equipment under the cell that belongs to the first indication information can detect the first indication information, and the terminal equipment under the cell that does not belong to the first indication information can detect the first indication information.
  • the first indication information may not be detected.
  • an embodiment of the present application provides a communication method, the method comprising: sending first indication information, the first type of information field of the first indication information is used to indicate a first time-frequency resource, and the first indication information
  • the second type of information field is used to indicate the second time-frequency resource; where the first type of information field includes first information, and the first information is used to instruct the first terminal device to silently transmit uplink data on the first time-frequency resource ;
  • the second type of information field includes second information, the second information is used to instruct the second terminal device to adjust the transmission power when performing uplink transmission on the time-frequency resource that overlaps the second time-frequency resource.
  • second indication information may also be sent, where the second indication information is used to instruct the first terminal device or the second terminal device to detect the first indication information.
  • the terminal device can detect the first indication information only after receiving the second indication information, and there is no need to always detect the first indication information, which is beneficial to save power consumption of the terminal device.
  • a specific implementation manner for sending the first indication information is: sending the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the first indication information can act on multiple terminal devices, which is beneficial for the terminal device to successfully receive the first indication information.
  • the position of the first bit of the first information in the first type of information field is configured by radio resource control RRC signaling, and the first bit of the second information is in the second type of information.
  • the position in the domain is configured by RRC signaling.
  • the load size of the first indication information is configured by radio resource control RRC signaling.
  • RRC signaling By using RRC signaling to configure the load size of the first indication information, the terminal device can determine the search space where the first indication information is located, and accurately detect all bits of the first indication information.
  • the cell on which the first indication information functions is configured by radio resource control RRC signaling.
  • RRC signaling By using RRC signaling to configure the cell that the first indication information serves, the terminal equipment under the cell that belongs to the first indication information can detect the first indication information, and the terminal equipment under the cell that does not belong to the first indication information can detect the first indication information.
  • the first indication information may not be detected.
  • a communication device may be a terminal device or a device for terminal equipment.
  • the terminal device can be a mobile phone, a wearable device, or a tablet computer.
  • the device used for the terminal device may be a chip in the terminal device.
  • the communication device can perform the optional implementations of the first aspect, the second aspect, the fourth aspect, the sixth aspect, the seventh aspect, the first aspect, the second aspect, and the fourth aspect.
  • the functions of the communication device can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the unit can be software and/or hardware.
  • For operations and beneficial effects performed by the communication device reference may be made to the above-mentioned first, second, fourth, sixth, seventh, optional implementations of the first aspect, and optional implementations of the second aspect.
  • the method and beneficial effects described in any one of the manner, the optional implementation manner of the fourth aspect, the optional implementation manner of the sixth aspect, and the optional implementation manner of the seventh aspect, and the beneficial effects are not repeated here.
  • a communication device may be a network device or a device used for a network device.
  • the network device may be a base station or the like.
  • the device used for the network device may be a chip in the network device.
  • the communication device can perform any one of the above-mentioned third aspect, fifth aspect, eighth aspect, optional implementation manner of the third aspect, optional implementation manner of the fifth aspect, and optional implementation manner of the eighth aspect The method described in the item.
  • the functions of the communication device can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the unit can be software and/or hardware.
  • a communication device may be a terminal device or a device for terminal devices.
  • the terminal device can be a mobile phone, a wearable device, or a tablet computer.
  • the device used for the terminal device may be a chip in the terminal device.
  • the communication device includes a processor and a transceiver. Among them, the processor is connected to the transceiver.
  • the communication device further includes a memory. The processor is connected to the memory.
  • the transceiver when the communication device is a terminal device, the transceiver may include an antenna and a radio frequency circuit connected to the antenna.
  • the transceiver is used to implement communication between the communication device and other network elements.
  • the transceiver is used to implement communication between a communication device and a network device.
  • the transceiver when the communication device is a device used for terminal equipment, the transceiver may be an interface circuit, and the interface circuit is used for the processor to obtain or output information or data.
  • the interface circuit is used for the processor to read data from the memory or write data.
  • the interface circuit is used for the processor to receive information or data from outside the device or send information or data to the outside of the device.
  • the processor is configured to execute the foregoing first aspect, second aspect, fourth aspect, sixth aspect, seventh aspect, optional implementation manners of the first aspect, optional implementation manners of the second aspect, and fourth aspect
  • the memory is used to store a program
  • the processor calls the program stored in the memory to execute the optional options of the first aspect, the second aspect, the fourth aspect, the sixth aspect, the seventh aspect, and the first aspect.
  • operations and beneficial effects performed by the processor refer to the above-mentioned first aspect, second aspect, fourth aspect, sixth aspect, seventh aspect, optional implementation manners of the first aspect, and optional second aspect.
  • the method and beneficial effects described in any one of the implementation manners, optional implementation manners of the fourth aspect, optional implementation manners of the sixth aspect, and optional implementation manners of the seventh aspect, and the repetition will not be repeated .
  • a communication device may be a network device or a device used for a network device.
  • the network device may be a base station or the like.
  • the device used for the network device may be a chip in the network device.
  • the communication device includes a processor and a transceiver. Among them, the processor is connected to the transceiver.
  • the communication device further includes a memory. The processor is connected to the memory.
  • the transceiver when the communication device is a network device, the transceiver may include an antenna and a radio frequency circuit connected to the antenna.
  • the transceiver is used to implement communication between the communication device and other network elements.
  • the transceiver is used to implement communication between the communication device and the terminal device.
  • the transceiver when the communication device is a device used in a network device, the transceiver may be an interface circuit, and the interface circuit is used by the processor to obtain or output information or data.
  • the interface circuit is used for the processor to read data from the memory or write data.
  • the interface circuit is used for the processor to receive information or data from outside the device or send information or data to the outside of the device.
  • the processor is configured to execute any of the foregoing third aspect, fifth aspect, eighth aspect, optional implementation manner of the third aspect, optional implementation manner of the fifth aspect, and optional implementation manner of the eighth aspect One method.
  • the memory is used to store a program
  • the processor calls the program stored in the memory to execute the foregoing third aspect, fifth aspect, eighth aspect, optional implementation manner of the third aspect, and the fifth aspect
  • the method of any one of the optional implementation manner and the optional implementation manner of the eighth aspect For operations and beneficial effects performed by the processor, refer to the foregoing third aspect, fifth aspect, eighth aspect, optional implementation manners of the third aspect, optional implementation manners of the fifth aspect, or optional implementation manners of the eighth aspect.
  • the methods and beneficial effects described in any one of the selected implementation manners will not be repeated here.
  • the thirteenth aspect provides a computer program product that, when it runs on a computer, enables the computer to execute the above-mentioned first, second, fourth, sixth, seventh, and first aspects.
  • the fourteenth aspect provides a computer program product, which when running on a computer, causes the computer to execute the above-mentioned third aspect, fifth aspect, eighth aspect, optional implementation manner of the third aspect, and fifth aspect The method of any one of the optional implementation manners of the eighth aspect and the optional implementation manners of the eighth aspect.
  • a computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the first, second, and fourth aspects above.
  • the sixth aspect, the seventh aspect, the optional implementation manners of the first aspect, the optional implementation manners of the second aspect, the optional implementation manners of the fourth aspect, the optional implementation manners of the sixth aspect, and the first aspect The method of any one of the optional implementation manners of the seven aspects.
  • a computer-readable storage medium stores instructions that, when run on a computer, cause the computer to execute the third, fifth, and eighth aspects above.
  • FIG. 1 is a schematic diagram of a system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of first indication information provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of first indication information provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a time-frequency resource provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of yet another communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • the embodiments of the present application provide a communication method and device, which are beneficial to reduce the complexity of the system.
  • Fig. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • the communication system includes network equipment and terminal equipment 1, terminal equipment 2, terminal equipment 3, and terminal equipment 4.
  • the terminal device 1 to the terminal device 4 are connected to the network device in a wireless manner.
  • Fig. 1 is only a schematic diagram of a communication system provided by the implementation of the present application.
  • Fig. 1 uses a communication system including one network device and four terminal devices as an example. Of course, the communication system may also include more than four or less than four terminal devices. Alternatively, the communication system may also include other devices, such as wireless relay devices and wireless backhaul devices, which are not limited in the embodiment of the present application.
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • the network device in the embodiment of the present application is an access device that a terminal device accesses to the mobile communication system in a wireless manner.
  • the network equipment can be an evolved NodeB (eNB), a transmission reception point (TRP), a next generation NodeB (gNB) in the NR system, and a base station in other future mobile communication systems. Or the access node in the WiFi system, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the network equipment provided in the embodiments of the present application may be composed of a centralized unit (CU) and a distributed unit (DU). Among them, the CU may also be called a control unit, and CU-DU is used.
  • the structure of the network equipment such as the protocol layer of the base station, can be separated, part of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are distributed in the DU, and the CU is centrally controlled by the DU.
  • the terminal device in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal device may also be called a terminal (terminal), user equipment (UE), mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), and so on.
  • the terminal device can be a mobile phone (mobile phone), wearable device, tablet computer (Pad), computer with wireless transceiver function, virtual reality (VR) terminal device, augmented reality (AR) terminal device, industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, transportation safety (transportation) Wireless terminals in safety), wireless terminals in smart cities, and wireless terminals in smart homes.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, drones, balloons, and satellites.
  • the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
  • the terminal device 1 is used to send scheduling-based eMBB transmission
  • the terminal device 2 is used to send scheduling-based URLLC transmission
  • the terminal device 3 and the terminal device 4 are used for sending URLLC transmission without scheduling.
  • the terminal device 3 is used to send a low-priority URLLC transmission without scheduling.
  • the terminal device 4 is used to send high-priority URLLC transmission without scheduling.
  • the following introduces scheduling-based eMBB transmission, scheduling-based URLLC transmission, and scheduling-free URLLC transmission.
  • Scheduling-based eMBB transmission means that when a terminal device is preparing to send an eMBB transmission, it needs to send a scheduling request to the network device. After receiving the scheduling request, the network device allocates time-frequency resources, modulation and coding scheme (MCS), power control, and other transmission parameters for the eMBB transmission. After receiving the transmission parameter assigned by the network device, the terminal device sends the eMBB transmission according to the transmission parameter.
  • the eMBB transmission is eMBB transmission based on scheduling. To simplify the description, eMBB transmission in the following embodiments of the present application refers to scheduling-based eMBB transmission.
  • the scheduling-based URLLC transmission means that when the terminal device is preparing to send the URLLC transmission, it needs to send a scheduling request to the network device. After receiving the scheduling request, the network device allocates transmission parameters such as time-frequency resources, MCS, and power control for the URLLC transmission. After receiving the transmission parameter assigned by the network device, the terminal device sends the URLLC transmission according to the transmission parameter.
  • the URLLC transmission is URLLC transmission based on scheduling.
  • Scheduling-free URLLC transmission means that when the terminal device is preparing to send URLLC transmission, it may not go through the process of "sending a scheduling request to the network device, and the network device sends transmission parameters according to the scheduling request", but directly in the scheduling-free configuration (grant -free configuration/configured grant configuration) to send the URLLC transmission on the scheduling-free time-frequency resource.
  • the URLLC transmission is the URLLC transmission without scheduling.
  • the network device can be pre-configured with one or more dispatch-free configurations for the URLLC service for dispatch-free transmission.
  • the network device For the type 2 scheduling-free configuration, the network device must send activation signaling to activate the scheduling-free configuration. After receiving the activation instruction, the terminal device can send URLLC transmission on the scheduling-free time-frequency resource of the scheduling-free configuration.
  • the scheduling-free configuration can be configured by higher layer signaling.
  • the high-level signaling may be radio resource control (radio resource control, RRC) signaling, or may also be system information blocks (SIB) or master information blocks (MIB), etc.
  • the scheduling-free configuration can include one or more of the following configurations: frequency hopping methods (for example, frequency hopping within a slot, frequency hopping between slots, and frequency hopping between subslots), demodulation reference signal (Demodulation Reference Signal, DMRS) Configuration, MCS table selection, MCS table conversion precoding, selection of dynamic or semi-static configuration of beta-offset (beta-offset refers to the resources occupied by the uplink control information in the physical uplink shared channel), resource allocation type, physical uplink shared channel (physical uplink shared channel, PUSCH) resource block group (resource block group, RBG) size, closed-loop power control process, open-loop power control parameters (such as P0 and alpha, where P0 is the target signal-to-noise signal received by the network device Ratio, alpha is the path loss compensation factor), hybrid automatic repeat reQuest (HARQ) process number, PUSCH repetition times, redundancy version, period, time domain resource allocation, frequency domain resource allocation, antenna port, pre- Coding
  • the network device can indicate the priority of URLLC transmission without scheduling in the following two ways.
  • Manner 1 For the scheduling-free configuration of type 2, the network device needs to send activation signaling to activate the scheduling-free configuration.
  • the activation signaling may indicate, through an information field, the priority of URLLC transmission using the scheduling-free configuration transmission.
  • Manner 2 For the scheduling-free configuration that does not need to be activated, when the network device configures the scheduling-free configuration for the terminal device through high-level signaling, the high-level signaling can indicate the priority of URLLC transmission using the scheduling-free configuration.
  • the terminal device can determine the priority of the URLLC transmission that it transmits according to the instructions of the network device.
  • the network device may also indicate the priority of the scheduling-free URLLC transmission in other ways, which is not limited in the embodiment of the present application.
  • Solution 1 When the network device prepares or has scheduled the URLLC transmission to the time-frequency resource that the eMBB transmission is sending or is about to send, the network device sends instruction information 1, which carries the time-frequency of the URLLC transmission based on the scheduling Resources. After receiving the indication information 1, the terminal device 1 suspends the uplink data being sent or cancels the uplink data to be sent on the time-frequency resource indicated by the indication information 1. In this way, it can be ensured that the time-frequency resources used in URLLC transmission and eMBB transmission do not overlap each other, and the reliability and low latency of URLLC transmission are guaranteed.
  • Solution 2 When the network device schedules the eMBB transmission on the non-scheduling time-frequency resource, the network device sends instruction information 2, and the instruction information 2 carries the time-frequency resource of the eMBB transmission. After the terminal device 3 (or terminal device 4) receives the instruction information 2, if the terminal device 3 (or terminal device 4) is ready to perform uplink transmission on the time-frequency resource indicated by the instruction information 2, the transmission power needs to be increased to a certain extent To ensure the reliability of URLLC transmission.
  • the network device will send two formats of instruction information to instruct different types of terminal devices to perform corresponding operations. Designing the instruction information in two formats will increase the complexity of the system and require more standardization efforts. In addition, it is easy to cause misoperation of terminal equipment. For example, all terminal devices may receive instruction information 1 and instruction information 2. After the terminal device 2 and the terminal device 3 (or the terminal device 4) interpret the time-frequency resource indicated by the indication information 1, the time-frequency resource indicated by the indication information 1 suspends the uplink data being sent or cancels the uplink data to be sent.
  • the terminal device 2 and the terminal device 3 interpret the time-frequency resource indicated by the indication information 1, if the terminal device 2 and the terminal device 3 (or the terminal device 4) are ready to use the time-frequency resource indicated by the indication information 1, When uplink transmission is performed on the resource, the terminal device 2 and the terminal device 3 (or the terminal device 4) will increase the transmission power.
  • the purpose of the network device sending the instruction information 1 is to make the terminal device 1 suspend the uplink data being sent or cancel the uplink data to be sent in the time-frequency resource indicated by the instruction information 1 after receiving the instruction information 1.
  • the embodiment of this application defines the one-way communication link from the access network to the terminal as the downlink, the data transmitted on the downlink is the downlink data, and the transmission direction of the downlink data is called the downlink direction; and the one from the terminal to the access network
  • the unidirectional communication link is the uplink, and the data transmitted on the uplink is the uplink data, and the transmission direction of the uplink data is called the uplink direction.
  • the resources described in the embodiments of the present application may also be referred to as transmission resources, including one or more of time domain resources, frequency domain resources, and code channel resources, and may be used to carry data in the uplink communication process or the downlink communication process. Or signaling.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B according to A does not mean that B is determined only according to A, and B can also be determined according to A and/or other information.
  • connection appearing in the embodiments of this application refers to various connection modes such as direct connection or indirect connection to realize communication between devices, which is not limited in the embodiments of this application.
  • transmission in the embodiments of this application refers to two-way transmission, including sending and/or receiving actions.
  • transmission in the embodiments of the present application includes the sending of data, the receiving of data, or the sending of data and the receiving of data.
  • the data transmission here includes uplink and/or downlink data transmission.
  • Data may include channels and/or signals.
  • Uplink data transmission means uplink channel and/or uplink signal transmission
  • downlink data transmission means downlink channel and/or downlink signal transmission.
  • the services appearing in the embodiments of the present application refer to the communication services obtained by the terminal from the network side, including control plane services and/or data plane services, such as voice services and data traffic services.
  • the sending or receiving of a service includes the sending or receiving of service-related data (data) or signaling (signaling).
  • the terminal and/or network device can perform some or all of the steps in the embodiment of this application. These steps or operations are only examples. In the embodiment of this application, other operations or various operations can also be performed. This kind of operation deformation. In addition, each step may be executed in a different order presented in the embodiment of the present application, and it may not be necessary to perform all the operations in the embodiment of the present application.
  • This application provides a communication method and device, which can reduce system complexity and avoid terminal misoperation.
  • the communication method and equipment provided in this application will be further introduced below.
  • the execution subject of step 201 is a network device or a chip in the network device.
  • the execution subject of step 202 is the first terminal device or the chip in the first terminal device.
  • the execution subject of step 203 and step 204 is the second terminal device, or the chip in the second terminal device.
  • the following takes the network device, the first terminal device, and the second terminal device as the execution body of the method as an example for description.
  • the communication method includes the following steps 201 to 204, where:
  • the network device sends first instruction information.
  • the first indication information is used to indicate a first time-frequency resource, and the first indication information includes first information; the first information is used to instruct the first terminal device to silently transmit uplink data on the first time-frequency resource; or The first information is used to instruct the second terminal device to adjust the transmission power when performing uplink transmission on a time-frequency resource that overlaps the first time-frequency resource.
  • the first indication information may be downlink control information (downlink control information, DCI).
  • the first information is used to indicate that the first terminal device is silently transmitting uplink data on the first time-frequency resource
  • the first information is not used to indicate that the second terminal device is at the time-frequency overlap with the first time-frequency resource. Adjust the transmission power during uplink transmission on the resource. If the first information is used to instruct the second terminal device to adjust the transmission power when performing uplink transmission on the time-frequency resource overlapping with the first time-frequency resource, then the first information is not used to indicate that the first terminal device is in the first time. Silent uplink data transmission on frequency resources.
  • the first information is represented by a first information field in the first indication information, and the first information field may contain one bit or multiple bits, or the first information is carried in an information field of the first indication information ( Field), for example, the first information is carried in the header of the first indication information. Take the first information including one bit as an example. If the bit value of the first information is 1, the first information indicates that the first terminal device silently transmits uplink data on the first time-frequency resource. If the bit value of the first information is 0, the first information instructs the second terminal device to adjust the transmission power when performing uplink transmission on the time-frequency resource that overlaps the first time-frequency resource.
  • the first information indicating that the first terminal device silently transmits uplink data on the first time-frequency resource can also be understood as: the first information indicates that the first indication information acts on the first terminal device.
  • the first information instructing the second terminal device to adjust the transmission power when performing uplink transmission on the time-frequency resource overlapping with the first time-frequency resource can also be understood as: the first information indicates that the first instruction information acts on the second terminal equipment.
  • the network device or protocol may be configured in the first terminal device in advance: if the first indication information acts on the first terminal device, the first terminal device silently transmits uplink data on the first time-frequency resource. Optionally, if the first indication information does not act on the first terminal device, the first terminal device stops interpreting information other than the first information in the first indication information.
  • the network device or protocol can be configured in the second terminal device in advance: if the first indication information acts on the second terminal device, the second terminal device adjusts when performing uplink transmission on the time-frequency resource overlapping with the first time-frequency resource Transmission power. Optionally, if the first indication information does not act on the second terminal device, the second terminal device stops interpreting information other than the first information in the first indication information.
  • the first information may be represented by a first information field in the first indication information, and the first information field may include one bit or multiple bits. Take the first information including one bit as an example. If the bit of the first information is 1, the first information indicates to the first terminal device that the first indication information acts on the first terminal device. If the bit of the first information is 0, the first information indicates to the second terminal device that the first indication information acts on the second terminal device.
  • the first information may also indicate that the first terminal device is silently transmitting uplink data on the first time-frequency resource, and that the first indication information acts on the first terminal device; or, the first information is used to indicate that the second terminal device is in communication with the first terminal device.
  • the transmission power is adjusted when uplink transmission is performed on the time-frequency resources with overlapping time-frequency resources, and the first indication information acts on the second terminal device. For example, take the first information including 2 bits as an example. If the bit value of the first information is 01, the first information indicates that the first terminal device silently transmits uplink data on the first time-frequency resource, and indicates that the first indication information acts on the first terminal device.
  • the first information indicates that the second terminal device adjusts the transmission power when performing uplink transmission on the time-frequency resource overlapping with the first time-frequency resource, and indicates that the first indication information acts on the first time-frequency resource.
  • suspending or dropping uplink data transmission on the first time-frequency resource may refer to: suspending the uplink data being sent on the first time-frequency resource, or, on the first time-frequency resource Cancel the upstream data to be sent.
  • the time-frequency resource that overlaps the first time-frequency resource refers to the time-frequency resource that partially or completely overlaps the first time-frequency resource.
  • overlap may refer to partial or complete overlap of time-frequency resources.
  • the partial overlap of time-frequency resources may include the following three situations: 1. Complete overlap of time domain resources and partial overlap of frequency domain resources. 2. Partial overlap in time domain resources and complete overlap in frequency domain resources. 3. Partially overlap in time domain resources and partly overlap in frequency domain resources. Complete overlap refers to complete overlap in time domain resources and complete overlap in frequency domain resources.
  • the foregoing first terminal device and the second terminal device may be different types of terminal devices.
  • different types refer to different types of services transmitted by terminal equipment.
  • the service type can be distinguished by the urgency/priority of the service, the bandwidth, delay and other transmission requirements of the service, or can be distinguished according to other rules.
  • Different types of services have different transmission priorities and the number of allocated resources.
  • the first terminal device is a terminal device for sending eMBB transmission
  • the second terminal device is a terminal device for sending URLLC transmission without scheduling.
  • the first terminal device may be the terminal device 1 in FIG. 1.
  • the second terminal device may be the terminal device 3 or the terminal device 4 in FIG. 1.
  • the above-mentioned first terminal device and the second terminal device may be the same type of terminal device.
  • the first terminal device is a terminal device for sending a low-priority URLLC transmission without scheduling
  • the second terminal device is a terminal device for transmitting a URLLC transmission without scheduling.
  • the first terminal device may be the terminal device 3 in FIG. 1
  • the second terminal device may be the terminal device 3 or the terminal device 4 in FIG. 1.
  • the first terminal device and the second terminal device may be the same terminal device.
  • the first terminal device is a terminal device used to send eMBB transmission. If the network device prepares or has scheduled the URLLC transmission to the time-frequency resource that the eMBB transmission of the first terminal device is sending or is about to send, the network device sends the first indication information.
  • the first indication information indicates a first time-frequency resource, and the first time-frequency resource is a time-frequency resource for URLLC transmission based on scheduling. Or, the first time-frequency resource is the overlapped part of the time-frequency resource of eMBB transmission of the first terminal device and the time-frequency resource of URLLC transmission based on scheduling.
  • the first indication information includes first information. The first information is used to instruct the first terminal device to silently transmit uplink data on the first time-frequency resource, or to indicate that the first indication information acts on the first terminal device.
  • the second terminal device is a terminal device for sending URLLC transmission without scheduling. If the network device prepares or has scheduled the eMBB transmission on the scheduling-free time-frequency resource, the network device sends the first indication information.
  • the first indication information indicates a first time-frequency resource, and the first time-frequency resource is a time-frequency resource for the eMBB transmission. Or, the first time-frequency resource is a part where the time-frequency resource of eMBB transmission and the non-scheduling time-frequency resource overlap.
  • the first indication information includes first information. The first information is used to instruct the second terminal device to adjust the transmission power when performing uplink transmission on a time-frequency resource that overlaps the first time-frequency resource, or to indicate that the first instruction information acts on the second terminal device.
  • Terminal device 1 is a terminal device for sending scheduling-based eMBB transmission.
  • the terminal device 2 is a terminal device for sending URLLC transmission based on scheduling.
  • the terminal device 3 and the terminal device 4 are terminal devices for sending URLLC transmission without scheduling. If the network device prepares or has scheduled the URLLC transmission of the terminal device 2 to the time-frequency resource that the eMBB transmission of the terminal device 1 is sending or is about to send, the network device sends the first indication information.
  • the first indication information indicates a first time-frequency resource, and the first time-frequency resource is a time-frequency resource transmitted by the URLLC of the terminal device 2.
  • the first time-frequency resource is a part where the time-frequency resource of the eMBB transmission of the terminal device 1 and the time-frequency resource of the URLLC transmission of the terminal device 2 overlap.
  • the first indication information includes first information.
  • the bit value of the first information is 1, which is used to instruct the terminal device 1 to silently transmit uplink data on the first time-frequency resource, or to indicate that the first indication information acts on the terminal device 1.
  • the terminal device 1 After the terminal device 1 receives the first indication information, since the bit value of the first information is 1, the terminal device 1 determines according to the first information that the terminal device 1 silently transmits uplink data on the first time-frequency resource, or according to the first The information determines that the first instruction information acts on itself. Then, the terminal device 1 silently transmits uplink data on the first time-frequency resource.
  • the terminal device 2 After the terminal device 2 receives the first indication information, since the bit value of the first information is 1, the terminal device 2 determines that the first indication information does not act on itself according to the first information, and the terminal device 2 stops responding to the first indication information. In addition to the first information, other information is interpreted.
  • the terminal device 3 After the terminal device 3 receives the first indication information, since the bit value of the first information is 1, the terminal device 3 determines according to the first information that the terminal device 3 performs uplink transmission on the time-frequency resource overlapping with the first time-frequency resource The transmission power is not adjusted from time to time, or it is determined according to the first information that the first indication information does not affect itself. Then, the terminal device 3 stops interpreting information other than the first information in the first indication information, so as to avoid the terminal device 3 from performing erroneous operations (for example, when the terminal device 3 overlaps with the first time-frequency resource) Adjust the transmission power when performing uplink transmission on the resource).
  • the operation after the terminal device 4 receives the first indication information is similar to the operation of the terminal device 3, and will not be repeated here.
  • Example 1 the bit value of the first information is 1 as an example. Alternatively, the bit value of the first information in Example 1 may be 0.
  • Terminal device 1 is a terminal device for sending scheduling-based eMBB transmission.
  • the terminal device 3 and the terminal device 4 are terminal devices for sending URLLC transmission without scheduling. If the network device prepares or has scheduled the eMBB transmission of the terminal device 1 on the scheduling-free time-frequency resource, the network device sends the first indication information.
  • the first indication information indicates a first time-frequency resource, and the first time-frequency resource is a time-frequency resource for eMBB transmission of the terminal device 1. Or, the first time-frequency resource is the overlapping part of the time-frequency resource of the eMBB transmission of the terminal device 1 and the non-scheduling time-frequency resource.
  • the first indication information includes first information.
  • the bit value of the first information is 0, which is used to instruct the terminal device 3 and the terminal device 4 to adjust the transmission power when performing uplink transmission on time-frequency resources that overlap with the first time-frequency resource, or to indicate the first indication information Act on terminal device 3 and terminal device 4.
  • the terminal device 1 After the terminal device 1 receives the first indication information, since the bit value of the first information is 0, the terminal device 1 determines according to the first information that the terminal device 1 is not silently transmitting uplink data on the first time-frequency resource, or according to the first The information determines that the first instruction information does not affect itself. Then, the terminal device 1 stops interpreting information other than the first information in the first indication information to avoid the terminal device 1 from performing erroneous operations (such as silent uplink data transmission on the first time-frequency resource).
  • the terminal device 3 After the terminal device 3 receives the first indication information, since the bit value of the first information is 0, the terminal device 3 determines according to the first information that the terminal device 3 performs uplink transmission on the time-frequency resource overlapping with the first time-frequency resource Adjust the transmission power at the time, or determine that the first indication information acts on itself according to the first information.
  • the terminal device 3 determines a second time-frequency resource, and the second time-frequency resource is used to send uplink data. If the first time-frequency resource overlaps the second time-frequency resource, the terminal device 3 transmits the uplink data on the second time-frequency resource at the first transmission power determined by the first power control parameter.
  • the first power control parameter and the second power control parameter are different power control parameters configured by high-level signaling, including open-loop power control parameters (such as the target signal-to-noise ratio (P0) of the network device receiving and transmitting, and the path loss compensation factor ( alpha), path loss, etc.).
  • the first transmission power is greater than the second transmission power determined by the second power control parameter.
  • the second power control parameter may be a default parameter or a reference value, and the second transmission power may be a default transmission power. That is to say, if the first time-frequency resource overlaps the second time-frequency resource, the terminal device 3 increases the transmission power on the second time-frequency resource to transmit the uplink data, which can ensure the transmission of URLLC services to a certain extent. Reliability.
  • the terminal device 3 transmits the uplink data at the second transmission power on the second time-frequency resource. That is, when the first time-frequency resource does not overlap the second time-frequency resource, the terminal device 3 transmits the uplink data without increasing the transmission power in the second time-frequency resource.
  • the operation after the terminal device 4 receives the first indication information is similar to the operation of the terminal device 3, and will not be repeated here.
  • Example 2 the bit value of the first information is 0 as an example.
  • the bit value of the first information in Example 1 may be 1.
  • the first terminal device is a terminal device for sending a low-priority URLLC service without scheduling. If the network device prepares or has scheduled the URLLC transmission to the scheduling-free time-frequency resource of the low-priority URLLC transmission of the first terminal device, the network device sends the first indication information.
  • the first indication information indicates a first time-frequency resource, and the first time-frequency resource is a time-frequency resource for URLLC transmission based on scheduling.
  • the first time-frequency resource is a portion where the scheduling-free time-frequency resource of the low-priority URLLC transmission of the first terminal device overlaps the time-frequency resource of the scheduling-based URLLC transmission.
  • the first indication information includes first information. The first information is used to instruct the first terminal device to silently transmit uplink data on the first time-frequency resource.
  • the second terminal device is a terminal device used to send a scheduling-free URLLC service. If the network device prepares or has scheduled the eMBB transmission on the scheduling-free time-frequency resource, the network device sends the first indication information.
  • the first indication information indicates a first time-frequency resource, and the first time-frequency resource is a time-frequency resource for the eMBB transmission. Or, the first time-frequency resource is a part where the time-frequency resource of eMBB transmission and the non-scheduling time-frequency resource overlap.
  • the first indication information includes first information. The first information is used to instruct the second terminal device to adjust the transmission power when performing uplink transmission on a time-frequency resource that overlaps the first time-frequency resource.
  • URLLC transmission based on scheduling has a higher priority. Therefore, when the scheduling-free time-frequency resource of the low-priority URLLC transmission overlaps with the time-frequency resource of the scheduling-based URLLC transmission, the first terminal device (the terminal device for sending the scheduling-free low-priority URLLC transmission) is instructed. Silent uplink data transmission on the time-frequency resources of URLLC transmission based on scheduling can ensure the reliability of URLLC transmission with high priority.
  • Terminal device 2 is a terminal device for sending URLLC transmission based on scheduling.
  • the terminal device 3 is a terminal device for sending low-priority URLLC transmission without scheduling.
  • the terminal device 4 is a terminal device for sending high-priority URLLC transmission without scheduling. If the network device prepares or has scheduled the URLLC transmission of the terminal device 2 to the scheduling-free time-frequency resource of the low-priority URLLC transmission of the terminal device 3, the network device sends the first indication information.
  • the first indication information indicates a first time-frequency resource, and the first time-frequency resource is a time-frequency resource transmitted by the URLLC of the terminal device 2.
  • the first time-frequency resource is the overlapping portion of the unscheduled time-frequency resource of the low-priority URLLC transmission of the terminal device 3 and the time-frequency resource of the URLLC transmission of the terminal device 2.
  • the first indication information includes first information.
  • the bit value of the first information is 1, which is used to instruct the terminal device 3 to silently transmit uplink data on the first time-frequency resource, or to indicate that the first indication information acts on the terminal device 3.
  • the terminal device 2 After the terminal device 2 receives the first indication information, since the bit value of the first information is 1, the terminal device 2 determines that the first indication information does not act on itself according to the first information, and the terminal device 2 stops responding to the first indication information. In addition to the first information, other information is interpreted.
  • the terminal device 3 After the terminal device 3 receives the first indication information, since the bit value of the first information is 1, the terminal device 3 determines according to the first information that the terminal device 3 silently transmits uplink data on the first time-frequency resource, or according to the first information It is determined that the first indication information acts on the terminal device 3. Then, the terminal device 3 silently transmits uplink data on the first time-frequency resource.
  • An implementation manner for the terminal device 3 to silently transmit uplink data on the first time-frequency resource is: if the first time-frequency resource overlaps with the second time-frequency resource used by the terminal device 3 to send uplink data, the terminal device 3 Silently uplink data transmission on the second time-frequency resource. Of course, if the first time-frequency resource and the second time-frequency resource do not overlap, the terminal device 3 will not silently transmit uplink data on the second time-frequency resource.
  • the terminal device 4 After the terminal device 4 receives the first indication information, since the bit value of the first information is 1, the terminal device 4 determines according to the first information that the terminal device 4 performs uplink transmission on the time-frequency resource overlapping with the first time-frequency resource The transmission power is not adjusted from time to time, or it is determined according to the first information that the first indication information does not affect itself. Then, the terminal device 4 stops interpreting information other than the first information in the first indication information, so as to avoid the terminal device 4 from performing erroneous operations.
  • Example 3 the bit value of the first information is 1 as an example. Alternatively, the bit value of the first information in Example 1 may be 0.
  • Terminal device 1 is a terminal device for sending scheduling-based eMBB transmission.
  • the terminal device 3 and the terminal device 4 are terminal devices for sending URLLC transmission without scheduling. If the network device prepares or has scheduled the eMBB transmission of the terminal device 1 on the scheduling-free time-frequency resource, the network device sends the first indication information.
  • the first indication information indicates a first time-frequency resource, and the first time-frequency resource is a time-frequency resource for eMBB transmission of the terminal device 1. Or, the first time-frequency resource is the overlapping part of the time-frequency resource of the eMBB transmission of the terminal device 1 and the non-scheduling time-frequency resource.
  • the first indication information includes first information.
  • the bit value of the first information is 0, which is used to instruct the terminal device 3 and the terminal device 4 to adjust the transmission power when performing uplink transmission on the time-frequency resource overlapping with the first time-frequency resource, or to indicate the first instruction
  • the information acts on the terminal device 3 and the terminal device 4.
  • the terminal device 1 After the terminal device 1 receives the first indication information, since the bit value of the first information is 0, the terminal device 1 determines that the first indication information does not act on itself according to the first information, and the terminal device 1 stops responding to the first indication information. In addition to the first information, other information is interpreted.
  • the terminal device 3 After the terminal device 3 receives the first indication information, since the bit value of the first information is 0, the terminal device 3 determines according to the first information to adjust the transmission when performing uplink transmission on a time-frequency resource that overlaps the first time-frequency resource. Power, or determine the first indication information to act on itself according to the first information. Then, the terminal device 3 determines the second time-frequency resource, and the second time-frequency resource is used to send uplink data. If the first time-frequency resource overlaps the second time-frequency resource, the terminal device 3 transmits uplink data on the second time-frequency resource at the first transmission power determined by the first power control parameter. For a specific implementation manner of the terminal device 3 sending uplink data at the first transmission power determined by the first power control parameter on the second time-frequency resource, refer to the implementation manner of the terminal device 3 in the foregoing example 2, which will not be repeated here.
  • the operation after the terminal device 4 receives the first indication information is similar to the operation of the terminal device 3, and will not be repeated here.
  • Example 3 the bit value of the first information is 0 as an example.
  • the bit value of the first information in Example 1 may be 1.
  • the first information is in the first information domain of the first indication information, and the first indication information indicates the first time-frequency resource through the second information domain.
  • the first information domain is different from the second information domain.
  • the first information field may contain one or more bits.
  • the second information field may contain one or more bits.
  • the first information domain is different from the second information domain.
  • the embodiment of the present application does not limit the positions of the first information domain and the second information domain in the first indication information.
  • the first information domain may be before the second information domain, or the first information domain may be after the second information domain.
  • an additional information field is added to instruct the first terminal device to silently transmit uplink data on the first time-frequency resource, or to instruct the second terminal device to perform the time-frequency overlap with the first time-frequency resource. Adjust the transmission power during uplink transmission on the resource.
  • the information field included in the first information field may be a head bit of the first indication information or bits in other positions.
  • the position of the first information field in the first indication information is configured by RRC signaling.
  • the position of the first bit of the first information field in the first indication information is configured by RRC signaling. That is, the network device configures the position of the first bit of the first information field in the first indication information to the terminal devices (such as the first terminal device and the second terminal device) through RRC signaling.
  • the terminal device can accurately determine the first information field, thereby reading the first information from the first information field.
  • the load size of the first indication information may also be configured by RRC signaling.
  • the network device can configure the load size of the first indication information to the terminal devices (such as the first terminal device and the second terminal device) through RRC signaling.
  • the load size of the first indication information is the number of bits of the first indication information.
  • the terminal device can determine the search space where the first indication information is located, and accurately detect all bits of the first indication information.
  • the cell on which the first indication information functions is configured by RRC signaling.
  • the network device can configure the cell to which the first indication information functions to the terminal device through RRC signaling.
  • the first terminal device and the second terminal device belong to cell 1, and the third terminal device belongs to cell 2.
  • the network device configures the first terminal device to the third terminal device to the cell where the first indication information functions as cell 1 through RRC signaling. Since the third terminal device belongs to cell 2, the first indication information does not act on cell 2. Therefore, the third terminal device does not need to detect the first indication information.
  • the terminal equipment under the cell that belongs to the first indication information can detect the first indication information, and the terminal equipment under the cell that does not belong to the first indication information can detect the first indication information.
  • the first indication information may not be detected.
  • the first terminal device determines, according to the first information, that the first terminal device silently transmits uplink data on the first time-frequency resource, the first terminal device silently transmits uplink data on the first time-frequency resource.
  • the first terminal device receives the first indication information. After the first terminal device receives the first indication information, when the first terminal device determines according to the first information that the first terminal device is silently transmitting uplink data on the first time-frequency resource, the first terminal device is on the first time-frequency resource Silence the uplink data transmission.
  • the first terminal device when it is determined according to the first information that the first terminal device is not silently transmitting uplink data on the first time-frequency resource, it indicates that the first indication information does not act on the first terminal device, then the first terminal device The device can stop interpreting information other than the first information in the first indication information.
  • the first terminal device may be the terminal device 1 in Example 1 and Example 2.
  • the first terminal device may be the terminal device 3 in Example 3 and Example 4.
  • the specific implementation on the first terminal device side reference may be made to the descriptions in Examples 1 to 4 above, and details are not described herein.
  • the first terminal device when it is determined according to the first information that the first terminal device is silently transmitting uplink data on the first time-frequency resource, the first terminal device starts from receiving the first indication information in N orthogonal After the frequency division multiplexing of the OFDM symbols, the uplink data transmission is stopped on the first time-frequency resource, and the subcarrier interval of the uplink data transmission is 30 kHz (kilohertz). Among them, N is a positive number.
  • N is not less than 2.
  • N is 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, or 7, etc.
  • N1 is the number of symbols or time length predefined by the standard
  • N2 is the number of symbols or time length configured by high-level signaling.
  • N1 can be 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, or 7, etc.
  • N2 can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, etc.
  • the subcarrier spacing of the uplink data transmission may also be greater than or less than 30 kHz.
  • the sub-carrier spacing of the uplink data transmission can also be 15 kHz, 60 kHz, or 120 kHz.
  • N is not less than 1.
  • N is 1, 1.5, 2, 2.5, or 3.5.
  • N1 is the number of symbols or time length predefined by the standard
  • N2 is the number of symbols or time length configured by high-level signaling.
  • N1 can be 1, 1.5, 2, 2.5, or 3.5
  • N2 can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, etc.
  • N is not less than 3.
  • N is 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5 or 14, etc. .
  • N1 is the number of symbols or time length predefined by the standard
  • N2 is the number of symbols or time length configured by high-level signaling.
  • N1 can be 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, or 14.
  • N2 can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, etc.
  • N is not less than 4.
  • N is 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5 or 28 and so on.
  • N1 is the number of symbols or time length predefined by the standard
  • N2 is the number of symbols or time length configured by high-level signaling.
  • N1 can be 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15 , 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, 21, 21.5, 22, 22.5, 23, 23.5, 24, 24.5, 25, 25.5, 26, 26.5, 27, 27.5 Or 28 etc.
  • N2 can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, etc.
  • the first indication information does not carry the first information
  • the first indication information is used for the first terminal device to silently transmit uplink data on the first time-frequency resource indicated by the first indication information.
  • the first terminal device stops uplink data transmission on the first time-frequency resource after N orthogonal frequency division multiplexing OFDM symbols, and the subcarrier interval of the uplink data transmission is 30kHz (kilohertz).
  • N is a positive number.
  • N is not less than 2.
  • N N1+N2.
  • the subcarrier spacing of the uplink data transmission may also be greater than or less than 30 kHz.
  • the sub-carrier spacing of the uplink data transmission may also be 15 kHz, 60 kHz, or 120 kHz.
  • the values of N, N1 and N2 can be referred to the above-mentioned related description, and will not be repeated here.
  • the second terminal device determines the second time-frequency resource.
  • the second time-frequency resource is used to send uplink data.
  • the second terminal device needs to receive the first indication information.
  • the second terminal device may determine the second time-frequency resource after receiving the first indication information, or may determine the second time-frequency resource before receiving the first indication information.
  • step 202 may be performed first, and then step 203 may be performed.
  • step 203 may be performed first, and then step 202 may be performed.
  • step 202 and step 203 can also be performed at the same time.
  • Step 204 is performed after step 203.
  • the second terminal device determines according to the first information that the second terminal device performs uplink transmission on a time-frequency resource that overlaps the first time-frequency resource, adjust the transmission power, and the first time-frequency resource and the second time-frequency resource When overlapping, the second terminal device transmits uplink data on the second time-frequency resource at the first transmission power determined by the first power control parameter.
  • the first transmission power is greater than the second transmission power determined by the second power control parameter.
  • the second power control parameter may be a default parameter or a reference value, and the second transmission power may be a default transmission power.
  • the second terminal device stops interpreting information other than the first information in the first instruction information.
  • the transmission power is adjusted, and the first time-frequency resource and the second time-frequency resource are When the resources do not overlap at all, the second terminal device transmits the uplink data with the second transmission power on the second time-frequency resource.
  • the second terminal device may be the terminal device 3 or the terminal device 4 in Examples 1 to 4.
  • the first terminal device side reference may be made to the descriptions in Examples 1 to 4 above, and details are not described herein.
  • a specific implementation manner for the network device to send the first indication information is: sending the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the first terminal device receives the first indication information through the downlink control channel.
  • the second terminal device receives the first indication information through the downlink control channel.
  • the first indication information can act on multiple terminal devices, and both the first terminal device and the second terminal device can receive the first indication information.
  • the network device may further send second indication information, where the second indication information is used to instruct the terminal device to detect the first indication information.
  • the first terminal device may also receive the second indication information.
  • the second terminal device Before receiving the first indication information, the second terminal device may also receive the second indication information. After the first terminal device receives the second indication information, it will detect the first indication information. Similarly, the second terminal device will detect the first indication information only after receiving the second indication information.
  • the terminal device detects the first indication information after receiving the second indication information, and does not need to always detect the first indication information, which is beneficial to save the power consumption of the terminal device
  • the second indication information may instruct the terminal device to detect the first indication information, or instruct the terminal device not to detect the first indication information.
  • the second indication information includes one bit, and when the value of the bit is 1, it instructs the terminal device to detect the first indication information. When the value of this bit is 0, it indicates that the terminal device does not detect the first indication information.
  • the network device Before sending the first indication information, the network device sends second indication information, and the bit value of the second indication information is 1.
  • the first terminal device detects the first indication information.
  • the second terminal device detects the first indication information. On the contrary, if the value of the bit of the second indication information is 0.
  • the first terminal device does not detect the first indication information.
  • the second terminal device does not detect the first indication information.
  • the second indication information only instructs the terminal device to detect the first indication information, that is, the second indication information only indicates one situation and does not indicate the above two situations. If the terminal device does not receive the second indication information, the terminal device does not detect the first indication information.
  • the first instruction information sent by the network device to the first terminal device and the second terminal device may not carry the first information.
  • the network device scrambles the downlink control information (DCI) that carries the first indication information.
  • DCI downlink control information
  • Each terminal device in the connected state will be configured with a radio network temporary identity (RNTI) dedicated to the terminal device.
  • RNTI radio network temporary identity
  • the terminal device After the terminal device receives the DCI, if the DCI is sent to itself, the terminal device can descramble and decode the code through the configured RNTI; otherwise, the terminal device cannot descramble and decode the DCI because the network device has the DCI
  • the scrambled RNTI is not the RNTI configured by the terminal device, so the terminal device knows that the DCI is not sent to itself.
  • NR defines many RNTIs, including cell radio network temporary identifier (C-RNTI), cell-radio network temporary identifier (TC-RNTI), system information-wireless network temporary identifier Identification (system information-radio network temporary identity, SI-RNTI), paging radio network temporary identifier (P-RNTI), random access wireless network temporary identifier (cell-radio network temporary identifier, RA- RNTI), MCS-C-RNTI (UE unique identifier, used to indicate MCS table options for PDSCH and PUSCH channels).
  • C-RNTI cell radio network temporary identifier
  • TC-RNTI cell-radio network temporary identifier
  • Identification system information-wireless network temporary identifier Identification
  • SI-RNTI system information-wireless network temporary identifier
  • P-RNTI paging radio network temporary identifier
  • random access wireless network temporary identifier cell-radio network temporary identifier, RA- RNTI
  • MCS-C-RNTI UE unique identifier, used to
  • the first indication information sent by the network device includes the first information.
  • the first information may indicate that the first terminal device silently transmits uplink data on the first time-frequency resource, or indicates whether the second terminal device adjusts the transmission power when performing uplink transmission on a time-frequency resource that overlaps the first time-frequency resource. Therefore, the first terminal device and the second terminal device can distinguish the function of the first indication information through the first information. It can be seen that by implementing the method described in Figure 2, network equipment can indicate different functions through one format of indication information, simplifying system design, saving signaling overhead, improving communication efficiency, and avoiding terminal equipment execution errors. operating.
  • FIG. 4 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the execution subject of step 401 is a network device or a chip in the network device.
  • the execution subject of step 402 is the first terminal device or the chip in the first terminal device.
  • the execution subject of step 403 and step 404 is the second terminal device, or the chip in the second terminal device.
  • the following takes the network device, the first terminal device, and the second terminal device as the execution body of the method as an example for description.
  • the communication method includes the following steps 401 to 404, wherein:
  • the network device sends first instruction information.
  • the first type of information field of the first indication information is used to indicate a first time-frequency resource
  • the second type of information field of the first indication information is used to indicate a second time-frequency resource.
  • the first type of information field includes first information, and the first information is used to instruct the first terminal device to silently transmit uplink data on the first time-frequency resource.
  • the second type of information field includes second information, and the second information is used to instruct the second terminal device to adjust the transmission power when performing uplink transmission on a time-frequency resource that overlaps the second time-frequency resource.
  • the first type of information domain is different from the second type of information domain.
  • the first type of information domain is an information domain related to the first time-frequency resource
  • the second type of information domain is an information domain related to the second time-frequency resource.
  • the first type of information domain may include one or more information domains.
  • the second type of information domain may also include one or more information domains.
  • Each information field of the first type of information field contains one or more bits.
  • Each information field of the second type of information field contains one or more bits.
  • the embodiment of the present application does not limit the positions of the first type of information domain and the second type of information domain in the first indication information.
  • the first type of information domain may be before the second type of information domain, or the first type of information domain may be after the second type of information domain.
  • the first type of information domain includes first information
  • the second type of information domain includes second information.
  • the first information may be represented by one bit or multiple bits in the first type of information field.
  • the second information may be represented by one bit or multiple bits in the second type of information field.
  • FIG. 5 takes as an example that both the first information and the second information are expressed by one bit. As shown in FIG. 5, the bit value of the first information is 1, and the bit value of the second information is 0. Alternatively, the bit value of the first information may be 0, and the bit value of the second information may be 1.
  • the foregoing first terminal device and the second terminal device may be different types of terminal devices.
  • different types refer to different types of services transmitted by terminal equipment.
  • the service type can be distinguished by the urgency/priority of the service, the bandwidth, delay and other transmission requirements of the service, or can be distinguished according to other rules.
  • Different types of services have different transmission priorities and the number of allocated resources.
  • the first terminal device is a terminal device for sending eMBB transmission
  • the second terminal device is a terminal device for sending URLLC transmission without scheduling.
  • the first terminal device may be the terminal device 1 in FIG. 1.
  • the second terminal device may be the terminal device 3 or the terminal device 4 in FIG. 1.
  • the above-mentioned first terminal device and the second terminal device may be the same type of terminal device.
  • the first terminal device is a terminal device for sending a low-priority URLLC transmission without scheduling
  • the second terminal device is a terminal device for transmitting a URLLC transmission without scheduling.
  • the first terminal device may be the terminal device 3 in FIG. 1
  • the second terminal device may be the terminal device 3 or the terminal device 4 in FIG. 1.
  • the first terminal device and the second terminal device may be the same terminal device.
  • the first terminal device is a terminal device for sending eMBB transmission
  • the second terminal device is a terminal device for sending URLLC transmission without scheduling. If the network device prepares or has scheduled the URLLC transmission to the time-frequency resource that the eMBB transmission of the first terminal device is sending or is about to send, and schedules the eMBB transmission of the first terminal device on the scheduling-free time-frequency resource, the network device Send the first instruction message.
  • the first type of information field of the first indication information indicates a first time-frequency resource, and the first time-frequency resource is a time-frequency resource for URLLC transmission based on scheduling.
  • the first time-frequency resource is a part where the time-frequency resource of the eMBB transmission of the first terminal device overlaps the time-frequency resource of the URLLC transmission based on the scheduling.
  • the second type of information field of the first indication information indicates a second time-frequency resource, and the second time-frequency resource is a time-frequency resource for eMBB transmission of the first terminal device.
  • the second time-frequency resource is the overlapping part of the time-frequency resource of the eMBB transmission of the first terminal device and the scheduling-free time-frequency resource.
  • terminal device 1 is a terminal device for sending scheduling-based eMBB transmission.
  • the terminal device 2 is a terminal device for sending URLLC transmission based on scheduling.
  • the terminal device 3 and the terminal device 4 are terminal devices for sending URLLC transmission without scheduling. If the network device prepares or has scheduled the URLLC transmission of the terminal device 2 to the time-frequency resource that the eMBB transmission of the terminal device 1 is sending or is about to send, and prepares or has scheduled the eMBB transmission of the terminal device 1 to the non-scheduling time-frequency resource , The network device sends the first instruction information.
  • the first type of information field of the first indication information indicates the first time-frequency resource, and the first time-frequency resource is the time-frequency resource transmitted by the URLLC of the terminal device 2. Or, the first time-frequency resource is a part where the time-frequency resource of the eMBB transmission of the terminal device 1 and the time-frequency resource of the URLLC transmission of the terminal device 2 overlap.
  • the second type of information field of the first indication information indicates the second time-frequency resource, and the second time-frequency resource is the time-frequency resource of the eMBB transmission of the terminal device 1. Or, the second time-frequency resource is a part where the time-frequency resource of the eMBB transmission of the terminal device 1 overlaps with the non-scheduling time-frequency resource.
  • the first type of information field includes first information.
  • the bit value of the first information is 1, which is used to instruct the terminal device 1 to silently transmit uplink data on the first time-frequency resource, or to indicate that the first type of information field acts on Terminal equipment 1.
  • the second type of information field includes second information.
  • the bit value of the second information is 0, which is used to instruct the terminal device 3 and the terminal device 4 to adjust when performing uplink transmission on the time-frequency resources that overlap with the second time-frequency resources. Transmission power, or used to indicate that the second type of information domain acts on the terminal device 3 and the terminal device 4.
  • the terminal device 1 After receiving the first indication information, the terminal device 1 reads the first information from the first type of information field. Since the bit value of the first information is 1, the terminal device 1 determines according to the first information that the terminal device 1 is silently transmitting uplink data on the first time-frequency resource, or determines that the first type of information domain acts on the terminal device according to the first information 1. Then, the terminal device 1 silently transmits uplink data on the first time-frequency resource. The terminal device 1 reads the second information from the second type of information field.
  • the terminal device 1 determines according to the second information that the terminal device 1 is not silently transmitting uplink data on the second time-frequency resource, or According to the second information, it is determined that the second type of information domain does not act on the terminal device 1. Then, the terminal device 1 does not continue to interpret information other than the second information in the second type of information domain.
  • the terminal device 2 After receiving the first indication information, the terminal device 2 reads the first information from the first type of information field. Since the bit value of the first information is 1, the terminal device 2 determines that the first type of information domain does not affect the terminal device 2 according to the first information. Then, the terminal device 2 does not continue to interpret information other than the first information in the first type of information domain.
  • the terminal device 2 reads the second information from the second type of information domain. Since the bit value of the second information is 0, the terminal device 2 determines that the second type of information domain does not act on the terminal device 2 according to the second information. Then, the terminal device 2 does not continue to interpret information other than the second information in the second type of information domain.
  • the terminal device 3 After receiving the first indication information, the terminal device 3 reads the first information from the first type of information field. Since the bit value of the first information is 1, the terminal device 3 determines according to the first information that the terminal device 3 does not adjust the transmission power when performing uplink transmission on the time-frequency resource overlapping with the first time-frequency resource, or according to the first information The information determines that the first type of information domain does not affect the terminal device 3. Then, the terminal device 3 stops interpreting information other than the first information in the first type of information domain, so as to avoid the terminal device 3 from performing erroneous operations. The terminal device 3 reads the second information from the second type of information field.
  • the terminal device 3 determines the time-frequency resource of the terminal device 3 that overlaps the second time-frequency resource according to the second information
  • the transmission power is adjusted during uplink transmission, or it is determined that the second type of information domain does not act on the terminal device 3 according to the second information.
  • the terminal device 3 obtains a third time-frequency resource, which is used to send uplink data.
  • the second terminal device transmits the uplink data on the third time-frequency resource at the first transmission power determined by the first power control parameter.
  • the first transmission power is greater than the second transmission power determined by the second power control parameter.
  • the second power control parameter may be a default parameter or a reference value, and the second transmission power may be a default transmission power. That is to say, if the second time-frequency resource overlaps the third time-frequency resource, the terminal device 3 increases the transmission power on the third time-frequency resource to transmit the uplink data, which can ensure the transmission of URLLC to a certain extent. reliability. Of course, if the second time-frequency resource does not overlap the third time-frequency resource, the terminal device 3 transmits the uplink data at the second transmission power on the third time-frequency resource, that is, the second time-frequency resource does not overlap the third time-frequency resource. When the three time-frequency resources overlap, the terminal device 3 transmits the uplink data in the third time-frequency resource without increasing the transmission power.
  • the implementation of the terminal device 4 is similar to that of the terminal device 3, which will not be repeated here.
  • the first terminal device is a terminal device for transmitting low-priority URLLC transmission without scheduling
  • the second terminal device is a terminal device for transmitting URLLC transmission without scheduling. If the network device prepares or has scheduled URLLC transmission to the scheduling-free time-frequency resource of the low-priority URLLC transmission of the first terminal device, and prepares or has scheduled eMBB transmission on the scheduling-free time-frequency resource, the network device sends One instruction information.
  • the first type of information field of the first indication information indicates a first time-frequency resource, and the first time-frequency resource is a time-frequency resource for URLLC transmission based on scheduling.
  • the first time-frequency resource is a portion where the scheduling-free time-frequency resource of the low-priority URLLC transmission of the first terminal device overlaps the time-frequency resource of the scheduling-based URLLC transmission.
  • the second type of information field of the first indication information indicates a second time-frequency resource, and the second time-frequency resource is a time-frequency resource for eMBB transmission.
  • the second time-frequency resource is a part where the time-frequency resource of eMBB transmission and the non-scheduling time-frequency resource overlap.
  • the terminal device 1 is a terminal device for transmitting scheduling-based eMBB transmission.
  • the terminal device 2 is a terminal device for transmitting URLLC transmission based on scheduling.
  • the terminal device 3 is a terminal device for transmitting a low priority URLLC transmission without scheduling, and the terminal device 4 is a terminal device for transmitting a high priority URLLC transmission without scheduling. If the network device prepares or has scheduled the URLLC transmission of the terminal device 2 to the unscheduled time-frequency resource of the low-priority URLLC transmission of the terminal device 3, and prepares or has scheduled the eMBB transmission of the terminal device 1 to the unscheduled time-frequency resource , The network device sends the first instruction information.
  • the first type of information field of the first indication information indicates the first time-frequency resource, and the first time-frequency resource is the time-frequency resource transmitted by the URLLC of the terminal device 2. Or, the first time-frequency resource is the overlapping portion of the unscheduled time-frequency resource of the low-priority URLLC transmission of the terminal device 3 and the time-frequency resource of the URLLC transmission of the terminal device 2.
  • the second type of information field of the first indication information indicates a second time-frequency resource, and the second time-frequency resource is a time-frequency resource for eMBB transmission of the terminal device 1. Or, the second time-frequency resource is a part where the time-frequency resource of the eMBB transmission of the terminal device 1 overlaps with the non-scheduling time-frequency resource.
  • the first type of information field includes first information.
  • the bit value of the first information is 1, which is used to instruct the terminal device 3 to silently transmit uplink data on the first time-frequency resource, or to indicate that the first type of information field acts on Terminal equipment 3.
  • the second type of information field includes second information.
  • the bit value of the second information is 0, which is used to instruct the terminal device 3 and the terminal device 4 to adjust when performing uplink transmission on the time-frequency resources that overlap with the second time-frequency resources. Transmission power, or used to indicate that the second type of information domain acts on the terminal device 3 and the terminal device 4.
  • the terminal device 1 After receiving the first indication information, the terminal device 1 reads the first information from the first type of information field. Since the bit value of the first information is 1, the terminal device 1 determines that the first type of information field does not affect the terminal device 1 according to the first information. Then, the terminal device 1 does not continue to interpret information other than the first information in the first type of information domain.
  • the terminal device 1 reads the second information from the second type of information domain. Since the bit value of the second information is 0, the terminal device 1 determines that the second type of information domain does not act on the terminal device 1 according to the second information. Then, the terminal device 1 does not continue to interpret information other than the second information in the second type of information domain.
  • the terminal device 1 determines according to the first information that the terminal device 1 silently transmits uplink data on the first time-frequency resource, or determines that the first type of information domain acts on itself. Then, the terminal device 1 silently transmits uplink data on the first time-frequency resource.
  • the terminal device 1 reads the second information from the second type of information field. Since the bit value of the second information is 0, the terminal device 1 determines according to the second information that the uplink data transmission is not silent on the first time-frequency resource, or the second The class information domain does not affect itself. Then, the terminal device 1 does not continue to interpret information other than the second information in the second type of information domain.
  • the terminal device 2 After receiving the first indication information, the terminal device 2 reads the first information from the first type of information field. Since the bit value of the first information is 1, the terminal device 2 determines that the first type of information domain does not affect the terminal device 2 according to the first information. Then, the terminal device 2 does not continue to interpret information other than the first information in the first type of information domain.
  • the terminal device 2 reads the second information from the second type of information domain. Since the bit value of the second information is 0, the terminal device 2 determines that the second type of information domain does not act on the terminal device 2 according to the second information. Then, the terminal device 2 does not continue to interpret information other than the second information in the second type of information domain.
  • the terminal device 3 After receiving the first indication information, the terminal device 3 reads the first information from the first type of information field. Since the bit value of the first information is 1, the terminal device 3 determines according to the first information that the terminal device 3 silently transmits uplink data on the first time-frequency resource, or determines that the first type of information domain acts on the terminal device according to the first information 3. Then, the terminal device 3 silently transmits uplink data on the first time-frequency resource. The terminal device 3 reads the second information from the second type of information field.
  • the terminal device 3 determines the time-frequency resource of the terminal device 3 that overlaps the second time-frequency resource according to the second information
  • the transmission power is adjusted during uplink transmission, or the second type of information domain is determined to act on the terminal device 3 according to the second information.
  • the terminal device 3 adjusts the transmission power when performing uplink transmission on the time-frequency resource overlapping with the second time-frequency resource.
  • Example 5 For the implementation of adjusting the transmission power when the terminal device 3 performs uplink transmission on the time-frequency resource that overlaps with the second time-frequency resource, refer to Example 5 in which the terminal device 3 performs uplink transmission on the time-frequency resource that overlaps the second time-frequency resource.
  • the implementation manner of adjusting the transmission power during the uplink transmission will not be repeated here.
  • the operation after the terminal device 4 receives the first indication information is similar to the operation of the terminal device 3 in Example 5, and will not be repeated here.
  • the position of the first information in the first type of information field is configured by radio resource control RRC signaling
  • the position of the second information in the second type of information field is configured by RRC signaling
  • the position of the first bit of the first information in the first type of information field is configured by radio resource control RRC signaling
  • the position of the first bit of the second information in the second type of information field is configured by RRC Signaling configuration.
  • the load size of the first indication information may also be configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the load size of the first indication information, the terminal device can determine the search space where the first indication information is located, and accurately detect all bits of the first indication information.
  • the cell on which the first indication information functions is configured by RRC signaling.
  • the network device can configure the cell to which the first indication information functions to the terminal device through RRC signaling.
  • RRC signaling to configure the cell that the first indication information serves, the terminal equipment under the cell that belongs to the first indication information can detect the first indication information, and the terminal equipment under the cell that does not belong to the first indication information can detect the first indication information.
  • the first indication information may not be detected.
  • the first terminal device mutes the uplink data transmission on the first time-frequency resource.
  • the first terminal device after receiving the first indication information, mutes the uplink data transmission on the first time-frequency resource.
  • the first terminal device may be the terminal device 1 in Example 5.
  • the first terminal device may be the terminal device 3 in Example 6.
  • the first terminal device when it is determined according to the first information that the first terminal device is silently transmitting uplink data on the first time-frequency resource, the first terminal device starts from receiving the first indication information in N orthogonal After the frequency division multiplexing of the OFDM symbols, the uplink data transmission is stopped on the first time-frequency resource, and the subcarrier interval of the uplink data transmission is 30 kHz (kilohertz). Among them, N is a positive number.
  • N is not less than 2.
  • N N1+N2.
  • the values of N, N1, and N2 can be referred to the relevant description in the embodiment corresponding to FIG. 2 above, which will not be repeated here.
  • the subcarrier spacing of the uplink data transmission may also be greater than or less than 30 kHz.
  • the sub-carrier spacing of the uplink data transmission may also be 15 kHz, 60 kHz, or 120 kHz.
  • the values of N, N1, and N2 can refer to the relevant description in the embodiment corresponding to FIG. 2 above, and will not be repeated here.
  • the second terminal device determines a third time-frequency resource.
  • the third time-frequency resource is used to send uplink data.
  • the second terminal device needs to receive the first indication information.
  • the second terminal device may determine the third time-frequency resource after receiving the first indication information, or may determine the third time-frequency resource before receiving the first indication information.
  • step 402 and step 403 are in no particular order.
  • Step 402 may be performed first, and then step 403 may be performed.
  • step 403 may be executed first, and then step 402 may be executed.
  • step 402 and step 403 can also be performed at the same time.
  • Step 404 is performed after step 403.
  • the second terminal device transmits the uplink data on the third time-frequency resource at the first transmission power determined by the first power control parameter.
  • the first transmission power is greater than the second transmission power determined by the second power control parameter.
  • the second power control parameter may be a default parameter or a reference value, and the second transmission power may be a default transmission power.
  • the second terminal device transmits the uplink data on the third time-frequency resource at the first transmission power determined by the first power control parameter. It can be understood that the second terminal device is increasing on the third time-frequency resource. Transmission power to send uplink data.
  • the uplink data is sent on the third time-frequency resource at the second transmission power. That is, when the second time-frequency resource and the third time-frequency resource do not overlap at all, the uplink data is transmitted without increasing the transmission power on the third time-frequency resource.
  • the second terminal device may be the terminal device 3 or the terminal device 4 in Example 5 and Example 6.
  • Example 5 and Example 6 For the specific implementation on the second terminal device side, refer to the descriptions in Example 5 and Example 6, which will not be repeated here.
  • a specific implementation manner for the network device to send the first indication information is: sending the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the first terminal device receives the first indication information through the downlink control channel.
  • the second terminal device receives the first indication information through the downlink control channel.
  • the first indication information can act on multiple terminal devices, and both the first terminal device and the second terminal device can receive the first indication information.
  • the network device may further send second indication information, where the second indication information is used to instruct the terminal device to detect the first indication information.
  • the first terminal device may also receive the second indication information.
  • the second terminal device Before receiving the first indication information, the second terminal device may also receive the second indication information. After the first terminal device receives the second indication information, it will detect the first indication information. Similarly, the second terminal device will detect the first indication information only after receiving the second indication information. Optionally, if the terminal device does not receive the second indication information, it does not need to detect the first indication information.
  • the first indication information is detected after the second indication information is received, and the first indication information does not need to be detected all the time, which is beneficial to save power consumption of the terminal device.
  • the first indication information includes the first type of information domain and the second type of information domain
  • the first type of information domain includes the first information
  • the second type of information domain includes the second information.
  • the first terminal device and the second terminal device can distinguish the functions of the first type of information domain and the second type of information domain through the first information and the second information. It can be seen that by implementing the method described in Figure 4, network equipment can indicate different functions through one format of indication information, which simplifies system design, saves signaling overhead, improves communication efficiency, and can avoid terminal equipment execution errors. operating.
  • FIG. 6 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • the execution subject of step 601 is a network device or a chip in the network device.
  • the execution subject of step 602 and step 603 is the terminal device or the chip in the terminal device.
  • the following takes network equipment and terminal equipment as the execution body of the method as an example for description.
  • the communication method includes the following steps 601 to 603, where:
  • the network device sends first instruction information.
  • the first indication information is used to indicate the power control parameter adopted by each of the M scheduling-free configurations, and the M is an integer greater than 1. That is, the first indication information is used to indicate the power control parameter adopted by each of the two or more scheduling-free configurations.
  • the power control parameter is a parameter for determining the transmission power.
  • the power control parameter may be a power control command value or an open-loop power control parameter.
  • the power control command value can be a closed-loop power control process, etc.
  • Open-loop power control parameters can include P0 and alpha. Among them, P0 is the target signal-to-noise ratio of the signal received by the network equipment, and alpha is the path loss compensation factor.
  • the network device can be pre-configured with one or more dispatch-free configurations for URLLC service for dispatch-free transmission.
  • dispatch-free configurations for URLLC service for dispatch-free transmission.
  • the network device when the network device prepares or has scheduled eMBB transmission on the scheduling-free time-frequency resource, the network device sends the first indication information.
  • the network device is pre-configured with a total of 4 scheduling-free configurations for URLLC transmission.
  • the terminal device 3 in FIG. 1 adopts the dispatch-free configuration 1 and the dispatch-free configuration 2 for URLLC transmission
  • the terminal device 4 in FIG. 1 adopts the dispatch-free configuration 3 and the dispatch-free configuration 4 for URLLC transmission.
  • the network device sends the first indication information.
  • the foregoing M scheduling-free configurations are all scheduling-free configurations preset by the network device.
  • the first indication information is used to indicate the power control parameters used in the scheduling-free configuration 1, and also used to indicate the power control parameters used in the scheduling-free configuration 2, and also used to indicate the power control parameters used in the scheduling-free configuration 3.
  • the foregoing M scheduling-free configurations are scheduling-free configurations in which the scheduling-free time-frequency resources overlap with the time-frequency resources of the eMBB transmission.
  • the first indication information is used to indicate the power control parameters used in the scheduling-free configuration 1, and also used to indicate the power control parameters used in the scheduling-free configuration 2, and also used to indicate the power control parameters used in the scheduling-free configuration 3.
  • the first indication information does not indicate the power control parameters adopted by the scheduling-free configuration 4.
  • each scheduling-free configuration has two sets of power control parameters or more than two sets of power control parameters.
  • scheduling-free configuration 1 has power control parameter 1 and power control parameter 2.
  • Dispatch-free configuration 2 has power control parameter 1 and power control parameter 2.
  • the dispatch-free configuration 3 and the dispatch-free configuration 4 are the same.
  • the power control parameters of each scheduling-free configuration can be the same or different.
  • the power control parameter 1 of the scheduling-free configuration 1 and the power control parameter 1 of the scheduling-free configuration 2 may be the same or different.
  • the power control parameter 2 of the scheduling-free configuration 1 and the power control parameter 2 of the scheduling-free configuration 2 may be the same or different.
  • the transmission power determined by power control parameter 1 is greater than the transmission power determined by power control parameter 2.
  • the power control parameter 2 can be a default control parameter or a reference value.
  • the transmission power determined by the power control parameter 2 can be understood as a default transmission power, that is, in the default state, the terminal device uses the transmission power determined by the power control parameter 2 for uplink transmission.
  • the transmission power determined by the power control parameter used in the first scheduling-free configuration indicated by the first indication information is greater than the default transmission power.
  • the transmission power determined by the power control parameter used in the second scheduling-free configuration indicated by the first indication information is equal to the default transmission power.
  • the first scheduling-free configuration is a scheduling-free configuration in which the scheduling-free time-frequency resources and the time-frequency resources for eMBB transmission of the M scheduling-free configurations have overlap.
  • the second scheduling-free configuration is a scheduling-free configuration in which the scheduling-free time-frequency resources and the time-frequency resources of eMBB transmission do not overlap among the M scheduling-free configurations.
  • the transmission power determined by the power control parameter used in the first scheduling-free configuration indicated by the first indication information is greater than the previous transmission timing.
  • the transmission power determined by the power control parameter used in the second scheduling-free configuration indicated by the first indication information is equal to the transmission power of the second scheduling-free configuration at the previous transmission occasion.
  • the power control command value used in the first scheduling-free configuration should be a non-negative value when the high-layer signaling configures the power adjustment to be the accumulation mode.
  • the power control command value is a non-negative value indicating that the transmission power determined according to the power control command value is greater than the default transmission power, or higher than the transmission power of the previous transmission opportunity.
  • the power control command value used in the second scheduling-free configuration should be 0.
  • a power control command value of 0 indicates that the transmission power determined according to the power control command value is equal to the transmission power of the previous transmission opportunity.
  • the power control parameter when the high-level signaling configures power adjustment to absolute mode, the power control command value used in the first dispatch-free configuration is greater than the power used in the last transmission opportunity Adjustment value. If the power control command value is greater than the power adjustment value adopted at the previous transmission opportunity, it means that the transmission power determined according to the power control command value is higher than the transmission power of the previous transmission opportunity. If the power control parameter is a power control command value, when the high-level signaling configures the power adjustment to be an absolute mode, the power control command value used in the second dispatch-free configuration is equal to the power adjustment value used in the previous transmission opportunity. The power control command value is equal to the power adjustment value adopted at the previous transmission opportunity, which means that the transmission power determined according to the power control command value is equal to the transmission power of the previous transmission opportunity.
  • the following describes two possible ways in which the first indication information indicates the power control parameter adopted by each of the M scheduling-free configurations.
  • the first indication information indicates whether each of the M scheduling-free configurations increases the transmission power of uplink data transmission.
  • the terminal device determines which set of power control parameters of the scheduling-free configuration is used to determine the transmission power of the uplink data transmission according to the first indication information. That is, in the first manner, the first indication information implicitly indicates the power control parameter adopted by each of the M scheduling-free configurations. In mode one, each dispatch-free configuration has two or more power control parameters.
  • the power control parameter of the scheduling-free configuration 1 includes power control parameter 1 and power control parameter 2.
  • the transmission power determined by the power control parameter 1 is greater than the transmission power determined by the power control parameter 2.
  • the first indication information indicates to increase the transmission power of uplink data transmission in the scheduling-free configuration 1.
  • the terminal device 3 adjusts the transmission power of the uplink data according to the power control parameter 1 of the scheduling-free configuration 1 when transmitting uplink data on the scheduling-free configuration 1, and uses the adjusted transmission power to transmit uplink data. data.
  • the power control parameters of the scheduling-free configuration 1 include power control parameter 1, power control parameter 2, and power control parameter 3.
  • the transmission power determined by the power control parameter 1 is greater than the transmission power determined by the power control parameter 2, and the transmission power determined by the power control parameter 2 is greater than the transmission power determined by the power control parameter 3.
  • the first indication information indicates to increase the transmission power of uplink data transmission in the scheduling-free configuration 1.
  • the terminal device 3 uses the transmission power determined by the power control parameter 2 of the scheduling-free configuration 1 to perform uplink data transmission at the previous transmission opportunity.
  • the terminal device 3 adjusts the transmission power of the uplink data according to the power control parameter 1 of the scheduling-free configuration 1 when transmitting uplink data on the scheduling-free configuration 1, and uses the adjusted transmission power to transmit uplink data. data.
  • the first indication information indicates that the scheduling-free time-frequency resource and the time-frequency resource for eMBB transmission have an overlapping scheduling-free configuration to increase the transmission power of uplink data transmission.
  • the first indication information indicates that the scheduling-free time-frequency resource and the time-frequency resource for eMBB transmission do not have an overlap.
  • the scheduling-free configuration does not increase the transmission power of uplink data transmission.
  • the power control parameters adopted by each of the M scheduling-free configurations may be indicated by different bit fields or bits.
  • the power control parameters used in each of the M scheduling-free configurations may be indicated by one or more bit fields or bits.
  • the load size of the first indication information may be configured by RRC signaling.
  • the load size of the first indication information is determined according to the number of M. For example, a power control parameter used in a scheduling-free configuration is indicated by N bits, and N is an integer greater than or equal to 1. Then, the payload size of the first indication information may be M*N bits.
  • each scheduling-free configuration has two sets of power control parameters.
  • the first bit of the first indication information is used to indicate whether the scheduling-free configuration 1 increases the transmission power of uplink data transmission.
  • the second bit of the first indication information is used to indicate whether the scheduling-free configuration 2 increases the transmission power of uplink data transmission.
  • the third bit of the first indication information is used to indicate whether the scheduling-free configuration 3 increases the transmission power of uplink data transmission.
  • the fourth bit of the first indication information is used to indicate whether the scheduling-free configuration 4 increases the transmission power of uplink data transmission.
  • the value of the bit is 1, it means to increase the transmission power of uplink data transmission.
  • the bit in the first indication information can be expressed as 1110. That is, the first indication information indicates that the scheduling-free configuration 1, the scheduling-free configuration 2, and the scheduling-free configuration 3 all increase the transmission power of uplink data transmission, and the scheduling-free configuration 4 does not increase the transmission power of the uplink data transmission.
  • the terminal device 3 determines to increase the transmission power of uplink data transmission in the scheduling-free configuration 1 according to the first bit of the first indication information, and determines to increase the transmission power of the uplink data transmission according to the second bit of the first indication information.
  • Configuration 2 increases the transmission power of uplink data transmission. Therefore, when the terminal device 3 transmits uplink data on the scheduling-free configuration 1, it adjusts the transmission power of the uplink data according to the power control parameter 1 of the scheduling-free configuration 1, and uses the adjusted transmission power to transmit the uplink data. When the terminal device 3 transmits uplink data on the scheduling-free configuration 2, it adjusts the transmission power of the uplink data according to the power control parameter 1 of the scheduling-free configuration 2, and uses the adjusted transmission power to transmit the uplink data. After receiving the first indication information, the terminal device 4 determines to increase the transmission power of uplink data transmission on the scheduling-free configuration 3 according to the third bit of the first indication information, and determines to increase the transmission power of the uplink data transmission according to the fourth bit of the first indication information.
  • Configuration 2 does not increase the transmission power of uplink data transmission. Therefore, when the terminal device 4 transmits uplink data on the scheduling-free configuration 3, it adjusts the transmission power of the uplink data according to the power control parameter 1 of the scheduling-free configuration 3, and uses the adjusted transmission power to transmit the uplink data. When the terminal device 4 transmits uplink data on the scheduling-free configuration 4, it uses the transmission power determined by the power control parameter 2 of the scheduling-free configuration 4 to transmit the uplink data.
  • the first indication information directly indicates the power control parameters adopted by each of the M scheduling-free configurations. That is, in the second manner, the first indication information displayly indicates the power control parameters adopted by each of the M scheduling-free configurations. In the second method, each dispatch-free configuration has two or more power control parameters.
  • the power control parameters adopted by each of the M scheduling-free configurations may be indicated by different bit fields or bits.
  • the power control parameters used in each of the M scheduling-free configurations may be indicated by one or more bit fields or bits.
  • the load size of the first indication information may be configured by RRC signaling.
  • the load size of the first indication information is determined according to the number of M.
  • a power control parameter used in a scheduling-free configuration is indicated by N bits, and N is an integer greater than or equal to 1.
  • the payload size of the first indication information may be M*N bits.
  • N is determined according to the number of groups of power control parameters of each scheduling-free configuration.
  • each scheduling-free configuration has X sets of power control parameters. Then 2 N is greater than or equal to X.
  • each scheduling-free configuration has three sets of power control parameters.
  • Scheduling-free configuration 1 to scheduling-free configuration 4 have power control parameter 1, power control parameter 2, and power control parameter 3, respectively.
  • the transmission power determined by power control parameter 1 is greater than the transmission power determined by power control parameter 2
  • the transmission power determined by power control parameter 2 is greater than the transmission power determined by power control parameter 3.
  • the first bit and the second bit of the first indication information are used to indicate the power control parameters adopted by the scheduling-free configuration 1.
  • the third bit and the fourth bit of the first indication information are used to indicate the power control parameters adopted by the scheduling-free configuration 2.
  • the fifth bit and the sixth bit of the first indication information are used to indicate the power control parameters adopted by the scheduling-free configuration 3.
  • the seventh bit and the eighth bit of the first indication information are used to indicate the power control parameters adopted by the scheduling-free configuration 4.
  • Table 1 when the bit corresponding to the scheduling-free configuration is 00, it indicates the power control parameter 1 used by the scheduling-free configuration.
  • the bit corresponding to the scheduling-free configuration is 01
  • the bit corresponding to the scheduling-free configuration is 10 indicates the power control parameter 3 adopted by the scheduling-free configuration.
  • Bit value corresponding to scheduling-free configuration Power control parameters for dispatch-free configuration 00 Power control parameters 1 01 Power control parameters 2 10 Power control parameters 3 11 no
  • the network device prepares or has scheduled eMBB transmission on the scheduling-free time-frequency resources of the scheduling-free configuration 1, the scheduling-free configuration 2, and the scheduling-free configuration 3.
  • the terminal device 3 uses the transmission power determined by the power control parameter 2 of the scheduling-free configuration 1 and the scheduling-free configuration 2 to perform uplink data transmission at the previous transmission opportunity.
  • the terminal device 4 uses the transmission power determined by the power control parameter 2 of the scheduling-free configuration 3 and the scheduling-free configuration 4 to perform uplink data transmission at the previous transmission opportunity. Therefore, the bits in the first indication information can be expressed as 00 00 00 01.
  • the first indication information indicates that the scheduling-free configuration 1, the scheduling-free configuration 2, and the scheduling-free configuration 3 all use the power control parameter 1, and the scheduling-free configuration 4 uses the power control parameter 2.
  • the terminal device 3 determines to use the power control parameter 1 in the scheduling-free configuration 1 according to the first bit and the second bit of the first indication information, and according to the third bit and the second bit of the first indication information
  • the 4 bits determine that the power control parameter 1 is used in the scheduling-free configuration 2. Therefore, when the terminal device 3 transmits uplink data on the scheduling-free configuration 1, it adjusts the transmission power of the uplink data according to the power control parameter 1 of the scheduling-free configuration 1, and uses the adjusted transmission power to transmit the uplink data.
  • the terminal device 3 When the terminal device 3 transmits uplink data in the scheduling-free configuration 2, it adjusts the transmission power of the uplink data according to the power control parameter 1 of the scheduling-free configuration 2, and uses the adjusted transmission power to transmit the uplink data.
  • the terminal device 4 After receiving the first indication information, the terminal device 4 determines to use the power control parameter 1 in the scheduling-free configuration 3 according to the fifth bit and the sixth bit of the first indication information, and according to the seventh bit and the sixth bit of the first indication information 8 bits determine the power control parameter 2 used in the scheduling-free configuration 2. Therefore, when the terminal device 4 transmits uplink data on the scheduling-free configuration 3, it adjusts the transmission power of the uplink data according to the power control parameter 1 of the scheduling-free configuration 3, and uses the adjusted transmission power to transmit the uplink data. When the terminal device 4 transmits uplink data on the scheduling-free configuration 4, it uses the transmission power determined by the power control parameter 2 of the scheduling-free configuration 4 to transmit the uplink data.
  • the first indication information may also indicate the time-frequency resource of eMBB transmission, or indicate the overlapping part of the time-frequency resource of eMBB transmission and the scheduling-free time-frequency resource. In this way, the terminal device can adjust the transmission power only on the time-frequency resource indicated by the first indication information.
  • the load size of the first indication information may be configured by RRC signaling.
  • RRC signaling By using RRC signaling to configure the load size of the first indication information, the terminal device can accurately detect all bits of the first indication information.
  • the cell on which the first indication information functions is configured by RRC signaling.
  • the network device can configure the cell to which the first indication information functions to the terminal device through RRC signaling.
  • RRC signaling to configure the cell that the first indication information serves, the terminal equipment under the cell that belongs to the first indication information can detect the first indication information, and the terminal equipment under the cell that does not belong to the first indication information can detect the first indication information.
  • the first indication information may not be detected.
  • the terminal device adjusts the transmission power of the uplink data according to the power control parameter indicated by the first indication information.
  • the terminal device after the terminal device receives the first indication information, when at least one of the M schedule-free configurations transmits uplink data, the terminal device adjusts the uplink data according to the power control parameter indicated by the first indication information. Transmission power.
  • the terminal device uses the adjusted transmission power to transmit uplink data.
  • the grid device receives uplink data for adjusting the transmission power according to the power control parameter on at least one non-scheduling configuration resource among the M scheduling-free configurations.
  • the terminal device may be the terminal device 3 and the terminal device 4 in the example of the first mode and the second mode.
  • the terminal device side refer to the implementation manners of the terminal device 3 and the terminal device 4 in the examples of the above-mentioned manner 1 and manner 2, and details are not described herein.
  • a specific implementation manner for the network device to send the first indication information is: sending the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the terminal device receives the first indication information through the downlink control channel.
  • the first indication information can act on multiple terminal devices, and the terminal devices can all receive the first indication information.
  • the network device may further send second indication information, where the second indication information is used to instruct the terminal device to detect the first indication information.
  • the terminal device may also receive the second indication information. After receiving the second indication information, the terminal device detects the first indication information.
  • the terminal device detects the first indication information if the terminal device does not receive the second indication information, it does not need to detect the first indication information.
  • the first indication information is detected after the second indication information is received, and the first indication information does not need to be detected all the time, which is beneficial to save power consumption of the terminal device.
  • one indication information can indicate the power control parameters adopted by multiple scheduling-free configurations. It is beneficial to simplify signaling, improve communication efficiency, and reduce control information overhead.
  • the embodiment of the present invention may divide the device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiment of the present invention is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 8 shows a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 8 may be used to perform part or all of the functions of the first terminal device in the method embodiment described in FIG. 2 above.
  • the communication device shown in FIG. 8 may include a receiving unit 801 and a processing unit 802. among them:
  • the receiving unit 801 is configured to receive first indication information, where the first indication information is used to indicate a first time-frequency resource, the first indication information includes first information, and the first information is used to indicate whether the communication device is in the first time. Silent uplink data transmission on the first time-frequency resource; the processing unit 802 is configured to silently transmit uplink data on the first time-frequency resource when it is determined according to the first information that the communication device is silently uplink data transmission on the first time-frequency resource.
  • the processing unit 802 is further configured to stop interpreting the first information except the first information when it is determined according to the first information that the communication device is not silently transmitting uplink data on the first time-frequency resource. Information.
  • the communication device when it is determined according to the first information that the communication device is silently transmitting uplink data on the first time-frequency resource, after receiving the first indication information, 4.5 orthogonal frequency division multiplexing OFDM symbols After that, the uplink data transmission is stopped on the first time-frequency resource, and the subcarrier interval of the uplink data transmission is 30 kHz.
  • the receiving unit 801 is further configured to receive second indication information, where the second indication information is used to instruct the communication device to detect the first indication information.
  • the manner in which the receiving unit 801 receives the first indication information is specifically: receiving the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the first information is in the first information domain of the first indication information.
  • the position of the first bit of the first information field in the first indication information is configured by radio resource control RRC signaling.
  • the operations performed by the communication device may refer to the operations performed by the first terminal device provided in the method embodiment part of the present application. For example, reference may be made to the related description of the first terminal device in the embodiment corresponding to FIG. 2, which is not repeated here.
  • FIG. 9 shows a schematic structural diagram of another communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 9 may be used to perform part or all of the functions of the second terminal device in the method embodiment described in FIG. 2 above.
  • the communication device shown in FIG. 9 may include a receiving unit 901, a processing unit 902, and a sending unit 903. among them:
  • the receiving unit 901 is configured to receive first indication information, where the first indication information is used to indicate a first time-frequency resource, the first indication information includes first information, and the first information is used to indicate that the communication device is in contact with the first time-frequency resource. Whether to adjust the transmission power when performing uplink transmission on time-frequency resources with overlapping frequency resources; a processing unit 902, configured to determine a second time-frequency resource, which is used to transmit uplink data; a sending unit 903, configured to According to the first information, it is determined that the communication device adjusts the transmission power when performing uplink transmission on the time-frequency resource overlapping with the first time-frequency resource, and when the first time-frequency resource overlaps the second time-frequency resource, the second time-frequency resource is The uplink data is transmitted on the resource at the first transmission power determined by the first power control parameter; wherein the first transmission power is greater than the second transmission power determined by the second power control parameter.
  • the processing unit 902 is further configured to stop the interpretation when it is determined according to the first information that the communication device does not adjust the transmission power when performing uplink transmission on the time-frequency resource overlapping with the first time-frequency resource Information other than the first information in the first indication information.
  • the sending unit 903 is further configured to adjust the transmission power when it is determined according to the first information that the communication device performs uplink transmission on a time-frequency resource that overlaps the first time-frequency resource, and When the frequency resource and the second time-frequency resource do not overlap at all, the uplink data is transmitted at the second transmission power on the second time-frequency resource.
  • the receiving unit 901 is further configured to receive second indication information, where the second indication information is used to instruct the communication device to detect the first indication information.
  • the manner in which the receiving unit 901 receives the first indication information is specifically: receiving the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the first information is in the first information domain of the first indication information.
  • the position of the first bit of the first information field in the first indication information is configured by radio resource control RRC signaling.
  • the embodiment of the present application also provides a communication device.
  • the communication device may be used to perform part or all of the functions of the network device in the method embodiment described in FIG. 2 above.
  • the communication device may include a transmitting unit. among them:
  • the sending unit is configured to send first indication information, where the first indication information is used to indicate a first time-frequency resource, and the first indication information includes first information; wherein, the first information is used to indicate that the first terminal device is in the first Silent uplink data transmission on the time-frequency resource; or, the first information is used to instruct the second terminal device to adjust the transmission power when performing uplink transmission on the time-frequency resource that overlaps the first time-frequency resource.
  • the sending unit is further configured to send second indication information, where the second indication information is used to instruct the first terminal device or the second terminal device to detect the first indication information.
  • the method for the sending unit to send the first indication information is specifically: sending the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the first information is in the first information domain of the first indication information.
  • the position of the first bit of the first information field in the first indication information is configured by radio resource control RRC signaling.
  • the operations performed by the communication device may refer to the operations performed by the network device provided in the method embodiment of this application. For example, reference may be made to the related description of the network device in the embodiment corresponding to FIG. 2, which is not repeated here.
  • FIG. 9 shows a schematic structural diagram of another communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 9 may be used to perform part or all of the functions of the terminal device in the method embodiment described in FIG. 6.
  • the communication device shown in FIG. 9 may include a receiving unit 901, a processing unit 902, and a sending unit 903. among them:
  • the receiving unit 901 is configured to receive first indication information, where the first indication information is used to indicate the power control parameter used in each of the M scheduling-free configurations, where M is an integer greater than 1, and the processing unit 902 is configured to When uplink data is transmitted in at least one of the M scheduling-free configurations, the transmission power of the uplink data is adjusted according to the power control parameter indicated by the first indication information; the sending unit 903 is configured to transmit uplink data using the adjusted transmission power data.
  • the first indication information indicates whether each of the M scheduling-free configurations increases the transmission power of uplink data transmission.
  • the manner in which the receiving unit 901 receives the first indication information is specifically: receiving the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the receiving unit 901 is further configured to receive second indication information, where the second indication information is used to instruct the communication device to detect the first indication information.
  • the first information is in the first information domain of the first indication information.
  • the position of the first bit of the first information field in the first indication information is configured by radio resource control RRC signaling.
  • the operations performed by the communication device may refer to the operations performed by the terminal device provided in the method embodiment of the present application. For example, reference may be made to the related description of the terminal device in the embodiment corresponding to FIG. 6, which is not repeated here.
  • FIG. 10 shows a schematic structural diagram of another communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 10 may be used to perform part or all of the functions of the network device in the method embodiment described in FIG. 6.
  • the terminal device shown in FIG. 10 may include a sending unit 1001 and a receiving unit 1002. among them:
  • the sending unit 1001 is configured to send first indication information, and the first indication information is used to indicate the power control parameters used by each of the M scheduling-free configurations, where M is an integer greater than 1; the receiving unit 1002 uses The uplink data for adjusting the transmission power according to the power control parameter on at least one non-scheduling configuration resource among the M non-scheduling configurations is received.
  • the first indication information indicates whether each of the M scheduling-free configurations increases the transmission power of uplink data transmission.
  • the sending unit 1001 sends the first indication information specifically as follows: sending the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the M scheduling-free configurations are scheduling-free configurations in which the scheduling-free time-frequency resource and the time-frequency resource of the first terminal device overlap.
  • the sending unit 1001 is further configured to send second indication information, where the second indication information is used to instruct the first terminal device or the second terminal device to detect the first indication information.
  • the first information is in the first information domain of the first indication information.
  • the position of the first bit of the first information field in the first indication information is configured by radio resource control RRC signaling.
  • the operations performed by the communication device may refer to the operations performed by the network device provided in the method embodiment of this application. For example, reference may be made to the relevant description of the network device in the embodiment corresponding to FIG. 6, which is not repeated here.
  • FIG. 8 shows a schematic structural diagram of another communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 8 may be used to perform part or all of the functions of the first terminal device in the method embodiment described in FIG. 4.
  • the communication device shown in FIG. 8 may include a receiving unit 801 and a processing unit 802. among them:
  • the receiving unit 801 is configured to receive first indication information.
  • the first type of information field of the first indication information is used to indicate a first time-frequency resource
  • the second type of information field of the first indication information is used to indicate a second time-frequency resource. Resources; wherein the first type of information field includes first information, the first information is used to instruct the communication device to silently transmit uplink data on the first time-frequency resource; the second type of information field includes second information, the first information The second information is used to indicate that the communication device does not silently transmit uplink data on the second time-frequency resource;
  • the processing unit 802 is configured to mute the uplink data transmission on the first time-frequency resource.
  • the receiving unit 801 is further configured to receive second indication information, where the second indication information is used to instruct the communication device to detect the first indication information.
  • a specific implementation manner for the receiving unit 801 to receive the first indication information is: receiving the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the position of the first bit of the first information in the first type of information field is configured by radio resource control RRC signaling, and the first bit of the second information is in the second type of information.
  • the position in the domain is configured by RRC signaling.
  • the uplink data transmission is stopped on the first time-frequency resource.
  • the subcarrier spacing is 30kHz.
  • the load size of the first indication information is configured by RRC signaling.
  • the cell on which the first indication information functions is configured by RRC signaling.
  • the operations performed by the communication device may refer to the operations performed by the first terminal device provided in the method embodiment part of the present application. For example, reference may be made to the related description of the first terminal device in the embodiment corresponding to FIG. 4, which is not repeated here.
  • FIG. 9 shows a schematic structural diagram of another communication device according to an embodiment of the present application.
  • the communication device shown in FIG. 9 may be used to perform part or all of the functions of the second terminal device in the method embodiment described in FIG. 4.
  • the communication device shown in FIG. 9 may include a receiving unit 901, a processing unit 902, and a sending unit 903. among them:
  • the receiving unit 901 is configured to receive first indication information.
  • the first type of information field of the first indication information is used to indicate a first time-frequency resource
  • the second type of information field of the first indication information is used to indicate a second time-frequency resource. Resource; where the first type of information field includes first information, the first information is used to instruct the communication device not to adjust the transmission power when performing uplink transmission on a time-frequency resource that overlaps the first time-frequency resource;
  • the second type of information field includes second information, the second information is used to instruct the communication device to adjust the transmission power when performing uplink transmission on the time-frequency resource overlapping with the second time-frequency resource;
  • the processing unit 902 is configured to determine A three-time-frequency resource.
  • the third time-frequency resource is used to send uplink data; the sending unit 903 is configured to use the third time-frequency resource when the second time-frequency resource overlaps with the third time-frequency resource.
  • the uplink data is transmitted at the first transmission power determined by the first power control parameter; wherein the first transmission power is greater than the second transmission power determined by the second power control parameter.
  • the sending unit 903 is further configured to use the second transmission power on the third time-frequency resource when the second time-frequency resource does not overlap with the third time-frequency resource at all. Send upstream data.
  • the receiving unit 901 is further configured to receive second indication information, where the second indication information is used to instruct the communication device to detect the first indication information.
  • a specific implementation manner for the receiving unit 901 to receive the first indication information is: receiving the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the position of the first bit of the first information in the first type of information field is configured by radio resource control RRC signaling, and the first bit of the second information is in the second type of information.
  • the position in the domain is configured by RRC signaling.
  • the load size of the first indication information is configured by RRC signaling.
  • the cell on which the first indication information functions is configured by radio resource control RRC signaling.
  • the embodiment of the present application also provides a communication device.
  • the communication device may be used to perform part or all of the functions of the communication device in the method embodiment described in FIG. 4.
  • the communication device may include a transmitting unit. among them:
  • a sending unit configured to send first indication information, the first type of information field of the first indication information is used to indicate a first time-frequency resource, and the second type of information field of the first indication information is used to indicate a second time-frequency resource ;
  • the first type of information field includes first information, the first information is used to instruct the first terminal device to silently transmit uplink data on the first time-frequency resource;
  • the second type of information field includes second information, the first information The second information is used to instruct the second terminal device to adjust the transmission power when performing uplink transmission on the time-frequency resource overlapping with the second time-frequency resource.
  • second indication information may also be sent, where the second indication information is used to instruct the first terminal device or the second terminal device to detect the first indication information.
  • a specific implementation manner for sending the first indication information is: sending the first indication information through a downlink control channel, and the downlink control channel is sent in a common search space.
  • the position of the first bit of the first information in the first type of information field is configured by radio resource control RRC signaling, and the first bit of the second information is in the second type of information.
  • the position in the domain is configured by RRC signaling.
  • the load size of the first indication information is configured by radio resource control RRC signaling.
  • the cell on which the first indication information functions is configured by radio resource control RRC signaling.
  • the operations performed by the communication device may refer to the operations performed by the network device provided in the method embodiment of this application. For example, reference may be made to the related description of the network device in the embodiment corresponding to FIG. 4, which is not repeated here.
  • the communication device can be used to implement the communication method described in the foregoing method embodiment.
  • the communication device may be a terminal device, a device for terminal device, a network device, or a device for network device.
  • the terminal device can be a mobile phone, a wearable device, or a tablet computer.
  • the device used for the terminal device may be a chip in the terminal device.
  • the network equipment may be a base station or the like.
  • the device used for the network device may be a chip in the network device.
  • the communication device includes a processor 1101 and a transceiver 1102.
  • the processor 1101 is connected to the transceiver 1102.
  • the communication device may further include a memory 1103.
  • the memory 1103 is connected to the processor 1101.
  • the processor 1101 can support a communication device to implement the communication method in the embodiment of the present application.
  • the processor 1101 may execute the method executed by the first terminal device in the method embodiment described in FIG. 2 or FIG. 4.
  • the processor 1101 For operations performed by the processor 1101, reference may be made to the related description of the first terminal device in the embodiment corresponding to FIG. 2 or FIG. 4, and details are not described herein.
  • the processor 1101 may execute the method executed by the second terminal device in the method embodiment described in FIG. 2 or FIG. 4.
  • the processor 1101 For operations performed by the processor 1101, reference may be made to the related description of the second terminal device in the embodiment corresponding to FIG. 2 or FIG. 4, and details are not described herein.
  • the processor 1101 may execute the method executed by the terminal device in the method embodiment described in FIG. 6.
  • the processor 1101 reference may be made to the related description of the terminal device in the embodiment corresponding to FIG. 6, and details are not described herein.
  • the processor 1101 may execute the method executed by the network device in the method embodiment described in FIG. 2, FIG. 4, or FIG. 6.
  • the processor 1101 For operations performed by the processor 1101, reference may be made to the related description of the network device in the embodiment corresponding to FIG. 2, FIG. 4, or FIG. 6, which is not repeated here.
  • the processor 1101 may be a central processing unit (CPU), a general-purpose processor, a co-processor, a digital signal processor (digital signal processor, DSP), an application-specific integrated circuit (ASIC), on-site Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
  • the processor 1101 may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of DSP and a microprocessor, and so on.
  • the transceiver 1102 may include an antenna and a radio frequency circuit connected to the antenna.
  • the transceiver 1102 is used for terminal equipment to communicate with other network elements.
  • the transceiver 1102 is used for communication between a terminal device and a network device.
  • the communication device may further include a transceiver for communicating with other terminal devices.
  • the transceiver 1102 may be an interface circuit, and the interface circuit is used by the processor to obtain or output information or data.
  • the interface circuit is used for the processor to read or write data from the memory.
  • the interface circuit is used for the processor 1101 to receive information or data from outside the device, or to send information or data to the outside of the device.
  • the transceiver 1102 may include an antenna and a radio frequency circuit connected to the antenna.
  • the transceiver 1102 is used for communication between network devices and other network elements.
  • the transceiver 1102 is used for communication between a network device and a terminal device.
  • the communication device may further include a transceiver for communicating with other network devices.
  • the network device is composed of a centralized unit (CU) and a distributed unit (DU)
  • the DU includes a transceiver 1102 and a processor 1101.
  • the CU includes a processor 1101.
  • DU is mainly used for the transceiver of radio frequency signals, the conversion of radio frequency signals and baseband signals, and some baseband processing.
  • CU is mainly used for baseband processing and control of network equipment.
  • the CU may control the network device to execute the operation process related to the network device in the embodiment corresponding to FIG. 2, FIG. 4, or FIG. 6.
  • the transceiver 1102 may be an interface circuit, and the interface circuit is used by the processor to obtain or output information or data.
  • the interface circuit is used for the processor to read or write data from the memory.
  • the interface circuit is used for the processor 1101 to receive information or data from outside the device, or to send information or data to the outside of the device.
  • the communication device may include a memory 1103 on which a program (or an instruction or code) is stored, and the program may be executed by the processor 1101 so that the processor 1101 executes the communication method described in the foregoing method embodiment.
  • the memory 1103 may also store data.
  • the processor 1101 may also read data (for example, predefined information) stored in the memory 1103. The data may be stored at the same storage address as the program, or the data may be stored at a different storage address from the program. .
  • the processor 1101 and the memory 1103 may be provided separately or integrated together, for example, integrated on a single board or a system on chip (SOC).
  • SOC system on chip
  • the embodiment of the present invention also provides a computer-readable storage medium, where instructions are stored in the computer-readable storage medium, and when it runs on a processor, the method flow of the foregoing method embodiment is realized.
  • the embodiment of the present invention also provides a computer program product.
  • the computer program product runs on a processor, the method flow of the above method embodiment is realized.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法及装置,其中,该方法包括:接收第一指示信息,该第一指示信息用于指示第一时频资源,该第一指示信息包括第一信息,该第一信息用于指示终端设备是否在第一时频资源上静默上行数据传输;当根据第一信息确定终端设备在第一时频资源上静默上行数据传输时,在第一时频资源上静默上行数据传输。在本申请实施例中,通过一种格式的指示信息就能指示不同的功能,简化了***设计,节省了信令开销,提高了通信效率,并且能够避免终端设备执行误操作。

Description

一种通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
第五代(the fifth generation,5G)移动通信***以及未来的移动通信***中有三大类应用场景:增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communication,URLLC)以及海量机器类通信(massive machine type communication,mMTC)。
目前为了满足URLLC业务超高可靠性、低延时的传输需求,在URLLC传输的时频资源与eMBB传输的时频资源交叠时,有两种方案来保证URLLC传输的可靠性和低延时。
方案一:当网络设备准备或者已经将URLLC传输调度到eMBB传输正在发送或即将发送的时频资源上时,可以采用上行取消(UL cancelation)机制,来保证URLLC传输的可靠性和低延时。上行取消机制是指:有URLLC业务需要传输的终端设备向网络设备发送调度请求。网络设备要尽快为其调度合适的时频资源以满足该业务的时延需求。此时网络设备可能已经把当前的时频资源调度给其他的一个或多个终端设备,用于eMBB传输。如果两种业务同时传输,URLLC业务会受到eMBB业务的干扰,导致可靠性严重下降。因此,网络设备需要将这些时频资源重新调度给高优先级的URLLC业务传输。具体地,网络设备首先向eMBB UE发送指示信息1,该指示信息1用于指示网络设备即将调度给URLLC传输的时频资源。eMBB UE接收到该指示信息1后,在相应的时频资源上暂停正在发送的上行数据或者取消待发送的上行数据。
方案二:网络设备将eMBB传输调度在免调度时频资源上时,采用功率控制机制来保证URLLC业务传输的可靠性和低延时。为了满足URLLC传输的时延需求,网络设备可以为其配置免调度(grant free/configured grant)资源。当URLLC UE有上行数据需要传输时,可以直接在预配置的免调度时频资源上进行上行传输。功率控制机制是指:网络设备向免调度的URLLC UE发送指示信息2,该指示信息2用于指示网络设备将eMBB传输调度在免调度时频资源上的时频资源。免调度的URLLC UE接收到该指示信息2之后,如果准备在被指示的时频资源上做上行传输,则需要提高传输功率,从而一定程度上保证URLLC传输的可靠性。
然而通过执行以上两种方案,网络设备需要分别发送两种格式的指示信息来指示不同类型的终端设备执行相应的操作。因此,***复杂度高,降低了通信效率。
发明内容
本申请实施例提供了一种通信方法及装置,能够降低***复杂度,提升通信效率。
第一方面,本申请实施例提供了一种通信方法,该方法包括:接收第一指示信息,该第一指示信息用于指示第一时频资源,该第一指示信息包括第一信息,该第一信息用于指示终端设备是否在第一时频资源上静默上行数据传输;当根据第一信息确定终端设备在第 一时频资源上静默上行数据传输时,在第一时频资源上静默上行数据传输。基于第一方面所描述的方法,通过一种格式的指示信息就能指示不同的功能,简化了***设计,节省了信令开销,提升了通信效率,并且能够避免终端设备执行误操作。
作为一种可选的实施方式,当根据第一信息确定终端设备不在第一时频资源上静默上行数据传输时,停止解读第一指示信息中除第一信息之外的信息。基于该可选的实施方式,有利于避免终端设备执行误操作。
作为一种可选的实施方式,当根据第一信息确定终端设备在第一时频资源上静默上行数据传输时,从接收到第一指示信息起,在N个正交频分复用OFDM符号后,在第一时频资源上停止上行数据传输,上行数据传输的子载波间隔为30kHz。其中,N为正数。基于该可选的实施方式,能够及时地在第一时频资源上停止上行数据传输。
可选的,当子载波间隔为30kHz时,N不小于2。例如,N为2、2.5、3、3.5、4、4.5、5、5.5、6、6.5或7等。
可选的,当子载波间隔为30kHz时,N=N1+N2。其中,N1为标准预定义的符号数或时间长度,N2为高层信令配置的符号数或时间长度。例如,N1可以为2、2.5、3、3.5、4、4.5、5、5.5、6、6.5或7等。N2可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等。
可选的,该上行数据传输的子载波间隔还可以大于或小于30kHz。例如,该上行数据传输的子载波间隔也可以为15kHZ、60kHz或120kHz等。
可选的,当子载波间隔为15kHz时,N不小于1。例如,N为1、1.5、2、2.5或3.5等。
可选的,当子载波间隔为15kHz时,N=N1+N2。其中,N1为标准预定义的符号数或时间长度,N2为高层信令配置的符号数或时间长度。例如,N1可以为1、1.5、2、2.5或3.5等。N2可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等。
可选的,当子载波间隔为60kHz时,N不小于3。例如,N为3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5或14等。
可选的,当子载波间隔为60kHz时,N=N1+N2。其中,N1为标准预定义的符号数或时间长度,N2为高层信令配置的符号数或时间长度。例如,N1可以为3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5或14等。N2可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等。
可选的,当子载波间隔为120kHz时,N不小于4。例如,N为4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20、20.5、21、21.5、22、22.5、23、23.5、24、24.5、25、25.5、26、26.5、27、27.5或28等。
可选的,当子载波间隔为120kHz时,N=N1+N2。其中,N1为标准预定义的符号数或时间长度,N2为高层信令配置的符号数或时间长度。例如,N1可以为4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20、20.5、21、21.5、22、22.5、23、23.5、24、24.5、25、25.5、26、26.5、27、27.5或28等。N2可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等。
作为一种可选的实施方式,还可接收第二指示信息,该第二指示信息用于指示终端设备检测第一指示信息。可选的,如果终端设备没有收到第二指示信息,则不需要检测第一指示信息。通过实施该实施方式,终端设备能够在接收到第二指示信息之后才检测第一指示信息,不需要一直检测第一指示信息,有利于节省终端设备的功耗。
作为一种可选的实施方式,接收第一指示信息的具体实施方式为:通过下行控制信道接收第一指示信息,该下行控制信道在公共搜索空间发送。通过实施该实施方式,第一指示信息可以作用于多个终端设备,终端设备能够成功接收到第一指示信息。
作为一种可选的实施方式,该第一信息处于第一指示信息的第一信息域中。通过在第一指示信息中设置第一信息域,终端设备可以先只解读第一信息域中的第一信息。如果终端设备根据该第一信息确定第一指示信息不是作用于自己的,终端设备无需继续解读第一指示信息指示的第一时频资源,这样有利于节省终端设备的功耗。
作为一种可选的实施方式,该第一信息域的第一个比特在第一指示信息中的位置由无线资源控制RRC信令配置。通过使用RRC信令配置第一信息域在第一指示信息中的位置,这样终端设备就能准确地确定第一信息域,从而从第一信息域中读取第一信息。
作为一种可选的实施方式,第一指示信息的负载大小也可以由RRC信令配置。通过使用RRC信令配置第一指示信息的负载大小,这样终端设备就能确定第一指示信息所在的搜索空间,并准确地检测到第一指示信息的所有比特。
作为一种可选的实施方式,第一指示信息作用的小区由RRC信令配置。通过使用RRC信令配置第一指示信息作用的小区,这样属于第一指示信息作用的小区下的终端设备就可去检测第一指示信息,不属于第一指示信息作用的小区下的终端设备就可不检测第一指示信息。
第二方面,本申请实施例提供了一种通信方法,该方法包括:接收第一指示信息,该第一指示信息用于指示第一时频资源,该第一指示信息包括第一信息,该第一信息用于指示终端设备在与第一时频资源交叠的时频资源上进行上行传输时是否调整传输功率;确定第二时频资源,第二时频资源用于发送上行数据;当根据第一信息确定终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率,并且第一时频资源与第二时频资源交叠时,在第二时频资源上以第一功率控制参数确定的第一传输功率发送上行数据;其中,第一传输功率大于第二功率控制参数确定的第二传输功率。基于第二方面所描述的方法,通过一种格式的指示信息就能指示不同的功能,简化了***设计,节省了信令开销,提升了通信效率,并且能够避免终端设备执行误操作。
作为一种可选的实施方式,当根据第一信息确定终端设备在与第一时频资源交叠的时频资源上进行上行传输时不调整传输功率时,停止解读第一指示信息中除第一信息之外的信息。基于该可选的实施方式,有利于避免终端设备执行误操作。
作为一种可选的实施方式,当根据第一信息确定终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率,并且第一时频资源与第二时频资源完全不交叠时,在第二时频资源上以第二传输功率发送上行数据。
作为一种可选的实施方式,还可接收第二指示信息,该第二指示信息用于指示终端设备检测第一指示信息。可选的,如果终端设备没有收到第二指示信息,则不需要检测第一 指示信息。通过实施该实施方式,终端设备在接收到第二指示信息之后才检测第一指示信息,不需要一直检测第一指示信息,有利于节省终端设备的功耗。
作为一种可选的实施方式,接收第一指示信息的具体实施方式为:通过下行控制信道接收第一指示信息,该下行控制信道在公共搜索空间发送。通过实施该实施方式,第一指示信息可以作用于多个终端设备,终端设备能够成功接收到第一指示信息。
作为一种可选的实施方式,该第一信息处于第一指示信息的第一信息域中。通过在第一指示信息中设置第一信息域,终端设备可以先只解读第一信息域中的第一信息。如果终端设备根据该第一信息确定第一指示信息不是作用于自己的,终端设备无需继续解读第一指示信息指示的第一时频资源,这样有利于节省终端设备的功耗。
作为一种可选的实施方式,该第一信息域的第一个比特在第一指示信息中的位置由无线资源控制RRC信令配置。通过使用RRC信令配置第一信息域在第一指示信息中的位置,这样终端设备就能准确地确定第一信息域,从而从第一信息域中读取第一信息。
作为一种可选的实施方式,第一指示信息的负载大小也可以由RRC信令配置。通过使用RRC信令配置第一指示信息的负载大小,这样终端设备就能确定第一指示信息所在的搜索空间,并准确地检测到第一指示信息的所有比特。
作为一种可选的实施方式,第一指示信息作用的小区由RRC信令配置。通过使用RRC信令配置第一指示信息作用的小区,这样属于第一指示信息作用的小区下的终端设备就可去检测第一指示信息,不属于第一指示信息作用的小区下的终端设备就可不检测第一指示信息。
第三方面,本申请实施例提供了一种通信方法,该方法包括:发送第一指示信息,该第一指示信息用于指示第一时频资源,该第一指示信息包括第一信息;其中,该第一信息用于指示第一终端设备在第一时频资源上静默上行数据传输;或者,该第一信息用于指示第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率。基于第一方面所描述的方法,通过一种格式的指示信息就能指示不同的功能,简化了***设计,节省了信令开销,提升了通信效率,并且有利于避免终端设备执行误操作。
作为一种可选的实施方式,还可发送第二指示信息,该第二指示信息用于指示第一终端设备或第二终端设备检测第一指示信息。这样终端设备就可以在接收到第二指示信息之后才检测第一指示信息,不需要一直检测第一指示信息,有利于节省终端设备的功耗。
作为一种可选的实施方式,发送第一指示信息的具体实施方式为:通过下行控制信道发送第一指示信息,该下行控制信道在公共搜索空间发送。通过实施该实施方式,第一指示信息可以作用于多个终端设备,有利于终端设备成功接收到第一指示信息。
作为一种可选的实施方式,该第一信息处于第一指示信息的第一信息域中。通过在第一指示信息中设置第一信息域,从而终端设备可以先只解读第一信息域中的第一信息。如果终端设备根据该第一信息确定第一指示信息不是作用于自己的,终端设备无需继续解读第一指示信息指示的第一时频资源,这样有利于节省终端设备的功耗。
作为一种可选的实施方式,该第一信息域的第一个比特在第一指示信息中的位置由无线资源控制RRC信令配置。通过使用RRC信令配置第一信息域在第一指示信息中的位置,这样终端设备就能准确地确定第一信息域,从而从第一信息域中读取第一信息。
作为一种可选的实施方式,第一指示信息的负载大小也可以由RRC信令配置。通过使用RRC信令配置第一指示信息的负载大小,这样终端设备就能确定第一指示信息所在的搜索空间,并准确地检测到第一指示信息的所有比特。
作为一种可选的实施方式,第一指示信息作用的小区由RRC信令配置。通过使用RRC信令配置第一指示信息作用的小区,这样属于第一指示信息作用的小区下的终端设备就可去检测第一指示信息,不属于第一指示信息作用的小区下的终端设备就可不检测第一指示信息。
第四方面,本申请实施例提供了一种通信方法,该方法包括:接收第一指示信息,该第一指示信息用于指示M个免调度配置中每个免调度配置采用的功率控制参数,该M为大于1的整数;当在M个免调度配置中的至少一个免调度配置传输上行数据时,根据第一指示信息指示的功率控制参数调整上行数据的传输功率;使用调整后的传输功率传输上行数据。基于第四方面所描述的方法,能够通过一个指示信息指示多个免调度配置采用的功率控制参数。有利于简化信令,提升了通信效率,降低控制信息的开销。
作为一种可选的实施方式,该第一指示信息指示M个免调度配置中每个免调度配置是否提高上行数据传输的传输功率。基于该可选的实施方式,有利于节省传输比特。
作为一种可选的实施方式,接收第一指示信息的具体实施方式为:通过下行控制信道接收第一指示信息,该下行控制信道在公共搜索空间发送。通过实施该实施方式,第一指示信息可以作用于多个终端设备,终端设备能够成功接收到第一指示信息。
作为一种可选的实施方式,还可接收第二指示信息,该第二指示信息用于指示终端设备检测第一指示信息。可选的,如果终端设备没有收到第二指示信息,则不需要检测第一指示信息。通过实施该实施方式,终端设备就可以在接收到第二指示信息之后才检测第一指示信息,不需要一直检测第一指示信息,有利于节省终端设备的功耗。
作为一种可选的实施方式,该第一指示信息的负载大小也可以由RRC信令配置。通过使用RRC信令配置第一指示信息的负载大小,这样终端设备就能确定第一指示信息所在的搜索空间,并准确地检测到第一指示信息的所有比特。
作为一种可选的实施方式,该第一指示信息作用的小区由RRC信令配置。通过使用RRC信令配置第一指示信息作用的小区,这样属于第一指示信息作用的小区下的终端设备就可去检测第一指示信息,不属于第一指示信息作用的小区下的终端设备就可不检测第一指示信息。
第五方面,本申请实施例提供了一种通信方法,该方法包括:发送第一指示信息,该第一指示信息用于指示M个免调度配置中每个免调度配置采用的功率控制参数,M为大于1的整数;接收该M个免调度配置中至少一个免调度配置资源上根据该功率控制参数调整传输功率的上行数据。基于第五方面所描述的方法,能够通过一个指示信息指示多个免调度配置采用的功率控制参数。有利于简化信令,提升了通信效率,降低控制信息的开销。
作为一种可选的实施方式,第一指示信息指示M个免调度配置中每个免调度配置是否提高上行数据传输的传输功率。基于该可选的实施方式,有利于节省传输比特。
作为一种可选的实施方式,发送第一指示信息的具体实施方式为:通过下行控制信道发送第一指示信息,该下行控制信道在公共搜索空间发送。通过实施该实施方式,第一指 示信息可以作用于多个终端设备,有利于终端设备成功接收到第一指示信息。
作为一种可选的实施方式,该M个免调度配置为免调度时频资源与第一终端设备的时频资源具有交叠的免调度配置。
作为一种可选的实施方式,还可发送第二指示信息,该第二指示信息用于指示终端设备检测第一指示信息。这样终端设备就可以在接收到第二指示信息之后才检测第一指示信息,不需要一直检测第一指示信息,有利于节省终端设备的功耗。
作为一种可选的实施方式,该第一指示信息的负载大小也可以由RRC信令配置。通过使用RRC信令配置第一指示信息的负载大小,这样终端设备就能确定第一指示信息所在的搜索空间,并准确地检测到第一指示信息的所有比特。
作为一种可选的实施方式,该第一指示信息作用的小区由RRC信令配置。通过使用RRC信令配置第一指示信息作用的小区,这样属于第一指示信息作用的小区下的终端设备就可去检测第一指示信息,不属于第一指示信息作用的小区下的终端设备就可不检测第一指示信息。
第六方面,本申请实施例提供了一种通信方法,该方法包括:接收第一指示信息,该第一指示信息的第一类信息域用于指示第一时频资源,该第一指示信息的第二类信息域用于指示第二时频资源;其中,该第一类信息域包括第一信息,该第一信息用于指示终端设备在该第一时频资源上静默上行数据传输;该第二类信息域包括第二信息,该第二信息用于指示该终端设备不在该第二时频资源上静默上行数据传输;在该第一时频资源上静默该上行数据传输。基于第六方面所描述的方法,通过一种格式的指示信息就能指示不同的功能,简化了***设计,节省了信令开销,提升了通信效率,并且能够避免终端设备执行误操作。
作为一种可选的实施方式,还可接收第二指示信息,该第二指示信息用于指示终端设备检测该第一指示信息。可选的,如果终端设备没有收到第二指示信息,则不需要检测第一指示信息。通过实施该实施方式,终端设备就可以在接收到第二指示信息之后才检测第一指示信息,不需要一直检测第一指示信息,有利于节省终端设备的功耗。
作为一种可选的实施方式,接收第一指示信息的具体实施方式为:通过下行控制信道接收该第一指示信息,该下行控制信道在公共搜索空间发送。通过实施该实施方式,第一指示信息可以作用于多个终端设备,终端设备能够成功接收到第一指示信息。
作为一种可选的实施方式,该第一信息的第一个比特在第一类信息域中的位置由无线资源控制RRC信令配置,该第二信息的第一个比特在第二类信息域中的位置由RRC信令配置。通过使用RRC信令配置第一类信息域在第一指示信息中的位置,以及第二类信息域在第一指示信息中的位置,这样终端设备就能准确地确定第一信息域,从而从第一类信息域中读取第一信息。
作为一种可选的实施方式,从接收到该第一指示信息起,在N个正交频分复用OFDM符号后,在该第一时频资源上停止上行数据传输,该上行数据传输的子载波间隔为30kHz。其中,N为正数。基于该可选的实施方式,能够及时地在第一时频资源上停止上行数据传输。
可选的,当子载波间隔为30kHz时,N不小于2。例如,N为2、2.5、3、3.5、4、4.5、 5、5.5、6、6.5或7等。
可选的,当子载波间隔为30kHz时,N=N1+N2。其中,N1为标准预定义的符号数或时间长度,N2为高层信令配置的符号数或时间长度。例如,N1可以为2、2.5、3、3.5、4、4.5、5、5.5、6、6.5或7等。N2可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等。
可选的,该上行数据传输的子载波间隔还可以大于或小于30kHz。例如,该上行数据传输的子载波间隔也可以为15kHZ、60kHz或120kHz等。该上行数据传输的子载波间隔为15kHZ、60kHz或120kHz时,N、N1和N2的取值可参见上述第一方面中相关的描述,在此不赘述。
作为一种可选的实施方式,第一指示信息的负载大小也可以由RRC信令配置。通过使用RRC信令配置第一指示信息的负载大小,这样终端设备就能确定第一指示信息所在的搜索空间,并准确地检测到第一指示信息的所有比特。
作为一种可选的实施方式,第一指示信息作用的小区由RRC信令配置。通过使用RRC信令配置第一指示信息作用的小区,这样属于第一指示信息作用的小区下的终端设备就可去检测第一指示信息,不属于第一指示信息作用的小区下的终端设备就可不检测第一指示信息。
第七方面,本申请实施例提供了一种通信方法,该方法包括:接收第一指示信息,该第一指示信息的第一类信息域用于指示第一时频资源,该第一指示信息的第二类信息域用于指示第二时频资源;其中,该第一类信息域包括第一信息,该第一信息用于指示终端设备在与该第一时频资源交叠的时频资源上进行上行传输时不调整传输功率;该第二类信息域包括第二信息,该第二信息用于指示该终端设备在与该第二时频资源交叠的时频资源上进行上行传输时调整传输功率;确定第三时频资源,该第三时频资源用于发送上行数据;当该第二时频资源与该第三时频资源交叠时,在该第三时频资源上以第一功率控制参数确定的第一传输功率发送该上行数据;其中,该第一传输功率大于第二功率控制参数确定的第二传输功率。基于第七方面所描述的方法,通过一种格式的指示信息就能指示不同的功能,简化了***设计,节省了信令开销,提升了通信效率,并且能够避免终端设备执行误操作。
作为一种可选的实施方式,当该第二时频资源与该第三时频资源完全不交叠时,在该第三时频资源上以该第二传输功率发送上行数据。
作为一种可选的实施方式,还可接收第二指示信息,该第二指示信息用于指示终端设备检测该第一指示信息。可选的,如果终端设备没有收到第二指示信息,则不需要检测第一指示信息。通过实施该实施方式,终端设备就可以在接收到第二指示信息之后才检测第一指示信息,不需要一直检测第一指示信息,有利于节省终端设备的功耗。
作为一种可选的实施方式,接收第一指示信息的具体实施方式为:通过下行控制信道接收该第一指示信息,该下行控制信道在公共搜索空间发送。通过实施该实施方式,第一指示信息可以作用于多个终端设备,终端设备能够成功接收到第一指示信息。
作为一种可选的实施方式,该第一信息的第一个比特在第一类信息域中的位置由无线资源控制RRC信令配置,该第二信息的第一个比特在第二类信息域中的位置由RRC信令配置。通过使用RRC信令配置第一类信息域在第一指示信息中的位置,以及第二类信息域 在第一指示信息中的位置,这样终端设备就能准确地确定第一信息域,从而从第一类信息域中读取第一信息。
作为一种可选的实施方式,第一指示信息的负载大小也可以由RRC信令配置。通过使用RRC信令配置第一指示信息的负载大小,这样终端设备就能确定第一指示信息所在的搜索空间,并准确地检测到第一指示信息的所有比特。
作为一种可选的实施方式,第一指示信息作用的小区由RRC信令配置。通过使用RRC信令配置第一指示信息作用的小区,这样属于第一指示信息作用的小区下的终端设备就可去检测第一指示信息,不属于第一指示信息作用的小区下的终端设备就可不检测第一指示信息。
第八方面,本申请实施例提供了一种通信方法,该方法包括:发送第一指示信息,该第一指示信息的第一类信息域用于指示第一时频资源,该第一指示信息的第二类信息域用于指示第二时频资源;其中,该第一类信息域包括第一信息,该第一信息用于指示第一终端设备在第一时频资源上静默上行数据传输;该第二类信息域包括第二信息,该第二信息用于指示第二终端设备在与第二时频资源交叠的时频资源上进行上行传输时调整传输功率。基于第八方面所描述的方法,通过一种格式的指示信息就能指示不同的功能,简化了***设计,节省了信令开销,提升了通信效率,并且能够避免终端设备执行误操作。
作为一种可选的实施方式,还可发送第二指示信息,该第二指示信息用于指示第一终端设备或第二终端设备检测第一指示信息。这样终端设备就可以在接收到第二指示信息之后才检测第一指示信息,不需要一直检测第一指示信息,有利于节省终端设备的功耗。
作为一种可选的实施方式,发送第一指示信息的具体实施方式为:通过下行控制信道发送第一指示信息,该下行控制信道在公共搜索空间发送。通过实施该实施方式,第一指示信息可以作用于多个终端设备,有利于终端设备成功接收到第一指示信息。
作为一种可选的实施方式,该第一信息的第一个比特在第一类信息域中的位置由无线资源控制RRC信令配置,该第二信息的第一个比特在第二类信息域中的位置由RRC信令配置。通过使用RRC信令配置第一类信息域在第一指示信息中的位置,以及第二类信息域在第一指示信息中的位置,这样终端设备就能准确地确定第一信息域,从而从第一类信息域中读取第一信息。
作为一种可选的实施方式,该第一指示信息的负载大小由无线资源控制RRC信令配置。通过使用RRC信令配置第一指示信息的负载大小,这样终端设备就能确定第一指示信息所在的搜索空间,并准确地检测到第一指示信息的所有比特。
作为一种可选的实施方式,该第一指示信息作用的小区由无线资源控制RRC信令配置。通过使用RRC信令配置第一指示信息作用的小区,这样属于第一指示信息作用的小区下的终端设备就可去检测第一指示信息,不属于第一指示信息作用的小区下的终端设备就可不检测第一指示信息。
第九方面,提供了一种通信装置,该通信装置可以为终端设备或用于终端设备的装置。例如,终端设备可以是手机、穿戴式设备或平板电脑等。用于终端设备的装置可以为终端设备内的芯片。该通信装置可执行述第一方面、第二方面、第四方面、第六方面、第七方面、第一方面的可选的实施方式、第二方面的可选的实施方式、第四方面的可选的实施方 式、第六方面的可选的实施方式和第七方面的可选的实施方式中任意一项所描述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。该通信装置执行的操作及有益效果可以参见上述第一方面、第二方面、第四方面、第六方面、第七方面、第一方面的可选的实施方式、第二方面的可选的实施方式、第四方面的可选的实施方式、第六方面的可选的实施方式和第七方面的可选的实施方式中任意一项所描述的方法以及有益效果,重复之处不再赘述。
第十方面,提供了一种通信装置,该通信装置可以为网络设备或用于网络设备的装置。例如,网络设备可以为基站等。用于网络设备的装置可以为网络设备内的芯片。该通信装置可执行上述第三方面、第五方面、第八方面、第三方面的可选的实施方式、第五方面的可选的实施方式和第八方面的可选的实施方式中任意一项所描述的方法。该通信装置的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。该单元可以是软件和/或硬件。该通信装置所执行的操作及有益效果可以参见上述第三方面、第五方面、第八方面、第三方面的可选的实施方式、第五方面的可选的实施方式和第八方面的可选的实施方式中任意一项所描述的方法以及有益效果,重复之处不再赘述。
第十一方面,提供了一种通信装置,该通信装置可以为终端设备或用于终端设备的装置。例如,终端设备可以是手机、穿戴式设备或平板电脑等。用于终端设备的装置可以为终端设备内的芯片。该通信装置包括处理器以及收发器。其中,处理器与收发器相连。可选的,该通信装置还包括存储器。处理器与该存储器相连。
一种可选的设计中,当通信装置为终端设备时,收发器可以包括天线以及与天线相连的射频电路。该收发器用于实现通信装置与其他网元之间的通信。例如,该收发器用于实现通信装置与网络设备之间的通信。
又一种可选的设计中,该通信装置为用于终端设备的装置时,该收发器可以为接口电路,该接口电路用于该处理器获取或者输出信息或数据。例如,该接口电路用于该处理器从存储器读取数据或者写入数据,又如,该接口电路用于该处理器接收来自设备外部的信息或数据,或者向设备外部发送信息或数据。
其中,处理器用于执行上述第一方面、第二方面、第四方面、第六方面、第七方面、第一方面的可选的实施方式、第二方面的可选的实施方式、第四方面的可选的实施方式、第六方面的可选的实施方式和第七方面的可选的实施方式中任意一项的方法。
其中,该存储器用于存储程序,该处理器调用存储在该存储器中的程序以执行上述第一方面、第二方面、第四方面、第六方面、第七方面、第一方面的可选的实施方式、第二方面的可选的实施方式、第四方面的可选的实施方式、第六方面的可选的实施方式和第七方面的可选的实施方式中任意一项的方法。该处理器所执行的操作及有益效果可以参见上述第一方面、第二方面、第四方面、第六方面、第七方面、第一方面的可选的实施方式、第二方面的可选的实施方式、第四方面的可选的实施方式、第六方面的可选的实施方式和第七方面的可选的实施方式中任意一项所描述的方法以及有益效果,重复之处不再赘述。
第十二方面,提供了一种通信装置,该通信装置可以为网络设备或用于网络设备的装 置。例如,网络设备可以为基站等。用于网络设备的装置可以为网络设备内的芯片。该通信装置包括处理器以及收发器。其中,处理器与收发器相连。可选的,该通信装置还包括存储器。处理器与该存储器相连。
一种可选的设计中,当通信装置为网络设备时,收发器可以包括天线以及与天线相连的射频电路。该收发器用于实现通信装置与其他网元之间的通信,例如,该收发器用于实现通信装置与终端设备之间的通信。
又一种可选的设计中,该通信装置为用于网络设备的装置时,该收发器可以为接口电路,该接口电路用于该处理器获取或者输出信息或数据。例如,该接口电路用于该处理器从存储器读取数据或者写入数据,又如,该接口电路用于该处理器接收来自设备外部的信息或数据,或者向设备外部发送信息或数据。
其中,处理器用于执行上述第三方面、第五方面、第八方面、第三方面的可选的实施方式、第五方面的可选的实施方式和第八方面的可选的实施方式中任意一项的方法。
其中,该存储器用于存储程序,该处理器调用存储在该存储器中的程序以执行上述第三方面、第五方面、第八方面、第三方面的可选的实施方式、第五方面的可选的实施方式和第八方面的可选的实施方式中任意一项的方法。该处理器所执行的操作及有益效果可以参见上述第三方面、第五方面、第八方面、第三方面的可选的实施方式、第五方面的可选的实施方式或第八方面的可选的实施方式中任意一项所描述的方法以及有益效果,重复之处不再赘述。
第十三方面,提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面、第四方面、第六方面、第七方面、第一方面的可选的实施方式、第二方面的可选的实施方式、第四方面的可选的实施方式、第六方面的可选的实施方式和第七方面的可选的实施方式中任意一项的方法。
第十四方面,提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面、第五方面、第八方面、第三方面的可选的实施方式、第五方面的可选的实施方式和第八方面的可选的实施方式中任意一项的方法。
第十五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面、第四方面、第六方面、第七方面、第一方面的可选的实施方式、第二方面的可选的实施方式、第四方面的可选的实施方式、第六方面的可选的实施方式和第七方面的可选的实施方式中任意一项的方法。
第十六方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第三方面、第五方面、第八方面、第三方面的可选的实施方式、第五方面的可选的实施方式和第八方面的可选的实施方式中任意一项的方法。
附图说明
图1是本申请实施例提供的一种***架构的示意图;
图2是本申请实施例提供的一种通信方法的流程示意图;
图3是本申请实施例提供的一种第一指示信息的结构示意图;
图4是本申请实施例提供的另一种通信方法的流程示意图;
图5是本申请实施例提供的一种第一指示信息的结构示意图;
图6是本申请实施例提供的又一种通信方法的流程示意图;
图7是本申请实施例提供的一种时频资源的示意图;
图8是本申请实施例提供的一种通信装置的结构示意图;
图9是本申请实施例提供的另一种通信装置的结构示意图;
图10是本申请实施例提供的又一种通信装置的结构示意图;
图11是本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面结合附图对本申请具体实施例作进一步的详细描述。
本申请实施例提供了一种通信方法及装置,有利于降低***的复杂度。
为了能够更好地理解本申请实施例,下面对本申请实施例可应用的***架构进行说明。
图1是本申请实施例提供的一种通信***的示意图。如图1所示,该通信***包括网络设备和终端设备1、终端设备2、终端设备3和终端设备4。终端设备1~终端设备4通过无线的方式与网络设备相连。图1只是本申请实施提供的一种通信***的示意图,图1以通信***中包括一个网络设备和四个终端设备为例。当然,通信***中还可以包括四个以上或四个以下的终端设备。或者,该通信***中还可包括其他设备,例如,无线中继设备和无线回传设备等,本申请实施例不做限定。
本申请实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***,例如新无线(new radio,NR)***,或者其他未来的新型移动通信***等。
本申请实施例中的网络设备是终端设备通过无线方式接入到该移动通信***中的接入设备。例如,网络设备可以为演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或WiFi***中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self-driving)中的无线终端、远程手术(remote medical surgery)中的 无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、无人机、气球和卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
其中,终端设备1用于发送基于调度的eMBB传输,终端设备2用于发送基于调度的URLLC传输。终端设备3和终端设备4用于发送免调度的URLLC传输。终端设备3用于发送免调度的低优先级URLLC传输。终端设备4用于发送免调度的高优先级URLLC传输。
下面对基于调度的eMBB传输、基于调度的URLLC传输和免调度的URLLC传输进行介绍。
基于调度的eMBB传输是指:在终端设备准备发送eMBB传输时,需要发送调度请求给网络设备。网络设备接收该调度请求之后,为该eMBB传输分配时频资源、调制与编码方式(modulation and coding scheme,MCS)、功率控制等传输参数。终端设备接收网络设备分配的传输参数之后,根据该传输参数发送该eMBB传输。该eMBB传输即为基于调度的eMBB传输。为了简化描述,本申请实施例下文中eMBB传输指基于调度的eMBB传输。
基于调度的URLLC传输是指:在终端设备准备发送URLLC传输时,需要发送调度请求给网络设备。网络设备接收该调度请求之后,为该URLLC传输分配时频资源、MCS、功率控制等传输参数。终端设备接收网络设备分配的传输参数之后,根据该传输参数发送该URLLC传输。该URLLC传输即为基于调度的URLLC传输。
免调度的URLLC传输是指:在终端设备准备发送URLLC传输时,可以不经过“向网络设备发送调度请求,网络设备根据该调度请求发送传输参数”的过程,而是直接在免调度配置(grant-free configuration/configured grant configuration)的免调度时频资源上发送该URLLC传输。该URLLC传输即为免调度的URLLC传输。
其中,网络设备可以预先配置一个或多个免调度配置用于URLLC业务进行免调度传输。对于类型二的免调度配置,网络设备要发送激活信令,以激活该免调度配置。终端设备接收到该激活指令之后,才能在该免调度配置的免调度时频资源上发送URLLC传输。免调度配置可以由高层信令配置。该高层信令可以为无线资源控制(radio resource control,RRC)信令,或者,也可以为***消息块(system information blocks,SIB)或者主消息块(master information block,MIB)等。免调度配置可以包括以下一种或多种配置:跳频方式(例如,时隙内跳频、时隙间跳频、子时隙间跳频)、解调参考信号(Demodulation Reference Signal,DMRS)配置、MCS表格选择、MCS表格转换预编码、选择动态还是半静态配置的beta-offset(beta-offset是指上行控制信息在物理上行共享信道所占的资源)、资源分配类型、物理上行共享信道(physical uplink shared channel,PUSCH)的资源块组(resource block group,RBG)大小、闭环功率控制进程、开环功率控制参数(如包括P0和alpha,其中,P0是网络设备接收信号的目标信噪比,alpha是路径损耗补偿因子)、混合自动重传请求(hybrid automatic repeat reQuest,HARQ)进程数目、PUSCH重复次数、冗余版本、周期、时域资源分配、频域资源分配、天线端口、预编码和层数、探测参考信号(Sounding Reference  Signal,SRS)资源指示信息、PUSCH所用的调制编码方式表格和传输块大小、跳频偏移和路径损耗参考索引等。
其中,不同的URLLC传输可能具有不同优先级。网络设备可通过以下两种方式来指示免调度的URLLC传输的优先级高低。方式一:对于类型二的免调度配置,网络设备需要发送激活信令,用于激活该免调度配置。该激活信令可通过一个信息域指示采用该免调度配置传输的URLLC传输的优先级高低。方式二:对于不需要激活的免调度配置,网络设备在通过高层信令为终端设备配置该免调度配置时,可通过该高层信令指示采用该免调度配置传输的URLLC传输的优先级高低。终端设备根据网络设备的指示,就可确定自己传输的URLLC传输的优先级高低。当然,网络设备还可通过其他方式来指示免调度URLLC传输的优先级高低,本申请实施例不做限定。
当eMBB传输的时频资源和URLLC传输的时频资源交叠时,可以有两种方案来保证URLLC传输的可靠性和低延时。方案一:在网络设备准备或者已经将URLLC传输调度到eMBB传输正在发送或即将发送的时频资源上时,网络设备会发送指示信息1,该指示信息1携带基于调度的该URLLC传输的时频资源。终端设备1接收该指示信息1之后,在该指示信息1指示的时频资源暂停正在发送的上行数据或者取消待发送的上行数据。这样就能够保证URLLC传输和eMBB传输采用的时频资源互不重叠,保证了URLLC传输的可靠性和低时延。方案二:在网络设备将eMBB传输调度在免调度时频资源上时,网络设备会发送指示信息2,该指示信息2携带该eMBB传输的时频资源。终端设备3(或终端设备4)接收该指示信息2之后,如果终端设备3(或终端设备4)准备在指示信息2指示的时频资源上做上行传输,则需要提高传输功率,从而一定程度上保证URLLC传输的可靠性。
但是采用上述两种方案,网络设备会分别发送两种格式的指示信息来指示不同类型的终端设备执行相应的操作。设计两种格式的指示信息会提高***的复杂度,同时需要更多的标准化努力。此外,还容易导致终端设备的误操作。例如,所有终端设备均有可能接收到指示信息1和指示信息2。终端设备2、终端设备3(或终端设备4)解读出指示信息1指示的时频资源之后,在指示信息1指示的时频资源暂停正在发送的上行数据或者取消待发送的上行数据。或者,终端设备2、终端设备3(或终端设备4)解读出指示信息1指示的时频资源之后,如果终端设备2、终端设备3(或终端设备4)准备在指示信息1指示的时频资源上做上行传输,则终端设备2、终端设备3(或终端设备4)会提高传输功率。然而实际上,网络设备发送指示信息1的目的是为了使终端设备1在接收指示信息1之后,在指示信息1指示的时频资源暂停正在发送的上行数据或者取消待发送的上行数据。
本申请实施例定义接入网到终端的单向通信链路为下行链路,在下行链路上传输的数据为下行数据,下行数据的传输方向称为下行方向;而终端到接入网的单向通信链路为上行链路,在上行链路上传输的数据为上行数据,上行数据的传输方向称为上行方向。
本申请实施例中所述的资源也可以称为传输资源,包括时域资源、频域资源、码道资源中的一种或多种,可以用于在上行通信过程或者下行通信过程中承载数据或信令。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
本申请实施例中出现的“传输”(transmit/transmission)如无特别说明,是指双向传输,包含发送和/或接收的动作。具体地,本申请实施例中的“传输”包含数据的发送,数据的接收,或者数据的发送和数据的接收。或者说,这里的数据传输包括上行和/或下行数据传输。数据可以包括信道和/或信号,上行数据传输即上行信道和/或上行信号传输,下行数据传输即下行信道和/或下行信号传输。
本申请实施例中出现的业务(service)是指终端从网络侧获取的通信服务,包括控制面业务和/或数据面业务,例如语音业务、数据流量业务等。业务的发送或接收包括业务相关的数据(data)或信令(signaling)的发送或接收。
本申请实施例中出现的“网络”与“***”表达的是同一概念,通信***即为通信网络。
可以理解的,本申请实施例中,终端和/或网络设备可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例中,还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。
本申请提供了一种通信方法及装置,可以降低***复杂度,并避免终端误操作。下面进一步对本申请所提供的通信方法及设备进行介绍。
请参见图2,图2是本申请实施例提供的一种通信方法的流程示意图。其中,步骤201的执行主语为网络设备,或者为网络设备中的芯片。步骤202的执行主语为第一终端设备,或者为第一终端设备中的芯片。步骤203和步骤204的执行主语为第二终端设备,或者为第二终端设备中的芯片。以下以网络设备、第一终端设备以及第二终端设备为方法的执行主体为例进行说明。如图2所示,该通信方法包括如下步骤201~步骤204,其中:
201、网络设备发送第一指示信息。
其中,该第一指示信息用于指示第一时频资源,该第一指示信息包括第一信息;该第一信息用于指示第一终端设备在第一时频资源上静默上行数据传输;或者,该第一信息用于指示第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率。例如,第一指示信息可以为下行控制信息(downlink control information,DCI)。
例如,如果第一信息用于指示第一终端设备在第一时频资源上静默上行数据传输,那么,该第一信息不用于指示第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率。如果第一信息用于指示第二终端设备在与第一时频资源交叠的时频资 源上进行上行传输时调整传输功率,那么,该第一信息不用于指示第一终端设备在第一时频资源上静默上行数据传输。
可选的,第一信息通过第一指示信息中的第一信息域表示,该第一信息域可以包含一个比特或多个比特,或者说第一信息承载在第一指示信息的一个信息域(字段)中,例如第一信息承载在第一指示信息的头部。以第一信息包括一个比特为例。如果第一信息的比特值为1,则第一信息指示第一终端设备在第一时频资源上静默上行数据传输。如果第一信息的比特值为0,则第一信息指示第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率。
作为一种可选的实施方式,第一信息指示第一终端设备在第一时频资源上静默上行数据传输也可以理解为:第一信息指示第一指示信息作用于第一终端设备。同理,第一信息指示第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率也可以理解为:第一信息指示第一指示信息作用于第二终端设备。
其中,网络设备或协议可预先在第一终端设备配置:如果第一指示信息是作用于第一终端设备,则第一终端设备在第一时频资源上静默上行数据传输。可选的,如果第一指示信息是不作用于第一终端设备,则第一终端设备停止对第一指示信息中除第一信息之外的其他信息进行解读。网络设备或协议可预先在第二终端设备配置:如果第一指示信息是作用于第二终端设备,则第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率。可选的,如果第一指示信息是不作用于第二终端设备,则第二终端设备停止对第一指示信息中除第一信息之外的其他信息进行解读。同理,第一信息可以通过第一指示信息中的第一信息域表示,该第一信息域可以包含一个比特或多个比特。以第一信息包括一个比特为例。如果第一信息的比特为1,则第一信息指示第一终端设备第一指示信息作用于第一终端设备。如果第一信息的比特为0,则第一信息指示第二终端设备第一指示信息作用于第二终端设备。
第一信息也可指示第一终端设备在第一时频资源上静默上行数据传输,以及第一指示信息作用于第一终端设备;或者,该第一信息用于指示第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率,以及第一指示信息作用于第二终端设备。例如,以第一信息包括2个比特为例。如果第一信息的比特值为01,则第一信息指示第一终端设备在第一时频资源上静默上行数据传输,以及指示第一指示信息作用于第一终端设备。如果第一信息的比特值为10,则第一信息指示第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率,以及指示第一指示信息作用于第二终端设备。
其中,在本申请全文中,在第一时频资源上静默(stop or drop)上行数据传输可以指:在第一时频资源上暂停正在发送的上行数据,或者,在第一时频资源上取消待发送的上行数据。
其中,与第一时频资源交叠的时频资源是指:与第一时频资源部分重叠或完全重叠的时频资源。本申请全文中,交叠可以指时频资源的部分重叠或完全重叠。其中,时频资源的部分重叠可以包括以下三种情况:一、时域资源上完全重叠,频域资源上部分重叠。二、时域资源上部分重叠,频域资源上完全重叠。三、时域资源上部分重叠,频域资源上部分重叠。完全重叠是指时域资源上完全重叠,并且频域资源上完全重叠。
本申请实施例中,上述第一终端设备与第二终端设备可以是不同类型的终端设备。其中,不同类型是指终端设备传输的业务类型不同。例如,业务类型可以由业务的紧急程度/优先级、业务对带宽、时延等传输要求来区分,或者可以按照其他规则来区分。不同类型的业务的传输优先级以及分配到的资源数量有区别。例如,第一终端设备为用于发送eMBB传输的终端设备,且第二终端设备为用于发送免调度的URLLC传输的终端设备。例如,第一终端设备可以为图1中的终端设备1。第二终端设备可以为图1中的终端设备3或终端设备4。
或者,上述第一终端设备与第二终端设备可以是相同类型的终端设备。例如,该第一终端设备为用于发送免调度的低优先级URLLC传输的终端设备,且该第二终端设备为用于传输免调度的URLLC传输的终端设备。例如,第一终端设备可以为图1中的终端设备3,第二终端设备可以为图1中的终端设备3或终端设备4。也就是说,第一终端设备和第二终端设备可以为同一个终端设备。
作为一种可选的实施方式,第一终端设备为用于发送eMBB传输的终端设备。如果网络设备准备或者已经将URLLC传输调度到第一终端设备的eMBB传输正在发送或即将发送的时频资源上,则网络设备发送第一指示信息。该第一指示信息指示第一时频资源,该第一时频资源为该基于调度的URLLC传输的时频资源。或者,该第一时频资源为第一终端设备的eMBB传输的时频资源与基于调度的URLLC传输的时频资源交叠的部分。并且该第一指示信息中包括第一信息。该第一信息用于指示第一终端设备在第一时频资源上静默上行数据传输,或用于指示第一指示信息作用于第一终端设备。
第二终端设备为用于发送免调度的URLLC传输的终端设备。如果网络设备准备或者已经将eMBB传输调度在免调度时频资源上,则网络设备发送第一指示信息。该第一指示信息指示第一时频资源,该第一时频资源为该eMBB传输的时频资源。或者,该第一时频资源为eMBB传输的时频资源与免调度时频资源交叠的部分。并且该第一指示信息中包括第一信息。该第一信息用于指示第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率,或用于指示第一指示信息作用于第二终端设备。
示例1:终端设备1为用于发送基于调度的eMBB传输的终端设备。终端设备2为用于发送基于调度的URLLC传输的终端设备。终端设备3和终端设备4为用于发送免调度的URLLC传输的终端设备。如果网络设备准备或者已经将终端设备2的URLLC传输调度到终端设备1的eMBB传输正在发送或即将发送的时频资源上,则网络设备发送第一指示信息。该第一指示信息指示第一时频资源,该第一时频资源为终端设备2的URLLC传输的时频资源。或者,该第一时频资源为终端设备1的eMBB传输的时频资源与终端设备2的URLLC传输的时频资源交叠的部分。该第一指示信息中包括第一信息。该第一信息的比特值为1,用于指示终端设备1在第一时频资源上静默上行数据传输,或者用于指示第一指示信息作用于终端设备1。
终端设备1接收该第一指示信息之后,由于第一信息的比特值为1,终端设备1根据该第一信息确定终端设备1在第一时频资源上静默上行数据传输,或者根据该第一信息确定第一指示信息作用于自己。那么,终端设备1在第一时频资源上静默上行数据传输。
终端设备2接收到该第一指示信息后,由于第一信息的比特值为1,终端设备2根据 该第一信息确定第一指示信息不是作用于自己,则终端设备2停止对第一指示信息中除第一信息之外的其他信息进行解读。
终端设备3接收该第一指示信息之后,由于第一信息的比特值为1,终端设备3根据该第一信息确定终端设备3在与第一时频资源交叠的时频资源上进行上行传输时不调整传输功率,或者根据该第一信息确定第一指示信息不作用于自己。那么,终端设备3停止对第一指示信息中除第一信息之外的其他信息进行解读,以避免终端设备3进行错误的操作(如终端设备3在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率)。
终端设备4接收该第一指示信息之后的操作与终端设备3的操作类似,在此不赘述。
示例1中以第一信息的比特值为1为例。或者,示例1中第一信息的比特值可以为0。
示例2:终端设备1为用于发送基于调度的eMBB传输的终端设备。终端设备3和终端设备4为用于发送免调度的URLLC传输的终端设备。如果网络设备准备或者已经将终端设备1的eMBB传输调度在免调度时频资源上,则网络设备发送第一指示信息。该第一指示信息指示第一时频资源,该第一时频资源为终端设备1的eMBB传输的时频资源。或者,该第一时频资源为终端设备1的eMBB传输的时频资源与免调度时频资源交叠的部分。并且该第一指示信息中包括第一信息。该第一信息的比特值为0,用于指示终端设备3和终端设备4在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率,或者用于指示第一指示信息作用于终端设备3和终端设备4。
终端设备1接收该第一指示信息之后,由于第一信息的比特值为0,终端设备1根据该第一信息确定终端设备1不在第一时频资源上静默上行数据传输,或者根据该第一信息确定第一指示信息不作用于自己。那么,终端设备1停止对第一指示信息中除第一信息之外的其他信息进行解读,以避免终端设备1进行错误的操作(如在第一时频资源上静默上行数据传输)。
终端设备3接收该第一指示信息之后,由于第一信息的比特值为0,终端设备3根据该第一信息确定终端设备3在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率,或者根据该第一信息确定该第一指示信息作用于自己。终端设备3确定第二时频资源,该第二时频资源用于发送上行数据。若第一时频资源与该第二时频资源交叠,则终端设备3在第二时频资源上以第一功率控制参数确定的第一传输功率发送该上行数据。所述第一功率控制参数和第二功率控制参数为高层信令配置的不同功率控制参数,包括开环功率控制参数(如网络设备接收传输的目标信噪比(P0),路径损耗补偿因子(alpha),路径损耗等)。其中,该第一传输功率大于第二功率控制参数确定的第二传输功率。第二功率控制参数可以为默认参数或者为一个参考值,第二传输功率可以为默认传输功率。也就是说,如果第一时频资源与该第二时频资源交叠时,终端设备3在该第二时频资源上提高传输功率发送该上行数据,这样可以在一定程度上保证URLLC业务传输的可靠性。当然,如果第一时频资源不与该第二时频资源交叠,则终端设备3在第二时频资源上以第二传输功率发送该上行数据。即第一时频资源不与该第二时频资源交叠时,终端设备3在第二时频资源不提高传输功率发送该上行数据。
终端设备4接收该第一指示信息之后的操作与终端设备3的操作类似相同,在此不赘述。
示例2中以第一信息的比特值为0为例。或者,示例1中第一信息的比特值可以为1。
作为一种可选的实施方式,第一终端设备为用于发送免调度的低优先级URLLC业务的终端设备。如果网络设备准备或者已经将URLLC传输调度到第一终端设备的低优先级URLLC传输的免调度时频资源上,则网络设备发送第一指示信息。该第一指示信息指示第一时频资源,该第一时频资源为该基于调度的URLLC传输的时频资源。或者,该第一时频资源为第一终端设备的低优先级URLLC传输的免调度时频资源与该基于调度的URLLC传输的时频资源交叠的部分。并且该第一指示信息中包括第一信息。该第一信息用于指示第一终端设备在第一时频资源上静默上行数据传输。
第二终端设备为用于发送免调度的URLLC业务的终端设备。如果网络设备准备或者已经将eMBB传输调度在免调度时频资源上,则网络设备发送第一指示信息。该第一指示信息指示第一时频资源,该第一时频资源为该eMBB传输的时频资源。或者,该第一时频资源为eMBB传输的时频资源与免调度时频资源交叠的部分。并且该第一指示信息中包括第一信息。该第一信息用于指示第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率。
通常,基于调度的URLLC传输的优先级较高。因此,在低优先级URLLC传输的免调度时频资源与基于调度的URLLC传输的时频资源具有交叠时,指示第一终端设备(用于发送免调度的低优先级URLLC传输的终端设备)在基于调度的URLLC传输的时频资源上静默上行数据传输,可以优先保证优先级高的URLLC传输的可靠性。
示例3:终端设备2为用于发送基于调度的URLLC传输的终端设备。终端设备3为用于发送免调度的低优先级URLLC传输的终端设备。终端设备4为用于发送免调度的高优先级URLLC传输的终端设备。如果网络设备准备或者已经将终端设备2的URLLC传输调度到终端设备3的低优先级URLLC传输的免调度时频资源上,则网络设备发送第一指示信息。该第一指示信息指示第一时频资源,该第一时频资源为终端设备2的URLLC传输的时频资源。或者,该第一时频资源为终端设备3的低优先级URLLC传输的免调度时频资源与终端设备2的URLLC传输的时频资源交叠的部分。并且该第一指示信息中包括第一信息。该第一信息的比特值为1,用于指示终端设备3在第一时频资源上静默上行数据传输,或者用于指示第一指示信息作用于终端设备3。
终端设备2接收到该第一指示信息后,由于第一信息的比特值为1,终端设备2根据该第一信息确定第一指示信息不是作用于自己,则终端设备2停止对第一指示信息中除第一信息之外的其他信息进行解读。
终端设备3接收该第一指示信息之后,由于第一信息的比特值为1,终端设备3根据该第一信息确定终端设备3在第一时频资源上静默上行数据传输,或者根据第一信息确定第一指示信息作用于终端设备3。那么,终端设备3在该第一时频资源上静默上行数据传输。终端设备3在该第一时频资源上静默上行数据传输的一种实施方式为:如果第一时频资源与终端设备3用于发送上行数据的第二时频资源交叠,则终端设备3在该第二时频资源上静默上行数据传输。当然,如果第一时频资源与该第二时频资源不重叠,则终端设备3不在该第二时频资源上静默上行数据传输。
终端设备4接收该第一指示信息之后,由于第一信息的比特值为1,终端设备4根据 该第一信息确定终端设备4在与第一时频资源交叠的时频资源上进行上行传输时不调整传输功率,或者根据该第一信息确定第一指示信息不作用于自己。那么,终端设备4停止对第一指示信息中除第一信息之外的其他信息进行解读,以避免终端设备4进行错误的操作。
示例3中以第一信息的比特值为1为例。或者,示例1中第一信息的比特值可以为0。
示例4:终端设备1为用于发送基于调度的eMBB传输的终端设备。终端设备3和终端设备4为用于发送免调度的URLLC传输的终端设备。如果网络设备准备或者已经将终端设备1的eMBB传输调度在免调度时频资源上,则网络设备发送第一指示信息。该第一指示信息指示第一时频资源,该第一时频资源为终端设备1的eMBB传输的时频资源。或者,该第一时频资源为终端设备1的eMBB传输的时频资源与免调度时频资源交叠的部分。并且该第一指示信息中包括第一信息。该第一信息的比特值为0,用于指示终端设备3和终端设备4在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率,或者,用于指示第一指示信息作用于终端设备3和终端设备4。
终端设备1接收到该第一指示信息后,由于第一信息的比特值为0,终端设备1根据该第一信息确定第一指示信息不是作用于自己,则终端设备1停止对第一指示信息中除第一信息之外的其他信息进行解读。
终端设备3接收该第一指示信息之后,由于第一信息的比特值为0,终端设备3根据该第一信息确定在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率,或者根据该第一信息确定第一指示信息作用于自己。那么,终端设备3确定第二时频资源,该第二时频资源用于发送上行数据。若第一时频资源与该第二时频资源交叠,则终端设备3在该第二时频资源上以第一功率控制参数确定的第一传输功率发送上行数据。终端设备3在该第二时频资源上以第一功率控制参数确定的第一传输功率发送上行数据的具体实现方式可参见上述示例2中终端设备3的实现方式,在此不赘述。
终端设备4接收该第一指示信息之后的操作与终端设备3的操作类似,在此不赘述。
示例3中以第一信息的比特值为0为例。或者,示例1中第一信息的比特值可以为1。
作为一种可选的实施方式,第一信息处于第一指示信息的第一信息域中,且第一指示信息通过第二信息域指示第一时频资源。其中,第一信息域与第二信息域不相同。第一信息域可包含一个或多个比特。第二信息域可包含一个或多个比特。如图3所示,第一信息域与第二信息域不相同。本申请实施例对第一信息域和第二信息域在第一指示信息中的位置不做限定。例如,可以第一信息域在第二信息域之前,或者第一信息域在第二信息域之后。也就是说,在本申请中,额外增加一个信息域来指示第一终端设备在第一时频资源上静默上行数据传输,或者指示第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率。可选的,第一信息域包括的信息域可以为第一指示信息的头比特或其他位置的比特。通过在第一指示信息中设置两个不同的信息域(即第一信息域和第二信息域),终端设备可以先只解读第一信息域中的第一信息。如果终端设备根据该第一信息确定第一指示信息不是作用于自己的,终端设备无需继续解读第二信息域中的第一时频资源,这样有利于节省终端设备的功耗。
作为一种可选的实施方式,第一信息域在第一指示信息中的位置由RRC信令配置。例如,第一信息域的第一个比特在第一指示信息中的位置由RRC信令配置。也就是说,网络 设备通过RRC信令向终端设备(如第一终端设备和第二终端设备)配置第一信息域的第一个比特在第一指示信息中的位置。通过使用RRC信令配置第一信息域在第一指示信息中的位置,这样终端设备就能准确地确定第一信息域,从而从第一信息域中读取第一信息。
作为一种可选的实施方式,第一指示信息的负载大小也可以由RRC信令配置。也就是说,网络设备可通过RRC信令向终端设备(如第一终端设备和第二终端设备)配置第一指示信息的负载大小。第一指示信息的负载大小即第一指示信息的比特数。通过使用RRC信令配置第一指示信息的负载大小,这样终端设备就能确定第一指示信息所在的搜索空间,并准确地检测到第一指示信息的所有比特。
作为一种可选的实施方式,第一指示信息作用的小区由RRC信令配置。也就是说,网络设备可通过RRC信令向终端设备配置第一指示信息作用的小区。例如,第一终端设备和第二终端设备属于小区1,第三终端设备属于小区2。网络设备通过RRC信令向第一终端设备~第三终端设备配置第一指示信息作用的小区为小区1。由于第三终端设备属于小区2,第一指示信息不作用于小区2,因此,第三终端设备不需要检测第一指示信息。通过使用RRC信令配置第一指示信息作用的小区,这样属于第一指示信息作用的小区下的终端设备就可去检测第一指示信息,不属于第一指示信息作用的小区下的终端设备就可不检测第一指示信息。
202、当第一终端设备根据第一信息确定第一终端设备在第一时频资源上静默上行数据传输时,第一终端设备在第一时频资源上静默上行数据传输。
本申请实施例中,第一终端设备接收第一指示信息。在第一终端设备接收第一指示信息之后,当第一终端设备根据第一信息确定第一终端设备在第一时频资源上静默上行数据传输时,第一终端设备在第一时频资源上静默该上行数据传输。
作为一种可选的实施方式,当根据第一信息确定第一终端设备不在第一时频资源上静默上行数据传输时,说明该第一指示信息不作用于第一终端设备,则第一终端设备可以停止解读第一指示信息中除第一信息之外的信息。
例如,第一终端设备可以为示例1和示例2中的终端设备1。或者,第一终端设备可以为示例3和示例4中的终端设备3。第一终端设备侧的具体实现方式可参见上述示例1~示例4中的描述,在此不赘述。
作为一种可选的实施方式,当根据第一信息确定第一终端设备在第一时频资源上静默上行数据传输时,第一终端设备从接收到第一指示信息起,在N个正交频分复用OFDM符号后,在第一时频资源上停止上行数据传输,该上行数据传输的子载波间隔为30kHz(千赫兹)。其中,N为正数。通过实施该实施方式,能够及时地在第一时频资源上停止上行数据传输。
可选的,当子载波间隔为30kHz时,N不小于2。例如,N为2、2.5、3、3.5、4、4.5、5、5.5、6、6.5或7等。
可选的,当子载波间隔为30kHz时,N=N1+N2。其中,N1为标准预定义的符号数或时间长度,N2为高层信令配置的符号数或时间长度。例如,N1可以为2、2.5、3、3.5、4、4.5、5、5.5、6、6.5或7等。N2可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等。
可选的,该上行数据传输的子载波间隔还可以大于或小于30kHz。例如,该上行数据 传输的子载波间隔也可以为15kHZ、60kHz或120kHz等。
可选的,当子载波间隔为15kHz时,N不小于1。例如,N为1、1.5、2、2.5或3.5等。
可选的,当子载波间隔为15kHz时,N=N1+N2。其中,N1为标准预定义的符号数或时间长度,N2为高层信令配置的符号数或时间长度。例如,N1可以为1、1.5、2、2.5或3.5等。N2可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等。
可选的,当子载波间隔为60kHz时,N不小于3。例如,N为3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5或14等。
可选的,当子载波间隔为60kHz时,N=N1+N2。其中,N1为标准预定义的符号数或时间长度,N2为高层信令配置的符号数或时间长度。例如,N1可以为3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5或14等。N2可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等。
可选的,当子载波间隔为120kHz时,N不小于4。例如,N为4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20、20.5、21、21.5、22、22.5、23、23.5、24、24.5、25、25.5、26、26.5、27、27.5或28等。
可选的,当子载波间隔为120kHz时,N=N1+N2。其中,N1为标准预定义的符号数或时间长度,N2为高层信令配置的符号数或时间长度。例如,N1可以为4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19、19.5、20、20.5、21、21.5、22、22.5、23、23.5、24、24.5、25、25.5、26、26.5、27、27.5或28等。N2可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8或0.9等。
在第一指示信息不携带第一信息的情况下,如果第一指示信息用于第一终端设备在第一指示信息指示的第一时频资源静默上行数据传输。那么,第一终端设备在接收到该第一指示信息起,在N个正交频分复用OFDM符号后,在第一时频资源上停止上行数据传输,该上行数据传输的子载波间隔为30kHz(千赫兹)。其中,N为正数。同理,可选的,上行数据传输的子载波间隔为30kHZ时,N不小于2。可选的,上行数据传输的子载波间隔为30kHZ时,N=N1+N2。上行数据传输的子载波间隔为30kHZ时,关于N、N1和N2的示例可参见上述的示例,在此不赘述。可选的,该上行数据传输的子载波间隔还可以大于或小于30kHz。例如,该上行数据传输的子载波间隔也可以为15kHZ、60kHz或120kHz等。该上行数据传输的子载波间隔为15kHZ、60kHz或120kHz时,N、N1和N2的取值可参见上述的相关描述,在此不赘述。
203、第二终端设备确定第二时频资源。
本申请实施例中,该第二时频资源用于发送上行数据。第二终端设备需要接收第一指示信息。第二终端设备可以在接收第一指示信息之后确定第二时频资源,或者可以在接收第一指示信息之前确定第二时频资源。
其中,步骤202和步骤203的执行顺序不分先后。可以先执行步骤202,再执行步骤203。或者,也可以先执行步骤203,再执行步骤202。或者,也可以同时执行步骤202与 步骤203。步骤204在步骤203之后执行。
204、当第二终端设备根据第一信息确定第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率,并且第一时频资源与第二时频资源交叠时,第二终端设备在第二时频资源上以第一功率控制参数确定的第一传输功率发送上行数据。
其中,第一传输功率大于第二功率控制参数确定的第二传输功率。第二功率控制参数可以为默认参数或者为一个参考值,第二传输功率可以为默认传输功率。
作为一种可选的实施方式,当根据第一信息确定终端设备在与第一时频资源交叠的时频资源上进行上行传输时不调整传输功率时,说明该第一指示信息不作用于第二终端设备,第二终端设备停止解读第一指示信息中除第一信息之外的信息。
作为一种可选的实施方式,当根据第一信息确定终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率,并且第一时频资源与第二时频资源完全不交叠时,第二终端设备在第二时频资源上以第二传输功率发送上行数据。
例如,第二终端设备可以为示例1~示例4中的终端设备3或终端设备4。第一终端设备侧的具体实现方式可参见上述示例1~示例4中的描述,在此不赘述。
作为一种可选的实施方式,网络设备发送第一指示信息的具体实施方式为:通过下行控制信道发送第一指示信息,该下行控制信道在公共搜索空间发送。相应地,第一终端设备通过该下行控制信道接收该第一指示信息。第二终端设备通过该下行控制信道接收该第一指示信息。通过实施该实施方式,第一指示信息可以作用于多个终端设备,第一终端设备和第二终端设备均能够接收到第一指示信息。
作为一种可选的实施方式,网络设备发送第一指示信息之前,还可发送第二指示信息,该第二指示信息用于指示终端设备检测第一指示信息。相应地,第一终端设备接收第一指示信息之前,还可接收该第二指示信息。第二终端设备接收第一指示信息之前,还可接收该第二指示信息。第一终端设备接收第二指示信息之后,才会检测第一指示信息。同理第二终端设备接收第二指示信息之后,才会检测第一指示信息。通过实施该实施方式,终端设备在接收到第二指示信息之后才检测第一指示信息,不需要一直检测第一指示信息,有利于节省终端设备的功耗
可选的,第二指示信息可以指示终端设备检测第一指示信息,或者指示终端设备不检测第一指示信息。例如,第二指示信息包括一个比特,该比特的值为1时,指示终端设备检测第一指示信息。该比特的值为0时,指示终端设备不检测第一指示信息。网络设备发送第一指示信息之前,发送第二指示信息,该第二指示信息的比特的值为1。第一终端设备接收该第二指示信息之后,检测第一指示信息。第二终端设备接收该第二指示信息之后,检测第一指示信息。反之,如果第二指示信息的比特的值为0。第一终端设备接收该第二指示信息之后,不检测第一指示信息。第二终端设备接收该第二指示信息之后,不检测第一指示信息。
可选的,第二指示信息只指示终端设备检测第一指示信息,即第二指示信息只指示一种情况,不会指示上述两种情况。如果终端设备未接收到第二指示信息,则终端设备不检测第一指示信息。
在另一种可能的实施方式中,网络设备给第一终端设备和第二终端设备发送的第一指 示信息也可不携带第一信息。为了指示第一终端设备第一指示信息是否发给第一终端设备,以及指示第二终端设备第一指示信息是否发给第二终端设备。网络设备会对承载第一指示信息的下行控制信息(downlink control information,DCI)进行扰码。每个连接态的终端设备都会被配置终端设备专用的无线网络临时标识(radio network tempory identity,RNTI)。网络设备用终端设备专用的RNTI对DCI扰码。终端设备接收到DCI后,如果该DCI是发给自己的,则终端设备可以通过被配置的RNTI来解扰码并译码;否则终端设备无法对DCI解扰译码,因为网络设备对该DCI加扰的RNTI并不是终端设备被配置的RNTI,因此终端设备知道该DCI不是发给自己的。目前,NR定义了很多RNTI,包括小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)、临时无线网络临时标识(cell-radio network temporary identifier,TC-RNTI)、***信息-无线网络临时标识(system information-radio network temporary identity,SI-RNTI)、寻呼无线网络临时标识(paging radio network temporary identifier,P-RNTI)、随机接入无线网络临时标识(cell-radio network temporary identifier,RA-RNTI)、MCS-C-RNTI(UE唯一标识,用于指示PDSCH和PUSCH信道的MCS表选项)。当然对两种指示信息加扰的RNTI可以不同于现有的RNTI。
在通过实施图2所描述的方法中,网络设备发送的第一指示信息中包括第一信息。第一信息可指示第一终端设备在第一时频资源上静默上行数据传输,或指示第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时是否调整传输功率。从而,第一终端设备和第二终端设备能够通过第一信息区分第一指示信息的功能。可见,通过实施图2所描述的方法,网络设备通过一种格式的指示信息就能指示不同的功能,简化了***设计,节省了信令开销,提高了通信效率,并且能够避免终端设备执行误操作。
请参见图4,图4是本申请实施例提供的另一种通信方法的流程示意图。其中,步骤401的执行主语为网络设备,或者为网络设备中的芯片。步骤402的执行主语为第一终端设备,或者为第一终端设备中的芯片。步骤403和步骤404的执行主语为第二终端设备,或者为第二终端设备中的芯片。以下以网络设备、第一终端设备以及第二终端设备为方法的执行主体为例进行说明。如图4所示,该通信方法包括如下步骤401~步骤404,其中:
401、网络设备发送第一指示信息。
其中,该第一指示信息的第一类信息域用于指示第一时频资源,该第一指示信息的第二类信息域用于指示第二时频资源。该第一类信息域包括第一信息,该第一信息用于指示第一终端设备在第一时频资源上静默上行数据传输。该第二类信息域包括第二信息,该第二信息用于指示第二终端设备在与第二时频资源交叠的时频资源上进行上行传输时调整传输功率。
其中,第一类信息域和第二类信息域不相同。第一类信息域为与第一时频资源相关的信息域,第二类信息域为与第二时频资源相关的信息域。第一类信息域可包括一个或多个信息域。第二类信息域也可包括一个或多个信息域。第一类信息域的每个信息域包含一个或多个比特。第二类信息域的每个信息域包含一个或多个比特。本申请实施例对第一类信息域和第二类信息域在第一指示信息中的位置不做限定。例如,可以第一类信息域在第二类信息域之前,或者第一类信息域在第二类信息域之后。第一类信息域中包括第一信息, 第二类信息域中包括第二信息。其中,第一信息可以通过第一类信息域中的一个比特或多个比特表示。第二信息可以通过第二类信息域中的一个比特或多个比特表示。例如,图5以第一信息和第二信息均通过一个比特表示为例。如图5所示,第一信息的比特值为1,第二信息的比特值为0。或者,也可以是第一信息的比特值为0,第二信息的比特值为1。
本申请实施例中,上述第一终端设备与第二终端设备可以是不同类型的终端设备。其中,不同类型是指终端设备传输的业务类型不同。例如,业务类型可以由业务的紧急程度/优先级、业务对带宽、时延等传输要求来区分,或者可以按照其他规则来区分。不同类型的业务的传输优先级以及分配到的资源数量有区别。例如,第一终端设备为用于发送eMBB传输的终端设备,且第二终端设备为用于发送免调度的URLLC传输的终端设备。例如,第一终端设备可以为图1中的终端设备1。第二终端设备可以为图1中的终端设备3或终端设备4。
或者,上述第一终端设备与第二终端设备可以是相同类型的终端设备。例如,该第一终端设备为用于发送免调度的低优先级URLLC传输的终端设备,且该第二终端设备为用于传输免调度的URLLC传输的终端设备。例如,第一终端设备可以为图1中的终端设备3,第二终端设备可以为图1中的终端设备3或终端设备4。也就是说,第一终端设备和第二终端设备可以为同一个终端设备。
作为一种可选的实施方式,第一终端设备为用于发送eMBB传输的终端设备,第二终端设备为用于发送免调度的URLLC传输的终端设备。如果网络设备准备或者已经将URLLC传输调度到第一终端设备的eMBB传输正在发送或即将发送的时频资源上,并将第一终端设备的eMBB传输调度在免调度时频资源上,则网络设备发送第一指示信息。第一指示信息的第一类信息域指示第一时频资源,该第一时频资源为该基于调度的URLLC传输的时频资源。或者,该第一时频资源为第一终端设备的eMBB传输的时频资源与该基于调度的URLLC传输的时频资源交叠的部分。第一指示信息的第二类信息域指示第二时频资源,该第二时频资源为第一终端设备的eMBB传输的时频资源。或者,该第二时频资源为第一终端设备的eMBB传输的时频资源与免调度时频资源交叠的部分。
示例5:如图1所示,终端设备1为用于发送基于调度的eMBB传输的终端设备。终端设备2为用于发送基于调度的URLLC传输的终端设备。终端设备3和终端设备4为用于发送免调度的URLLC传输的终端设备。如果网络设备准备或者已经将终端设备2的URLLC传输调度到终端设备1的eMBB传输正在发送或即将发送的时频资源上,以及准备或者已经将终端设备1的eMBB传输调度在免调度时频资源上,则网络设备发送第一指示信息。该第一指示信息的第一类信息域指示第一时频资源,该第一时频资源为终端设备2的URLLC传输的时频资源。或者,该第一时频资源为终端设备1的eMBB传输的时频资源与终端设备2的URLLC传输的时频资源交叠的部分。该第一指示信息的第二类信息域指示第二时频资源,第二时频资源为终端设备1的eMBB传输的时频资源。或者,该第二时频资源为终端设备1的eMBB传输的时频资源与免调度时频资源交叠的部分。第一类信息域中包括第一信息,该第一信息的比特值为1,用于指示终端设备1在第一时频资源上静默上行数据传输,或者用于指示第一类信息域作用于终端设备1。第二类信息域中包括第二信息,该第二信息的比特值为0,用于指示终端设备3和终端设备4在与第二时频资 源交叠的时频资源上进行上行传输时调整传输功率,或者用于指示第二类信息域作用于终端设备3和终端设备4。
终端设备1接收该第一指示信息之后,从第一类信息域中读取第一信息。由于第一信息的比特值为1,终端设备1根据该第一信息确定终端设备1在第一时频资源上静默上行数据传输,或者根据该第一信息确定第一类信息域作用于终端设备1。那么,终端设备1在第一时频资源上静默上行数据传输。终端设备1从第二类信息域中读取第二信息,由于第二信息的比特值为0,终端设备1根据第二信息确定终端设备1不在第二时频资源上静默上行数据传输,或者根据该第二信息确定第二类信息域不作用于终端设备1。那么,终端设备1不再继续解读第二类信息域中除第二信息之外的其他信息。
终端设备2接收该第一指示信息之后,从第一类信息域中读取第一信息。由于第一信息的比特值为1,终端设备2根据该第一信息确定第一类信息域不作用于终端设备2。那么,终端设备2不再继续解读第一类信息域中除第一信息之外的其他信息。终端设备2从第二类信息域中读取第二信息,由于第二信息的比特值为0,终端设备2根据第二信息确定第二类信息域不作用于终端设备2。那么,终端设备2不再继续解读第二类信息域中除第二信息之外的其他信息。
终端设备3接收该第一指示信息之后,从第一类信息域中读取第一信息。由于第一信息的比特值为1,终端设备3根据该第一信息确定终端设备3在与第一时频资源交叠的时频资源上进行上行传输时不调整传输功率,或根据该第一信息确定第一类信息域不作用于终端设备3。那么,终端设备3停止对第一类信息域中除第一信息之外的其他信息进行解读,以避免终端设备3进行错误的操作。终端设备3从第二类信息域中读取第二信息,由于第二信息的比特值为0,终端设备3根据第二信息确定终端设备3在与第二时频资源交叠的时频资源上进行上行传输时调整传输功率,或者根据第二信息确定第二类信息域不作用于终端设备3。那么,终端设备3获取第三时频资源,该第三时频资源用于发送上行数据。当该第二时频资源与该第三时频资源交叠时,第二终端设备在该第三时频资源上以第一功率控制参数确定的第一传输功率发送该上行数据。其中,该第一传输功率大于第二功率控制参数确定的第二传输功率。第二功率控制参数可以为默认参数或者为一个参考值,第二传输功率可以为默认传输功率。也就是说,如果第二时频资源与该第三时频资源交叠时,终端设备3在该第三时频资源上提高传输功率发送该上行数据,这样可以在一定程度上保证URLLC传输的可靠性。当然,如果第二时频资源不与该第三时频资源交叠,则终端设备3在第三时频资源上以第二传输功率发送该上行数据,即第二时频资源不与该第三时频资源交叠时,终端设备3在第三时频资源不提高传输功率发送该上行数据。
终端设备4与终端设备3的实现方式类似,在此不赘述。
作为一种可选的实施方式,第一终端设备为用于传输免调度的低优先级URLLC传输的终端设备,第二终端设备为用于传输免调度的URLLC传输的终端设备。如果网络设备准备或者已经将URLLC传输调度到第一终端设备的低优先级URLLC传输的免调度时频资源上,以及准备或者已经将eMBB传输调度在免调度时频资源上,则网络设备发送第一指示信息。第一指示信息的第一类信息域指示第一时频资源,该第一时频资源为该基于调度的URLLC传输的时频资源。或者,该第一时频资源为第一终端设备的低优先级URLLC 传输的免调度时频资源与该基于调度的URLLC传输的时频资源交叠的部分。第一指示信息的第二类信息域指示第二时频资源,该第二时频资源为eMBB传输的时频资源。或者,该第二时频资源为eMBB传输的时频资源与免调度时频资源重叠的部分。
示例6:终端设备1为用于传输基于调度的eMBB传输的终端设备。终端设备2为用于传输基于调度的URLLC传输的终端设备。终端设备3为用于传输免调度的低优先级URLLC传输的终端设备、终端设备4为用于传输免调度的高优先级URLLC传输的终端设备。如果网络设备准备或者已经将终端设备2的URLLC传输调度到终端设备3的低优先级URLLC传输的免调度时频资源上,以及准备或者已经将终端设备1的eMBB传输调度在免调度时频资源上,则网络设备发送第一指示信息。该第一指示信息的第一类信息域指示第一时频资源,该第一时频资源为终端设备2的URLLC传输的时频资源。或者,该第一时频资源为终端设备3的低优先级URLLC传输的免调度时频资源与终端设备2的URLLC传输的时频资源交叠的部分。该第一指示信息的第二类信息域指示第二时频资源,该第二时频资源为终端设备1的eMBB传输的时频资源。或者,该第二时频资源为终端设备1的eMBB传输的时频资源与免调度时频资源交叠的部分。第一类信息域中包括第一信息,该第一信息的比特值为1,用于指示终端设备3在第一时频资源上静默上行数据传输,或者用于指示第一类信息域作用于终端设备3。第二类信息域中包括第二信息,该第二信息的比特值为0,用于指示终端设备3和终端设备4在与第二时频资源交叠的时频资源上进行上行传输时调整传输功率,或者用于指示第二类信息域作用于终端设备3和终端设备4。
终端设备1接收该第一指示信息之后,从第一类信息域中读取第一信息。由于第一信息的比特值为1,终端设备1根据该第一信息确定第一类信息域不作用于终端设备1。那么,终端设备1不再继续解读第一类信息域中除第一信息之外的其他信息。终端设备1从第二类信息域中读取第二信息,由于第二信息的比特值为0,终端设备1根据第二信息确定第二类信息域不作用于终端设备1。那么,终端设备1不再继续解读第二类信息域中除第二信息之外的其他信息。
或者,该第一信息的比特值为1时,用于指示终端设备1和终端设备3在第一时频资源上静默上行数据传输。终端设备1根据该第一信息确定终端设备1在第一时频资源上静默上行数据传输,或确定第一类信息域作用于自己。那么,终端设备1在第一时频资源上静默上行数据传输。终端设备1从第二类信息域中读取第二信息,由于第二信息的比特值为0,终端设备1根据第二信息确定在第一时频资源上不静默上行数据传输,或者第二类信息域不作用于自己。那么,终端设备1不再继续解读第二类信息域中除第二信息之外的其他信息。
终端设备2接收该第一指示信息之后,从第一类信息域中读取第一信息。由于第一信息的比特值为1,终端设备2根据该第一信息确定第一类信息域不作用于终端设备2。那么,终端设备2不再继续解读第一类信息域中除第一信息之外的其他信息。终端设备2从第二类信息域中读取第二信息,由于第二信息的比特值为0,终端设备2根据第二信息确定第二类信息域不作用于终端设备2。那么,终端设备2不再继续解读第二类信息域中除第二信息之外的其他信息。
终端设备3接收该第一指示信息之后,从第一类信息域中读取第一信息。由于第一信息的比特值为1,终端设备3根据该第一信息确定终端设备3在第一时频资源上静默上行数据传输,或者根据该第一信息确定第一类信息域作用于终端设备3。那么,终端设备3在第一时频资源上静默上行数据传输。终端设备3从第二类信息域中读取第二信息,由于第二信息的比特值为0,终端设备3根据第二信息确定终端设备3在与第二时频资源交叠的时频资源上进行上行传输时调整传输功率,或者,根据该第二信息确定第二类信息域作用于终端设备3。那么,终端设备3在与第二时频资源交叠的时频资源上进行上行传输时调整传输功率。终端设备3在与第二时频资源交叠的时频资源上进行上行传输时调整传输功率的实现方式可参见示例5中终端设备3在与第二时频资源交叠的时频资源上进行上行传输时调整传输功率的实现方式,在此不赘述。
终端设备4接收到第一指示信息之后的操作与示例5中终端设备3的操作类似,在此不赘述。
作为一种可选的实施方式,该第一信息在第一类信息域中的位置由无线资源控制RRC信令配置,该第二信息在第二类信息域中的位置由RRC信令配置。具体地,该第一信息的第一个比特在第一类信息域中的位置由无线资源控制RRC信令配置,该第二信息的第一个比特在第二类信息域中的位置由RRC信令配置。通过使用RRC信令配置第一信息在第一类信息域中的位置和第二信息在第二类信息域中的位置,这样终端设备就能准确地读取第一信息和第二信息。
作为一种可选的实施方式,第一指示信息的负载大小也可以由RRC信令配置。通过使用RRC信令配置第一指示信息的负载大小,这样终端设备就能确定第一指示信息所在的搜索空间,并准确地检测到第一指示信息的所有比特。
作为一种可选的实施方式,第一指示信息作用的小区由RRC信令配置。也就是说,网络设备可通过RRC信令向终端设备配置第一指示信息作用的小区。通过使用RRC信令配置第一指示信息作用的小区,这样属于第一指示信息作用的小区下的终端设备就可去检测第一指示信息,不属于第一指示信息作用的小区下的终端设备就可不检测第一指示信息。
402、第一终端设备在该第一时频资源上静默该上行数据传输。
其中,第一终端设备接收第一指示信息之后,在该第一时频资源上静默该上行数据传输。
其中,第一终端设备可以为示例5中的终端设备1。或者,第一终端设备可以为示例6中的终端设备3。第一终端设备侧的具体实现方式可参见上述示例5和示例6中的描述,在此不赘述。
作为一种可选的实施方式,当根据第一信息确定第一终端设备在第一时频资源上静默上行数据传输时,第一终端设备从接收到第一指示信息起,在N个正交频分复用OFDM符号后,在第一时频资源上停止上行数据传输,该上行数据传输的子载波间隔为30kHz(千赫兹)。其中,N为正数。通过实施该实施方式,能够及时地在第一时频资源上停止上行数据传输。
可选的,当子载波间隔为30kHz时,N不小于2。可选的,当子载波间隔为30kHz时,N=N1+N2。该上行数据传输的子载波间隔为30kHz时,N、N1和N2的取值可参见上述图 2对应的实施例中的相关描述,在此不赘述。
可选的,该上行数据传输的子载波间隔还可以大于或小于30kHz。例如,该上行数据传输的子载波间隔也可以为15kHZ、60kHz或120kHz等。该上行数据传输的子载波间隔为15kHZ、60kHz或120kHz时,N、N1和N2的取值可参见上述图2对应的实施例中的相关描述,在此不赘述。
403、第二终端设备确定第三时频资源。
其中,该第三时频资源用于发送上行数据。第二终端设备需要接收第一指示信息。第二终端设备可以在接收第一指示信息之后确定第三时频资源,或者可以在接收第一指示信息之前确定第三时频资源。
其中,步骤402和步骤403的执行顺序不分先后。可以先执行步骤402,再执行步骤403。或者,也可以先执行步骤403,再执行步骤402。或者,也可以同时执行步骤402与步骤403。步骤404在步骤403之后执行。
404、当该第二时频资源与该第三时频资源交叠时,第二终端设备在该第三时频资源上以第一功率控制参数确定的第一传输功率发送该上行数据。
其中,该第一传输功率大于第二功率控制参数确定的第二传输功率。第二功率控制参数可以为默认参数或者为一个参考值,第二传输功率可以为默认传输功率。
在步骤404中,第二终端设备在该第三时频资源上以第一功率控制参数确定的第一传输功率发送该上行数据,可以理解为第二终端设备在该第三时频资源上提高传输功率发送上行数据。可选的,当该第二时频资源与该第三时频资源完全不交叠时,在该第三时频资源上以该第二传输功率发送上行数据。也就是说,当该第二时频资源与该第三时频资源完全不交叠时,在该第三时频资源上不提高传输功率发送上行数据。
其中,第二终端设备可以为示例5和示例6中的终端设备3或终端设备4。第二终端设备侧的具体实现方式可参见上述示例5和示例6中的描述,在此不赘述。
作为一种可选的实施方式,网络设备发送第一指示信息的具体实施方式为:通过下行控制信道发送第一指示信息,该下行控制信道在公共搜索空间发送。相应地,第一终端设备通过该下行控制信道接收该第一指示信息。第二终端设备通过该下行控制信道接收该第一指示信息。通过实施该实施方式,第一指示信息可以作用于多个终端设备,第一终端设备和第二终端设备均能够接收到第一指示信息。
作为一种可选的实施方式,网络设备发送第一指示信息之前,还可发送第二指示信息,该第二指示信息用于指示终端设备检测第一指示信息。相应地,第一终端设备接收第一指示信息之前,还可接收该第二指示信息。第二终端设备接收第一指示信息之前,还可接收该第二指示信息。第一终端设备接收第二指示信息之后,才会检测第一指示信息。同理第二终端设备接收第二指示信息之后,才会检测第一指示信息。可选的,如果终端设备没有收到第二指示信息,则不需要检测第一指示信息。通过实施该实施方式,在接收到第二指示信息之后才检测第一指示信息,不需要一直检测第一指示信息,有利于节省终端设备的功耗。
可见,在通过实施图4所描述的方法中,第一指示信息中包括第一类信息域和第二类信息域,第一类信息域包括第一信息,第二类信息域包括第二信息。第一终端设备和第二 终端设备能够通过第一信息和第二信息区分第一类信息域和第二类信息域的功能。可见,通过实施图4所描述的方法,网络设备通过一种格式的指示信息就能指示不同的功能,简化了***设计,节省了信令开销,提升了通信效率,并且能够避免终端设备执行误操作。
请参见图6,图6是本申请实施例提供的又一种通信方法的流程示意图。其中,步骤601的执行主语为网络设备,或者为网络设备中的芯片。步骤602和步骤603的执行主语为终端设备,或者为终端设备中的芯片。以下以网络设备以及终端设备为方法的执行主体为例进行说明。如图6所示,该通信方法包括如下步骤601~步骤603,其中:
601、网络设备发送第一指示信息。
其中,该第一指示信息用于指示M个免调度配置中每个免调度配置采用的功率控制参数,该M为大于1的整数。也就是说,该第一指示信息用于指示两个或两个以上的免调度配置中每个免调度配置采用的功率控制参数。
可选的,该功率控制参数为确定传输功率的参数。例如,该功率控制参数可以为功率控制命令值或开环功率控制参数等。功率控制命令值可以为闭环功率控制进程等。开环功率控制参数可包括P0和alpha等。其中,P0是网络设备接收信号的目标信噪比,alpha是路径损耗补偿因子。
网络设备可以预先配置一个或多个免调度配置用于URLLC业务进行免调度传输。关于免调度配置中包括的内容具体可参见前述对免调度配置的描述,在此不赘述。
具体地,当网络设备准备或已经将eMBB传输调度在免调度时频资源上时,网络设备发送第一指示信息。例如,网络设备预先总共配置了4个免调度配置用于URLLC传输。图1中的终端设备3采用免调度配置1和免调度配置2进行URLLC传输,图1中的终端设备4采用免调度配置3和免调度配置4进行URLLC传输。如图7所示,若网络设备准备或已经将eMBB传输调度在免调度配置1、免调度配置2和免调度配置3的免调度时频资源上,则网络设备发送第一指示信息。
可选的,上述M个免调度配置为网络设备预先设置的所有免调度配置。例如,第一指示信息用于指示免调度配置1采用的功率控制参数,还用于指示免调度配置2采用的功率控制参数,还用于指示免调度配置3采用的功率控制参数,还用于指示免调度配置4采用的功率控制参数。也就是说,即使免调度配置4的免调度时频资源与eMBB传输的时频资源不交叠,第一指示信息也会指示免调度配置4采用的功率控制参数。
或者,上述M个免调度配置为免调度时频资源与eMBB传输的时频资源交叠的免调度配置。例如,第一指示信息用于指示免调度配置1采用的功率控制参数,还用于指示免调度配置2采用的功率控制参数,还用于指示免调度配置3采用的功率控制参数。第一指示信息不指示免调度配置4采用的功率控制参数。
可选的,每个免调度配置具有两组(set)功率控制参数或两组以上的功率控制参数。例如,免调度配置1具有功率控制参数1和功率控制参数2。免调度配置2具有功率控制参数1和功率控制参数2。免调度配置3和免调度配置4同理。每个免调度配置具有的功率控制参数可以相同或者不同。例如,免调度配置1的功率控制参数1与免调度配置2的功率控制参数1可以相同或不同。免调度配置1的功率控制参数2与免调度配置2的功率 控制参数2可以相同或不同。但是在同一个免调度配置的两组功率控制参数中,功率控制参数1确定的传输功率大于功率控制参数2确定的传输功率。功率控制参数2可以为默认控制参数或一个参考值。功率控制参数2确定的传输功率可以理解为是一个默认传输功率,即在默认状态下,终端设备是使用功率控制参数2确定的传输功率进行上行传输。
可选的,如果每个免调度配置具有两组功率控制参数,则第一指示信息指示的第一免调度配置采用的功率控制参数确定的传输功率大于默认传输功率。第一指示信息指示的第二免调度配置采用的功率控制参数确定的传输功率等于默认传输功率。其中,本申请全文中,第一免调度配置为M个免调度配置中免调度时频资源与eMBB传输的时频资源具有交叠的免调度配置。第二免调度配置为M个免调度配置中免调度时频资源与eMBB传输的时频资源没有交叠的免调度配置。
可选的,如果每个免调度配置具有两组以上的功率控制参数,则第一指示信息指示的第一免调度配置采用的功率控制参数确定的传输功率大于上一个传输时机该第一免调度配置上的传输功率。第一指示信息指示的第二免调度配置采用的功率控制参数确定的传输功率等于上一个传输时机该第二免调度配置上的传输功率。
作为一种可选的实施方式,如果功率控制参数为功率控制命令值,当高层信令配置功率调整为累积模式时,第一免调度配置采用的功率控制命令值应该为非负值。功率控制命令值为非负值表示根据该功率控制命令值确定的传输功率比默认传输功率大,或者比上一个传输时机的传输功率高。当高层信令配置功率调整为累积模式时,第二免调度配置采用的功率控制命令值应该为0。功率控制命令值为0表示根据该功率控制命令值确定的传输功率等于上一个传输时机的传输功率。
作为一种可选的实施方式,如果功率控制参数为功率控制命令值,当高层信令配置功率调整为绝对模式时,第一免调度配置采用的功率控制命令值大于上一个传输时机采用的功率调整值。功率控制命令值大于上一个传输时机采用的功率调整值表示根据该功率控制命令值确定的传输功率比上一个传输时机的传输功率高。如果功率控制参数为功率控制命令值,当高层信令配置功率调整为绝对模式时,第二免调度配置采用的功率控制命令值等于上一个传输时机采用的功率调整值。功率控制命令值等于上一个传输时机采用的功率调整值表示根据该功率控制命令值确定的传输功率等于上一个传输时机的传输功率。
以下对第一指示信息指示M个免调度配置中每个免调度配置采用的功率控制参数的可能的两种方式进行介绍。
方式一:第一指示信息指示该M个免调度配置中每个免调度配置是否提高上行数据传输的传输功率。终端设备在免调度配置上进行上行数据传输时,由终端设备根据第一指示信息自己确定使用该免调度配置的哪一组功率控制参数确定上行数据传输的传输功率。即在方式一中,第一指示信息隐式地指示M个免调度配置中每个免调度配置采用的功率控制参数。在方式一中,每个免调度配置具有两组或两组以上的功率控制参数。
例如,如果免调度配置1的功率控制参数包括功率控制参数1和功率控制参数2。功率控制参数1确定的传输功率大于功率控制参数2确定的传输功率。第一指示信息指示在免调度配置1上提高上行数据传输的传输功率。那么,终端设备3在接收第一指示信息之后,在免调度配置1上传输上行数据时,根据免调度配置1的功率控制参数1调整上行数 据的传输功率,并使用调整后的传输功率传输上行数据。
再如,如果免调度配置1的功率控制参数包括功率控制参数1、功率控制参数2和功率控制参数3。功率控制参数1确定的传输功率大于功率控制参数2确定的传输功率,功率控制参数2确定的传输功率大于功率控制参数3确定的传输功率。第一指示信息指示在免调度配置1上提高上行数据传输的传输功率。终端设备3在上一个传输时机使用免调度配置1的功率控制参数2确定的传输功率进行上行数据传输。那么,终端设备3在接收第一指示信息之后,在免调度配置1上传输上行数据时,根据免调度配置1的功率控制参数1调整上行数据的传输功率,并使用调整后的传输功率传输上行数据。
在方式一中,第一指示信息指示免调度时频资源与eMBB传输的时频资源具有交叠的免调度配置提高上行数据传输的传输功率。第一指示信息指示免调度时频资源与eMBB传输的时频资源不具有交叠的免调度配置不提高上行数据传输的传输功率。
M个免调度配置中的每个免调度配置采用的功率控制参数可以通过不同的比特域或比特指示。M个免调度配置中每个免调度配置采用的功率控制参数可以通过一个或多个比特域或比特指示。第一指示信息的负载大小可以由RRC信令配置。第一指示信息的负载大小根据M的数量确定。例如,一个免调度配置采用的功率控制参数通过N个比特指示,N为大于或等于1的整数。那么,第一指示信息的负载大小可以为M*N个比特。
举例来说,以N为1,M为4,每个免调度配置具有两组功率控制参数为例。第一指示信息的第一个比特用于指示免调度配置1是否提高上行数据传输的传输功率。第一指示信息的第二个比特用于指示免调度配置2是否提高上行数据传输的传输功率。第一指示信息的第三个比特用于指示免调度配置3是否提高上行数据传输的传输功率。第一指示信息的第四个比特用于指示免调度配置4是否提高上行数据传输的传输功率。当比特的值为1时,表示提高上行数据传输的传输功率。当比特的值为0时,表示不提高上行数据传输的传输功率。如图7所示,由于网络设备准备或已经将eMBB传输调度在免调度配置1、免调度配置2和免调度配置3的免调度时频资源上。因此,第一指示信息中的比特可以表示为1110。即第一指示信息指示免调度配置1、免调度配置2和免调度配置3均提高上行数据传输的传输功率,免调度配置4不提高上行数据传输的传输功率。终端设备3接收该第一指示信息之后,根据第一指示信息的第一个比特确定在免调度配置1上提高上行数据传输的传输功率,根据第一指示信息的第二个比特确定在免调度配置2上提高上行数据传输的传输功率。因此,终端设备3在免调度配置1上传输上行数据时,根据免调度配置1的功率控制参数1调整上行数据的传输功率,并使用调整后的传输功率传输上行数据。终端设备3在免调度配置2上传输上行数据时,根据免调度配置2的功率控制参数1调整上行数据的传输功率,并使用调整后的传输功率传输上行数据。终端设备4接收该第一指示信息之后,根据第一指示信息的第三个比特确定在免调度配置3上提高上行数据传输的传输功率,根据第一指示信息的第四个比特确定在免调度配置2上不提高上行数据传输的传输功率。因此,终端设备4在免调度配置3上传输上行数据时,根据免调度配置3的功率控制参数1调整上行数据的传输功率,并使用调整后的传输功率传输上行数据。终端设备4在免调度配置4上传输上行数据时,采用免调度配置4的功率控制参数2确定的传输功率传输上行数据。
方式二:第一指示信息直接指示该M个免调度配置中每个免调度配置采用的功率控制参数。即在方式二中,第一指示信息显示地指示M个免调度配置中每个免调度配置采用的功率控制参数。在方式二中,每个免调度配置具有两组或两组以上的功率控制参数。
M个免调度配置中的每个免调度配置采用的功率控制参数可以通过不同的比特域或比特指示。M个免调度配置中每个免调度配置采用的功率控制参数可以通过一个或多个比特域或比特指示。第一指示信息的负载大小可以由RRC信令配置。第一指示信息的负载大小根据M的数量确定。例如,一个免调度配置采用的功率控制参数通过N个比特指示,N为大于或等于1的整数。那么,第一指示信息的负载大小可以为M*N个比特。N根据每个免调度配置具有的功率控制参数的组数确定。例如,每个免调度配置具有X组功率控制参数。那么2 N大于或等于X。
举例来说,以N为2,M为4,每个免调度配置具有三组功率控制参数为例。免调度配置1~免调度配置4分别具有功率控制参数1、功率控制参数2和功率控制参数3。其中,功率控制参数1确定的传输功率大于功率控制参数2确定的传输功率,功率控制参数2确定的传输功率大于功率控制参数3确定的传输功率。
第一指示信息的第1个比特和第2个比特用于指示免调度配置1采用的功率控制参数。第一指示信息的第3个比特和第4个比特用于指示免调度配置2采用的功率控制参数。第一指示信息的第5个比特和第6个比特用于指示免调度配置3采用的功率控制参数。第一指示信息的第7个比特和第8个比特用于指示免调度配置4采用的功率控制参数。如下表1所示,当免调度配置对应的比特为00时,指示该免调度配置采用的功率控制参数1。当免调度配置对应的比特为01时,指示该免调度配置采用的功率控制参数2。当免调度配置对应的比特为10时,指示该免调度配置采用的功率控制参数3。
表1
免调度配置对应的比特值 免调度配置的功率控制参数
00 功率控制参数1
01 功率控制参数2
10 功率控制参数3
11
如图7所示,由于网络设备准备或已经将eMBB传输调度在免调度配置1、免调度配置2和免调度配置3的免调度时频资源上。终端设备3在上一个传输时机使用免调度配置1和免调度配置2的功率控制参数2确定的传输功率进行上行数据传输。终端设备4在上一个传输时机使用免调度配置3和免调度配置4的功率控制参数2确定的传输功率进行上行数据传输。因此,第一指示信息中的比特可以表示为00 00 00 01。即第一指示信息指示免调度配置1、免调度配置2和免调度配置3均采用功率控制参数1,免调度配置4采用功率控制参数2。终端设备3接收该第一指示信息之后,根据第一指示信息的第1个比特和第2个比特确定在免调度配置1采用功率控制参数1,根据第一指示信息的第3个比特和第4个比特确定在免调度配置2采用功率控制参数1。因此,终端设备3在免调度配置1上传输上行数据时,根据免调度配置1的功率控制参数1调整上行数据的传输功率,并使用调整后的传输功率传输上行数据。终端设备3在免调度配置2上传输上行数据时,根据 免调度配置2的功率控制参数1调整上行数据的传输功率,并使用调整后的传输功率传输上行数据。终端设备4接收该第一指示信息之后,根据第一指示信息的第5个比特和第6个比特确定在免调度配置3采用功率控制参数1,根据第一指示信息的第7个比特和第8个比特确定在免调度配置2采用功率控制参数2。因此,终端设备4在免调度配置3上传输上行数据时,根据免调度配置3的功率控制参数1调整上行数据的传输功率,并使用调整后的传输功率传输上行数据。终端设备4在免调度配置4上传输上行数据时,采用免调度配置4的功率控制参数2确定的传输功率传输上行数据。
作为一种可选的实施方式,第一指示信息还可指示eMBB传输的时频资源,或指示eMBB传输的时频资源与免调度时频资源交叠的部分。这样终端设备就可只在第一指示信息指示的时频资源调整传输功率。
作为一种可选的实施方式,第一指示信息的负载大小可以由RRC信令配置。通过使用RRC信令配置第一指示信息的负载大小,这样终端设备就能准确地检测到第一指示信息的所有比特。
作为一种可选的实施方式,第一指示信息作用的小区由RRC信令配置。也就是说,网络设备可通过RRC信令向终端设备配置第一指示信息作用的小区。通过使用RRC信令配置第一指示信息作用的小区,这样属于第一指示信息作用的小区下的终端设备就可去检测第一指示信息,不属于第一指示信息作用的小区下的终端设备就可不检测第一指示信息。
602、当在M个免调度配置中的至少一个免调度配置传输上行数据时,终端设备根据第一指示信息指示的功率控制参数调整上行数据的传输功率。
本申请实施例中,终端设备接收第一指示信息之后,当在M个免调度配置中的至少一个免调度配置传输上行数据时,终端设备根据第一指示信息指示的功率控制参数调整上行数据的传输功率。
603、终端设备使用调整后的传输功率传输上行数据。
终端设备使用调整后的传输功率传输上行数据之后,相应地,网格设备接收M个免调度配置中至少一个免调度配置资源上根据所述功率控制参数调整传输功率的上行数据。
其中,终端设备可以为上述方式一和方式二的示例中的终端设备3和终端设备4。终端设备侧的具体实现方式,可以参见上述方式一和方式二的示例中终端设备3和终端设备4的实现方式,在此不赘述。
作为一种可选的实施方式,网络设备发送第一指示信息的具体实施方式为:通过下行控制信道发送第一指示信息,该下行控制信道在公共搜索空间发送。相应地,终端设备通过该下行控制信道接收该第一指示信息。通过实施该实施方式,第一指示信息可以作用于多个终端设备,终端设备均能够接收到第一指示信息。
作为一种可选的实施方式,网络设备发送第一指示信息之前,还可发送第二指示信息,该第二指示信息用于指示终端设备检测第一指示信息。相应地,终端设备接收第一指示信息之前,还可接收该第二指示信息。终端设备接收第二指示信息之后,才会检测第一指示信息。可选的,如果终端设备没有收到第二指示信息,则不需要检测第一指示信息。通过实施该实施方式,在接收到第二指示信息之后才检测第一指示信息,不需要一直检测第一指示信息,有利于节省终端设备的功耗。
可见,在通过实施图6所描述的方法中,能够通过一个指示信息指示多个免调度配置采用的功率控制参数。有利于简化信令,提高通信效率,降低控制信息的开销。
本发明实施例可以根据上述方法示例对设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本发明实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
请参见图8,图8示出了本申请实施例的一种通信装置的结构示意图。图8所示的通信装置可以用于执行上述图2所描述的方法实施例中第一终端设备的部分或全部功能。图8所示的通信装置可以包括接收单元801和处理单元802。其中:
接收单元801,用于接收第一指示信息,该第一指示信息用于指示第一时频资源,该第一指示信息包括第一信息,该第一信息用于指示通信装置是否在第一时频资源上静默上行数据传输;处理单元802,用于当根据第一信息确定通信装置在第一时频资源上静默上行数据传输时,在第一时频资源上静默上行数据传输。
作为一种可选的实施方式,处理单元802,还用于当根据第一信息确定通信装置不在第一时频资源上静默上行数据传输时,停止解读第一指示信息中除第一信息之外的信息。
作为一种可选的实施方式,当根据第一信息确定通信装置在第一时频资源上静默上行数据传输时,从接收到第一指示信息起,在4.5个正交频分复用OFDM符号后,在第一时频资源上停止上行数据传输,上行数据传输的子载波间隔为30kHz。
作为一种可选的实施方式,接收单元801,还用于接收第二指示信息,该第二指示信息用于指示通信装置检测第一指示信息。
作为一种可选的实施方式,接收单元801接收第一指示信息的方式具体为:通过下行控制信道接收第一指示信息,该下行控制信道在公共搜索空间发送。
作为一种可选的实施方式,第一信息处于第一指示信息的第一信息域中。
作为一种可选的实施方式,第一信息域的第一个比特在第一指示信息中的位置由无线资源控制RRC信令配置。
该通信装置执行的操作可以参照本申请方法实施例部分提供的第一终端设备执行的操作。例如可以参见图2对应的实施例中关于第一终端设备相关描述,在此不做赘述。
请参见图9,图9示出了本申请实施例的另一种通信装置的结构示意图。图9所示的通信装置可以用于执行上述图2所描述的方法实施例中第二终端设备的部分或全部功能。图9所示的通信装置可以包括接收单元901、处理单元902和发送单元903。其中:
接收单元901,用于接收第一指示信息,该第一指示信息用于指示第一时频资源,该第一指示信息包括第一信息,该第一信息用于指示通信装置在与第一时频资源交叠的时频资源上进行上行传输时是否调整传输功率;处理单元902,用于确定第二时频资源,该第二时频资源用于发送上行数据;发送单元903,用于当根据第一信息确定通信装置在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率,并且第一时频资源与第二时 频资源交叠时,在第二时频资源上以第一功率控制参数确定的第一传输功率发送上行数据;其中,该第一传输功率大于第二功率控制参数确定的第二传输功率。
作为一种可选的实施方式,处理单元902,还用于当根据第一信息确定通信装置在与第一时频资源交叠的时频资源上进行上行传输时不调整传输功率时,停止解读第一指示信息中除第一信息之外的信息。
作为一种可选的实施方式,发送单元903,还用于当根据第一信息确定通信装置在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率,并且第一时频资源与第二时频资源完全不交叠时,在第二时频资源上以第二传输功率发送上行数据。
作为一种可选的实施方式,接收单元901,还用于接收第二指示信息,该第二指示信息用于指示通信装置检测第一指示信息。
作为一种可选的实施方式,接收单元901接收第一指示信息的方式具体为:通过下行控制信道接收第一指示信息,该下行控制信道在公共搜索空间发送。
作为一种可选的实施方式,第一信息处于第一指示信息的第一信息域中。
作为一种可选的实施方式,第一信息域的第一个比特在第一指示信息中的位置由无线资源控制RRC信令配置。
该通信装置执行的操作可以参照本申请方法实施例部分提供的第二终端设备执行的操作。例如可以参见图2对应的实施例中关于第二终端设备相关描述,在此不做赘述。
本申请实施例还提供了一种通信装置。该通信装置可以用于执行上述图2所描述的方法实施例中网络设备的部分或全部功能。该通信装置可以包括发送单元。其中:
发送单元,用于发送第一指示信息,该第一指示信息用于指示第一时频资源,该第一指示信息包括第一信息;其中,第一信息用于指示第一终端设备在第一时频资源上静默上行数据传输;或者,第一信息用于指示第二终端设备在与第一时频资源交叠的时频资源上进行上行传输时调整传输功率。
作为一种可选的实施方式,发送单元,还用于发送第二指示信息,该第二指示信息用于指示第一终端设备或第二终端设备检测第一指示信息。
作为一种可选的实施方式,发送单元发送第一指示信息的方式具体为:通过下行控制信道发送第一指示信息,下行控制信道在公共搜索空间发送。
作为一种可选的实施方式,第一信息处于第一指示信息的第一信息域中。
作为一种可选的实施方式,第一信息域的第一个比特在第一指示信息中的位置由无线资源控制RRC信令配置。
该通信装置执行的操作可以参照本申请方法实施例部分提供的网络设备执行的操作。例如可以参见图2对应的实施例中关于网络设备相关描述,在此不做赘述。
请参见图9,图9示出了本申请实施例的另一种通信装置的结构示意图。图9所示的通信装置可以用于执行上述图6所描述的方法实施例中终端设备的部分或全部功能。图9所示的通信装置可以包括接收单元901、处理单元902和发送单元903。其中:
接收单元901,用于接收第一指示信息,该第一指示信息用于指示M个免调度配置中 每个免调度配置采用的功率控制参数,M为大于1的整数;处理单元902,用于当在M个免调度配置中的至少一个免调度配置传输上行数据时,根据第一指示信息指示的功率控制参数调整上行数据的传输功率;发送单元903,用于使用调整后的传输功率传输上行数据。
作为一种可选的实施方式,第一指示信息指示M个免调度配置中每个免调度配置是否提高上行数据传输的传输功率。
作为一种可选的实施方式,接收单元901接收第一指示信息的方式具体为:通过下行控制信道接收第一指示信息,下行控制信道在公共搜索空间发送。
作为一种可选的实施方式,接收单元901,还用于接收第二指示信息,该第二指示信息用于指示通信装置检测第一指示信息。
作为一种可选的实施方式,第一信息处于第一指示信息的第一信息域中。
作为一种可选的实施方式,第一信息域的第一个比特在第一指示信息中的位置由无线资源控制RRC信令配置。
该通信装置执行的操作可以参照本申请方法实施例部分提供的终端设备执行的操作。例如可以参见图6对应的实施例中关于终端设备相关描述,在此不做赘述。
请参见图10,图10示出了本申请实施例的另一种通信装置的结构示意图。图10所示的通信装置可以用于执行上述图6所描述的方法实施例中网络设备的部分或全部功能。图10所示的终端设备可以包括发送单元1001和接收单元1002。其中:
发送单元1001,用于发送第一指示信息,该第一指示信息用于指示M个免调度配置中每个免调度配置采用的功率控制参数,该M为大于1的整数;接收单元1002,用于接收M个免调度配置中至少一个免调度配置资源上根据所述功率控制参数调整传输功率的上行数据。
作为一种可选的实施方式,第一指示信息指示M个免调度配置中每个免调度配置是否提高上行数据传输的传输功率。
作为一种可选的实施方式,发送单元1001发送第一指示信息的方式具体为:通过下行控制信道发送第一指示信息,该下行控制信道在公共搜索空间发送。
作为一种可选的实施方式,M个免调度配置为免调度时频资源与第一终端设备的时频资源具有交叠的免调度配置。
作为一种可选的实施方式,发送单元1001,还用于发送第二指示信息,该第二指示信息用于指示第一终端设备或第二终端设备检测第一指示信息。
作为一种可选的实施方式,第一信息处于第一指示信息的第一信息域中。
作为一种可选的实施方式,第一信息域的第一个比特在第一指示信息中的位置由无线资源控制RRC信令配置。
该通信装置执行的操作可以参照本申请方法实施例部分提供的网络设备执行的操作。例如可以参见图6对应的实施例中关于网络设备相关描述,在此不做赘述。
请参见图8,图8示出了本申请实施例的另一种通信装置的结构示意图。图8所示的通信装置可以用于执行上述图4所描述的方法实施例中第一终端设备的部分或全部功能。 图8所示的通信装置可以包括接收单元801和处理单元802。其中:
接收单元801,用于接收第一指示信息,该第一指示信息的第一类信息域用于指示第一时频资源,该第一指示信息的第二类信息域用于指示第二时频资源;其中,该第一类信息域包括第一信息,该第一信息用于指示通信装置在该第一时频资源上静默上行数据传输;该第二类信息域包括第二信息,该第二信息用于指示该通信装置不在该第二时频资源上静默上行数据传输;
处理单元802,用于在该第一时频资源上静默该上行数据传输。
作为一种可选的实施方式,接收单元801,还用于接收第二指示信息,该第二指示信息用于指示通信装置检测该第一指示信息。
作为一种可选的实施方式,接收单元801接收第一指示信息的具体实施方式为:通过下行控制信道接收该第一指示信息,该下行控制信道在公共搜索空间发送。
作为一种可选的实施方式,该第一信息的第一个比特在第一类信息域中的位置由无线资源控制RRC信令配置,该第二信息的第一个比特在第二类信息域中的位置由RRC信令配置。
作为一种可选的实施方式,从接收到该第一指示信息起,在4.5个正交频分复用OFDM符号后,在该第一时频资源上停止上行数据传输,该上行数据传输的子载波间隔为30kHz。
作为一种可选的实施方式,该第一指示信息的负载大小由RRC信令配置。
作为一种可选的实施方式,该第一指示信息作用的小区由RRC信令配置。
该通信装置执行的操作可以参照本申请方法实施例部分提供的第一终端设备执行的操作。例如可以参见图4对应的实施例中关于第一终端设备相关描述,在此不做赘述。
请参见图9,图9示出了本申请实施例的另一种通信装置的结构示意图。图9所示的通信装置可以用于执行上述图4所描述的方法实施例中第二终端设备的部分或全部功能。图9所示的通信装置可以包括接收单元901、处理单元902和发送单元903。其中:
接收单元901,用于接收第一指示信息,该第一指示信息的第一类信息域用于指示第一时频资源,该第一指示信息的第二类信息域用于指示第二时频资源;其中,该第一类信息域包括第一信息,该第一信息用于指示通信装置在与该第一时频资源交叠的时频资源上进行上行传输时不调整传输功率;该第二类信息域包括第二信息,该第二信息用于指示该通信装置在与该第二时频资源交叠的时频资源上进行上行传输时调整传输功率;处理单元902,用于确定第三时频资源,该第三时频资源用于发送上行数据;发送单元903,用于当该第二时频资源与该第三时频资源交叠时,在该第三时频资源上以第一功率控制参数确定的第一传输功率发送该上行数据;其中,该第一传输功率大于第二功率控制参数确定的第二传输功率。
作为一种可选的实施方式,发送单元903,还用于当该第二时频资源与该第三时频资源完全不交叠时,在该第三时频资源上以该第二传输功率发送上行数据。
作为一种可选的实施方式,接收单元901,还用于接收第二指示信息,该第二指示信息用于指示通信装置检测该第一指示信息。
作为一种可选的实施方式,接收单元901接收第一指示信息的具体实施方式为:通过 下行控制信道接收该第一指示信息,该下行控制信道在公共搜索空间发送。
作为一种可选的实施方式,该第一信息的第一个比特在第一类信息域中的位置由无线资源控制RRC信令配置,该第二信息的第一个比特在第二类信息域中的位置由RRC信令配置。
作为一种可选的实施方式,该第一指示信息的负载大小由RRC信令配置。
作为一种可选的实施方式,该第一指示信息作用的小区由无线资源控制RRC信令配置。
该通信装置执行的操作可以参照本申请方法实施例部分提供的第二终端设备执行的操作。例如可以参见图4对应的实施例中关于第二终端设备相关描述,在此不做赘述。
本申请实施例还提供了一种通信装置。该通信装置可以用于执行上述图4所描述的方法实施例中通信装置的部分或全部功能。该通信装置可以包括发送单元。其中:
发送单元,用于发送第一指示信息,该第一指示信息的第一类信息域用于指示第一时频资源,该第一指示信息的第二类信息域用于指示第二时频资源;其中,该第一类信息域包括第一信息,该第一信息用于指示第一终端设备在第一时频资源上静默上行数据传输;该第二类信息域包括第二信息,该第二信息用于指示第二终端设备在与第二时频资源交叠的时频资源上进行上行传输时调整传输功率。
作为一种可选的实施方式,还可发送第二指示信息,该第二指示信息用于指示第一终端设备或第二终端设备检测第一指示信息。
作为一种可选的实施方式,发送第一指示信息的具体实施方式为:通过下行控制信道发送第一指示信息,该下行控制信道在公共搜索空间发送。
作为一种可选的实施方式,该第一信息的第一个比特在第一类信息域中的位置由无线资源控制RRC信令配置,该第二信息的第一个比特在第二类信息域中的位置由RRC信令配置。
作为一种可选的实施方式,该第一指示信息的负载大小由无线资源控制RRC信令配置。
作为一种可选的实施方式,该第一指示信息作用的小区由无线资源控制RRC信令配置。
该通信装置执行的操作可以参照本申请方法实施例部分提供的网络设备执行的操作。例如可以参见图4对应的实施例中关于网络设备相关描述,在此不做赘述。
请参见图11,图11是本申请实施例公开的一种通信装置的结构示意图。该通信装置可用于实现上述方法实施例中描述的通信方法。该通信装置可以是终端设备、用于终端设备的装置、网络设备或用于网络设备的装置。例如,终端设备可以是手机、穿戴式设备或平板电脑等。用于终端设备的装置可以为终端设备内的芯片。网络设备可以为基站等。用于网络设备的装置可以为网络设备内的芯片。
如图11所示,该通信装置包括处理器1101和收发器1102。其中,处理器1101与收发器1102相连。可选的,该通信装置还可包括存储器1103。存储器1103与处理器1101相连。
其中,该处理器1101可支持通信装置实现本申请实施例中的通信方法。例如,当通信装置为终端设备或用于终端设备的装置时,处理器1101可执行图2或图4所描述的方法实施例中第一终端设备所执行的方法。该处理器1101执行的操作可参见图2或图4对应的实施例中关于第一终端设备相关描述,在此不做赘述。
或者,当通信装置为终端设备或用于终端设备的装置时,处理器1101可执行图2或图4所描述的方法实施例中第二终端设备所执行的方法。该处理器1101执行的操作可参见图2或图4对应的实施例中关于第二终端设备相关描述,在此不做赘述。
或者,当通信装置为终端设备或用于终端设备的装置时,处理器1101可执行图6所描述的方法实施例中终端设备所执行的方法。该处理器1101执行的操作可参见图6对应的实施例中关于终端设备相关描述,在此不做赘述。
再如,当通信装置为网络设备或用于网络设备的装置时,处理器1101可执行图2、图4或图6所描述的方法实施例中网络设备所执行的方法。该处理器1101执行的操作可参见图2、图4或图6对应的实施例中关于网络设备相关描述,在此不做赘述。
处理器1101可以是中央处理器(central processing unit,CPU),通用处理器,协处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。该处理器1101也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
其中,当通信装置为终端设备时,收发器1102可以包括天线以及与天线相连的射频电路。收发器1102用于终端设备与其他网元进行通信。例如,收发器1102用于终端设备与网络设备进行通信。可选的,该通信装置还可包括与其他终端设备进行通信的收发器。
当通信装置为用于终端设备的装置时,收发器1102可以为接口电路,该接口电路用于该处理器获取或者输出信息或数据。例如,该接口电路用于该处理器从存储器读取数据或者写入数据,又如,该接口电路用于处理器1101接收来自设备外部的信息或数据,或者向设备外部发送信息或数据。
其中,当通信装置为网络设备时,收发器1102可以包括天线以及与天线相连的射频电路。收发器1102用于网络设备与其他网元进行通信。例如,收发器1102用于网络设备与终端设备进行通信。可选的,该通信装置还可包括与其他网络设备进行通信的收发器。可选的,当网络设备由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成时,DU包括收发器1102和处理器1101。CU包括处理器1101。DU主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU主要用于进行基带处理,对网络设备进行控制等。例如,CU可以控制网络设备执行上述图2、图4或图6对应的实施例中关于网络设备的操作流程。
当通信装置为用于网络设备的装置时,收发器1102可以为接口电路,该接口电路用于该处理器获取或者输出信息或数据。例如,该接口电路用于该处理器从存储器读取数据或者写入数据,又如,该接口电路用于处理器1101接收来自设备外部的信息或数据,或者向设备外部发送信息或数据。
可选的,通信装置中可以包括存储器1103,其上存有程序(也可以是指令或者代码), 该程序可被处理器1101运行,使得处理器1101执行上述方法实施例中描述的通信方法。可选地,存储器1103中还可以存储有数据。可选地,处理器1101还可以读取存储器1103中存储的数据(例如,预定义的信息),该数据可以与程序存储在相同的存储地址,该数据也可以与程序存储在不同的存储地址。
处理器1101和存储器1103可以单独设置,也可以集成在一起,例如,集成在单板或者***级芯片(system on chip,SOC)上。
本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在处理器上运行时,上述方法实施例的方法流程得以实现。
本发明实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,上述方法实施例的方法流程得以实现。
当使用软件实现本申请所提供的设备时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地实现本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程设备。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请提供的各实施例的描述可以相互参照,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。为描述的方便和简洁,例如关于本申请实施例提供的各装置、设备的功能以及执行的步骤可以参照本申请方法实施例的相关描述,各方法实施例之间、各装置实施例之间也可以互相参考、结合或引用。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (83)

  1. 一种通信方法,其特征在于,所述方法包括:
    接收第一指示信息,所述第一指示信息用于指示第一时频资源,所述第一指示信息包括第一信息,所述第一信息用于指示终端设备是否在所述第一时频资源上静默上行数据传输;
    当根据所述第一信息确定所述终端设备在所述第一时频资源上静默上行数据传输时,在所述第一时频资源上静默所述上行数据传输。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当根据所述第一信息确定所述终端设备不在所述第一时频资源上静默所述上行数据传输时,停止解读所述第一指示信息中除所述第一信息之外的信息。
  3. 根据权利要求1或2所述的方法,其特征在于,当根据所述第一信息确定所述终端设备在所述第一时频资源上静默所述上行数据传输时,从接收到所述第一指示信息起,在4.5个正交频分复用OFDM符号后,在所述第一时频资源上停止所述上行数据传输,所述上行数据传输的子载波间隔为30kHz。
  4. 一种通信方法,其特征在于,所述方法包括:
    接收第一指示信息,所述第一指示信息用于指示第一时频资源,所述第一指示信息包括第一信息,所述第一信息用于指示终端设备在与所述第一时频资源交叠的时频资源上进行上行传输时是否调整传输功率;
    确定第二时频资源,所述第二时频资源用于发送上行数据;
    当根据所述第一信息确定所述终端设备在与所述第一时频资源交叠的时频资源上进行上行传输时调整传输功率,并且所述第一时频资源与所述第二时频资源交叠时,在所述第二时频资源上以第一功率控制参数确定的第一传输功率发送所述上行数据;
    其中,所述第一传输功率大于第二功率控制参数确定的第二传输功率。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    当根据所述第一信息确定所述终端设备在与所述第一时频资源交叠的时频资源上进行上行传输时不调整传输功率时,停止解读所述第一指示信息中除所述第一信息之外的信息。
  6. 根据权利要求4或5所述的方法,其特征在于,所述方法还包括:
    当根据所述第一信息确定所述终端设备在与所述第一时频资源交叠的时频资源上进行上行传输时调整传输功率,并且所述第一时频资源与所述第二时频资源完全不交叠时,在所述第二时频资源上以所述第二传输功率发送所述上行数据。
  7. 根据权利要求1~6中任意一项所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示所述终端设备检测所述第一指示信息。
  8. 根据权利要求1~7中任意一项所述的方法,其特征在于,所述接收第一指示信息,包括:
    通过下行控制信道接收第一指示信息,所述下行控制信道在公共搜索空间发送。
  9. 一种通信方法,其特征在于,所述方法包括:
    发送第一指示信息,所述第一指示信息用于指示第一时频资源,所述第一指示信息包括第一信息;
    其中,所述第一信息用于指示第一终端设备在所述第一时频资源上静默上行数据传输;或者,所述第一信息用于指示第二终端设备在与所述第一时频资源交叠的时频资源上进行上行传输时调整传输功率。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示所述第一终端设备或所述第二终端设备检测所述第一指示信息。
  11. 根据权利要求9或10所述的方法,其特征在于,所述发送第一指示信息,包括:
    通过下行控制信道发送第一指示信息,所述下行控制信道在公共搜索空间发送。
  12. 根据权利要求1~11中任意一项所述的方法,其特征在于,所述第一信息处于所述第一指示信息的第一信息域中。
  13. 根据权利要求12所述的方法,其特征在于,所述第一信息域的第一个比特在第一指示信息中的位置由无线资源控制RRC信令配置。
  14. 根据权利要求1~13中任意一项所述的方法,其特征在于,所述第一指示信息的负载大小由无线资源控制RRC信令配置。
  15. 根据权利要求1~14中任意一项所述的方法,其特征在于,所述第一指示信息作用的小区由无线资源控制RRC信令配置。
  16. 一种通信方法,其特征在于,所述方法包括:
    接收第一指示信息,所述第一指示信息用于指示M个免调度配置中每个免调度配置采用的功率控制参数,所述M为大于1的整数;
    当在所述M个免调度配置中的至少一个免调度配置传输上行数据时,根据所述第一指示信息指示的功率控制参数调整所述上行数据的传输功率;
    使用调整后的传输功率传输所述上行数据。
  17. 根据权利要求16所述的方法,其特征在于,所述第一指示信息指示所述M个免调度配置中每个免调度配置是否提高上行数据传输的传输功率。
  18. 根据权利要求16或17所述的方法,其特征在于,所述接收第一指示信息,包括:
    通过下行控制信道接收第一指示信息,所述下行控制信道在公共搜索空间发送。
  19. 根据权利要求16~18中任意一项所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示终端设备检测所述第一指示信息。
  20. 一种通信方法,其特征在于,所述方法包括:
    发送第一指示信息,所述第一指示信息用于指示M个免调度配置中每个免调度配置采用的功率控制参数,所述M为大于1的整数;
    接收M个免调度配置中至少一个免调度配置资源上根据所述功率控制参数调整传输功率的上行数据。
  21. 根据权利要求20所述的方法,其特征在于,所述第一指示信息指示所述M个免调度配置中每个免调度配置是否提高上行数据传输的传输功率。
  22. 根据权利要求20或21所述的方法,其特征在于,所述发送第一指示信息,包括:
    通过下行控制信道发送第一指示信息,所述下行控制信道在公共搜索空间发送。
  23. 根据权利要求20~22中任意一项所述的方法,其特征在于,所述M个免调度配置为免调度时频资源与第一终端设备的时频资源具有交叠的免调度配置。
  24. 根据权利要求20~23中任意一项所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示第二终端设备检测所述第一指示信息。
  25. 根据权利要求16~24中任意一项所述的方法,其特征在于,所述第一指示信息的负载大小由无线资源控制RRC信令配置。
  26. 根据权利要求16~25中任意一项所述的方法,其特征在于,所述第一指示信息作用的小区由无线资源控制RRC信令配置。
  27. 一种通信方法,其特征在于,所述方法包括:
    接收第一指示信息,所述第一指示信息的第一类信息域用于指示第一时频资源,所述第一指示信息的第二类信息域用于指示第二时频资源;其中,所述第一类信息域包括第一信息,所述第一信息用于指示终端设备在所述第一时频资源上静默上行数据传输;所述第二类信息域包括第二信息,所述第二信息用于指示所述终端设备不在所述第二时频资源上 静默上行数据传输;
    在所述第一时频资源上静默所述上行数据传输。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示所述终端设备检测所述第一指示信息。
  29. 根据权利要求27或28所述的方法,其特征在于,所述接收第一指示信息包括:
    通过下行控制信道接收所述第一指示信息,所述下行控制信道在公共搜索空间发送。
  30. 根据权利要求27~29中任意一项所述的方法,其特征在于,从接收到所述第一指示信息起,在4.5个正交频分复用OFDM符号后,在所述第一时频资源上停止上行数据传输,所述上行数据传输的子载波间隔为30kHz。
  31. 一种通信方法,其特征在于,所述方法包括:
    接收第一指示信息,所述第一指示信息的第一类信息域用于指示第一时频资源,所述第一指示信息的第二类信息域用于指示第二时频资源;其中,所述第一类信息域包括第一信息,所述第一信息用于指示终端设备在与所述第一时频资源交叠的时频资源上进行上行传输时不调整传输功率;所述第二类信息域包括第二信息,所述第二信息用于指示所述终端设备在与所述第二时频资源交叠的时频资源上进行上行传输时调整传输功率;
    确定第三时频资源,所述第三时频资源用于发送上行数据;
    当所述第二时频资源与所述第三时频资源交叠时,在所述第三时频资源上以第一功率控制参数确定的第一传输功率发送该上行数据;其中,所述第一传输功率大于第二功率控制参数确定的第二传输功率。
  32. 根据权利要求31所述的方法,其特征在于,所述方法还包括:
    当所述第二时频资源与所述第三时频资源完全不交叠时,在所述第三时频资源上以所述第二传输功率发送上行数据。
  33. 根据权利要求31或32所述的方法,其特征在于,所述方法还包括:
    接收第二指示信息,所述第二指示信息用于指示终端设备检测所述第一指示信息。
  34. 根据权利要求31~33中任意一项所述的方法,其特征在于,所述接收第一指示信息包括:
    通过下行控制信道接收所述第一指示信息,所述下行控制信道在公共搜索空间发送。
  35. 一种通信方法,其特征在于,所述方法包括:
    发送第一指示信息,所述第一指示信息的第一类信息域用于指示第一时频资源,所述第一指示信息的第二类信息域用于指示第二时频资源;其中,所述第一类信息域包括第一 信息,所述第一信息用于指示第一终端设备在第一时频资源上静默上行数据传输;所述第二类信息域包括第二信息,所述第二信息用于指示第二终端设备在与第二时频资源交叠的时频资源上进行上行传输时调整传输功率。
  36. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    发送第二指示信息,所述第二指示信息用于指示第一终端设备或第二终端设备检测第一指示信息。
  37. 根据权利要求35或36所述的方法,其特征在于,所述发送第一指示信息包括:
    通过下行控制信道发送第一指示信息,所述下行控制信道在公共搜索空间发送。
  38. 根据权利要求27~37中任意一项所述的方法,其特征在于,所述第一信息的第一个比特在第一类信息域中的位置由无线资源控制RRC信令配置,所述第二信息的第一个比特在第二类信息域中的位置由RRC信令配置。
  39. 根据权利要求27~38中任意一项所述的方法,其特征在于,所述第一指示信息的负载大小由RRC信令配置。
  40. 根据权利要求27~39中任意一项所述的方法,其特征在于,所述第一指示信息作用的小区由RRC信令配置。
  41. 一种通信装置,其特征在于,包括:
    接收单元,用于接收第一指示信息,所述第一指示信息用于指示第一时频资源,所述第一指示信息包括第一信息,所述第一信息用于指示通信装置是否在所述第一时频资源上静默上行数据传输;
    处理单元,用于当根据所述第一信息确定所述通信装置在所述第一时频资源上静默上行数据传输时,在所述第一时频资源上静默所述上行数据传输。
  42. 根据权利要求41所述的通信装置,其特征在于,
    所述处理单元,还用于当根据所述第一信息确定所述通信装置不在所述第一时频资源上静默所述上行数据传输时,停止解读所述第一指示信息中除所述第一信息之外的信息。
  43. 根据权利要求41或42所述的通信装置,其特征在于,当根据所述第一信息确定所述通信装置在所述第一时频资源上静默所述上行数据传输时,从接收到所述第一指示信息起,在4.5个正交频分复用OFDM符号后,在所述第一时频资源上停止所述上行数据传输,所述上行数据传输的子载波间隔为30kHz。
  44. 一种通信装置,其特征在于,包括:
    接收单元,用于接收第一指示信息,所述第一指示信息用于指示第一时频资源,所述第一指示信息包括第一信息,所述第一信息用于指示通信装置在与所述第一时频资源交叠的时频资源上进行上行传输时是否调整传输功率;
    处理单元,用于确定第二时频资源,所述第二时频资源用于发送上行数据;
    发送单元,用于当根据所述第一信息确定所述通信装置在与所述第一时频资源交叠的时频资源上进行上行传输时调整传输功率,并且所述第一时频资源与所述第二时频资源交叠时,在所述第二时频资源上以第一功率控制参数确定的第一传输功率发送所述上行数据;
    其中,所述第一传输功率大于第二功率控制参数确定的第二传输功率。
  45. 根据权利要求44所述的通信装置,其特征在于,
    所述处理单元,还用于当根据所述第一信息确定所述通信装置在与所述第一时频资源交叠的时频资源上进行上行传输时不调整传输功率时,停止解读所述第一指示信息中除所述第一信息之外的信息。
  46. 根据权利要求44或45所述的通信装置,其特征在于,
    所述发送单元,还用于当根据所述第一信息确定所述通信装置在与所述第一时频资源交叠的时频资源上进行上行传输时调整传输功率,并且所述第一时频资源与所述第二时频资源完全不交叠时,在所述第二时频资源上以所述第二传输功率发送所述上行数据。
  47. 根据权利要求41~46中任意一项所述的通信装置,其特征在于,
    所述接收单元,还用于接收第二指示信息,所述第二指示信息用于指示所述通信装置检测所述第一指示信息。
  48. 根据权利要求41~47中任意一项所述的通信装置,其特征在于,所述接收单元接收第一指示信息的方式具体为:
    通过下行控制信道接收第一指示信息,所述下行控制信道在公共搜索空间发送。
  49. 一种通信装置,其特征在于,所述通信装置包括:
    发送单元,用于发送第一指示信息,所述第一指示信息用于指示第一时频资源,所述第一指示信息包括第一信息;
    其中,所述第一信息用于指示第一终端设备在所述第一时频资源上静默上行数据传输;或者,所述第一信息用于指示第二终端设备在与所述第一时频资源交叠的时频资源上进行上行传输时调整传输功率。
  50. 根据权利要求49所述的通信装置,其特征在于,
    所述发送单元,还用于发送第二指示信息,所述第二指示信息用于指示所述第一终端设备或所述第二终端设备检测所述第一指示信息。
  51. 根据权利要求49或50所述的通信装置,其特征在于,所述发送单元发送第一指示信息的方式具体为:
    通过下行控制信道发送第一指示信息,所述下行控制信道在公共搜索空间发送。
  52. 根据权利要求41~51中任意一项所述的通信装置,其特征在于,所述第一信息处于所述第一指示信息的第一信息域中。
  53. 根据权利要求52所述的通信装置,其特征在于,所述第一信息域的第一个比特在第一指示信息中的位置由无线资源控制RRC信令配置。
  54. 根据权利要求41~53中任意一项所述的通信装置,其特征在于,所述第一指示信息的负载大小由无线资源控制RRC信令配置。
  55. 根据权利要求41~54中任意一项所述的通信装置,其特征在于,所述第一指示信息作用的小区由无线资源控制RRC信令配置。
  56. 一种通信装置,其特征在于,所述通信装置包括:
    接收单元,用于接收第一指示信息,所述第一指示信息用于指示M个免调度配置中每个免调度配置采用的功率控制参数,所述M为大于1的整数;
    处理单元,用于当在所述M个免调度配置中的至少一个免调度配置传输上行数据时,根据所述第一指示信息指示的功率控制参数调整所述上行数据的传输功率;
    发送单元,用于使用调整后的传输功率传输所述上行数据。
  57. 根据权利要求56所述的通信装置,其特征在于,所述第一指示信息指示所述M个免调度配置中每个免调度配置是否提高上行数据传输的传输功率。
  58. 根据权利要求56或57所述的通信装置,其特征在于,所述接收单元接收第一指示信息的方式具体为:
    通过下行控制信道接收第一指示信息,所述下行控制信道在公共搜索空间发送。
  59. 根据权利要求56~58中任意一项所述的通信装置,其特征在于,
    所述接收单元,还用于接收第二指示信息,所述第二指示信息用于指示所述通信装置检测所述第一指示信息。
  60. 一种通信装置,其特征在于,所述通信装置包括:
    发送单元,用于发送第一指示信息,所述第一指示信息用于指示M个免调度配置中每个免调度配置采用的功率控制参数,所述M为大于1的整数;
    接收单元,用于接收M个免调度配置中至少一个免调度配置资源上根据所述功率控制 参数调整传输功率的上行数据。
  61. 根据权利要求60所述的通信装置,其特征在于,所述第一指示信息指示所述M个免调度配置中每个免调度配置是否提高上行数据传输的传输功率。
  62. 根据权利要求60或61所述的通信装置,其特征在于,所述发送单元发送第一指示信息的方式具体为:
    通过下行控制信道发送第一指示信息,所述下行控制信道在公共搜索空间发送。
  63. 根据权利要求60~62中任意一项所述的通信装置,其特征在于,所述M个免调度配置为免调度时频资源与第一终端设备的时频资源具有交叠的免调度配置。
  64. 根据权利要求60~63中任意一项所述的通信装置,其特征在于,
    所述发送单元,还用于发送第二指示信息,所述第二指示信息用于指示第二终端设备检测所述第一指示信息。
  65. 根据权利要求56~64中任意一项所述的方法,其特征在于,所述第一指示信息的负载大小由无线资源控制RRC信令配置。
  66. 根据权利要求56~65中任意一项所述的方法,其特征在于,所述第一指示信息作用的小区由无线资源控制RRC信令配置。
  67. 一种通信装置,其特征在于,所述通信装置包括:
    接收单元,用于接收第一指示信息,所述第一指示信息的第一类信息域用于指示第一时频资源,所述第一指示信息的第二类信息域用于指示第二时频资源;其中,所述第一类信息域包括第一信息,所述第一信息用于指示通信装置在所述第一时频资源上静默上行数据传输;所述第二类信息域包括第二信息,所述第二信息用于指示所述通信装置不在所述第二时频资源上静默上行数据传输;
    处理单元,用于在所述第一时频资源上静默所述上行数据传输。
  68. 根据权利要求67所述的通信装置,其特征在于,
    所述接收单元,还用于接收第二指示信息,所述第二指示信息用于指示所述通信装置检测所述第一指示信息。
  69. 根据权利要求67或68所述的通信装置,其特征在于,所述接收单元接收第一指示信息的方式具体为:
    通过下行控制信道接收所述第一指示信息,所述下行控制信道在公共搜索空间发送。
  70. 根据权利要求67~69中任意一项所述的通信装置,其特征在于,从接收到所述第一指示信息起,在4.5个正交频分复用OFDM符号后,在所述第一时频资源上停止上行数据传输,所述上行数据传输的子载波间隔为30kHz。
  71. 一种通信装置,其特征在于,所述通信装置包括:
    接收单元,用于接收第一指示信息,所述第一指示信息的第一类信息域用于指示第一时频资源,所述第一指示信息的第二类信息域用于指示第二时频资源;其中,所述第一类信息域包括第一信息,所述第一信息用于指示通信装置在与所述第一时频资源交叠的时频资源上进行上行传输时不调整传输功率;所述第二类信息域包括第二信息,所述第二信息用于指示所述通信装置在与所述第二时频资源交叠的时频资源上进行上行传输时调整传输功率;
    处理单元,用于确定第三时频资源,所述第三时频资源用于发送上行数据;
    发送单元,用于当所述第二时频资源与所述第三时频资源交叠时,在所述第三时频资源上以第一功率控制参数确定的第一传输功率发送该上行数据;其中,所述第一传输功率大于第二功率控制参数确定的第二传输功率。
  72. 根据权利要求71所述的通信装置,其特征在于,
    所述发送单元,还用于当所述第二时频资源与所述第三时频资源完全不交叠时,在所述第三时频资源上以所述第二传输功率发送上行数据。
  73. 根据权利要求71或72所述的通信装置,其特征在于,
    所述接收单元,还用于接收第二指示信息,所述第二指示信息用于指示通信装置检测所述第一指示信息。
  74. 根据权利要求71~73中任意一项所述的通信装置,其特征在于,所述接收单元接收第一指示信息的方式具体为:
    通过下行控制信道接收所述第一指示信息,所述下行控制信道在公共搜索空间发送。
  75. 一种通信装置,其特征在于,所述通信装置包括:
    发送单元,用于发送第一指示信息,所述第一指示信息的第一类信息域用于指示第一时频资源,所述第一指示信息的第二类信息域用于指示第二时频资源;其中,所述第一类信息域包括第一信息,所述第一信息用于指示第一终端设备在第一时频资源上静默上行数据传输;所述第二类信息域包括第二信息,所述第二信息用于指示第二终端设备在与第二时频资源交叠的时频资源上进行上行传输时调整传输功率。
  76. 根据权利要求75所述的通信装置,其特征在于,
    所述发送单元,还用于发送第二指示信息,所述第二指示信息用于指示第一终端设备或第二终端设备检测第一指示信息。
  77. 根据权利要求75或76所述的通信装置,其特征在于,所述发送单元发送第一指示信息的方式具体为:
    通过下行控制信道发送第一指示信息,所述下行控制信道在公共搜索空间发送。
  78. 根据权利要求67~77中任意一项所述的通信装置,其特征在于,所述第一信息的第一个比特在第一类信息域中的位置由无线资源控制RRC信令配置,所述第二信息的第一个比特在第二类信息域中的位置由RRC信令配置。
  79. 根据权利要求67~78中任意一项所述的通信装置,其特征在于,所述第一指示信息的负载大小由RRC信令配置。
  80. 根据权利要求67~79中任意一项所述的通信装置,其特征在于,所述第一指示信息作用的小区由RRC信令配置。
  81. 一种通信装置,其特征在于,包括处理器、存储器和收发器;
    所述收发器,用于接收信号或者发送信号;
    所述存储器,用于存储计算机程序;
    所述处理器,用于从所述存储器调用所述计算机程序执行如权利要求1-3中任意一项所述的方法被执行,或如权利要求4~8中任意一项所述的方法被执行,或如权利要求9~15中任意一项所述的方法被执行,或如权利要求16~19中任意一项所述的方法被执行,或如权利要求20~26中任意一项所述的方法被执行,或如权利要求27~30中任意一项所述的方法被执行,或如权利要求31~34中任意一项所述的方法被执行,或如权利要求35~40中任意一项所述的方法被执行。
  82. 一种通信装置,其特征在于,包括处理器和接口电路;
    所述接口电路用于该处理器获取或者输出信息或数据;所述处理器用于运行程序,以使得所述通信装置实现如权利要求1-3中任意一项所述的方法被执行,或如权利要求4~8中任意一项所述的方法被执行,或如权利要求9~15中任意一项所述的方法被执行,或如权利要求16~19中任意一项所述的方法被执行,或如权利要求20~26中任意一项所述的方法被执行,或如权利要求27~30中任意一项所述的方法被执行,或如权利要求31~34中任意一项所述的方法被执行,或如权利要求35~40中任意一项所述的方法被执行。
  83. 一种计算机可读存储介质,其特征在于,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述权利要求1~40中任意一项所述的方法。
PCT/CN2020/096339 2019-07-01 2020-06-16 一种通信方法及装置 WO2021000725A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910586434.7 2019-07-01
CN201910586434.7A CN112188620B (zh) 2019-07-01 2019-07-01 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2021000725A1 true WO2021000725A1 (zh) 2021-01-07

Family

ID=73915566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096339 WO2021000725A1 (zh) 2019-07-01 2020-06-16 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN112188620B (zh)
WO (1) WO2021000725A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945556A (zh) * 2013-01-21 2014-07-23 电信科学技术研究院 一种资源调度的方法、***和设备
CN104025675A (zh) * 2011-08-15 2014-09-03 摩托罗拉移动有限责任公司 当使用多个定时提前时用于重叠传输的功率分配
WO2015149349A1 (zh) * 2014-04-04 2015-10-08 华为技术有限公司 参考信号的检测方法、接收方法、用户设备和基站
CN108024285A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 数据传输方法、装置、***、终端和接入网设备
CN109996341A (zh) * 2017-12-29 2019-07-09 华为技术有限公司 控制信息的传输方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104964B (zh) * 2010-12-22 2013-09-04 北京邮电大学 蜂窝网络中频带资源协调调度的方法及***
US20120281533A1 (en) * 2011-05-03 2012-11-08 Texas Instruments Incorporated Systems and methods for time optimization for silencing wireless devices in coexistence networks
EP2683191B1 (en) * 2012-07-02 2016-12-28 Alcatel Lucent Inter-cell interference coordination for co-channel heterogeneous networks
CN112911712B (zh) * 2016-08-29 2023-03-28 华为技术有限公司 一种下行传输方法及装置
US11172444B2 (en) * 2016-10-10 2021-11-09 Qualcomm Incorporated Techniques for power control and management
US11546929B2 (en) * 2017-01-09 2023-01-03 Huawei Technologies Co., Ltd. Systems and methods for signaling for semi-static configuration in grant-free uplink transmissions
CN109218000B (zh) * 2017-06-30 2023-04-07 华为技术有限公司 控制信息传输方法和设备
PT3666001T (pt) * 2017-08-10 2022-11-08 Sharp Kk Procedimentos, estações base e equipamentos de utilizador para transmissão de ligação ascendente sem concessão
CN109618362A (zh) * 2019-02-15 2019-04-12 中国联合网络通信集团有限公司 一种通信方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025675A (zh) * 2011-08-15 2014-09-03 摩托罗拉移动有限责任公司 当使用多个定时提前时用于重叠传输的功率分配
CN103945556A (zh) * 2013-01-21 2014-07-23 电信科学技术研究院 一种资源调度的方法、***和设备
WO2015149349A1 (zh) * 2014-04-04 2015-10-08 华为技术有限公司 参考信号的检测方法、接收方法、用户设备和基站
CN108024285A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 数据传输方法、装置、***、终端和接入网设备
CN109996341A (zh) * 2017-12-29 2019-07-09 华为技术有限公司 控制信息的传输方法

Also Published As

Publication number Publication date
CN112188620B (zh) 2022-04-05
CN112188620A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
WO2019129012A1 (zh) 控制信息的传输方法
WO2019137245A1 (zh) 上行控制信息传输方法及装置
CN112740603A (zh) 无线通信***中考虑到优先级发送和接收物理层信道的方法和装置
US20210168849A1 (en) Method, apparatus, and system for allocating resources in wireless communication system
US11039430B2 (en) Method and device for setting control and data channel transmission time in wireless communication system
WO2019062840A1 (zh) 信息传输方法和装置
CN111181694B (zh) 一种上行控制信息的传输方法及装置
WO2019242776A1 (zh) 无线通信方法及装置
WO2020029973A1 (zh) 一种信息的处理方法和通信装置
KR20210151551A (ko) 무선 통신 시스템에서 데이터 채널들을 스케줄하는 하향링크 제어 정보의 송수신 방법 및 장치
US20220278802A1 (en) Method and apparatus for setting occupation time of channel state information processing unit of terminal in wireless communication system
EP3744146B1 (en) Multi-bit scheduling request
KR20240019158A (ko) 무선 통신 시스템에서 제어 정보를 송수신하기 위한 방법 및 장치
US20220272557A1 (en) Systems and methods for determining information indicative of cancelation
CN113424478A (zh) 用于在无线通信***中发送和接收下行链路控制信息的方法和装置
US20230199740A1 (en) Communication method and apparatus
US20230156488A1 (en) Transmission Method and Apparatus, Communication Device, and Terminal
KR20220023219A (ko) 무선 통신 시스템에서 전송 전력 결정 방법 및 장치
KR20220036678A (ko) 무선 통신 시스템에서 준정적 채널 점유 방법 및 장치
WO2018202043A1 (zh) 数据传输方法、设备和***
WO2022151395A1 (zh) 一种传输定时的确定方法及装置
WO2021072610A1 (zh) 一种激活和释放非动态调度传输的方法及装置
JP2023517980A (ja) 通信方法および装置
WO2021000725A1 (zh) 一种通信方法及装置
KR20240042637A (ko) 다중 셀 스케줄링을 위한 pdcch 모니터링

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835424

Country of ref document: EP

Kind code of ref document: A1