WO2015147047A1 - 多能性幹細胞培養用培地 - Google Patents

多能性幹細胞培養用培地 Download PDF

Info

Publication number
WO2015147047A1
WO2015147047A1 PCT/JP2015/059104 JP2015059104W WO2015147047A1 WO 2015147047 A1 WO2015147047 A1 WO 2015147047A1 JP 2015059104 W JP2015059104 W JP 2015059104W WO 2015147047 A1 WO2015147047 A1 WO 2015147047A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
inhibitor
cells
pluripotent stem
cell
Prior art date
Application number
PCT/JP2015/059104
Other languages
English (en)
French (fr)
Inventor
光一 長谷川
晋也 安田
ホセイン シャーサバラニ
則子 吉田
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to US15/128,747 priority Critical patent/US11015169B2/en
Priority to JP2016510419A priority patent/JP6502323B2/ja
Priority to EP15768143.8A priority patent/EP3124602B1/en
Publication of WO2015147047A1 publication Critical patent/WO2015147047A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/05Inorganic components
    • C12N2500/10Metals; Metal chelators
    • C12N2500/20Transition metals
    • C12N2500/24Iron; Fe chelators; Transferrin
    • C12N2500/25Insulin-transferrin; Insulin-transferrin-selenium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/30Organic components
    • C12N2500/38Vitamins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/04Immunosuppressors, e.g. cyclosporin, tacrolimus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/608Lin28
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/73Hydrolases (EC 3.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1307Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from adult fibroblasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the present invention relates to a pluripotent stem cell culture medium that can maintain the undifferentiated state of pluripotent stem cells without containing serum or differentiation-suppressing proteins.
  • Pluripotent stem cells such as iPS cells and ES cells are expected to be used for cell transplantation therapy, drug discovery, etc. and as a research tool for diseases because of their pluripotency and proliferation ability.
  • pluripotent stem cells can self-replicate while maintaining an undifferentiated state almost indefinitely in the presence of serum or factors appropriate for the cells.
  • differentiation-suppressing proteins such as bFGF and TGF ⁇ have been reported as factors suitable for human pluripotent stem cells.
  • these differentiation-suppressing proteins are generally very expensive and the amount required to maintain an undifferentiated state is very large, so the use of pluripotent stem cells is greatly hindered from the cost aspect. .
  • pluripotent stem cells with uniform properties are required, so it is desirable not to use proteins that are likely to have different properties from lot to lot as medium components.
  • An object of the present invention is to provide a medium that has fewer protein components and can maintain the undifferentiated state of pluripotent stem cells. It is another object of the present invention to provide a medium that can be prepared at a lower cost. Furthermore, it aims at providing the culture medium which can proliferate a pluripotent stem cell more efficiently.
  • the present inventors have found that the above problems can be solved by using a combination of a GSK3 ⁇ inhibitor and a DYRK inhibitor as medium components. It was also found that pluripotent stem cells can be proliferated more efficiently by further using NFAT inhibitors in combination. As a result of further studies based on these findings, the present invention has been completed.
  • Item 1 A culture medium for pluripotent stem cell culture containing (A) GSK3 ⁇ inhibitor and (B) DYRK inhibitor.
  • Item 2. Item 4. The medium according to Item 1, which does not contain serum.
  • Item 3. Item 3.
  • Item 4. Item 4. The medium according to any one of Items 1 to 3, wherein the protein component contained is only insulin and transferrin.
  • Item 5. The medium according to any one of Items 1 to 4, wherein the component (A) is at least one selected from the group consisting of 1-AzaKenpaullone, Kenpaullone, and CHIR99021.
  • Item 6. Item 6.
  • Item 7. Item 7. The medium according to any one of Items 1 to 6, wherein the component (B) is at least one selected from the group consisting of ID-8, Harmine, and Indirubin analogues.
  • Item 8. Item 8. The medium according to any one of Items 1 to 7, wherein the component (B) is ID-8.
  • Item 9. The medium according to any one of Items 1 to 8, further comprising (C) an NFAT inhibitor.
  • Item 11. Item 11. The medium according to any one of Items 1 to 10, which is used for culture in the absence of feeder cells.
  • Item 12. The medium according to any one of Items 1 to 11, wherein the pluripotent stem cell is a primate-derived cell. Item 13. Item 13. A method for culturing pluripotent stem cells using the medium according to any one of Items 1 to 12. Item 14. A pluripotent stem cell differentiation inhibitor containing (A) a GSK3 ⁇ inhibitor and (B) a DYRK inhibitor.
  • this culture medium can be prepared very cheaply compared with the existing culture medium which contains serum and a differentiation inhibitory protein as an essential component.
  • proteins are likely to have different properties from lot to lot, according to the present invention, these protein components can be further reduced, and therefore a medium with less variation in performance between lots can be provided. Can do. Therefore, it is suitable for use in cell transplantation and the like that require pluripotent stem cells with uniform properties.
  • This medium can proliferate pluripotent stem cells with the same or higher efficiency as the existing medium. Therefore, a certain number of pluripotent stem cells can be prepared at a lower cost.
  • This medium can maintain an undifferentiated state as much as the presence of feeder cells and can proliferate cells even in the absence of feeder cells. Moreover, it can be used not only for adhesion culture but also for suspension culture.
  • Example 1 The cell image observed in Example 1 is shown.
  • the cell image observed in Example 1 is shown.
  • A Cell images observed in Example 2 are shown.
  • B The number of cell doublings measured in Example 2 is shown.
  • A The cell image observed when the culture medium 1 of Example 3 was used is shown.
  • B Cell images observed when using the medium 2 of Example 3.
  • A The results of immunostaining in Example 4 are shown.
  • B shows the results of flow cytometry in Example 4.
  • C shows the results of karyotype analysis of Example 4.
  • A The average division ratio of each passage measured in Example 5 is shown.
  • B shows the results of flow cytometry in Example 5.
  • C shows the results of quantitative PCR of Example 6.
  • Example 7 The cell image observed in Example 7 are shown.
  • B The cell image observed in the examination experiment of the cell peeling solution of Example 6 is shown.
  • A Cell images observed in Example 7 are shown.
  • B The number of cell doublings measured in Example 7 is shown.
  • C shows the results of quantitative PCR of Example 7.
  • A The iPS cell preparation scheme of Example 8 is shown.
  • B ALP stained image observed in Example 8.
  • C The iPS production efficiency measured in Example 8 is shown.
  • D The cell image of the iPS cell produced in Example 8 is shown.
  • E shows the result of immunostaining in Example 8.
  • (A) GSK3 ⁇ inhibitor hereinafter also referred to as “(A) component” and (B) DYRK inhibitor (hereinafter also referred to as “(B) component”).
  • Pluripotent stem cell culture medium hereinafter sometimes abbreviated as “medium of the present invention” and a pluripotent stem cell culture method using the same (hereinafter abbreviated as “culture method of the present invention”) ).
  • GSK3 (beta) inhibitor will not be specifically limited if it is a compound which has the effect
  • “inhibition” includes not only inhibiting the function of GSK3 ⁇ as an enzyme but also decreasing the expression level of GSK3 ⁇ in the cell, but preferably inhibiting the function of GSK3 ⁇ as an enzyme. Means.
  • GSK3 ⁇ inhibitors include 1-AzaKenpaullone, Kenpaullone, CHIR99021, BIO, CID 5706819, 9-Cyanopaullone, ML320, AR A014418, SB216763, SB415286, A 1070722, Lithium chloride, Staurosporine, GSK-3 ⁇ Inhibitor VI , GSK-3 ⁇ Inhibitor X, GSK-3 ⁇ Inhibitor XV, Aloisine A, MeBIO, Alsterpaullone, 5-Iodo-Indirubin-3'-monoxime, 10Z-Hymenialdisine, TWS 119 ditrifluoroacetate, Indirubin-5-sulfonic acid sodium salt, Ro- 31-8220, Manzamine A, IM-12, CESI, 3F8, TC-G 24, TCS 2002, L803 and the like.
  • GSK3 ⁇ inhibitors that are nM or less, preferably 50 nM or less, more preferably 30 nM or less, even more preferably 25 nM or less, and even more preferably 5 to 25 nM.
  • an IC50 for an enzyme other than GSK3 ⁇ is 5 nM or more, preferably 10 nM or more, more preferably 25 nM or more
  • the GSK3 ⁇ -specific inhibitor is preferably 50 nM or more, more preferably 100 nM or more, and even more preferably 1 ⁇ M or more.
  • the IC50 for each enzyme is publicly known information.
  • GSK3 ⁇ inhibitor commercially available websites (http://www.selleckchem.com/GSK-3.html, http://www.scbt.com/ chemicals-table-gsk-3_beta_inhibitors.html etc.)
  • 1-AzaKenpaullone, Kenpaullone, CHIR99021, BIO, etc. preferably 1-AzaKenpaullone, Kenpaullone, CHIR99021, etc., more preferably 1-AzaKenpaullone, Kenpaullone, etc., more preferably 1-AzaKenpaullone, etc.
  • These may be commercially available or may be synthesized according to known information.
  • the component (A) may be used alone or in combination of two or more.
  • the DYRK inhibitor is not particularly limited as long as it is a compound having an action of inhibiting DYRK (dual-specificity tyrosine-phosphorylation-regulated kinase) or a compound known to be used for the purpose of inhibiting DYRK.
  • “inhibition” includes not only inhibiting the function of DYRK as an enzyme but also decreasing the expression level of DYRK in cells, but preferably inhibiting the function of DYRK as an enzyme.
  • DYRK includes multiple enzymes, for example, five enzymes with similar kinase domains DYRK1A, DYRK1B, DYRK2, DYRK3, and DYRK4 in humans.
  • the DYRK inhibitor is preferably an inhibitor of DYRK1A and / or DYRK1B, more preferably a specific inhibitor of DYRK1A and / or DYRK1B.
  • DYRK inhibitors include ID-8, Harmine, Indirubin analog, TG003, INDY, L41, PROINDY, SB 216763, Chronogen quinolinus, Leucettine, Cyclacell limited pyrimidines, Quinazoline, Compound 35, 7BIO, 6BI0, Indirubin Az191, ML315, ML320-Compound 35, 36d, SEL141, and the like.
  • ID-8, Harmine, Indirubine analog, INDY, etc. more preferably ID, more preferably from the viewpoint of being able to maintain an undifferentiated state more stably or more efficiently proliferating cells.
  • ID-8, Harmine and the like more preferably ID-8 and the like.
  • the component (B) may be used alone or in combination of two or more.
  • the undifferentiated state of pluripotent stem cells can be maintained over a long period of time by using a combination of component (A) and component (B) without using serum or differentiation-suppressing proteins. Can do.
  • component (A) component and component (B) component exhibits a differentiation inhibitory effect. Therefore, the combination of the component (A) and the component (B) can be used as a differentiation inhibitor for pluripotent stem cells.
  • the medium of the present invention contains a combination of component (A) and component (B).
  • the concentration of the component (A) in the medium varies depending on the type of the component (A), but is, for example, 10 to 3000 nM, preferably 50 to 2000 nM, more preferably 200 to 1500 nM, and further preferably 350 to 1000 nM. More preferably, it can be 450 to 850 nM. More specifically, for example, the following ranges are exemplified as the concentration of 1-AzaKenpaullone, Kenpaullone, or CHIR99021 in the medium.
  • 1-AzaKenpaullone for example 10 to 3000 nM, preferably 100 to 2500 nM, more preferably 250 to 2000 nM, even more preferably 400 to 1500 nM, even more preferably 500 to 1000 nM; Kenpaullone: for example 10 to 3000 nM, preferably 50 to 2000 nM, more preferably 100 to 1500 nM, even more preferably 200 to 1000 nM, even more preferably 250 to 750 nM; CHIR99021: For example, 10 to 3000 nM, preferably 50 to 2000 nM, more preferably 100 to 1500 nM, still more preferably 200 to 1000 nM, still more preferably 250 to 750 nM.
  • the concentration of the component (B) in the medium varies depending on the type of the component (B), but can be, for example, 10 to 4000 nM, preferably 200 to 3000 nM. More specifically, for example, the following ranges are exemplified as concentrations of ID-8, Harmine, and Indirubin analogs in the medium.
  • ID-8 for example, 10 to 3000 nM, preferably 50 to 2000 nM, more preferably 100 to 1500 nM, still more preferably 200 to 1000 nM, still more preferably 250 to 750 nM; Harmine: for example 300 to 6000 nM, preferably 600 to 5000 nM, more preferably 1000 to 3000 nM, still more preferably 1500 to 2500 nM; Indirubin analogues: for example 10-3000 nM, preferably 50-2000 nM, more preferably 100-1500 nM, even more preferably 200-1000 nM, even more preferably 250-750 nM.
  • the medium of the present invention is usually prepared by mixing a basic medium with the component (A) and the component (B).
  • the basic medium is not particularly limited as long as it can be used as a basic medium used for culturing pluripotent stem cells, and is usually a standard inorganic salt such as magnesium, calcium, potassium, zinc, iron, buffer, glucose, Contains vitamins and essential amino acids.
  • a standard inorganic salt such as magnesium, calcium, potassium, zinc, iron, buffer, glucose, Contains vitamins and essential amino acids.
  • DMEM / F12 is preferable.
  • Non-essential amino acids include, for example, L-glutamine, L-alanine, L-asparagine, L-aspartic acid, L-glutamic acid, glycine, L-proline, L-serine, and preferably L-glutamine.
  • antioxidants include ascorbic acid, 2-mercaptoethanol, dithiothreitol and the like, preferably ascorbic acid and the like.
  • the medium of the present invention further contains (C) an NFAT inhibitor (hereinafter sometimes abbreviated as “component (C)”). It is preferable.
  • the NFAT inhibitor is not particularly limited as long as it is a compound having an action of inhibiting NFAT (Nuclear factor of activated T-cells) or calcineurin, or a compound known to be used for the purpose of inhibiting NFAT or calcineurin.
  • “inhibition” includes not only inhibiting the function of NFAT or calcineurin as an enzyme, but also reducing the expression level of NFAT or calcineurin in cells, but preferably as an enzyme of NFAT or calcineurin. It means inhibiting the function of.
  • NFAT inhibitors include Tacrolimus (FK506), Cyclosporin A, AM404, UR-1505, CN585, Sirolimus (Rapamycin), Endothall, FMPP, Tyrphostins, VIVIT 480402, INCA (1, 2, 6), Lie120 Roc-1, NCI3, Thiopental, ST1959 (DL111-IT), Quercetin, Tropisetron, Trifluoperazine, PD144795, Norcantharidin, Ascomycin (FKBP12) and the like.
  • Tacrolimus and the like can be preferably mentioned from the viewpoint that the undifferentiated state can be more stably maintained or the cells can be more efficiently proliferated.
  • These may be commercially available or may be synthesized according to known information.
  • the component (C) may be used alone or in combination of two or more.
  • the concentration of the component (C) in the medium varies depending on the type of the component (C), but is, for example, 10 to 3000 ⁇ M, preferably 50 to 2000 ⁇ M, more preferably 100 to 1500 ⁇ M, and more preferably 200 to 1000 ⁇ M. More preferably, it can be 250 to 750 pM.
  • the culture medium of the present invention may contain a differentiation-suppressing protein, serum, or serum substitute component as necessary.
  • the differentiation inhibitor protein is not particularly limited as long as it is a factor having an action of maintaining the undifferentiated state of pluripotent stem cells or a factor known to be used for the purpose of maintaining the undifferentiated state of pluripotent stem cells.
  • Examples include bFGF, TGF ⁇ superfamily (activin, Nodal, etc.), LIF, Wnt and the like.
  • concentration of the differentiation inhibiting protein a known concentration employed in the culture of pluripotent stem cells can be employed. Differentiation-inhibiting proteins may be used alone or in combination of two or more.
  • the differentiation-inhibiting proteins are very expensive and have a large variation in performance between lots compared to compounds.
  • the medium of the present invention contains a combination of the component (A) and the component (B), the pluripotent stem cells can be efficiently differentiated without using these differentiation-suppressing proteins. Can be maintained. Therefore, from the viewpoint that the medium preparation cost can be further reduced, or that the variation in performance among the lots of the medium can be further reduced, the culture medium of the present invention preferably does not contain the differentiation inhibiting protein or is added with the differentiation inhibiting protein. Without culturing.
  • Serum is not particularly limited as long as it can be used for culturing pluripotent stem cells.
  • An example is fetal bovine serum (FBS).
  • FBS fetal bovine serum
  • As the serum concentration a known concentration employed in the culture of pluripotent stem cells can be employed.
  • One type of serum may be used alone, or two or more types of combinations may be used.
  • the medium of the present invention can efficiently maintain the undifferentiated state of pluripotent stem cells and further proliferate cells without using serum. Therefore, from the viewpoint that the medium preparation cost can be further reduced or that the variation in performance among the lots of the medium can be further reduced, the culture medium of the present invention preferably does not contain serum or is cultured without adding serum. Used for.
  • Serum replacement component means a component that can support proliferation of pluripotent stem cells by adding it to a serum-free medium.
  • albumin eg, bovine serum albumin
  • albumin substitute additive eg, bovine pituitary extract, rice hydrolyzate, fetal bovine albumin, egg albumin, human serum albumin, bovine embryo extract, AlbuMAXbuI (Registered trademark)
  • transferrin insulin and the like.
  • concentration of the serum replacement component a known concentration employed in the culture of pluripotent stem cells can be employed. Serum replacement components may be used alone or in combination of two or more.
  • the medium of the present invention can efficiently maintain the undifferentiated state of pluripotent stem cells and proliferate cells even if the serum replacement component (or protein component) is only insulin and transferrin. it can. Therefore, from the viewpoint that the variation in performance between lots of the medium can be further reduced, the serum substitute component (or protein component) contained in the medium of the present invention (or added during culture) is preferably only insulin and transferrin. It is.
  • the medium of the present invention may contain known components that can be added to the medium for pluripotent stem cells.
  • these components selenium, ethanolamine and the like, preferably selenium, and the like are mentioned from the viewpoint that the cells can be more efficiently grown.
  • concentrations of these components known concentrations employed in the culture of pluripotent stem cells can be employed.
  • the medium of the present invention can be prepared in a solution form or a dry form, respectively.
  • a solution form it may be provided as a concentrated composition (for example, 1 ⁇ to 1000 ⁇ ) and may be appropriately diluted upon use.
  • the type of liquid used to dilute or dissolve the composition or medium in solution form or dry form includes water, aqueous buffer solution, physiological saline solution and the like, and can be easily selected as necessary.
  • the pH is usually adjusted to 7.0 to 8.2, preferably 7.1 to 7.8, more preferably 7.2 to 7.5 with a pH adjusting agent such as bicarbonate. It is adjusted to 310-340mOsm with salts such as sodium.
  • the medium of the present invention is preferably sterilized to prevent contamination.
  • Sterilization methods include ultraviolet irradiation, heat sterilization, radiation irradiation, filtration, and the like.
  • the medium of the present invention can be used as it is or after adding the above-described components as necessary to culture pluripotent stem cells (for example, maintenance of pluripotent stem cells, passage of pluripotent stem cells, induced pluripotent stem cells (iPS cells) and the like.
  • pluripotent stem cells for example, maintenance of pluripotent stem cells, passage of pluripotent stem cells, induced pluripotent stem cells (iPS cells) and the like.
  • the pluripotent stem cell to be cultured is not particularly limited as long as it has the ability to differentiate into any of the three germ layers (endoderm, mesoderm, and ectoderm).
  • the organism of origin is not particularly limited. For example, humans, monkeys, mice, rats, hamsters, rabbits, guinea pigs, cattle, pigs, dogs, horses, cats, goats, sheep, and other mammals, birds, reptiles and other various animals. Derived ones can be used. Of these, those derived from mammals, more preferably those derived from primates, more preferably those derived from humans, monkeys, etc., and still more preferably those derived from humans.
  • Specific examples of pluripotent stem cells include iPS cells, ES cells, EG cells, EC cells and the like. As pluripotent stem cells, various commercially available or distributed ones may be used, or those prepared according to a known method may be used.
  • pluripotent stem cells When pluripotent stem cells are cultured using the medium of the present invention, they can be cultured according to a conventional method.
  • the typical subculture operations and culture conditions are as follows. First, the grown colonies of pluripotent stem cells are rinsed once or twice with PBS, and then a sufficient amount of cell detachment solution is added so as to cover the cell layer and left for several minutes. Add basal medium containing PBS or serum and separate the cell mass by pipetting. From this cell suspension, cells are usually precipitated by centrifugation. After removing the supernatant, the precipitated cells are resuspended in a medium, and a part thereof is seeded on a dish or a coated dish in which feeder cells are spread and cultured at 37 ° C. under 5% CO 2 .
  • colonies of induced pluripotent stem cells can be obtained much more efficiently than when a conventional culture medium for pluripotent stem cells is used.
  • “used to produce induced pluripotent stem cells” means that a reprogramming factor is introduced into a somatic cell and then used as a culture medium for the cell.
  • a solution containing EDTA for example, a solution containing EDTA, a solution containing dispase as an enzyme, or the like can be used. From the viewpoint of higher survival rate of pluripotent stem cells, a solution containing EDTA is preferable. In addition, from the viewpoint that passage can be simplified, a solution containing dispase as an enzyme is preferable.
  • the concentration of EDTA and dispase in the cell detachment solution can be determined according to a known concentration employed in cell culture.
  • Examples of the coating component of the coding dish include vitronectin and laminin. Among these, Preferably, vitronectin can be mentioned.
  • the medium of the present invention is excellent in that it can maintain the undifferentiated state of pluripotent stem cells, whether it is adhesion culture or suspension culture.
  • adhesion culture an undifferentiated state can be maintained as stably as in the presence of feeder cells even in the absence of feeder cells. Therefore, culture in the absence of feeder cells is preferable from the viewpoint of easier culturing.
  • Example 1 Subculture of pluripotent stem cells using medium containing GSK3 ⁇ inhibitor and DYRK inhibitor ⁇ Preparation of basic medium> Powder DMEM / F-12 medium (D0547 from Sigama-Aldrich) diluted twice with water 25 mL, 6% sodium bicarbonate solution 1.4 mL, 1M HEPES solution 0.75 mL, 0.23M ascorbic acid solution 0.045 mL, ITS (Insulin-Transferrin-Selenium: 1 mg / ml-0.55 mg / ml-0.7 ⁇ g / ml) Solution (ITS-G 41400-045 manufactured by Life Technologies) 0.9 mL and 16.905 mL of water are mixed, and 45 mL of basic medium (340 mOsm, pH 7.2-7.5) was obtained.
  • Powder DMEM / F-12 medium D0547 from Sigama-Aldrich
  • ITS Insulin-Transferrin-Selenium: 1 mg
  • GSK3 ⁇ inhibitor (1-AzaKenpaullone (Sigma-Aldrich A3734), Kenpaullone (Bio Vision 1094-1), CHIR99021 (Axon Medchem 1386), or BIO (Sigam-Aldrich B1686)
  • ID-8 I1786 from Sigma-Aldrich
  • Harmine 10010324 from Cayman Chemical
  • Indirubin analog 716 (6i) (American Chemical Society, Lett, 2014, 4, 22-26)
  • INDY Merck Millipore 405273
  • L41 AdipoGen MR-C0023
  • TG003 R & D Systems 4336
  • the final concentrations in the medium are 750 nM for 1-AzaKenpaullone, 500 nM for Kenpaullone, 500 nM for CHIR99021, 1 ⁇ M for Bio, 500 nM for ID-8, 2 ⁇ M for Harmine Indirubin analog 716 was 500 nM, INDY was 1 ⁇ M, L41 was 500 nM, and TG003 was 500 nM.
  • the obtained medium (hereinafter sometimes simply referred to as “medium”) was used in this example and the following examples.
  • ⁇ Subculture of pluripotent stem cells Human ES cell line KhES-1 (provided by RIKEN BioResource Center) was subcultured in the above medium. Specifically, it was performed as follows. The following culture was performed on a dish (Vitronectin-N coated dish) that had been coated overnight with 1 ⁇ g of Vitoronectin-N (Life Technologies A14700) per 1 cm 2 of the culture dish in the absence of feeder cells. went.
  • General human ES cell culture medium (20% knockout Serum Replacement (Life Technology 10828-028), 4ng / ml FGF2 (Peprotech 100-18B) / DMEM / F-12 medium (Life Technology 11330-
  • Dispace solution (10 mg / ml Dispase (Life Technologies 17105041) / DMEM / F-12) was added so as to cover the cells and left for 5 minutes.
  • the above general medium for human ES cells was added, and the cell mass was separated by pipetting. The obtained cell suspension was centrifuged (500 cfg, 1 minute) to precipitate the cells.
  • the precipitated cells were resuspended in the above medium, and about 1/3 of this was seeded on a Vitrononectin-N coated dish, and cultured in the above medium at 37 ° C. under 5% CO 2 .
  • This passage operation was designated as “P1”.
  • the medium was changed every 1 or 2 days, and subcultured (P2, P3, P4,%) As described above every 3 or 4 days.
  • Fig. 1 shows a cell image (top row) when subcultured using a medium containing a DYRK inhibitor (ID-8), and a GSK3 ⁇ inhibitor (1-AzaKenpaullone, Kenpaullone, CHIR99021, or Bio) and a DYRK inhibitor Cell images (2nd to bottom) from subculture using a medium containing (ID-8), and subculture using a medium containing GSK3 ⁇ inhibitor (1-AzaKenpaullone) in Fig. 2.
  • ID-8 DYRK inhibitor
  • GSK3 ⁇ inhibitor 1-AzaKenpaullone, Kenpaullone, CHIR99021, or Bio
  • ES cells can be maintained in an undifferentiated state by using a combination of a GSK3 ⁇ inhibitor and a DYRK inhibitor.
  • GSK3 ⁇ inhibitors Kenpaullone and 1-AzaKenpaullone (especially 1-AzaKenpaullone) were able to maintain ES cells most stably.
  • ID-8 was the most stable in maintaining ES cells.
  • Example 2 Role of NFAT inhibitor in subculture of pluripotent stem cells
  • GSK3 ⁇ inhibitor (1-AzaKenpaullone or Kenpaullone) and DYRK inhibitor (ID-8)
  • NFAT inhibitor Tacrolimus (FK- 506) (Cayman Chemical Co., Ltd. 1007965)
  • FK- 506 Ciscomycin C
  • FIG. 3A shows that ES cells can be maintained in an undifferentiated state even when an NFAT inhibitor (Tacrolimus) is added in addition to a GSK3 ⁇ inhibitor (AzaKenpaullone) and a DYRK inhibitor (ID-8).
  • FIG. 3B also shows that cell proliferation is significantly promoted by adding an NFAT inhibitor (Tacrolimus) in addition to the GSK3 ⁇ inhibitor (AzaKenpaullone) and DYRK inhibitor (ID-8). It was also shown that 1-AzaKenpaullone can promote cell proliferation more than Kenpaullone.
  • Example 3 Long-term culture of ES cells Human ES cell line KhES-1, human ES cell line H9 (W09 provided by WiCell), human iPS cell line 253G1 (HPS0002 provided by RIKEN BioResource Center), human iPS cell line 201B7 (RIKEN) HPS0063 provided by BioResource Center), human ES cell line H1 (provided by WiCell W01), medium containing GSK3 ⁇ inhibitor (1-AzaKenpaullone) and DYRK inhibitor (ID-8) (medium 1), and GSK3 ⁇ inhibitor (1 -AzaKenpaullone) and a DYRK inhibitor (ID-8) and a medium (medium 2) further containing an NFAT inhibitor (Tacrolimus) were prepared in the same manner as in Example 1, and these were used as in Example 1. Subculture and cell observation were performed.
  • FIG. 4A shows a cell image when medium 1 is used
  • FIG. 4B shows a cell image when medium 2 is used.
  • the human ES cell line H1 is derived from males, but the culture media 1 and 2 are cells derived from other females (human ES cells) even if they are cells derived from such males. Similar to the cell line KhES-1, human ES cell line H9, human iPS cell line 253G1, and human iPS cell line 201B7), the undifferentiated state could be maintained over a long period of time.
  • Example 4 Confirmation of undifferentiated state after long-term culture Expression of an undifferentiated marker in cells after long-term culture in Example 3 was examined. Specifically, it was performed as follows.
  • Human ES cell line KhES-1 maintained until passage P50 using a medium (Example 3) containing a GSK3 ⁇ inhibitor (1-AzaKenpaullone), a DYRK inhibitor (ID-8), and an NFAT inhibitor (Tacrolimus) (Example 3), human iPS cell line 201B7 maintained until passage P20 (Example 3), human ES cell line H9 maintained until passage P30 (Example 3), and human iPS cells maintained until passage P20 Expression of undifferentiated markers (OCT4, SOX2, NANOG, alkaline phosphatase (ALP), SSEA-3, SSEA-4, TRA1-81, TRA1-60) in the strain 253G1 (Example 3) was performed according to a conventional method.
  • Detection was performed by immunostaining (primary antibodies used were OCT4 (Scanta Cruz Biotechnology, Sc-5279, diluted 200-fold), SOX2 (Santa Cruz Biotechnology, Sc-17320, diluted 100-fold), NANOG (Cell Signaling Technology 4903, 100-fold dilution), SSEA-3 (Santa Cruz Biotechnology, Sc-21703, 50-fold dilution), SSEA-4 (Santa Cruz Biotechnology, Sc-59368, 50-fold dilution), TRA-1-81 (Santa Cruz Biotechnology Sc-21705, diluted 50-fold), TRA-1-60 (Santa Cruz Biotechnology Sc-21706, diluted 50-fold), alkaline phosphatase (ALP) (VECTOR Blue Alkaline Phosphatase Substrate Kit, VECTOR Laboratories SK-5300), secondary antibodies are AlexaFluor 488 or 594 antibodies from Life Technologies corresponding to each primary antibody, diluted 400 times).
  • primary antibodies used were OCT4
  • the karyotype in (Example 3), human ES cell line H9 (Example 3) maintained until passage P33, and human iPS cell line 253G1 (Example 3) maintained until passage P25 was determined according to the standard method. Analysis was performed by the band method.
  • FIG. 5A shows the result of immunostaining
  • FIG. 5B shows the result of flow cytometry
  • FIG. 5C shows the result of karyotype analysis.
  • the left peak in the two-dimensional plot of FIG. 5B shows the negative control peak without the primary antibody, and the right peak shows the peak when the primary antibody is used.
  • Example 5 Comparison with an existing medium A medium containing a GSK3 ⁇ inhibitor (1-AzaKenpaullone), a DYRK inhibitor (ID-8), and an NFAT inhibitor (Tacrolimus) (Example 3), and an existing medium, The proliferation rate of pluripotent stem cells and the expression level of undifferentiated markers were compared. Specifically, it was performed as follows.
  • nt3A and ID-8-containing medium As existing pluripotent stem cell culture media, mTeSR1 medium (Stem Cell Technology 05850), E8 medium (Stem Cell Technology 05940), and Wnt3A and ID-8-containing medium were prepared.
  • Wnt3A and ID-8-containing medium Wnt3A (Peprotech 315-20) was added to the basic medium prepared in Example 1 to a final concentration of 10 ng / mL, and ID-8 was further added to a final concentration of 500. It was added to make nM.
  • FIG. 6A shows the measurement result of the proliferation rate
  • FIG. 6B shows the detection result of the undifferentiated marker by flow cytometry
  • FIG. 6C shows the detection result of the undifferentiated marker by quantitative PCR.
  • a medium containing a GSK3 ⁇ inhibitor (1-AzaKenpaullone), a DYRK inhibitor (ID-8), and an NFAT inhibitor (Tacrolimus) grows at the same speed as or faster than an existing medium. It was shown that. From FIGS. 6B and 6C, the medium containing GSK3 ⁇ inhibitor (1-AzaKenpaullone), DYRK inhibitor (ID-8), and NFAT inhibitor (Tacrolimus) is more similar to the existing medium on feeder cells. It was shown that the undifferentiated state can be stably maintained as in the case of culturing with the above.
  • Example 6 Examination of conditions for subculture ⁇ Experimental experiment on coating components of dish> On Vitronectin-N coated dish, on dish (Synthemax coated dish) coated overnight with 5 ⁇ g Synthemax (Corning Synthemax (registered trademark) II-SC Substrate A14700) per 1 cm 2 of culture dish or on culture dish On a dish (Laminin511 E8 coated dish) coated overnight with 1 ⁇ g of Laminin511 E8 (Nippi iMatrix-511 892001) per cm 2 , the human ES cell line KhES-1 or human as in Example 1 The ES cell line H9 was subcultured.
  • Synthemax Corning Synthemax (registered trademark) II-SC Substrate A14700
  • FIG. 7A shows a cell image after the examination experiment of the coating component
  • FIG. 7B shows a cell image after the examination experiment of the cell peeling solution.
  • FIG. 7A shows that ES cells can be maintained in an undifferentiated state even when Synthemax or Laminin511 E8 is used as a coating component. Among them, Vitronectin-N was able to maintain ES cells most stably.
  • FIG. 7B shows that ES cells can be maintained in an undifferentiated state using either an EDTA solution or a Dispase solution as a cell detachment solution.
  • EDTA solution was used, the survival rate of ES cells was high, but it was slightly difficult to pass, but when using Dispase solution, the passage was easy but the cell viability tended to be low. .
  • Example 7 Application to suspension culture GSK3 ⁇ inhibitor (1-AzaKenpaullone), DYRK inhibitor (ID-8), and medium containing NFAT inhibitor (Tacrolimus) (Example 3), mTeSR1 medium, or E8 medium
  • GSK3 ⁇ inhibitor (1-AzaKenpaullone
  • ID-8 DYRK inhibitor
  • Tacrolimus medium containing NFAT inhibitor
  • mTeSR1 medium mTeSR1 medium
  • E8 medium The human ES cell line KhES-1 was cultured in suspension according to a conventional method. The cell image after P3 passage is shown in FIG. 8A.
  • FIG. 8A shows that the medium containing GSK3 ⁇ inhibitor (1-AzaKenpaullone), DYRK inhibitor (ID-8), and NFAT inhibitor (Tacrolimus) undifferentiated ES cells by suspension culture as well as the existing medium. It was shown that it can be maintained in a stable state.
  • the growth rate in the case of suspension culture in a medium containing a GSK3 ⁇ inhibitor (1-AzaKenpaullone), a DYRK inhibitor (ID-8), and an NFAT inhibitor (Tacrolimus) is obtained when an existing medium is used. It was shown to be comparable to the growth rate.
  • FIG. 8C shows the expression level of each undifferentiated marker as a relative value with respect to the expression level when mTeSR1 medium is used.
  • Example 8 Production of iPS cells iPS cells using a medium containing GSK3 ⁇ inhibitor (1-AzaKenpaullone), DYRK inhibitor (ID-8), and NFAT inhibitor (Tacrolimus) (Example 3), or E8 medium
  • GSK3 ⁇ inhibitor (1-AzaKenpaullone
  • ID-8 DYRK inhibitor
  • NFAT inhibitor Tacrolimus
  • E8 medium Were prepared and analyzed for production efficiency, colony morphology, and expression of undifferentiated markers. Specifically, it was performed as follows.
  • iPS cells were prepared. The scheme is shown in FIG. 9A.
  • Human fetal fibroblasts were transfected according to standard methods.
  • ALP alkaline phosphatase
  • FIG. 9B shows the ALP-stained image
  • FIG. 9C shows the iPS cell production efficiency
  • FIG. 9D shows the observation result of the colony morphology
  • FIG. 9E shows the result of immunostaining.
  • # 1 and # 2 show the results of separate wells, respectively.
  • 9B and C show that iPS cells can be produced by using the medium of the present invention much more efficiently (about 40 times) than the existing medium.
  • 9D and E confirmed that iPS cells prepared using the medium of the present invention were normal in morphology and also expressed undifferentiated markers.

Abstract

タンパク質成分がより少なく、且つ多能性幹細胞の未分化状態を維持することができる培地を提供することを目的とする。 (A)GSK3β阻害剤、及び(B)DYRK阻害剤を含有する多能性幹細胞培養用培地。

Description

多能性幹細胞培養用培地
 本発明は、血清や分化抑制タンパク質を含まなくとも多能性幹細胞の未分化状態を維持できる、多能性幹細胞培養用培地に関する。
 iPS細胞やES細胞等の多能性幹細胞は、その多分化能と増殖能から、細胞移植治療、創薬等への利用や、疾患の研究ツールとしての利用が期待されている。通常、多能性幹細胞は、血清や、その細胞に適切な因子の存在下であれば、ほぼ無限に未分化状態を維持したまま自己複製可能である。例えば、ヒト多能性幹細胞に適切な因子としては、bFGFやTGFβ等の分化抑制タンパク質が報告されている。しかし、これら分化抑制タンパク質は、一般に非常に高価であり、また未分化状態を維持するために必要とされる量も非常に多いので、多能性幹細胞の利用はコスト面から大きく妨げられている。
 また、細胞移植へ応用する場合は、均一な性質を持つ多能性幹細胞が必要になるので、ロットごとに性質の異なる可能性が高いタンパク質は、培地成分としてできるだけ使用しないことが望ましい。
 このような状況下で、近年、タンパク質としてbFGF、TGFβ、インスリン、及びトランスフェリンの4種のみを含む培地(E8培地)や(非特許文献1及び2、並びに特許文献1)、タンパク質としてWnt、インスリン、及びトランスフェリンの3種のみを含む培地が報告されている(非特許文献3及び特許文献2)。
 しかしながら、上記2つの培地は、依然として一般的に非常に高価なbFGF、TGFβ、Wnt等を含んでいるので、より低価格で調製可能な培地が求められている。また、後者の培地を用いた場合は、細胞の増殖が比較的遅いので、一定数の細胞を得るためにより多くの培地が必要になる。
国際公開第2012/019122号 国際公開第2011/019953号
Chemically defined conditions for human iPSC derivation and culture. Chen G, Gulbranson DR, Hou Z, Bolin JM, Ruotti V, Probasco MD, Smuga-Otto K, Howden SE, Diol NR, Propson NE, Wagner R, Lee GO, Antosiewicz-Bourget J, Teng JM, Thomson JA, Nature Methods. 2011 May;8(5):424-9. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Beers J, Gulbranson DR, George N, Siniscalchi LI, Jones J, Thomson JA, Chen G, Nature Protocol. 2012 Nov;7(11):2029-40. Wnt signaling orchestration with a small molecule DYRK inhibitor provides long-term xeno-free human pluripotent cell expansion. Hasegawa K, Yasuda SY, Teo JL, Nguyen C, McMillan M, Hsieh CL, Suemori H, Nakatsuji N, Yamamoto M, Miyabayashi T, Lutzko C, Pera MF, Kahn M, Stem Cells Translational Medicine. 2012 Jan;1(1):18-28.
 本発明は、タンパク質成分がより少なく、且つ多能性幹細胞の未分化状態を維持することができる培地を提供することを目的とする。また、より安価に調製できる培地を提供することも目的とする。さらには、多能性幹細胞をより効率的に増殖させることができる培地を提供することをも目的とする。
 本発明者等は鋭意研究した結果、培地成分としてGSK3β阻害剤とDYRK阻害剤とを組み合わせて用いることにより、上記課題を解決できることを見出した。また、NFAT阻害剤をさらに組み合わせて用いることにより、多能性幹細胞をより効率的に増殖させることができることも見出した。これらの知見に基づいてさらに研究した結果、本発明が完成した。
 即ち、本発明は、下記の態様を包含する。
項1. (A)GSK3β阻害剤、及び(B)DYRK阻害剤を含有する多能性幹細胞培養用培地。
項2. 血清を含まない、項1に記載の培地。
項3. 分化抑制タンパク質を含まない、項1又は2に記載の培地。
項4. 含有されるタンパク質成分がインスリン及びトランスフェリンのみである、項1~3のいずれかに記載の培地。
項5. (A)成分が1-AzaKenpaullone、Kenpaullone、及びCHIR99021からなる群より選択される少なくとも1種である、項1~4のいずれかに記載の培地。
項6. (A)成分が1-AzaKenpaulloneである、項1~5のいずれかに記載の培地。
項7. (B)成分がID-8、Harmine、及びIndirubin類似体からなる群より選択される少なくとも1種である、項1~6のいずれかに記載の培地。
項8. (B)成分がID-8である、項1~7のいずれかに記載の培地。
項9. 更に、(C)NFAT阻害剤を含有する、項1~8のいずれかに記載の培地。
項10. (C)成分がTacrolimusである、項9に記載の培地。
項11. フィーダー細胞非存在下での培養用である、項1~10のいずれかに記載の培地。
項12. 多能性幹細胞が霊長類由来細胞である、項1~11のいずれかに記載の培地。
項13. 項1~12のいずれかに記載の培地を用いる、多能性幹細胞の培養方法。
項14. (A)GSK3β阻害剤、及び(B)DYRK阻害剤を含有する、多能性幹細胞の分化抑制剤。
 本発明によれば、血清や分化抑制タンパク質を用いなくとも、多能性幹細胞の未分化状態を長期間に渡って維持できる培地を提供することができる。よって、本培地は、血清や分化抑制タンパク質を必須成分として含有する既存の培地に比べて、極めて安価に調製することができる。
 また、タンパク質は通常ロットごとに性質の異なる可能性が高いところ、本発明によれば、これらのタンパク質成分をより減らすことができ、このためロット間の性能のばらつきがより少ない培地を提供することができる。よって、均一な性質の多能性幹細胞が必要である細胞移植等への利用に適している。
 本培地は、既存の培地と同程度、或いはそれ以上の効率で、多能性幹細胞を増殖させることができる。よって、一定数の多能性幹細胞を、より低コストで調製することが可能となる。
 本培地は、フィーダー細胞非存在下であっても、フィーダー細胞存在下と同程度に未分化状態を維持すること、及び細胞を増殖させることができる。また、接着培養のみならず、浮遊培養にも用いることができる。
実施例1で観察された細胞像を示す。 実施例1で観察された細胞像を示す。 (A)実施例2で観察された細胞像を示す。(B)実施例2で測定された細胞の倍化数を示す。 (A)実施例3の培地1を用いた場合に観察された細胞像を示す。(B)実施例3の培地2を用いた場合に観察された細胞像を示す。 (A)実施例4の免疫染色の結果を示す。(B)実施例4のフローサイトメトリーの結果を示す。(C)実施例4の核型解析の結果を示す。 (A)実施例5で測定された各継代の平均分割比を示す。(B)実施例5のフローサイトメトリーの結果を示す。(C)実施例6の定量的PCRの結果を示す。 (A)実施例6のコーティング成分の検討実験で観察された細胞像を示す。(B)実施例6の細胞剥離液の検討実験で観察された細胞像を示す。 (A)実施例7で観察された細胞像を示す。(B)実施例7で測定された細胞の倍化数を示す。(C)実施例7の定量的PCRの結果を示す。 (A)実施例8のiPS細胞作製スキームを示す。(B)実施例8で観察されたALP染色像を示す。(C)実施例8で測定されたiPS作製効率を示す。(D)実施例8で作製したiPS細胞の細胞像を示す。(E)実施例8の免疫染色の結果を示す。
 (A)GSK3β阻害剤(以下、「(A)成分」と表記することもある。)、及び(B)DYRK阻害剤(以下、「(B)成分」と略記することもある。)を含有する多能性幹細胞培養用培地(以下、「本発明の培地」と略記することもある。)、及びこれを用いた多能性幹細胞の培養方法(以下、「本発明の培養方法」と略記することもある)について説明する。
 (A)成分及び(B)成分
 GSK3β阻害剤は、GSK3β(グリコーゲン合成酵素キナーゼ3β)を阻害する作用を有する化合物、又はGSK3βを阻害する目的で用いられることが公知の化合物であれば特に限定されない。ここで、「阻害」は、GSK3βの酵素としての機能を阻害することのみならず、細胞内のGSK3βの発現量を減少させることも包含するが、好ましくはGSK3βの酵素としての機能を阻害することを意味する。GSK3β阻害剤として、具体的には、例えば1-AzaKenpaullone、Kenpaullone、CHIR99021、BIO、CID 5706819、9-Cyanopaullone、ML320、AR A014418、SB216763、SB415286、A 1070722、Lithium chloride、Staurosporine、GSK-3β Inhibitor VI、GSK-3β Inhibitor X、GSK-3β Inhibitor XV、Aloisine A、MeBIO、Alsterpaullone、5-Iodo-Indirubin-3'-monoxime、10Z-Hymenialdisine、TWS 119 ditrifluoroacetate、Indirubin-5-sulfonic acid sodium salt、Ro-31-8220、Manzamine A、IM-12、CESI、3F8、TC-G 24、TCS 2002、L803等を挙げることができる。
 これらの中でも、より安定に未分化状態を維持できるという観点又はより効率的に細胞を増殖させることができるという観点から、GSK3βの酵素としての機能の阻害剤であって、GSK3βに対するIC50が例えば100 nM以下、好ましくは50 nM以下、より好ましくは30 nM以下、さらに好ましくは25 nM以下、よりさらに好ましくは5~25 nMであるGSK3β阻害剤が挙げられる。また、同様の観点から、GSK3βの酵素としての機能の阻害剤であって、例えばGSK3β以外の酵素(GSK3α等)に対するIC50が5 nM以上、好ましくは10 nM以上、より好ましくは25 nM以上、さらに好ましくは50 nM以上、よりさらに好ましくは100 nM以上、よりさらに好ましくは1μM以上の、GSK3β特異的阻害剤が挙げられる。なお、各酵素に対するIC50は、公知の情報であり、例えばGSK3β阻害剤の市販品のホームページ(http://www.selleckchem.com/GSK-3.html、http://www.scbt.com/chemicals-table-gsk-3_beta_inhibitors.html等)上で公開されている。具体的には、例えば1-AzaKenpaullone、Kenpaullone、CHIR99021、BIO等、好ましくは1-AzaKenpaullone、Kenpaullone、CHIR99021等、より好ましくは1-AzaKenpaullone、Kenpaullone 等、さらに好ましくは1-AzaKenpaullone等を挙げることができる。これらは、市販されているものを用いてもよいし、公知の情報に従って合成したものを用いてもよい。
 (A)成分は1種単独でもよいし、2種又は3種以上の組み合わせであってもよい。
 DYRK阻害剤は、DYRK(dual-specificity tyrosine-phosphorylation-regulated kinase)を阻害する作用を有する化合物、又はDYRKを阻害する目的で用いられることが公知の化合物であれば特に限定されない。ここで、「阻害」は、DYRKの酵素としての機能を阻害することのみならず、細胞内のDYRKの発現量を減少させることも包含するが、好ましくはDYRKの酵素としての機能を阻害することを意味する。DYRKには、複数種の酵素、例えばヒトではDYRK1A、DYRK1B、DYRK2、DYRK3、及びDYRK4という類似のキナーゼドメインを持つ5つの酵素が包含される。DYRK阻害剤としては、これらの中でも好ましくはDYRK1A及び/又はDYRK1Bの阻害剤、より好ましくはDYRK1A及び/又はDYRK1Bの特異的阻害剤を挙げることができる。DYRK阻害剤として、具体的には、ID-8、Harmine、Indirubin類似体、TG003、INDY、L41、PROINDY、SB 216763、Chronogen quinolinus、Leucettine、Cyclacell limited pyrimidines、Quinazoline、Compound 35、7BIO、6BI0、Indirubin、Az191、ML315、ML320-Compound 35、36d、SEL141等を挙げることができる。これらの中でも、より安定に未分化状態を維持できるという観点又はより効率的に細胞を増殖させることができるという観点から、好ましくはID-8、Harmine、Indirubine類似体、INDY等、より好ましくはID-8、Harmine等、さらに好ましくはID-8等を挙げることができる。なお、Indirubin類似体としては、例えばAmerican Chemical Society, Lett, 2014, 4, 22-26 の6i (716)、又は6e (713)で示される化合物が好ましく挙げられ、6i (716)で示される化合物がより好ましく挙げられる。これらは、市販されているものを用いてもよいし、公知の情報に従って合成したものを用いてもよい。
 (B)成分は1種単独でもよいし、2種又は3種以上の組み合わせであってもよい。
 本発明によれば、血清や分化抑制タンパク質を用いなくとも、(A)成分と(B)成分とを組み合わせて用いることにより、多能性幹細胞の未分化状態を長期間に渡った維持することができる。このことは、(A)成分と(B)成分との組み合わせが、分化抑制作用を発揮することを示している。よって、(A)成分と(B)成分の組み合わせは、多能性幹細胞の分化抑制剤として用いることができる。
 多能性幹細胞培養用培地
 本発明の培地は、(A)成分と(B)成分とを組み合わせて含有する。
 (A)成分の培地中の濃度は、(A)成分の種類によっても異なるが、例えば10~3000 nM、好ましくは50~2000 nM、より好ましくは200~1500 nM、さらに好ましくは350~1000 nM、よりさらに好ましくは450~850 nMであることができる。より具体的には、例えば1-AzaKenpaullone、Kenpaullone、又はCHIR99021の培地中の濃度として、以下の範囲が例示される。
1-AzaKenpaullone:例えば10~3000 nM、好ましくは100~2500 nM、より好ましくは250~2000 nM、さらに好ましくは400~1500 nM、よりさらに好ましくは500~1000 nM;
Kenpaullone:例えば10~3000 nM、好ましくは50~2000 nM、より好ましくは100~1500 nM、さらに好ましくは200~1000 nM、よりさらに好ましくは250~750 nM;
CHIR99021:例えば10~3000 nM、好ましくは50~2000 nM、より好ましくは100~1500 nM、さらに好ましくは200~1000 nM、よりさらに好ましくは250~750 nM。
 (B)成分の培地中の濃度は、(B)成分の種類によっても異なるが、例えば10~4000 nM、好ましくは200~3000 nMであることができる。より具体的には、例えばID-8、Harmine、Indirubin類似体の培地中の濃度として、以下の範囲が例示される。
ID-8:例えば10~3000 nM、好ましくは50~2000 nM、より好ましくは100~1500 nM、さらに好ましくは200~1000 nM、よりさらに好ましくは250~750 nM;
Harmine:例えば300~6000 nM、好ましくは600~5000 nM、より好ましくは1000~3000 nM、さらに好ましくは1500~2500 nM;
Indirubin類似体:例えば10~3000 nM、好ましくは50~2000 nM、より好ましくは100~1500 nM、さらに好ましくは200~1000 nM、よりさらに好ましくは250~750 nM。
 本発明の培地は、通常、基本培地と(A)成分及び(B)成分とを混合することにより調製される。
 基本培地は、多能性幹細胞の培養に用いられる基本培地として使用可能なものであれば特に限定されず、通常、マグネシウム、カルシウム、カリウム、亜鉛、鉄等の標準無機塩、緩衝剤、グルコース、ビタミン、必須アミノ酸等を含有する。具体的には、Dulbecco’s Modified Eagle’s Medium(DMEM)、Minimal essential Medium(MEM)、Basal Medium Eagle(BME)、RPMI1640、F-10、F-12、αMinimal essential Medium(αMEM)、Glasgow’s Minimal essential Medium(GMEM)、Iscove’s Modified Dulbecco’s Medium(IMDM)等が挙げられる。これらの中でも、好ましくはDMEM/F12挙げることができる。
 また、基本培地には、必要に応じて、HEPES等の緩衝剤、非必須アミノ酸、抗酸化剤等を加えてもよい。非必須アミノ酸としては、例えばL-グルタミン、L-アラニン、L-アスパラギン、L-アスパラギン酸、L-グルタミン酸、グリシン、L-プロリン、L-セリン等、好ましくはL-グルタミン等が挙げられる。抗酸化剤としては、例えばアスコルビン酸、2-メルカプトエタノール、ジチオトレイトール等、好ましくはアスコルビン酸等が挙げられる。これらの成分の濃度は、多能性幹細胞の培養において採用される公知の濃度を採用することができる。
 多能性幹細胞をより効率的に増殖させることができるという観点から、本発明の培地は更に(C)NFAT阻害剤(以下、「(C)成分」と略記することもある。)を含有することが好ましい。
 NFAT阻害剤は、NFAT(Nuclear factor of activated T-cells)若しくはカルシニューリンを阻害する作用を有する化合物、又はNFAT若しくはカルシニューリンを阻害する目的で用いられることが公知の化合物であれば特に限定されない。ここで、「阻害」は、NFAT又はカルシニューリンの酵素としての機能を阻害することのみならず、細胞内のNFAT又はカルシニューリンの発現量を減少させることも包含するが、好ましくはNFAT又はカルシニューリンの酵素としての機能を阻害することを意味する。NFAT阻害剤として、具体的には、Tacrolimus (FK506)、Cyclosporin A、AM404、UR-1505、CN585、Sirolimus (Rapamycin)、Endothall、FMPP、Tyrphostins、VIVIT 480402、INCA (1, 2, 6)、Lie120、Roc-1、NCI3、Thiopental、ST1959(DL111-IT)、Quercetin、Tropisetron、Trifluoperazine、PD144795、Norcantharidin、Ascomycin(FKBP12)等を挙げることができる。これらの中でも、より安定に未分化状態を維持できるという観点又はより効率的に細胞を増殖させることができるという観点から、好ましくはTacrolimus等を挙げることができる。これらは、市販されているものを用いてもよいし、公知の情報に従って合成したものを用いてもよい。
 (C)成分は1種単独でもよいし、2種又は3種以上の組み合わせであってもよい。
 (C)成分の培地中の濃度は、(C)成分の種類によっても異なるが、例えば10~3000 pM、好ましくは50~2000 pM、より好ましくは100~1500 pM、さらに好ましくは200~1000 pM、よりさらに好ましくは250~750 pMであることができる。
 本発明の培地は、必要に応じて、分化抑制タンパク質、血清、又は血清代替成分を含んでいてもよい。
 分化抑制タンパク質は、多能性幹細胞の未分化状態を維持する作用を有する因子、又は多能性幹細胞の未分化状態を維持する目的で用いられることが公知の因子である限り特に限定されない。例えば、bFGF、TGFβスーパーファミリー(アクチビン、Nodal等)、LIF、Wnt等が挙げられる。分化抑制タンパク質の濃度は、多能性幹細胞の培養において採用される公知の濃度を採用することができる。分化抑制タンパク質は1種単独でもよいし、2種又は3種以上の組み合わせであってもよい。
 なお、一般的に、これらの分化抑制タンパク質は、非常に高価であるし、化合物に比べてロット間の性能のばらつきが大きい。一方、本発明の培地は、(A)成分と(B)成分とを組み合わせて含有しているが故に、これらの分化抑制タンパク質を用いなくとも、効率的に多能性幹細胞の未分化状態を維持することができる。したがって、培地調製コストをより低減できるという観点、又は培地のロット間の性能のばらつきをより低減できるという観点から、好ましくは、本発明の培地は分化抑制タンパク質を含まない、或いは分化抑制タンパク質を添加せずに培養に用いられる。
 血清は、多能性幹細胞の培養に用いることができる限り特に限定されない。例えば、ウシ胎児血清(FBS)等が挙げられる。血清の濃度は、多能性幹細胞の培養において採用される公知の濃度を採用することができる。血清は1種単独でもよいし、2種又は3種以上の組み合わせであってもよい。
 なお、一般的に、血清は高価であるし、ロット間の性能のばらつきが大きい。一方、本発明の培地は、血清を用いなくとも、効率的に多能性幹細胞の未分化状態を維持し、さらに細胞を増殖させることができる。したがって、培地調製コストをより低減できるという観点、又は培地のロット間の性能のばらつきをより低減できるという観点から、好ましくは、本発明の培地は血清を含まない、或いは血清を添加せずに培養に用いられる。
 血清代替成分は、これを無血清培地に添加することにより、多能性幹細胞の増殖を支持し得る成分を意味する。具体的には、アルブミン(例えば、ウシ血清アルブミン)またはアルブミン代替添加物(例えば、ウシ下垂体抽出物、コメ加水分解物、ウシ胎児アルブミン、卵アルブミン、ヒト血清アルブミン、ウシ胚抽出物、AlbuMAX I(登録商標))、トランスフェリン、インスリン等が挙げられる。血清代替成分の濃度は、多能性幹細胞の培養において採用される公知の濃度を採用することができる。血清代替成分は1種単独でもよいし、2種又は3種以上の組み合わせであってもよい。
 なお、一般的に、タンパク質成分はロット間の性能のばらつきが大きい。よって、血清代替成分としてタンパク質を用いる場合は、できる限りその種類が少ない方が好ましい。この点について、本発明の培地は、血清代替成分(或いはタンパク質成分)がインスリン及びトランスフェリンのみであっても、効率的に多能性幹細胞の未分化状態を維持し、さらに細胞を増殖させることができる。したがって、培地のロット間の性能のバラつきをより低減できるという観点から、本発明の培地に含有される(或いは培養時に添加される)血清代替成分(或いはタンパク質成分)は、好ましくはインスリン及びトランスフェリンのみである。
 本発明の培地は、上記の他にも、多能性幹細胞用の培地に添加可能な公知の成分を含んでいてもよい。これらの中でも、より細胞を効率的に増殖させることができるという観点から、セレン、エタノールアミン等、好ましくはセレン等が挙げられる。これら成分の濃度は、多能性幹細胞の培養において採用される公知の濃度を採用することができる。
 本発明の培地は、それぞれ溶液形態または乾燥形態で調製されうる。溶液形態の場合、濃縮組成物(例えば1×~1000×)として提供されてもよく、使用に際して、適宜に希釈されてもよい。溶液形態または乾燥形態の組成物または培地を希釈または溶解するのに用いられる液体の種類は、水、緩衝水溶液、生理食塩水溶液等があり、必要に応じて容易に選択され得る。
 本発明の培地が溶液形態の場合のpHは、通常、重炭酸塩等のpH調整剤により、7.0~8.2、好ましくは7.1~7.8、より好ましくは7.2~7.5に調整され、浸透圧は、塩化ナトリウム等の塩類で310~340mOsmに調整される。
 本発明の培地は、好ましくは滅菌され、コンタミネーションを防止されたものである。滅菌方法としては、紫外線照射、加熱滅菌、放射線照射、濾過等がある。
 本発明の培地は、そのまま、或いは必要に応じて上記成分を添加して、多能性幹細胞の培養(例えば、多能性幹細胞の維持、多能性幹細胞の継代、誘導多能性幹細胞(iPS細胞)の作製等)に用いられるものである。
 培養対象である多能性幹細胞は、三胚葉(内胚葉、中胚葉、及び外胚葉)のいずれにも分化できる能力を有する幹細胞であれば特に限定されない。由来生物も特に限定されず、例えばヒト、サル、マウス、ラット、ハムスター、ウサギ、モルモット、ウシ、ブタ、イヌ、ウマ、ネコ、ヤギ、ヒツジ等の哺乳動物、鳥類、爬虫類などの多様な動物に由来するものが用いられ得る。これらの中でも好ましくは哺乳動物由来のもの、より好ましくは霊長類由来のもの、さらに好ましくはヒト、サル等由来のもの、よりさらに好ましくはヒト由来のものが用いられる。多能性幹細胞の具体例としては、iPS細胞、ES細胞、EG細胞、EC細胞等が挙げられる。多能性幹細胞は、各種市販又は分譲されているものを用いてもよいし、公知の方法に従って作成したものを用いてもよい。
 本発明の培地を用いて多能性幹細胞を培養する場合は、定法に従って培養することができる。代表的な継代操作および培養条件を挙げれば、以下のとおりである。まず成育した多能性幹細胞のコロニーをPBSで1~2回リンスし、その後、十分量の細胞剥離液を、細胞層を覆うように添加して数分間放置する。PBSまたは血清を含む基本培地を添加し、ピペッティングにより細胞塊を分離する。この細胞懸濁液から、通常遠心分離により細胞を沈殿させる。上清を除去後、沈殿した細胞を培地に再懸濁し、この一部をフィーダー細胞が敷き詰められたディッシュ又はコーティングディッシュに播種し、37℃、5%CO2下で培養する。
 本発明の培地を誘導多能性幹細胞の作製に用いる場合、従来の多能性幹細胞培養用培地を用いる場合に比べて、遥かに効率的に誘導多能性幹細胞のコロニーを得ることができる。なお、「誘導多能性幹細胞の作製に用いる」とは、体細胞にリプログラミング因子を導入した後、該細胞の培養培地として用いることを意味する。
 細胞剥離液としては、例えばEDTAを含む溶液、酵素としてディスパーゼを含む溶液等を用いることができる。より多能性幹細胞の生存率が高いという観点から、好ましくはEDTAを含む溶液が挙げられる。また、より継代を簡便にできるという観点から、好ましくは酵素としてディスパーゼを含む溶液が挙げられる。細胞剥離液中のEDTAやディスパーゼの濃度は、細胞培養において採用される公知の濃度に従って定めることができる。
 コーディングディッシュのコーティング成分としては、例えばビトロネクチン、ラミニン等を挙げることができる。これらの中でも、好ましくはビトロネクチンを挙げることができる。
 本発明の培地は、接着培養であっても、浮遊培養であっても、多能性幹細胞の未分化状態を維持できるという点で優れている。また、接着培養の場合、フィーダー細胞非存在下であっても、フィーダー細胞存在下と同程度に安定的に未分化状態を維持できる。よって、より簡便に培養できるという観点から、フィーダー細胞非存在下での培養が好ましい。
 以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
 実施例1:GSK3β阻害剤、及びDYRK阻害剤を含む培地を用いた、多能性幹細胞の継代培養
 <基本培地の調製>
 粉末DMEM/F-12培地(Sigama-Aldrich社製D0547)を水で2倍希釈した溶液 25 mL、6%炭酸水素ナトリウム溶液 1.4 mL、1M HEPES溶液 0.75 mL、0.23M アスコルビン酸溶液 0.045 mL、ITS(Insulin-Transferrin-Selenium: 1 mg/ml-0.55 mg/ml-0.7 μg/ml)溶液(Life Technologies社製ITS-G 41400-045) 0.9 mL、水 16.905 mLを混合し、45 mLの基本培地(340mOsm, pH 7.2-7.5)を得た。
 <培地の調製>
 基本培地に、GSK3β阻害剤(1-AzaKenpaullone(Sigma-Aldrich社製A3734)、Kenpaullone(Bio Vision社製1094-1)、CHIR99021(Axon Medchem社製1386)、又はBIO(Sigam-Aldrich社製B1686))、及びDYRK阻害剤(ID-8(Sigma-Aldrich社製I1786)、Harmine(Cayman Chemical社製10010324)、Indirubin類似体716 (6i)(American Chemical Society, Lett, 2014, 4, 22-26)、INDY(Merck Millipore社製405273)、L41(AdipoGen社製 MR-C0023)、又はTG003(R&D Systems社製4336))を、単独或いは組み合わせて添加し、培地を得た。培地中の最終濃度は、1-AzaKenpaulloneが750 nMであり、Kenpaulloneが500 nMであり、CHIR99021が500 nMであり、Bioが1μMであり、ID-8が500 nMであり、Harmineが2μMであり、Indirubin類似体716が500 nMであり、INDYが1μMであり、L41が500 nMであり、TG003が500 nMであった。得られた培地(以下、単に「培地」と表記することもある)を、本実施例、及び以下の実施例で用いた。
 <多能性幹細胞の継代培養>
 ヒトES細胞株KhES-1(理研バイオリソースセンター提供)を上記培地で継代培養した。具体的には次のように行った。なお、以下の培養は、培養ディッシュ1 cm2当たり1μgのVitronectin-N(Life Technologies社製A14700)で一晩コーティング処理を行ったディッシュ(Vitronectin-Nコートディッシュ)上で、フィーダー細胞非存在下で行った。
 一般的なヒトES細胞用培地(20% knockout Serum Replacement (Life Technology社製10828-028)、4ng/ml FGF2 (Peprotech社製100-18B)/DMEM/F-12培地(Life Technology社製11330-032))を用いて定法に従って培養されたES細胞のコロニーを、PBSで1回リンスした。Dispace溶液(10mg/ml Dispase (Life Technologies社製17105041)/DMEM/F-12)を、細胞を覆うように添加し、5分間放置した。上記一般的ヒトES細胞用培地を添加し、ピペッティングにより細胞塊を分離した。得られた細胞懸濁液を遠心分離(500cfg、1分間)して、細胞を沈殿させた。上清を除去後、沈殿した細胞を上記培地に再懸濁し、この約1/3をVitronectin-Nコートディッシュ上に播種し、上記培地中、37℃、5%CO2下で培養した。この継代操作を「P1」とした。1もしくは2日毎に培地を交換し、3又は4日毎に上記と同様に継代(P2、P3、P4、・・・)した。
 <結果>
 図1にDYRK阻害剤(ID-8)を含む培地を用いて継代培養した場合の細胞像(最上段)、及びGSK3β阻害剤(1-AzaKenpaullone、Kenpaullone、CHIR99021、又はBio)及びDYRK阻害剤(ID-8)を含む培地を用いて継代培養した場合の細胞像(上から2段目から最下段)を、図2にGSK3β阻害剤(1-AzaKenpaullone)を含む培地を用いて継代培養した場合の細胞像(最上段)、及びGSK3β阻害剤(1-AzaKenpaullone)及びDYRK阻害剤(ID-8、Harmine、Indirubin類似体716、INDY、L41、又はTG003)を含む培地を用いて継代培養した場合の細胞像(上から2段目から最下段)を示す。各図中、P1は、P1の継代から3日後の細胞像を示す。P2、P3等も同様である。
 図1~2より、GSK3β阻害剤と、DYRK阻害剤とを組み合わせて用いることにより、ES細胞を未分化な状態のまま維持できることが示された。また、GSK3β阻害剤の中では、Kenpaulloneと1-AzaKenpaullone(特に1-AzaKenpaullone)が最も安定してES細胞を維持できた。DYRK阻害剤の中では、ID-8が最も安定してES細胞を維持できた。
 実施例2:多能性幹細胞の継代培養におけるNFAT阻害剤の役割
 GSK3β阻害剤(1-AzaKenpaullone又はKenpaullone)及びDYRK阻害剤(ID-8)に加えて、更にNFAT阻害剤(Tacrolimus(FK-506)(Cayman Chemical社製1007965))を加えた培地を実施例1と同様に調製し、これを用いて、実施例1と同様に継代培養及び細胞の観察を行った。また、これとは別に、この培地を用いて実施例1と同様にP1継代を行った後、継代せずに6日間培養した後の細胞数を定法に従って計測し、この計測細胞数に基づいて6日間の間に細胞が何倍に増加したのかを算出した。
 <結果>
 細胞像を図3Aに、細胞の倍化数(Fold increase)を図3Bに示す。
 図3Aより、GSK3β阻害剤(AzaKenpaullone)及びDYRK阻害剤(ID-8)に加えて、更にNFAT阻害剤(Tacrolimus)を加えても、ES細胞を未分化な状態のまま維持できることが示された。また、図3Bより、GSK3β阻害剤(AzaKenpaullone)及びDYRK阻害剤(ID-8)に加えて、更にNFAT阻害剤(Tacrolimus)を加えると、細胞増殖が顕著に促進されることも示された。また、1-AzaKenpaulloneはKenpaulloneに比べて、細胞増殖をより促進できることも示された。
 実施例3:ES細胞の長期間培養
 ヒトES細胞株KhES-1、ヒトES細胞株H9(WiCell社提供W09)、ヒトiPS細胞株253G1(理研バイオリソースセンター提供HPS0002)、ヒトiPS細胞株201B7(理研バイオリソースセンター提供HPS0063)、及びヒトES細胞株H1(WiCell提供W01)を、GSK3β阻害剤(1-AzaKenpaullone)及びDYRK阻害剤(ID-8)を含む培地(培地1)、並びにGSK3β阻害剤(1-AzaKenpaullone)及びDYRK阻害剤(ID-8)に加えて、更にNFAT阻害剤(Tacrolimus)を含む培地(培地2)を実施例1と同様に調製し、これらを用いて、実施例1と同様に継代培養及び細胞の観察を行った。
 <結果>
 培地1を用いた場合の細胞像を図4Aに、培地2を用いた場合の細胞像を図4Bに示す。
 図4A及びBより、培地1及び2のいずれを用いても、種々の多能性幹細胞を、長期間(P17~P60)に亘って未分化な状態のまま維持できることが示された。
 なお、男性由来のES細胞及びiPS細胞と女性由来のES細胞及びiPS細胞とは、エピジェネティックな状態及び遺伝子発現パターンが異なることが知られている(Cell Reports (2014) 8: 923-932、Cell Stem Cell (2012) 11(1): 75-90、Annu. Rev. Genomics Hum. Genet. (2013) 14:85-110等)。これに起因してか、一般的には、男性由来のES細胞及びiPS細胞は女性由来のES細胞及びiPS細胞に比べて未分化能の維持が難しいと考えられている。本実施例で用いた細胞株の内、ヒトES細胞株H1は男性由来であるが、培地1及び2は、このような男性由来の細胞であっても、他の女性由来の細胞(ヒトES細胞株KhES-1、ヒトES細胞株H9、ヒトiPS細胞株253G1、及びヒトiPS細胞株201B7)と同様に、長期間に亘って未分化状態を維持できた。
 実施例4:長期間培養後の未分化状態の確認
 実施例3の長期間培養後の細胞における、未分化マーカーの発現を調べた。具体的には次のように行った。
 <免疫染色>
 GSK3β阻害剤(1-AzaKenpaullone)、DYRK阻害剤(ID-8)、及びNFAT阻害剤(Tacrolimus)を含む培地(実施例3)を用いて、P50継代まで維持したヒトES細胞株KhES-1(実施例3)、P20継代まで維持したヒトiPS細胞株201B7(実施例3)、P30継代まで維持したヒトES細胞株H9(実施例3)、及びP20継代まで維持したヒトiPS細胞株253G1(実施例3)における、未分化マーカー(OCT4、SOX2、NANOG、アルカリフェスファターゼ(ALP)、SSEA-3、SSEA-4、TRA1-81、TRA1-60)の発現を、定法に従った免疫染色によって検出した(使用した1次抗体は、OCT4 (Santa Cruz Biotechnology社製Sc-5279、200倍希釈)、SOX2(Santa Cruz Biotechnology社製Sc-17320、100倍希釈)、NANOG(Cell Signaling Technology社製4903、100倍希釈)、SSEA-3(Santa Cruz Biotechnology社製Sc-21703、50倍希釈)、SSEA-4(Santa Cruz Biotechnology社製Sc-59368、50倍希釈)、TRA-1-81(Santa Cruz Biotechnology社製Sc-21705、50倍希釈)、TRA-1-60(Santa Cruz Biotechnology社製Sc-21706、50倍希釈)、アルカリフェスファターゼ(ALP)(VECTOR Blue Alkaline Phosphatase Substrate Kit, VECTOR Laboratories社製SK-5300)、二次抗体は、各一次抗体に対応したLife Technologies社製AlexaFluor 488もしくは594抗体、400倍希釈)。
 <フローサイトメトリー>
 GSK3β阻害剤(1-AzaKenpaullone)、DYRK阻害剤(ID-8)、及びNFAT阻害剤(Tacrolimus)を含む培地(実施例3)を用いて、P26継代まで維持したヒトES細胞株KhES-1(実施例3)、及びP17継代まで維持したヒトES細胞株H9(実施例3)における、未分化マーカー(OCT4、SSEA-4)の発現を、定法に従ってフローサイトメトリー(Becton Dickinson社製BD FACS CANT II)によって検出した(使用一次抗体は、OCT4 (Santa Cruz Biotechnology社製Sc-5279、100倍希釈)、SSEA-4(Santa Cruz Biotechnology社製Sc-59368、100倍希釈) 二次抗体は、各一次抗体に対応したLife Technologies社製AlexaFluor 488抗体、1000倍希釈)。
 <核型解析>
 GSK3β阻害剤(1-AzaKenpaullone)、DYRK阻害剤(ID-8)、及びNFAT阻害剤(Tacrolimus)を含む培地(実施例3)を用いて、P49継代まで維持したヒトES細胞株KhES-1(実施例3)、P33継代まで維持したヒトES細胞株H9(実施例3)、及びP25継代まで維持したヒトiPS細胞株253G1(実施例3)における核型を、定法に従ったGバンド法によって解析した。
 <結果>
 免疫染色の結果を図5Aに、フローサイトメトリーの結果を図5Bに、核型解析の結果を図5Cに示す。なお、図5Bの二次元プロットおける左側のピークは1次抗体を用いないネガティブコントロールのピークを示し、右側のピークは1次抗体を用いた場合のピークを示す。
 図5A~Bより、長期間の培養後であっても未分化マーカーが発現していることが確認された。また、図5Cより、長期間の培養後であっても核型に変化はないことが確認された。これらのことから、GSK3β阻害剤及びDYRK阻害剤を組み合わせて含有する培地であれば、極めて安定的に未分化状態を維持できることが示された。
 実施例5:既存培地との比較
 GSK3β阻害剤(1-AzaKenpaullone)、DYRK阻害剤(ID-8)、及びNFAT阻害剤(Tacrolimus)を含む培地(実施例3)と、既存の培地とで、多能性幹細胞の増殖速度、及び未分化マーカーの発現量を比較した。具体的には次のように行った。
 <既存培地の準備>
 既存の多能性幹細胞培養用培地として、mTeSR1培地(Stem Cell Technology社製05850)、E8培地(Stem Cell Technology社製05940)、並びにWnt3A及びID-8含有培地を準備した。Wnt3A及びID-8含有培地は、実施例1で作成した基本培地に、Wnt3A(Peprotech社製315-20)を終濃度10 ng/mLになるように添加し、さらにID-8を終濃度500 nMになるように添加して作成した。
 <増殖速度の測定>
 各培地を用いて、実施例1と同様にヒトES細胞株KhES-1の継代培養を行った。各継代(3日毎)時に、各ウェルの底面(3.80 cm2)の約20%を細胞が占めるように細胞を播種し、この時の分割比を記録した。継代はP5継代まで行い、P1~5継代の平均分割比を算出した。
 <フローサイトメトリーによる未分化マーカーの検出>
 各培地を用いて、実施例1と同様にヒトES細胞株KhES-1の継代培養を行った。P30継代まで維持した細胞における、未分化マーカー(OCT4、SSEA-4)の発現を、実施例4と同様にフローサイトメトリーによって検出した。
 <定量的PCRによる未分化マーカーの検出>
 各培地を用いて、実施例1と同様にヒトES細胞株KhES-1の継代培養を行った。P5継代まで維持した細胞における、未分化マーカー(OCT4、SSEA-4)の発現を、定法に従って定量的PCRによって検出した。これとは別に、コントロール細胞として、フィーダー細胞上で同様に培養した細胞についても、未分化マーカーを検出した。
 <結果>
 増殖速度の測定結果を図6Aに、フローサイトメトリーによる未分化マーカーの検出結果を図6Bに、定量的PCRによる未分化マーカーの検出結果を図6Cに示す。
 図6Aより、GSK3β阻害剤(1-AzaKenpaullone)、DYRK阻害剤(ID-8)、及びNFAT阻害剤(Tacrolimus)を含む培地は、既存の培地と同程度、又はそれ以上の速さで増殖することが示された。また、図6B及びCより、GSK3β阻害剤(1-AzaKenpaullone)、DYRK阻害剤(ID-8)、及びNFAT阻害剤(Tacrolimus)を含む培地は、既存の培地と同程度に、さらにフィーダー細胞上で培養した場合と同程度に、安定的に未分化な状態を維持できることが示された。
 実施例6:継代培養の条件検討
 <ディッシュのコーティング成分の検討実験>
 Vitronectin-Nコートディッシュ上、培養ディッシュ1 cm2当たり5μgのSynthemax(Corning社製Synthemax(登録商標)II-SC Substrate A14700)で一晩コーティング処理を行ったディッシュ(Synthemaxコートディッシュ)上、又は培養ディッシュ1 cm2当たり1μgのLaminin511 E8(Nippi社製iMatrix-511 892001)で一晩コーティング処理を行ったディッシュ(Laminin511 E8コートディッシュ)上で、実施例1と同様にヒトES細胞株KhES-1又はヒトES細胞株H9の継代培養を行った。
 <細胞剥離液の検討実験>
 継代時に用いる細胞剥離液としてEDTA溶液(0.5 mM EDTA/PBS)又はDispase溶液(10 mg/mL Dispase/基本培地)を用いて、実施例1と同様にヒトES細胞株KhES-1又はヒトES細胞株H9の継代培養を行った。
 <結果>
 コーティング成分の検討実験後の細胞像を図7Aに、細胞剥離液の検討実験後の細胞像を図7Bに示す。
 図7Aより、コーティング成分として、SynthemaxやLaminin511 E8を用いても、ES細胞を未分化な状態で維持できることが示された。中でも、Vitronectin-Nが最も安定的にES細胞を維持できた。
 図7Bより、細胞剥離液として、EDTA溶液及びDispase溶液のいずれでも、ES細胞を未分化な状態で維持できることが示された。なお、EDTA溶液を用いた場合はES細胞の生存率は高いが若干継代操作が難しかった一方で、Dispase溶液を用いた場合は継代操作は簡単だが細胞の生存率が低い傾向にあった。
 実施例7:浮遊培養への応用
 GSK3β阻害剤(1-AzaKenpaullone)、DYRK阻害剤(ID-8)、及びNFAT阻害剤(Tacrolimus)を含む培地(実施例3)、mTeSR1培地、又はE8培地を用いて、ヒトES細胞株KhES-1を定法に従って浮遊培養した。P3継代後の細胞像を図8Aに示す。
 図8Aより、GSK3β阻害剤(1-AzaKenpaullone)、DYRK阻害剤(ID-8)、及びNFAT阻害剤(Tacrolimus)を含む培地は、既存の培地と同様に、浮遊培養によってもES細胞を未分化な状態で維持できることが示された。
 また、P1継代を行った後、継代せずに5日間培養した後の細胞数を定法に従って計測しこの計測細胞数に基づいて5日間の間に細胞が何倍に増加したのかを算出した。この結果を図8Bに示す。
 図8Bより、GSK3β阻害剤(1-AzaKenpaullone)、DYRK阻害剤(ID-8)、及びNFAT阻害剤(Tacrolimus)を含む培地で浮遊培養した場合の増殖速度は、既存の培地を用いた場合の増殖速度と同程度であることが示された。
 さらに、P7継代まで維持した細胞における、未分化マーカー(OCT4、SOX2、NANOG)の発現を、定法に従って定量的PCRによって検出した。図8Cに、各未分化マーカーの発現量を、mTeSR1培地を用いた場合の発現量に対する相対値で示した。
 図8Cより、GSK3β阻害剤(1-AzaKenpaullone)、DYRK阻害剤(ID-8)、及びNFAT阻害剤(Tacrolimus)を含む培地で浮遊培養した場合の未分化マーカーの発現の程度は、既存の培地を用いた場合の発現の程度と同程度であることが示された。
 実施例8:iPS細胞の作製
 GSK3β阻害剤(1-AzaKenpaullone)、DYRK阻害剤(ID-8)、及びNFAT阻害剤(Tacrolimus)を含む培地(実施例3)、又はE8培地を用いてiPS細胞を作製し、作製効率、コロニーの形態、未分化マーカーの発現について解析した。具体的には次のように行った。
 <iPS細胞の作製>
 iPS作製に関する文献(Nature Methods (2011) 8: 424-429、Nature Protocol (2012) 7: 2029-2040)に記載の方法に基づいて、ヒト胎仔線維芽細胞 (ScienCell社HDF-f、2300)からiPS細胞を作製した。そのスキームを図9Aに示す。Day 0において、リプログラミング因子(OCT4、SOX2、KLF4、c-MYC、LIN28、及びSV40LargeT)発現エピソーマルベクター(pEB-C5又はpEB-Tg(Cell Research (2011) 21:518-529))を、定法に従ってヒト胎仔線維芽細胞にトランスフェクションした。その後、Day 6-9まで、E8培地に酪酸ナトリウム(培地中の終濃度:100μM)及びヒドロコルチゾン(培地中の終濃度:100 nM)が添加された培地、又はGSK3β阻害剤(1-AzaKenpaullone)、DYRK阻害剤(ID-8)、及びNFAT阻害剤(Tacrolimus)を含む培地(実施例3)に酪酸ナトリウム(培地中の終濃度:100μM)及びヒドロコルチゾン(培地中の終濃度:100 nM)が添加された培地中で培養した。Day 6-9からは、ヒドロコルチゾンを除き、且つE8培地についてはTGFβを除いた培地を用いてDay 20-25まで培養した。培養ウェル上の細胞を、定法に従ってアルカリフェスファターゼ(ALP)染色し、ALP陽性コロニーの数を計測した。該計測数を、リプログラミング因子発現ベクターをトランスフェクションした細胞数で除した値を、iPS細胞作製効率とした。
 <コロニーの形態の観察、及び未分化マーカー発現の確認>
 iPS細胞作製後、コロニーをピックアップして、E8培地、又はGSK3β阻害剤(1-AzaKenpaullone)、DYRK阻害剤(ID-8)、及びNFAT阻害剤(Tacrolimus)を含む培地(実施例3)を用いて、定法に従って60日間培養した。培養後、細胞像を観察した。また、未分化マーカー(OCT4、SOX2、NANOG、ALP、SSEA-3、SSEA-4、TRA1-81、TRA1-60)の発現を、免疫染色で実施例4と同様の方法で検出した。
 <結果>
 ALP染色像を図9Bに、iPS細胞作製効率を図9Cに、コロニーの形態の観察結果を図9Dに、免疫染色の結果を図9Eに示す。図9C中、#1及び#2は、それぞれ別々のウェルの結果を示す。
 図9B及びCより、本発明の培地を用いることにより、既存の培地よりも遥かに(約40倍)効率的にiPS細胞を作製できることが示された。また、図9D及びEより、本発明の培地により作製されたiPS細胞は、形態も正常であり、且つ未分化マーカーも発現していることが確認された。

Claims (14)

  1. (A)GSK3β阻害剤、及び
    (B)DYRK阻害剤
    を含有する多能性幹細胞培養用培地。
  2. 血清を含まない、請求項1に記載の培地。
  3. 分化抑制タンパク質を含まない、請求項1又は2に記載の培地。
  4. 含有されるタンパク質成分がインスリン及びトランスフェリンのみである、請求項1~3のいずれかに記載の培地。
  5. (A)成分が1-AzaKenpaullone、Kenpaullone、及びCHIR99021からなる群より選択される少なくとも1種である、請求項1~4のいずれかに記載の培地。
  6. (A)成分が1-AzaKenpaulloneである、請求項1~5のいずれかに記載の培地。
  7. (B)成分がID-8、Harmine、及びIndirubin類似体からなる群より選択される少なくとも1種である、請求項1~6のいずれかに記載の培地。
  8. (B)成分がID-8である、請求項1~7のいずれかに記載の培地。
  9. 更に、(C)NFAT阻害剤を含有する、請求項1~8のいずれかに記載の培地。
  10. (C)成分がTacrolimusである、請求項9に記載の培地。
  11. フィーダー細胞非存在下での培養用である、請求項1~10のいずれかに記載の培地。
  12. 多能性幹細胞が霊長類由来細胞である、請求項1~11のいずれかに記載の培地。
  13. 請求項1~12のいずれかに記載の培地を用いる、多能性幹細胞の培養方法。
  14. (A)GSK3β阻害剤、及び
    (B)DYRK阻害剤
    を含有する、多能性幹細胞の分化抑制剤。
PCT/JP2015/059104 2014-03-26 2015-03-25 多能性幹細胞培養用培地 WO2015147047A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/128,747 US11015169B2 (en) 2014-03-26 2015-03-25 Culture medium for pluripotent stem cells
JP2016510419A JP6502323B2 (ja) 2014-03-26 2015-03-25 多能性幹細胞培養用培地
EP15768143.8A EP3124602B1 (en) 2014-03-26 2015-03-25 Culture medium for pluripotent stem cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-064174 2014-03-26
JP2014064174 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015147047A1 true WO2015147047A1 (ja) 2015-10-01

Family

ID=54195558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059104 WO2015147047A1 (ja) 2014-03-26 2015-03-25 多能性幹細胞培養用培地

Country Status (4)

Country Link
US (1) US11015169B2 (ja)
EP (1) EP3124602B1 (ja)
JP (1) JP6502323B2 (ja)
WO (1) WO2015147047A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019520848A (ja) * 2016-07-19 2019-07-25 アクセルタ リミテッドAccellta Ltd. 多能性幹細胞の懸濁培養のための培養培地
US10669529B2 (en) * 2015-07-17 2020-06-02 Kyoto University Method for inducing vascular endothelial cells
WO2020116623A1 (ja) * 2018-12-07 2020-06-11 関東化学株式会社 多能性幹細胞用未分化維持培地
WO2021020267A1 (ja) * 2019-07-26 2021-02-04 富士フイルム株式会社 ナイーブ型多能性幹細胞の増殖能亢進用培地および多能性幹細胞の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080561A1 (ko) * 2018-10-15 2020-04-23 (주)메디톡스 만능성 줄기세포 배양용 배지 및 그를 이용한 배양 방법
JP7437766B2 (ja) * 2018-10-31 2024-02-26 国立大学法人京都大学 中内胚葉系への分化抵抗性が解除された多能性幹細胞の作製方法
BR112022014275A2 (pt) * 2020-01-21 2022-09-20 Yissum Res Dev Co Of Hebrew Univ Jerusalem Ltd Uso de ativadores de fgf em meios de cultura
WO2022269007A1 (en) * 2021-06-23 2022-12-29 Università Degli Studi Di Milano - Bicocca A molecule capable of inhibiting the integration of calcineurin with a substrate and uses thereof
IT202100016538A1 (it) * 2021-06-23 2022-12-23 Univ Degli Studi Di Milano Bicocca Metodo di coltura, cellule ottenibili dal metodo e relativi usi
CN114736862A (zh) * 2022-05-18 2022-07-12 诺航生物技术研究院徐州有限公司 一种造血干细胞培养基和造血干细胞的体外扩增方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007016485A2 (en) * 2005-07-29 2007-02-08 Athersys, Inc. Use of a gsk-3 inhibitor to maintain potency of cultured cells
WO2007113505A2 (en) * 2006-03-30 2007-10-11 The University Court Of The University Of Edinburgh Culture medium containing kinase inhibitors. and uses thereof
WO2010035136A2 (en) * 2008-09-25 2010-04-01 Uti Limited Partnership Expansion of embryonic stem cells
WO2011019953A1 (en) * 2009-08-12 2011-02-17 University Of Southern California Defined conditions for human embryonic stem cell culture and passage

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5646990B2 (ja) * 2007-04-23 2014-12-24 ストワーズ インスティテュート フォー メディカル リサーチ 幹細胞自己複製のための方法及び組成物
JP6043999B2 (ja) 2010-08-05 2016-12-14 ウィスコンシン アラムニ リサーチ ファンデーション ヒト多能性細胞培養のための簡易基本培地

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007016485A2 (en) * 2005-07-29 2007-02-08 Athersys, Inc. Use of a gsk-3 inhibitor to maintain potency of cultured cells
WO2007113505A2 (en) * 2006-03-30 2007-10-11 The University Court Of The University Of Edinburgh Culture medium containing kinase inhibitors. and uses thereof
WO2010035136A2 (en) * 2008-09-25 2010-04-01 Uti Limited Partnership Expansion of embryonic stem cells
WO2011019953A1 (en) * 2009-08-12 2011-02-17 University Of Southern California Defined conditions for human embryonic stem cell culture and passage

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HASEGAWA K. ET AL.: "Wnt signaling orchestration with a small molecule DYRK inhibitor provides long-term xeno-free human pluripotent cell expansion", STEM CELLS TRANSL. MED., vol. 1, no. 1, January 2012 (2012-01-01), pages 18 - 28, XP055227194, ISSN: 2157-6564 *
SATO N. ET AL.: "Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor", NAT. MED., vol. 10, no. 1, January 2004 (2004-01-01), pages 55 - 63, XP002380572 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669529B2 (en) * 2015-07-17 2020-06-02 Kyoto University Method for inducing vascular endothelial cells
JP2019520848A (ja) * 2016-07-19 2019-07-25 アクセルタ リミテッドAccellta Ltd. 多能性幹細胞の懸濁培養のための培養培地
JP7019667B2 (ja) 2016-07-19 2022-02-15 アクセルタ リミテッド 多能性幹細胞の懸濁培養のための培養培地
JP2022062164A (ja) * 2016-07-19 2022-04-19 アクセルタ リミテッド 多能性幹細胞の懸濁培養のための培養培地
JP7473571B2 (ja) 2016-07-19 2024-04-23 アクセルタ リミテッド 多能性幹細胞の懸濁培養のための培養培地
WO2020116623A1 (ja) * 2018-12-07 2020-06-11 関東化学株式会社 多能性幹細胞用未分化維持培地
JP2020089338A (ja) * 2018-12-07 2020-06-11 関東化学株式会社 多能性幹細胞用未分化維持培地
EP3892719A4 (en) * 2018-12-07 2022-06-15 Kanto Kagaku Kabushiki Kaisha UNDIFFERENTIATED STATE-MAINTAINING CULTURE MEDIUM FOR PLURIPOTENTIC STEM CELLS
JP7308611B2 (ja) 2018-12-07 2023-07-14 関東化学株式会社 多能性幹細胞用未分化維持培地
WO2021020267A1 (ja) * 2019-07-26 2021-02-04 富士フイルム株式会社 ナイーブ型多能性幹細胞の増殖能亢進用培地および多能性幹細胞の製造方法

Also Published As

Publication number Publication date
EP3124602A1 (en) 2017-02-01
JP6502323B2 (ja) 2019-04-17
US11015169B2 (en) 2021-05-25
JPWO2015147047A1 (ja) 2017-04-13
EP3124602B1 (en) 2019-02-27
US20170114322A1 (en) 2017-04-27
EP3124602A4 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6502323B2 (ja) 多能性幹細胞培養用培地
JP6683639B2 (ja) 幹細胞の作製と維持
AU2016318774B2 (en) MACS-based purification of stem cell-derived retinal pigment epithelium
JP6983762B2 (ja) 臨床グレードの網膜色素上皮細胞の再現性のある分化のための方法
AU2014248167B2 (en) Methods and compositions for culturing endoderm progenitor cells in suspension
JP6678107B2 (ja) 膵前駆細胞の増殖方法
CN106893692B (zh) 用于单细胞分选与增强ipsc重新编程的细胞培养平台
SG183535A1 (en) Methods for purifying cells derived from pluripotent stem cells
KR20150030709A (ko) 인간 배아 줄기 세포의 췌장 내분비 세포로의 분화
KR20140131999A (ko) 만능 줄기 세포의 증폭 및 유지를 위한 한정 배지
Hu et al. GSK 3 inhibitor‐BIO regulates proliferation of female germline stem cells from the postnatal mouse ovary
WO2023106122A1 (ja) 間葉系譜への分化に特化した神経堤細胞の製造方法
EP3568463A1 (en) Composition for culture of pluripotent stem cells
WO2015125926A1 (ja) 栄養膜幹細胞の樹立及び維持方法
WO2023147009A1 (en) Clinical-grade therapeutic progenitors generated from tankyrase/parp-inhibited pluripotent stem cell banks
Moraveji et al. Inhibition of glycogen synthase kinase-3 promotes efficient derivation of pluripotent stem cells from neonatal mouse testis
JP6316822B2 (ja) 膵外分泌細胞の誘導方法
JP2016214138A (ja) 栄養膜外胚葉様構造体及びその製造方法
CN111019886B (zh) 新的干性因子和其用于培养胚胎干细胞的方法或培养体系
WO2022191335A1 (ja) プライム型多能性幹細胞をナイーブ型多能性幹細胞に誘導する方法、ナイーブ型多能性幹細胞の製造方法、ナイーブ型多能性幹細胞誘導用キット、及びナイーブ型多能性幹細胞誘導剤
JP2023089926A (ja) 多能性幹細胞培養用培地
JP2022528737A (ja) Abcg2陽性角膜輪部幹細胞を得る又は維持する方法
Zhang et al. Glycogen synthase kinase 3 (GSK3) inhibitor 6-bromoindirubin-3'-oxime (BIO) promotes the proliferation of mouse male germline stem cells (mGSCs) under serum-and feeder-free conditions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510419

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15128747

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015768143

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768143

Country of ref document: EP