WO2024061113A1 - 测量小区的方法与装置 - Google Patents

测量小区的方法与装置 Download PDF

Info

Publication number
WO2024061113A1
WO2024061113A1 PCT/CN2023/119001 CN2023119001W WO2024061113A1 WO 2024061113 A1 WO2024061113 A1 WO 2024061113A1 CN 2023119001 W CN2023119001 W CN 2023119001W WO 2024061113 A1 WO2024061113 A1 WO 2024061113A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
measurement
information
cells
reference signal
Prior art date
Application number
PCT/CN2023/119001
Other languages
English (en)
French (fr)
Inventor
薛祎凡
邝奕如
薛丽霞
***
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024061113A1 publication Critical patent/WO2024061113A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present application relates to the field of communication technology, and in particular, to a method and device for measuring a cell.
  • a terminal device when a terminal device needs to switch to a cell with a stronger signal, the terminal device needs to measure the signal strength or quality of the neighboring cell.
  • This application provides a method and device for measuring a cell, which can reduce the power consumption of terminal equipment when performing cell measurement.
  • the present application provides a method for measuring a cell, applied to a terminal device, comprising: receiving first information, the first information being used to indicate a time interval corresponding to a measurement reference signal of at least two cells, wherein the time interval corresponding to the measurement reference signal of at least two cells does not overlap in the time domain; and performing cell measurement according to the first information.
  • At least two cells specifically refer to at least two adjacent cells.
  • the time intervals corresponding to the respective measurement reference signals of at least two cells do not overlap in the time domain. It can be understood that the measurement reference signals of different cells in at least two cells are sent at different times.
  • performing cell measurement based on the first information specifically includes: receiving a measurement reference signal sent by a base station of each cell in at least two cells within a time interval corresponding to the cell, and processing the measurement reference signal of each cell, Get the measurement results for each cell.
  • the terminal equipment can distinguish the measurement reference signals of different cells.
  • the signal is processed based on the measurement reference signal received in each time interval to obtain the measurement result of the corresponding cell, and the measurement of the corresponding cell is completed.
  • this technical solution can realize cell measurement of terminal equipment on the WUR link, thereby reducing the power consumption of terminal equipment when performing cell measurement.
  • the measurement reference signal of each cell in at least two cells includes information indicating the cell identity of its cell.
  • the measurement reference signal of each cell in the at least two cells includes information used to indicate the cell identity of its cell. It can also be described as the measurement reference signal of each cell in the at least two cells includes information used to indicate the cell identity of the cell. Identified information
  • the terminal device can determine the corresponding measurement reference signal currently being processed from the measurement reference signal. specific neighborhood.
  • the method further includes: receiving second information, the second information being used to indicate the time interval corresponding to the measurement reference signal of each cell in the at least two cells and its cell identity. Correspondence between information.
  • the measurement reference information of each cell in at least two cells is indicated to the terminal device through the second information.
  • the corresponding relationship between the time interval corresponding to the number and its cell identification information can be determined, thereby determining the cell identification information corresponding to the current time interval.
  • the processed measurement reference signal corresponds to the specific cell.
  • the first information includes at least one of the following information: period information indicating a time interval corresponding to the measurement reference signal of each cell in at least two cells, Offset value information used to indicate the time interval corresponding to the measurement reference signal of each cell in the at least two cells, and time domain length information used to indicate the time interval corresponding to the measurement reference signal of each cell in the at least two cells.
  • the time interval of each cell can be configured through at least one of period information, offset value information, and time domain length information.
  • performing cell measurement based on the first information includes: performing cell measurement based on the first information and third information, and the third information is used to indicate that at least two cells are being measured. is the measurement period corresponding to each cell.
  • the terminal device since a measurement period is configured for each cell, when the terminal device measures each cell, it can select a time interval from multiple time intervals corresponding to each cell and perform the measurement in this time interval. Carry out cell measurements.
  • At least two cells correspond to M frequency points, and M is a positive integer.
  • M frequency points have priorities.
  • the M frequency points corresponding to at least two cells may have the same priority or different priorities.
  • the terminal device can also consider the priority of the frequency point corresponding to each cell when performing cell measurements. Furthermore, it is helpful for the terminal device to perform cell measurement. Select a more appropriate cell when measuring cells.
  • the priority of the frequency point of the first cell among at least two cells is higher than the priority of the frequency point of the second cell, and the time interval of the measurement reference signal of the first cell The period is smaller than the period of the time interval of the measurement reference signal of the second cell.
  • the period of the time interval of the measurement reference signal of the first cell is configured to be smaller than the measurement period of the second cell.
  • the period of the time interval of the reference signal can therefore meet the requirement that cells with higher priority of frequency points be measured more frequently, while measurements of cells with lower priority of frequency points do not need to be particularly frequent.
  • performing cell measurement based on the first information includes: when the measurement result of the measurement reference signal of the serving cell is less than or equal to the first threshold value, performing cell measurement based on the first information. Measurement.
  • the measurement result of the measurement reference signal of the serving cell when the measurement result of the measurement reference signal of the serving cell is less than or equal to the first threshold value, it can be indicated that the signal quality of the current serving cell is relatively poor. That is to say, in this implementation, cell measurement can be performed when the signal quality of the serving cell is relatively poor. Therefore, it helps to further reduce the power consumption of the terminal equipment when performing cell measurements.
  • performing cell measurement based on the first information includes: performing measurements on cells whose frequency points have a higher priority than the first priority; and performing measurements on the serving cell.
  • the result is less than or equal to the second threshold value, the cell whose frequency point priority is equal to or lower than the first priority level is measured, and the first priority level is the priority level of the frequency point of the serving cell.
  • frequency points with a priority higher than the first priority are also called high-priority frequencies, and frequency points with a priority equal to or lower than the first priority are also called medium-low priority. Frequency.
  • high-priority frequency points are always measured on the WUR link, and for medium- and low-priority frequency points, the first threshold value as described above is used to determine whether to perform measurements.
  • the measurement results of the cell measurement include the measurement results of the measurement reference signal in the first time-frequency resource, and the first time-frequency resource includes a first time domain resource and a first frequency domain resources, the first time domain resource is the time unit occupied by the measurement reference signal received in the time interval, and the first frequency domain resource is the deployment bandwidth of the measurement reference signal.
  • the deployment bandwidth of the measurement reference signal is also equal to the receiving bandwidth of the terminal device.
  • the measurement results of the cell measurement also include internal connection in the second time-frequency resource.
  • the total power received, the second time-frequency resource includes a second time domain resource and a second frequency domain resource, and the number of time units included in the second time domain resource is the number of time units included in the first time domain resource.
  • K times, the second frequency domain resource is the deployment bandwidth of the measurement reference signal, and K is a positive integer.
  • the total power received by the terminal device in the second time-frequency resource refers to the total power of all signals received in the second time-frequency resource, that is, it also includes serving cells, non-serving cells, and neighboring cells. Channel interference, thermal noise, etc. received power.
  • the measurement result of the cell measurement also includes the first reception quality of the received measurement reference signal, and the first reception quality is K*measurement result in the first time-frequency resource/th The total power received within the two time-frequency resources.
  • the measurement results of the cell measurement also include a target block error rate, and the target block error rate is a proportion of wake-up signals received by the terminal device that fail to pass verification.
  • the measurement result of the cell measurement also includes: a second reception quality, the second reception quality is a reception quality having a mapping relationship with the target block error rate determined based on a first mapping table, and the first mapping table includes a mapping relationship between the reception quality of the measurement reference signal and the block error rate.
  • the first information and the second information are sent by the first network device.
  • the first network device may be a base station of a serving cell, or a core network device.
  • this application provides a method for measuring a cell, applied to a first network device, including: sending first information, the first information being used to indicate the time interval corresponding to the measurement reference signal of each of at least two cells, wherein, At least the time intervals corresponding to the respective measurement reference signals of the two cells do not overlap in the time domain.
  • the measurement reference signal of each of the at least two cells includes information indicating a cell identity of its cell.
  • the method further includes: sending second information, the second information indicating the time interval corresponding to the measurement reference signal of each cell in the at least two cells and its corresponding time interval. Correspondence between cell identification information.
  • the first information includes at least one of the following information: a period used to indicate a time interval corresponding to the measurement reference signal of each cell in at least two cells.
  • Information used to indicate the offset value information of the time interval corresponding to the measurement reference signal of each cell in the at least two cells, and the time domain length used to indicate the time interval corresponding to the measurement reference signal of each cell in the at least two cells. information.
  • At least two cells correspond to M frequency points, and M is a positive integer.
  • M frequency points have priorities.
  • the priority of the frequency point of the first cell among at least two cells is higher than the priority of the frequency point of the second cell
  • the time interval of the measurement reference signal of the first cell The period is smaller than the period of the time interval of the measurement reference signal of the second cell.
  • this application provides a method for sending a measurement reference signal, which is applied to a second network device.
  • the second network device corresponds to a third cell.
  • the third cell is one of at least two cells, including: in the third
  • the measurement reference signal is sent within the time interval corresponding to the cell, and the time interval corresponding to the third cell does not overlap in the time domain with the time interval corresponding to any one of the at least two cells except the third cell.
  • the second network device refers to the base station of the third cell, that is, the base station that sends the measurement reference signal.
  • the measurement reference signal includes information for indicating a cell identifier of the third cell.
  • this application provides a device for measuring a cell, which is applied to a terminal device and includes: a transceiver module for receiving first information, where the first information is used to indicate the time interval corresponding to the measurement reference signal of each of at least two cells. , wherein the time intervals corresponding to the measurement reference signals of at least two cells do not overlap in the time domain; the processing module is configured to perform cell measurement according to the first information.
  • the measurement reference signal of each cell in at least two cells includes information indicating the cell identity of its cell.
  • the transceiver module is further configured to: receive second information, the second information is used to indicate the time interval corresponding to the measurement reference signal of each cell in the at least two cells and its corresponding time interval. Correspondence between cell identification information relation.
  • the first information includes at least one of the following information: period information used to indicate the time interval corresponding to the measurement reference signal of each cell in at least two cells, Offset value information used to indicate the time interval corresponding to the measurement reference signal of each cell in the at least two cells, and time domain length information used to indicate the time interval corresponding to the measurement reference signal of each cell in the at least two cells.
  • the processing module is further configured to: perform cell measurement according to the first information and third information, and the third information is used to indicate that each cell is measured when at least two cells are measured. The measurement period corresponding to each cell.
  • At least two cells correspond to M frequency points, and M is a positive integer.
  • M frequency points have priorities.
  • the priority of the frequency point of the first cell in at least two cells is higher than the priority of the frequency point of the second cell, and the time interval of the measurement reference signal of the first cell The period is smaller than the period of the time interval of the measurement reference signal of the second cell.
  • the processing module is further configured to perform cell measurement based on the first information when the measurement result of the measurement reference signal of the serving cell is less than or equal to the first threshold value.
  • the processing module is further configured to: measure a cell whose frequency point priority is higher than the first priority; and, the measurement result of the measurement in the serving cell is less than or equal to the second threshold value, the cell whose frequency point priority is equal to or lower than the first priority level is measured, and the first priority level is the priority level of the frequency point of the serving cell.
  • the measurement result of the cell measurement includes the measurement result of the measurement reference signal in the first time-frequency resource
  • the first time-frequency resource includes a first time domain resource and a first frequency domain resource
  • the first time domain resource is the time unit occupied by the measurement reference signal received in the time interval
  • the first frequency domain resource is the deployment bandwidth of the measurement reference signal
  • the measurement result of the cell measurement also includes the total power received in the second time-frequency resource
  • the second time-frequency resource includes the second time domain resource and the second frequency domain resource
  • the number of time units included in the second time domain resource is K times the number of time units included in the first time domain resource
  • the second frequency domain resource is the deployment bandwidth of the measurement reference signal
  • K is a positive integer.
  • the measurement result of the cell measurement also includes the first reception quality of the received measurement reference signal, and the first reception quality is K*measurement result in the first time-frequency resource/th The total power received within the two time-frequency resources.
  • the measurement results of the cell measurement also include a target block error rate, and the target block error rate is a proportion of wake-up signals received by the terminal device that fail to pass the verification.
  • the measurement results of the cell measurement also include: second reception quality, where the second reception quality is the reception quality determined based on the first mapping table and has a mapping relationship with the target block error rate.
  • the first mapping table includes a mapping relationship between the reception quality of the measurement reference signal and the block error rate.
  • the first information and the second information are sent by the first network device.
  • the present application provides an apparatus for measuring a cell, which is applied to a first network device and includes: a transceiver module for sending first information, where the first information is used to indicate at least two cells corresponding to respective measurement reference signals. Time intervals, wherein the time intervals corresponding to the measurement reference signals of at least two cells do not overlap in the time domain.
  • the measurement reference signal of each cell in at least two cells includes information indicating the cell identity of its cell.
  • the transceiver module is further configured to: send second information, the second information indicating the time interval corresponding to the measurement reference signal of each cell in the at least two cells and its cell identity. Correspondence between information.
  • the first information includes at least one of the following information: period information used to indicate the time interval corresponding to the measurement reference signal of each cell in at least two cells, Offset value information used to indicate the time interval corresponding to the measurement reference signal of each cell in the at least two cells, and time domain length information used to indicate the time interval corresponding to the measurement reference signal of each cell in the at least two cells.
  • At least two cells correspond to M frequency points, and M is a positive integer.
  • M frequency points have priorities.
  • the priority of the frequency point of the first cell among at least two cells is higher than the priority of the frequency point of the second cell
  • the measurement reference signal of the first cell is higher than the priority of the frequency point of the second cell.
  • the period of the time interval is smaller than the period of the time interval of the measurement reference signal of the second cell.
  • this application provides a device for sending a measurement reference signal, applied to a second network device, the second network device corresponds to a third cell, and the third cell is one of at least two cells, including: a transceiver module, It is used to send the measurement reference signal in the time interval corresponding to the third cell.
  • the time interval corresponding to the third cell does not overlap in the time domain with the time interval corresponding to any one of the at least two cells except the third cell.
  • the measurement reference signal includes information indicating the cell identity of the third cell.
  • the present application provides a communication system, which includes the devices described in the fourth and fifth aspects, and the communication device described in the sixth aspect.
  • the present application provides a communication device, including: a memory and a processor; the memory is used to store program instructions; the processor is used to call the program instructions in the memory to execute the first aspect or the second aspect. Or the method described in the third aspect or any of the possible implementations.
  • the present application provides a computer-readable medium storing a program code for computer execution, wherein the program code includes instructions for executing the method as described in the first aspect, the second aspect, the third aspect, or any possible implementation thereof.
  • the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code When the computer program code is run on a computer, the computer implements the first aspect or the second aspect or The method described in the third aspect or any possible implementation manner therein.
  • Figure 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of OOK modulation provided by this application.
  • Figure 3 is a schematic flowchart of a method for measuring a cell provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram corresponding to a cell and a time window provided by an embodiment of the present application
  • Figure 5 is a schematic diagram corresponding to a cell and a time window provided by another embodiment of the present application.
  • Figure 6 is a schematic diagram of the statistical area of WUR-RSRP and WUR-RSSI provided by this application;
  • Figure 7 is a schematic diagram of a quantitative structure provided by this application.
  • Figure 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a communication device provided by another embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same functions and effects.
  • the first information and the second information are used to distinguish different information, and their order is not limited.
  • words such as “first” and “second” do not limit the number and execution order, and words such as “first” and “second” do not limit the number and execution order.
  • the embodiments of the present application provide a method and device for measuring a cell.
  • the method and the device are based on the same technical concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can refer to each other, and there is no overlap. Again.
  • the applied communication system can be a global system of mobile communication (GSM) system, a code division multiple access (code division multiple access, CDMA) system, a wideband code division multiple access (wideband radio service, GPRS), Long term evolution (long term evolution, LTE) system, advanced long term evolution (LTE advanced, LTE-A), LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) system , universal mobile telecommunication system (UMTS), fifth-generation mobile communication system, and some future communication systems (such as sixth-generation mobile communication system), etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • GPRS wideband code division multiple access
  • LTE long term evolution
  • LTE advanced, LTE-A advanced long term evolution
  • TDD time division duplex
  • UMTS universal mobile telecommunication system
  • fifth-generation mobile communication system such as sixth-generation mobile communication system
  • Figure 1 shows a schematic diagram of a communication system applicable to the embodiment of the present application.
  • the communication system includes a network device 101 and a terminal device 102.
  • the network device 101 may be any device with wireless transceiver function.
  • the device includes but is not limited to: evolved Node B (eNB or eNodeB), radio network controller (RNC), Node B (NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home evolved Node B, or home Node B, HNB), base band unit (BBU), wireless fidelity (wireless
  • the invention may be an access point (AP), a wireless relay node, a wireless backhaul node, a transmission point (TP) or a transmission and reception point (TRP) in a wireless fidelity (WIFI) system, and may also be a gNB in a 5G, such as NR, system, or a transmission point (TRP or TP), one or a group of (including multiple antenna panels) antenna panels of a base station in a 5G system, or may also be a network node constituting a gNB or a transmission point, such as a baseband
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU implements radio resource control (RRC), packet data convergence protocol (PDCP) layer functions
  • RLC wireless chain Radio link control
  • MAC media access control
  • PHY physical
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network equipment in the access network (radio access network, RAN), or the CU can be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • the terminal device 102 may be a device that provides voice and/or data connectivity to a user, such as a handheld device, a vehicle-mounted device, etc. with wireless connectivity capabilities.
  • Terminal equipment can also be called user equipment (UE), access terminal (access terminal), user unit (user unit), user station (user station), mobile station (mobile station), mobile station (mobile), Remote station, remote terminal, mobile equipment, user terminal, wireless telecom equipment, user agent, user equipment or user device.
  • UE user equipment
  • access terminal access terminal
  • user unit user unit
  • user station user station
  • mobile station mobile station
  • Remote station remote terminal, mobile equipment, user terminal, wireless telecom equipment, user agent, user equipment or user device.
  • the terminal device can be a station (STA) in a wireless local area network (WLAN), a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (wireless local) loop (WLL) stations, personal digital assistant (PDA) devices, handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, and next-generation communication systems ( For example, terminals in the fifth-generation (5G) communication network) or terminal equipment in the future evolved public land mobile network (public land mobile network, PLMN) network, etc. Among them, 5G can also be called new radio (new radio, NR).
  • 5G fifth-generation
  • NR new radio
  • the terminal device may also be a terminal device that often works on the ground, such as a vehicle-mounted device.
  • the chip deployed in the above-mentioned device, or the chip may also be called a terminal device.
  • the network device and the terminal device can communicate through the authorized spectrum, the unlicensed spectrum, or both.
  • the network device and the terminal device can communicate through the spectrum below 6 gigahertz (GHZ), the spectrum above 6 GHZ, or both.
  • GHZ gigahertz
  • the spectrum below 6 GHZ and the spectrum above 6 GHZ can be used for communication at the same time.
  • the embodiment of the present application does not limit the spectrum resources used between the network device and the terminal device.
  • the terminal device or network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • This application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide according to the embodiment of the present application. method to communicate.
  • the execution subject of the method provided by the embodiment of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, tapes, etc.), optical disks (e.g., compact discs (CD), digital versatile discs (DVD)) etc.), smart cards and flash memory devices (e.g. erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the master in the terminal equipment can be used.
  • the receiver (or main circuit) performs these functions.
  • the terminal device uses the main receiver to receive signals, it is also called working on the main link, or it is also said that the main receiver is in a working state.
  • the name of the main circuit (or main receiver) is only for differentiation, and its specific naming does not limit the protection scope of the present application. For the convenience of explanation, the following description is unified as the main circuit.
  • the signal received by the terminal device using the main circuit can be said to be transmitted on the main link.
  • the main link represents a connection relationship between the terminal device and the network device and is a logical concept rather than a physical entity. It can be understood that the main link is only named for differentiation, and its specific naming does not limit the protection scope of the present application.
  • the terminal device can also receive signals by using a separate low-power small circuit.
  • the low-power small circuit can be implemented using a separate small circuit or chip with a simple structure, and its power consumption is low.
  • the low-power small circuit can be called a wake-up radio (WUR), or a wake-up circuit, or a low-power circuit, or a wake-up receiver (WUR), etc., and this application does not limit its naming.
  • WUR wake-up radio
  • WUR wake-up receiver
  • the low-power small circuit is referred to as a wake-up circuit. It can be understood that the wake-up circuit is only named for distinction, and its specific naming does not limit the scope of protection of this application. For the sake of convenience of explanation, the following text is uniformly described as a wake-up circuit.
  • the WUR module is used to receive the wake up signal (wake up signal, WUS, also known as low power wake up signal, LP-WUS) sent by the network device, and decode the information according to the information bits carried in WUS. Call up the wake-up indication information, thereby waking up the main receiver or main receiving module that is turned off (or in sleep state) in the terminal device.
  • WUS wake up signal
  • LP-WUS low power wake up signal
  • the wake-up signal can be used to wake up at least one terminal device or at least a group of terminal devices.
  • the wake-up signal includes wake-up information, and the wake-up information represents information related to waking up the terminal device.
  • the wake-up information is, for example, information related to paging.
  • the wake-up information may, for example, be used by the terminal device to determine whether to perform a paging reception process, or may be used by the terminal device to determine whether to initiate random access.
  • the wake-up information includes: information of one or more terminal devices that need to be woken up (such as UE ID).
  • the one or more terminal devices may also be in the form of a terminal device group (UE group).
  • the wake-up information may include a group identifier of the terminal device group.
  • the WUS signal when the network device sends WUS to the terminal device, in order to reduce the power consumption of the WUR module, the WUS signal usually uses some simple modulation methods such as on off keying (OOK) or Manchester OOK.
  • OOK on off keying
  • the terminal The WUR module in the device uses envelope detection to receive WUS.
  • high level and low level can be considered as two symbols used to represent different information bits. In this application, they are respectively called high level symbols and low level symbols (also collectively referred to as OOK symbols).
  • the wake-up signal is 0011010100
  • a high level represents information bit 1
  • a low level represents information bit 0
  • they will correspond to low-level symbols and low-level symbols respectively.
  • the terminal equipment when working on a WUR link, the terminal equipment may also need to measure the signal strength or quality of neighboring cells so that the terminal equipment can switch to signal quality. A better neighborhood.
  • the terminal equipment there is only a method for the terminal equipment to measure the signal strength or quality of the neighboring cells through the main receiver it includes.
  • the terminal device turns on the main receiver from time to time, and then performs neighboring cell measurements on the main receiver.
  • this implementation will undoubtedly result in higher power consumption of the terminal device.
  • the present application proposes a method and device for measuring a cell.
  • the method for measuring a cell provided in the present application, it is possible to implement cell measurement when a terminal device is working on a WUR link, thereby reducing the power consumption of the terminal device.
  • the measurement “cell” in this application refers to the measurement “neighboring cell”. For convenience of description, this application will also refer to the measurement cell as a measurement neighbor cell.
  • Fig. 3 is a method for measuring neighboring cells provided by an embodiment of the present application. As shown in Fig. 3, the method includes S301 and S302.
  • the first network device sends first information to the terminal device.
  • the first information is used to indicate the time intervals corresponding to the measurement reference signals of at least two cells, where the time intervals corresponding to the measurement reference signals of at least two cells are within There is no overlap in the time domain; accordingly, the terminal device receives the first information.
  • the first network device refers to the base station or core network device of the serving cell that currently serves the terminal device.
  • At least two cells specifically refer to at least two neighboring cells.
  • the primary link in the terminal device when it performs cell measurement, it can perform cell measurement based on the secondary synchronization signal in the received synchronization signal block (SSB).
  • the secondary synchronization signal is a complex sequence, that is, the secondary synchronization signal has both amplitude and phase, so when the secondary synchronization signals of different cells overlap, the terminal equipment can extract the signals of different cells from the received signals through the orthogonality of the synchronization signals. Corresponding secondary synchronization signals respectively, so that the signal reception power corresponding to each cell can be determined.
  • the terminal device when the terminal device performs cell measurements on the main link, if the terminal device receives the secondary synchronization signals of multiple cells at the same time and frequency position, the terminal device can also extract the synchronization signals of each cell respectively. Secondary synchronization signal to determine the signal received power of each cell.
  • the concept of the main link please refer to the descriptions in the relevant parts of this application, and will not be described again this time.
  • the signal received by the terminal device usually uses a simple modulation method such as OOK or Manchester OOK, and the terminal device uses envelope detection for the received signal. Demodulation is carried out in this way, which will result in the demodulated signal retaining only amplitude information but no phase information.
  • the measurement reference signals of multiple cells for terminal equipment to measure are sent on overlapping time-frequency resources, there will be a problem that the terminal equipment cannot extract the measurement reference signals of each cell, resulting in the terminal The equipment cannot accurately measure the cell.
  • the above-mentioned sending on overlapping time-frequency resources includes not only sending on partially overlapping time-frequency resources, but also including sending on all overlapping time-frequency resources.
  • the terminal equipment will be unable to extract the measurements of each cell.
  • the problem of the reference signal causes the terminal equipment to be unable to accurately measure the cell.
  • the measurement reference signals of different cells are orthogonal to each other in time.
  • the measurement reference signals of different cells are placed in different time
  • the method of sending enables the terminal equipment to extract the measurement reference signals of different cells respectively when working on the WUR link, thereby completing the measurement of the corresponding cell based on the measurement reference signals of each cell in different cells.
  • the network device sends first information to the terminal device, the first information is used to indicate the time interval corresponding to the measurement reference signal of each of at least two cells, and the time interval corresponding to the measurement reference signal of each of the at least two cells.
  • the time intervals do not overlap in the time domain.
  • the time interval is also called a time window (window), an opportunity (occasion), or a time position (position).
  • the first network device can configure the time window for sending the measurement reference signal of each cell through the first information, and during configuration, the time window for sending the measurement reference signal of any two different cells is Different.
  • the terminal equipment can distinguish the measurement reference signals of different cells by receiving the measurement reference signals of different cells in different time windows, thereby completing the measurement of different neighboring cells.
  • the first information when configuring the time window for transmitting the measurement reference signal of each cell through the first information, may include at least one of the following information: used to indicate that each cell Period information of the time interval corresponding to the measurement reference signal, offset value information used to indicate the time interval corresponding to the measurement reference signal of each cell, and time domain length used to indicate the time interval corresponding to the measurement reference signal of each cell information. That is, in this embodiment, each configured time window may be configured based on at least one of period information, offset value information, and time domain length information.
  • the at least two cells may include a cell with the same frequency as the service cell of the terminal device (i.e., a same-frequency cell), and may also include a cell with a different frequency from the service cell of the terminal device (i.e., an inter-frequency cell).
  • the measurement of the same-frequency cell by the terminal device is also referred to as the same-frequency measurement
  • the measurement of the inter-frequency cell by the terminal device is also referred to as the inter-frequency measurement.
  • the time window is different. For example, even if two of the N cells have the same frequency point, the time windows configured for the two cells with the same frequency point are also different. In other words, in this implementation, one time window only corresponds to one cell, and there is no situation where one time window corresponds to multiple cells at the same time.
  • this example takes 4 cells and the frequency points of the 4 cells and the serving cell are the same.
  • the current WUR working frequency band (the reception of the WUR module) can be bandwidth and center frequency point/deployment bandwidth and center frequency point of the WUR module), in addition to the time interval used by the wake-up signal, 4 time windows corresponding to the 4 cells are also configured. Among them, one time window is Corresponds to one cell, and different cells correspond to different time windows.
  • 9 time windows corresponding to the 9 cells can be configured separately under the current WUR working frequency band. Specifically, for the 4 co-frequency cells, 4 time windows are configured, for the 2 cells corresponding to heterofrequency frequency 1, 2 time windows are configured, and for the 3 cells corresponding to heterofrequency frequency 2, 3 time windows are configured.
  • each time window can be arranged continuously.
  • the continuous arrangement of the above time windows is only an implementation method and does not constitute a limitation of the present application.
  • the four time windows corresponding to the four cells with the same frequency point as the serving cell may also be arranged discontinuously.
  • the four time windows corresponding to the four same-frequency cells with the same frequency point as the serving cell of the terminal device are arranged continuously, and the two time windows corresponding to the inter-frequency frequency point 1 are arranged discontinuously.
  • the three time windows corresponding to the inter-frequency frequency point 2 are arranged discontinuously.
  • S302 The terminal device performs cell measurement according to the first information.
  • the terminal device performs cell measurement based on the first information, including: the base station of each of at least two cells (that is, the base station that sends the measurement reference signal, also called the second network device in this application)
  • the measurement reference signal is sent within the time interval corresponding to its cell, where the time interval corresponding to each cell does not overlap with the time interval corresponding to other cells in the time domain.
  • the terminal device receives the base station of each cell in its cell.
  • the measurement reference signal sent within the corresponding time interval, The measurement reference signal of each cell is processed to obtain the measurement results of each cell in at least two cells.
  • the terminal equipment when performing cell measurements, the terminal equipment also needs to know exactly which cell the currently received measurement reference signal belongs to.
  • the measurement reference signal of each cell in at least two cells in this embodiment includes information indicating the cell identity of each cell.
  • the cell corresponding to the currently processed measurement reference signal can be determined based on the information indicating the cell identity of each cell included in the currently received measurement reference signal.
  • the measurement reference signal may include a cell identity indicating the third cell.
  • the terminal device can determine that the measurement reference signal processed in the current time interval is for the third cell based on the information used to indicate the cell identity of the third cell in the received measurement reference signal.
  • the measurement reference signal includes information indicating the cell identity of each cell.
  • the reference signal carries indication information, and the indication information indicates a cell identity.
  • the first part of the reference signal is a sequence used for measurement, and the latter part carries several bits of indication information indicating the cell identity.
  • the terminal device can perform measurements through the previous part of the reference signal, and determine which cell the measurement result belongs to based on the instructions from the latter part.
  • the generation parameters of the sequence used for the reference signal include the cell identifier, that is, the sequence is generated according to the cell identifier and other parameters, and the reference signal is generated according to the sequence.
  • the terminal device needs to perform blind detection when processing the received signal. For example, using sequences corresponding to different cell identifiers to correlate with the received signal, the cell identifier corresponding to the sequence with a correlation peak can be considered The cell identity corresponding to the received reference signal.
  • the first network device may also send second information to the terminal device, where the second information is used to Indicates the correspondence between the time interval corresponding to the measurement reference signal of each cell in at least two cells and its cell identification information.
  • the terminal device based on the second information, when processing the measurement reference signal received in each time interval, the cell identification information corresponding to the current time interval can be determined, thereby determining the cell identification information in the current time interval.
  • the measurement reference signal corresponds to the specific cell.
  • the terminal device since the terminal device receives the measurement reference signals of different cells in different time intervals, the terminal device can distinguish different cells even when the terminal device is working on the WUR link.
  • the measurement reference signal is processed based on the measurement reference signal received in each time interval to obtain the measurement result of the corresponding cell, and the measurement of the corresponding cell is completed.
  • this technical solution can realize cell measurement of terminal equipment on the WUR link, thereby reducing the power consumption of terminal equipment when performing cell measurement.
  • At least two cells in this application may correspond to M frequency points, where M is a positive integer.
  • the M frequency points may also have priorities.
  • the priorities of M frequency points corresponding to at least two cells can reuse the priorities configured in the main link.
  • the frequency priority configured in the main link is included in SIB2, SIB4 and SIB5.
  • SIB2 contains public information about same-frequency, inter-frequency, and inter-system cell reselection
  • SIB4 includes related information about inter-frequency cell reselection.
  • Information SIB5 includes information related to cell reselection in different systems.
  • the frequency point priority is configured through the parameter cellReselectionPriority, where cellReselectionPriority is an integer variable with a value ranging from 0 to 7.
  • the priority of the frequency point can be configured separately for the WUR link.
  • terminal equipment that supports WUR links should work on WUR links as much as possible to further reduce the power consumption of the terminal equipment.
  • the main link configures the priority of the frequency point, it may not necessarily set the frequency points where the WUR link is deployed as high priority. This may cause the terminal device to reside on the frequency point where the WUR link is deployed. The probability of points is reduced. Therefore, it may be necessary to configure the priority of a separate frequency point for the WUR link.
  • the priorities of the M frequency points corresponding to at least two cells may be different. It should be understood that the measurement requirements for frequency points with different priorities are usually different, for example, for high-priority frequency points. , the measurement of the terminal equipment should be relatively frequent (that is, the measurement cycle is required to be short), but for low-priority frequency points, it does not need to be particularly frequent (that is, the measurement cycle is required to be long).
  • the terminal device can perform cell measurement based on the first information and the third information, where the third information Used to indicate the measurement period corresponding to each cell when measuring at least two cells. Specifically, in this embodiment, when measuring each cell, the terminal device can select a time interval from multiple time intervals corresponding to each cell based on the measurement period of each cell and perform the measurement in the time interval. Measured over a time interval.
  • measurement periods of different priorities can be specified through the protocol, and then when the terminal device measures each cell, the measurement period of each cell can be obtained based on the measurement periods of different priorities specified by the protocol. , and then perform measurement of each cell based on this measurement period.
  • the period of the time interval configured for frequency points of different priorities is different, and then the terminal device is allowed to perform measurements based on the configured time window. More specifically: when configuring the time interval corresponding to the cell of the high-priority frequency point and the time interval corresponding to the cell of the low-priority frequency point, the period of the time interval corresponding to the high-priority frequency point can be made smaller than that of the low-priority frequency point. The period of the time interval corresponding to the point.
  • the measurement reference signal of the first cell can be The period of the time interval is smaller than the period of the time interval of the measurement reference signal of the second cell.
  • the terminal device after the terminal device completes the measurement of the cell on the WUR link through the method of measuring the cell described in Figure 3, the terminal device can also receive the measurement reference signal of the serving cell. After completing the measurement of the serving cell, further, compare the measurement results of the serving cell and the cell on the WUR link to determine whether cell reselection is required.
  • the terminal device determines to reselect to a new target cell, it can continue to work on the WUR link after completing the reselection on the WUR link.
  • the terminal device after the terminal device completes reselection on the WUR link, it first switches to the main link to accept some configuration information of the new target cell, and then determines whether to arrive based on the situation in the new target cell. Works on WUR link.
  • the terminal device may not perform cell measurement at this time. However, if the signal quality or strength of the serving cell is weak, the terminal device should perform cell measurement to switch to a cell with higher signal quality or strength.
  • a method of reducing the measurement of the terminal device can also be defined on the WUR link. specifically:
  • a first threshold value can be configured.
  • the terminal device may not perform cell measurement (no cell measurement) based on the first information on the WUR link; otherwise, when the terminal device needs to perform cell measurement on the WUR link based on the first information Measurement, that is, when the measurement result of the measurement reference signal of the serving cell measured by the terminal equipment on the WUR link is less than or equal to the first threshold value (indicating that the signal quality or strength of the current serving cell may be relatively weak), then Carry out cell measurements.
  • frequency points with different priorities can also be processed separately.
  • the measurement may be performed on a cell whose frequency point priority is higher than the first priority level, and when the measurement result of the serving cell measurement is less than or equal to the second threshold value, the frequency point priority level is equal to or lower than the second threshold value.
  • Measurement is performed on the cell with the first priority, which is the priority of the frequency point of the serving cell.
  • frequency points with a priority higher than the first priority are also called high-priority frequencies, and frequency points with a priority equal to or lower than the first priority are also called medium-low priority. Frequency.
  • high priority frequency points are always measured on the WUR link, while for medium and low priority frequency points, the first threshold value as described above is used to determine whether to perform measurements.
  • the above-mentioned first threshold value or second threshold value may be the threshold of a single measurement result or the threshold of multiple measurement results.
  • each measurement result indicator needs to be higher than the corresponding threshold to be considered to be above the threshold.
  • the terminal equipment when it receives the measurement reference signal on the main link, it can determine the frequency domain information of the measurement reference signal, but when it receives the measurement reference signal on the WUR link, it cannot obtain the measurement.
  • the frequency domain information of the reference signal means that the terminal device cannot know the relationship between the bandwidth of the measurement reference signal on the WUR link and the deployment bandwidth of the WUR link.
  • the terminal device can only use the entire WUR receiving bandwidth as Measured frequency range.
  • a new evaluation index is also defined, where the evaluation index can be one or more of the following:
  • the first time-frequency resource includes a first time domain resource and a first frequency domain resource.
  • the first time domain resource is a time unit occupied by the measurement reference signal received in the time interval (ie, the time range of the measurement reference signal).
  • One frequency domain resource is the deployment bandwidth of the measurement reference signal (which can also be considered as the entire WUR receiving bandwidth). It can be seen that the evaluation index reflects the measurement result of the measurement reference signal, such as the received power of the measurement reference signal.
  • the measurement result of the measurement reference signal in the first time-frequency resource may also be called WUR-RSRP.
  • the second time-frequency resource includes a second time domain resource and a second frequency domain resource
  • the number of time units included in the second time domain resource is K times the number of time units included in the first time domain resource
  • the second frequency domain resource is the deployment bandwidth of the measurement reference signal.
  • the total power received by the terminal device in the second time-frequency resource refers to the total power of all signals received in the second time-frequency resource, that is, it also includes the receiving power of the serving cell and non-serving cell, adjacent channel interference, thermal noise, etc.
  • the total power received by the terminal device in the second time-frequency resource may also be called WUR-RSSI.
  • Figure 6 is a schematic diagram of a statistical area of WUR-RSRP and WUR-RSSI provided by this application. As shown in Figure 6, in the statistical area of WUR-RSRP and the statistical area of WUR-RSSI, the frequency domain resources counted are the entire WUR receiving bandwidth, and the difference lies in the time domain resources counted.
  • the first reception quality is K*measurement result in the first time-frequency resource/total power received in the second time-frequency resource.
  • the first reception quality is also called WUR-RSRQ.
  • the time domain measurement range of WUR-RSSI is configured to be K times the length of the measurement reference signal, and in this case, scaling can be performed by K when calculating WUR-RSRQ.
  • Target block error rate is the proportion of wake-up signals received by the terminal device that fail to pass verification.
  • the target block error rate is also called WUR-BLER.
  • a quantizer with a lower quantization order may usually be used.
  • the WUR module when using OOK modulation, the WUR module only needs to determine the received signal as 0 or 1.
  • a 1-bit quantizer can meet the signal demodulation needs. But this rough quantizer may make WUR-RSRQ difficult to calculate.
  • the left side is the received signal.
  • the signal When quantized using a high-precision quantizer (the range of the quantization value is 0 to 9), the signal can be quantized into 5, 2, 7, and 3 respectively.
  • the signal When using a low-precision quantizer, the signal can only be quantized into 1, 0, 1, 0.
  • a target block error rate is also defined, in which the target block error rate is the proportion of wake-up signals received by the terminal device that fail to pass the verification. More specifically, it refers to the error rate of the terminal device within a specific time-frequency resource. The proportion of received wake-up signals that fail verification. It can be understood that the WUR-BLER in this application can reflect the channel quality. The lower the WUR-BLER, the better the channel quality.
  • the second reception quality is the reception quality that has a mapping relationship with the target block error rate determined based on the first mapping table.
  • the first mapping table includes the relationship between the reception quality of the measurement reference signal and the block error rate. Mapping relations.
  • the second reception quality is indirectly obtained by defining a mapping relationship between the reception quality of the measured reference signal and the block error rate.
  • the terminal device can obtain different measurement results based on the above indicators when receiving the measurement reference signal in each time interval, thereby completing the measurement.
  • the method for measuring a cell according to an embodiment of the present application is described in detail above in conjunction with FIGS. 3 to 7 .
  • the communication device according to an embodiment of the present application will be described in detail below in conjunction with FIGS. 8 and 9 .
  • FIG8 is a schematic structural diagram of a communication device provided by an embodiment of the present application. Specifically, as shown in FIG8 , the device includes: a transceiver module 801 and a processing module 802 .
  • the communication device can be applied to terminal equipment.
  • the communication device is also called a device for measuring a cell.
  • the transceiver module 801 is used to: receive first information, the first information is used to indicate the time interval corresponding to the measurement reference signal of at least two cells, wherein the time interval corresponding to the measurement reference signal of at least two cells does not overlap in the time domain; the processing module 802 is used to: perform cell measurement according to the first information.
  • the measurement reference signal of each of the at least two cells includes information indicating a cell identity of its cell.
  • the transceiver module 801 is further configured to receive second information.
  • the second information is used to indicate the time interval corresponding to the measurement reference signal of each cell in at least two cells and its cell identification information. Correspondence.
  • the first information includes at least one of the following information: period information used to indicate the time interval corresponding to the measurement reference signal of each cell in at least two cells, used to indicate at least two cells Offset value information of the time interval corresponding to the measurement reference signal of each cell in the cells, and time domain length information used to indicate the time interval corresponding to the measurement reference signal of each cell in at least two cells.
  • the processing module 802 is specifically configured to: perform cell measurement according to the first information and the third information, and the third information is used to indicate the measurement period corresponding to each cell when measuring at least two cells. .
  • At least two cells correspond to M frequency points, where M is a positive integer.
  • M frequency points have priorities.
  • the priority of the frequency point of the first cell among at least two cells is higher than the priority of the frequency point of the second cell, and the period of the time interval of the measurement reference signal of the first cell is smaller than that of the second cell. The period of the time interval of the cell's measurement reference signal.
  • the processing module 802 is specifically configured to perform cell measurement based on the first information when the measurement result of the measurement reference signal of the serving cell is less than or equal to the first threshold value.
  • the processing module 802 is specifically configured to: perform measurements on cells whose frequency points have a priority higher than the first priority; and, the measurement results measured in the serving cell are less than or equal to the second threshold.
  • the value is equal to or lower than the first priority
  • measurement is performed on cells whose frequency points are equal to or lower than the first priority.
  • the first priority is the priority of the frequency point of the serving cell.
  • the processing module 802 is specifically configured to: the measurement results of the cell measurement include the measurement results of the measurement reference signal in the first time-frequency resource, and the first time-frequency resource includes the first time domain resource and the first time-frequency resource.
  • the first time domain resource is the time unit occupied by the measurement reference signal received in the time interval, and the first frequency domain resource is the deployment bandwidth of the measurement reference signal.
  • the measurement result of the cell measurement also includes the total power received within the second time-frequency resource.
  • the second time-frequency resource includes a second time domain resource and a second frequency domain resource.
  • the second time-frequency resource The number of time units included in the domain resource is K times the number of time units included in the first time domain resource.
  • the second frequency domain resource is the deployment bandwidth of the measurement reference signal, and K is a positive integer.
  • the measurement result of the cell measurement also includes the first reception quality of the received measurement reference signal, and the first reception quality is K*measurement result in the first time-frequency resource/in the second time-frequency resource Total power received.
  • the measurement results of the cell measurement also include a target block error rate, and the target block error rate is a proportion of wake-up signals received by the terminal device that fail to pass verification.
  • the measurement results of the cell measurement also include: second reception quality, the second reception quality is the reception quality determined based on the first mapping table and having a mapping relationship with the target block error rate, the first mapping table includes measuring the mapping relationship between the reception quality of the reference signal and the block error rate.
  • the first information and the second information are sent by a first network device.
  • the communication device may be applied to the first network device.
  • the communication device is also called a device for measuring a cell.
  • the transceiver module 801 is configured to: send first information, the first information is used to indicate the time interval corresponding to the respective measurement reference signals of at least two cells, wherein the respective measurement reference signals of at least two cells The corresponding time intervals do not overlap in the time domain.
  • the measurement reference signal of each of the at least two cells includes information indicating a cell identity of its cell.
  • the transceiver module 801 is further configured to: send second information indicating a correspondence between a time interval corresponding to a measurement reference signal of each cell in at least two cells and its cell identification information.
  • the first information includes at least one of the following information: period information used to indicate the time interval corresponding to the measurement reference signal of each cell in at least two cells, used to indicate Offset value information of the time interval corresponding to the measurement reference signal of each cell in at least two cells, and time domain length information used to indicate the time interval corresponding to the measurement reference signal of each cell in at least two cells.
  • At least two cells correspond to M frequency points, and M is a positive integer.
  • M frequency points have priorities.
  • the priority of the frequency point of the first cell among at least two cells is higher than the priority of the frequency point of the second cell, and the period of the time interval of the measurement reference signal of the first cell is smaller than that of the second cell. The period of the time interval of the cell's measurement reference signal.
  • the communication device can be applied to a second network device, the second network device corresponds to a third cell, and the third cell is one of at least two cells.
  • the communication device is also called a device that sends measurement reference signals.
  • the transceiver module 801 is configured to: send a measurement reference signal in a time interval corresponding to the third cell, and the time interval corresponding to the third cell is consistent with any one of the at least two cells except the third cell.
  • the time intervals corresponding to the cells do not overlap in the time domain.
  • the measurement reference signal includes information indicating a cell identity of the third cell.
  • Figure 9 is a schematic structural diagram of a communication device provided by another embodiment of the present application.
  • the device shown in Figure 9 can be used to perform the method described in any of the aforementioned embodiments.
  • the device 900 in this embodiment includes: a memory 901 and a processor 902.
  • the device 900 also includes a communication interface 903 and a bus 904.
  • the memory 901, the processor 902, and the communication interface 903 implement communication connections between each other through the bus 904.
  • the memory 901 may be a read only memory (ROM), a static storage device, a dynamic storage device or a random access memory (RAM).
  • the memory 901 can store programs. When the program stored in the memory 901 is executed by the processor 902, the processor 902 is used to execute various steps of the methods shown in Figures 3 to 7.
  • the processor 902 may be a general central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for executing related programs to Implement the methods shown in Figures 3 to 8 of this application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the processor 902 may also be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the method shown in FIGS. 3 to 7 in the embodiment of the present application can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 902 .
  • the above-mentioned processor 902 can also be a general-purpose processor, a digital signal processor (digital signal processing, DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, Discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 901.
  • the processor 902 reads the information in the memory 901, and combines its hardware to complete the functions required to be performed by the units included in the device of the present application. For example, each step of the embodiment shown in Figures 3 to 7 can be executed. /Function.
  • the communication interface 903 may use, but is not limited to, a transceiver or other transceiver device to implement communication between the apparatus 900 and other devices or a communication network.
  • Bus 904 may include a path that carries information between various components of device 900 (eg, memory 901, processor 902, communication interface 903).
  • the device 900 shown in the embodiment of the present application may be an electronic device, or may also be a chip configured in the electronic device.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmit to another website, computer, server or data center through wired (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that a computer can access, or a data storage device such as a server or a data center that contains one or more sets of available media.
  • the usable media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one refers to one or more, and “plurality” refers to two or more.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application or the part that contributes to the prior art, or the part of the technical solution, can be embodied in the form of a software product, which is stored in a storage medium and includes several instructions for enabling a computer device (which can be a personal computer, server, or network device) to perform operations.
  • the aforementioned storage medium includes: a USB flash drive, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种测量小区的方法与装置。本申请提供的测量小区的方法包括:终端设备接收第一网络设备发送的第一信息,然后根据第一信息进行小区测量,具体地,本申请中的第一信息用于指示至少两个小区各自的测量参考信号对应的时间区间,其中,至少两个小区各自的测量参考信号对应的时间区间在时域上不重叠。本申请提供的技术方案中,由于不同小区的测量参考信号是在不同的时间区间上发送的,因此,可以实现终端设备在WUR链路上工作时终端设备也能够区分出不同小区的测量参考信号,以实现在WUR链路上完成小区测量,从而降低终端设备进行小区测量时的功耗。

Description

测量小区的方法与装置
本申请要求于2022年09月21日提交中国专利局、申请号为202211153981.4、申请名称为“一种监测LP-WUS时邻区测量的方法”的中国专利申请的优先权以及2022年10月29日提交中国专利局、申请号为202211340811.7、申请名称为“测量小区的方法与装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种测量小区的方法与装置。
背景技术
在移动通信网络中,当终端设备需要切换至信号更强的小区时,终端设备需要对邻区的信号强度或质量进行测量。
但是相关技术中,仅有终端设备通过其包括的主接收机进行邻区测量的方案,导致终端设备功耗较大。
发明内容
本申请提供了一种测量小区的方法与装置,可以降低终端设备进行小区测量时的功耗。
第一方面,本申请提供一种测量小区的方法,应用于终端设备,包括:接收第一信息,第一信息用于指示至少两个小区各自的测量参考信号对应的时间区间,其中,至少两个小区各自的测量参考信号对应的时间区间在时域上不重叠;根据第一信息进行小区测量。
本申请中,至少两个小区具体是指至少两个邻区。
其中,至少两个小区各自的测量参考信号对应的时间区间在时域上不重叠,可以理解为至少两个小区中不同小区的测量参考信号是在不同的时间进行发送的。
其中,根据第一信息进行小区测量,具体包括:接收至少两个小区中每个小区的基站在其小区对应的时间区间内发送的测量参考信号,以及对每个小区的测量参考信号进行处理,得到每个小区的测量结果。
本申请提供的技术方案中,由于不同小区的测量参考信号是在不同的时域上发送的,因此,即使终端设备是在WUR链路上进行工作,终端设备也能够区分出不同小区的测量参考信号,从而基于每个时间区间上接收的测量参考信号进行处理得到对应小区的测量结果,完成对应小区的测量。也就是说,该技术方案,可以实现终端设备在WUR链路上的小区测量,从而降低终端设备进行小区测量时的功耗。
结合第一方面,在一种可能的实现方式中,至少两个小区中每个小区的测量参考信号包括用于指示其小区的小区标识的信息。
其中,至少两个小区中每个小区的测量参考信号包括用于指示其小区的小区标识的信息,也可以描述为至少两个小区中每个小区的测量参考信号包括用于指示该小区的小区标识的信息
该实现方式中,由于每个小区的测量参考信号中包括了用于指示该测量参考信号的小区标识的信息,因此,可以实现终端设备从测量参考信号中确定出当前进行处理的测量参考信号对应的具体的小区。
结合第一方面,在一种可能的实现方式中,所述方法还包括:接收第二信息,第二信息用于指示至少两个小区中每个小区的测量参考信号对应的时间区间与其小区标识信息之间的对应关系。
该实现方式中,由于通过第二信息向终端设备指示了至少两个小区中每个小区的测量参考信 号对应的时间区间与其小区标识信息之间的对应关系。因此,对于终端设备而言,就可以基于第二信息,在对每个时间区间上接收的测量参考信号进行处理时,确定出当前时间区间对应的小区标识信息,从而确定出在当前时间区间上处理的测量参考信号对应的具体的小区。
结合第一方面,在一种可能的实现方式中,第一信息中包括以下信息中的至少一项:用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的周期信息,用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的偏移值信息、用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的时域长度信息。
该实现方式中,可以通过周期信息、偏移值信息和时域长度信息中的至少一项来配置每个小区的时间区间。
结合第一方面,在一种可能的实现方式中,根据第一信息进行小区测量,包括:根据第一信息和第三信息进行小区测量,第三信息用于指示在对至少两个小区进行测量时每个小区对应的测量周期。
该实现方式中,由于为每个小区配置了测量周期,使得终端设备在对每个小区进行测量时,可以从每个小区对应的多个时间区间中选择出一个时间区间并在该一个时间区间上进行小区测量。
结合第一方面,在一种可能的实现方式中,至少两个小区对应M个频点,M为正整数。可选地,M个频点具有优先级。
示例性地,至少两个小区对应的M个频点可以是具有相同的优先级,也可以是具有不同的优先级。
该实现方式中,通过为每个小区对应的频点配置优先级,可以使得终端设备在进行小区测量时还考虑每个小区对应的频点的优先级,进一步地,有助于终端设备在进行小区测量时选择更合适的小区。
结合第一方面,在一种可能的实现方式中,至少两个小区中第一小区的频点的优先级高于第二小区的频点的优先级,第一小区的测量参考信号的时间区间的周期小于第二小区的测量参考信号的时间区间的周期。
该实现方式中,在第一小区的频点的优先级高于第二小区的频点的优先级时,由于将第一小区的测量参考信号的时间区间的周期配置得小于第二小区的测量参考信号的时间区间的周期,因此可以满足对频点的优先级较高的小区的测量比较频繁,而对频点的优先级较低的小区的测量不需要特别频繁的需求。
结合第一方面,在一种可能的实现方式中,根据第一信息进行小区测量,包括:在服务小区的测量参考信号的测量结果小于或等于第一门限值时,根据第一信息进行小区测量。
其中,当服务小区的测量参考信号的测量结果小于或等于第一门限值时,可以说明当前服务小区的信号质量是比较差的。也就是说,该实现方式中,可以在服务小区的信号质量是比较差的情况下,再去进行小区测量。因此,有助于进一步降低终端设备进行小区测量时的功耗。
结合第一方面,在一种可能的实现方式中,根据第一信息进行小区测量,包括:对频点的优先级高于第一优先级的小区进行测量;以及,在服务小区进行测量的测量结果小于或等于第二门限值时,对频点的优先级等于或低于第一优先级的小区进行测量,第一优先级为服务小区的频点的优先级。
该实现方式中,也将优先级高于第一优先级的频点也称为高优先级的频点,将优先级等于或低于第一优先级的频点也称为中低优先级的频点。换句话说,该实现方式中,对高优先级的频点始终在WUR链路上测量,而对于中低优先级的频点采用上述所描述的通过第一门限值来确定是否进行测量。
结合第一方面,在一种可能的实现方式中,小区测量的测量结果包括测量参考信号在第一时频资源中的测量结果,第一时频资源包括第一时域资源和第一频域资源,第一时域资源为时间区间上接收的测量参考信号所占用的时间单元,第一频域资源为测量参考信号的部署带宽。
其中,测量参考信号的部署带宽也等同于终端设备的接收带宽。
结合第一方面,在一种可能的实现方式中,小区测量的测量结果还包括在第二时频资源内接 收到的总功率,所述第二时频资源包括第二时域资源和第二频域资源,第二时域资源包括的时间单元的个数为第一时域资源包括时间单元的个数的K倍,第二频域资源为测量参考信号的部署带宽,K为正整数。
该实现方式中,终端设备在第二时频资源内接收到的总功率是指在第二时频资源内接收到的所有信号的总功率,即还包括了服务小区和非服务小区、相邻信道干扰、热噪声等接收功率。
结合第一方面,在一种可能的实现方式中,小区测量的测量结果还包括接收的测量参考信号的第一接收质量,第一接收质量为K*第一时频资源中的测量结果/第二时频资源内接收到的总功率。结合第一方面,在一种可能的实现方式中,小区测量的测量结果还包括目标误块率,目标误块率为终端设备接收到的唤醒信号校验不通过的比例。
结合第一方面,在一种可能的实现方式中,小区测量的测量结果还包括:第二接收质量,第二接收质量为基于第一映射表确定的与目标误块率具有映射关系的接收质量,第一映射表中包括测量参考信号的接收质量与误块率之间的映射关系。
结合第一方面,在一种可能的实现方式中,第一信息和第二信息由第一网络设备发送。
示例性地,该第一网络设备可以是服务小区的基站,或者核心网设备。
第二方面,本申请提供一种测量小区的方法,应用于第一网络设备,包括:发送第一信息,第一信息用于指示至少两个小区各自的测量参考信号对应的时间区间,其中,至少两个小区各自的测量参考信号对应的时间区间在时域上不重叠。
结合第二方面,在一种可能的实现方式中,所述至少两个小区中每个小区的测量参考信号包括用于指示其小区的小区标识的信息。
结合第二方面,在一种可能的实现方式中,所述方法还包括:发送第二信息,所述第二信息指示所述至少两个小区中每个小区的测量参考信号对应的时间区间与其小区标识信息之间的对应关系。
结合第二方面,在一种可能的实现方式中,所述第一信息中包括以下信息中的至少一项:用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的周期信息,用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的偏移值信息、用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的时域长度信息。
结合第二方面,在一种可能的实现方式中,至少两个小区对应M个频点,M为正整数。
结合第二方面,在一种可能的实现方式中,M个频点具有优先级。
结合第二方面,在一种可能的实现方式中,至少两个小区中第一小区的频点的优先级高于第二小区的频点的优先级,第一小区的测量参考信号的时间区间的周期小于第二小区的测量参考信号的时间区间的周期。
第三方面,本申请提供一种发送测量参考信号的方法,应用于第二网络设备,第二网络设备对应第三小区,第三小区为至少两个小区中的一个小区,包括:在第三小区对应的时间区间内发送测量参考信号,第三小区对应的时间区间与至少两个小区中除第三小区之外的任意一个小区对应的时间区间在时域上不重叠。
其中,第二网络设备是指第三小区的基站,即发送测量参考信号的基站。
结合第三方面,在一种可能的实现方式中,测量参考信号中包括用于指示第三小区的小区标识的信息。
第四方面,本申请提供一种测量小区的装置,应用于终端设备,包括:收发模块,用于接收第一信息,第一信息用于指示至少两个小区各自的测量参考信号对应的时间区间,其中,至少两个小区各自的测量参考信号对应的时间区间在时域上不重叠;处理模块,用于根据第一信息进行小区测量。
结合第四方面,在一种可能的实现方式中,至少两个小区中每个小区的测量参考信号包括用于指示其小区的小区标识的信息。
结合第四方面,在一种可能的实现方式中,所述收发模块还用于:接收第二信息,第二信息用于指示至少两个小区中每个小区的测量参考信号对应的时间区间与其小区标识信息之间的对应 关系。
结合第四方面,在一种可能的实现方式中,第一信息中包括以下信息中的至少一项:用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的周期信息,用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的偏移值信息、用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的时域长度信息。
结合第四方面,在一种可能的实现方式中,所述处理模块还用于:根据第一信息和第三信息进行小区测量,第三信息用于指示在对至少两个小区进行测量时每个小区对应的测量周期。
结合第四方面,在一种可能的实现方式中,至少两个小区对应M个频点,M为正整数。
结合第四方面,在一种可能的实现方式中,M个频点具有优先级。
结合第四方面,在一种可能的实现方式中,至少两个小区中第一小区的频点的优先级高于第二小区的频点的优先级,第一小区的测量参考信号的时间区间的周期小于第二小区的测量参考信号的时间区间的周期。
结合第四方面,在一种可能的实现方式中,所述处理模块还用于:在服务小区的测量参考信号的测量结果小于或等于第一门限值时,根据第一信息进行小区测量。
结合第四方面,在一种可能的实现方式中,所述处理模块还用于:对频点的优先级高于第一优先级的小区进行测量;以及,在服务小区进行测量的测量结果小于或等于第二门限值时,对频点的优先级等于或低于第一优先级的小区进行测量,第一优先级为所述服务小区的频点的优先级。
结合第四方面,在一种可能的实现方式中,小区测量的测量结果包括所述测量参考信号在第一时频资源中的测量结果,第一时频资源包括第一时域资源和第一频域资源,第一时域资源为时间区间上接收的测量参考信号所占用的时间单元,第一频域资源为测量参考信号的部署带宽。
结合第四方面,在一种可能的实现方式中,小区测量的测量结果还包括在第二时频资源内接收到的总功率,第二时频资源包括第二时域资源和第二频域资源,第二时域资源包括的时间单元的个数为第一时域资源包括时间单元的个数的K倍,第二频域资源为测量参考信号的部署带宽,K为正整数。
结合第四方面,在一种可能的实现方式中,小区测量的测量结果还包括接收的测量参考信号的第一接收质量,第一接收质量为K*第一时频资源中的测量结果/第二时频资源内接收到的总功率。
结合第四方面,在一种可能的实现方式中,小区测量的测量结果还包括目标误块率,目标误块率为终端设备接收到的唤醒信号校验不通过的比例。
结合第四方面,在一种可能的实现方式中,小区测量的测量结果还包括:第二接收质量,第二接收质量为基于第一映射表确定的与目标误块率具有映射关系的接收质量,第一映射表中包括测量参考信号的接收质量与误块率之间的映射关系。
结合第四方面,在一种可能的实现方式中,第一信息和第二信息由第一网络设备发送。
第五方面,本申请提供一种测量小区的装置,应用于第一网络设备,包括:收发模块,用于发送第一信息,第一信息用于指示至少两个小区各自的测量参考信号对应的时间区间,其中,至少两个小区各自的测量参考信号对应的时间区间在时域上不重叠。
结合第五方面,在一种可能的实现方式中,至少两个小区中每个小区的测量参考信号包括用于指示其小区的小区标识的信息。
结合第五方面,在一种可能的实现方式中,所述收发模块还用于:发送第二信息,第二信息指示至少两个小区中每个小区的测量参考信号对应的时间区间与其小区标识信息之间的对应关系。
结合第五方面,在一种可能的实现方式中,第一信息中包括以下信息中的至少一项:用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的周期信息,用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的偏移值信息、用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的时域长度信息。
结合第五方面,在一种可能的实现方式中,至少两个小区对应M个频点,M为正整数。
结合第五方面,在一种可能的实现方式中,M个频点具有优先级。
结合第五方面,在一种可能的实现方式中,至少两个小区中第一小区的频点的优先级高于所述第二小区的频点的优先级,第一小区的测量参考信号的时间区间的周期小于第二小区的测量参考信号的时间区间的周期。
第六方面,本申请提供一种发送测量参考信号的装置,应用于第二网络设备,第二网络设备对应第三小区,第三小区为至少两个小区中的一个小区,包括:收发模块,用于在第三小区对应的时间区间内发送测量参考信号,第三小区对应的时间区间与至少两个小区中除第三小区之外的任意一个小区对应的时间区间在时域上不重叠。
结合第六方面,在一种可能的实现方式中,测量参考信号中包括用于指示第三小区的小区标识的信息。
第七方面,本申请提供一种通信***,所述通信***包括如上述第四方面和第五方面中所述的装置,以及如上述第六方面中所述的通信装置。
第八方面,本申请提供一种通信装置,包括:存储器和处理器;所述存储器用于存储程序指令;所述处理器用于调用所述存储器中的程序指令执行如第一方面或第二方面或第三方面或其中任一种可能的实现方式中所述的方法。
第九方面,本申请提供一种计算机可读介质,所述计算机可读介质存储用于计算机执行的程序代码,该程序代码包括用于执行如第一方面或第二方面或第三方面或其中任一种可能的实现方式中所述的方法的指令。
第十方面,本申请提供一种计算机程序产品,所述计算机程序产品中包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机实现如第一方面或第二方面或第三方面或其中任一种可能的实现方式中所述的方法。
其中,第二方面至第十方面中任一种实现方式所带来的技术效果可参见上述第一方面的任一种可能的实现方法所带来的技术效果,不予赘述。
附图说明
图1为本申请实施例提供的通信***的示意图;
图2为本申请提供的一种OOK调制的示意图;
图3为本申请一个实施例提供的测量小区的方法的流程性示意图;
图4为本申请一个实施例提供的小区与时间窗对应的示意图;
图5为本申请另一个实施例提供的小区与时间窗对应的示意图;
图6为本申请提供的一种WUR-RSRP和WUR-RSSI的统计区域的示意图;
图7为本申请提供的一种量化的结构示意图;
图8为本申请一个实施例提供的通信装置的结构示意图;
图9为本申请另一个实施例提供的通信装置的结构示意图。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。例如,第一信息和第二信息是为了区分不同的信息,并不对其先后顺序进行限定。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例提供一种测量小区的方法与装置,其中,方法、装置是基于同一技术构思的,由于方法、装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以应用于各种通信***。例如,所应用的通信***可以为全球移动通讯(global system of mobile communication,GSM)***,码分多址(code dividion multiple access,CDMA)***、宽带码分多址(wideband radio service,GPRS)、长期演进(long term evolution,LTE)***,高级的长期演进(LTE advanced,LTE-A)、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)***、通用移动通信***(universal mobile telecommunication system,UMTS)、第五代移动通信***、以及未来的一些通信***(例如第六代移动通信***)等。
下面,结合附图,对本申请实施例进行详细描述。
首先,结合图1说明适用于本申请实施例的通信***。图1示出了适用于本申请实施例的适用的通信***的示意图,如图1所示,该通信***包括网络设备101和终端设备102。
其中,网络设备101可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved NodeB,eNB或eNodeB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base stationcontroller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,homeevolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)***中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and receptionpoint,TRP)等,还可以为5G,如,NR,***中的gNB,或,传输点(TRP或TP),5G***中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU)或分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成物理层的信息,或者,由物理层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
终端设备102可以是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。终端设备也可以称为用户设备(user equipment,UE)、接入终端(access terminal)、用户单元(user unit)、用户站(user station)、移动站(mobile station)、移动台(mobile)、远方站(remote station)、远程终端(remote terminal)、移动设备(mobile equipment)、用户终端(user terminal)、无线通信设备(wireless telecom equipment)、用户代理(user agent)、用户装备(user equipment)或用户装置。终端设备可以是无线局域网(wireless local Area networks,WLAN)中的站点(station,STA),可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信***(例如,第五代(fifth-generation,5G)通信网络)中的终端或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。其中,5G还可以被称为新空口(new radio,NR)。本申请一种可能的应用的场景中,终端设备也可以为经常工作在地面的终端设备,例如车载设备。在本申请中,为了便于叙述,部署在上述设备中的芯片,或者芯片也可以称为终端设备。
本申请中,网络设备和终端设备之间可以通过授权频谱进行通信,也可以通过非授权频谱进行通信,也可以同时通过授权频谱和非授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHZ)以下的频谱进行通信,也可以通过该6GHZ以上的频谱进行通信,还 可以同时使用6GHZ以下的频谱和6GHZ以上的频谱进行通信。本申请实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
可以理解的是,图1中示出的终端设备的数量仅是一种示例。
应注意,在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作***层,以及运行在操作***层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作***可以是任意一种或多种通过进程(process)实现业务处理的计算机操作***,例如,Linux操作***、Unix操作***、Android操作***、iOS操作***或windows操作***等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可。例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面的方法可以使用编程方式实现,并形成计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
对于图1所示的通信***中的终端设备,无论是在空闲(idle)态/非激活(inactive)态下执行接收寻呼,还是在连接态进行数据接收,都可以使用终端设备中的主接收机(或者称为主电路)完成这些功能。本实施例中,将终端设备使用主接收机接收信号也称为在主链路上工作,或者也称为主接收机处于工作状态。可以理解,主电路(或主接收机)仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定。下文为便于说明,统一描述为主电路。
终端设备使用主电路接收的信号可以被称为在主链路上传输,其中,主链路表征了终端设备和网络设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。可以理解,主链路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定。
此外,为了降低终端设备的功耗,终端设备还可以通过使用一个单独的低功耗小电路接收信号。该低功耗小电路可以使用一个结构简单的单独的小电路或芯片实现,其功耗较低。该低功耗小电路例如可以称为唤醒无线电(wake up radio,WUR),或者也可以称为唤醒电路,或者也可以称为低功耗电路,或者也可以称为唤醒接收机(wake up receiver,WUR),等等,关于其命名,本申请不予限制。在本申请中,为便于描述,将该低功耗小电路称为唤醒电路。可以理解,唤醒电路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定。下文为便于说明,统一描述为唤醒电路。
其中,该WUR模块用于接收网络设备发送的唤醒信号(wake up signal,WUS,也被称为低功耗唤醒信号low power wake up signal,LP-WUS),并根据WUS中承载的信息比特解调出唤醒指示信息,从而唤醒终端设备中关闭的(或处于睡眠状态的)主接收机或主接收模块。本实施例中,将终端设备使用WUR模块接收唤醒信号也称为在WUR链路上工作,或者也称为WUR模块处于工作状态。
其中,唤醒信号,可用于唤醒至少一个终端设备或者至少一组终端设备。作为示例,唤醒信号中包括唤醒信息,唤醒信息表示与唤醒终端设备相关的信息,唤醒信息例如为与寻呼相关的信息。唤醒信息例如可以用于终端设备确定是否要执行寻呼接收的流程,又如可以用于终端设备确定是否要发起随机接入。作为示例,唤醒信息包括:需要唤醒的一个或多个终端设备的信息(如UE ID)。其中,该一个或多个终端设备,也可以为终端设备组(UE group)的形式,相应地,唤醒信息可以包括该终端设备组的组标识。
具体地,当网络设备向终端设备发送WUS时,目前为了降低WUR模块的功耗,WUS信号通常采用开关键控(on off keying,OOK)或曼彻斯特OOK等一些简单的调制方法,相应地,终端设备中的WUR模块采用包络检波的方式接收WUS。
示例性地,在基于OOK进行调制时,会通过一个高电平来表示信息比特1,而通过一个低电平来表示信息比特0。或者反之,通过一个低电平来表示信息比特1,而通过一个高电平来表示信息比特0。在该方案中,高电平和低电平可以认为是用来表示不同信息比特的两个符号,本申请中,分别称为高电平符号和低电平符号(也统称为OOK符号)。
例如,假设唤醒信号为0011010100,那么在使用OOK进行调制时,若通过高电平表示信息比特1和低电平表示信息比特0,那么如图2所示,将分别对应低电平符号、低电平符号、高电平符号、高电平符号、低电平符号、高电平符号、低电平符号、高电平符号、低电平符号、低电平符号,其中,低电平符号表示信息比特0,高电平符号表示信息比特1。
应理解,对于包括WUR模块的终端设备而言,当在WUR链路上工作时,终端设备也可能出现需要对邻区的信号强度或质量进行测量的情况,以使得终端设备可以切换至信号质量更好的小区。但是相关技术中,仅有终端设备通过其包括的主接收机对邻区的信号强度或质量进行测量的方法,在这种情况下,若终端设备需要对邻区的信号强度或质量进行测量时,一种实施方案为:终端设备时不时打开主接收机,然后在主接收机上进行邻区测量。但是,这种实施方案无疑会使得终端设备的功耗较高。
鉴于此,本申请提出一种测量小区的方法与装置。本申请提供的测量小区的方法中,可以实现终端设备在WUR链路上工作时也能够进行小区测量,从而降低终设备的功耗。
需要说明的是,本申请中的测量“小区”指的是测量“邻区”。为便于描述,本申请将测量小区也称为测量邻区。
图3为本申请一个实施例提供的测量邻区的方法。如图3所示,该方法包括S301和S302。
S301,第一网络设备向终端设备发送第一信息,第一信息用于指示至少两个小区各自的测量参考信号对应的时间区间,其中,至少两个小区各自的测量参考信号对应的时间区间在时域上不重叠;相应地,终端设备接收第一信息。
本实施例中,第一网络设备是指当前服务于终端设备的服务小区的基站或者核心网设备。
本实施例中,至少两个小区具体是指至少两个邻区。
通常,终端设备中的主链路在进行小区测量时,其可以基于接收的同步信号块(synchronization signal block,SSB)中的辅同步信号执行小区测量。具体地,由于辅同步信号是一个复数序列,即辅同步信号既有幅度也有相位,因此不同小区的辅同步信号重叠时,终端设备可以通过同步信号的正交性从接收的信号提取出不同小区分别对应的辅同步信号,从而可以确定出对应每个小区的信号接收功率。或者换句话说,当终端设备在主链路上进行小区测量时,若终端设备在相同的时间和频率位置上接收到多个小区的辅同步信号,那么终端设备也能够分别提取出各个小区的辅同步信号,从而确定出各个小区的信号接收功率是多大。其中,有关主链路的概念可以参考本申请前述相关部分的描述,此次不再赘述。
但是,当终端设备在WUR链路上工作时,由于终端设备接收到的信号通常采用的是类似OOK或者曼彻斯特OOK等这种简单的调制方式以及终端设备对接收到的信号会采用包络检测的方式进行解调,这样将导致解调后的信号只保留了幅度信息而没有相位信息。在这种情况下,如果多个小区的用于终端设备进行测量的测量参考信号在重叠的时频资源上发送,那么会出现终端设备无法提取出各个小区的测量参考信号的问题,从而导致终端设备无法对小区进行准确的测量。在此说明的是,上述所述的在重叠的时频资源上发送,既包括在部分重叠的时频资源上发送,也包括在全部重叠的时频资源上发送。即,多个小区的用于终端设备进行测量的测量参考信号不论是在部分重叠的时频资源上发送,还是在全部重叠的时频资源上发送,都会出现端设备无法提取出各个小区的测量参考信号的问题,从而导致终端设备无法对小区进行准确的测量。
因此,为了使得终端设备也可以在WUR链路上进行小区测量,本申请中,让不同小区的测量参考信号在时间上相互正交,换言之,本申请中通过将不同小区的测量参考信号在不同的时间 发送的方式,来使得终端设备在WUR链路上工作时也能分别提取出不同小区的测量参考信号,从而基于不同小区中每个小区的测量参考信号完成对应小区的测量。
具体地,在实施时,网络设备向终端设备发送第一信息,该第一信息用于指示至少两个小区各自的测量参考信号对应的时间区间,且至少两个小区各自的测量参考信号对应的时间区间在时域上不重叠。本实施例中,将时间区间也称为时间窗(window)或者时机(occasion)或者时间位置(position)。
即,本实施例中,第一网络设备可以通过第一信息来配置每个小区的测量参考信号发送的时间窗,并且在配置时,任意两个不同的小区的测量参考信号发送的时间窗是不一样的。这样,终端设备就可以通过在不同的时间窗上接收不同小区的测量参考信号,以区分不同小区的测量参考信号,从而完成不同邻区的测量。
更具体地,在一种实施方案中,通过第一信息来配置每个小区的测量参考信号发送的时间窗时,第一信息中可以包括以下信息中的至少一项:用于指示每个小区的测量参考信号对应的时间区间的周期信息,用于指示每个小区的测量参考信号对应的时间区间的偏移值信息、用于指示每个小区的测量参考信号对应的时间区间的时域长度信息。也就是说,在该实施方案中,每个被配置的时间窗可以基于周期信息、偏移值信息和时域长度信息中的至少一项来配置。
应理解,对于至少两个小区,可能会包括与终端设备的服务小区的频点相同的小区(即同频小区)、也有可能包括与终端设备的服务小区的频点不同的小区(即异频小区)。本实施例中,将终端设备对同频小区的测量也称为同频测量,将终端设备对异频小区的测量也称为异频测量。
需要说明的是,本实施例中,在配置至少两个小区各自的测量参考信号对应的时间区间时,是基于不同的小区而非不同的频点考虑的,只要小区是不同的,那么配置的时间窗就是不同的。例如,即使N个小区中有两个小区的频点是相同的,此时为该频点相同的两个小区配置的时间窗也是不一样的。再换句话说,本实施中,一个时间窗仅会与一个小区对应,而不会出现一个时间窗同时与多个小区对应的情况。
示例性地,以同频测量为例,该示例以4个小区且该4个小区与服务小区的频点相同为例,如图4所示,可以在当前WUR的工作频段(WUR模块的接收带宽以及中心频点/WUR模块的部署带宽以及中心频点)下,除了唤醒信号所使用的时间区间外,还分别配置与4个小区一一对应的4个时间窗,其中,一个时间窗与一个小区对应,且不同的小区对应不同的时间窗。
示例性地,再以异频测量为例,该示例中假设需要测量的小区有9个,其中,4个小区的频点与终端设备的服务小区的频点相同(即4个同频小区)、2个小区的频点为异频频点1(与服务小同频点不同),3个小区的频点为异频频点2(与服务小同频点不同)。如图5所示,可以在当前WUR的工作频段下,除了唤醒信号所使用的时间区间外,还分别配置与9个小区对应的9个时间窗。具体地,对于同频的4个小区,配置4个时间窗,对于异频频点1对应的2个小区配置2个时间窗,对于异频频点2对应的3个小区配置3个时间窗。
可选地,由于终端设备在对不同的频点的小区进行测量时,需要先将射频前端与频点进行对准,导致在不同的频点进行切换时产生切换时延。因此,为了避免频繁切换(切换需要预留retuning时间),各个时间窗可以连续排布。
但是,在此说明的是,上述各个时间窗可以连续排布仅是一种实现方式,并不构成本申请的限制。示例性地,以图4为例,与服务小区的频点相同的4个小区对应的4个时间窗也可以不连续排布。又或者,以图5为例,与终端设备的服务小区的频点相同的4个同频小区对应的4个时间窗连续排布,异频频点1对应的2个时间窗不连续排布,异频频点2对应的3个时间窗不连续排布。
S302,终端设备根据第一信息进行小区测量。
具体地,本实施例中,终端设备根据第一信息进行小区测量,包括:至少两个小区中每个小区的基站(即发送测量参考信号的基站,本申请中也称为第二网络设备)在其小区对应的时间区间内发送测量参考信号,其中,每个小区对应的时间区间与其他小区对应的时间区间在时域上不重叠,相应地,终端设备接收每个小区的基站在其小区对应的时间区间内发送的测量参考信号, 并对每个小区的测量参考信号进行处理,得到至少两个小区中每个小区的测量结果。
应理解,终端设备在进行小区测量时,还需要确切的知道当前接收的测量参考信号是哪个小区的。
在第一种实施方案中,本实施例中的至少两个小区中每个小区的测量参考信号包括用于指示每个小区的小区标识的信息,这样,对于终端设备而言,在对每个时间区间上接收的测量参考信号进行处理时,就可以基于当前接收的测量参考信号中包括的用于指示每个小区的小区标识的信息确定出当前处理的测量参考信号对应的小区。
示例性地,假设至少两个小区中包括第三小区,则该第三小区的基站在对应的时间区间发送测量参考信号时,可以在该测量参考信号中包括用于指示第三小区的小区标识的信息,这样,终端设备可以基于接收的测量参考信号中用于指示第三小区的小区标识的信息确定出当前时间区间上所处理的测量参考信号是第三小区的。
在此说明的是,本申请对测量参考信号中如何包括用于指示每个小区的小区标识的信息的具体实现方式不做限制。
在一种实现方式中,参考信号中携带指示信息,指示信息指示小区标识。例如,参考信号的前一部分是一个用于测量的序列,后一部分携带若干比特的指示信息指示小区标识。此时,终端设备可以通过参考信号的前一部分进行测量,并根据后一部分的指示确定测量结果是哪个小区的。
在另一种实现方式中,参考信号所用的序列的生成参数中包括小区标识,即根据小区标识以及其他参数生成序列,并根据该序列生成参考信号。这种情况下,终端设备在对接收的后的信号进行处理时,需要进行盲检,例如使用不同小区标识对应的序列与接收信号做相关,有相关峰值的序列对应的小区标识可被认为是接收到的参考信号对应的小区标识。
在第二种实施方案中,若测量参考信号中不包括用于指示每个小区的小区标识的信息,那么第一网络设备还可以向终端设备发送第二信息,其中,该第二信息用于指示至少两个小区中每个小区的测量参考信号对应的时间区间与其小区标识信息之间的对应关系。相应地,对于终端设备而言,就可以基于第二信息,在对每个时间区间上接收的测量参考信号进行处理时,确定出当前时间区间对应的小区标识信息,从而确定出当前时间区间上的测量参考信号对应的具体的小区。
本实施例提供的测量小区的方法,由于终端设备是在不同的时间区间接收不同小区的测量参考信号的,因此,即使终端设备是在WUR链路上工作时,终端设备也可以区分出不同小区的测量参考信号,从而基于每个时间区间上接收的测量参考信号进行处理得到对应小区的测量结果,完成对应小区的测量。也就是说,该技术方案,可以实现终端设备在WUR链路上的小区测量,从而降低终端设备进行小区测量时的功耗。
作为一个可选的实施例,本申请中的至少两个小区可以对应M个频点,M为正整数。
进一步地,该M个频点还可以具有优先级。
在一种实施方案中,至少两个小区对应的M个频点的优先级可以复用主链路中配置的优先级。其中,主链路中配置的频点优先级包含在SIB2、SIB4以及SIB5中,SIB2中包含同频、异频、以及异***小区重选的公共信息,SIB4中包括异频小区重选的相关信息,SIB5中包括异***小区重选的相关信息。在上述SIB中,频点优先级通过参数cellReselectionPriority配置,其中,cellReselectionPriority是一个整数型变量,取值范围为0~7。
在另一种实施方案中,可以为WUR链路单独配置频点的优先级。例如,对于支持WUR链路的终端设备来说,应当尽可能多的工作在WUR链路上,以更大的降低终端设备的功耗。但是由于主链路在配置频点的优先级的时候,可能并不一定把部署了WUR链路的频点都设置为高优先级,这可能导致终端设备驻留到部署了WUR链路的频点的概率降低。因此可能还需要为WUR链路配置单独的频点的优先级。
应理解,存在至少两个小区对应的M个频点的优先级可能是不同的情况,应理解,对于不同优先级的频点,其测量要求通常是不同的,例如对于高优先级的频点,终端设备的测量应该比较频繁(即测量周期要求短),而对于低优先级的频点,则不需要特别频繁(即测量周期要求长)。
在一种实施方案中,终端设备可以根据第一信息和第三信息进行小区测量,其中,第三信息 用于指示在对至少两个小区进行测量时每个小区对应的测量周期。具体地,在该实施例中,终端设备在对每个小区进行测量时,可以基于该每个小区的测量周期,从该每个小区对应的多个时间区间中选择出一个时间区间并在该一个时间区间上进行测量。
在另一种实施方案中,可以通过协议规定不同优先级的测量周期,然后终端设备在对每个小区进行测量时,可以基于协议规定的不同优先级的测量周期,获得每个小区的测量周期,然后基于该测量周期再进行每个小区的测量。
在另一种实施方案中,对于不同优先级的频点配置的时间区间的周期就不一样,然后让终端设备基于配置的时间窗口进行测量。更具体地:在配置高优先级频点的小区对应的时间区间和低优先级的频点的小区对应的时间区间时,可以使得高优先级频点对应的时间区间的周期小于低优先级频点对应的时间区间的周期。例如,假设至少两个小区中包括第一小区和第二小区,并且第一小区的频点的优先级高于第二小区的频点的优先级,那么可以让第一小区的测量参考信号的时间区间的周期小于第二小区的测量参考信号的时间区间的周期。
作为一个可选的实施例,本实施例中,当终端设备通过图3所述的测量小区的方法在WUR链路上完成对小区的测量后,终端设备还可以通过接收服务小区的测量参考信号完成对服务小区的测量,进一步地,再在WUR链路上基于服务小区和小区的测量结果做对比,判断是否需要进行小区重选。可选地,在一种情况下,当终端设备确定要重选到一个新的目标小区时,在WUR链路上其完成重选后,可以持续在WUR链路上工作。或者,在另一种情况下,当终端设备在WUR链路上完成重选后,先切换到主链路接受新的目标小区的一些配置信息,再根据新的目标小区中的情况确定是否到WUR链路上工作。
应理解,若服务小区的信号质量或强度比较好,此时终端设备也可以不进行小区测量,而若服务小区的信号质量或强度比较弱,那么终端设备应进行小区测量,以切换到信号质量或强度更高的小区。
因此,为了减少终端设备的测量,作为一个可选的实施例,还可以在WUR链路上定义减少终端设备的测量的方法。具体地:
在一种实施方案中,可以配置第一门限值,当终端设备在WUR链路上对服务小区的测量参考信号测得的测量结果高于该第一门限值时(说明当前服务小区的信号质量或强度是比较好的),终端设备可以在WUR链路上不根据第一信息进行小区测量(不进行小区测量);否则,当终端设备需要在WUR链路上根据第一信息进行小区测量,即当终端设备在WUR链路上对服务小区的测量参考信号测得的测量结果小于或等于第一门限值时(说明当前服务小区的信号质量或强度可能是比较弱的),再进行小区测量。
在另一种实施方案中,还可以对不同优先级的频点分别处理。具体地,可以对于频点的优先级高于第一优先级的小区进行测量,以及,在服务小区进行测量的测量结果小于或等于第二门限值时,对频点的优先级等于或低于第一优先级的小区进行测量,第一优先级为服务小区的频点的优先级。该方案中,也将优先级高于第一优先级的频点也称为高优先级的频点,也将优先级等于或低于第一优先级的频点也称为中低优先级的频点。换句话说,该方案中,对高优先级的频点始终在WUR链路上测量,而对于中低优先级的频点采用上述所描述的通过第一门限值来确定是否进行测量。
可选地,上述所述的第一门限值或第二门限值,可以是单一测量结果的门限,也可以是多个测量结果的门限。但应注意,当是多个测量结果的门限时,需要各个测量结果指标均高于对应门限才认为是高于门限。
应理解,对于上述在WUR链路上定义的测量行为,由于在部分情况下减少了终端设备进行小区测量的次数,因此可以降低终端设备的功耗。
通常,对于终端设备而言,当其在主链路上接收到测量参考信号时可以确定出测量参考信号的频域信息,而当其在WUR链路上接收到测量参考信号时是无法获得测量参考信号的频域信息的,即终端设备无法知道WUR链路上的测量参考信号的带宽和WUR链路的部署带宽的关系,导致在WUR链路上,终端设备只能将整个WUR接收带宽作为测量的频率范围。鉴于此本申请中, 在WUR链路上进行小区测量时,还定义一种新的评价指标,其中,该评价指标可以是如下的一种或多种:
1)测量参考信号在第一时频资源中的测量结果
其中,第一时频资源包括第一时域资源和第一频域资源,第一时域资源为时间区间上接收的测量参考信号所占用的时间单元(即测量参考信号的时间范围),第一频域资源为测量参考信号的部署带宽(也可以认为是整个WUR接收带宽)。可以看出,该评价指标反映的是针对测量参考信号的测量结果,例如针对测量参考信号的接收功率。
本申请中,将该测量参考信号在第一时频资源中的测量结果也可以称为WUR-RSRP。
2)终端设备在第二时频资源内接收到的总功率。
其中,第二时频资源包括第二时域资源和第二频域资源,第二时域资源包括的时间单元的个数为第一时域资源包括时间单元的个数的K倍,第二频域资源为测量参考信号的部署带宽。具体地,终端设备在第二时频资源内接收到的总功率是指在第二时频资源内接收到的所有信号的总功率,即还包括了服务小区和非服务小区、相邻信道干扰、热噪声等接收功率。
本申请中,将终端设备在在第二时频资源内接收到的总功率也可以称为WUR-RSSI。
为便于理解,图6为本申请提供的一种WUR-RSRP和WUR-RSSI的统计区域的示意图。如图6所示,WUR-RSRP的统计区域和WUR-RSSI的统计区域中,所统计的频域资源均为整个WUR接收带宽,区别在于所统计的时域资源。
3)第一接收质量,第一接收质量为K*第一时频资源中的测量结果/第二时频资源内接收到的总功率。
本申请中,将第一接收质量也称为WUR-RSRQ。
在主链路上,由于接收信号强度指示(received signal strength indicator,RSSI)的测量频率范围和测量参考信号的带宽可以不一样,因此在主链路中的计算参考信号接收质量(reference signal recived quality,RSRQ)的公式中,通过N来做一个缩放。而在WUR链路上,由于无法区分不同的频率范围,因此,本申请中,通过在时域上做设计,将WUR-RSSI的时域测量范围配置为测量参考信号长度的K倍,此时计算WUR-RSRQ时,可以通过K来做缩放。
4)目标误块率,目标误块率为终端设备接收到的唤醒信号校验不通过的比例。
本申请中,将目标误块率也称为WUR-BLER。
由于WUR链路的接收机需要做到低成本低功耗,因此通常可能会采用量化阶次较低的量化器。例如,采用OOK调制时,WUR模块仅需要将接收信号判决为0或者1即可,此时,一个1-bit的量化器即可满足信号解调的需求。但是这种粗糙的量化器可能会导致WUR-RSRQ难以计算。例如,如图7所示,左侧是收到的信号,当采用高精度量化器(量化值的范围是0~9)量化时,信号可以分别被量化为5、2、7、3。而采用低精度量化器时,信号只能被量化为1、0、1、0。
应理解,当量化结果很粗糙时,即使接收的信号功率相差较大,但是在经过量化后取值也可能是相同的。这样,就可能存在计算出来的WUR-RSRQ恒等于1的问题,导致计算出来的WUR-RSRQ不准确的问题。因此,本申请中,还定义了目标误块,其中,目标误块率为终端设备接收到的唤醒信号校验不通过的比例,更具体地,是指终端设备在特定的时频资源内的接收到的唤醒信号校验不通过的比例。可以理解的是,本申请中的WUR-BLER可以反映出信道质量,WUR-BLER越低,说明信道质量越好。
5)第二接收质量,第二接收质量为基于第一映射表确定的与目标误块率具有映射关系的接收质量,第一映射表中包括测量参考信号的接收质量与误块率之间的映射关系。
该方案中,通过定义测量参考信号的接收质量与误块率之间的映射关系,来间接得到第二接收质量。
本实施例中,通过定义新的测量所需要的指标,可以使得终端设备在对每个时间区间上接收到的测量参考信号时,基于上述指标获得不同的测量结果,从而完成测量。
上文中结合图3至图7,详细描述了根据本申请实施例的测量小区的方法,下面将结合图8和图9详细描述根据本申请实施例的通信装置。
图8为本申请一个实施例提供的通信装置的结构性示意图。具体地,如图8所示,该装置包括:收发模块801和处理模块802。
在第一个实施例中,该通信装置可以应用于终端设备。该第一个实施例中,也将该通信装置称为测量小区的装置。
其中,收发模块801用于:接收第一信息,第一信息用于指示至少两个小区各自的测量参考信号对应的时间区间,其中,至少两个小区各自的测量参考信号对应的时间区间在时域上不重叠;处理模块802用于:根据第一信息进行小区测量。
在一种可能的实现方式中,至少两个小区中每个小区的测量参考信号包括用于指示其小区的小区标识的信息。
在一种可能的实现方式中,收发模块801还用于:接收第二信息,第二信息用于指示至少两个小区中每个小区的测量参考信号对应的时间区间与其小区标识信息之间的对应关系。
在一种可能的实现方式中,第一信息中包括以下信息中的至少一项:用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的周期信息,用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的偏移值信息、用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的时域长度信息。
在一种可能的实现方式中,处理模块802具体用于:根据第一信息和第三信息进行小区测量,第三信息用于指示在对至少两个小区进行测量时每个小区对应的测量周期。
在一种可能的实现方式中,至少两个小区对应M个频点,M为正整数。
在一种可能的实现方式中,M个频点具有优先级。
在一种可能的实现方式中,至少两个小区中第一小区的频点的优先级高于第二小区的频点的优先级,第一小区的测量参考信号的时间区间的周期小于第二小区的测量参考信号的时间区间的周期。
在一种可能的实现方式中,处理模块802具体用于:在服务小区的测量参考信号的测量结果小于或等于第一门限值时,根据第一信息进行小区测量。
在一种可能的实现方式中,处理模块802具体用于:对频点的优先级高于第一优先级的小区进行测量;以及,在服务小区进行测量的测量结果小于或等于第二门限值时,对频点的优先级等于或低于第一优先级的小区进行测量,第一优先级为服务小区的频点的优先级。
在一种可能的实现方式中,处理模块802具体用于:小区测量的测量结果包括测量参考信号在第一时频资源中的测量结果,第一时频资源包括第一时域资源和第一频域资源,第一时域资源为时间区间上接收的测量参考信号所占用的时间单元,第一频域资源为测量参考信号的部署带宽。
在一种可能的实现方式中,小区测量的测量结果还包括在第二时频资源内接收到的总功率,第二时频资源包括第二时域资源和第二频域资源,第二时域资源包括的时间单元的个数为第一时域资源包括时间单元的个数的K倍,第二频域资源为测量参考信号的部署带宽,K为正整数。
在一种可能的实现方式中,小区测量的测量结果还包括接收的测量参考信号的第一接收质量,第一接收质量为K*第一时频资源中的测量结果/第二时频资源内接收到的总功率。
在一种可能的实现方式中,小区测量的测量结果还包括目标误块率,目标误块率为终端设备接收到的唤醒信号校验不通过的比例。
在一种可能的实现方式中,小区测量的测量结果还包括:第二接收质量,第二接收质量为基于第一映射表确定的与目标误块率具有映射关系的接收质量,第一映射表中包括测量参考信号的接收质量与误块率之间的映射关系。
在一种可能的实现方式中,第一信息和第二信息由第一网络设备发送。
在第二个实施例中,该通信装置可以应用于第一网络设备。该第二个实施例中,也将该通信装置称为测量小区的装置。
在第二个实施例中,收发模块801用于:发送第一信息,第一信息用于指示至少两个小区各自的测量参考信号对应的时间区间,其中,至少两个小区各自的测量参考信号对应的时间区间在时域上不重叠。
在一种可能的实现方式中,至少两个小区中每个小区的测量参考信号包括用于指示其小区的小区标识的信息。
在一种可能的实现方式中,收发模块801还用于:发送第二信息,第二信息指示至少两个小区中每个小区的测量参考信号对应的时间区间与其小区标识信息之间的对应关系。
在一种可能的实现方式中,所述第一信息中包括以下信息中的至少一项:用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的周期信息,用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的偏移值信息、用于指示至少两个小区中每个小区的测量参考信号对应的时间区间的时域长度信息。
在一种可能的实现方式中,至少两个小区对应M个频点,M为正整数。
在一种可能的实现方式中,M个频点具有优先级。
在一种可能的实现方式中,至少两个小区中第一小区的频点的优先级高于第二小区的频点的优先级,第一小区的测量参考信号的时间区间的周期小于第二小区的测量参考信号的时间区间的周期。
在第三个实施例中,该通信装置可以应用于第二网络设备,该第二网络设备对应第三小区,第三小区为至少两个小区中的一个。该第三个实施例中,也将该通信装置称为发送测量参考信号的装置。
在第三个实施例中,收发模块801用于:在第三小区对应的时间区间内发送测量参考信号,第三小区对应的时间区间与至少两个小区中除第三小区之外的任意一个小区对应的时间区间在时域上不重叠。
在一种可能的实现方式中,测量参考信号中包括用于指示第三小区的小区标识的信息。
图9为本申请另一个实施例提供的通信装置的结构性示意图。图9所示的装置可以用于执行前述任意一个实施例所述的方法。
如图9所示,本实施例的装置900包括:存储器901、处理器902。可选地,装置900还包括通信接口903以及总线904。其中,存储器901、处理器902、通信接口903通过总线904实现彼此之间的通信连接。
存储器901可以是只读存储器(read only memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(random access memory,RAM)。存储器901可以存储程序,当存储器901中存储的程序被处理器902执行时,处理器902用于执行图3至图7所示的方法的各个步骤。
处理器902可以采用通用的中央处理器(central processing unit,CPU),微处理器,应用专用集成电路(application specific integrated circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现本申请图3至图8所示的方法。
处理器902还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请实施例图3至图7的方法的各个步骤可以通过处理器902中的硬件的集成逻辑电路或者软件形式的指令完成。
上述处理器902还可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器901,处理器902读取存储器901中的信息,结合其硬件完成本申请装置包括的单元所需执行的功能,例如,可以执行图3至图7所示实施例的各个步骤/功能。
通信接口903可以使用但不限于收发器一类的收发装置,来实现装置900与其他设备或通信网络之间的通信。
总线904可以包括在装置900各个部件(例如,存储器901、处理器902、通信接口903)之间传送信息的通路。
应理解,本申请实施例所示的装置900可以是电子设备,或者,也可以是配置于电子设备中的芯片。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设 备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种测量小区的方法,其特征在于,应用于终端设备,包括:
    接收第一信息,所述第一信息用于指示至少两个小区各自的测量参考信号对应的时间区间,其中,所述至少两个小区各自的测量参考信号对应的时间区间在时域上不重叠;
    根据所述第一信息进行小区测量。
  2. 根据权利要求1所述的方法,其特征在于,所述至少两个小区中每个小区的测量参考信号包括用于指示其小区的小区标识的信息。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第二信息,所述第二信息用于指示所述至少两个小区中每个小区的测量参考信号对应的时间区间与其小区标识信息之间的对应关系。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一信息中包括以下信息中的至少一项:用于指示所述至少两个小区中每个小区的测量参考信号对应的时间区间的周期信息,用于指示所述至少两个小区中每个小区的测量参考信号对应的时间区间的偏移值信息、用于指示所述至少两个小区中每个小区的测量参考信号对应的时间区间的时域长度信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述根据所述第一信息进行小区测量,包括:
    根据所述第一信息和第三信息进行小区测量,所述第三信息用于指示在对所述至少两个小区进行测量时每个小区对应的测量周期。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述至少两个小区对应M个频点,M为正整数。
  7. 根据权利要求6所述的方法,其特征在于,所述M个频点具有优先级。
  8. 根据权利要求7所述的方法,其特征在于,所述至少两个小区中第一小区的频点的优先级高于第二小区的频点的优先级,所述第一小区的测量参考信号的时间区间的周期小于所述第二小区的测量参考信号的时间区间的周期。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述根据所述第一信息进行小区测量,包括:
    在服务小区的测量参考信号的测量结果小于或等于第一门限值时,根据所述第一信息进行小区测量。
  10. 根据权利要求7或8所述的方法,其特征在于,所述根据所述第一信息进行小区测量,包括:
    对频点的优先级高于第一优先级的小区进行测量;以及,
    在服务小区进行测量的测量结果小于或等于第二门限值时,对频点的优先级等于或低于所述第一优先级的小区进行测量,所述第一优先级为所述服务小区的频点的优先级。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述小区测量的测量结果包括所述测量参考信号在第一时频资源中的测量结果,所述第一时频资源包括第一时域资源和第一频域资源,所述第一时域资源为所述时间区间上接收的测量参考信号所占用的时间单元,所述第一频域资源为所述测量参考信号的部署带宽。
  12. 根据权利要求11所述的方法,其特征在于,所述小区测量的测量结果还包括在第二时频资源内接收到的总功率,所述第二时频资源包括第二时域资源和第二频域资源,所述第二时域资源包括的时间单元的个数为所述第一时域资源包括时间单元的个数的K倍,所述第二频域资源为所述测量参考信号的部署带宽,K为正整数。
  13. 根据权利要求12所述的方法,其特征在于,所述小区测量的测量结果还包括接收的测量参考信号的第一接收质量,所述第一接收质量为K*所述第一时频资源中的测量结果/所述第二时频资源内接收到的总功率。
  14. 根据权利要求13所述的方法,其特征在于,所述小区测量的测量结果还包括目标误块率,所述目标误块率为所述终端设备接收到的唤醒信号校验不通过的比例。
  15. 根据权利要求14所述的方法,其特征在于,所述小区测量的测量结果还包括:第二接收质量,所述第二接收质量为基于第一映射表确定的与所述目标误块率具有映射关系的接收质量,所述第一映射表中包括测量参考信号的接收质量与误块率之间的映射关系。
  16. 根据权利要求6至14中任一项所述的方法,其特征在于,所述第一信息和所述第二信息由第一网络设备发送。
  17. 一种测量小区的方法,其特征在于,应用于第一网络设备,包括:
    发送第一信息,所述第一信息用于指示至少两个小区各自的测量参考信号对应的时间区间,其中,所述至少两个小区各自的测量参考信号对应的时间区间在时域上不重叠。
  18. 根据权利要求17所述的方法,其特征在于,所述至少两个小区中每个小区的测量参考信号包括用于指示其小区的小区标识的信息。
  19. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    发送第二信息,所述第二信息指示所述至少两个小区中每个小区的测量参考信号对应的时间区间与其小区标识信息之间的对应关系。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述第一信息中包括以下信息中的至少一项:用于指示所述至少两个小区中每个小区的测量参考信号对应的时间区间的周期信息,用于指示所述至少两个小区中每个小区的测量参考信号对应的时间区间的偏移值信息、用于指示所述至少两个小区中每个小区的测量参考信号对应的时间区间的时域长度信息。
  21. 根据权利要求17至20中任一项所述的方法,其特征在于,所述至少两个小区对应M个频点,M为正整数。
  22. 根据权利要求21所述的方法,其特征在于,所述M个频点具有优先级。
  23. 根据权利要求22所述的方法,其特征在于,所述至少两个小区中第一小区的测量参考信号的时间区间的周期小于第二小区的测量参考信号的时间区间的周期,所述第一小区的频点的优先级高于所述第二小区的频点的优先级。
  24. 一种发送测量参考信号的方法,其特征在于,应用于第二网络设备,所述第二网络设备对应第三小区,所述第三小区为至少两个小区中的一个小区,包括:
    在所述第三小区对应的时间区间内发送测量参考信号,所述第三小区对应的时间区间与所述至少两个小区中除所述第三小区之外的任意一个小区对应的时间区间在时域上不重叠。
  25. 根据权利要求24所述的方法,其特征在于,所述测量参考信号中包括用于指示所述第三小区的小区标识的信息。
  26. 一种测量小区的装置,应用于终端设备,其特征在于,包括用于执行权利要求1至16中任一项所述的方法的模块。
  27. 一种测量小区的装置,应用于第一网络设备,其特征在于,包括用于执行权利要求17至23中任一项所述的方法的模块。
  28. 一种发送测量参考信号的装置,应用于第二网络设备,所述第二网络设备对应第三小区,所述第三小区为至少两个小区中的一个小区,其特征在于,包括用于执行权利要求24或25中任一项所述的方法的模块。
  29. 一种通信装置,其特征在于,包括:存储器和处理器;
    所述存储器用于存储程序指令;
    所述处理器用于调用所述存储器中的程序指令执行如权利要求1至16或权利要求17至23或权利要求24或25中任一项所述的方法。
  30. 一种计算机可读介质,其特征在于,所述计算机可读介质存储用于计算机执行的程序代码,该程序代码包括用于执行如权利要求1至16或权利要求17至23或权利要求24或25中任一项所述的方法的指令。
PCT/CN2023/119001 2022-09-21 2023-09-15 测量小区的方法与装置 WO2024061113A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211153981.4 2022-09-21
CN202211153981 2022-09-21
CN202211340811.7 2022-10-29
CN202211340811.7A CN117793818A (zh) 2022-09-21 2022-10-29 测量小区的方法与装置

Publications (1)

Publication Number Publication Date
WO2024061113A1 true WO2024061113A1 (zh) 2024-03-28

Family

ID=90393313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119001 WO2024061113A1 (zh) 2022-09-21 2023-09-15 测量小区的方法与装置

Country Status (2)

Country Link
CN (1) CN117793818A (zh)
WO (1) WO2024061113A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015149349A1 (zh) * 2014-04-04 2015-10-08 华为技术有限公司 参考信号的检测方法、接收方法、用户设备和基站
CN108029027A (zh) * 2015-09-01 2018-05-11 华为技术有限公司 一种测量方法及装置
CN111406429A (zh) * 2018-11-02 2020-07-10 联发科技股份有限公司 用于无线网络中的无线电资源管理的节能型方法
WO2021196965A1 (zh) * 2020-03-31 2021-10-07 荣耀终端有限公司 一种测量间隙的配置方法及装置
CN114667780A (zh) * 2019-11-08 2022-06-24 华为技术有限公司 一种参考信号发送和接收的方法及装置
WO2022151382A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种通信方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015149349A1 (zh) * 2014-04-04 2015-10-08 华为技术有限公司 参考信号的检测方法、接收方法、用户设备和基站
CN108029027A (zh) * 2015-09-01 2018-05-11 华为技术有限公司 一种测量方法及装置
CN111406429A (zh) * 2018-11-02 2020-07-10 联发科技股份有限公司 用于无线网络中的无线电资源管理的节能型方法
CN114667780A (zh) * 2019-11-08 2022-06-24 华为技术有限公司 一种参考信号发送和接收的方法及装置
WO2021196965A1 (zh) * 2020-03-31 2021-10-07 荣耀终端有限公司 一种测量间隙的配置方法及装置
WO2022151382A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN117793818A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
US11626947B2 (en) Communication method and communications device
WO2020135400A1 (zh) 通信方法和通信装置
WO2021031921A1 (zh) 用于测量的方法与装置
US11503543B2 (en) Signal transmission method and device
US11510159B2 (en) Signal transmission method, network device, and terminal device
WO2019237839A1 (zh) 测量小区的方法及终端设备
WO2020063308A1 (zh) 一种无线通信网络中的指示波束信息的方法和设备
WO2020135383A1 (zh) 通信方法和通信装置
WO2020000269A1 (zh) 传输信号的方法、网络设备和终端设备
WO2019029333A1 (zh) 一种资源调度方法及装置
WO2021204089A1 (zh) 一种激活小区的方法和装置
WO2019238007A1 (zh) 检测波束的方法和装置
WO2021196979A1 (zh) 一种rrm测量方法及设备
WO2020199220A1 (zh) 接收信息、发送信息的方法和设备
US9781675B2 (en) Detecting narrow band signals in wide-band interference
US20210227419A1 (en) Communications method and apparatus
CN114902592A (zh) 传输初始接入配置信息的方法和装置
CN113993142A (zh) 通信方法及装置
WO2024061113A1 (zh) 测量小区的方法与装置
EP4280715A1 (en) Method for determining transmission position, communication device and storage medium
WO2019153358A1 (zh) 一种信道传输方法及装置、计算机存储介质
WO2020107954A1 (zh) 一种测量方法及装置
WO2021031004A1 (zh) 载波测量方法和装置
CN114071667A (zh) 通信的方法、通信装置及***
WO2024051706A1 (zh) 通信方法与通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867402

Country of ref document: EP

Kind code of ref document: A1