WO2013178102A1 - 一种测量参数的指示方法及装置 - Google Patents

一种测量参数的指示方法及装置 Download PDF

Info

Publication number
WO2013178102A1
WO2013178102A1 PCT/CN2013/077090 CN2013077090W WO2013178102A1 WO 2013178102 A1 WO2013178102 A1 WO 2013178102A1 CN 2013077090 W CN2013077090 W CN 2013077090W WO 2013178102 A1 WO2013178102 A1 WO 2013178102A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
base station
serving cell
cell
bandwidth
Prior art date
Application number
PCT/CN2013/077090
Other languages
English (en)
French (fr)
Inventor
宋思达
孙阳
朱昀
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP13797533.0A priority Critical patent/EP2884793B1/en
Priority to US14/420,289 priority patent/US9591533B2/en
Publication of WO2013178102A1 publication Critical patent/WO2013178102A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and an apparatus for indicating measurement parameters.
  • the trend of IP Internet Protocol
  • LTE Long Term Evolution
  • 3rd Generation 3rd generation
  • LTE uses OFDM (Orthogonal Frequency Division Multiplexing) and MIMO (Multiple-Input Multiple-Out- Put, multiple input multiple output) as the sole criterion for its wireless network evolution, the main purpose is to improve the performance of cell edge users, improve cell capacity and reduce system delay.
  • OFDM Orthogonal Frequency Division Multiplexing
  • MIMO Multiple-Input Multiple-Out- Put, multiple input multiple output
  • LTE-A LTE-Advanced, Evolution LTE
  • LTE-A LTE-Advanced, Evolution LTE
  • Switching is an important function in wireless resource management.
  • the success of handover is largely related to the accuracy of mobile station measurements. If the mobile station cannot perform measurement more accurately and reflect the channel condition to the base station, the handover cannot be successfully performed, resulting in premature or late handover, which is disadvantageous for services with higher latency, for example, for voice services. , it is likely that there will be dropped calls, which seriously affects the quality of the user's call.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • HetNet Heterogeneous Network
  • CA Carrier Aggregation
  • the mobile station if there is a 0.5 MHz protection bandwidth between the two narrowband systems, the mobile station is in the 10 MHz system and uses the middle 6 RBs for RRM (Radio Resource Management) measurement.
  • the narrowband measurement of the mobile station of the serving cell has the problem of inaccurate measurement.
  • an indication scheme for measuring bandwidth is provided to solve at least the above problem.
  • An embodiment of the present invention provides a method for indicating a measurement parameter, including:
  • the base station of the serving cell acquires the frequency band usage information of the neighboring cell of the serving cell
  • the base station of the serving cell determines the measurement parameters of the mobile station of the base station that accesses the serving cell according to the frequency band used by the base station and the obtained frequency band usage information of the neighboring cells, where the measurement parameters include: Frequency points and measurement bandwidth at each measurement frequency point;
  • the base station of the serving cell indicates the measurement parameter to the mobile station accessing the base station of the serving cell.
  • the step of acquiring, by the base station of the serving cell, the frequency band usage information of the neighboring cell of the serving cell includes:
  • the base station of the serving cell acquires the band usage information of the neighboring cell that is stored locally;
  • the base station of the serving cell obtains the frequency band usage information of the neighboring cell from the base station of the neighboring cell by using an interface with the base station of the neighboring cell, or The base station of the serving cell communicates with the upper layer through an interface, and acquires the neighboring small The band usage information of the zone.
  • the base station of the serving cell determines, according to the frequency band used by the base station, and the obtained frequency band usage information of each neighboring cell, in the step of determining the measurement parameter of the mobile station of the base station accessing the serving cell, when determining When the number of measurement frequency points of the mobile station that accesses the base station of the serving cell is N>1, the sum of the measurement bandwidths at each of the measurement frequency points is a total measurement bandwidth, where N is a positive integer.
  • the step of indicating, by the base station of the serving cell, the measurement parameter to the mobile station that accesses the base station of the serving cell includes:
  • the base station of the serving cell sends a message to the mobile station, where the message carries a parameter indicating the measurement frequency point and a parameter indicating the measurement bandwidth.
  • the parameter indicating the measurement frequency point includes: a center frequency of the serving cell and an offset of each of the measurement frequency points with respect to the center frequency, or value.
  • the measurement bandwidths of each of the measurement frequency points are equal; the parameter indicating the measurement bandwidth includes: a total measurement bandwidth, or a measurement bandwidth of a single measurement frequency point.
  • the message is sent by a System Information Block (SIB) or control signaling.
  • SIB System Information Block
  • each of the measurement frequency points is a center frequency point of each of the neighboring cells.
  • the method further includes: the mobile station according to the serving cell The measurement parameters indicated by the base station are measured.
  • the embodiment of the present invention further provides an indication device for measuring a parameter, where the base station includes: an obtaining module, configured to: obtain frequency band usage information of a neighboring cell of the serving cell, where the frequency band usage information includes: Carrier frequency and system bandwidth of neighboring cells;
  • a determining module configured to: determine, according to a frequency band used by the base station, and obtained obtained band usage information of each neighboring cell, a measurement parameter of a mobile station that accesses the base station, where the measurement parameter includes: Frequency points and measurement bandwidth at each measurement frequency point;
  • an indication module configured to: indicate the measurement parameter to the mobile station accessing the base station.
  • the obtaining module includes:
  • a first acquiring unit configured to: obtain, for a neighboring cell belonging to the base station, frequency band usage information of the neighboring cell stored locally;
  • a second acquiring unit configured to: obtain, by using an interface between the neighboring cell and the base station of the neighboring cell, the frequency band usage information of the neighboring cell, or The interface communicates with the upper layer to obtain frequency band usage information of the neighboring cell.
  • An embodiment of the present invention further provides a base station, including the foregoing measuring device for measuring parameters.
  • the embodiment of the invention further provides a cell measurement method, including:
  • the measurement parameter includes: a measurement frequency point and a measurement bandwidth at each measurement frequency point;
  • the mobile station performs cell measurement according to the measurement parameter.
  • the step of the mobile station receiving the measurement parameter indicated by the base station of the serving cell accessed by the mobile station includes:
  • the mobile station receives a message sent by the base station of the serving cell, where the message carries a parameter indicating the measurement frequency point and a parameter indicating the measurement bandwidth.
  • the parameter indicating the measurement frequency point includes: a center frequency of the serving cell and an offset of each of the measurement frequency points with respect to the center frequency, or value.
  • the measurement bandwidths of each of the measurement frequency points are equal, and a sum of measurement bandwidths at each of the measurement frequency points is a total measurement bandwidth; and the parameter indicating the measurement bandwidth includes: a total measurement bandwidth, or The measurement bandwidth of a single measurement frequency point.
  • the message is sent by a System Information Block (SIB) or control signaling.
  • SIB System Information Block
  • each of the measurement frequency points is a center frequency point of each neighboring cell.
  • the step of the mobile station performing cell measurement according to the measurement parameter comprises: the mobile station performing measurement on the measurement bandwidth of each of the measurement frequency points each time the measurement is performed.
  • the embodiment of the invention further provides a cell measurement device, which is located at the mobile station, and includes: a receiving module, configured to: receive a measurement parameter indicated by a base station of a serving cell that is accessed by the mobile station, where the measurement parameter includes: a measurement frequency point and a measurement bandwidth on each measurement frequency point;
  • a measurement module is configured to: perform cell measurement according to the measurement parameter.
  • the measurement module is configured to perform the measurement in such a manner that the measurement is performed on the measurement bandwidth of each of the measurement frequency points each time the measurement is performed.
  • the embodiment of the invention further provides a mobile station, which comprises the above-mentioned cell measurement device.
  • the method and the device of the embodiment of the present invention solve the problem that the measurement of the narrowband measurement of the mobile station of the serving cell is inaccurate in different bandwidth scenarios in different cells, thereby improving the flexibility of the measurement bandwidth and improving the measurement. Accuracy. BRIEF abstract
  • FIG. 1 is a schematic diagram of a frequency phrase in which a mobile station performs narrowband measurement in a case where a serving cell and a neighboring cell use different bandwidths in the related art.
  • FIG. 2 is a schematic structural view of a pointing device for measuring parameters according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram of the system architecture of the E-UTRAN system.
  • FIG. 4 is a block diagram showing the structure of a pointing device for measuring parameters in accordance with a preferred embodiment of the present invention.
  • FIG. 5 is a flowchart of a method of indicating a measurement parameter according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a cell measurement apparatus according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a cell measurement method according to an embodiment of the present invention.
  • FIG. 8 is a flow chart of a method of controlling a mobile station to measure bandwidth by a network side according to an embodiment of the present invention.
  • FIG. 9 is a flow chart showing a measurement bandwidth selection by a base station according to a preferred embodiment of the present invention.
  • FIG. 1 OA is a schematic diagram of a scenario 1 of measuring bandwidth selection according to an embodiment of the present invention.
  • FIG. 10B is a schematic diagram of a scenario 2 of measuring bandwidth selection according to an embodiment of the present invention.
  • FIG. 10C is a schematic diagram of a scenario 3 of measuring bandwidth selection according to an embodiment of the present invention.
  • FIG. 10D is a schematic diagram of a scenario 4 of measuring bandwidth selection according to an embodiment of the invention.
  • the embodiment of the present invention provides a method for controlling a mobile station to perform RRM measurement bandwidth selection by using a network side.
  • it can be used to solve the mobile cell mobility in different bandwidth scenarios in different cells in the E-UTRAN system. There is an inaccurate problem with the narrowband measurement of the station.
  • an improved base station determines an actual usage scenario by obtaining a neighboring cell band usage of the serving cell, and further determines a measurement parameter of the mobile station accessing the base station.
  • a pointing device for measuring parameters may be set in the base station, and the measuring device is determined by the pointing device, and the measured parameter is provided to the mobile station.
  • the device includes: an acquiring module 20, configured to: acquire frequency band usage information of a neighboring cell of a serving cell, where The frequency band usage information includes: a carrier frequency of the neighboring cell and a system bandwidth of the neighboring cell; the determining module 22 is configured to: be coupled to the acquiring module 20, and according to the frequency band used by the base station, and the obtained neighboring cells The frequency band usage information is used to determine a measurement parameter of the mobile station that accesses the base station, where the measurement parameter includes: a measurement frequency point and a measurement bandwidth at each measurement frequency point; and an indication module 24 configured to: and the determination module 22 coupling and indicating the measurement parameters to a mobile station accessing the base station.
  • an acquiring module 20 configured to: acquire frequency band usage information of a neighboring cell of a serving cell, where The frequency band usage information includes: a carrier frequency of the neighboring cell and a system bandwidth of the neighboring cell
  • the determining module 22 is configured to: be coupled to the acquiring module 20, and according to the frequency band used by the base
  • the foregoing apparatus may determine the measurement parameter of the mobile station according to the frequency band usage information of the neighboring cell of the serving cell, instead of fixing the measurement frequency point to the frequency center of the serving cell, avoiding only the center 6RB.
  • the interference in the measured bandwidth is insufficient in some scenarios, it is easy to optimistically estimate the channel condition, and it is possible to avoid the measurement only on the center 6RB. There is a problem of measurement misalignment, thereby improving the accuracy of the measurement.
  • the base station can directly obtain the bandwidth and frequency point information of each cell.
  • the neighboring nodes can obtain the neighbors through the interface between the base stations or the upper layer.
  • the bandwidth and frequency information of the cell For example, in the E-UTRAN system shown in FIG. 3, the E-UTRAN evolved base stations (eNodeBs) can communicate directly with the X2 interface, or the eNodeB can communicate with the upper layer by the S1 interface to obtain the bandwidth used by the neighboring cell system. And the frequency of the situation. Therefore, in a preferred embodiment, as shown in FIG.
  • the obtaining module 20 may include: a first obtaining unit 200, configured to: acquire, for a neighboring cell belonging to the base station, a frequency band usage of the neighboring cell stored locally
  • the second obtaining unit 202 is configured to: obtain, for the neighboring cell that does not belong to the base station, the frequency band usage information of the neighboring cell from the base station of the neighboring cell by using an interface with the base station of the neighboring cell, or The interface communicates with the upper layer to obtain the frequency band usage information of the neighboring cell.
  • the determining module 22 may determine the number N of measurement frequency points of the mobile station accessing the base station and the measurement bandwidth on each measurement frequency point in the following manner.
  • N (B serv -W gap ) /B neigh
  • BW n BIN .
  • the bandwidth of the serving cell
  • A the bandwidth of the neighboring cell
  • N the bandwidth of the neighboring cell
  • TS36.101 specifies that the LTE system bandwidth usage rate is 90%, then 10M only uses 9M, 5M only uses 4.5M, 3M only uses 2.7M, and 1.4M only uses 1.26M. The remaining 10% of the bandwidth acts as a protection bandwidth for other neighboring systems.
  • the center frequency interval of the neighboring cells in different scenarios is different, the center frequency interval of the 5M neighboring cell is 5M, the center frequency interval of the 3M neighboring cell is 3M, and the center frequency interval of the 1.4M neighboring cell is 1.4M. .
  • the interval bandwidth between the neighboring cell systems is equal to the center frequency interval of the neighboring cell minus the actual used bandwidth of the neighboring cell system.
  • the serving cell bandwidth is 10 MHz
  • the neighbor cell bandwidth is 5 MHz
  • the total protection bandwidth is 0.5 MHz
  • the total measurement bandwidth is 6 RB.
  • N 2 is obtained by the above formula, and P " is 3 RB.
  • the serving cell bandwidth is 10 MHz
  • the neighbor cell bandwidth is 3 MHz
  • the total protection bandwidth is 10 MHz
  • the serving cell bandwidth is 10 MHz
  • the neighbor cell bandwidth is 1.4 MHz
  • the total measurement bandwidth is 6 RB.
  • N 6 is obtained by the above formula, "1 RB.
  • the measured frequency band is dispersed as much as possible within the entire system bandwidth, which fully reflects the interference situation in the entire system bandwidth, and avoids insufficient interference in the measured bandwidth in some scenarios when the measurement is originally performed only on the center 6 RB. It is easy to optimistically estimate the channel condition, and the measurement bandwidth is evenly distributed within the system bandwidth, reflecting the current channel situation of the more accurate system as much as possible, and solving the measurement misalignment when the measurement is originally performed only on the center 6RB. The problem.
  • the indication module 24 may indicate the measurement parameter by sending a message to the mobile station, where the message carries a parameter indicating the measurement frequency point and a parameter indicating the measurement bandwidth.
  • the message may be sent through a System Information Block (SIB) or may be sent by means of control signaling.
  • SIB System Information Block
  • the parameter indicating the measurement frequency point may be a center frequency of the serving cell and an offset of each of the measurement frequency points with respect to the center frequency, or may be The value of the measured frequency point.
  • the value of each measurement frequency point can be transmitted by means of an EARFCN (E-UTRA Absolute Radio Frequency Channel Number).
  • the parameter indicating the measurement bandwidth may be a total measurement bandwidth, or may be a measurement bandwidth of a single measurement frequency point. If the parameter indicating the measurement bandwidth is the total measurement bandwidth, since the measurement bandwidths of the respective measurement frequency points are the same, the mobile station can combine the total number of measurement frequency points indicated by the indication module 24 to obtain the measurement bandwidth of the single measurement frequency point.
  • the indication device of the measurement parameter to be located in the base station as an example, the present invention is not limited thereto. In practical applications, the device may also be located outside the base station, and implemented by communicating with the base station. The functions of the various modules are not described in detail in the embodiments of the present invention.
  • a method for indicating a measurement parameter is also provided, and the method can be implemented by the indication device for measuring parameters provided by the embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for indicating a measurement parameter according to an embodiment of the present invention. As shown in FIG. 5, the method mainly includes the following steps (step S502-step S506).
  • Step S502 The serving cell base station acquires frequency band usage information of the neighboring cell of the serving cell.
  • Step S504 The serving cell base station determines, according to the frequency band used by the serving cell, the obtained measurement information of the mobile station of the serving cell base station, where the measurement parameters include: the measurement frequency point and each measurement frequency point. Measuring bandwidth on.
  • Step S506 The serving cell base station indicates the measurement parameter to the mobile station accessing the serving cell base station.
  • the foregoing method provided by the embodiment of the present invention can determine the measurement parameter of the mobile station according to the frequency band usage information of the neighboring cell of the serving cell, instead of fixing the measurement frequency point to the frequency center of the serving cell, avoiding only the center 6RB.
  • the interference in the measured bandwidth is insufficient in some scenarios, the problem of channel condition is easy to be optimistically estimated, and the problem of measurement misalignment may be avoided when the measurement is performed only on the center 6RB, thereby improving the accuracy of the measurement.
  • the base station can directly obtain the bandwidth and frequency point information of the cell, and for different cells belonging to different base stations, the neighboring cell can obtain the neighbor through the interface between the base stations or the upper layer.
  • the bandwidth and frequency information of the cell For example, in the E-UTRAN system shown in FIG. 3, the E-UTRAN evolved base stations (eNodeBs) can communicate directly with the X2 interface, or the eNodeB can communicate with the upper layer by the S1 interface to obtain the bandwidth used by the neighboring cell system. And the frequency of the situation.
  • the step of acquiring, by the serving cell base station, the band usage information of the neighboring cell of the serving cell includes: acquiring, by the serving cell base station, a neighboring cell belonging to the serving cell base station The frequency band usage information of the neighboring cell that is stored locally; the neighboring cell that does not belong to the base station of the serving cell, the serving cell base station obtains the neighboring cell from the base station of the neighboring cell by using an interface with the base station of the neighboring cell The frequency band usage information, or the serving cell base station communicates with the upper layer through an interface, and acquires frequency band usage information of the neighboring cell.
  • the step of determining, by the serving cell base station, the measurement parameters of the mobile station accessing the base station of the serving cell base station according to the frequency band used by the serving cell base station and the obtained frequency band usage information of each neighboring cell includes: the serving cell base station determines, according to the following formula, the number N of measurement frequency points of the mobile station accessing the base station of the serving cell, and the measurement bandwidth on each measurement frequency point.
  • N (B serv -W gap ) /B neigh
  • BW n BIN .
  • the bandwidth of the serving cell
  • A the bandwidth of the neighboring cell
  • N the bandwidth of the neighboring cell
  • the serving cell bandwidth is 10 MHz
  • the neighbor cell bandwidth is 5 MHz
  • the total protection bandwidth is 0.5 MHz
  • the total measurement bandwidth is 6 RB.
  • N 2 is obtained by the above formula, and P " is 3 RB.
  • the measured frequency band is dispersed as much as possible within the entire system bandwidth, which fully reflects the interference situation in the entire system bandwidth, and avoids insufficient interference in the measured bandwidth in some scenarios when the measurement is originally performed only on the center 6 RB. It is easy to optimistically estimate the channel condition, and the measurement bandwidth is evenly distributed within the system bandwidth, reflecting the current channel situation of the more accurate system as much as possible, and solving the measurement misalignment when the measurement is originally performed only on the center 6RB. The problem.
  • the serving cell base station may send the message to the mobile station to indicate the measurement parameter, where the message carries a parameter indicating the measurement frequency point and a parameter indicating the measurement bandwidth.
  • the message may be sent through the SIB or may be sent by means of control signaling.
  • the parameter indicating the measurement frequency point includes: a center frequency of the serving cell and an offset of each of the measurement frequency points with respect to the center frequency, or each of the measurement frequencies The value of the point.
  • the serving cell base station can send the value of each measurement frequency point by means of EARFCN.
  • the parameter indicating the measurement bandwidth may be a total measurement bandwidth, or may be a measurement bandwidth of a single measurement frequency point. If the parameter indicating the measurement bandwidth is the total measurement bandwidth, since the measurement bandwidth of each measurement frequency point is the same, the mobile station can combine the total number of measurement frequency points indicated by the parameters in the message to obtain the measurement bandwidth of the single measurement frequency point. .
  • each measurement frequency point may be a center frequency point of each of the neighboring cells, so that the measurement accuracy may be improved.
  • the method further includes: the mobile station according to the serving cell base station indication The measured parameters are measured.
  • the embodiment of the present invention further provides an improved mobile station, where the mobile station performs cell measurement according to the measurement parameter indicated by the serving cell base station.
  • a mobile station may include a cell measurement device by which cell measurement is performed.
  • FIG. 6 is a schematic structural diagram of a cell measurement apparatus according to an embodiment of the present invention.
  • a cell measurement apparatus includes: a receiving module 60 configured to: receive the mobile station access The measurement parameters indicated by the serving cell base station, wherein the measurement parameters include: a measurement frequency point and a measurement bandwidth at each measurement frequency point; and a measurement module 62 configured to: couple with the receiving module 60, and follow the measurement The parameters are used for cell measurement.
  • the measurement module 62 can be configured to perform measurements in such a manner that measurements are taken on the measurement bandwidth of each of the measurement frequency points each time a measurement is performed.
  • the cell measurement apparatus provided by the embodiment of the present invention can perform measurement according to the measurement parameter indicated by the serving cell base station, instead of fixing the measurement frequency point to the frequency center of the serving cell, avoiding the measurement in only certain scenes when the measurement is performed on the center 6RB.
  • the interference within the measured bandwidth is insufficient, the problem of channel condition is easily estimated optimistically, and the problem of measurement misalignment may be avoided when the measurement is performed only on the center 6RB, thereby improving the accuracy of the measurement.
  • the measurement parameter indicated by the serving cell base station is determined by the serving cell base station according to the frequency band usage information of the neighboring cell of the serving cell.
  • the measurement parameter indicated by the serving cell base station is determined by the serving cell base station according to the frequency band usage information of the neighboring cell of the serving cell.
  • FIG. 7 is a flowchart of a cell measurement method according to an embodiment of the present invention. As shown in FIG. 7, the method mainly includes the following steps (step S702-step S704).
  • Step S702 The mobile station receives the measurement parameter indicated by the serving cell base station accessed by the mobile station, where the measurement parameter includes: the measurement frequency point and the measurement bandwidth on each measurement frequency point.
  • Step S704 The mobile station performs cell measurement according to the measurement parameter.
  • the cell measurement method provided by the embodiment of the present invention can perform measurement according to the measurement parameter indicated by the serving cell base station, instead of fixing the measurement frequency point to the frequency center of the serving cell, avoiding the measurement in only some scenes when the measurement is performed on the center 6RB.
  • the interference within the measured bandwidth is insufficient, the problem of channel condition is easily estimated optimistically, and the problem of measurement misalignment may be avoided when the measurement is performed only on the center 6RB, thereby improving the accuracy of the measurement.
  • the measurement parameter indicated by the serving cell base station is determined by the serving cell base station according to the frequency band usage information of the neighboring cell of the serving cell, and the reference parameter of the measurement parameter provided by the foregoing embodiment of the present invention may be The description in the method will not be repeated here.
  • the step of receiving, by the mobile station, the measurement parameter indicated by the serving cell base station the mobile station receiving the message sent by the serving cell base station, where the message carries the indication A parameter for measuring a frequency point and a parameter indicating the measurement bandwidth.
  • the mobile station can receive SIB or control signaling sent by the serving cell base station.
  • the parameter indicating the measurement frequency point includes: a center frequency of the serving cell and an offset of each of the measurement frequency points with respect to the center frequency, or each The value of the measurement frequency point.
  • the parameter indicating the measurement frequency point may be a center frequency of the serving cell and an offset of each of the measurement frequency points with respect to the center frequency, or may be The value of the measured frequency point.
  • the serving cell base station may send the value of each measurement frequency point in an EARFCN manner.
  • the measurement bandwidth phase at each measurement frequency point Etc., the parameter indicating the measurement bandwidth may be the total measurement bandwidth, or may be the measurement bandwidth of a single measurement frequency point. If the parameter indicating the measurement bandwidth is the total measurement bandwidth, since the measurement bandwidths of the respective measurement frequency points are the same, the mobile station can obtain the measurement bandwidth of the single measurement frequency point in combination with the total number of measurement frequency points indicated by the serving cell base station.
  • each measurement frequency point is a center frequency point of each neighboring cell, so that the measurement accuracy can be improved.
  • the serving cell base station passes the network (as shown in FIG. 3, the X2 interface can directly communicate with the neighboring cell base station, or the S1 interface communicates with the upper layer) to obtain the neighboring cell band usage of the serving cell. Then, according to the actual usage scenario, the serving cell base station instructs the mobile station to which it accesses to perform appropriate measurement, and the mobile station in the serving cell performs measurement according to the measurement mode indicated by the base station.
  • the measured total bandwidth, the measured frequency point, and the measured manner are all controlled by the network side, and are sent to the mobile station for execution to complete the measurement action.
  • the total number of RBs measured is a certain value, for example, 6RB, 15RB, 25RB, IE (Information Element) that can be sent to the UE by the network side (AllowedMeasBandwidth, maximum allowed measurement bandwidth) control.
  • the measurement method in the embodiment of the present invention is a spaced-apart manner. That is, the measurement point (ie, the measurement frequency point) is spaced apart in the bandwidth, and the base station can transmit the offset of the center frequency and the center frequency of the serving cell to the mobile station, or the base station can set the frequency of the neighboring area. Sent to the UE through the EARFCN. The mobile station is able to locate the measurement frequency based on the center frequency and offset or EARFCN.
  • the number of measurement frequency points and the measurement bandwidth of each measurement frequency point are obtained according to the following algorithm.
  • N (B serv - W gap ) IB neigh .
  • "is the measurement bandwidth of the nth (n l, 2, ..., N) measurement frequency points, since it is evenly divided, therefore, implemented in the present invention
  • is the total measurement bandwidth, as described above, may be 6RB, 15RB, 25RB; is the total number of measurement frequencies; is the bandwidth of the serving cell, eg, 10MHz; A is the bandwidth of the neighboring cell, for example, 5 ⁇ ; The sum of the guard bandwidth, for example, 0.5MHz.
  • the following takes the measurement of the total bandwidth as 6 RB as an example.
  • the mobile station not only performs measurement on the system bandwidth center 6RB, but after the ⁇ station is calculated by the above algorithm, the mobile station divides the 6RB into two (3+3) RBs according to the indication of the base station (in two 5M 3RB in the center of the carrier frequency of the bandwidth system, three (2+2+2) RBs (2RB in the center of the carrier frequency of three 3M bandwidth systems) or six (1+1+1+1+1) RBs ( In the 1 RB center of the carrier frequency of the six 1.4M bandwidth systems, as summarized in Table 1, the narrowband measurement of the multi-frequency point is performed.
  • the specific spectrum deployment scenarios are shown in Figure 10A-10D, which correspond to the four scenarios in Table 1.
  • the main measurement quantity when the mobile station performs RRM measurement, the main measurement quantity includes Reference Signal Receiving Power (RSRP) and Reference Signal Receiving Quality (RSRQ).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • CRS Cell-specific (or Common) Reference Signal, cell-specific (or general) reference signal
  • RSR Q N * RSRP 1 RSSI , where N is the number of measured RBs, and RSSI is E-UTRAN
  • the carrier received signal strength indication that is, the total received broadband power observed by the terminal from all sources, including the serving cell and non-serving cell of the common channel, adjacent channel interference, thermal noise, and the like.
  • the mobile station needs to perform measurement according to the measurement mode indicated by the serving base station.
  • FIG. 8 is a flowchart of a method for controlling a mobile station to measure bandwidth by a network side according to an embodiment of the present invention, including the following steps (step S802-step S806).
  • Step S802 The serving cell base station communicates with the neighboring cell through the network, and obtains the usage of the neighboring cell band of the serving cell.
  • the base station can directly obtain the bandwidth and frequency point information of the cells.
  • the evolved base station eNodeBs of the E-UTRAN can be directly performed by the X2 interface. Communication, or communication with the upper layer by the S1 interface, so that the serving cell base station can obtain the bandwidth and frequency points used by the neighboring cell system by communicating with the neighboring cell base station.
  • Step S804 according to the actual usage scenario, the serving cell base station instructs the mobile station to which it accesses to perform appropriate measurement.
  • the serving cell base station determines, based on the information obtained in step S802, how the mobile station accessing it should perform the measurement.
  • the serving cell base station calculates the number of measurement frequency points and the measurement bandwidth of each measurement frequency point by the following formula:
  • the base station sends the measurement information to the mobile station, and the information may be sent through the SIB, or may be controlled by means of control signaling, where the content may be the center frequency of the serving cell and the offset at the center carrier frequency plus each frequency point.
  • Step S806 the mobile station in the serving cell performs measurement according to the measurement mode indicated by the base station in step S804.
  • the mobile station needs to perform measurement and reporting processes, and the measurement object is CRS or CSI-RS (Channel State Information Reference Signal) of the same frequency, different frequency or different system,
  • CRS CRS
  • CSI-RS Channel State Information Reference Signal
  • the average value of the measured values in each measurement frequency point is averaged as the value of one measurement, and then filtered by layer 1 and layer 3, and the processed measurement value is reported to the serving cell base station, so that the network can appropriately Scheduling and service.
  • FIG. 9 is a flowchart of performing measurement bandwidth selection by a base station according to different cell scenarios in the embodiment, as shown in FIG. It mainly includes the following steps.
  • Step S901 The serving cell base station communicates with the neighboring cell through the network, and obtains the usage of the neighboring cell band of the serving cell.
  • Step S902 The serving cell base station determines whether the carrier frequency of the serving cell is the same as the carrier frequency of the neighboring cell. If yes, step S903 is performed, and if no, step S904 is performed.
  • Step S903 the neighboring cell and the serving cell use the same frequency band, and the cell deployment scenario is as shown in FIG. 10A.
  • the serving cell base station performs calculation according to the following formula, and determines that the mobile station to which it access is suitable for ordinary narrowband measurement, and the measurement bandwidth is a carrier.
  • Center 6RB Center 6RB:
  • the serving cell base station determines the frequency band of the neighboring cell, if the frequency band of the neighboring cell is 5M, step S905 is performed, if the frequency band of the neighboring cell is 3M Then, step S906 is performed. If the frequency band of the neighboring cell is 1.4M, step S907 is performed.
  • Step S905 the frequency band of the neighboring cell is 5M, and the cell deployment scenario is as shown in FIG. 10B, and the total bandwidth of the protection bandwidth is 0.5 MHz, and the serving cell base station calculates according to the following formula:
  • the NU g J/B gas base station judges that the mobile station it is connected to is suitable for multi-band narrow-band measurement.
  • the measurement frequency is 2, and the measurement bandwidth per frequency is 3 RB, which is a (3+3) RB method.
  • the bandwidth is divided into two parts, each of which is 3 RBs, which are respectively 3 RBs in the adjacent cell carrier center.
  • the NU g J/B gas base station judges that the mobile station it is connected to is suitable for multi-band narrow-band measurement, the frequency of measurement is 3, and the measurement bandwidth per frequency is 2 RB, which is a (2+2+2) RB mode.
  • the measurement bandwidth is divided into three parts, each of which is 2 RBs, which are respectively located in the adjacent cell carrier center 2 RB.
  • Step S907 the neighboring cell band is 1.4M, and the cell deployment scenario is as shown in FIG. 10D.
  • the NU g J /B gas base station judges that the mobile station it is connected to is suitable for multi-band narrow-band measurement.
  • the frequency of measurement is 6 and the measurement bandwidth per frequency is 1 RB, which is (1+1+1+1+1).
  • the measurement bandwidth is divided into six parts, each of which is 1 RB, which is respectively 1 RB in the adjacent cell carrier center.
  • Step S908 The serving cell base station notifies the mobile station of the selected measurement bandwidth and the measurement frequency point by signaling.
  • Step S909 the mobile station in the serving cell performs measurement according to the measurement manner indicated by the base station.
  • the mobile station performs normal measurement according to the indication of the serving cell base station.
  • Each measurement is performed every certain measurement period (for example, 40ms), and each time the mobile station performs the measurement, it can be measured at each measurement frequency point indicated by the base station according to the measurement bandwidth at the measurement frequency point indicated by the base station.
  • Layer 1 filtering uses the average of multiple consecutive measurements (for example, 5 times) as the measured value in this period of time window, and then layer 3 filtering to weight the previous measurement result of >3 ⁇ 4 and this measurement value as this time.
  • the reported measurement value the mobile station reports this measurement value to the base station to complete the measurement operation.
  • the system can perform RRM measurement bandwidth selection by using network-side control according to different cell deployment scenarios.
  • the measured frequency bands are dispersed as much as possible into the entire system bandwidth, fully reflecting the interference situation in the entire system bandwidth, and the frequency domain diversity on the measurement is obtained as much as possible, reflecting the current channel situation of the more accurate system, and the original measurement is only performed on the center 6RB.
  • This more flexible RRM measurement bandwidth selection method can better adapt to the increasingly complex mobile propagation environment to ensure measurement accuracy.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. Perform the steps shown or described, or They are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module. Thus, embodiments of the invention are not limited to any specific combination of hardware and software.
  • the method and the device of the embodiment of the present invention solve the problem that the measurement of the narrowband measurement of the mobile station of the serving cell is inaccurate in different bandwidth scenarios in different cells, thereby improving the flexibility of the measurement bandwidth and improving the measurement. Accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种测量参数的指示方法及装置。该测量参数的指示方法包括:服务小区的基站获取所述服务小区的邻小区的频带使用信息;服务小区的基站根据自身使用的频带,以及获得的各个邻小区的频带使用信息,确定接入服务小区的基站的移动台的测量参数,其中,测量参数包括:测量频点以及各个测量频点上的测量带宽;以及服务小区的基站向接入服务小区的基站的移动台指示测量参数。通过本发明的方法及装置,可以提高测量带宽的灵活性和测量的准确度。

Description

一种测量参数的指示方法及装置
技术领域
本发明涉及通信领域, 具体涉及一种测量参数的指示方法及装置。
背景技术
随着移动通信技术的蓬勃发展, 无线通信***呈现出移动化、 宽带化和
IP ( Internet Protocol , 互联网协议)化的趋势。 LTE ( Long Term Evolution , 长期演进)项目是 3G ( 3rd Generation, 第三代) 的演进, LTE釆用 OFDM ( Orthogonal Frequency Division Multiplexing , 正交频分复用 ) 和 MIMO ( Multiple-Input Multiple-Out-put , 多输入多输出)作为其无线网络演进的唯 一标准, 主要目的是为了改善小区边缘用户的性能, 提高小区容量和降低系 统延迟。
LTE-A ( LTE-Advanced, 演进 LTE )进一步扩充了 LTE的性能, 其关键 技术有载波聚合、 中继和异构网等。 切换作为无线资源管理中的一项重要功 能, 切换的成功与否很大程度上跟移动台测量的准确度相关。 如果移动台不 能较准确地进行测量, 反映信道状况给基站, 则就不能成功地进行切换, 从 而导致过早或过晚切换, 这对于时延有较高要求的业务很不利, 例如对于语 音业务, 很可能会出现掉话, 严重影响用户通话质量。
在 E-UTRA ( Evolved Universal Terrestrial Radio Access, 演进的通用陆面 无线接入)中, 为了能够灵活部署网络, 支持多种***带宽, 如, 1.4、 3、 5、 10、 15和 20MHz。 将 PSS(Primary Synchronization Signal, 主同步信号) /SSS ( Secondary Synchronization Signal, 副同步信号)和物理广播信道 ( Physical Broadcast Channel, PBCH )分配在中央 6个 RB ( Resource Block, 资源块) 上用于小区搜索, 这样能够独立于不同的信道带宽。 除此之外, 窄带测量带 宽还有助于减少能量的开销, 降低 UE ( User Equipment, 用户设备)处理的 复杂度等。但是,在 HetNet ( Heterogeneous Network,异构网络)或 CA(Carrier Aggregation, 载波聚合)的场景中,很可能会存在部分共信道的部署, 也就是, 宏小区 (Macro ) 、 微小区 (Pico )和微微小区 (Femto )使用不同的信道带 宽, 即服务小区和邻小区使用不同的带宽, 例如, 服务小区为 10MHz 的 E-UTRAN ( Evolved Universal Terrestrial Radio Access Network, 演进的通用陆 面无线接入网络) , 邻小区为 5MHz的 E-UTRAN。 场景见图 1。 在这种情况 下, 服务小区内的终端如果仍然固定在中央 6个 RB上测量, 则将导致测量 不准确。 例如, 在图 1所示的场景中, 如果两窄带***间有 0.5MHz的保护 带宽, 则当移动台处在 10MHz***内使用中间 6个 RB进行 RRM ( Radio Resource Management , 无线资源管理)测量的时候, 两窄带***落入测量范 围内的带宽只有 2* ( 6*0.18/2-0.5/2 ) = 0.58MHz (约 3.2RB ) , 然后根据该测 量范围的测量结果估计当前小区的信道状况, 从而造成测量不准确。
发明内容
针对相关技术中在不同小区使用不同带宽场景下, 服务小区的移动台的 窄带测量存在测量不准确的问题, 本发明实施例提供了一种测量带宽的指示 方案, 以至少解决上述问题。
本发明实施例提供了一种测量参数的指示方法, 包括:
服务小区的基站获取所述服务小区的邻小区的频带使用信息;
所述服务小区的基站根据自身使用的频带, 以及获得的所述各个邻小区 的频带使用信息, 确定接入所述服务小区的基站的移动台的测量参数, 其中, 所述测量参数包括: 测量频点以及各个测量频点上的测量带宽; 以及
所述服务小区的基站向接入所述服务小区的基站的所述移动台指示所述 测量参数。
可选地, 服务小区的基站获取所述服务小区的邻小区的频带使用信息的 步骤包括:
对于属于所述服务小区的基站的邻小区, 所述服务小区的基站获取本地 存储的所述邻小区的频带使用信息;
对于不属于所述服务小区的基站的邻小区, 所述服务小区的基站通过与 所述邻小区的基站之间接口, 从所述邻小区的基站获取所述邻小区的频带使 用信息, 或者所述服务小区的基站通过接口与上层进行通信, 获取所述邻小 区的频带使用信息。
可选地, 所述服务小区的基站根据自身使用的频带, 以及获得的所述各 个邻小区的频带使用信息, 确定接入所述服务小区的基站的移动台的测量参 数的步骤中, 当确定接入所述服务小区的基站的所述移动台的测量频点的数 量 N > 1时, 则各个所述测量频点上的测量带宽之和为总测量带宽, 其中, N 为正整数。
可选地, 所述服务小区的基站向接入所述服务小区的基站的所述移动台 指示所述测量参数的步骤包括:
所述服务小区的基站向所述移动台发送消息, 其中, 所述消息中携带指 示所述测量频点的参数和指示所述测量带宽的参数。
可选地, 所述指示所述测量频点的参数包括: 所述服务小区的中心频率 以及各个所述测量频点相对于所述中心频率的偏置, 或者, 各个所述测量频 点的取值。
可选地, 各个所述测量频点上的测量带宽相等; 所述指示所述测量带宽 的参数包括: 总测量带宽, 或单个测量频点的测量带宽。
可选地, 所述消息通过***信息块(SIB )或控制信令进行发送。
可选地, 各个所述测量频点为各个所述邻小区的中心频点。
可选地, 在所述服务小区的基站向接入所述服务小区的基站的所述移动 台指示所述测量参数的步骤之后, 所述方法还包括: 所述移动台按照所述服 务小区的基站指示的所述测量参数进行测量。
本发明实施例还提供了一种测量参数的指示装置, 位于基站, 包括: 获取模块, 其设置成: 获取服务小区的邻小区的频带使用信息, 其中, 所述频带使用信息包括: 邻小区的载频和邻小区的***带宽;
确定模块, 其设置成: 根据所述基站使用的频带, 以及获得的所述各个 邻小区的频带使用信息, 确定接入所述基站的移动台的测量参数, 其中, 所 述测量参数包括: 测量频点以及各个测量频点上的测量带宽; 以及
指示模块, 其设置成: 向接入所述基站的所述移动台指示所述测量参数。 可选地, 所述获取模块包括:
第一获取单元, 其设置成: 对于属于所述基站的邻小区, 获取本地存储 的所述邻小区的频带使用信息;
第二获取单元, 其设置成: 对于不属于所述基站的邻小区, 通过与所述 邻小区的基站之间接口, 从所述邻小区的基站获取所述邻小区的频带使用信 息, 或者通过接口与上层进行通信, 获取所述邻小区的频带使用信息。
本发明实施例还提供了一种基站, 包括上述的测量参数的指示装置。 本发明实施例还提供了一种小区测量方法, 包括:
移动台接收所述移动台接入的服务小区的基站所指示的测量参数,其中 , 所述测量参数包括: 测量频点以及各个测量频点上的测量带宽; 以及
所述移动台按照所述测量参数进行小区测量。
可选地, 移动台接收所述移动台接入的服务小区的基站所指示的测量参 数的步骤包括:
所述移动台接收所述服务小区的基站发送的消息, 其中, 所述消息中携 带指示所述测量频点的参数和指示所述测量带宽的参数。
可选地, 所述指示所述测量频点的参数包括: 所述服务小区的中心频率 以及各个所述测量频点相对于所述中心频率的偏置, 或者, 各个所述测量频 点的取值。
可选地, 各个所述测量频点上的测量带宽相等, 且各个所述测量频点上 的测量带宽之和为总测量带宽; 所述指示所述测量带宽的参数包括: 总测量 带宽, 或单个测量频点的测量带宽。
可选地, 所述消息通过***信息块(SIB )或控制信令进行发送。
可选地, 各个所述测量频点为各个邻小区的中心频点。
可选地, 所述移动台按照所述测量参数进行小区测量的步骤包括: 所述移动台在每次执行测量时都在各个所述测量频点的所述测量带宽上 进行测量。
本发明实施例还提供了一种小区测量装置, 位于移动台, 包括: 接收模块, 其设置成: 接收所述移动台接入的服务小区的基站所指示的 测量参数, 其中, 所述测量参数包括: 测量频点以及各个测量频点上的测量 带宽;
测量模块, 其设置成: 按照所述测量参数进行小区测量。
可选地, 所述测量模块是设置成按照以下方式执行测量: 在每次执行测 量时都在各个所述测量频点的所述测量带宽上进行测量。
本发明实施例还提供了一种移动台, 包括上述的小区测量装置。
通过本发明实施例的方法和装置, 解决了在不同小区使用不同带宽场景 下, 服务小区的移动台的窄带测量存在测量不准确的问题, 从而提高了测量 带宽的灵活性, 并提高了测量的准确度。 附图概述
此处所说明的附图用来提供对本发明实施例的进一步理解, 构成本申请 的一部分, 本发明的示意性实施例及其说明用于解释本发明技术方案, 并不 构成对本发明技术方案的不当限定。 在附图中:
图 1是相关技术中服务小区和邻小区使用不同带宽的情况下移动台执行 窄带测量的频语示意图。
图 2是根据本发明实施例的测量参数的指示装置的结构示意图。
图 3是 E-UTRAN***的***架构示意图。
图 4是根据本发明优选实施例的测量参数的指示装置的结构示意图。 图 5是根据本发明实施例的测量参数的指示方法的流程图。
图 6是根据本发明实施例的小区测量装置的结构示意图。
图 7是根据本发明实施例的小区测量方法的流程图。
图 8是根据本发明实施例的由网络侧控制移动台测量带宽的方法的流程 图。
图 9是根据本发明优选实施例的基站进行测量带宽选择的流程示意图。 图 1 OA是根据本发明实施例的测量带宽选择的场景一的示意图。 图 10B是根据本发明实施例的测量带宽选择的场景二的示意图。
图 10C是根据本发明实施例的测量带宽选择的场景三的示意图。
图 10D是根据本发明实施例的测量带宽选择的场景四的示意图。
本发明的较佳实施方式
下文中将参考附图并结合实施例来详细说明本发明技术方案。 需要说明 的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组 合。
本发明实施例提供了一种由网络侧控制移动台进行 RRM测量带宽选择 的方法, 特别地, 可以用于在 E-UTRAN***中, 解决了在不同小区使用不 同带宽场景下, 服务小区的移动台的窄带测量存在不准确的问题。
在本发明实施例中, 提供了一种改进的基站, 该基站通过获得所述服务 小区的邻小区频带使用情况, 确定实际的使用场景, 进而确定接入该基站的 移动台的测量参数。
在本发明实施例中, 可以在基站中设置一种测量参数的指示装置, 由该 指示装置来确定移动中的测量参数, 并将该测量参数提供给移动台。
图 2是根据本发明实施例的测量参数的指示装置的结构示意图, 如图 2 所示, 该装置包括: 获取模块 20, 其设置成: 获取服务小区的邻小区的频带 使用信息, 其中, 所述频带使用信息包括: 邻小区的载频和邻小区的***带 宽; 确定模块 22, 其设置成: 与获取模块 20耦合, 并根据所述基站使用的 频带, 以及获得的所述各个邻小区的频带使用信息, 确定接入所述基站的移 动台的测量参数, 其中, 所述测量参数包括: 测量频点以及各个测量频点上 的测量带宽; 以及指示模块 24, 其设置成: 与确定模块 22耦合, 并向接入 所述基站的移动台指示所述测量参数。
通过本发明实施例提供的上述装置, 可以根据服务小区的邻小区的频带 使用信息, 确定移动台的测量参数, 而不是将测量频点固定在服务小区的频 率中心,避免了只在中心 6RB上测量时在某些场景下所测带宽内干扰不充分, 容易乐观估计信道状况的问题, 以及避免了只在中心 6RB上进行测量时可能 存在测量失准的问题, 从而提高了测量的准确度。
在本发明实施例中, 对于属于同一基站的不同小区, 基站内部直接能够 获得各个小区的带宽和频点信息, 对于属于不同基站的不同小区, 可以通过 基站之间的接口或者与上层通信获取邻小区的带宽和频点信息。 例如, 如图 3所示的 E-UTRAN***, E-UTRAN的演进型基站( eNodeB )之间可由 X2 接口直接进行通信, 或者 eNodeB可以由 S1接口与上层进行通信, 获得邻小 区***所使用带宽和频点的情况。 因此, 在一个优选实施例中, 如图 4所示, 获取模块 20可以包括: 第一获取单元 200, 其设置成: 对于属于所述基站的 邻小区, 获取本地存储的该邻小区的频带使用信息; 以及第二获取单元 202, 其设置成: 对于不属于所述基站的邻小区, 通过与该邻小区的基站之间接口, 从该邻小区的基站获取该邻小区的频带使用信息, 或者通过接口与上层进行 通信, 获取该邻小区的频带使用信息。
在本发明实施例的一个优选实施方式中,确定模块 22可以通过以下方式 确定接入所述基站的移动台的测量频点的数量 N以及各个测量频点上的测量 带宽
N = (Bserv -Wgap) /Bneigh
BWn = B I N . 其中, 是第 n个测量频点的测量带宽, 服 ι =鮮 2 = .= B 总测量带宽, ^ 是服务小区的带宽, A 是邻小区的带宽, 是邻小区之 间的保护带宽的总和; 其中, 通过四舍五入计算 N值, N为正整数。 当 N > 1 时, 各个所述测量频点在带宽上间隔分布。
TS36.101里规定了 LTE***带宽使用率为 90%, 则 10M只用 9M、 5M 只用 4.5M、 3M只用 2.7M、 1.4M只用 1.26M。 剩下的 10%的带宽作为对其 它相邻***的保护带宽。
在本发明实施例中的 4叚设下, 不同场景的邻小区中心频率间隔不同, 5M 邻小区中心频率间隔为 5M, 3M邻小区中心频率间隔为 3M, 1.4M邻小区中 心频率间隔为 1.4M。
邻小区***之间的间隔带宽数量等于邻小区中心频率间隔减去邻小区系 统的实际使用带宽, 如, 5M邻小区之间的间隔带宽为 5-4.5=0.5M, 3M邻小 区之间的间隔带宽为 3-2.7=0.3M , 1.4M 邻小区之间的间隔带宽为 1.4-1.26=0.14M。
例如, 服务小区带宽为 10MHz, 邻小区带宽为 5MHz, 保护带宽总和为 0.5MHz, 测量总带宽为 6RB , 通过上述公式得 N = 2 , P "为 3RB。
例如, 服务小区带宽为 10MHz, 邻小区带宽为 3MHz, 保护带宽总和为
0.3+0.3=0.6MHz, 测量总带宽为 6RB , 通过上述公式得 N = 3 , "为 2KB。
例如, 服务小区带宽为 10MHz, 邻小区带宽为 1.4MHz, 保护带宽总和 为 0.14+0.14+0.14+0.14+0.14=0.7MHz, 测量总带宽为 6RB , 通过上述公式得 N = 6 , "为 1RB。
通过该优选实施方式, 将测量的频段尽量分散到整个***带宽内, 充分 反映整个***带宽内的干扰情况, 避免了原先只在中心 6RB上测量时在某些 场景下所测带宽内干扰不充分, 容易乐观估计信道状况的问题, 并且, 测量 带宽在***带宽内是均匀排布的,尽可能的反映较准确的***当前信道情况, 解决原先只在中心 6RB上进行测量时可能存在测量失准的问题。
在本发明实施例中,指示模块 24可以通过向所述移动台发送消息指示所 述测量参数, 其中, 所述消息中携带指示所述测量频点的参数和指示所述测 量带宽的参数。 例如, 所述消息可以通过***信息块(SIB )发送, 也可以通 过控制信令的方式进行发送。
在本发明实施例的一个优选实施方式, 指示所述测量频点的参数可以是 服务小区的中心频率以及各个所述测量频点相对于所述中心频率的偏置, 或 者, 也可以是各个所述测量频点的取值。 例如, 可以通过 EARFCN ( E-UTRA Absolute Radio Frequency Channel Number, E-UTRA绝对无线频率信道号)的 方式发送各个测量频点的取值。
在本发明实施例的一个优选实施方式中, 指示所述测量带宽的参数可以 是总测量带宽, 也可以是单个测量频点的测量带宽。 如果指示测量带宽的参 数为总测量带宽, 由于各个测量频点的测量带宽是相同的, 因此, 移动台可 以结合指示模块 24 所指示的测量频点的总数, 得到单个测量频点的测量带 宽。 需要说明的是, 虽然上述实施例中以测量参数的指示装置位于基站为例 进行说明, 但并不限于此, 在实际应用中, 该装置也可以位于基站之外, 通 过与基站进通信实现其各个模块的功能, 具体本发明实施例不再赘述。
根据本发明实施例, 还提供了一种测量参数的指示方法, 该方法可以通 过本发明实施例上述提供的测量参数的指示装置实现。
图 5是根据本发明实施例的测量参数的指示方法的流程图,如图 5所示, 该方法主要包括以下步骤(步骤 S502-步骤 S506 ) 。
步骤 S502, 服务小区基站获取所述服务小区的邻小区的频带使用信息。 步骤 S504, 服务小区基站根据自身使用的频带, 以及获得的各个邻小区 的频带使用信息, 确定接入服务小区基站的移动台的测量参数, 其中, 测量 参数包括: 测量频点以及各个测量频点上的测量带宽。
步骤 S506, 服务小区基站向接入服务小区基站的移动台指示所述测量参 数。
通过本发明实施例提供的上述方法, 可以根据服务小区的邻小区的频带 使用信息, 确定移动台的测量参数, 而不是将测量频点固定在服务小区的频 率中心,避免了只在中心 6RB上测量时在某些场景下所测带宽内干扰不充分, 容易乐观估计信道状况的问题, 以及避免了只在中心 6RB上进行测量时可能 存在测量失准的问题, 从而提高了测量的准确度。
在本发明实施例中, 对于属于同一基站的不同小区, 基站内部直接能够 获得个小区的带宽和频点信息, 对于属于不同基站的不同小区, 可以通过基 站之间的接口或者与上层通信获取邻小区的带宽和频点信息。 例如, 如图 3 所示的 E-UTRAN***, E-UTRAN的演进型基站( eNodeB )之间可由 X2接 口直接进行通信, 或者 eNodeB可以由 S1接口与上层进行通信, 获得邻小区 ***所使用带宽和频点的情况。 因此, 在本发明实施例的一个优选实施方式 中, 服务小区基站获取所述服务小区的邻小区的频带使用信息的步骤包括: 对于属于所述服务小区基站的邻小区, 所述服务小区基站获取本地存储的该 邻小区的频带使用信息; 对于不属于所述服务小区基站的邻小区, 所述服务 小区基站通过与该邻小区的基站之间接口, 从该邻小区的基站获取该邻小区 的频带使用信息, 或者所述服务小区基站通过接口与上层进行通信, 获取该 邻小区的频带使用信息。
在本发明实施例的一个优选实施方式中, 服务小区基站根据自身使用的 频带, 以及获得的所述各个邻小区的频带使用信息, 确定接入所述服务小区 基站的移动台的测量参数的步骤包括: 服务小区基站按照以下公式确定接入 所述服务小区基站的移动台的测量频点的数量 N以及各个测量频点上的测量 带宽
N = (Bserv -Wgap) /Bneigh
BWn = B I N . 其中, 是第 n个测量频点的测量带宽, 服 ι =鮮 2 = .= B 总测量带宽, ^ 是服务小区的带宽, A 是邻小区的带宽, 是邻小区之 间的保护带宽的总和; 其中, 通过四舍五入计算 N值, N为正整数。 当 N > 1 时, 各个所述测量频点在带宽上间隔分布。
例如, 服务小区带宽为 10MHz, 邻小区带宽为 5MHz, 保护带宽总和为 0.5MHz, 测量总带宽为 6RB, 通过上述公式得 N = 2, P "为 3RB。
通过该优选实施方式, 将测量的频段尽量分散到整个***带宽内, 充分 反映整个***带宽内的干扰情况, 避免了原先只在中心 6RB上测量时在某些 场景下所测带宽内干扰不充分, 容易乐观估计信道状况的问题, 并且, 测量 带宽在***带宽内是均匀排布的,尽可能的反映较准确的***当前信道情况, 解决原先只在中心 6RB上进行测量时可能存在测量失准的问题。
在本发明实施例中, 所述服务小区基站可以通过向所述移动台发送消息 指示所述测量参数, 其中, 所述消息中携带指示所述测量频点的参数和指示 所述测量带宽的参数。 例如, 所述消息可以通过 SIB发送, 也可以通过控制 信令的方式进行发送。
在本发明实施例的一个优选实施方式, 指示所述测量频点的参数包括: 服务小区的中心频率以及各个所述测量频点相对于所述中心频率的偏置, 或 者, 各个所述测量频点的取值。 例如, 服务小区基站可以通过 EARFCN的方 式发送各个测量频点的取值。 在本发明实施例的一个优选实施方式中, 指示所述测量带宽的参数可以 是总测量带宽, 也可以是单个测量频点的测量带宽。 如果指示测量带宽的参 数为总测量带宽, 由于各个测量频点的测量带宽是相同的, 因此, 移动台可 以结合消息中的参数所指示的测量频点的总数, 得到单个测量频点的测量带 宽。
在本发明实施例的一个优选实施方式, 各个测量频点可以为各个所述邻 小区的中心频点, 从而可以提高测量的准确性。 在本发明实施例中, 在所述服务小区基站向接入所述服务小区基站的移 动台指示所述测量参数的步骤之后, 所述方法还包括: 所述移动台按照所述 服务小区基站指示的所述测量参数进行测量。
与上述基站对应, 本发明实施例还提供了一种改进的移动台, 该移动台 根据服务小区基站所指示的测量参数进行小区测量。
根据本发明实施例的移动台可以包括一个小区测量装置, 通过该装置进 行小区测量。
图 6为才艮据本发明实施例的小区测量装置的结构示意图, 如图 6所示, 根据本发明实施例的小区测量装置包括: 接收模块 60, 其设置成: 接收所述 移动台接入的服务小区基站所指示的测量参数, 其中, 所述测量参数包括: 测量频点以及各个测量频点上的测量带宽; 测量模块 62, 其设置成: 与接收 模块 60耦合, 并按照所述测量参数进行小区测量。
在一个实施例中, 测量模块 62可以是设置成按照以下方式执行测量: 在 每次执行测量时都在各个所述测量频点的所述测量带宽上进行测量。
通过本发明实施例提供的小区测量装置, 可以根据服务小区基站指示测 量参数进行测量, 而不是将测量频点固定在服务小区的频率中心, 避免了只 在中心 6RB上测量时在某些场景下所测带宽内干扰不充分, 容易乐观估计信 道状况的问题, 以及避免了只在中心 6RB上进行测量时可能存在测量失准的 问题, 从而提高了测量的准确度。
在本发明实施例中, 服务小区基站所指示的测量参数是服务小区基站根 据所述服务小区的邻小区的频带使用信息所确定的, 具体参见本发明实施例 上述提供的测量参数的指示装置及方法中的描述, 在此不再赘述。 根据本发明实施例, 还提供了一种小区测量方法, 该方法可以通过本发 明实施例上述提供的小区测量装置实现。
图 7是根据本发明实施例的小区测量方法的流程图, 如图 7所示, 该方 法主要包括以下步骤 (步骤 S702-步骤 S704 ) 。
步骤 S702,移动台接收其接入的服务小区基站所指示的测量参数,其中, 所述测量参数包括: 测量频点以及各个测量频点上的测量带宽。
步骤 S704, 移动台按照所述测量参数进行小区测量。
通过本发明实施例提供的小区测量方法, 可以根据服务小区基站指示测 量参数进行测量, 而不是将测量频点固定在服务小区的频率中心, 避免了只 在中心 6RB上测量时在某些场景下所测带宽内干扰不充分, 容易乐观估计信 道状况的问题, 以及避免了只在中心 6RB上进行测量时可能存在测量失准的 问题, 从而提高了测量的准确度。
在本发明实施例中, 服务小区基站所指示的测量参数是服务小区基站根 据所述服务小区的邻小区的频带使用信息所确定的, 可参见本发明实施例上 述提供的测量参数的指示装置及方法中的描述, 在此不再赘述。
在本发明实施例中, 移动台接收其接入的服务小区基站所指示的测量参 数的步骤包括: 所述移动台接收所述服务小区基站发送的消息, 其中, 所述 消息中携带指示所述测量频点的参数和指示所述测量带宽的参数。 例如, 所 述移动台可以接收服务小区基站发送的 SIB或控制信令。
在本发明实施例的一个实施方式中,所述指示所述测量频点的参数包括: 所述服务小区的中心频率以及各个所述测量频点相对于所述中心频率的偏 置, 或者, 各个所述测量频点的取值。
在本发明实施例的一个优选实施方式, 指示所述测量频点的参数可以是 服务小区的中心频率以及各个所述测量频点相对于所述中心频率的偏置, 或 者, 也可以是各个所述测量频点的取值。 例如, 可以是服务小区基站以 EARFCN的方式发送各个测量频点的取值。
在本发明实施例的一个优选实施方式中, 各个测量频点上的测量带宽相 等, 则指示所述测量带宽的参数可以是总测量带宽, 也可以是单个测量频点 的测量带宽。 如果指示测量带宽的参数为总测量带宽, 由于各个测量频点的 测量带宽是相同的, 因此, 移动台可以结合服务小区基站所指示的测量频点 的总数, 得到单个测量频点的测量带宽。
在本发明实施例的一个优选实施方式, 各个测量频点为各个邻小区的中 心频点, 从而可以提高测量的准确性。
下面以 E-UTRAN***为例,对本发明实施例提供的技术方案进行说明。 在本发明实施例中, 服务小区基站通过网络(如图 3所示, 可由 X2接 口直接与邻小区基站进行通信, 或者由 S1接口与上层进行通信)获得所述服 务小区的邻小区频带使用情况, 然后根据实际的使用场景, 服务小区基站指 示其接入的移动台进行合适的测量, 服务小区中的移动台根据基站指示的测 量方式进行测量。
在本发明实施例中, 测量的总带宽、 测量的频点和测量的方式都是由网 络侧控制的, 并被下发给移动台执行, 完成测量动作。 在本发明实施例中, 测量的总 RB个数是一定值, 比如, 6RB、 15RB、 25RB, 可以由网络侧发送 给 UE的 IE ( Information Element, 信息元素) ( AllowedMeasBandwidth, 允 许的最大测量带宽)控制。
在本发明实施例中的测量方式是一种间隔釆样的方式。 即一次测量釆样 点 (即测量频点)在带宽上是间隔的, 可以由基站将服务小区的中心频率和 中心频率处的偏置发送给移动台, 或者可以由基站把邻区的频点通过 EARFCN发送给 UE。 移动台根据中心频率和偏置或者 EARFCN能够定位测 量频点。 在本发明实施例中, 测量频点的数目和每个测量频点的测量带宽则 可根据如下算法得到,
BWn = B I N
N = (Bserv -Wgap) IBneigh . 其中, "是第 n ( n=l,2,...,N )个测量频点的测量带宽, 由于是均分, 因此, 在本发明实施例中, BW1 = BW2 = ... = BWN ; ^^是总测量带宽, 如上所 述, 可以是 6RB、 15RB、 25RB; 为测量频点的总数; 是服务小区的带 宽, 如, 10MHz; A 是邻小区的带宽, 如, 5ΜΗζ; 。是邻小区之间的保 护带宽的总和, 如, 0.5MHz。
下面以测量总带宽为 6RB为例进行说明。
在本实施例中, 移动台不仅在***带宽中心 6RB上进行测量, 而^^站 通过上述算法计算后, 移动台根据基站的指示将 6RB分成两份 (3+3)RB (在 两个 5M带宽***载频中央的 3RB ) 、 三份(2+2+2 ) RB (在三个 3M带宽 ***载频中央的 2RB )或六份 ( 1+1+1+1+1+1 ) RB (在六个 1.4M带宽*** 载频中央的 1RB ) , 总结如表 1所示, 进行多频点的窄带测量。 具体的频谱 部署场景如图 10A-10D所示, 分别对应表 1中的四种场景。
Figure imgf000016_0001
在实施中, 移动台进行 RRM测量时, 主要测量量有参考信号接收功率 ( Reference Signal Receiving Power, RSRP )和参考信号接收质量 ( Reference Signal Receiving Quality, RSRQ ) 。 对于 RSRP的测量, 由于它只包含 CRS ( Cell-specific (or Common) Reference Signal, 小区特定 (或通用 )参考信号 ) 中的信号强度测量, 因此, 它的测量跟具体小区使用的频带情况无关, 不需 要进行多频点的窄带测量。 然而, 由于 RSRP不能反映当前信道上干扰的情 况,因此,在实际应用中,需要对 RSRQ进行测量,其中, RSRQ = N * RSRP 1 RSSI , 其中 N是测量的 RB数, RSSI是 E-UTRAN载波接收信号强度指示, 即由终 端从所有源上观察到的总接收宽带功率, 包括公共信道的服务小区和非服务 小区、 邻信道干扰、 热噪声等。 为了上报准确的测量值, 移动台需要根据服 务基站所指示的测量方式进行测量。
下面结合附图来详细描述本实施例, 图 8是根据本发明实施例的由网络 侧控制移动台测量带宽的方法流程图,包括如下步骤(步骤 S802-步骤 S806 )。 步骤 S802, 服务小区基站通过网络与邻小区进行通信, 获得所述服务小 区的邻小区频带使用情况。
在实际应用中, 对于属于同一基站的不同小区, 基站内部直接能够获得 个小区的带宽和频点信息,对于属于不同基站的不同小区, E-UTRAN的演进 型基站 eNodeB之间可由 X2接口直接进行通信, 或者由 S1接口与上层进行 通信, 这样服务小区基站就能通过与邻小区基站的通信获得邻小区***所使 用带宽和频点的情况。
步骤 S804, 根据实际的使用场景, 服务小区基站指示其接入的移动台进 行合适的测量。
服务小区基站根据步骤 S802 获得的信息来决定接入其内的移动台应该 如何进行测量。
服务小区基站通过下面公式计算出测量频点的数目和每个测量频点的测 量带宽:
BWn = B I N
N = (Bserv -Wgap) IBneigh 。 然后, 基站将测量信息发送给移动台, 信息可通过 SIB发送, 也可以通 过控制信令的方式进行控制, 发送的内容可以是服务小区的中心频率和中心 载频处的偏置加每频点测量带宽的形式,或者测量频点 EARFCN加每频点测 量带宽的形式。
步骤 S806, 服务小区中的移动台根据步骤 S804中基站指示的测量方式 进行测量。 为维持与网络的合适连接, 移动台需要进行测量和上报过程, 测 量的对象是同频、 异频或异***的 CRS或 CSI-RS ( Channel State Information Reference Signal, 信道状态信息参考信号) , 将各个测量频点内的测量值做 平均所得的平均值作为一次测量的值, 再经过层 1和层 3的滤波, 将处理后 的测量值上报给服务小区基站, 这样网络就能对其进行适当的调度和服务。
下面结合图 10A-10B所示的场景, 以测量总带宽为 6RB为例, 对本发明 实施例服务小区基站进行测量带宽选择的方法进行说明。 图 9为本实施例中 基站针对不同的小区场景进行测量带宽选择的流程图, 如图 9所示, 该流程 主要包括以下步骤。
步骤 S901, 服务小区基站通过网络与邻小区进行通信, 获得所述服务小 区的邻小区频带使用情况。
步骤 S902, 服务小区基站判断服务小区载频与邻小区载频是否相同, 如 果是, 则执行步骤 S903, 如果否, 则执行步骤 S904。
步骤 S903, 邻小区和服务小区使用的是相同的频带, 小区部署场景如图 10A所示, 服务小区基站根据下面公式进行计算, 确定其接入的移动台适合 普通的窄带测量, 测量带宽为载波中心 6RB:
BWn=B IN
NU gJ/B气 步骤 S904, 邻小区和服务小区使用的是不同的频带, 服务小区基站判断 邻小区的频带, 如果邻小区的频带为 5M, 则执行步骤 S905, 如果邻小区的 频带为 3M,则执行步骤 S906,如果邻小区的频带为 1.4M,则执行步骤 S907。
步骤 S905, 邻小区的频带为 5M, 小区部署场景如图 10B所示, 保护带 宽总和为 0.5MHz, 服务小区基站根据下面公式进行计算:
BWn=B IN
NU gJ/B气 基站判断其接入的移动台适合进行多频点的窄带测量, 测量频点数为 2, 每频点测量带宽为 3RB, 为一种(3+3) RB的方式, 测量带宽被分成两份, 每一份为 3RB, 分别处在邻小区载波中心 3RB。
步骤 S906, 邻小区频带为 3M, 小区部署场景如图 10C所示, 保护带宽 总和为 0.3+0.3=0.6MHz, 服务小区基站根据下面公式进行计算:
BWn=B IN
NU gJ/B气 基站判断其接入的移动台适合进行多频点的窄带测量, 测量频点数为 3, 每频点测量带宽为 2RB, 为一种(2+2+2 )RB的方式, 测量带宽被分成三份, 每一份为 2RB, 分别处在邻小区载波中心 2RB。
步骤 S907, 邻小区频带为 1.4M, 小区部署场景如图 10D所示, 保护带 宽总和为 0.14+0.14+0.14+0.14+0.14=0.7MHz, 服务小区基站根据下面公式进 行计算:
BWn = B IN
NU gJ /B气 基站判断其接入的移动台适合进行多频点的窄带测量, 测量频点数为 6, 每频点测量带宽为 1RB, 为一种( 1+1+1+1+1+1 ) RB的方式, 测量带宽被分 成六份, 每一份为 1RB, 分别处在邻小区载波中心 1RB。
步骤 S908, 服务小区基站将选择的测量带宽及测量频点通过信令通知移 动台。
步骤 S909, 服务小区中的移动台根据基站指示的测量方式进行测量。 在本发明实施例中, 移动台根据服务小区基站指示进行正常的测量。 每 隔一定的测量周期(例如 40ms )进行一次测量, 移动台每次执行测量时, 可 以在基站指示的各个测量频点上, 按照基站所指示的该测量频点上的测量带 宽进行测量。 层 1滤波将多次连续测量(例如 5次) 的平均值作为这一段时 间窗内的测量值, 再经过层 3滤波将前一次上>¾的测量结果与这一次测量值 进行加权作为这次上报的测量值, 移动台将这个测量值上报给基站以完成整 个测量动作。
通过本发明实施例提供的上述技术方案, ***能够根据不同的小区部署 场景通过网络侧的控制进行 RRM测量带宽选择。 将测量的频段尽量分散到 整个***带宽内, 充分反映整个***带宽内的干扰情况, 尽可能获得测量上 的频域分集, 反映较准确的***当前信道情况, 解决原先只在中心 6RB上进 行测量时因为部署场景的不同可能存在测量失准的问题。这种更灵活的 RRM 测量带宽选择方式能够更好地适应目前日益复杂的移动传播环境, 从而保证 测量的准确性。
显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明实施例不限制于任何特定的硬件 和软件结合。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明实施例可以有各种更改和变化。 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。
工业实用性
通过本发明实施例的方法和装置, 解决了在不同小区使用不同带宽场景 下, 服务小区的移动台的窄带测量存在测量不准确的问题, 从而提高了测量 带宽的灵活性, 并提高了测量的准确度。

Claims

权 利 要 求 书
1、 一种测量参数的指示方法, 包括:
服务小区的基站获取所述服务小区的邻小区的频带使用信息, 其中, 所 述频带使用信息包括: 邻小区的载频和邻小区的***带宽;
所述服务小区的基站根据自身使用的频带, 以及所述各个邻小区的频带 使用信息, 确定接入所述服务小区的基站的移动台的测量参数, 其中, 所述 测量参数包括: 测量频点以及测量频点上的测量带宽; 以及
所述服务小区的基站向接入所述服务小区的基站的所述移动台指示所述 测量参数。
2、 根据权利要求 1所述的方法, 其中, 服务小区的基站获取所述服务小 区的邻小区的频带使用信息的步骤包括:
对于属于所述服务小区的基站的邻小区, 所述服务小区的基站获取本地 存储的所述邻小区的频带使用信息;
对于不属于所述服务小区的基站的邻小区, 所述服务小区的基站通过与 所述邻小区的基站之间接口, 从所述邻小区的基站获取所述邻小区的频带使 用信息, 或者所述服务小区的基站通过接口与上层进行通信, 获取所述邻小 区的频带使用信息。
3、 根据权利要求 1所述的方法, 其中, 所述服务小区的基站根据自身使 用的频带, 以及获得的所述邻小区的频带使用信息, 确定接入所述服务小区 的基站的移动台的测量参数的步骤中, 当确定接入所述服务小区的基站的所 述移动台的测量频点的数量 N > 1 时, 则各个所述测量频点上的测量带宽之 和为总测量带宽, 其中, N为正整数。
4、 根据权利要求 3所述的方法, 其中, 所述服务小区的基站向接入所述 服务小区的基站的所述移动台指示所述测量参数的步骤包括:
所述服务小区的基站向所述移动台发送消息, 其中, 所述消息中携带指 示所述测量频点的参数和指示所述测量带宽的参数。
5、 根据权利要求 4所述的方法, 其中, 所述指示所述测量频点的参数包 括: 所述服务小区的中心频率以及各个所述测量频点相对于所述中心频率的 偏置, 或者, 各个所述测量频点的取值。
6、 根据权利要求 4所述的方法, 其中, 各个所述测量频点上的测量带宽 相等; 所述指示所述测量带宽的参数包括: 总测量带宽, 或单个测量频点的 测量带宽。
7、 根据权利要求 4所述的方法, 其中, 所述消息通过***信息块(SIB ) 或控制信令发送。
8、 根据权利要求 3所述的方法, 其中, 各个所述测量频点为各个所述邻 小区的中心频点。
9、 根据权利要求 1至 8中任一项所述的方法, 其中, 在所述服务小区的 基站向接入所述服务小区的基站的所述移动台指示所述测量参数的步骤之 后, 所述方法还包括: 所述移动台按照所述服务小区的基站指示的所述测量 参数进行测量。
10、 一种测量参数的指示装置, 位于基站, 包括:
获取模块, 其设置成: 获取服务小区的邻小区的频带使用信息, 其中, 所述频带使用信息包括: 邻小区的载频和邻小区的***带宽;
确定模块, 其设置成: 根据所述基站使用的频带, 以及获得的所述各个 邻小区的频带使用信息, 确定接入所述基站的移动台的测量参数, 其中, 所 述测量参数包括: 测量频点以及各个测量频点上的测量带宽; 以及
指示模块, 其设置成: 向接入所述基站的所述移动台指示所述测量参数。
11、 根据权利要求 10所述的装置, 其中, 所述获取模块包括:
第一获取单元, 其设置成: 对于属于所述基站的邻小区, 获取本地存储 的所述邻小区的频带使用信息;
第二获取单元, 其设置成: 对于不属于所述基站的邻小区, 通过与所述 邻小区的基站之间接口, 从所述邻小区的基站获取所述邻小区的频带使用信 息, 或者通过接口与上层进行通信, 获取所述邻小区的频带使用信息。
12、 一种基站, 包括: 权利要求 10或 11所述的测量参数的指示装置。
13、 一种小区测量方法, 包括: 移动台接收所述移动台接入的服务小区的基站所指示的测量参数,其中 , 所述测量参数包括: 测量频点以及各个测量频点上的测量带宽; 以及
所述移动台按照所述测量参数进行小区测量。
14、 根据权利要求 13所述的方法, 其中, 移动台接收所述移动台接入的 服务小区的基站所指示的测量参数的步骤包括:
所述移动台接收所述服务小区的基站发送的消息, 其中, 所述消息中携 带指示所述测量频点的参数和指示所述测量带宽的参数。
15、 根据权利要求 14所述的方法, 其中, 所述指示所述测量频点的参数 包括: 所述服务小区的中心频率以及各个所述测量频点相对于所述中心频率 的偏置, 或者, 各个所述测量频点的取值。
16、 根据权利要求 14所述的方法, 其中, 各个所述测量频点上的测量带 宽相等, 且各个所述测量频点上的测量带宽之和为总测量带宽; 所述指示所 述测量带宽的参数包括: 总测量带宽, 或单个测量频点的测量带宽。
17、根据权利要求 14所述的方法,其中,所述消息通过***信息块( SIB ) 或控制信令发送。
18、 根据权利要求 13所述的方法, 其中, 各个所述测量频点为各个邻小 区的中心频点。
19、 根据权利要求 13所述的方法, 其中, 所述移动台按照所述测量参数 进行小区测量的步骤包括:
所述移动台在每次执行测量时都在各个所述测量频点的所述测量带宽上 进行测量。
20、 一种小区测量装置, 位于移动台, 包括:
接收模块, 其设置成: 接收所述移动台接入的服务小区的基站所指示的 测量参数, 其中, 所述测量参数包括: 测量频点以及各个测量频点上的测量 带宽;
测量模块, 其设置成: 按照所述测量参数进行小区测量。
21、 根据权利要求 20所述的装置, 其中, 所述测量模块是设置成按照以 下方式执行测量: 在每次执行测量时都在各个所述测量频点的所述测量带宽 上进行测量。
22、 一种移动台, 其中, 包括权利要求 20或 21所述的小区测量装置。
PCT/CN2013/077090 2012-08-09 2013-06-09 一种测量参数的指示方法及装置 WO2013178102A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13797533.0A EP2884793B1 (en) 2012-08-09 2013-06-09 Indication method and device for measurement parameters
US14/420,289 US9591533B2 (en) 2012-08-09 2013-06-09 Indication method and device for measurement parameter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210281716.4 2012-08-09
CN201210281716.4A CN103581991B (zh) 2012-08-09 2012-08-09 测量参数的指示方法及装置

Publications (1)

Publication Number Publication Date
WO2013178102A1 true WO2013178102A1 (zh) 2013-12-05

Family

ID=49672446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077090 WO2013178102A1 (zh) 2012-08-09 2013-06-09 一种测量参数的指示方法及装置

Country Status (4)

Country Link
US (1) US9591533B2 (zh)
EP (1) EP2884793B1 (zh)
CN (1) CN103581991B (zh)
WO (1) WO2013178102A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10511504B2 (en) * 2013-01-25 2019-12-17 Qualcomm Incorporated Cell-specific reference signal interference averaging
CN105612776A (zh) * 2013-07-11 2016-05-25 诺基亚通信公司 用于代理基站的方法和***
US9743432B2 (en) 2013-09-23 2017-08-22 Qualcomm Incorporated LTE-U uplink waveform and variable multi-subframe scheduling
CN105307237B (zh) * 2014-07-31 2018-11-16 展讯通信(上海)有限公司 识别载频带宽的方法
KR102301826B1 (ko) * 2014-08-27 2021-09-14 삼성전자 주식회사 무선 통신 시스템 및 그 시스템에서 간섭 조정을 위한 자원 관리 방법
CN105813172B (zh) * 2014-12-31 2019-05-10 展讯通信(上海)有限公司 一种lte从模式搜网的方法和***
WO2016161657A1 (zh) * 2015-04-10 2016-10-13 华为技术有限公司 小区测量方法、信号接收和测量方法及用户设备
CN106550395B (zh) * 2015-09-22 2021-07-20 ***通信集团公司 一种检测信号强度的方法及装置
CN110099450B (zh) * 2015-10-30 2022-09-27 上海朗帛通信技术有限公司 一种窄带通信中的方法和装置
CN108432318B (zh) * 2016-01-08 2021-01-01 华为技术有限公司 信息发送方法、装置和***
CN105744534B (zh) * 2016-01-20 2020-03-24 任柏松 一种基于频率迁移的fdd-lte异频组网方法
CN110121903A (zh) * 2016-11-04 2019-08-13 瑞典爱立信有限公司 Nr绝对同步频率分配
CN113472503B (zh) * 2016-11-04 2022-11-18 中兴通讯股份有限公司 一种传输带宽的配置方法及发射节点
US10623161B2 (en) 2017-01-05 2020-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Allocation of sync signals with alternative features
CN109474951B (zh) * 2017-09-07 2021-05-11 华为技术有限公司 一种移动性测量方法、装置及***
RU2742603C1 (ru) * 2017-09-11 2021-02-09 Телефонактиеболагет Лм Эрикссон (Пабл) Улучшенные конфигурации фильтрации измерений для администрирования линии радиосвязи и администрирования радиоресурсов
CN113453242B (zh) * 2020-03-24 2023-08-22 维沃移动通信有限公司 测量方法、终端及网络侧设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064899A (zh) * 2006-04-29 2007-10-31 华为技术有限公司 一种测量邻小区的方法和用户终端
WO2009096837A1 (en) * 2008-01-30 2009-08-06 Telefonaktiebolaget L M Ericsson (Publ) Measurement bandwidth configuration method
CN101742599A (zh) * 2008-11-27 2010-06-16 华为技术有限公司 一种选择目标小区的方法、装置及***
CN102802187A (zh) * 2012-08-03 2012-11-28 李文龙 一种小区参考信号的测量方法和移动台

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5021768B2 (ja) * 2007-02-05 2012-09-12 テレフオンアクチーボラゲット エル エム エリクソン(パブル) ネットワーク制御されるe−utran隣接セル測定値
GB2455060A (en) * 2007-10-29 2009-06-03 Nec Corp Channel measurement in a mobile communications system
US8780688B2 (en) * 2009-04-27 2014-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus in a wireless communication system
CN102045795B (zh) * 2009-10-15 2015-05-06 华为技术有限公司 一种从目标基站获取信息的方法及装置
US8976740B2 (en) * 2009-11-06 2015-03-10 Qualcomm Incorporated System information acquisition in connected mode
US8565154B2 (en) * 2009-11-09 2013-10-22 Qualcomm Incorporated Cell reselection enhancement
JP5451675B2 (ja) * 2011-04-04 2014-03-26 株式会社Nttドコモ 移動機及び方法
CN103249076A (zh) * 2012-02-06 2013-08-14 中兴通讯股份有限公司 参考信号测量方法及装置
JP6078162B2 (ja) * 2012-11-19 2017-02-08 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける測定報告方法及びそれをサポートする装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064899A (zh) * 2006-04-29 2007-10-31 华为技术有限公司 一种测量邻小区的方法和用户终端
WO2009096837A1 (en) * 2008-01-30 2009-08-06 Telefonaktiebolaget L M Ericsson (Publ) Measurement bandwidth configuration method
CN101742599A (zh) * 2008-11-27 2010-06-16 华为技术有限公司 一种选择目标小区的方法、装置及***
CN102802187A (zh) * 2012-08-03 2012-11-28 李文龙 一种小区参考信号的测量方法和移动台

Also Published As

Publication number Publication date
CN103581991B (zh) 2019-04-30
EP2884793B1 (en) 2017-05-17
US20150208296A1 (en) 2015-07-23
EP2884793A1 (en) 2015-06-17
CN103581991A (zh) 2014-02-12
US9591533B2 (en) 2017-03-07
EP2884793A4 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2013178102A1 (zh) 一种测量参数的指示方法及装置
US10798601B2 (en) User equipment and a radio network node, and methods therein
US8441951B2 (en) Configuration measurement time slots for mobile terminals in a TDD system
RU2573220C2 (ru) Способ и компоновка для сигнализации параметров в беспроводной сети
US9722744B2 (en) Determining signal transmission bandwidth
CN109997382B (zh) 子载波间隔参数集的指示
US20170223558A1 (en) Methods and apparatuses for measurement enhancement in communication system
WO2014020997A1 (ja) 通信システム、基地局装置、移動端末装置及び通信方法
US20240022925A1 (en) L1/l2-centric mobility - neighbour cell measurements
WO2013044808A1 (zh) 干扰控制方法和设备
JP2013536648A (ja) 異種ネットワークにおける受信器設定のアダプテーション
CN105453638A (zh) 针对包括自主封闭订户组csg小区搜索和重选的小区重选过程的对测量时间的要求的配置
WO2015149349A1 (zh) 参考信号的检测方法、接收方法、用户设备和基站
KR20200038982A (ko) 사용자 장비의 측정 구성
EP3665946B1 (en) Wireless device and method performed by the wireless device for handling measurements on a set of cells
WO2014121697A1 (zh) 一种控制用户设备进行测量的方法及装置
JP2017503397A (ja) 免許不要周波数帯を使用するネットワーク展開における負荷分散
JP2020503819A (ja) 信号測定方法、ネットワーク側装置およびユーザー装置
US20220150726A1 (en) Measurement adjustment in low mobility
JP2019106710A (ja) 無線局、及び無線端末
EP3043588A1 (en) Method and apparatus for supporting user equipment to execute task
WO2019030928A1 (ja) ユーザ端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013797533

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013797533

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14420289

Country of ref document: US